UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 7,930,576 C1 Page 1 of 1
APPLICATION NO. :90/011754

DATED : September 4, 2012

INVENTOR(S) : lan F. Harris and Drew J. Dutton

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In the Claims:
Column 12

Lines 24-25, in claim 181, delete “host memory and” and insert -- host memory bus and --,
therefor.

Signed and Sealed this
Fifteenth Day of October, 2013

Teresa Stanek Rea
Deputy Director of the United States Patent and Trademark Office

Page 1 of 264 Nuvoton Exhibit 1004

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

EX PARTE REEXAMINATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Reexamination $
Control. No.: 90/011,754 S Atty. Dkt.No.: 5707-26200
Inventor: Ian F. Harris, et al. § Examiner: Peikari, Behzad
Request Filing Date: June 21, 2011 g Group/Art Unit: 3992
U.S. Patent No.: 7,930,576 § Conf. No.: 4071
Title: SHARING NON-SHARABLE g

DEVICES BETWEEN AN §

EMBEDDED CONTROLLER §

AND A PROCESSOR IN A §

COMPUTER SYSTEM §

TRANSMITTAL LETTER

Transmitted herewith for filing in the captioned case is the following:

€ Form PTO-1050. Errors which occur at important points in
the captioned patent or which may otherwise affect the
understanding or interpretation of the patent are thereon
corrected.

All of the errors shown in PTO-1050 are due to Patent Office oversights. A Certificate of
Correction is requested under 35 U.S.C. § 254. Applicants believe that no fees are required,
however, should any fees be required, please deduct them from Meyertons, Hood, Kivlin,
Kowert & Goetzel PC Deposit Account No. 501505/5707-26200/JCH.

Respectfully submitted,

/Jeffrey C. Hood/
Jeffrey C. Hood, Reg. #35198

Meyertons, Hood, Kivlin, Kowert & Goetzel PC
P.O. Box 398

Austin, Texas 78767-0398

(512) 853-8800

DATE: 2012-09-26 JCH/kmm

Page 1 of 1

Page 2 of 264

Page 1 of 1
UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO.: 7,930,576 C1
DATED: September 4, 2012

INVENTORC(S): Ian F. Harris and Drew J. Dutton

It is certified that an error or errors appear in the above-identified patent and that said EX PARTE REEXAMINATION
CERTIFICATE is hereby corrected as shown below:

In the Claims:

Column 12
Lines 24-25, in claim 181, delete “host memory and” and insert -- host memory bus
and --, therefor.

MAILING ADDRESS OF SENDER: PATENT NO. 7,930,576 C1
Jeffrey C. Hood, Esq.,

Meyertons, Hood, Kivlin, Kowert & Goetzel PC

P.O. Box 398

Austin, Texas 78767-0398

Certificate of Correction (PTO Form 1050)

Page 3 of 264

Electronic Acknowledgement Receipt

EFS ID: 13839932
Application Number: 90011754
International Application Number:
Confirmation Number: 4071

Title of Invention:

SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER

AND A PROCESSOR IN A COMPUTER SYSTEM

First Named Inventor/Applicant Name:

7,930,576 B2

Customer Number:

35690

Filer:

Jeffrey C Hood/Karen Miller

Filer Authorized By:

Jeffrey CHood

Attorney Docket Number: JCLA38862-RE
Receipt Date: 26-SEP-2012
Filing Date: 21-JUN-2011
Time Stamp: 11:44:18

Application Type:

Reexam (Patent Owner)

Payment information:

Submitted with Payment

no

File Listing:

Document

Document Description
Number P

File Name

File Size(Bytes)/
Message Digest

Multi
Part /.zip

Pages
(if appl.)

1 Request for Certificate of Correction

5707-26200_transmittal_letter |
correction_request_filed.pdf

73453

15bca

da29e78802190a15050acf5e9a384746d17

no

Warnings:

Information:

Page 4 of 264

o 61576
2 Request for Certificate of Correction 5707—26200_:;rta;orrectlon_fl| no 1
p 0f2169fd 149e906d 76d58396df 1b69d 9053)
7bfa
Warnings:
Information:
Total Files Size (in bytes):i 135029

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for

an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Page 5 of 264

uso079

30

576C1

12y EX PARTE REEXAMINATION CERTIFICATE (9280th)

United States Patent

Harris et al.

US 7,930,576 C1
Sep. 4, 2012

(10) Number:
@5) Certificate Issued:

(54) SHARING NON-SHARABLE DEVICES
BETWEEN AN EMBEDDED CONTROLLER
AND A PROCESSOR IN A COMPUTER
SYSTEM

(75) Inventors: Ian F. Harris, Kings Park, NY (US);
Drew J. Dutton, Austin, TX (US)

(73) Assignee: Standard Microsystems Corporation,
Hauppauge, NY (US)

Reexamination Request:
No. 90/011,754, Jun. 21, 2011

Reexamination Certificate for:

Patent No.: 7,930,576
Issued: Apr. 19,2011
Appl. No.: 11/958,601
Filed: Dec. 18, 2007

Related U.S. Application Data
(60) Provisional application No. 60/910,863, filed on Apr. 10,

2007.
(51) Int.CL

GO6F 126 (2006.01)

GO6F 15/177 (2006.01)
(52) US.CL .o, 713/324; 713/100; 713/2
(58) Field of Classification Search None

See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited
during the proceeding for Reexamination Control Number
90/011,754, please refer to the USPTO’s public Patent
Application Information Retrieval (PAIR) system under the
Display References tab.

Primary Examiner—B. James Peikari
(57) ABSTRACT

System and method for sharing a device, e.g., non-volatile
memory, between a host processor and a microcontroller. In
response to system state change to a first state wherein the
microcontroller is assured safe access to the non-volatile
memory (e.g., in response to power-on reset, system reset,
sleep state, etc.), the microcontroller holds the system in the
first state (e.g., system reset), and switches access to the
non-volatile memory from the processor to the microcon-
troller. While the system is held in the first state, the micro-
controller accesses the device (e.g., non-volatile memory),
e.g., fetches program instructions/data from the non-volatile
memory and loads the program instructions/data into a
memory of the microcontroller. After the access, the micro-
controller changes or allows change of the system state, e.g.,
switches access to the device, e.g., the non-volatile memory,
from the microcontroller to the processor, and releases the
system from the first state.

Microcontroller
System Reset 102
403
buffers
__[>>__
__<:}__
Switch Control [:<] Non-volatile
Host memory bus 406 | memory bus
105 _<]—-[107
Host_Data Switch Memory_Data
Host_CLK (x3) Memory_CLK
Host_CSb 404 Memory_CSb

Page 6 of 264

US 7,930,576 C1

1
EX PARTE
REEXAMINATION CERTIFICATE
ISSUED UNDER 35 U.S.C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part of the
patent; matter printed in italics indicates additions made
to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

The patentability of claims 1-23 is confirmed.

New claims 24-213 are added and determined to be pat-
entable.

24. The system of claim 1, wherein the change in system
state to the first state is performed by hardware.

25. The system of claim 1, wherein the change in system
state to the first state is in vesponse to a hardware signal.

26. The system of claim 1, wherein the change in system
state to the first state is in vesponse to a software event.

27. The system of claim 1, wherein the change in system
state to the first state is in vesponse to a token.

28. The system of claim 1, wherein the change in system
state to the first state is in response to the system passing the
microcontroller a token which grants the microcontroller
ownership of the memory through a software handshake.

29. The system of claim 1, wherein the change in system
state to the first state is in vesponse to a software condition.

30. The system of claim 1, wherein the change in system
state to the first state is in vesponse to a software message.

31. The system of claim 1, wherein the change in system
state to the first state is in response to a software handshake.

32. The system of claim 1, wherein the first state com-
prises a power on reset (POR) state.

33. The system of claim 1, wherein the first state com-
prises a system reset state.

34. The system of claim 1, wherein the first state com-
prises a sleep state.

35. The system of claim 1, wherein to hold the system in
the first state, the microcontroller is configured to:

in response to a power on reset, hold a system reset signal

in a reset state, thereby prohibiting the processor from
accessing the non-volatile memory.

36. The system of claim 35, wherein to fetch program
instructions or data from the non-volatile memory and load
the program instructions or data into a memory of the micro-
controller while the system is held in the first state, the
microcontroller is configured to:

fetch the program instructions or data from the non-

volatile memory and load the program instructions or
data into a memory of the microcontroller while the
system reset signal is held in the reset state.

37. The system of claim 35, wherein to switch access to the
non-volatile memory from the microcontroller to the
processor, and release the system from the first state after the
program instructions or data have been loaded, the micro-
controller is configured to:

after the program instructions or data have been loaded,

permit the processor in the system access to the non-
volatile memory, and release the system reset signal
[from the reset state.

Page 7 of 264

—
=)

20

40

45

2

38. The system of claim 1, wherein the first state com-
prises a state wherein it is known by the microcontroller that
the system cannot or will not access the device.

39. The system of claim 1, wherein the microcontroller is
included within a system-on-chip (SoC).

40. The system of claim 1, wherein the microcontroller
comprises a keyboard controller for managing or controlling
communications between a keyboard and the processor.

41. The system of claim 40, wherein the non-volatile
memory stores keyboard controller (KBC) code.

42. The system of claim 1, wherein the program instruc-
tions or data arve usable by the microcontroller for startup,
general, or reset functionality.

43. The system of claim 1, wherein the program instruc-
tions or data are usable by the microcontroller for initializ-
ing the microcontroller.

44. The system of claim 1, wherein during system
shutdown, the microcontroller is further configured to:

configure the non-volatile memory to allow access to the
non-volatile memory only by the microcontroller before
power-off;

queue one or more writes or other exchanges with the
non-volatile memory; and

complete the one or more writes or other exchanges with
the non-volatile memory before final power-off.

45. The system of claim 1, further comprising:

a device interface coupled to the non-volatile memory,
wherein the device interface controls access to the non-
volatile memory, wherein during system shutdown, the
microcontroller is further configured to:

redirect the device interface to allow access to the non-
volatile memory only by the microcontroller before
power-off;

queue one or more writes or other exchanges with the
non-volatile memory; and

complete the one or more writes or other exchanges with
the non-volatile memory before final power-off.

46. The system of claim 1, further comprising:

one or morve additional processors, each coupled to the
microcontroller and the non-volatile memory, and
wherein the microcontroller has control over the power
or execution states of the processor and the one or more
additional processors for sharing the non-volatile
memory between the plurality of processors.

47. The system of claim 1, further comprising:

one or more additional microcontrollers, each coupled to
the processor and the non-volatile memory, wherein
each additional microcontroller is configured to share
the non-volatile memory with the processor.

48. The system of claim 1, further comprising:

one or more additional microcontrollers, each coupled to
the processor and the non-volatile memory, wherein
each additional microcontroller is configured to share
the non-volatile memory, and wherein each microcon-
troller is configured to suspend or prevent access to the
non-volatile memory by other microcontrollers and the
processor while it accesses the non-volatile memory.

49. The system of claim 1, further comprising:

a system interface, coupled to the processor, wherein the
microcontroller is situated between the system interface
and the non-volatile memory, and wherein the micro-
controller is configured to intercept communications
between the system interface and the non-volatile
memory; and

a device interface, included in or associated with the non-
volatile memory, wherein the device interface is config-

US 7,930,576 C1

3

ured to direct or restrict access to the non-volatile
memory by the processor or the microcontroller.

50. The system of claim 49, wherein the microcontroller is
configured to set one or more control signals to configure or
redirect the device interface to grant exclusive access to the
non-volatile memory to the microcontroller.

51. The system of claim 1, wherein the non-volatile
memory comprises flash memory.

52. The system of claim 1, wherein the change in system
state to the first state is in response to a management signal,
wherein to hold the system in the first state, the microcontrol-
ler is further configured to hold the management signal in a
corresponding state, or to hold or assert another manage-
ment signal in a specified state.

53. The system of claim 52, further comprising:

a device interface, included in or associated with the non-
volatile memory, wherein the device interface is config-
ured by the microcontroller to direct or restrict access
to the non-volatile memory by the processor or the
microcontroller independent of the management signal.

54. The system of claim 52, further comprising:

a system interface, coupled to the processor, and further
coupled to the microcontroller via a system manage-
ment bus configured for communicating management
signals between the system interface and the microcon-
troller.

55. The system of claim 52, further comprising:

a system interface, coupled to the processor, and further
coupled to the microcontroller via a system interface
bus configured for communicating management signals
between the system interface and the microcontroller.

56. The system of claim 52, wherein the management sig-
nal or the another management signal is invoked by the
microcontroller.

57. The system of claim 52, wherein the management sig-
nal or the another management signal is not invoked by the
microcontroller.

58. The system of claim 52, wherein the management sig-
nal or the another management signal is a software signal.

59. The system of claim 52, wherein the management sig-
nal or the other management signal is a hardware signal.

60. The system of claim 1, wherein switching access to the
non-volatile memory from the processor to the microcontrol-
ler and from the microcontroller to the processor is per-
formed via software.

61. The system of claim 1, wherein switching access to the
non-volatile memory from the processor to the microcontrol-
ler and from the microcontroller to the processor is per-
formed via hardware.

62. The system of claim 1, wherein switching access to the
non-volatile memory from the processor to the microcontrol-
ler and from the microcontroller to the processor is per-
formed via a combination of software and hardware.

63. The system of claim 1, wherein the change in system
state to the first state is not dependent on a management
signal.

64. The system of claim 1, wherein to fetch program
instructions ov data from the non-volatile memory and load
the program instructions or data into a memory of the
microcontroller, the microcontroller is configured to:

fetch initialization code or data for the system.

65. The system of claim 64, wherein to fetch program
instructions ov data from the non-volatile memory and load
the program instructions or data into a memory of the
microcontroller, the microcontroller is further configured to:

fetch program instructions or data related to pre-boot
security operations; and

Page 8 of 264

2

=3

2

[

30

35

40

45

50

55

60

65

4

perform the pre-boot security operations prior to boot-up
of the system.
66. The system of claim 1, wherein the microcontroller is
coupled to the non-volatile memory via a non-volatile
memory bus, and wherein the microcontroller is operable to
fetch the program instructions or data from the non-volatile
memory via the non-volatile memory bus.
67. The system of claim 66, wherein the microcontroller is
coupled to the processor via a host memory bus, and wherein
the microcontroller is operable to switchably intercept or
pass communications between the processor and the non-
volatile memory.
68. The system of claim 67, wherein the host memory bus
and the non-volatile memory bus are SPI (serial peripheral
interface) buses.
69. The system of claim 67, wherein the microcontroller
comprises or is coupled to a switch, interposed between the
non-volatile memory bus and the host memory bus, wherein
the switch is controllable by the microcontroller to switch-
ably intercept ov pass communications between the proces-
sor and the non-volatile memory.
70. The system of claim 69, wherein the switch comprises
a Q switch or a conceptual Q switch.
71. The system of claim 69, wherein to switchably inter-
cept or pass communications between the processor and the
non-volatile memory, the microcontroller is configured to
place the switch into a high-impedance state.
72. The system of claim 69, wherein to switch access to the
non-volatile memory from the microcontroller to the
processor, and release the system from the first state, the
microcontroller is configured to:
reconfigure the access to the non-volatile memory via the
switch, and release the system from the first state,
thereby permitting the processor access to the non-
volatile memory.
73.The system of claim 69,
wherein the first state comprises a reset state, wherein to
hold the system in the first state, the microcontroller is
configured to maintain assertion of a system reset sig-
nal; and
wherein to switch access to the non-volatile memory from
the microcontroller to the processor, and release the
system from the first state, the microcontroller is config-
ured to:
terminate a prior suspension or preemption of commu-
nications between the host interface and the non-
volatile memory via the switch, thereby allowing
resumption of the communications; and

de-assert the system reset signal.

74. The system of claim 67, wherein the host memory bus
and the non-volatile memory bus each comprises:

a data line;

a clock line; and

a CSb (Chip Select bar) line.

75. The system of claim 67, wherein the host memory bus
and the non-volatile memory bus each comprises a plurality
of lines.

76. The system of claim 75, wherein each line of the host
memory bus and the non-volatile memory bus is indepen-
dently switchable.

77. The system of claim 75, further comprising:

a system interface, coupled to the processor, and further
coupled to the microcontroller for communicating sig-
nals between the system interface and the microcontrol-
ler;

wherein the lines of the host memory bus and the non-
volatile memory bus are switchable together to suspend

US 7,930,576 C1

5

or inhibit communications between the system interface
and the non-volatile memory.

78. The system of claim 75, wherein the lines of the host
memory bus and the non-volatile memory bus are coupled to
respective buffers for communicating data or signals
between the non-volatile memory bus and the microcontrol-
ler.

79. The system of claim 78, further comprising:

a device interface, included in or associated with the non-
volatile memory, wherein the device interface is config-
ured by the microcontroller to:
when the system is held in the first state, preclude the

processor from accessing the non-volatile memory.
80. The system of claim 79, wherein the microcontroller is
further configured to:
once the microcontroller has completed fetching program
instructions or data from the non-volatile memory, or
has determined that it is no longer assured of safe
access to the non-volatile memory, reconfigure the
device interface via control signals to enable access by
the processor to the non-volatile memory.
81. The system of claim 1,
wherein the first state comprises a reset state, wherein to
hold the system in the first state, the microcontroller is
configured to maintain assertion of a system reset sig-
nal; and
wherein to switch access to the non-volatile memory from
the microcontroller to the processor, and release the
system from the first state, the microcontroller is config-
ured to:
terminate a prior suspension or preemption of commu-
nications between the processor and the non-volatile
memory, thereby allowing communications to occur
between the processor and the non-volatile memory;
and

de-assert the system reset signal.

82. The system of claim 1, further comprising:

a device interface, included in or associated with the non-
volatile memory, wherein the device interface is config-
ured by the microcontroller to:

when the system is held in the first state, preclude the
processor from accessing the non-volatile memory.

83. The system of claim 1, wherein the microcontroller is

Sfurther configured to:

while the system is held in the first state, exchange data or
program instructions with the non-volatile memory.

84. The system of claim 83, wherein to exchange data or
program instructions with the non-volatile memory, the
microcontroller is configured to:

invoke a read or write by another component of the sys-
tem.

85. The system of claim 1, further comprising:

a system interface, coupled to the processor, and further
coupled to the microcontroller via a system manage-
ment bus configured for communicating management
signals between the system interface and the microcon-
troller;

wherein the microcontroller comprises a system reset line
for communicating a reset signal or other signal to or
from the system interface.

86. The system of claim 85, wherein the reset signal or
other signal corresponds with or invokes a suspension of
non-volatile memory access by the processor.

87. The system of claim 85, wherein the reset signal or
other signal indicates a system state in which the microcon-
troller has safe access to the non-volatile memory.

Page 9 of 264

2

=3

25

3

=1

3

Py

4

=)

4

o

50

55

60

65

6

88. The system of claim 85, wherein to hold the system in
the first state, the microcontroller is configured to hold the
system reset signal or other signal in a reset state.

89. The method of claim 6, wherein the change in system
state to the first state is performed by hardware.

90. The method of claim 6, wherein the change in system
state to the first state is in vesponse to a hardware signal.

91. The method of claim 6, wherein the change in system
state to the first state is in vesponse to a software event.

92. The method of claim 6, wherein the change in system
state to the first state is in vesponse to a token.

93. The method of claim 6, wherein the change in system
state to the first state is in response to the system passing the
microcontroller a token which grants the microcontroller
ownership of the memory through a software handshake.

94. The method of claim 6, wherein the change in system
state to the first state is in response to a sofiware condition.

95. The method of claim 6, wherein the change in system
state to the first state is in vesponse to a software message.

96. The method of claim 6, wherein the change in system
state to the first state is in response to a software handshake.

97. The method of claim 6, wherein the first state com-
prises a power on reset (POR) state.

98. The method of claim 6, wherein the first state com-
prises a system reset state.

99. The method of claim 6, wherein the first state com-
prises a sleep state.

100. The method of claim 6, wherein holding the system in
the first state comprises, in response to a power on reset,
holding a system reset signal in a reset state, thereby prohib-
iting the processor from accessing the non-volatile memory.

101. The method of claim 100, wherein said fetching pro-
gram instructions or data from the non-volatile memory and
loading the program instructions or data into a memory of
the microcontroller while the system is held in the first state
occur while the system reset signal is held in the veset state.

102. The method of claim 100, wherein said switching
access to the non-volatile memory from the microcontroller
to the processor comprises permitting the processor in the
system to access the non-volatile memory, and wherein
releasing the system from the first state after the program
instructions or data have been loaded comprises releasing
the system reset signal from the reset state.

103. The method of claim 6, wherein the first state com-
prises a state wherein it is known by the microcontroller that
the system cannot or will not access the device.

104. The method of claim 6, wherein the microcontroller
is included within a system-on-chip (SoC).

105. The method of claim 6, wherein the microcontroller
comprises a keyboard controller for managing or controlling
communications between a keyboard and the processor.

106. The method of claim 105, wherein the non-volatile
memory stores keyboard controller (KBC) code.

107. The method of claim 6, wherein the program instruc-
tions or data are usable by the microcontroller for startup,
general, or reset functionality.

108. The method of claim 6, wherein the program instruc-
tions or data arve usable by the microcontroller for initializ-
ing the microcontroller.

109. The method of claim 6, further comprising:

during system shutdown:

configuring the non-volatile memory to allow access to
the non-volatile memory only by the microcontroller
before power-off;

queuing one or move writes or other exchanges with the
non-volatile memory; and

completing the one or more writes ov other exchanges
with the non-volatile memory before final power-off.

US 7,930,576 C1

7

110. The method of claim 6, further comprising:
during system shutdown:
redirecting a device interface to allow access to the
non-volatile memory only by the microcontroller
before power-of, wherein the device interface is
coupled to the non-volatile memory and controls
access to the non-volatile memory;

queuing one or more writes or other exchanges with the
non-volatile memory; and

completing the one or more writes or other exchanges
with the non-volatile memory before final power-off.

111. The method of claim 6, wherein the system further
includes one or more additional processors, each coupled to
the microcontroller and the non-volatile memory, and
wherein the method further includes controlling the power
or execution states of the processor and the one or more
additional processors for sharing the non-volatile memory
between the plurality of processors.

112. The method of claim 6, wherein the system further
includes one or more additional microcontrollers, each
coupled to the processor and the non-volatile memory, and
wherein the method further includes each additional micro-
controller sharing the non-volatile memory with the proces-
sor.

113. The method of claim 6, wherein the system further
includes one or more additional microcontrollers, each
coupled to the processor and the non-volatile memory, and,
wherein the method further includes:

each additional microcontroller sharing the non-volatile
memory; and

each microcontroller suspending or preventing access to
the non-volatile memory by other microcontrollers and
the processor while it accesses the non-volatile
memory.

114. The method of claim 6, further comprising:

intercepting communications between a system interface
and the non-volatile memory, wherein the system inter-
Jface is coupled to the processor, and wherein the micro-
controller is situated between the system interface and
the non-volatile memory; and

a device interface directing or restricting access to the
non-volatile memory by the processor or the
microcontroller, wherein the device interface is
included in or associated with the non-volatile memory.

115. The method of claim 114, wherein the microcontrol-
ler is configured to set one or more control signals to config-
ure or redirect the device interface to grant exclusive access
to the non-volatile memory to the microcontroller.

