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Abstract 

A 2048 look-up-table FPGA with a radix-2 hierarchical 
interconnect network is realized in 3.94mm2 in 65-nm CMOS. 
It has an interconnect-to-logic area ratio of 1:1, which is a 3–4x 
reduction from modern FPGAs while allowing up to 100% 
resource utilization. As a proof of concept, it is designed with 
standard cells, achieving 16.4 GOPS/mm2 at 370MHz. Peak 
energy efficiency of 1.1 GOPS/mW is measured at 0.5V. 

Introduction 
Field-programmable gate arrays (FPGAs) are effective for 

rapid verification and prototyping of VLSI designs. They are 
also used in products that require periodic hardware changes 
and short time to market. However, FPGAs incur penalties in 
area (17–54x), speed (2.5–6.7x), and power (5.7–62x) over 
standard-cell ASICs [1], hindering their expansion into ASIC 
markets. The overhead is primarily due to interconnects, which 
account for over 75% of area and delay. 

For over 20 years, FPGAs have used 2D-mesh interconnects, 
where look-up tables (LUTs) are placed in configurable logic 
blocks (CLBs), and arrays of switch boxes are placed at 
interconnect crossings (Fig. 1). Since a full array requires too 
much area, various heuristics are used to simplify switch-box 
arrays at the cost of resource utilization. Yet 80% of the 1.1B 
transistors on Virtex-5 are used for interconnects [2]. This 
paper demonstrates an FPGA with hierarchical interconnects 
where interconnect area is 51%, a 3–4x reduction from 
commercial FPGAs while preserving connectivity. An energy 
efficiency of 1.1 GOPS/mW is the highest among reported 
FPGAs. The chip is tested up to 400MHz. 

Hierarchical Interconnect Architecture 
The key issue with 2D-mesh is scalability; the number of 

switch boxes grows as O(N2) with the number of LUTs. Using 
Rent’s rule, interconnect complexity is still O(N1.75) for 
random logic, requiring FPGA size to scale much faster than 
Moore’s Law. In the proposed hierarchical interconnect, a 
folded Beneš network is employed to reduce the complexity to 
O(N·logN) [3]: 4 LUTs are connected via 2 stages of switch 
matrices (SMs), and another 4 LUTs are connected with a 3rd 
SM stage (Fig. 2a). Each SM has 4 unidirectional connections 
per direction. Although this architecture reduces interconnect 
complexity, each SM stage doubles the routing congestion. 
This O(N) congestion makes physical design difficult. 

To alleviate congestion, routing is alternated between x-y 
directions to reduce congestion to O(N0.5) (Fig. 2b). At every 
hierarchy, the LUTs near the center are interconnected to 
create shorter routes, and the edge routes are longer. This gives 
routing tools options for faster paths on timing-critical routes. 

The test chip has 2048 4-input LUTs: 1024 LUTs form 256 
Logic CLBs, 896 LUTs form 224 DSP CLBs, and 128 LUTs 
form 16 Block RAMs (BRAMs) of 1kb each. In practice, the 
majority of the logic connections are local, requiring fewer 
connections on upper hierarchies. Therefore full connectivity 
is preserved up to 6 SM stages (Fig. 3a), then half-connectivity 
SMs are used to reduce the complexity of upper hierarchies. 
This partitions the interconnect into 3 sub-networks: N8:2, N6:2, 
and N6:1. The chip is divided into 16 macros (Fig. 3b). Macros 
N8:2 are centered for shorter top-level routing, branching into 
N6:2 and N6:1. Each of the macros contains 32 CLBs—a 
combination of Logic, DSP, and BRAM (Fig. 3c). 

Circuit Implementation 
The CLBs include four 4-input LUTs with selectable 

asynchronous/synchronous output stages (Fig. 4a). Each LUT 

is configurable as one 4-input LUT or two 3-input LUTs with 
up to 4 unique inputs. A Logic CLB includes a carry chain to 
support 4b additions where Propagate and Generate are driven 
from LUTs. The Logic CLB is especially useful when two 
outputs per bit are required, such as in 3:2 compressors. 