116. The method of claim 6, wherein the non-volatile
memory comprises flash memory.

117. The method of claim 6, wherein the change in system
state to the first state is in response to a management signal,
wherein to hold the system in the first state, the microcontrol-
ler is further configured to hold the management signal in a
corresponding state, or to hold or assert another manage-
ment signal in a specified state.

118. The method of claim 117, further comprising:

a device interface directing or restricting access to the
non-volatile memory by the processor or the microcon-
troller independent of the management signal, wherein
the device interface is included in or associated with
the non-volatile memory.

119. The method of claim 117, further comprising:

a system interface communicating management signals
between the system interface and the microcontroller,
wherein the system interface is coupled to the

Page 10 of 264

2

=3

2

[

3

=1

35

40

4

o

5

=)

55

6

=)

6

&

8

processor, and further coupled to the microcontroller
via a system management bus.

120. The method of claim 117, further comprising:

a system interface communicating management signals
between the system interface and the microcontroller,
wherein the system interface is coupled to the
processor, and further coupled to the microcontroller
via a system interface bus.

121. The method of claim 117, wherein the management
signal or the another management signal is invoked by the
microcontroller.

122. The method of claim 117, wherein the management
signal or the another management signal is not invoked by
the microcontroller.

123. The method of claim 117, wherein the management
signal or the another management signal is a software sig-
nal.

124. The method of claim 117, wherein the management
signal or the other management signal is a hardware signal.

125. The method of claim 6, wherein switching access to
the non-volatile memory from the processor to the microcon-
troller and from the microcontroller to the processor is per-
formed via software.

126. The method of claim 6, wherein switching access to
the non-volatile memory from the processor to the microcon-
troller and from the microcontroller to the processor is per-
formed via hardware.

127. The method of claim 6, wherein switching access to
the non-volatile memory from the processor to the microcon-
troller and from the microcontroller to the processor is per-
formed via a combination of software and hardware.

128. The method of claim 6, whevein the change in system
state to the first state is not dependent on a management
signal.

129. The method of claim 6, wherein said fetching pro-
gram instructions or data from the non-volatile memory fir-
ther comprises fetching initialization code or data for the
system.

130. The method of claim 129, further comprising:

fetching program instructions or data related to pre-boot
security operations; and

performing the pre-boot security operations prior to boot-
up of the system.

131. The method of claim 6, wherein fetching the program
instructions or data from the non-volatile memory occurs via
a non-volatile memory bus that couples the microcontroller
and the non-volatile memory.

132. The method of claim 131, wherein the microcontrol-
ler is coupled to the processor via a host memory bus, and
wherein the method further comprises the microcontroller
switchably intercepting or passing communications between
the processor and the non-volatile memory.

133. The method of claim 132, whevein the host memory
bus and the non-volatile memory bus are SPI (serial periph-
eral interface) buses.

134. The method of claim 132, wherein the microcontrol-
ler comprises or is coupled to a switch, interposed between
the non-volatile memory bus and the host memory bus, and
wherein the microcontroller switchably intercepting or pass-
ing communications comprises the microcontroller control-
ling the switch to switchably intercept or pass communica-
tions between the processor and the non-volatile memory.

135. The method of claim 134, wherein the switch com-
prises a Q switch or a conceptual Q switch.

136. The method of claim 134, wherein switchably inter-
cepting communications between the processor and the non-
volatile memory comprises placing the switch into a high-
impedance state.

US 7,930,576 C1

9

137. The method of claim 134, wherein switching access
to the non-volatile memory from the microcontroller to the
processor comprises reconfiguring the access to the non-
volatile memory via the switch.

138. The method of claim 134,

wherein the first state comprises a reset state, wherein
holding the system in the first state comprises maintain-
ing assertion of a system reset signal; and

wherein switching access to the non-volatile memory from
the microcontroller to the processor comprises termi-
nating a prior suspension or preemption of communi-
cations between the host interface and the non-volatile
memory via the switch, thereby allowing resumption of
the communications; and

wherein releasing the system from the first state comprises
de-asserting the system reset signal.

139. The method of claim 132, wherein the host memory

bus and the non-volatile memory bus each comprises:
a data line;
a clock line; and

a CSb (Chip Select bar) line.

140. The method of claim 132, wherein the host memory
bus and the non-volatile memory bus each comprises a plu-
rality of lines.

141. The method of claim 140, wherein each line of the
host memory bus and the non-volatile memory bus is inde-
pendently switchable.

142. The method of claim 140, further comprising:

switching the lines of the host memory bus and the non-

volatile memory bus together to suspend or inhibit com-
munications between a system interface and the non-
volatile memory, wherein the system interface is
coupled to the processor, and further coupled to the
microcontroller for communicating signals between the
system interface and the microcontroller.

143. The method of claim 140, wherein the lines of the
host memory bus and the non-volatile memory bus are
coupled to respective buffers for communicating data or sig-
nals between the non-volatile memory bus and the microcon-
troller.

144. The method of claim 143, further comprising:

when the system is held in the first state, precluding, by a

device interface, the processor from accessing the non-
volatile memory, wherein the device interface is
included in or associated with the non-volatile memory.

145. The method of claim 140, further comprising:

once the microcontroller has completed fetching program

instructions or data from the non-volatile memory, or
has determined that it is no longer assured of safe
access to the non-volatile memory, reconfiguring the
device interface via control signals to enable access by
the processor to the non-volatile memory.

146. The method of claim 6,

wherein the first state comprises a reset state, wherein the

holding the system in the first state comprises maintain-
ing assertion of a system reset signal; and

wherein switching access to the non-volatile memory from

the microcontroller to the processor comprises termi-
nating a prior suspension ov preemption of communi-
cations between the host interface and the non-volatile
memory via the switch, thereby allowing resumption of
the communications; and

wherein releasing the system from the first state comprises

de-asserting the system reset signal.

Page 11 of 264

10

20

30

55

65

10

147. The method of claim 6, further comprising:

when the system is held in the first state, precluding, by a
device interface, the processor from accessing the non-
volatile memory, wherein the device interface is
included or associated with the non-volatile memory.

148. The method of claim 6, further comprising:

while the system is held in the first state, the microcontrol-

ler exchanging data or program instructions with the
non-volatile memory.

149. The method of claim 148, wherein the microcontrol-
ler exchanging data or program instructions with the non-
volatile memory comprises invoking a read or write by
another component of the system.

150. The method of claim 6, further comprising:

communicating management signals between a system

interface and the microcontroller, wherein the system
interface is coupled to the processor and is further
coupled to the microcontroller via a system manage-
ment bus, and wherein the microcontroller comprises a
system reset line for communicating a reset signal or
other signal to or from the system interface.

151. The method of claim 150, wherein the reset signal or
other signal corresponds with or invokes a suspension of
non-volatile memory access by the processor.

152. The method of claim 150, wherein the reset signal or
other signal indicates a system state in which the microcon-
troller has safe access to the non-volatile memory.

153. The system of claim 150, wherein holding the system
in the first state comprises the microcontroller holding the
system reset signal or other signal in a reset state.

154. The method of claim 6, wherein said holding the
system in the first state is performed by the microcontroller.

155. The method of claim 6, wherein said switching
access to the non-volatile memory from the processor to the
microcontroller is performed by the microcontroller.

156. The method of claim 6, wherein said fetching pro-
gram instructions or data from the non-volatile memory is
performed by the microcontroller.

157. The method of claim 6, wherein said loading the
program instructions or data into a memory of the microcon-
troller is performed by the microcontroller.

158. The method of claim 6, wherein said switching
access to the non-volatile memory from the microcontroller
to the processor is performed by the microcontroller.

159. The method of claim 6, wherein said releasing the
system from the first state is performed by the microcontrol-
ler.

160. The system of claim 11, wherein the microcontroller
is included within a system-on-chip (SoC).

161. The system of claim 11, wherein the microcontroller
comprises a keyboard controller for managing or controlling
communications between a keyboard and the processor.

162. The system of claim 161, wherein the non-volatile
memory stores keyboard controller (KBC) code.

163. The system of claim 11, wherein the program instruc-
tions or data are usable by the microcontroller for startup,
general, or reset functionality.

164. The system of claim 11, wherein the program instruc-
tions or data are usable by the microcontroller for initializ-
ing the microcontroller.

165. The system of claim 11, wherein during system
shutdown, the microcontroller is further configured to:

configure the non-volatile memory to allow access to the

non-volatile memory only by the microcontroller before
power-off;

queue one or more writes or other exchanges with the

non-volatile memory; and

US 7,930,576 C1

11

complete the one or more writes or other exchanges with
the non-volatile memory before final power-off.

166. The system of claim 11, further comprising:

a device interface coupled to the non-volatile memory,
wherein the device interface controls access to the non-
volatile memory, wherein during system shutdown, the
microcontroller is further configured to:

redirect the device interface to allow access to the non-
volatile memory only by the microcontroller before
power-off;

queue one or more writes or other exchanges with the
non-volatile memory,; and

complete the one or more writes or other exchanges with
the non-volatile memory before final power-off.

167. The system of claim 11, further comprising:

one or more additional processors, each coupled to the
microcontroller and the non-volatile memory, and
wherein the microcontroller has control over the power
or execution states of the processor and the one or more
additional processors for sharing the non-volatile
memory between the plurality of processors.

168. The system of claim 11, further comprising:

one or more additional microcontrollers, each coupled to
the processor and the non-volatile memory, wherein
each additional microcontroller is configured to share
the non-volatile memory with the processor.

169. The system of claim 11, further comprising:

one or more additional microcontrollers, each coupled to
the processor and the non-volatile memory, wherein
each additional microcontroller is configured to share
the non-volatile memory, and wherein each microcon-
troller is configured to suspend or prevent access to the
non-volatile memory by other microcontrollers and the
processor while it accesses the non-volatile memory.

170. The system of claim 11, further comprising:

a system interface, coupled to the processor, wherein the
microcontroller is situated between the system interface
and the non-volatile memory, and wherein the micro-
controller is configured to intercept communications
between the system interface and the non-volatile
memory; and

a device interface, included in or associated with the non-
volatile memory, wherein the device interface is config-
ured to direct or restrict access to the non-volatile
memory by the processor or the microcontroller.

171. The system of claim 170, wherein the microcontroller
is configured to set one or more control signals to configure
or redirect the device interface to grant exclusive access to
the non-volatile memory to the microcontroller.

172. The system of claim 11, wherein the non-volatile
memory comprises flash memory.

173. The system of claim 11, wherein to fetch program
instructions or data from the non-volatile memory and load
the program instructions or data into a memory of the
microcontroller, the microcontroller is configured to:

fetch initialization code or data for the system.

174. The system of claim 173, wherein to fetch program
instructions or data from the non-volatile memory and load
the program instructions or data into a memory of the
microcontroller, the microcontroller is further configured to:

fetch program instructions or data related to pre-boot
security operations; and

perform the pre-boot security operations prior to boot-up
of the system.

175. The system of claim 11, wherein the microcontroller

is coupled to the non-volatile memory via a non-volatile

Page 12 of 264

35

50

65

12

memory bus, and wherein the microcontroller is operable to
fetch the program instructions or data from the non-volatile
memory via the non-volatile memory bus.

176. The system of claim 175, whevein the microcontroller
is coupled to the processor via a host memory bus, and
wherein the microcontroller is operable to switchably inter-
cept or pass communications between the processor and the
non-volatile memory.

177. The system of claim 176, wherein the host memory
bus and the non-volatile memory bus are SPI (serial periph-
eral interface) buses.

178. The system of claim 176, wherein the microcontroller
comprises or is coupled to a switch, interposed between the
non-volatile memory bus and the host memory bus, wherein
the switch is controllable by the microcontroller to switch-
ably intercept or pass communications between the proces-
sor and the non-volatile memory.

179. The system of claim 178, wherein the switch com-
prises a Q switch or a conceptual Q switch.

180. The system of claim 178, wherein to switchably inter-
cept or pass communications between the processor and the
non-volatile memory, the microcontroller is configured to
place the switch into a high-impedance state.

181. The system of claim 176, wherein the host memory
and the non-volatile memory bus each comprises:

a data line;

a clock line; and

a CSb (Chip Select bar) line.

182. The system of claim 176, wherein the host memory
bus and the non-volatile memory bus each comprises a plu-
rality of lines.

183. The system of claim 182, wherein each line of the
host memory bus and the non-volatile memory bus is inde-
pendently switchable.

184. The system of claim 182, further comprising:

a system interface, coupled to the processor, and further
coupled to the microcontroller for communicating sig-
nals between the system interface and the microcontrol-
ler;

wherein the lines of the host memory bus and the non-
volatile memory bus are switchable together to suspend
or inhibit communications between the system interface
and the non-volatile memory.

185. The system of claim 182, wherein the lines of the host
memory bus and the non-volatile memory bus are coupled to
respective buffers for communicating data or signals
between the non-volatile memory bus and the microcontrol-
ler.

186. The system of claim 11, further comprising:

a system interface, coupled to the processor, and further
coupled to the microcontroller via a system manage-
ment bus configured for communicating management
signals between the system interface and the microcon-
troller;

wherein the microcontroller comprises a system reset line
for communicating the system reset signal or other sig-
nal to or from the system interface.

187. The method of claim 17, wherein the microcontroller

is included within a system-on-chip (SoC).

188. The method of claim 17, wherein the microcontroller
comprises a keyboard controller for managing of controlling
communications between a keyboard and the processor.

189. The method of claim 188, wherein the non-volatile
memory stores keyboard controller (KBC) code.

190. The method of claim 17, wherein the program
instructions or data are usable by the microcontroller for
startup, general, or reset functionality.

US 7,930,576 C1

13

191. The method of claim 17, wherein the program
instructions or data are usable by the microcontroller for
initializing the microcontroller.

192. The method of claim 17, further comprising:

during system shutdown;

configuring the non-volatile memory to allow access to
the non-volatile memory only by the microcontroller
before power-off;

queuing one or move writes or other exchanges with the
non-volatile memory; and

completing the one or more writes or other exchanges
with the non-volatile memory before final power-off.

193. The method of claim 17, further comprising:

during system shutdown;

redirecting a device interface to allow access to the
non-volatile memory only by the microcontroller
before power-of, wherein the device interface is
coupled to the non-volatile memory and controls
access to the non-volatile memory;

queuing one or more writes or other exchanges with the
non-volatile memory; and

completing the one or more writes or other exchanges
with the non-volatile memory before final power-off.

194. The method of claim 17, wherein the system further
includes one or more additional processors, each coupled to
the microcontroller and the non-volatile memory, and
wherein the method further includes controlling the power
or execution states of the processor and the one or more
additional processors for sharing the non-volatile memory
between the plurality of processors.

195. The method of claim 17, wherein the system further
includes one or more additional microcontrollers, each
coupled to the processor and the non-volatile memory, and
wherein the method further includes each additional micro-
controller sharing the non-volatile memory with the proces-
sor.

196. The method of claim 17, wherein the system further
includes one or more additional microcontrollers, each
coupled to the processor and the non-volatile memory, and
wherein the method further includes:

each additional microcontroller sharing the non-volatile

memory; and

each microcontroller suspending or preventing access to

the non-volatile memory by other microcontrollers and
the processor while it accesses the non-volatile
memory.

197. The method of claim 17, further comprising:

intercepting communications between a system interface

and the non-volatile memory, wherein the system inter-
face is coupled to the processor, and wherein the micro-
controller is situated between the system interface and
the non-volatile memory; and

a device interface directing or restricting access to the

non-volatile memory by the processor or the
microcontroller, wherein the device interface is
included in or associated with the non-volatile memory.

198. The method of claim 197, wherein the microcontrol-
ler is configured to set one or more control signals to config-
ure or redirect the device interface to grant exclusive access
to the non-volatile memory to the microcontroller.

199. The method of claim 17, wherein the non-volatile
memory comprises flash memory.

200. The method of claim 17, wherein said fetching pro-
gram instructions or data from the non-volatile memory fir-
ther comprises fetching initialization code or data for the
system.

Page 13 of 264

20

25

30

35

4

=)

4

o

50

5

&

60

65

14
201. The method of claim 200, further comprising:

fetching program instructions ov data related to pre-boot
security operations; and

performing the pre-boot security operations prior to boot-

up of the system.

202. The method of claim 17, wherein fetching the pro-
gram instructions or data from the non-volatile memory
occurs via a non-volatile memory bus that couples the
microcontroller and the non-volatile memory.

203. The method of claim 202, wherein the microcontrol-
ler is coupled to the processor via a host memory bus, and
wherein the method further comprises the microcontroller
switchably intercepting or passing communications between
the processor and the non-volatile memory.

204. The method of claim 203, wherein the host memory
bus and the non-volatile memory bus are SPI (serial periph-
eral interface) buses.

205. The method of claim 203, wherein the microcontrol-
ler comprises or is coupled to a switch, interposed between
the non-volatile memory bus and the host memory bus, and
wherein the microcontroller switchably intercepting ov pass-
ing communications comprises the microcontroller control-
ling the switch to switchably intercept or pass communica-
tions between the processor and the non-volatile memory.

206. The method of claim 205, wherein the switch com-
prises a Q switch or a conceptual Q switch.

207. The method of claim 205, wherein switchably inter-
cepting communications between the processor and the non-
volatile memory comprises placing the switch into a high-
impedance state.

208. The method of claim 203, wherein the host memory
bus and the non-volatile memory bus each comprises:

a data line;

a clock line; and

a CSb (Chip Select bar) line.

209. The method of claim 203, wherein the host memory
bus and the non-volatile memory bus each comprises a plu-
rality of lines.

210. The method of claim 209, wherein each line of the
host memory bus and the non-volatile memory bus is inde-
pendently switchable.

211. The method of claim 209, further comprising:

switching the lines of the host memory bus and the non-
volatile memory bus together to suspend or inhibit com-
munications between a system interface and the non-
volatile memory, wherein the system interface is
coupled to the processor, and further coupled to the
microcontroller for communicating signals between the
system interface and the microcontroller.

212. The method of claim 209, wherein the lines of the
host memory bus and the non-volatile memory bus are
coupled to respective buffers for communcating data or sig-
nals between the non-volatile memory bus and the microcon-
troller.

213. The method of claim 17, further comprising:

communicating management signals between a system

interface and the microcontroller, wherein the system
interface is coupled to the processor and is further
coupled to the microcontroller via a system manage-
ment bus, and wherein the microcontroller comprises a
system reset line for communicating the system reset
signal or other signal to or from the system interface.

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.0. Box 1450

Alexandria, Virginia 22313-1450

Www.usplo.gov

[APPLICATION NO. 1 FILING DATE [FIRST NAMED INVENTOR [ATTORNEY DOCKETNO. | CONFIRMATION NO. |
) 90/011,754 06/21/2011 7,930,576 B2 JCLA38862-RE 4071
35690 7590 06/21/2012 ' I v EXAMINER |
MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398 | ART UNIT] PAPER NUMBER |

DATE MAILED: 06/21/2012

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Page 14 of 264

2%y, UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patents and Trademark Office
P.O.Box 1450

Alexandria, VA 22313-1450
www.uspto.gov

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)) Date: .
JIAWEI HUANG (J.C. PATENTS) | MAILED

4, VENTURE ' | JUN 212012
SUITE 250

IRVINE, CA 92618 ‘ CENTRAL REEXAMINATION UNIT

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. : 90011754
PATENT NO. : 7930576
ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a
reply has passed, no submission on behalf of the ex parte reexamination requester will be
acknowledged or considered (37 CFR 1.550(g)).

Page 15 of 264

Control No. Patent Under Reexamination
Notice of Intent to Issue 90/011,754 7,930,576 B2 ET
Ex Parte Reexamination Certificate Examiner Art Unit
BEHZAD PEIKARI 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

1. Prosecution on the merits is (or remains) closed in this ex parte reexamination proceeding. This proceeding is
subject to reopening at the initiative of the Office or upon petition. Cf. 37 CFR 1.313(a). A Certificate will be issued
in view of
(@ Patent owner’'s communication(s) filed: 23 April 2012.

(b) [Patent owner’s failure to file an appropriate timely response to the Office action mailed:
(c) [0 Patent owner's failure to timely file an Appeal Brief (37 CFR 41.31).
(d)] The decision on appeal by the [] Board of Patent Appeals and Interferences [] Courtdated

e) [] Other:

2. The Reexamination Certiﬁcate will indicate the following:

(a) Change in the Specification: [] Yes [X] No

(b) Change in the Drawing(s): [] Yes [XI No

(c) Status of the Claim(s):
(1) Patent claim(s) confirmed: 1-23.
(2) Patent claim(s) amended (including dependent on amended claim(s)):
(3) Patent claim(s) canceled:
(4) Newly presented claim(s) patentable 24-213.
(5) Newly presented canceled claims: .
(6) Patent claim(s) [] previously [] currently disclaimed:
(7) Patent claim(s) not subject to reexamination:

3. [XI Note the attached statement of reasons for patentability and/or confirmation. Any comments considered necessary
by patent owner regarding reasons for patentability and/or confirmation must be submitted promptly to avoid
processing delays. Such submission(s) should be labeled: “Comments On Statement of Reasons for Patentability
and/or Confirmation.”

4. [] Note attached NOTICE OF REFERENCES CITED (PTO-892).

5. [] Note attached LIST OF REFERENCES CITED (PTO/SB/08 or PTO/SB/08 substitute).
6. [] The drawing correction request filed on is: []approved [disapproved.

7. O Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)~(d) or (f).
a)J Al b)[JSome* ¢)[]None of the certified copies have
[] been received.
] not been received.
[been filed in Application No.
[been filed in reexamination Control No. .
[] been received by the International Bureau in PCT Application No.

* Certified copies not received: _
8. [] Note attached Examiner's Amendment.
9. [Note attached Interview Summary (PTO-474).
10.[] Other:

All correspondence relating to this reexamination proceeding should be directed to the Central Reexamination Unit at
the mail, FAX, or hand-carry addresses given at the end of this Office action.

cc: Requester (if third party requester)

U.S. Patent and Trademark Office
PTOL-469 (Rev. 07-10) Notice of Intent to Issue Ex Parte Reexamination Certificate Part of Paper No 20120617

Page 16 of 264

Application/Control Number: 90/011,754 : Page 2
Art Unit: 3992

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

The following is an examiner's statement of reasons for patentability and/or confirmation
of the claims found patentable in this reexamination proceeding:

In the non-final Office action mailed February 23, 2012, claims 1-2, 4-7 and 9-10 were
rejected under 35 U.S.C. § 102(e) as being anticipated by DeRoo and claims 3, 8 and 11-23 were
rejected under 35 U.S.C. § 103(a) as being unpatentable over DeRoo.

Patent owner filed a response on April 23, 2012. Some of the arguments included in that
response are deemed convincing:

) With regard to claims 1-10, the arguments presented as section “2.”, spanning
pages 48-52, are deemed convincing to demonstrate that claims 1-2, 4-7 and 9-10 were not
anticipated by DeRoo and claims 3 and 8 were not obvious over DeRoo.

Specifically, patent owner has demonstrated that in the system of DeRoo the access of
SCP 706 to common memory device 704 is not certain or guaranteed to be free from interruption
or interference by CPU 702. Thus, CPU 702 can preempt the microcontroller SCP 706 at any
time, which teaches away from the claimed "assured safe access" of a microcontroller to a
memory.

2) With regard to claims 11-23, the e‘xaminer argued that “it would have been
obvious to one having ordinary skill in the art at the time the invention was made to hold the
processor in the system of DeRoo in a reset state to prohibit the processor from accessing the
non-volatile memory, while allowing the microcontroller exclusive access to the non-volatile

memory until the reset signal is released, since (1) DeRoo specifically taught the use of a reset

Page 17 of 264

Application/Control Number: 90/011,754 Page 3
Art Unit: 3992

state to prevent an element from accessing the non-volatile memory; namely, holding the
microcontroller in a reset state to prohibit the microcontroller from accessing the non-volatile
memory, while allowing the processor to do so, (2) DeRoo specifically taught the use of a state
to prohibit the processor from accessing the non-volatile memory, while allowing the
microcontroller exclusive access to the non-volatile memory; namely, holding a processor in a
wait state to prohibit the processor from accessing the non-volatile memory, while allowing the
microcontroller to do so and (3) it may have been advantageous to take make use of any idle time
during the wait state of the processor by performing a reset operation in the processor to run new
updates, etc.”

However, patent owner’s arguments presented as section “2.”, spanning pages 66-67, are
deemed convincing to demonstrate that claims 11-23 were not obvious over DeRoo.

Specifically, patent owner has demonstrated DeRoo fails to disclose the claimed
“prohibiting the processor from accessing the non-volatile memory”. In rejecting claim 11, the
previous rejection stated that DeRoo discloses “holding a processor in a wait state to prohibit the
processor from accessing the non-volatile memory.”

However, as explained above, CPU 702 is not prohibited from accessing common
memory device 704 when SCP 706 has exclusive access, because even “when the SCP has
exclusive access of the common memory device 704, the CPU 702 can gain control by forcing
the SCP 706 into reset” (see DeRoo, column 81, lines 64-66). That is, even when SCP 706 has
exclusive access, CPU 702 may unconditionally regain control over common memory device

704.

Page 18 of 264

Application/Control Number: 90/011,754 Page 4
- Art Unit: 3992

Consequently, the previous rejections are withdrawn and claims 1-23 are confirmed.
Furthermore, the new claims 24-213 are dependent, either directly or indirectly, upon the

original patent claims and are deemed patentable.

Page 19 of 264

Application/Control Number: 90/011,754 Page 5
- Art Unit: 3992

All correspondence relating to this ex parte reexamination proceeding should be directed:

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent & Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand to: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Registered users of EFS-Web may alternatively submit such correspondence via the electronic
filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered. EFS-Web offers
the benefit of quick submission to the particular area of the Office that needs to act on the
correspondence. Also, EFS-Web submissions are “soft scanned” (i.e., electronically uploaded)
directly into the official file for the reexamination proceeding, which offers parties the
opportunity to review the content of their submissions after the “soft scanning” process is
complete.

Any inquiry concerning this communication should be directed to the Central Reexamination
Unit at telephone number (571) 272-7705.

Signed: ’ Conferees: /r.g.f./

/B. James Peikari/ Alexander Kosowski
Supervisor m

B. James Peikari Art Unit 3992

Primary Examiner

Art Unit 3992

Page 20 of 264

Reexamination

L

Application/Control No.

90/011,754

Applicant(s)/Patent Under
Reexamination
7,930,576 B2 ET AL.

Certificate Date

C1

Certificate Number

Requester

Correspondence Address:

[] patent Owner

Third Party

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.

P.O. BOX 398
AUSTIN, TX 78767-0398

LITIGATION REVIEW [X

BJP

(examiner initials)

6/16/12
(date)

Case Name

Director Initials

None

ASK Yo 0y

COPENDING OFFICE PROCEEDINGS

TYPE OF PROCEEDING

NUMBER

1. <~None

U.S. Patent and Trademark Office

Page 21 of 264

DOC. CODE RXFILJKT

e . Application/Control No. Applicant(s)/Patent under
Issue Classification 90/011 754 Reexamination
7,930,576 B2 ET AL.
Examiner Art Unit
BEHZAD PEIKARI 3992
ISSUE CLASSIFICATION
ORIGINAL INTERNATIONAL CLASSIFICATION
CLASS SUBCLASS CLAIMED NON-CLAIMED
713 324 G 6 F 1 126 /
CROSS REFERENCES
G 6 F 15 n77 /
CLASS | SUBCLASS (ONE SUBCLASS PER BLOCK)
713 100 2

~ | ~|~

-~~~ ~]~

________ /B. James Peikari/ Total Claims Allowed: 213

(Assistant Examiner) (Date)

B. James Peikari 6/16/12 . OG. 0.G.
Print Claim(s) Print Fig.
(Legal Instruments Examiner) (Date) (Primary Examiner) (Date) 1 4

|Z Claims renumbered in the same order as presented by applicant | [[] CPA JT.D. [1R.1.47

T | £ | £ | £ T | £ 5| £ T | £ 5| £
£ 2 £ 2 < > £ 2 = k= < 2 £ >

TS 6 [T 6 [T 6 w 6 w 6 T8 5 w 6
1 31 61 91 121 151 181
2 32 62 92 122 152 182
3 33 63 93 123 153 183
4 34 64 94 124 154 184
5 35 65 95 125 155 185
6 36- 66 96 126 156 186
7 37 67 97 127 167 187
8 38 68 98 128 158 188
9 39 69 99 129 159 189
10 40 70 100 130 160 190
11 M 71 101 131 161 191
12 42 72 102 132 162 192
13 43 73 103 133 163 193
14 44 74 104 134 164 194
15 45 75 105 135 165 195
16 46 76 106 136 166 196
17 47 77 107 137 167 197
18 48 78 108 138 168 198
19 49 79 109 139 169 199
20 50 80 110 140 170 200
21 51 81 111 141 171 201
22 52 82 112 142 172 202
23 53 83 113 143 173 203
24 54 84 114 144 174 204
25 55 85 115 145 175 205
26 56 86 116 146 176 | - 206
27 57 87 117 147 177 207
28 58 88 118 148 178 208
29 59 89 119 149 179 209
30 60 90 120 150 180 210

U.S. Patent and Trademark Office Part of Paper No. 20120617

Page 22 of 264

Search Notes

Application/Control No.

Applicant(s)/Patent under
Reexamination

90/011,754 7,930,576 B2 ET AL.
Examiner Art Unit
BEHZAD PEIKARI 3992

SEARCH NOTES

(INCLUDING SEARCH STRATEGY)

SEARCHED
Class Subclass Date Examiner
INTERFERENCE SEARCHED
Class Subclass Date Examiner

history of U.S. Patent No. 7,930,576.

DATE EXMR
Review of the prosecution history of
U.S. Patent No. 7,930,576. 8/24/2011 BJP
Updated review of the prosecution 6/16/12 BJP

U.S. Patent and Trademark Office

Page 23 of 264

Part of Paper No. 20120617

UNITED STATES PATENT AND TRADEMARK OFFICE

Page 1 of 1

BIB DATA SHEET

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.0. Box 1450
Alexandria, Virginia 22313-1450

www.uspto.gov

CONFIRMATION NO. 4071

SERIAL NUMBER FILINgA%rE 371(c) CLASS GROUP ART UNIT ATTORNEg.DOCKET
90/011,754 06/21/2011 713 3992 JCLA38862-RE
RULE
APPLICANTS

7,930,576 B2, Residence Not Provided;

STANDARD MICROSYSTEMS CORPORATION (OWNER), HAUPPAUGE, NY;

FELIX YEN (3RD PTY. REQ.), TAIPEI, TAIWA
JIAWEI HUANG (J.C. PATENTS), IRVINE, CA

k2] Co NTI N U IN G DATA Khkhhhhhkhkkkkkhkhhkkikiks

This application is a REX of 11/958,601 12/18/2007 PAT 7,930,576

N;

which claims benefit of 60/910,863 04/10/2007

*k FOREIGN APPLICATIONS khkkhhkdhhkkkkhkhkhkk ik kkd

** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **

Foreign Priority claimed O Yes u No

35 USC 119(a-d) conditions met U ves u No

Verified and /BEHZAD PEIKARI/
Acknowledged Examiner's Signature

Met after
u Allowance

Initials

STATE OR
COUNTRY

SHEETS TOTAL |INDEPENDENT
DRAWINGS | CLAIMS CLAIMS
23 4

ADDRESS

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.

P.0. BOX 398
AUSTIN, TX 78767-0398
UNITED STATES

TITLE

SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER AND A PROCESSOR

IN A COMPUTER SYSTEM

FILING FEE
RECEIVED
2520

No.

No. for following:

FEES: Authority has been given in Paper
to charge/credit DEPOSIT ACCOUNT

U All Fees

0 1.16 Fees (Filing)

{1 1.17 Fees (Processing Ext. of time)
O 1.18 Fees (Issue)

|J Other |
O Credit |

BIB (Rev. 05/07).

Page 24 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

EX PARTE REEXAMINATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Reexamination

Control. No.: 90/011,754
Inventor: lan F. Harris, et al.
Request Filing Date: June 21, 2011

U.S. Patent No.: 7,930,576

Title: SHARING NON-SHARABLE
DEVICES BETWEEN AN
EMBEDDED CONTROLLER
AND A PROCESSOR IN A
COMPUTER SYSTEM

AL LD LT LLD LD LY LS S LD LD LY LT S LD A A

Atty.DktNo.: 5707-26200

Examiner: Peikari, Behzad

Group/Art Unit: 3992

Conf. No.: 4071

#%%*CERTIFICATE OF E-FILING TRANSMISSION**%%%*

I hereby certify that this correspondence is being transmitted
via electronic filing to the United States Patent and
Trademark Office on the date shown below:

On: April 23, 2012 [Anthony M. Petro /
Date Anthony M. Petro, #59,391

RESPONSE TO OFFICE ACTION MAILED FEBRUARY 23, 2012

This paper is submitted in response to the Office Action of February 23, 2012.

Please amend the case as listed below.

Page 25 of 264

Page 1 of 72

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

TABLE OF CONTENTS
IN THE CLAIMS: ..ottt sttt ettt e sttt st et se e et e se e et en e seesenseseesessesessessesessensaneseessnneseas 4
REMARKS ..ottt ettt ettt st e e e e e b e te et e eee st e ne et e ene et s e e enseeenee 33
Lo INEEOAUCHION ..ot ettt ettt ettt s e b e e b e e eseeseesseneasseneasnens 34
II. OVerview 0f *5760 Patent.......c.cccviiiiiieiiieiieieeeie ettt s sa e enee 36
III. Overview of the DeR00 Reference.oovviviiiiieiece e 39
IV. Response to Rejections Based on DEROOcveeiiiiiiiiiiiicicceee e 45
N O ' OSSR SSTP USRS 45

1. The combination of DeRoo’s SCP 706 and HUI 700 does not correspond to the recited
IICTOCONIIOLLET.” ...ttt ettt ettt ettt sa e e e s e ense e annens 46
2. DeRoo fails to disclose “a first state wherein the microcontroller is assured safe access
to the NON-volatile MEMOTY.”ciiiiiiieiieieee et et eb e eaeas 48

a. For a microcontroller to be “assured safe access” to a memory, under a

broadest reasonable interpretation of that term, the microcontroller’s access to

the memory cannot be arbitrarily preempted by a processor.oooeevveveeiecireneennenn, 48

b. In DeRoo’s system, CPU 702 can arbitrarily preempt SCP 706 at any time,

which is precisely the opposite of what is needed for a microcontroller to be

“assured safe access” t0 @ MEIMOTY.ccuviieeieriieiiet et eie ettt ettt ee e seae b e ess e eaeeas 50
3. DeRoo fails to disclose that a microcontroller is configured to “hold the system in the
ITSt SEALC. 7 .t ettt ettt ettt ea et e e nee e 52
4. DeRoo fails to disclose that a microcontroller is configured to “release the system from
THhE FITS SEALE.™ ...ttt et eb e et eee e ene et eebe e s 54
5. Contrary to the Office Action’s position, DeRoo does not disclose that a

microcontroller is configured to perform certain actions in response to a change in state of

the CPU SYSTEM ACCESS SigNal.c.cooviviiiiiieiiieiieiet ettt eve v svaen e eneas 55
6. Because DeRoo fails to disclose or suggest numerous features of claim 1, DeRoo fails
to support the rejection of Claim 1.cccooiiiiiiiiiii e e 56
Bl CLAIM 25 1ottt ettt ettt e b aeea et bt ne s e ne e e anne s 56
. CLAIM A ettt et et e bt teeteeseesb e st esb et esbe s enseeb et b e ne e s anaens 57
| B O 11 1 B U USROS PRUUPRUP 57
Page 2 of 72

Page 26 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

LD O] 1 ' SOOI USROS 58
B LAl 7ottt ettt e et et eb b b et teeabeetbe bt e b e eat e teeeraenseens 59
L T 11 (TSRS 59
H. Claim 10: .ottt sttt ettt et es et en et enee e enee 59
| B O -4 TSRS 59
Jo CIAIML 8 ottt ettt ettt ettt e b bt e te bt ne s nne e anae e 60
KL LA 11 ittt ettt ea e bbb es e s es s bt anse s anae s 60

1. The proposed modification would impermissibly change a fundamental principle of
operation of DeRoo and would impermissibly render DeRoo unsatisfactory for its intended
PULPOSE. . eveveetieeeteesiteeteesete et eeseestbeesteessseesssesaseassseessseesssasssaesssessseasssaessaessseesssaanssesssessssesnns 62
2. Contrary to the Office Action’s assertion, DeRoo fails to disclose “prohibiting the

processor from accessing the non-volatile memory,” leaving some features of claim 11

UNACCOUNTEA TOT. ...ttt ettt ettt se e b e bt eereene s 66

| DR O] 7' N OO USROS 67
ML ClAIM 135 ettt ettt ettt 67
D TR O B 03 o' TSRS 67
O O F: 11 't N TSRS 68
o O 3 52 3 TSRS 68
(O T O F: 513 N £SO 68
R CIAIM I8 ettt e e bttt e e eabeetbesbe e b e eneanseesbeesbeeseensens 69
S, CLAIM 19: ..ttt ettt ete et e bbbt et e stbeeb b e s e e st esseesbeasbeesbenseeneanneas 69
T AT 205ttt ettt sttt st e s et ee et e e st ente e enee e 69
L 3555+ 152 TSR PSRUSRSTRR 70
V. CLAIM 227 et ettt ettt ettt e e e e ss e e b e e bt teeaeene st entenae e enaennas 70
W CLAIM 237 Lttt ettt et et aa et a e st es e eeebe b e be b e ne s e neeseanae e 70
V. New Dependent ClallmsSc.ooovioiiiuiiie ettt et e e e enens 71
VL CONCIUSION.utiitieiieitie et eiie ettt ettt et e bt eat e e esteetaeesaessaessesseenseesbesssessenssanseesssensenns 72

Page 3 of 72

Page 27 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

IN THE CLAIMS:

Please add the following claims, which are shown in accordance with 37 C.F.R. § 1.530:

24. The system of claim 1, wherein the change in system state to the first state is performed by

hardware.

25. The system of claim 1, wherein the change in system state to the first state is in response to a

hardware signal.

26. The system of claim 1. wherein the change in system state to the first state is in response to a

software event.

27. The system of claim 1, wherein the change in system state to the first state is in response to a

token.

28. The system of claim 1, wherein the change in system state to the first state is in response to

the system passing the microcontroller a token which grants the microcontroller ownership of the

memory through a software handshake.

29. The system of claim 1, wherein the change in system state to the first state is in response to a

software condition.

30. The system of claim 1. wherein the change in system state to the first state is in response to a

software mess age.

31. The system of claim 1, wherein the change in system state to the first state is in response to a

software handshake.

32. The system of claim 1, wherein the first state comprises a power on reset (POR) state.

Page 4 of 72

Page 28 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

33. The system of claim 1. wherein the first state comprises a system reset state.

34. The system of claim 1, wherein the first state comprises a sleep state.

35. The system of claim 1, wherein to hold the system in the first state, the microcontroller is

configured to:

in response to a power on reset, hold a system reset signal in a reset state, thereby

prohibiting the processor from accessing the non-volatile memory.

36. The system of claim 35, wherein to fetch program instructions or data from the non-volatile

memory and load the program instructions or data into a memory of the microcontroller while

the system is held in the first state, the microcontroller is configured to:

fetch the program instructions or data from the non-volatile memory and load the

program instructions or data into a memory of the microcontroller while the system reset signal

is held in the reset state.

37. The system of claim 35. wherein to switch access to the non-volatile memory from the

microcontroller to the processor, and release the system from the first state after the program

instructions or data have been loaded, the microcontroller is configured to:

after the program instructions or data have been loaded, permit the processor in the

system access to the non-volatile memory, and release the system reset signal from the reset

state.

38. The system of claim 1. wherein the first state comprises a state wherein it is known by the

microcontroller that the system cannot or will not access the device.

39. The system of claim 1, wherein the microcontroller is included within a system-on-chip

SoC).

40. The system of claim 1., wherein the microcontroller comprises a keyboard controller for

Page 5 0of 72

Page 29 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

managing or controlling communications between a keyboard and the processor.

41. The system of claim 40, wherein the non-volatile memory stores keyboard controller (KBC)

code.

42. The system of claim 1, wherein the program instructions or data are usable by the

microcontroller for startup, general. or reset functionality.

43. The system of claim 1, wherein the program instructions or data are usable by the

microcontroller for initializing the microcontroller.

44. The system of claim 1, wherein during system shutdown, the microcontroller is further

configured to:

configure the non-volatile memory to allow access to the non-volatile memory only by

the microcontroller before power-off;

queue one or more writes or other exchanges with the non-volatile memory; and

complete the one or more writes or other exchanges with the non-volatile memory before

final power-off.

45. The system of claim 1, further comprising:

a device interface coupled to the non-volatile memory, wherein the device interface

controls access to the non-volatile memory, wherein during system shutdown. the

microcontroller is further configured to:

redirect the device interface to allow access to the non-volatile memory only by the

microcontroller before power-off;

queue one or more writes or other exchanges with the non-volatile memory:; and

complete the one or more writes or other exchanges with the non-volatile memory before

final power-off.

46. The system of claim 1. further comprising:

Page 6 of 72

Page 30 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

one or more additional processors, each coupled to the microcontroller and the non-

volatile memory, and wherein the microcontroller has control over the power or execution states

of the processor and the one or more additional processors for sharing the non-volatile memory

between the plurality of processors.

47. The system of claim 1, further comprising:

one or more additional microcontrollers, each coupled to the processor and the non-

volatile memory, wherein each additional microcontroller is configured to share the non-volatile

memory with the processor.

48. The system of claim 1. further comprising:

one or more additional microcontrollers, each coupled to the processor and the non-

volatile memory, wherein each additional microcontroller is configured to share the non-volatile

memory, and wherein each microcontroller is configured to suspend or prevent access to the

non-volatile memory by other microcontrollers and the processor while it accesses the non-

volatile memory.

49. The system of claim 1. further comprising:

a system interface, coupled to the processor, wherein the microcontroller is situated

between the system interface and the non-volatile memory, and wherein the microcontroller is

configured to intercept communications between the system interface and the non-volatile

memory; and

a device interface, included in or associated with the non-volatile memory, wherein the

device interface is configured to direct or restrict access to the non-volatile memory by the

processor or the microcontroller.

50. The system of claim 49, wherein the microcontroller is configured to set one or more control

signals to configure or redirect the device interface to grant exclusive access to the non-volatile

memory to the microcontroller.

Page 7 of 72

Page 31 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

51. The system of claim 1, wherein the non-volatile memory comprises flash memory.

52. The system of claim 1, wherein the change in system state to the first state is in response to a

management signal, wherein to hold the system in the first state, the microcontroller is further

configured to hold the management signal in a corresponding state, or to hold or assert another

management signal in a specified state.

53. The system of claim 52, further comprising:

a device interface, included in or associated with the non-volatile memory, wherein the

device interface is configured by the microcontroller to direct or restrict access to the non-

volatile memory by the processor or the microcontroller independent of the management signal.

54. The system of claim 52, further comprising:

a system interface, coupled to the processor, and further coupled to the microcontroller

via a system management bus configured for communicating management signals between the

system interface and the microcontroller.

55. The system of claim 52, further comprising:

a system interface, coupled to the processor, and further coupled to the microcontroller

via a system interface bus configured for communicating management signals between the

system interface and the microcontroller.

56. The system of claim 52. wherein the management signal or the another management signal

is invoked by the microcontroller.

57. The system of claim 52. wherein the management signal or the another management signal

is not invoked by the microcontroller.

58. The system of claim 52, wherein the management signal or the another management signal

is a software signal.

Page 8 of 72

Page 32 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

59. The system of claim 52, wherein the management signal or the other management signal is a

hardware signal.

60. The system of claim 1. wherein switching access to the non-volatile memory from the

processor to the microcontroller and from the microcontroller to the processor is performed via

software.

61. The system of claim 1, wherein switching access to the non-volatile memory from the

processor to the microcontroller and from the microcontroller to the processor is performed via

hardware.

62. The system of claim 1. wherein switching access to the non-volatile memory from the

processor to the microcontroller and from the microcontroller to the processor is performed via a

combination of software and hardware.

63. The system of claim 1, wherein the change in system state to the first state is not dependent

on a management signal.

64. The system of claim 1, wherein to fetch program instructions or data from the non-volatile

memory and load the program instructions or data into a memory of the microcontroller, the

microcontroller is configured to:

fetch initialization code or data for the system.

65. The system of claim 64, wherein to fetch program instructions or data from the non-volatile

memory and load the program instructions or data into a memory of the microcontroller, the

microcontroller is further configured to:

fetch program instructions or data related to pre-boot security operations; and

perform the pre-boot security operations prior to boot-up of the system.

Page 9 of 72

Page 33 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

66. The system of claim 1, wherein the microcontroller is coupled to the non-volatile memory

via a non-volatile memory bus, and wherein the microcontroller is operable to fetch the program

instructions or data from the non-volatile memory via the non-volatile memory bus.

67. The system of claim 66, wherein the microcontroller is coupled to the processor via a host

memory bus, and wherein the microcontroller is operable to switchably intercept or pass

communications between the processor and the non-volatile memory.

68. The system of claim 67, wherein the host memory bus and the non-volatile memory bus are

SPI (serial peripheral interface) buses.

69. The system of claim 67, wherein the microcontroller comprises or is coupled to a switch,

interposed between the non-volatile memory bus and the host memory bus, wherein the switch is

controllable by the microcontroller to switchably intercept or pass communications between the

processor and the non-volatile memory.

70. The system of claim 69, wherein the switch comprises a Q switch or a conceptual Q switch.

71. The system of claim 69, wherein to switchably intercept or pass communications between

the processor and the non-volatile memory, the microcontroller is configured to place the switch

into a high-impedance state.

72. The system of claim 69, wherein to switch access to the non-volatile memory from the

microcontroller to the processor, and release the system from the first state, the microcontroller is

configured to:

reconfigure the access to the non-volatile memory via the switch, and release the system

from the first state, thereby permitting the processor access to the non-volatile memory.

73. The system of claim 69,

wherein the first state comprises a reset state, wherein to hold the system in the first state,

Page 10 of 72

Page 34 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

the microcontroller is configured to maintain assertion of a system reset signal; and

wherein to switch access to the non-volatile memory from the microcontroller to the

processor, and release the system from the first state, the microcontroller is configured to:

terminate a prior suspension or preemption of communications between the host

interface and the non-volatile memory via the switch, thereby allowing resumption of the

communications: and

de-assert the system reset signal.

74. The system of claim 67, wherein the host memory bus and the non-volatile memory bus

each comprises:

a data line;

a clock line: and

a CSb (Chip Select bar) line.

75. The system of claim 67, wherein the host memory bus and the non-volatile memory bus

each comprises a plurality of lines.