The DSP CLB (Fig. 4b) has a LUT combiner to support 
5/6-input LUTs, and a carry chain that is configurable as one 
8b or two 4b adders. The adder cells are shared with a 4b×4b 
Wallace-tree multiplier. Based on the configuration, the 
appropriate outputs are sent to the output stage. Due to the 
level of configurability, the synthesized CLB has 50 logic 
gates on its critical path (shaded), amounting to a 1.1ns delay. 

Configuration bits are required to control CLBs and SMs, 
but traditional SRAM arrays are not suitable because all bits 
cannot be accessed simultaneously. A scan chain is adopted in 
[4] to control 6 CLBs, but it is not scalable to larger designs. 
Therefore an SRAM-based bit cell (BC) is designed where the 
output of each BC is directly routed to the configuration inputs 
of CLBs and SMs (Fig. 5a). The BC area is 5x smaller than a 
DFF-based scan cell. The bit-line (BL) and word-line (WL) 
controls are implemented as scan chains to write one row of 
BCs at a time. The BC arrays are local to each CLB, so only the 
BL and WL controls are propagated to top level. Overall, the 
memory area is reduced (Fig. 5b), and total interconnect area is 
51%, a 3–4x reduction over 2D-mesh [5] for a fixed logic area. 

Automated Mapper 
An automated mapper is developed to map RTL onto this 

FPGA. A standard-cell library of LUT functions is created to 
enable logic synthesis using commercial tools. The LUT netlist 
is imported into an automated, custom place-and-route tool 
that generates the bitstream for FPGA programming. This tool 
is also used during architecture design to evaluate interconnect 
connectivities by mapping Toronto20 benchmarks. 

Measurement Results  
Our chip achieves 16.4 GOPS/mm2 when all Logic and DSP 

CLBs are utilized, executing 175 16b accumulators at 370MHz. 
Since a 16b adder uses 2 DSP CLBs or 4 Logic CLBs, the DSP 
adders are faster, reaching 400MHz. Performance is hindered 
by equipment limitations due to a 0.25ns input-clock jitter at 
400MHz. The energy-delay curve and the power breakdowns 
for minimum delay and minimum energy are shown in Fig. 6. 

In comparison, [4] has no interconnects, the full-custom 
CLB in 32-nm LVT is 2.5x faster, but achieves 2.6 GOPS/mW 
at 0.34V for 8b operations, which is 0.65 GOPS/mW for 16b (2 
CLBs per operation at half the speed). With interconnects, our 
65-nm chip reaches 1.1 GOPS/mW at 0.5V. 

Leakage is well-controlled even without power gating. A 
1.08 GOPS/mW is attainable with only 112 DSP accumulators 
active and most of the Logic CLBs idle (Table I). The FIR 
filter achieves 274MHz due to longer routing, but interconnect 
delay is still under 50%. The 2×2 MIMO FFT uses 10 BRAMs 
to implement various delay lines. With many control signals 
and a critical path of 11 CLBs, the FFT achieves 83MHz. 

Figure 7 shows the die photo. The top 3 metal layers (out of 
9) are sparsely used, leaving ample room for larger designs. 
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Figure 1: 2D-mesh interconnect. Figure 2: a) Hierarchical routing of 8 LUTs (4 shown) using SMs, b) alternated x-y routing.

Figure 3: a) Interconnect architecture of 2048 LUTs,
floorplan of b) SM network, c) CLB placement.

Figure 4: a) CLB block diagram and b) DSP CLB schematic.

Figure 5: a) Bit cell (BC) configuration circuitry, b) area comparisons 
of 2D-mesh vs. this chip for a fixed logic area.

Figure 6: Energy-delay curve of the mapped 175 16b accumulator 
with power breakdown at Fmax and Emin (insets).

TABLE I: MEASUREMENT RESULTS.

Figure 7: Die micrograph and chip summary.
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