76. The system of claim 75, wherein each line of the host memory bus and the non-volatile

memory bus is independently switchable.

77. The system of claim 75, further comprising:

a system interface, coupled to the processor, and further coupled to the microcontroller

for communicating signals between the system interface and the microcontroller;

wherein the lines of the host memory bus and the non-volatile memory bus are switchable

together to suspend or inhibit communications between the system interface and the non-volatile

memo

78. The system of claim 75, wherein the lines of the host memory bus and the non-volatile

memory bus are coupled to respective buffers for communicating data or signals between the

non-volatile memory bus and the microcontroller.

Page 11 of 72

Page 35 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

79. The system of claim 78, further comprising:

a device interface, included in or associated with the non-volatile memory, wherein the

device interface is configured by the microcontroller to:

when the system is held in the first state, preclude the processor from accessing

the non-volatile memory.

80. The system of claim 79, wherein the microcontroller is further configured to:

once the microcontroller has completed fetching program instructions or data from the

non-volatile memory, or has determined that it is no longer assured of safe access to the non-

volatile memory, reconfigure the device interface via control signals to enable access by the

processor to the non-volatile memory.

81. The system of claim 1,

wherein the first state comprises a reset state, wherein to hold the system in the first state,

the microcontroller is configured to maintain assertion of a system reset signal; and

wherein to switch access to the non-volatile memory from the microcontroller to the

processor, and release the system from the first state, the microcontroller is configured to:

terminate a prior suspension or preemption of communications between the

processor and the non-volatile memory, thereby allowing communications to occur between the

processor and the non-volatile memory; and

de-assert the system reset signal.

82. The system of claim 1. further comprising:

a device interface, included in or associated with the non-volatile memory, wherein the

device interface is configured by the microcontroller to:

when the system is held in the first state, preclude the processor from accessing

the non-volatile memory.

83. The system of claim 1., wherein the microcontroller is further configured to:

Page 12 of 72

Page 36 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

while the system is held in the first state, exchange data or program instructions with the

non-volatile memory.

84. The system of claim 83, wherein to exchange data or program instructions with the non-

volatile memory, the microcontroller is configured to:

invoke a read or write by another component of the system.

85. The system of claim 1, further comprising:

a system interface, coupled to the processor, and further coupled to the microcontroller

via a system management bus configured for communicating management signals between the

system interface and the microcontroller;

wherein the microcontroller comprises a system reset line for communicating a reset

signal or other signal to or from the system interface.

86. The system of claim 85, wherein the reset signal or other signal corresponds with or invokes

a suspension of non-volatile memory access by the processor.

87. The system of claim 85, wherein the reset signal or other signal indicates a system state in

which the microcontroller has safe access to the non-volatile memory.

88. The system of claim 85, wherein to hold the system in the first state, the microcontroller is

configured to hold the system reset signal or other signal in a reset state.

89. The method of claim 6, wherein the change in system state to the first state is performed by

hardware.

90. The method of claim 6, wherein the change in system state to the first state is in response to a

hardware signal.

91. The method of claim 6. wherein the change in system state to the first state is in response to a

Page 13 of 72

Page 37 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

software event.

92. The method of claim 6, wherein the change in system state to the first state is in response to a

token.

93. The method of claim 6. wherein the change in system state to the first state is in response to

the system passing the microcontroller a token which grants the microcontroller ownership of the

memory through a software handshake.

94. The method of claim 6, wherein the change in system state to the first state is in response to a

software condition.

95. The method of claim 6. wherein the change in system state to the first state is in response to a

software message.

96. The method of claim 6, wherein the change in system state to the first state is in response to a

software handshake.

97. The method of claim 6., wherein the first state comprises a power on reset (POR) state.

98. The method of claim 6, wherein the first state comprises a system reset state.

99. The method of claim 6, wherein the first state comprises a sleep state.

100. The method of claim 6. wherein holding the system in the first state comprises, in response

to a power on reset, holding a system reset signal in a reset state, thereby prohibiting the

processor from accessing the non-volatile memory.

101. The method of ¢laim 100, wherein said fetching program instructions or data from the non-

volatile memory and loading the program instructions or data into a memory of the

Page 14 of 72

Page 38 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

microcontroller while the system is held in the first state occur while the system reset signal is

held in the reset state.

102. The method of claim 100, wherein said switching access to the non-volatile memory from

the microcontroller to the processor comprises permitting the processor in the system to access

the non-volatile memory, and wherein releasing the system from the first state after the program

instructions or data have been loaded comprises releasing the system reset signal from the reset

state.

103. The method of claim 6, wherein the first state comprises a state wherein it is known by the

microcontroller that the system cannot or will not access the device.

104. The method of claim 6. wherein the microcontroller is included within a system-on-chip

SoC).

105. The method of claim 6. wherein the microcontroller comprises a keyboard controller for

managing or controlling communications between a keyboard and the processor.

106. The method of claim 105. wherein the non-volatile memory stores keyboard controller

(KBC) code.

107. The method of claim 6, wherein the program instructions or data are usable by the

microcontroller for startup, general, or reset functionality.

108. The method of claim 6., wherein the program instructions or data are usable by the

microcontroller for initializing the microcontroller.

109. The method of claim 6, further comprising:

during system shutdown:

Page 15 of 72

Page 39 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

configuring the non-volatile memory to allow access to the non-volatile memory

only by the microcontroller before power-off;

queuing one or more writes or other exchanges with the non-volatile memory; and

completing the one or more writes or other exchanges with the non-volatile

memory before final power-off.

110. The method of claim 6, further comprising:

during system shutdown:

redirecting a device interface to allow access to the non-volatile memory only by

the microcontroller before power-off, wherein the device interface is

coupled to the non-volatile memory and controls access to the non-volatile

memo

queuing one or more writes or other exchanges with the non-volatile memory: and

completing the one or more writes or other exchanges with the non-volatile

memory before final power-off.

111. The method of claim 6. wherein the system further includes one or more additional

processors, each coupled to the microcontroller and the non-volatile memory., and wherein the

method further includes controlling the power or execution states of the processor and the one or

more additional processors for sharing the non-volatile memory between the plurality of

PIroCCSSOrs.

112. The method of claim 6. wherein the system further includes one or more additional

microcontrollers, each coupled to the processor and the non-volatile memory, and wherein the

method further includes each additional microcontroller sharing the non-volatile memory with

the processor.

113. The method of claim 6. wherein the system further includes one or more additional

microcontrollers, each coupled to the processor and the non-volatile memory, and wherein the

method further includes:

Page 16 of 72

Page 40 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

each additional microcontroller sharing the non-volatile memory: and

each microcontroller suspending or preventing access to the non-volatile memory by

other microcontrollers and the processor while it accesses the non-volatile

meémo

114. The method of claim 6. further comprising:

intercepting communications between a system interface and the non-volatile memory,

wherein the system interface is coupled to the processor, and wherein the

microcontroller is situated between the system interface and the non-volatile

memory; and

a device interface directing or restricting access to the non-volatile memory by the

processor or the microcontroller, wherein the device interface is included in or

associated with the non-volatile memory.

115. The method of claim 114, wherein the microcontroller is configured to set one or more

control signals to configure or redirect the device interface to grant exclusive access to the non-

volatile memory to the microcontroller.

116. The method of claim 6. wherein the non-volatile memory comprises flash memory.

117. The method of claim 6, wherein the change in system state to the first state is in response to

a management signal, wherein to hold the system in the first state, the microcontroller is further
configured to hold the management signal in a corresponding state, or to hold or assert another

management signal in a specified state.

118. The method of claim 117, further comprising:

a device interface directing or restricting access to the non-volatile memory by the

processor or the microcontroller independent of the management signal, wherein the device

interface is included in or associated with the non-volatile memory.

Page 17 of 72

Page 41 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

119. The method of claim 117, further comprising:

a system interface communicating management signals between the system interface and

the microcontroller, wherein the system interface is coupled to the processor, and further coupled

to the microcontroller via a system management bus.

120. The method of claim 117, further comprising:

a system interface communicating management signals between the system interface and

the microcontroller, wherein the system interface is coupled to the processor, and further coupled

to the microcontroller via a system interface bus.

121. The method of claim 117, wherein the management signal or the another management

signal is invoked by the microcontroller.

122. The method of claim 117, wherein the management signal or the another management

signal is not invoked by the microcontroller.

123. The method of claim 117, wherein the management signal or the another management

signal is a software signal.

124. The method of claim 117, wherein the management signal or the other management signal

is a hardware signal.

125. The method of claim 6, wherein switching access to the non-volatile memory from the

processor to the microcontroller and from the microcontroller to the processor is performed via

software.

126. The method of claim 6, wherein switching access to the non-volatile memory from the

processor to the microcontroller and from the microcontroller to the processor is performed via

hardware.

Page 18 of 72

Page 42 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

127. The method of claim 6, wherein switching access to the non-volatile memory from the

processor to the microcontroller and from the microcontroller to the processor is performed via a

combination of software and hardware.

128. The method of claim 6. wherein the change in system state to the first state is not

dependent on a management signal.

129. The method of claim 6, wherein said fetching program instructions or data from the non-
volatile memory further comprises fetching initialization code or data for the system.

130. The method of claim 129, further comprising:

fetching program instructions or data related to pre-boot security operations; and

performing the pre-boot security operations prior to boot-up of the system.

131. The method of claim 6, wherein fetching the program instructions or data from the non-

volatile memory occurs via a non-volatile memory bus that couples the microcontroller and the

non-volatile memory.

132. The method of claim 131, wherein the microcontroller is coupled to the processor via a host

memory bus, and wherein the method further comprises the microcontroller switchably

intercepting or passing communications between the processor and the non-volatile memory.

133. The method of claim 132. wherein the host memory bus and the non-volatile memory bus

are SPI (serial peripheral interface) buses.

134. The method of claim 132, wherein the microcontroller comprises or is coupled to a switch,

interposed between the non-volatile memory bus and the host memory bus, and wherein the

microcontroller switchably intercepting or passing communications comprises the

microcontroller controlling the switch to switchably intercept or pass communications between

the processor and the non-volatile memory.

Page 19 of 72

Page 43 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

135. The method of claim 134, wherein the switch comprises a Q switch or a conceptual Q

switch.

136. The method of claim 134, wherein switchably intercepting communications between the

processor and the non-volatile memory comprises placing the switch into a high-impedance

state.

137. The method of claim 134, wherein switching access to the non-volatile memory from the

microcontroller to the processor comprises reconfiguring the access to the non-volatile memory

via the switch.

138. The method of claim 134,

wherein the first state comprises a reset state, wherein holding the system in the first state

comprises maintaining assertion of a system reset signal; and
wherein switching access to the non-volatile memory from the microcontroller to the
processor comprises terminating a prior suspension or preemption of

communications between the host interface and the non-volatile memory via the

switch, thereby allowing resumption of the communications; and

wherein releasing the system from the first state comprises de-asserting the system reset

signal.

139. The method of claim 132. wherein the host memory bus and the non-volatile memory bus

each comprises:

a data line;

a clock line: and

a CSb (Chip Select bar) line.

140. The method of claim 132. wherein the host memory bus and the non-volatile memory bus

each comprises a plurality of lines.

Page 20 of 72

Page 44 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

141. The method of claim 140, wherein each line of the host memory bus and the non-volatile

memory bus is independently switchable.

142. The method of claim 140, further comprising:

switching the lines of the host memory bus and the non-volatile memory bus together to

suspend or inhibit communications between a system interface and the non-volatile memory,

wherein the system interface is coupled to the processor, and further coupled to the

microcontroller for communicating signals between the system interface and the microcontroller.

143. The method of claim 140, wherein the lines of the host memory bus and the non-volatile

memory bus are coupled to respective buffers for communicating data or signals between the

non-volatile memory bus and the microcontroller.

144. The method of claim 143, further comprising:

when the system is held in the first state, precluding, by a device interface, the processor

from accessing the non-volatile memory, wherein the device interface is included in or

associated with the non-volatile memory.

145. The method of claim 140, further comprising:

once the microcontroller has completed fetching program instructions or data from the

non-volatile memory, or has determined that it is no longer assured of safe access to the non-

volatile memory, reconfiguring the device interface via control signals to enable access by the

processor to the non-volatile memory.

146. The method of claim 6,

wherein the first state comprises a reset state, wherein holding the system in the first state

comprises maintaining assertion of a system reset signal; and
wherein switching access to the non-volatile memory from the microcontroller to the

processor _comprises terminating a prior suspension or preemption of

Page 21 of 72

Page 45 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

communications between the host interface and the non-volatile memory via the

switch, thereby allowing resumption of the communications; and

wherein releasing the system from the first state comprises de-asserting the system reset

signal.

147. The method of claim 6. further comprising:

when the system is held in the first state, precluding, by a device interface, the processor

from accessing the non-volatile memory, wherein the device interface is included in or

associated with the non-volatile memory.

148. The method of claim 6, further comprising:

while the system is held in the first state, the microcontroller exchanging data or program

instructions with the non-volatile memory.

149. The method of claim 148, wherein the microcontroller exchanging data or program
instructions with the non-volatile memory comprises invoking a read or write by another

component of the system.

150. The method of claim 6. further comprising:

communicating management signals between a system interface and the microcontroller,

wherein the system interface is coupled to the processor and is further coupled to the

microcontroller via a system management bus, and wherein the microcontroller comprises a

system reset line for communicating a reset signal or other signal to or from the system interface.

151. The method of claim 150, wherein the reset signal or other signal corresponds with or

invokes a suspension of non-volatile memory access by the processor.

152. The method of claim 150, wherein the reset signal or other signal indicates a system state in

which the microcontroller has safe access to the non-volatile memory.

Page 22 of 72

Page 46 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

153. The system of claim 150, wherein holding the system in the first state comprises the

microcontroller holding the system reset signal or other signal in a reset state.

154. The method of claim 6, wherein said holding the system in the first state is performed by

the microcontroller.

155. The method of claim 6. wherein said switching access to the non-volatile memory from the

processor to the microcontroller is performed by the microcontroller.

156. The method of claim 6, wherein said fetching program instructions or data from the non-

volatile memory is performed by the microcontroller.

157. The method of claim 6. wherein said loading the program instructions or data into a

memory of the microcontroller is performed by the microcontroller.

158. The method of claim 6, wherein said switching access to the non-volatile memory from the

microcontroller to the processor is performed by the microcontroller.

159. The method of claim 6, wherein said releasing the system from the first state is performed

by the microcontroller.

160. The system of claim 11, wherein the microcontroller is included within a system-on-chip

SoC).

161. The system of claim 11, wherein the microcontroller comprises a keyboard controller for

managing or controlling communications between a keyboard and the processor.

162. The system of claim 161, wherein the non-volatile memory stores keyboard controller

(KBC) code.

Page 23 of 72

Page 47 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

163. The system of claim 11, wherein the program instructions or data are usable by the

microcontroller for startup, general, or reset functionality.

164. The system of claim 11, wherein the program instructions or data are usable by the

microcontroller for initializing the microcontroller.

165. The system of claim 11. wherein during system shutdown. the microcontroller is further

configured to:
configure the non-volatile memory to allow access to the non-volatile memory only by

the microcontroller before power-off;

queue one or more writes or other exchanges with the non-volatile memory; and

complete the one or more writes or other exchanges with the non-volatile memory before

final power-off.

166. The system of claim 11, further comprising:

a device interface coupled to the non-volatile memory, wherein the device interface

controls access to the non-volatile memory, wherein during system shutdown, the

microcontroller is further configured to:

redirect the device interface to allow access to the non-volatile memory only by the

microcontroller before power-off;

queue one or more writes or other exchanges with the non-volatile memory; and

complete the one or more writes or other exchanges with the non-volatile memory before

final power-off.

167. The system of claim 11. further comprising:

one or more additional processors, each coupled to the microcontroller and the non-

volatile memory, and wherein the microcontroller has control over the power or execution states

of the processor and the one or more additional processors for sharing the non-volatile memory

between the plurality of processors.

Page 24 of 72

Page 48 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

168. The system of claim 11. further comprising:

one or more additional microcontrollers, each coupled to the processor and the non-

volatile memory, wherein each additional microcontroller is configured to share the non-volatile

memory with the processor.

169. The system of claim 11. further comprising:

one or more additional microcontrollers, each coupled to the processor and the non-

volatile memory, wherein each additional microcontroller is configured to share the non-volatile

memory, and wherein each microcontroller is configured to suspend or prevent access to the

non-volatile memory by other microcontrollers and the processor while it accesses the non-

volatile memory.

170. The system of claim 11. further comprising:

a system interface, coupled to the processor, wherein the microcontroller is situated

between the system interface and the non-volatile memory, and wherein the microcontroller is

configured to intercept communications between the system interface and the non-volatile

memory; and

a device interface, included in or associated with the non-volatile memory, wherein the

device interface is configured to direct or restrict access to the non-volatile memory by the

processor or the microcontroller.

171. The system of claim 170, wherein the microcontroller is configured to set one or more

control signals to configure or redirect the device interface to grant exclusive access to the non-

volatile memory to the microcontroller.

172. The system of claim 11. wherein the non-volatile memory comprises flash memory.

173. The system of claim 11, wherein to fetch program instructions or data from the non-volatile

memory and load the program instructions or data into a memory of the microcontroller, the

microcontroller is configured to:

Page 25 of 72

Page 49 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

fetch initialization code or data for the system.

174. The system of claim 173, wherein to fetch program instructions or data from the non-

volatile memory and load the program instructions or data into a memory of the microcontroller,

the microcontroller is further configured to:

fetch program instructions or data related to pre-boot security operations; and

perform the pre-boot security operations prior to boot-up of the system.

175. The system of claim 11, wherein the microcontroller is coupled to the non-volatile memory

via a non-volatile memory bus, and wherein the microcontroller is operable to fetch the program

instructions or data from the non-volatile memory via the non-volatile memory bus.

176. The system of claim 175, wherein the microcontroller is coupled to the processor via a host

memory bus, and wherein the microcontroller is operable to switchably intercept or pass

communications between the processor and the non-volatile memory.

177. The system of claim 176, wherein the host memory bus and the non-volatile memory bus

are SPI (serial peripheral interface) buses.

178. The system of claim 176, wherein the microcontroller comprises or is coupled to a switch,

interposed between the non-volatile memory bus and the host memory bus, wherein the switch is

controllable by the microcontroller to switchably intercept or pass communications between the

processor and the non-volatile memory.

179. The system of claim 178, wherein the switch comprises a Q switch or a conceptual Q

switch.

180. The system of claim 178, wherein to switchably intercept or pass communications between

the processor and the non-volatile memory, the microcontroller is configured to place the switch

into a high-impedance state.

Page 26 of 72

Page 50 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

181. The system of claim 176, wherein the host memory bus and the non-volatile memory bus

each comprises:

a data line;

a clock line; and

a CSb (Chip Select bar) line.

182. The system of claim 176, wherein the host memory bus and the non-volatile memory bus

each comprises a plurality of lines.

183. The system of claim 182, wherein each line of the host memory bus and the non-volatile

memory bus is independently switchable.

184. The system of claim 182. further comprising:

a system interface, coupled to the processor, and further coupled to the microcontroller

for communicating signals between the system interface and the microcontroller;

wherein the lines of the host memory bus and the non-volatile memory bus are switchable

together to suspend or inhibit communications between the system interface and the non-volatile

memo

185. The system of claim 182, wherein the lines of the host memory bus and the non-volatile

memory bus are coupled to respective buffers for communicating data or signals between the

non-volatile memory bus and the microcontroller.

186. The system of claim 11, further comprising:

a system interface, coupled to the processor, and further coupled to the microcontroller

via a system management bus configured for communicating management signals between the

system interface and the microcontroller;

wherein the microcontroller comprises a system reset line for communicating the system

reset signal or other signal to or from the system interface.

Page 27 of 72

Page 51 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

187. The method of claim 17, wherein the microcontroller is included within a system-on-chip

SoC).

188. The method of claim 17, wherein the microcontroller comprises a keyboard controller for

managing or controlling communications between a keyboard and the processor.

189. The method of claim 188. wherein the non-volatile memory stores keyboard controller

(KBC) code.

190. The method of claim 17, wherein the program instructions or data are usable by the

microcontroller for startup, general, or reset functionality.

191. The method of claim 17, wherein the program instructions or data are usable by the

microcontroller for initializing the microcontroller.

192. The method of claim 17, further comprising:

during system shutdown:

configuring the non-volatile memory to allow access to the non-volatile memory

only by the microcontroller before power-off;

queuing one or more writes or other exchanges with the non-volatile memory; and

completing the one or more writes or other exchanges with the non-volatile

memory before final power-off.

193. The method of claim 17, further comprising:

during system shutdown:

redirecting a device interface to allow access to the non-volatile memory only by

the microcontroller before power-off, wherein the device interface is

coupled to the non-volatile memory and controls access to the non-volatile

memo

queuing one or more writes or other exchanges with the non-volatile memory; and

Page 28 of 72

Page 52 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

completing the one or more writes or other exchanges with the non-volatile

memory before final power-off.

194. The method of claim 17, wherein the system further includes one or more additional

processors, each coupled to the microcontroller and the non-volatile memory., and wherein the

method further includes controlling the power or execution states of the processor and the one or

more additional processors for sharing the non-volatile memory between the plurality of

PIrOCCSSOrsS.

195. The method of claim 17, wherein the system further includes one or more additional

microcontrollers, each coupled to the processor and the non-volatile memory, and wherein the

method further includes each additional microcontroller sharing the non-volatile memory with

the processor.

196. The method of claim 17, wherein the system further includes one or more additional

microcontrollers, each coupled to the processor and the non-volatile memory, and wherein the

method further includes:

each additional microcontroller sharing the non-volatile memory: and

each microcontroller suspending or preventing access to the non-volatile memory by

other microcontrollers and the processor while it accesses the non-volatile

memo

197. The method of claim 17, further comprising:

intercepting communications between a system interface and the non-volatile memory.

wherein the system interface is coupled to the processor, and wherein the

microcontroller is situated between the system interface and the non-volatile

memory; and
a device interface directing or restricting access to the non-volatile memory by the

processor or the microcontroller, wherein the device interface is included in or

associated with the non-volatile memory.

Page 29 of 72

Page 53 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

198. The method of claim 197, wherein the microcontroller is configured to set one or more

control signals to configure or redirect the device interface to grant exclusive access to the non-

volatile memory to the microcontroller.

199. The method of claim 17, wherein the non-volatile memory comprises flash memory.

200. The method of claim 17, wherein said fetching program instructions or data from the non-

volatile memory further comprises fetching initialization code or data for the system.

201. The method of claim 200, further comprising:

fetching program instructions or data related to pre-boot security operations; and

performing the pre-boot security operations prior to boot-up of the system.

202. The method of claim 17, wherein fetching the program instructions or data from the non-

volatile memory occurs via a non-volatile memory bus that couples the microcontroller and the

non-volatile memory.

203. The method of claim 202, wherein the microcontroller is coupled to the processor via a

host memory bus, and wherein the method further comprises the microcontroller switchably

intercepting or passing communications between the processor and the non-volatile memory.

204. The method of claim 203, wherein the host memory bus and the non-volatile memory bus

are SPI (serial peripheral interface) buses.

205. The method of claim 203, wherein the microcontroller comprises or is coupled to a switch,

interposed between the non-volatile memory bus and the host memory bus, and wherein the

microcontroller switchably intercepting or passing communications _comprises _ the

microcontroller controlling the switch to switchably intercept or pass communications between

the processor and the non-volatile memory.

Page 30 of 72

Page 54 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

206. The method of claim 205, wherein the switch comprises a Q switch or a conceptual Q

switch.

207. The method of claim 205, wherein switchably intercepting communications between the

processor and the non-volatile memory comprises placing the switch into a high-impedance

state.

208. The method of claim 203, wherein the host memory bus and the non-volatile memory bus

each comprises:

a data line;

a clock line: and

a CSb (Chip Select bar) line.

209. The method of claim 203, wherein the host memory bus and the non-volatile memory bus

each comprises a plurality of lines.

210. The method of claim 209, wherein each line of the host memory bus and the non-volatile

memory bus is independently switchable.

211. The method of claim 209, further comprising:

switching the lines of the host memory bus and the non-volatile memory bus together to

suspend or inhibit communications between a system interface and the non-volatile memory.

wherein the system interface is coupled to the processor, and further coupled to the

microcontroller for communicating signals between the system interface and the microcontroller.

212. The method of claim 209, wherein the lines of the host memory bus and the non-volatile

memory bus are coupled to respective buffers for communicating data or signals between the

non-volatile memory bus and the microcontroller.

213. The method of claim 17, further comprising:

Page 31 of 72

Page 55 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

communicating management signals between a system interface and the microcontroller,

wherein the system interface is coupled to the processor and is further coupled to the

microcontroller via a system management bus, and wherein the microcontroller comprises a

system reset line for communicating the system reset signal or other signal to or from the system

interface.

Page 32 of 72

Page 56 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

REMARKS

Claims 1-23 were originally issued in U.S. Patent 7,930,576 (the “’576 patent”). Claims
24-213 have been added, and are fully supported by the original specification:

Claims 24-31 and 89-96 are fully supported by at least col.5, line 58 — col. 6, line 7 and
col. 15, lines 50-67;

Claims 32-34 and 97-99 are fully supported by at least original claim 3;

Claims 35-37 and 100-102 are fully supported by at least original claim 11;

Claims 38 and 103 are fully supported by at least col. 10, lines 51-62;

Claims 39-43, 104-108, 160-164, and 187-191 are fully supported by at least col. 7, lines
32-41, col. 13, lines 42-48, and col. &, lines 9-23;

Claims 44-48, 109-113, 165-169, and 192-196 are fully supported by at least col. 10, line
63 —col. 11, line 14 and col. 6, lines 56-62;

Claims 49-50, 114-115, 170-171, and 197-198 are fully supported by at least col. 8, line
24 —col. 9, line 46;

Claims 51-63, 116-128, 172, and 199 are fully supported by at least col. 9, line 47 — col.
10, line 3;

Claims 64-65, 129-130, 173-174, and 200-201 are fully supported by at least col. 14, line
60 —col. 15, line 6;

Claims 66-73, 131-138, 175-180, and 202-207 are fully supported by at least col. 4, line
60 — col. 5, line 20, col. 4, lines 4-46, and col. 14, lines 1-26;

Claims 74, 139, 181, and 208 are fully supported by at least col. 13, lines 49-67;

Claims 75-79, 140-144, 182-185, and 209-212 are fully supported by at least col. 12,
lines 8-20 and col. 14, lines 1-26;

Claims 80-82 and 145-147 are fully supported by at least col. 14, lines 43-49;

Claims 83-84 and 148-149 are fully supported by at least col. 9, lines 4-21;

Claims 85-88, 150-153, 186, and 213 are fully supported by at least col. 10, lines 21-40;

Claims 154-159 are fully supported by at least original claim 1.

Therefore, claims 1-213 are now pending in this reexamination.

Page 33 of 72

Page 57 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

I. Introduction

The instant Office Action rejects originally issued claims 1-23 of the ’576 patent as
allegedly being either anticipated by or obvious in view of U.S. Patent 6,161,162 to DeRoo, et al.
(“DeRo0”). In the following discussion, Patent Owner demonstrates that these rejections are in
error, and that each of claims 1-23 as well as each of the newly added claims listed above is

patentable over DeRoo.

Below, Patent Owner first briefly summarizes the disclosures of both the ’576 patent and
DeRoo. Next, Patent Owner demonstrates that the Office Action’s position concerning the
correspondence of the recited “microcontroller” to both DeRoo’s SCP 706 and HUI 700 taken
together does not comport with the meaning of the term “microcontroller” as it is used in the
’576 patent, even under the broadest reasonable construction. In addressing the anticipation
rejections, Patent Owner further demonstrates DeRoo fails to disclose numerous features of
independent claims 1 or 6. First, DeRoo does not disclose “a first state wherein the

microcontroller is assured safe access to the non-volatile memory.” DeRoo also fails to disclose

that a microcontroller is configured to “hold the system in the first state.” DeRoo additionally
fails to disclose that a microcontroller is configured to “release the system from the first state.”
DeRoo further fails to disclose that a microcontroller is configured to “switch access to the non-

volatile memory from the processor to the microcontroller” “in response to a change in system

state to a first state wherein the microcontroller is assured safe access.”

In addressing the obviousness rejections, Patent Owner demonstrates that the
modification of DeRoo proposed in the Office Action cannot sustain a prima facie case of
obviousness. Specifically, the Office Action proposes that although DeRoo does not disclose
that a system control processor (SCP) “hold[s] a system reset signal in a reset state, thereby
prohibiting [a] processor from accessing [a] non-volatile memory,” as recited in independent
claims 11 and 17, the Office Action states that it would have been obvious to modify DeRoo’s
SCP to reset DeRoo’s CPU. However, as Patent Owner shows below, such a modification would
change the principle of operation of DeRoo, which is predicated upon a system in which the

CPU has unconditionally higher priority than the SCP (which would no longer be the case if the

Page 34 of 72

Page 58 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

SCP could reset the CPU as proposed). Moreover, such a modification would render DeRoo
unsatisfactory for its intended purpose of use within a personal computer, because it would
increase the susceptibility of DeRoo’s system to undesirable behavior such as system hangs and
spontancous rebooting. Individually, either of these consequences of the proposed modification
would be sufficient to preclude such a modification as a basis for an obviousness rejection; the
fact that both consequences arise leaves little doubt that the proposed modification is

impermissible.

Patent Owner respectfully submits that the present rejections should be withdrawn, and

all claims confirmed as patentable, for at least the reasons given below.

Page 35 of 72

Page 59 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

II. Overview of °576 Patent

The 576 patent is directed to techniques for sharing devices, such as a non-volatile
memory, among multiple processors in a system. See *576 patent, col. 1, 11.16-20. Specifically,
it is common for hardware systems to include a central processing unit (CPU) as well as one or
more microcontrollers for performing auxiliary system functions. See id., 11.21-25. Typically,
each processor or microcontroller in a system relies on its own set of firmware instructions for
controlling operations such as initialization, power management, or other functions. See id.,
11.25-30. Such firmware instructions are often stored in non-volatile memory such as flash
memory, so that they may be updated during the manufacturing process or in the field. See id.,
11.51-53. However, providing cach processor and microcontroller with its own discrete non-
volatile memory in which to store its firmware is costly, as is embedding the non-volatile

memory within the processor or microcontroller itself. See id., 11.37-39, 53-60.

An alternative to providing each processor and microcontroller with its own discrete or
embedded non-volatile storage is to design the system such that the processor(s) and
microcontroller(s) arbitrate for access to a shared memory device. See ’576 patent, col. 1, 11.33-
34. However, arbitration adds design and hardware complexity (since arbitration must be
controlled by an arbiter), and arbitration may degrade system performance and user experience

(e.g., because of delays associated with arbitration). See id., 11.35-37.

In order to avoid the costs and complexities of these solutions, the *576 patent proposes a
system having at least a processor and a microcontroller, in which a microcontroller is provided
with a system state in which it is assured safe access to a shared memory device, or where the
microcontroller can prevent the system from entering a state where the processor has access to
the shared memory device. See ’576 patent, col. 2, 11.22-25. That is, the system may provide a
state (also referred to as a “first” state) in which “the microcontroller is guaranteed the ability to
access the shared device safely, e.g., without interruption or interference by the processor.” See
id. 11.27-29. During this state, the microcontroller may access the shared memory device to
retrieve or exchange data, such as firmware. See id., col. 3, 11.1-3. Once its access to the shared

memory device is complete, the microcontroller may “change or allow change of the system

Page 36 of 72

Page 60 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

state, thereby permitting the processor in the system to access the shared device.” See id., 11.22-

25.

One example of a system configuration using the techniques of the *576 patent is shown

in Figure 1B, reproduced below.

o Host Memorny Bus
- 108

Systemn Interface
108

Shared Device
{&.4q., Non-Voiatile
Memory}

188

System intarface Bus

Syatern
103

Management Bu
101

Embeded
Microcontrotier

Device Bus
107

In the illustrated embodiment, embedded microcontroller 102 is coupled to system
interface 106, which may simply be a bus or other interface suitable for communicating between
microcontroller 102 and a CPU, or may include other structure or functionality. See ’576 patent,
col. 7, 11.59-66. Microcontroller 102 is further coupled to shared device 108, which may be a
non-volatile memory that stores firmware for both microcontroller 102 and a CPU located

behind system interface 106. See id., col. 8, 11.1-15.

In some embodiments, the “first state” may correspond to a reset state, such as a power-
on reset. See ’576 patent, col. 8, 11.65-67. However, the “first state” may also correspond to
other states, such as a system reset state or a sleep state. See id. That is, the microcontroller may
take advantage of any of a variety of states in which it is assured safe access to the shared

memory in order to safely use the shared memory. See id., col. 3, 11.38-45.

Thus, using the techniques of the ’576 patent,

Page 37 of 72

Page 61 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

the microcontroller may preempt or suspend access to the device by the processor,
¢.g., the main CPU, of the system, or otherwise configure safe access to the
device by the microcontroller; retrieve or otherwise exchange data or program
instructions with the device; then return access to the device to the processor, or
otherwise relinquish exclusive or safe access to the device by the microcontroller.

See ’576 patent, col. 3, 11.30-37. As a result, “the microcontroller may gracefully share access to

the device with the processor of the system.” See id., 11.58-59.

As discussed in greater detail in Section IV.A.2.a, infra, one of ordinary skill in the art
would understand that, consistent with the specification of the *576 patent, and consistent with
the plain meaning of the phrase “assured safe access,” for a microcontroller to be “assured safe
access” to a shared memory, under normal operating conditions, the microcontroller must be

guaranteed access to the shared memory in a manner that is free from interruption or interference

from a processor. Specifically, one of ordinary skill would understand that during a state in
which a microcontroller is “assured safe access” to a shared memory, at a minimum, the

microcontroller’s access cannot be arbitrarily preempted by the processor in such a way that the

microcontroller could be adversely affected. See Declaration of Thomas M. Conte Under 37
C.FR. § 1.132 (“132 Declaration™) at 4 12. Thus, one of ordinary skill would recognize the
system of the ’576 patent as a system in which the microcontroller can freely preempt the

processor of the system, but not vice versa, and thus as a system in which the microcontroller has

higher access priority than the processor with respect to the shared memory. See 132 Declaration

at 9 13.

Page 38 of 72

Page 62 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

III. Overview of the DeRoo Reference

U.S. Patent 6,161,162 to DeRoo et al. (“DeRoo”), entitled “Multiprocessor System for
Enabling Shared Access to a Memory,” relates to “providing multiplexed address and data paths
from multiple CPUs to a single storage device,” with the object being “to allow the use of a
single memory device to serve as a code storage medium for multiple CPUs in a digital computer

system.” See DeRoo, col. 2, 1I. 13-15, 1-3.

DeRoo purports to disclose “[t]hree embodiments of the invention” in which “[t]he first
embodiment relates to a System Control Processor Interface (SCPI)” as shown in Figs. 2-9,
“[t]he second embodiment relates to a Mouse Keyboard Interface (MKI)” as shown in Figs. 10-
19, and “[t]he third embodiment relates to a Human User-Input Interface (HUI),” as shown in
Figs. 20-35. See id., col. 3, 1.64 — col. 4, 1.2. However, only the HUI embodiment of DeRoo is
actually addressed to the problem of sharing access to a memory device: “The HUI solves this
problem by providing an interface to enable both the SCP and the CPU to share a common
memory device and, additionally, incorporates the SCPI and MKI interfaces.” See id., col. 36,
11.30-33. The Office Action relies only on the HUI embodiment of DeRoo, specifically citing to
columns 36-37 and 81-84 relating to the HUI embodiment.

DeRoo describes the HUI embodiment as “an application specific integrated circuit
(ASIC) which integrates the SCPI and MKI interfaces . . . into a single device along with an
interface for a common memory device, which may be reprogrammable, for a central processing
unit (CPU) and a system control processor (SCP).” See DeRoo, col. 36, 11.1-6. As DeRoo states,
“[t]he common memory device enables the basic input/output system (BIOS) for the CPU, as
well as the firmware for the SCP to be stored in the same memory device.” See id., 11.6-9.
DeRoo illustrates a block diagram of the HUI embodiment in Fig. 20, reproduced below, which
specifically shows HUI 700, CPU 702, SCP 706, and common memory device 704:

Page 39 of 72

Page 63 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

ADORESS I s AL - P | PROGRAMARLE
JREADY g REGISTER | WARDWARE ey
P T < e TIMER F I5°8 20
TBATA SO 7] oo -
ol ¥ LS vae
CPUl vOREAD | NIORG { oo
YO WRITE ol SLIOWE L ; -
MEMORY REAR | N MERG = b :
MEMORY WRITE | N MWTC dad
. e 3 . : .
e PIB., et
RESET — L Fagoe17]
CLOTH oo » :
T8 U
4. ~ OaTA /A\?ﬂ ; "}\
AUDRESSIE1] ASCRaITY MUXE F 07
o T LATOH K Y ICOMEAON
GHESEY. ... SCPRESET : - MEMORY
i | Y i P 7 DEVICE
BOF & DATAADDRESS[0 2 SCRADGY i
T g | L33 720
_REAY PN SCPRD Y o #
WRHTE T N_scPwR : BEAD .
ALE N _SCRALE CONTROL ﬁ%ﬁsg WRITE g%
_PaEN _ [N BOPPSE ~ Ty

DeRoo explains that SCP 706 is a microcontroller: “the firmware for the SCP . . . may be
onboard the microcontroller for the SCP depending on the particular microcontroller selected for
the SCP”; “Intel type 80C51 microcontrollers are known to be used for the SCP”; “[O]ther
microcontrollers, such as an Intel type 80C31 are known to be used [for the SCP].” See DeRoo,
col. 36, 11.17-27. DeRoo does not appear to explicitly identify what type of processor is used as
CPU 702 in the HUI embodiment. However, DeRoo states with respect to the distinct SCPI
embodiment that “an Intel 80286, 80386 or an 80486 is used as a CPU.” See id., col. 4, 11.26-27.

DeRoo provides three distinct modes of operation with respect to common memory
device 704, each of which will be explained below in greater detail: a CPU-exclusive mode in
which CPU 702 has exclusive access to memory device 704, an SCP-exclusive mode in which
SCP 706 has exclusive access to memory device 704, and a shared mode in which CPU 702 and
SCP 706 share access to memory device 704. See generally DeRoo, cols. 81-84.

As noted by DeRoo, “[e]xclusive access by the CPU 702 is required to write to the

common memory device 704.” See DeRoo, col.82, 11.21-22. In order to enter CPU-exclusive

Page 40 of 72

Page 64 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

mode, DeRoo repeatedly states that CPU 702 “can gain exclusive control . . . by placing the SCP
into a reset state,” noting that “[dJuring such conditions, the SCP 706 is prevented from writing
to the common memory device 704 since the SCP is held in a reset state during such conditions.”
See id. at col. 82, 11.1-3, 29-31; see also col. 81, 11.46-49 (noting that “SCP 706 [is prevented]
from gaining access to the common memory device 704 during periods when the CPU 702 has

exclusive control since, during such conditions, the SCP 706 is held in reset.”).

Moreover, DeRoo unequivocally states that CPU 702 may unconditionally gain access to

CPU-exclusive mode even if the SCP currently has exclusive access: “During conditions when

the SCP has exclusive access of the common memory device 704, the CPU can gain control by

forcing the SCP 706 into reset.” See DeRoo, col. 81, 11.64-66 (emphasis added). DeRoo’s

description of the control register through which CPU 702 asserts its demand for exclusive
access bears this out: in describing the CPUEXCL flag of the FLASH CTRL register, DeRoo
states that this flag indicates that “SCP has requested exclusive access to flash memory for a

write and CPU is disallowed from reading and writing the FLASH - this bit can be cleared

immediately if a ‘1’ is written to SCPreset.” See id., col. 49, Table XXXI (emphasis added).

During conditions when SCP 706 does not have exclusive access, DeRoo states that the
mechanism by which CPU 702 gains access to CPU-exclusive mode is the same as when SCP
706 does have exclusive access: “by placing the SCP 706 into a reset state by setting bit 0 of the
flash interface control register FLASH CTRL.” See id., col. 82, 11.2-4.

As with CPU 702, DeRoo notes that “SCP 706 can only write to the common memory
device 704 when it has exclusive access.” See DeRoo, col. 82, 11.33-34. However, there is a
clear asymmetry between SCP 706 and CPU 702 with respect to their abilities to gain exclusive
access: unlike CPU 702, which 1s able to force SCP 706 into reset, SCP 706 cannot force CPU
702 into reset. Instead, “[i]n order for the SCP 706 to gain exclusive control, the CPU 702 may
be forced into a wait state by the HUI 700 by pulling the input/output channel ready signal
IOCHRDY inactive.” See id., col. 81, 11.55-58. The IOCHRDY signal is a standard feature of
the Industry Standard Architecture/Extended Industry Standard Architecture (ISA/EISA) bus
interface (e.g., as implemented by the original IBM PC) that indicates to a bus master—in

DeRoo’s case, CPU 702—that additional cycle time is required and that the bus master should

Page 41 of 72

Page 65 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

wait before accessing the ISA/EISA bus. See 132 Declaration at § 18. (The IOCHRDY signal
behaves nothing like a reset signal; in fact, if it did, DeRoo’s system would fail to operate
properly, as demonstrated in greater detail below.) As noted above, even when SCP 706 gains
exclusive control, this control does not amount to “assured safe access,” because CPU 706 can

arbitrarily preempt SCP 706 and gain control of the shared memory whenever it desires to do so.

DeRoo provides a third, shared mode in which both CPU 702 and SCP 706 are given
access to common memory device 704 according to a “time based interleaving method.” See
DeRoo, col. 81, 1.51. During this mode, “common memory device 704 is configured as a read
only memory,” consistent with the requirement that writing to memory device 704 requires
exclusive access. See id., col. 82, 11.43-44. The general timing of the interleaved access that

occurs during DeRoo’s shared mode is illustrated in Fig. 24, reproduced below:

Fig. 24

o NS 26ONS |S00NS é?saws {1000NS {1250NS
R A NN 3 I B
SCPCLIE |1 LLLJI“ u J_J__Ju Huu
SCP BTATE | v E&TATE 1§§,m“"s: z\sn\TF ’x@TmL 4@?&?5 asmrc a]STATE 1;5?,&,1-5:_31
SCPALE | | | | ! """ I'\cwb FETCH | ;* ‘iCﬁ’BDEFET";H '
o gww—aqsm;si TLLPL P o
psen i 1 o P

'l*

SCRAD 81 |

...... : 3 S

i ¥ B * 3 ¥
° N v
c

jy=

SCPAD §7 b (& *@ amz‘--e-----«-é--- ifép,;,

Fop: ‘f}

'mm:aa WX wm«s\

A7) |
cPU |
SYSTEM
ACCESS

DeRoo indicates that in shared mode, “[t]he SCP 706 has control for about 2.5 to 3.5 SCP clock
periods, after which time the CPU 702 is given control.” See DeRoo, col. 83, 11.48-50.

Page 42 of 72

Page 66 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

Specifically, DeRoo notes that in shared mode, once SCP 706 has been granted access, the
amount of time SCP 706 has access to common memory device 704 is fixed and invariant:

“Access is granted to the SCP 706 as soon as the SCP address latch enable signal SCPALE

occurs (start of an SCP cycle) and switched to the CPU 702 after two rising and one falling edges
of the SCP clock SCPCLK are detected.” See id., 11.53-57 (emphasis added).

That is, DeRoo’s shared mode is implemented as a conventional time division
multiplexed operation in which, so long as the shared mode is active, SCP 706 and CPU 702
share access to common memory device 704 according to a predictable schedule that is
controlled not by either of these devices, but is instead independently controlled by HUI 700.
See 132 Declaration at 4 20. This is further evidenced by DeRoo’s Verilog source code appendix
that describes the functionality of HUI 700, in which the signal “flashSCP” (which determines
whether the SCP has access to the common memory device 704) is set by the falling edge of
signal “SCPALE” and is cleared by the rising edge of signal “clr flashSCP,” which is itself
merely a version of the “flashSCP” signal that has been passed through a fixed delay chain. See
DeRoo, cols. 129, 131.

It is clear from DeRoo’s description that regardless of whether the system is operating in
shared mode or SCP-exclusive mode, CPU 702 may demand and receive exclusive access to
common memory device 704 at its prerogative. As noted above, CPU 702 may gain exclusive
control of common memory device 704 even when SCP 706 has exclusive access by “forcing the
SCP 706 into reset.” See DeRoo, col. 81, 1. 66. Even when SCP 706 does not have exclusive
access, CPU 702 “can gain exclusive control . . . by placing the SCP 706 into a reset state.” See
id., col. 82, 1. 1-3. DeRoo only discloses three possible modes of operation, one of which is a
CPU-exclusive mode. Because CPU 702 would not need to “gain exclusive control” while in
CPU-exclusive mode, DeRoo’s latter reference to CPU 702 “gain[ing] exclusive control”

necessarily refers to shared mode. See 132 Declaration at q 21.

In summary, DeRoo does in fact provide a system through which CPU 702 and SCP 706
may share access to common memory device 704. However, DeRoo’s system is organized

around the basic principle that CPU 702 can preempt SCP 706’s access to memory device 704 at

Page 43 of 72

Page 67 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

any time by forcing SCP 706 into reset, regardless of whether SCP 706 has exclusive access to
memory device 704 or whether CPU 702 and SCP 706 are sharing access to memory device 704
in a time-multiplexed fashion. See 132 Declaration at § 22. That is, in DeRoo, CPU 702 is
effectively a master device that can reset SCP 706 at any time, whereas SCP 706 is a slave
device that can request exclusive access to memory device 704, but will only hold such exclusive
access—or even shared access—for so long as CPU 702 allows. See id. Consequently, DeRoo

describes a system in which a processor (CPU 706) unconditionally holds higher access priority

than a microcontroller (SCP 702) with respect to a shared memory device (common memory

device 704). See id.

Page 44 of 72

Page 68 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

IV. Response to Rejections Based on DeRoo

Claims 1, 2, 4-7, 9 and 10 are rejected under 35 U.S.C. § 102(b) based on DeRoo.'
Claims 3, 8, and 11-23 are rejected under 35 U.S.C. § 103(a) as being unpatentable over the
single reference of DeRoo. Patent Owner traverses these rejections for at least the reasons set
forth below. Rejections under 35 U.S.C. § 102(b) are addressed first, followed by rejections
under 35 U.S.C. § 103(a).

Rejections under 35 U.S.C. § 102(b):
A.CLAIM 1:

As an initial matter, the Office Action’s position concerning the correspondence of the
recited “microcontroller” to both DeRoo’s SCP 706 and HUI 700 taken together does not
comport with the meaning of the term “microcontroller” as it is used in the ’576 patent, even
under the broadest reasonable construction. Moreover, DeRoo fails to disclose numerous
features of claim 1. First, DeRoo does not disclose “a first state wherein the microcontroller is

assured safe access to the non-volatile memory.” DeRoo also fails to disclose that a

microcontroller is configured to “hold the system in the first state.” DeRoo additionally fails to
disclose that a microcontroller is configured to “release the system from the first state.” DeRoo
further fails to disclose that a microcontroller is configured to “switch access to the non-volatile

memory from the processor to the microcontroller” “in response to a change in system state to a

first state wherein the microcontroller is assured safe access.”

Patent Owner therefore traverses the rejection of claim 1 as set forth in detail below.

! In the Office Action, the proposed rejection under 35 U.S.C. § 102(b) was changed sua sponte to a rejection under
35 US.C. § 102(e). See Office Action at 4. Specifically, the Office Action states that “DeRoo was not published
until December 12, 2000, which was after the December 18, 2007 filing date of the *576 patent.” Id. Patent Owner
submits that in fact, these dates evidence that DeRoo was published before the filing date of the 576 patent, and
thus a rejection under § 102(e) would not be appropriate here. For the purposes of this response, Patent Owner will
treat the DeRoo reference as a § 102(b) reference.

Page 45 of 72

Page 69 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

1. The combination of DeRoo’s SCP 706 and HUI 700 does not correspond to the recited

“microcontroller.”

In rejecting claim 1, the Office Action alleges that DeRoo’s common memory device 704
corresponds to the recited “non-volatile memory,” that DeRoo’s CPU 702 corresponds to the
recited “processor,” and that DeRoo’s SCP 706 and HUI 700 together correspond to the recited
“microcontroller.” See Office Action at 4. As an initial matter, Patent Owner submits that the
Office Action’s position concerning the recited “microcontroller” is inconsistent with the
meaning of that term as it is employed in the ’576 patent—i.c., the plain meaning of that term as
it would be understood by one of ordinary skill in the art. Moreover, Patent Owner submits that

the Office Action’s position is inconsistent with DeRoo’s own usage of the term.

Claim terms are to be given their broadest reasonable interpretation (BRI) consistent with
the specification. See Phillips v. AWH Corp., 415 F.3d 1303, 1316-17 (Fed. Cir. 2005) (en banc)
(“The Patent and Trademark Office (‘PTO’) determines the scope of claims in patent
applications not solely on the basis of the claim language, but upon giving claims their broadest
reasonable construction ‘in light of the specification as it would be interpreted by one of ordinary
skill in the art.””). See also M.P.E.P. 2111 (“During patent examination, the pending claims

must be ‘given their broadest reasonable interpretation consistent with the specification.’”).

Under BRI, the term “microcontroller” may encompass many types of processing
devices. However, the breadth of this term is not unlimited. One of ordinary skill in the art
would readily recognize that, consistent with its usage in the ’576 patent, the term

“microcontroller” refers to a single integrated circuit device—i.c., to a “chip” fabricated as part

of a separately packaged device. See 132 Declaration at 4 24. Although dictionary definitions of
“microcontroller” vary, numerous definitions confirm this “single-chip” aspect of the term.
See, e.g.,, Webopedia, available at http://www.webopedia.com/TERM/M/microcontroller.html
(referring to a “highly integrated chip”); Microsoft Computer Dictionary, Fifth Edition, at 337
(referring to a “single chip computer”); PC Magazine Encyclopedia, available at
http://www.pcmag.com/encyclopedia_term/0,2542,t=microcontroller&i=46924,00.asp (referring
to “a single chip”). The meaning of “microcontroller” as referring to a single integrated circuit

device is consistent with usage of the term “microcontroller” in the ’576 patent. For example, in

Page 46 of 72

Page 70 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

describing the difficulties of incorporating embedded flash into a microcontroller, the *576 patent
notes the complexities of integrating flash memory “on the same die” as the “microcontroller

chip.” See ’576 patent, col. 1, 11.54-56; see also 132 Declaration at 9§ 25.

DeRoo also understands “microcontroller” to refer to a separate integrated circuit device
that is distinct from, and does not include, DeRoo’s HUI device. Specifically, DeRoo identifies
HUI 700 as “an application specific integrated circuit (ASIC) which integrates the SCPI and

MKI interfaces discussed above into a single device along with an interface for a common
memory device, which may be reprogrammable, for a central processing unit (CPU) and a
system control processor (SCP).” See DeRoo, col. 36, 11.3-7 (emphasis added); see also 132
Declaration at § 27. DeRoo also repeatedly refers to the SCP itself as both a “microcontroller”

and as a discrete integrated circuit device. Specifically, DeRoo states that

the firmware for the SCP is normally stored in a separate memory device, which
may be onboard the microcontroller for the SCP depending on the particular
microcontroller selected for the SCP or in a separate memory device. For
example, Intel type 80C51 microcontrollers are known to be used for the SCP.
Such microcontrollers have on-board internal ROM for storing the firmware for
the SCP and are relatively more expensive and considerably more difficult to field
upgrade. Alternatively, other microcontrollers, such as an Intel type 80C31 are
known to be used which do not contain on-board ROM.

See DeRoo, col. 36, 11.16-27 (emphasis added).

That is, one of ordinary skill would understand DeRoo to employ the term
“microcontroller” to refer to SCP 706, and would further understand DeRoo to employ the term
“microcontroller” in its ordinary sense of referring to a discrete integrated circuit device—a
conclusion supported by DeRoo’s specific references to examples of 80C51 and 80C31
microcontrollers, which are themselves single-chip microcontrollers. See 132 Declaration at |
26. Moreover, one of ordinary skill would understand DeRoo’s HUI 700 to be a discrete ASIC
corresponding to a device that is distinct from SCP 706, and thus distinct from a

“microcontroller.” See 132 Declaration at q 27.

Accordingly, given that the ordinary meaning of “microcontroller,” even under BRI,

refers to a single integrated circuit device, and that DeRoo plainly describes SCP 706 and HUI

Page 47 of 72

Page 71 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

700 as distinct integrated circuit devices, the Office Action’s allegation that SCP 706 and HUI
700 together correspond to the recited “microcontroller” is inconsistent with the ordinary
meaning of that term as it is used both in the ’576 patent and in DeRoo. That is, it is
inappropriate to ascribe the features of one discrete device (HUI 700) to another (SCP 706) and
to then call the result a “microcontroller,” especially where DeRoo clearly considers SCP 706

itself to be a “microcontroller.” See 132 Declaration at 9| 28.

2. DeRoo fails to disclose “a first state wherein the microcontroller is assured safe access

to the non-volatile memory.”

The Office Action alleges that the recited “first state” is disclosed by DeRoo’s holding
the CPU SYSTEM ACCESS signal in a low level, as shown in DeRoo’s FIG. 24. See Office
Action at 5. Patent Owner respectfully disagrees and submits that for at least the following

reasons, there is no operational state of DeRoo’s system for sharing a common memory device in

which a microcontroller is assured safe access to the memory device.

a. For a microcontroller to be “assured safe access” to a memory, under a broadest
reasonable interpretation of that term, the microcontroller’s access to the memory cannot be

arbitrarily preempted by a processor.

Patent Owner submits that, under the BRI standard for claim construction discussed in the
previous section, the meaning of the phrase “assured safe access” is governed by the ordinary
meaning of its terms consistent with their usage in the specification. Specifically, the ordinary
meaning of “assured” that is consistent with its usage in the ’576 patent is “characterized by
certainty or security: guaranteed.” See Merriam-Webster Online Dictionary,
http://www.merriam-webster.com/dictionary/assured. In describing the “first state,” the ’576
patent provides explicit evidence that as used in this context, “assured” means “guaranteed”
under normal operating conditions: “In other words, the system may be changed to a state (a
“first’ state) in which the microcontroller is guaranteed the ability to access the shared device

safely.” See ’576 patent, col. 2, 11.27-29 (emphasis added).

Page 48 of 72

Page 72 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

Moreover, the ordinary meaning of “safe” that is consistent with its usage in the ’576
patent is “free from harm or risk; secure from threat of danger, harm, or loss.” See Merriam-
Webster Online Dictionary, http://www.merriam-webster.com/dictionary/safe. The ’576 patent
provides further guidance as to the meaning of “safe” in the context of access by a
microcontroller: that is, “safe access” occurs “without interruption or interference by the

processor.” See ’576 patent at col. 2, 1.30.

The phrase “assured safe access” is specifically used in the claims to characterize the
access of a microcontroller to a non-volatile memory in the context of a system that also includes
a processor. When construed consistently with the plain meaning of its terms as set forth above,
for a microcontroller to be “assured safe access” to a non-volatile memory in a system where a
processor can also access the non-volatile memory, under normal operating conditions, the
microcontroller must be guaranteed access to the non-volatile memory in a manner that is free

from interruption or interference by the processor.”

One of ordinary skill in the art would understand that for a microcontroller to be “assured
safe access” to a non-volatile memory relative to a processor in this context, it is necessary to
provide a mechanism to ensure that the processor cannot arbitrarily preempt the
microcontroller’s access to the non-volatile memory. See 132 Declaration at XX. That is, for a
microcontroller to be “assured safe access,” its access must be exclusive to the microcontroller
and not preemptible by the processor in a manner that could adversely affect the microcontroller.
This follows because if the microcontroller’s access to the non-volatile memory were not
exclusive and could be preempted by the processor without warning, the processor could
arbitrarily interfere with the microcontroller’s access in a way that affects the microcontroller
(e.g., by preventing the microcontroller from completing its access or changing the contents of
the memory on which the microcontroller depends) and the microcontroller’s access therefore

could not be “assured” to be “safe.” See 132 Declaration at] 12-13, 29.

Page 49 of 72

Page 73 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

b. In DeRoo’s system, CPU 702 can arbitrarily preempt SCP 706 at any time, which is

precisely the opposite of what is needed for a microcontroller to be “assured safe access” to a

memory.

As noted above, the Office Action alleges that the recited “first state” in which the
microcontroller is “assured safe access” to a memory is the state in which the CPU SYSTEM
ACCESS signal is at a low level, as shown in DeRoo’s Figure 24. See Office Action at 5.
DeRoo describes Figure 24 as “a timing diagram illustrating the interleaved access of a common
memory device in accordance with the present invention.” See DeRoo, col. 3, 1l. 31-33. That is,
Figure 24 specifically illustrates the interleaved operation of the system during the time-
multiplexed shared mode of operation disclosed by DeRoo: “during a shared mode, multiplexing
of the common memory device 704 provides for interleaved access to the common memory

device 704 by the CPU 702 and the SCP 706.” See id., col. 83, 11.28-31.

As can be seen from Figure 24, once shared mode operation begins, then so long as no
entity requests exclusive access, CPU 702 and SCP 706 will continue to receive alternating
access to common memory device 704 according to a fixed, predictable schedule. However, as
discussed in the summary of DeRoo given above, regardless of whether the system is operating
in shared mode or SCP-exclusive mode, CPU 702 can request exclusive access to common
memory device 704 at any time “by placing the SCP 706 into a reset state by setting bit 0 of the
flash interface control register FLASH CTRL.” See DeRoo, col. 82, 11.2-4.

That is, during shared mode operation according to DeRoo, SCP 706 may periodically
receive access to common memory device 704. However, the integrity or continuity of such
access is in no way guaranteed by DeRoo; rather, the SCP’s access can be preempted by CPU
702 at any time. Thus, the access of SCP 706 to common memory device 704 is clearly not

certain or guaranteed to be free from interruption or interference by CPU 702—instead, such

% One of ordinary skill in the art would readily recognize that an assurance of safe access is not absolute, but rather is
predicated on the existence of normal system operating conditions. Of course, defects, failures, or other exceptional
circumstances may cause the system to malfunction.

Page 50 of 72

Page 74 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

interruption is by deliberate design how DeRoo permits CPU 702 to gain exclusive access to

common memory device 704. Therefore, the mere fact that DeRoo’s CPU SYSTEM ACCESS

signal is in a low state at a given time cannot be said to correspond to a state in which SCP 706 is
“assured safe access” to common memory device 704, for any meaningful interpretation of

“assured safe access.”

In fact, rather than providing “assured safe access” to SCP 706, the organization of

DeRoo practically assures that any access by SCP 706 will be unsafe, because SCP 706 is not

only susceptible to being preempted by CPU 702 at any time, but is in fact preempted with
extreme prejudice, by being reset. That is, when CPU 702 demands exclusive access to common
memory device 704, it does not merely interrupt any outstanding access by SCP 706 in such a
way that SCP 706 could readily resume access when CPU 702 relinquishes its access. Rather,
DeRoo states that “during periods when the CPU 702 has exclusive control . . . the SCP 706 is
held in reset.” See DeRoo, col. 81, 11.46-48 (emphasis added). One of ordinary skill would
understand “held in reset” to mean that SCP 706 is held in an inactive, determinate state from
which initial operation can proceed once the reset state is released, but which would erase the
state of operations that were pending at the time reset was asserted. See 132 Declaration at q 32.
Thus, it appears that SCP 706 cannot rely on the continuity or consistency of any access to

common memory device 704 that it initiates.

One practical example illustrating the lack of “assured safe access” for SCP 706 in
DeRoo’s system may be understood as follows. DeRoo states that one purpose of the common
memory device shared by SCP 706 and CPU 702 is to store the firmware for SCP 706. See
DeRoo, col. 36, 1.9. One of ordinary skill would readily understand that the firmware of a
microcontroller is code that controls the basic operations of the microcontroller, for example in
order to initialize the microcontroller. See 132 Declaration at § 7. In DeRoo’s system, SCP 706
might begin fetching and executing firmware code from common memory device 704 using
either SCP-exclusive or shared mode access, a process that may take a number of cycles
depending on the length of the firmware routine to be fetched. However, as demonstrated above,

at any time during SCP 706’s fetching of firmware, CPU 702 may preempt SCP 706 by resetting

Page 51 of 72

Page 75 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

it in order to demand exclusive access for itself. This may lead to at least two possible negative

outcomes.

First, because SCP 706 cannot guarantee its access to common memory device 704 for
any length of time, it is possible that if CPU 702 repeatedly resets SCP 706, SCP 706 will never
actually complete fetching a firmware routine (i.e., SCP 706 may be essentially deadlocked or
prevented from making progress). See 132 Declaration at § 34. More pathologically, because
CPU 702 can gain exclusive access to common memory device 704 at any time, it is possible
that CPU 702 could actually modify the firmware on which SCP 706 depends before or while
SCP 706 is fetching that firmware, either accidentally (e.g., as a result of poorly-behaved code
executing on CPU 702) or deliberately (e.g., in the case of malware). See 132 Declaration at 4
35. Thus, the operation of SCP 706 may be altered or corrupted due to the alteration or
corruption of its firmware. Because of the basic organization of DeRoo’s system (i.e., DeRoo’s
failure to provide “assured safe access” for SCP 706), when DeRoo’s system is operating
according to the protocol it specifically provides, DeRoo’s system cannot prevent these

outcomes of deadlock or corruption from occurring. See 132 Declaration at | 36-37.

3. DeRoo fails to disclose that a microcontroller is configured to “hold the system in the

first state.”

In rejecting claim 1, the Office Action alleges that DeRoo’s address latch enable
N_SCPALE corresponds to the feature “hold the system in the first state.” See Office Action at

5. Patent Owner respectfully disagrees for at least the following reasons.

One of ordinary skill in the art would understand that, even under BRI, for a device to
“hold” a system in a particular state, the device would persistently control the system to preserve
that particular state until the device released such control and allowed the system state to
transition to a different state. See 132 Declaration at § 39. This is consistent with the ordinary
meaning of the word “hold” that is relevant in this context, which is “to maintain (a certain
condition, situation, or course of action) without change.” See Merriam-Webster Online

Dictionary, http://www.merriam-webster.com/dictionary/hold.

Page 52 of 72

Page 76 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

DeRoo’s address latch enable signal N SCPALE does not “hold” DeRoo’s system in a
particular state, as one of ordinary skill would understand that term. DeRoo states that during
shared mode operation, the address latch enable initiates an SCP access window: “[Al]t the
falling edge of SCP address latch enable SCPALE, indicating that the SCP address is valid,
memory control is given to the SCP 706.” See DeRoo, col. 83, 11.45-48. However, SCP 706

does not persistently maintain such control. Rather, DeRoo states that after SCPALE transitions,
access is “switched to the CPU 702 after two rising and one falling edges of the SCP clock
SCPCLK are detected.” See id., 11.55-57. That is, assertion of SCPALE initially gives SCP 706
memory access, but only temporarily: SCP 706 will automatically and unconditionally lose

access to common memory device 704 after “two rising and one falling edges of the SCP clock.”

Thus, one of ordinary skill would understand that DeRoo’s address latch enable signal
may be sufficient to initiate a state of access to common memory device 704 from SCP 706, but
is insufficient to hold such a state (much less a “first state” in which SCP 706 is “assured safe
access,” as mentioned below). See 132 Declaration at 9 40. As mentioned in the overview of
DeRoo in Section 111, supra, this is further evidenced by DeRoo’s Verilog source code appendix
that describes the functionality of HUI 700. In the source code, DeRoo specifies the generation
of the signal “flashSCP,” in which the signal “flashSCP” directly determines which entity of
SCP 706 or CPU 702 has access to common memory device 704. The signal “flashSCP” is set

by the falling edge of signal “SCPALE” and is unconditionally cleared by the rising edge of
signal “clr_flashSCP,” which is itself merely a version of the “flashSCP” signal that has been
passed through a fixed delay chain. See DeRoo, cols. 129, 131; see also 132 Declaration at 9 41.

Leaving aside the question of the role of SCPALE, Patent Owner has already
demonstrated that given DeRoo’s basic system organization, SCP 706 is not capable of holding
any particular system state. As discussed at length above, SCP 706 is subject to being reset by
CPU 702 at any time. Accordingly, even if SCP 706 were to attempt to persistently preserve a
particular system state, it would be unable to do so, because as soon as CPU 702 forced SCP 706
into reset, SCP 706 would no longer be able to preserve that system state. See 132 Declaration at

q42.

Page 53 of 72

Page 77 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

4. DeRoo fails to disclose that a microcontroller is configured to “release the system

from the first state.”

In rejecting claim 1, the Office Action alleges that DeRoo discloses the aspect of claim 1
wherein a microcontroller is configured to “release the system from the first state.” See Office
Action at 5. However, the evidentiary basis of this allegation is not clear. The Office Action
cites to FIG. 20 as well as several passages from DeRoo that do not appear to have anything to
do with the feature of “release the system from the first state” for which they are offered. Patent

Owner addresses these various citations in the Office Action as follows:

- The quotation from col. 36, 11.30-32 refers to the HUI “providing an interface to
enable both the SCP and the CPU to share a common memory device.” Mere
description that devices are shared does not disclose the particular state transition that

is recited.

- The quotation from col. 36, 11.56-60 relates to how reads and writes by CPU 702 to
HUI 700 are controlled. However, how CPU 702 (which the Office Action maps to
the recited “processor”) interacts HUI 700 is not relevant to how SCP 706 (which the

Office Action maps to the recited “microcontroller”’) behaves.

- The reference to DeRoo’s control 720 “for accessing the common memory device
706 from either the CPU register file 712 or the SCP register file 714” is likewise
irrelevant to the operation of SCP 706; it refers instead to the operation of HUI 700,
which is a distinct ASIC from both CPU 702 and SCP 706.

The Office Action also cites to the portion of DeRoo describing the various control
signals used by SCP 706 to communicate with common memory device 704, including the
N_SCPALE signal. However, as was demonstrated in the preceding section, although the

N_SCPALE signal serves to initiate a period of access by SCP 706 to common memory device

704 during shared mode operation, this access period is unconditionally terminated by HUI 700
after a fixed number of clock edges are detected. That is, SCP 706 does not “release” its control

over access once the access period terminates; rather, HUI 700 forcibly terminates the access

Page 54 of 72

Page 78 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

period, regardless of the cooperation of SCP 706, so that access can be “switched to the CPU
702.” See DeRoo, col. 83, 11.55-57; see also 132 Declaration at § 43.

More generally, as noted in the preceding section, SCP 706 is not capable of holding any
particular system state, because SCP 706 is subject to reset at any time by CPU 702. Even when
SCP 706 operates in SCP-exclusive mode, DeRoo does not disclose that SCP 706 deliberately
“releases” or relinquishes its access of its own volitional control when CPU 702 requests
exclusive access. Rather, as noted above, CPU 702 takes control in this circumstance “by

forcing SCP 706 into reset.” See DeRoo, col. 81, 11.64-66; see also 132 Declaration at q 43.

Because a device’s ability to “hold” a state is a logical prerequisite to the device’s ability
to “release” a state (i.e., one cannot “release” something one does not “hold”) and because SCP
706 cannot assert sufficient control to “hold” a particular system state, it is illogical to suggest

that SCP 706 could “release” a particular system state. See 132 Declaration at 9§ 44.

5. Contrary to the Office Action’s position, DeRoo does not disclose that a

microcontroller is configured to perform certain actions in response to a change in state of the

CPU SYSTEM ACCESS signal.

Claim 1 specifically recites a microcontroller that “is configured to[,] in _response to a
change in system state to a first state . . . hold the system in the first state and switch access to the
non-volatile memory from the processor to the microcontroller.” This language is causal. That
is, according to the plain language of the claim, the microcontroller is configured such that the
“change in system state to a first state” causes the microcontroller to “hold the system in the first

state” and “switch access” in response.

In rejecting claim 1, the Office Action alleges that the “change in system state to a first
state” corresponds to a low-going transition on the CPU system access signal. See Office Action
at 5. However, DeRoo illustrates CPU system access signal 2020 as a signal that is strictly
internal to HUI 700. See DecRoo, Figure 23 (illustrating CPU ACCESS 2020 as a signal
generated by control 720 that is routed only to address mux 716 and data mux and latch 718).

DeRoo’s Verilog source code confirms that CPU system access signal 2020 (referred to as

Page 55 of 72

Page 79 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

SysAccess in the code; see DeRoo, col. 82, 1.19) is internal to HUI 700. See DeRoo, col. 131,
133. However, if CPU system access signal 2020 is internal to HUI 700, and thus not an input to
the microcontroller that is SCP 706, then a change in state on CPU system access signal 2020

cannot cause SCP 706 to perform any particular function.

That is, if microcontroller does not receive state information, it cannot act in response to
a change in that state information. Because SCP 706 does not receive the state information that
the Office Action alleges corresponds to the recited “first state,” SCP 706 cannot cause actions to
occur in response to changes in this state information. Accordingly, the Office Action fails to
establish that DeRoo has met this aspect of claim 1.

6. Because DeRoo fails to disclose or suggest numerous features of claim 1, DeRoo fails

to support the rejection of claim 1.

The legal standard for establishing anticipation is strict. “[U]nless a reference discloses
within the four corners of the document not only all of the limitations claimed but also all of the
limitations arranged or combined in the same way as recited in the claim, it cannot be said to
prove prior invention of the thing claimed and, thus, cannot anticipate under 35 U.S.C. § 102.”
Net MoneyIN, Inc. v. VeriSign, Inc., 545 F.3d 1359, 1371 (Fed. Cir. 2008). Anticipation requires
the presence in a single prior art reference disclosure of each and every element of the claimed
invention, arranged as in the claim. M.P.E.P 2131; Lindemann Maschinenfabrik GmbH v.
American Hoist & Derrick Co., 221 U.S.P.Q. 481, 485 (Fed. Cir. 1984). The identical invention
must be shown in as complete detail as is contained in the claims. Richardson v. Suzuki Motor

Co., 9 U.S.P.Q.2d 1913, 1920 (Fed. Cir. 1989).
As demonstrated above, DeRoo fails to disclose or suggest numerous features of claim 1.

Therefore, for at least the reasons discussed above, DeRoo fails to render claim 1 anticipated or

obvious.

B. CLAIM 2:

Page 56 of 72

Page 80 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

Claim 2 recites “wherein the change in system state to the first state is performed by
software.” In rejecting claim 2, the Office Action alleges that DeRoo’s passage at col. 36, 11.42-
44 discloses this feature. See Office Action at 6. The quoted passage of DeRoo states that “the
HUI 700 allows the SCP 706 to communicate with the CPU 702 and the common memory
device 704 by way of an SCP register file 714.”

DeRoo does not explicitly describe the use of software with respect to SCP register file
714. Patent Owner submits that the existence of a register file to facilitate communication
between SCP 706, CPU 702, and common memory device 704 does not necessitate that the
register file is manipulated by or even visible to software. It is entirely conceivable that such a

register file could be controlled through hardware alone.

Moreover, as noted above with respect to claim 1, DeRoo fails to disclose the recited
“first state,” and so cannot disclose how a change to that first state is achieved. However, even
assuming arguendo that the Office Action’s position regarding the “first state” were correct (i.c.,
that the “first state” corresponds to a low level of DeRoo’s CPU SYSTEM ACCESS signal),
DeRoo nevertheless lacks sufficient disclosure to establish that such software would be
performing “the change in the system state to the first state.” As noted above (see, e.g., Section
IV.A.5, supra), DeRoo illustrates and describes the CPU SYSTEM ACCESS signal as a
hardware-generated signal. In describing the operation of SCP 706 and CPU 702 with respect to
sharing access to common memory device 704, DeRoo discusses how these devices interact at
the pin or interface level, but does not discuss in any significant detail how software internal SCP
706 or CPU 702 causes pin-level behavior to occur. Consequently, the Office Action has not
established evidence that in DeRoo, software is responsible for manipulating the CPU SYSTEM
ACCESS signal, much less the “first state” recited in claim 2.

C. CLAIM 4:
Claim 4 is patentable over DeRoo for at least the reasons given above for claim 1.
D. CLAIM 5:

Claim 5 is patentable over DeRoo for at least the reasons given above for claim 1.

Page 57 of 72

Page 81 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

E. CLAIM 6:

Claim 6 is a method claim having numerous features that are similar to features of claim
1. In rejecting claim 6, the Office Action relies on a virtually identical mapping to portions of
DeRoo that was employed in rejecting claim 1. See Office Action at 6-7. Patent Owner submits
that the arguments given above with respect to claim 1 apply with equal force with respect to

similar features of claim 6.

More specifically, claim 6 recites “a first state wherein the microcontroller is assured safe
access to the non-volatile memory.” As set forth in detail in Section IV.A.2, supra, DeRoo’s
system allows SCP 706 to be preempted at any time by CPU 702, regardless of whether DeRoo’s
system is operating in shared mode or SCP-exclusive mode. As a result, SCP 706 is never
“assured safe access” to DeRoo’s common memory device 704, because it cannot be assured
access that occurs without interference of CPU 702. Because of the fundamental lack of
“assured safe access” for SCP 706 in DeRoo’s system, it is possible that CPU 702 could
deadlock SCP 706 by continually resetting it, never allowing it to complete fetching a needed
firmware routine. It is further possible that CPU 702 could corrupt SCP 706’s firmware in a

manner SCP 706 has no way to prevent.

Claim 6 additionally recites “holding the system in the first state.” As with claim 1, the
Office Action alleges that DeRoo’s address latch enable signal N_SCPALE accomplishes this
feature. However, as set forth in detail in Section IV.A.3, supra, although N SCPALE is used to
initiate a state of access to common memory device 704 from SCP 706, it cannot hold such a
state, because in the shared mode of operation in which N_SCPALE is relevant, HUI 700
unconditionally terminates SCP 706’s access after a fixed and determinate period of time. More
generally, because SCP 706 can be reset by CPU 702 at any time as noted above, DeRoo’s
system cannot be understood to perform “holding the system in the first state,” where the “first

state” entails that the microcontroller is “assured safe access.”

Claim 6 additionally recites “releasing the system from the first state.” As set forth in
detail in Section IV.A.4, supra, the evidentiary basis in the Office Action for the allegation that
DeRoo discloses this feature is unclear. DeRoo’s address latch enable signal N SCPALE, which

Page 58 of 72

Page 82 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

is cited along with other passages of questionable relevance, was demonstrated above to be
involved with initiating an access period by SCP 706 during shared mode operation, but is not
involved in terminating or otherwise “releasing” the access period. More generally, because
SCP 706 is not capable of “holding” any particular system state, it is not logically capable of

“releasing” such a state.

Claim 6 further recites “in response to a change in system state to a first state . . . holding
the system in the first state.” As set forth in detail in Section IV.A.S, supra, this claim language
requires that the change in system state cause the “holding.” However, as discussed above, the
CPU system access signal 2020 that is alleged to correspond to the “first state” does not appear

to be capable of causing the resultant behavior in the manner recited in claim 6.
F. CLAIM 7:

Claim 7 recites features that are similar to claim 2. Patent Owner submits that claim 7 1s

patentable over DeRoo for at least the reasons given above for claim 2 as well as claims 1 and 6.
G. CLAIM 9:
Claim 9 is patentable over DeRoo for at least the reasons given above for claims 1 and 6.
H. CLAIM 10:

Claim 10 is patentable over DeRoo for at least the reasons given above for claims 1 and

Rejections under 35 U.S.C. § 103(a):
I. CLAIM 3:

Claim 3 recites that the first state comprises one or more of “a power on reset (POR)
state, a system reset state, or a sleep state.” In rejecting claim 3, the Office Action acknowledges
that DeRoo does not explicitly teach that the first state comprises any of these states, but alleges

that “powering on, resetting and sleep mode were well known initial states for memory system

Page 59 of 72

Page 83 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

operation.” See Office Action at 8. From this, the Office Action concludes that it would have
been obvious to one of ordinary skill in the art to utilize one or more of the recited states within

DeRoo’s system. Patent Owner respectfully disagrees for at least the following reasons.

First, the assertion that “powering on, resetting and sleep mode were well known initial
states” is offered without any evidentiary support whatsoever. Given that the Office Action has
acknowledged the absence of such features from DeRoo, Patent Owner respectfully requests that
evidence beyond simple conjecture be made of record to substantiate the “well known” status of

these states.

Second, in rejecting claim 1, the Office Action alleges that the “first state” corresponds to
a low state of the CPU SYSTEM ACCESS signal. As discussed above with respect to claim 1
(see, e.g., Section IV.A.S, supra), the CPU SYSTEM ACCESS signal is a signal derived by HUI
700 to coordinate which of SCP 706 and CPU 702 has access to common memory device 704
when the system is operating in shared mode. The Office Action fails to explain how, given
DeRoo’s description of the CPU SYSTEM ACCESS signal, such a signal could be modified to
incorporate any of the various states recited in claim 3. That is, it is insufficient to merely allege
that DeRoo could be modified in the abstract to incorporate any of the states of claim 3 when

claim 3 specifically limits the “first state” that is recited in claim 1.

Accordingly, Patent Owner submits that the Office Action’s evidence and reasoning is

insufficient to support a prima facie obviousness rejection of claim 3.
J. CLAIM 8:

Claim 8 recites features that are similar to claim 3. Patent Owner submits that claim 8 is

patentable over DeRoo for at least the reasons given above for claim 3 as well as claims 1 and 6.
K. CLAIM 11:

Claim 11 is a system claim that recites a non-volatile memory, a processor, and a
microcontroller. Among other features, claim 11 recites that the microcontroller is configured to,

“In response to a power on reset, hold a system reset signal in a reset state, thereby prohibiting

Page 60 of 72

Page 84 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

the processor from accessing the non-volatile memory.” Moreover, according to claim 11, the
microcontroller is further configured to, “while the system reset signal is held in the reset state,
fetch program instructions or data from the non-volatile memory and load the program
instructions or data into a memory of the microcontroller” and “after the program instructions or
data have been loaded, permit the processor in the system access to the non-volatile memory, and

release the system reset signal from the reset state.”

In rejecting claim 11 under 35 U.S.C. § 103(a), the Office Action acknowledges that
DeRoo “does not explicitly teach” any of the features of claim 11 quoted above. See Office
Action at 9. The Office Action further states that DeRoo does disclose “(1) holding a processor
in a wait state to prohibit the processor from accessing the non-volatile memory, while allowing
the microcontroller to do so” and “(2) holding the microcontroller in a reset state to prohibit the
microcontroller from accessing the non-volatile memory, while allowing the processor to do so.”

See id.
From this, the Office Action alleges that

it would have been obvious to one having ordinary skill in the art at the time the
invention was made to hold the processor in the system of DeRoo in a reset state
to prohibit the processor from accessing the non-volatile memory, while allowing
the microcontroller exclusive access to the non-volatile memory until the reset
signal is released, since (1) DeRoo specifically taught the use of a reset state to
prevent an clement from accessing the non-volatile memory; namely, holding the
microcontroller in a reset state to prohibit the microcontroller from accessing the
non-volatile memory, while allowing the processor to do so, (2) DeRoo
specifically taught the use of a state to prohibit the processor from accessing the
non-volatile memory, while allowing the microcontroller exclusive access to the
non-volatile memory, namely, holding a processor in a wait state to prohibit the
processor from accessing the non-volatile memory, while allowing the
microcontroller to do so and (3) it may have been advantageous to take make use
of any idle time during the wait state of the processor by performing a reset
operation in the processor to run new updates, etc.

See Office Action at 10.

Patent Owner respectfully disagrees with the Office Action’s position concerning the

alleged obviousness of claim 11 for at least the following reasons.

Page 61 of 72

Page 85 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

1. The proposed modification would impermissibly change a fundamental principle of

operation of DeRoo and would impermissibly render DeRoo unsatisfactory for its intended

purposc.

The Office Action is correct in noting that DeRoo teaches the use of reset to prohibit the
microcontroller from accessing the non-volatile memory. However, the Office Action errs in
assuming that SCP 706 and CPU 702 could reasonably be modified to use a symmetrical reset
scheme instead of the asymmetrical priority scheme that DeRoo actually discloses, because such
a modification would impermissibly change a fundamental principle of operation of DeRoo and

would impermissibly render DeRoo unsatisfactory for its intended purpose.

One of ordinary skill in the art would recognize that in any system in which multiple
requesting devices may contend for access to a shared resource that cannot concurrently service
the multiple requesting devices, some sort of conflict-resolution scheme is necessary for deciding
which requesting device will succeed when there are concurrent (and thus conflicting) requests.
See 132 Declaration at § 48. For example, a system architect may choose to implement a fixed
priority ordering system in which a higher-priority requesting device always receive access over
a lower-priority requesting device when a conflict arises. See 132 Declaration at 9 49.
Alternatively, a wide variety of more sophisticated arbitration schemes may be employed that
actively decide which of several requesting devices will receive access when there is a conflict:
for example, the winner may be chosen randomly/pseudorandomly, or by taking into account
historical usage patterns of the various requesting devices (e.g., in order to ensure that one
requesting device does not monopolize the shared resource at the expense of other devices). See

132 Declaration at 9 50.

One of ordinary skill in the art would further recognize that the choice of conflict-
resolution scheme for a shared-resource system is a fundamental architectural decision that has
implications for both hardware and software design. See 132 Declaration at 9 51-53.
Specifically, once the decision to implement a particular conflict-resolution scheme is made,
various system components and software may be designed to specifically rely on that conflict-
resolution scheme, and may not operate efficiently (or even correctly) if used in a system that

relies on a different conflict-resolution scheme. See id.

Page 62 of 72

Page 86 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

The fundamental implications of the choice of conflict-resolution scheme on the design
of system components may be illustrated by the following example. Assume that in a fixed
priority system where a processor always has higher priority than a microcontroller with respect
to a shared memory, software executing on the processor is designed with this assumption in
mind—i.¢., that a process that needs access to the shared memory will never be delayed on
account of the microcontroller. If such a process were to execute in a system that did not
implement fixed priority access—e.g., if it were deployed in a system that arbitrated between the
processor and the microcontroller in a round-robin fashion, or according to some other variable
scheme—the basic assumption under which the process was designed is no longer correct. If the
process depends on the assumption, it may operate incorrectly when the assumption is violated.
For example, if the process is performing time-critical operations and assumes no delay will
occur because of the microcontroller, then if a delay does occur, the process may miss a critical

deadline. As a result, the system may malfunction. See 132 Declaration at 9 54-55.

Turning now specifically to DeRoo, it is apparent that DeRoo’s system is fundamentally
organized around the principle that CPU 702 is the highest-priority device with respect to
common memory device 704. This is true even in the event that SCP 706 has previously placed
CPU 702 in a wait state in order to gain exclusive access to common memory device 704,
because DeRoo specifically states that “[d]uring conditions when the SCP has exclusive access
of the common memory device 704, the CPU 702 can gain control by forcing the SCP 706 into
reset.” See DeRoo, col. 81, 11.64-66.

Thus, one of ordinary skill in the art would recognize that DeRoo implements a fixed
priority scheme in which CPU 702 unconditionally holds higher priority than SCP 706 with
respect to accessing common memory device 704, See 132 Declaration at 4 56. One of ordinary
skill in the art would further recognize that, as noted above, the choice of a fixed priority scheme
in DeRoo reflects a basic architectural decision concerning system organization that gives rise to
a fundamental principle of operation on which other system elements will rely for their correct
operation. See id. For example, software executing on CPU 702 or other system hardware
working in cooperation with CPU 702 may reasonably expect to rely on the fact that CPU 702

will have access to common memory device 704 at its discretion, without negotiation or delay on

Page 63 of 72

Page 87 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

the part of SCP 706.

From this, one of ordinary skill in the art would appreciate that altering DeRoo such that
CPU 702 would no longer unconditionally hold higher priority than SCP 706 would substantially
alter a fundamental operating principle of DeRoo. See 132 Declaration at § 57, 59. Moreover,
one of ordinary skill in the art would recognize that modifying DeRoo in the manner proposed in
the Office Action—i.e., such that SCP 706 could reset CPU 702 in the same manner that CPU
702 can reset SCP 706—would entail that CPU 702 no longer unconditionally hold higher
priority than SCP 706. See 132 Declaration at 9 58. This is reflected in the fact that as a result of
such a modification, CPU 702 no longer can expect to access common memory device 704 at its

discretion, but instead would be subject to possible delay in the event that it is reset by SCP 706.

However, it is a basic tenet of the law of obviousness that “[i]f the proposed modification
or combination of the prior art would change the principle of operation of the prior art invention
being modified, then the teachings of the references are not sufficient to render the claims prima
facie obvious.” See M.P.EP. 2143.01.VI (internal citations omitted). Because the Office
Action’s proposal to modify DeRoo’s system such that SCP 706 could reset CPU 702 would
change the principle of operation of DeRoo, such a modification cannot support the Office
Action’s allegation that claim 11 would have been obvious to one of ordinary skill in the art in

view of DeRoo.

Moreover, there are several sound technical reasons why DeRoo uses reset
asymmetrically (i.e., such that CPU 702 can reset SCP 706 but not vice versa) as opposed to the
symmetrical scheme proposed by the Office Action. First, If SCP 706 had the proposed ability
to reset CPU 702, then it would be possible for both CPU 702 and SCP 706 to concurrently

attempt to reset each other. This creates a possibility for a serious failure mode to arise: if the

two devices were to succeed in holding each other in a reset state, a deadlock condition could
occur in which neither device is able to proceed. See 132 Declaration at § 61. As a result of
such a deadlock, DeRoo’s system would hang, likely requiring a power cycle in order to restore

normal operation. See id.

Second, DeRoo specifically indicates that the intended purpose of SCP 706 is for use in a

Page 64 of 72

Page 88 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

personal computer in which CPU 702 corresponds to the general purpose processor of the

personal computer:

As mentioned above, known IBM type AT PC-compatible personal computers
utilize an SCP 706 with an internal ROM for program storage. It is also known
that the BIOS is stored in a separate memory device. The HUI 700 allows both the
CPU 702 and the SCP 706 to share a common memory device 704.

See DeRoo, col. 81, 11.37-42; see also col. 4, 11.24-26 (stating that “known newer type PC/AT
machines” use Intel x86-type processors as the CPU). One of ordinary skill in the art would
understand that a personal computer with CPU 702 at its core would be expected to run an

operating system as well as user applications. See 132 Declaration at q 62.

As noted above with respect to claim 1, one of ordinary skill would understand the
manner in which DeRoo holds SCP 706 “in reset” to mean that SCP 706 is held in an inactive,
determinate state from which initial operation can proceed once the reset state is released, but
which would erase the state of operations that were pending at the time reset was asserted. The
Office Action proposes to give SCP 706 the ability to arbitrarily reset CPU 702 in the same
manner in which CPU 702 can reset SCP 706, instead of merely requesting CPU 702 to wait as
DeRoo describes. But if SCP 706 had such a capability with respect to CPU 702, then at any
given time, SCP 706 could ecrase the current operating state of CPU 702, interrupting any
pending activities of the operating system or user applications executing on CPU 702. See 132
Declaration at 4 63. In effect, giving SCP 706 such a reset capability over CPU 702 would allow

SCP 706 to reboot the computer at any time, without notice to the user.

Thus, the Office Action’s proposed modifications to DeRoo create the possibility of
significant negative consequences: system hangs arising from deadlock conditions, and the
potential for arbitrary system reboots arising from resetting of CPU 702. Both of these
consequences are undesirable for a computer system: at a minimum, they may cause a user to
lose work, and in the worst case they may render the system effectively unusable. As a result,
the Office Action’s proposed modifications render DeRoo unsatisfactory for its intended purpose

of use within a personal computer system. See 132 Declaration at 9] 64-65.

It is a further principle of the law of obviousness that “[i]f [a] proposed modification

Page 65 of 72

Page 89 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

would render the prior art invention being modified unsatisfactory for its intended purpose, then
there is no suggestion or motivation to make the proposed modification.” See M.P.E.P.
2143.01.V (internal citations omitted). Because the Office Action’s proposal to modify DeRoo’s
system such that SCP 706 could reset CPU 702 would render DeRoo unsatisfactory for its
intended purpose of use within a personal computer system, such a modification cannot support
the Office Action’s allegation that claim 11 would have been obvious to one of ordinary skill in

the art in view of DeRoo.

In summary, the Office Action’s proposal for modifying DeRoo cannot be said to render
claim 11 obvious to one of ordinary skill in the art for several distinct reasons: (1) it would
impermissibly alter the fundamental principle of operation of DeRoo, and (2) it would
impermissibly render DeRoo unsuitable for its intended use in a personal computer system in

several ways.

2. Contrary to the Office Action’s assertion, DeRoo fails to disclose “prohibiting the

processor from accessing the non-volatile memory,” leaving some features of claim 11

unaccounted for.

In rejecting claim 11, the Office Action alleges that DeRoo discloses “holding a
processor in a wait state to prohibit the processor from accessing the non-volatile memory.” See
Office Action at 9. Although Patent Owner agrees that DeRoo describes how SCP 706 can place
CPU 702 in a wait state in order to enter the SCP-exclusive mode of operation, Patent Owner

disagrees that this amounts to prohibiting CPU 702 from accessing common memory device 704.

Patent Owner submits that, under the BRI standard for claim construction discussed
above, the meaning of “prohibiting” is governed by the ordinary meaning of this term consistent
with its usage in the specification. Specifically, the ordinary meaning of the infinitive “to
prohibit” that is consistent with the usage of “prohibiting” in the ’576 patent is “to prevent from
doing something; preclude.” See Merriam-Webster Online Dictionary, http://www.merriam-

webster.com/dictionary/prohibit.

As thoroughly demonstrated above with respect to claim 1, CPU 702 is not in fact

Page 66 of 72

Page 90 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

prevented or precluded from accessing common memory device 704 when SCP 706 has
exclusive access, because even “[d]uring conditions when the SCP has exclusive access of the
common memory device 704, the CPU 702 can gain control by forcing the SCP 706 into reset.”
See DeRoo, col. 81, 11.64-66. That is, even when SCP 706 has exclusive access, CPU 702 may
unconditionally regain control over common memory device 704. This is also supported by
DeRoo’s description of the control register through which CPU 702 asserts its demand for
exclusive access: in describing the CPUEXCL flag of the FLASH_CTRL register, DeRoo states
that this flag indicates that “SCP has requested exclusive access to flash memory for a write and
CPU is disallowed from reading and writing the FLASH-this bit can be cleared immediately if a
‘1’ is written to SCPreset.” See id., col. 49, Table XXXI (emphasis added); see also 132
Declaration at 16-22.

Thus, even under a broadest reasonable interpretation of the term “prohibiting,” one of
ordinary skill in the art would not consider DeRoo’s placing of CPU 702 into a wait state to
amount to “prohibiting” CPU 702 from accessing common memory device 704. At most,
DeRoo’s placing of CPU 702 into a wait state amounts to a temporary delay, if the request is
honored by CPU 702 at all.

Thus, as shown above, the Office Action has failed to establish a prima facie case of
obviousness of claim 11, in that the proposed modifications to DeRoo are impermissible to
establish obviousness. Moreover, DeRoo fails to disclose that a processor is “prohibited” from

accessing a non-volatile memory, leaving this aspect of claim 11 unaccounted for.
L. CLAIM 12:
Claim 12 is patentable over DeRoo for at least the reasons given above for claim 11.
M. CLAIM 13:
Claim 13 is patentable over DeRoo for at least the reasons given above for claim 11.

N. CLAIM 14:

Page 67 of 72

Page 91 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

Claim 14 is patentable over DeRoo for at least the reasons given above for claim 11.
O. CLAIM 15:
Claim 15 is patentable over DeRoo for at least the reasons given above for claim 11.
P. CLAIM 16:
Claim 16 is patentable over DeRoo for at least the reasons given above for claim 11.
Q. CLAIM 17:

Claim 17 is a method claim having numerous features that are similar to features of claim
11. In rejecting claim 17, the Office Action relies on a virtually identical rationale as was given
with respect to claim 11. See Office Action at 11-13. Patent Owner submits that the arguments
given above with respect to claim 11 apply with equal force with respect to similar features of

claim 17.

More specifically, claim 17 recites “in response to a power on reset, holding a system
reset signal in a reset state, thereby prohibiting the processor from accessing the non-volatile
memory.” In rejecting claim 17, the Office Action acknowledges that DeRoo does not disclose
this feature, but alleges that one of ordinary skill in the art could have modified DeRoo to allow
SCP 706 to hold CPU 702 in a reset state, rather than a wait state. See Office Action at 12. As
set forth in detail in Section IV.K.1, supra, such a modification would is impermissible as the
basis for an obviousness rejection, because it would both change a fundamental operating
principle of DeRoo, and would render DeRoo’s computer system unsuitable for its intended
purpose. Moreover, as demonstrated in Section [V.K. 2, supra, DeRoo’s “wait state” does not in
fact result in “prohibiting” a processor from accessing a non-volatile memory, leaving this aspect

of claim 17 unaccounted for.

Page 68 of 72

Page 92 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

R. CLAIM 18:

Claim 18 is patentable over DeRoo for at least the reasons given above for claims 11 and

17.

S. CLAIM 19:

Claim 19 is patentable over DeRoo for at least the reasons given above for claims 11 and
17.

T. CLAIM 20:

Claim 20 is patentable over DeRoo for at least the reasons given above for claims 11 and
17.

Additionally, claim 20 recites that “the microcontroller is coupled to the processor via a
system reset bus, and wherein the microcontroller is operable to assert the system reset signal
over the system reset bus.” In rejecting claim 20, the Office Action refers only to Figure 20 of

DeRoo, alleging that this figure shows a “RESET line for SCP.” See Office Action at 13.

However, as is plainly shown in DeRoo’s Figure 20 by the arrow pointing towards SCP
706, the RESET line coupled to SCP 706 is an input to SCP 706. A device that receives a signal
as an input cannot, by definition, assert that signal, because it does not drive that signal; rather it
receives the signal. As is shown in DeRoo’s Figure 20, it is control block 720 that drives the
RESET line of SCP 706 as the SCPRESET output of HUI 700. This is reflected in the Verilog
source code provided by DeRoo, which declares signal “SCPreset” as an output of module

“security.” See DeRoo, col. 173.

Moreover, by its own terms, a “system reset signal” should have a reset effect on a
system, and not merely on an isolated element of a system. As shown in Figure 20, the RESET
input to SCP 706 is coupled only to SCP 706, and not to other elements of DeRoo’s system.
Thus, this signal is at most a device-specific reset signal, and not a “system reset signal” as

recited in claim 20.

Page 69 of 72

Page 93 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

U. CLAIM 21:

Claim 21 is patentable over DeRoo for at least the reasons given above for claims 11 and

17.

V. CLAIM 22:

Claim 22 is patentable over DeRoo for at least the reasons given above for claims 11 and
17.

W. CLAIM 23:

Claim 23 is patentable over DeRoo for at least the reasons given above for claims 11 and
17.

Page 70 of 72

Page 94 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

V. New Dependent Claims

As noted above, new dependent claims 24-213 have been added. Patent Owner submits
that each of the new dependent claims is patentable for at least the reasons given above with
respect to the independent claims. Patent Owner notes that additional reasons for patentability
apply to new claims 24-213 beyond those given with respect to the independent claims.
However, because the patentability of the independent claims has been demonstrated, further

discussion of the new dependent claims is unnecessary at this time.

Page 71 of 72

Page 95 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

VI. Conclusion

In view of the foregoing remarks, Patent Owner respectfully requests removal of all
pending rejections and confirmation of the patentability of issued claims 1-23 as well as newly
added dependent claims 24-213. The Commissioner is authorized to charge any fees that may be
required, or credit any overpayment, to Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
Deposit Account No. 501505/5707-26200/JCH.

Also filed herewith are the following items:
X Declaration of Thomas M. Conte Under 37 C.F.R. § 1.132
X Certificate of Service

Respectfully submitted,
Date: _April 23, 2012 By: /Anthony M. Petro/

Anthony M. Petro
Reg. No. 59,391

Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
P. O. Box 398

Austin, Texas 78767

(512) 853-8800

Page 72 of 72

Page 96 of 264

EX PARTE REEXAMINATION

INTHE UNITED STATES PATENT AND TRADEMAREK GFFICE

Reexamination
Control. No.: 90/011,754 Atty. Dkt. No.: 5707-26200
faventor: lan F. Harris, et al. Examiner; Peikari, Behead

Request Filing Date: June 21, 2011 Group/Art Unit: 3992

11.8. Patent No.: 7,930,576 Conf. No.. 4071

Title: SHARING NON-SHARABLE
DEVICES BETWEEN AN
EMBEDDED CONTROLLER
AND A PROCESSORIN A
COMPUTER SYSTEM

D S S L XD L I D D LD LTy T S D L L

PECEARATION OF THOMAS M, CONTE UNDER 37T C.F.R. 81,132

I, Thomas M. Conte, state as follows:
L Introduction

1. I have been retained as an independent expert witness on behall of Standard
Microsystems Corporation (“SMSC™), the assignes of 1.8, Patent No. 7,930,576 (the

576 patent”). { did not contribute o the inventions described in the 576 patent.

2. I am a professor at the Georgia Institute of Technology (“Georgia Tech™) with a
joint appointment in the Schools of Computer Science and Electrical & Computer
Enginecering. 1 hold a Ph.D. degree in Elecirical Enginecring from the University of
Ilinois at Urbana-Champaign, 1 am an IEEE Fellow and a merober of the Board of
Governors of the IEEE Computer Society. | am also currently editor in chief of journal
ACM Transactions on Architecture and Compiler Optimization, and am an associate

editor of IEEE Transactions on Computers, and the IEEE Computer and 1EEE Micro

Page 97 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

magazines. A detailed account of my cxperience and other qualification is Hsted in my

Curriculum Vitae attached as Exhibit 1,

L Retention and Compensation
3. I am compensated by SMSC at the rate of $450 per hour, plus reimbursement for

reasonable expenses incurred in the course of performing my services. My compensation

18 not contingent upon the outcome of this proceeding.
Hii. Basis of My Opinion and Materials Considered

4. In preparation for this declaration, [have considered and relied on data or other
docurnents identified berein. For example, 1 reviewed the "576 patent, the Office Action
dated February 23, 2012 in the present reexamination, and the DeRoo reference cited in

the Office Action.

5. My opinions are also based upon my education, training, rescarch, knowledge,

and experience in this field.

V. Suwmmary of My Opinion

6. I have reviewed the Office Action of February 23, 2012, which includes a
rejection of independent claims 1 and 6 of the 576 patent as being anticipated by DeRog,
and a rejection of independent claims 11 and 17 of the 576 patent as being obvious in
view of DeRoo. It is my opinion that DeRoo does not anticipate claims 1 or 6, nor does
DeRoo render claims 11 or 17 obviocus. As detadded below, DeRoo fails to disclose a
number of features of claims 1 and 6, including at least the “first state wherein the
microcontroller is assured safe access to the non-volatile memory” feature. Moreover,
the modification of DeRoo proposed by the Office Action in rejecting claims 11 and 17
would fundamentally alter the architecture of DeRoo and thus its core principle of
operation, and would make DeRoo’s systern unsuitable for its intended use in a persounal

computer.

Y

Page 98 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

Y. Detailed Discussion
A. The 576 Pateni

7. The "576 patent is directed to techniques for permitting a device, such as a non-
volatile memory, to be shared among nultiple processors in a system, such as a central
processing unit {CPU) and a microcontroller. Specificaily, the "576 patent notes that
cach of multiple processors in a system may rely on its own firmware for managing
certain processor {unctions, such as mnitialization and power management, among other
functions. One of ordinary skill in the art would understand that firmnware, as that term is
psed in the 5376 patent, vefers to executable code {(and, possibly, associated data
structures) that controls basic operations of a device, such as a microcontroiler.
Firmware may perform specialized functions, such as device initialization at startup,
and/or more general functions, such as post-initialization operations a device may carry

out during ordinary operation.

8. Historically, a system might have included separate noun-volatile memories (e.g.,
as separate devices) in which to store different firmware for different devices.
Alternatively, individual processors in the system might include embedded non-volatile
storage manuofactured on the same die as the processor. However, both of these
techniques increase device and system cost, either due to requiring multiple diserete
devices or due to the higher costs of {abricating a processor using a process suitable for
embedded non-volatile memory. In another approach, individual processors might
arbitrate for access to a shared device that stores firmware for the multiple processors.
However, designing an arbitration circuit adds its own costs and complexities to system
design, and depending on the arbitration scheme that is chosen, arbitration may degrade
overall systero performance, for example by introducing additional delay in resolving

access contention by multiple processors.

9. The ’576 patent proposes a system in which a microcontroller and a processor
way share a non-volatile wemory, thus overcoming the costs of providing separate or
embedded non-volatile memories {or the microcontroller and processor. However, the

-~
7

system of the 576 patent further overcomes the need for arbifration, and its associated

Page 99 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

costs, by providing the microcontrolier with a system state {(also referred to as a “first
state”) in which it is assured safe access to the shared non-volatile memory, An example
arrangement of the system elements described tn the *576 patent is illustrated in Figure

1B:

System Interface Host Memary Bus

. [Shared Device |
System Interface Bus) System | (2., Non-Voiatile
Mmmg?g}lent Bug Ravice Bus MEfmt)f‘m
- 1407 s 148
Embedded
Kicrocontrotler
82

10, By virtue of the “assured safe access” that is provided by the first state, the
microcontroller may access the non-volatile memory without concern for whether the
microcontroller’s access will be preempted or otherwise interfered with by the processor.
After the microcontroller completes its access to the non-volatile memory, it releases the
system from the first state, thus allowing the processor to access the shared nov-volatile
memory. The *576 patent notes that the “first state” may correspond to a reset state, such

as a power-on reset, or {0 a system reset stale or sleep state.

11, Asan example of how the systemn shown above might operate, following an mitial
power-on reset, embedded microcontroller 102 may come out of reset first, while holding
system interface 106 (and, by extension, processor(s) coupled via system interface 106)
in reset. In this state, microcontrolier 102 may be assured safe access to shared device
108, by virtue of the fact that other devices (such as processors) within the system are
held 1 reset and so cagnot 1ssue operations to access shared device 108, Cousequently,
microcontroller 102 may access shared device 108 to retricve whatever firmware it needs

without concern for whether iis access will be interrupted or corrupted. Once

Page 100 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

niicrocontrolier 102 has completed its access, it may release other devices from reset so

that they may access shared device 108,

12, One of ordinary skill would understand that for a microcontroller to be “assured
safe access,” as that term 1s employed in the "576 patent, the microcontroiter must be
guaranteed access to the shared memeory in a manner that 18 free from interruption or
interference from other processors in the system. More specifically, one of ordinary skill
would understand that to be “assured safe access,” the microcontroller’s access cannot be
arbitrarily preempted by another processor in such a way that the microcontroller’s
operation could be adversely affected. 1f a microcontroller’s access to a shared device
could be arbitrarily preempted by another processor, then the legrity of the
miicroconiroller’s access could not be assured-—that s, the access would not be “assurad
sate.” For example, such preemption by another device makes it possible for the other
device to continually interrupt the wmicrocontroller in a manner such that the
microcontroller cannot complete its access, or for the other device to alter or corrupt data
the microcontroller is atiempting to access before the microcountroller has fully read such

data from the shared device.

13, One of ordinary skill would further recognize that the 576 patent discloses a
systern in which the microcontroller can preempt the processor, but in which the
processor cannot arbitrarily preempt the microcontroller in such a way that would
compromise the microcontroller’s “assured safe access” That is, the 5376 patent
discioses a system in which, by virtue of the basic organization of the system, the

microcontroller’s access priorily with respect to the shared memory is higher than the

Processor’s,
B. DeRoo
14, DeRoo is divected to a system that also provides a common memory device that

can be shared by a processor and a microcontroller, albeit in a substantially different
wanoer than the system of the 576 patent. An example of DeRoo’s sysier is shown o

Figure 20:

W

Page 101 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

. }‘\QﬁHEES ; SAE’@;!?} _____________ N Fai= 1 PROGRAMSEBLE
READY ASGISTER | MARTWARE N F
s 1 PR TIMER F i ﬁ"{ 20
T DRATA C BOG -
N I < Fer
Ry . Q"‘G REAQ‘“\N““. - N K’}ﬂﬁ i v - 708
FOWRITE R owe 1 o |
MEMORY READ L NMARE oo oo
MEMORY WRITE | N MWTC ‘ 04
P b N ““*'“‘f“’(“j':“‘. 1 j 3
RESET- e 1 VADDRESS N BRI
CLOCH oot > ? '
R H l k
o R "Iw, y‘h
I Y DATA | «
ADDRESSE 1] N SCPAIRH MUX & F : '
— A LATCH | {COMMON
G BERET . BCPRESE N - MEMORY
. ol e , DEVICE
SCP ¥ BATARDORE " SOPAD{:)
B T e B! | RN & i
_in SePRD T : E
| NLECPWR ' TEAR i,
TR SCPALE controy IO RS T o
..... SCpgE T | o CWE

Specifically, DeRoo provides a central processing unit (CPU}Y 702 and a system control
processor (8CPy 706, each of which is coupled to a human aser interface (HUD 700

through which they may access common memory device 704.

15. DeRoo provides three distinet modes of system operation with respect to common
memory device 704 a mode in which CPU 702 has cxclusive access to the common
memory device, a mode in which SCF 706 has exclusive access to the common memory
device, and a mode 1n which both CPU 702 and SCP 706 share access to the conunon
memory device. DeRoo explains that exclusive access is required for either SCP 706 or
CPU 702 to be able to write to common memory device 704, See DeRoo, col. 82, 11.21-
22, 33-34. By conirast, in shared mode operation, cormamon memory device 704 is

configured for read-only access. See id., 11.43-44.

16, DeRoo describes that CPU 702 can gain exclusive access 1o common memory
device 704 by placing SCP 706 into a reset state, See DeRoo, col. 82, 11.1-3. DeRoo

repeatedly notes that it is the act of being held in reset by CPU 702 that prevents SCP 706

Page 102 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

from being able to access common memory device 704 when CPU 702 has exclusive

access. See id., col. 82, 11.29-31; col. &1, [1.46-49.

17. Moreover, DeRoo unambiguously states that the ability of CPU 702 to gain
exchusive access to common memory device 704 is unconditional and independent of
whether SCP 706 has exclusive access. DeRoo specifically states that “[djuring
conditions when the SCP has exclusive access of the common memory device 704, the

CPU can gain control by forcing the SCP 706 into reset.” See DeRoo, col. 81, 11.64-66

{emphasis added).

18, By contrast, when SCP 736 atiempts {0 gain exchusive conirol, it does not resel
CPU 702, but instead places CPU 702 into a wait state by causing HUI 700 to deassert
the IOCHRDY signal. See DeRoo, col. 81, 11.55-58, The IOCHRDY signal is defined by
the standards for the Industry Standard Architecture/Extended Industry Standard
Archilecture (ISA/EISA) bus interface, which was commonly used for interfacing
peripheral devices to computer systems based on the original IBM personal computer
(PC) system architecture. As explained in the reference “ISA & EISA Theory and
Operation,” by Edward Solari (1993) (“Solar”), relevant excerpts of which are attached
as Exhibit 2, the function of the IOCHRDY signal is to “allow]] resources to mndicate to
the ISA or E-ISA bus master that additional cycle time is required.” See Solari at 159,
That is, when {OCHRDY is inactive, the bus master (CPU 702, in the context of DeRoo)
s requested to wait before accessing the ISA/EISA bus. However, as noted i the
previgus paragraph, CPU 702 is not required to honor SCP 736’s request for exclusive
access, because DeRoo states that CPU 702 can force SCP 706 into reset even when SCP

706 has exchusive access. See DeRoo, col. 81, 11.64-66 {emphasis added).

19, In shared mode, DeRoo implements what s veferred to as a “time based
interleaving method” in which CPU 702 and SCP 706 arc given access to common
memory device 704 in an alternating fagshion. See DeRoo, col. 81, L51 & Figure 24, Tn
this mode of operation, SCP 706 is given access to the shared memory when the SCP

address laich enable signal is asserted, and after a fixed period of time (iwo rising edges

~3

Page 103 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

and one falling edge of the SCP clock), CPU 702 is given access. See id, col. 83, 11.48-

50, 53-57.

o4

7

20. The amount of time that SCP 706 has access to the shared memory 18 controlled
not by SCP 706, but by HUI 700, as is shown by the example Verilog implementation of
HUI 700 DecRoo provides. Specifically, the signal “flashSCP” (which determines
whether the SCP has access to the common memory device 704 is set by the falling edge
of signal “SCPALE” and is cleared by the rising edge of signal “clr_flashSCP,” which is
itself merely a version of the “flashSCP” signal that has been passed through a fixed
delay chain. See DecRoo, cols. 129, 131, Accordingly, one of ordinary skill would
recogutze that DeRoo’s shared mode is implemented as a form of time division
niultiplexing, in which the schedule that governs the amount of time a given device has

access to the shared device is predictable and outside the control of the device.

21, Moreover, it is apparent from DeRoo’s description that when the system is
operating in shared mode, CPU 702 may gain exclusive control of common memory
device 704 by placing SCP 706 into reset, just as in the case when SCP 706 has exclusive
control of common memory device 704, At the botiom of columm 81, DeRoo describes
the case where SCP 700 “has exclusive access of the common memory device 704,”
stating that “CPU 702 can gain coutrol by forcing the SCP 706 into reset.” At the top of
column 82, DeRoo describes an “alternative[]” case to the case where SCP 706 has
exclusive access, and states that i this case, “CPU 702 can gain control by placing the
SCP 706 into a reset state.” Because CPU 702 would not need to “gain control” if it
already had exclusive control, and because DeRoo only describes three possible modes of
operation {(CPU-exclusive, SCP-exclusive, and shared), one of ordinary skill would
understand that the alternative case DeRoo refers to at the top of column 82 is shared

mode,

22, Insummary, one of ordinary skill in the art would recognize that DeRoo discloses
a system in which CPU 702 can preempt SCP 706’s access to common memory device
704 at any time, regardless of whether SCP 706 has exclusive access to the shared device,

or whether CPU 702 and SCP 706 are sharing access in a time-division multiplexed

Page 104 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

fashion. CPU 702 of DeRoo thus functions as a non-preemptible master device, whereas
SCP 706 functions as a slave device that can request exclusive or shared access io
common memory device 704, but will maintain such exclusive or shared access only so
long as CPU 702 does not preempt SCP 706. That is, DeRoo discloses a system in
which, by virtue of the basic organization of the system, a processor’s {Le., CPU 7027s)
access priority with rospect to the shared memory is unconditionally higher than the

microcontroller’s (i.e., SCP 7067s).

C. Cae of ordinary skill would wnot consider DeRoo’s SCP 706 and HUI 700 to

correspond to a “microcontroller.”

23, In rejecting the independent claims, the Office Action alleges that the feature of
DeRoo that corresponds to the claimed “microcontroller” ts the combination of SCP 706
and HUI 700. See Office Action at 4, 6, 9, and 11. In my opinion, this position is
incorrect, in that it 18 not consistent with the meaning of “microcontroller” as # would be
understood by one of ordinary skill in the art, or as that term is used in both the *576

patent and in DeRoo.

24, “Microcontroller” is a highly generic term that can refer to a variety of devices
having a variety of configurations. However, one of ordinary skill n the art would
understand that in general usage, microcontrollers have a common characteristic: they
refer 1o a single integrated circuit device. That is, they refer to a semiconductor device
manufactured or fabricated as a single “chip” that is discretely packaged for integration

into a larger system, ¢.g., a device to be controtied by the microcontrolier,

2S5, This meaning of “microcontrolier” is consistent with the *576 patent’s usage of
the term. For example, the "576 patent refers to the “microcontrolier chip” when
discussing the costs of embedding non-volatile memory within the microcontroiler itself;
such embedding requires the use of a flash memory manufacturing process in order to
integrate the non-volatile memory “on the same dic” as the microcontroller (i.e., as part

of a single “chip” or integrated circuit). See "576 patent, col. 1, 11.54-56,

Page 105 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

26. DeRoo also uses the term “microcontroller” consistent with its ordinary meaning
of “single integrated circuit device.” Specifically, DeRoo states that SCP 706 is a
microcontrolier, and names the Intel 80C51 and 88C31 microcontrollers as exampies of
microcontrollers that may be used to implement SCP 706, See DeRoo, col. 36, 1.16-27.
These devices are well known to be single-chip microcontrollers. See, eg., John
Wharton, “An Introduction to the Intel® MCS-51™ Single-Chip Microcomputer
Family,” Intel Application Note AP-69, at 2 (May 1980} ("Now three new high-
performance single-chip microcomputers—the Intel® 8051, 8751, and 8031—cxtend the
advantages of Integrated Elecironics to whole new product areas.”) {emphasis added)

(attached as Exhibit 3).

27. Moreover, DeRoo specifically describes HUI 700 as a single integrated circuit
device n its own right that is distinet from SCP 706, DeRoo wdentifics HUT 700 as “an

application specific integrated circuit (ASIC) which integrates the SCPI and MKI

interfaces discussed above into a single device along with an interface for a common

memory device.” See DeRoo, col. 36, 11.3-7 (eraphasis added).

28, Thus, it is my expert opinion that oue of ordinary skill would vnderstand DeRoo’s
SCP 706 and HUI 700 to be distinct integrated circnits, and therefore would not
pnderstand both of these devices taken together to coustitule a “microcontrofler,”
particularly in view of DeRoo’s clear usage of the term “microcontroller” in its ordinary
sense to refer to SCP 706 alone. Therclore, it 18 my expert opinion that the Office
Action’s position that the recited “microcontroller” corresponds to both SCP 706 and

HUI 700 is meorrect,

D, DeRoo does not disclose “a first state wherein the microcontroller is assured safe

access to the non-volatile memory.”

29, Claims 1 and 6 of the "576 patent recite “a first state wherein the microcontroller
13 assured safe access to the non-volatile memory.” It is my opinion that DeRoo does not
provide any state ju which SCP 706 is “assured safe access” (o coromon wemory device
704, Accordingly, it is my opindon that BeRoo does not disclose the “first state” recited

in claims | and 6.

Page 106 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

2%

30. Asnoted above in paragraph 12, for a microconiroller to be “assured safe access,
the ratcrocontroller must be guaranteed access to the shared wemory in a manuer that is
free from interruption or interference from other processors in the system. More
specifically, the notion of “assured safc access” precludes arbitrary preemption of the
microconirolier’s access by another processor in such a way that the microconiroller

could be adversely affected.

31. As noted above in paragraphs 16-22, DeRoo’s CPU 702 can arbitrarily preempt
SCP 706 at any time. For example, regardless of whether SCP 706 has exclusive access
to common memory device 704 or whether SCP 706 and CPU 702 are sharing access to
common memory device 704 in a time-division-multiplexed fashion, CPU 702 can place

SCP 706 into reset and thereby gain exclusive conirol of common memory device 704.

32 DeRoo states that SCP 706 is “held in reset” for the duration of “periods when the
CPU 702 has exclusive conirol.” See DeRoo, col. 81, 1.46-48. QOne of ordinary skill in
the art would understand a device’s being “held in reset” to mean that the device is
persistently maintained in an inactive, determinate state from which the device’s initial
operation could proceed once the state is released. However, the reset state would evase
the state of opcrations that were pending at the time reset was asserted. That is, “reset” is
commonly understood to denote a consistent, well-defined initial state of a device that
can be invoked regardless of the device’s prior operational state. As such, after a device
has been “held in reset” as discussed by DeRoo, it would not be able to resume
operations that were in progress when reset was asserted, but would instead be forced to

commence operating from the initial reset state.

33, Because DeRoo’s SCP 706 can be arbitrarily reset by CPU 702 at any time, SCP
706 cannot assume that any access it initiates to commoun wemory device 704 will
successfully complete, or that the data SCP 706 is attempting to access within common
memory device 704 will not have been wodified by CPU 702 during the course of SCP
706°s atternpts to access such data. From this, several failure modes can possibly arise in

DeRoo’s system.

Page 107 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

34. First, DeRoo’s system organization creates the possibility that SCP 706 will be
deadlocked by CPU 702, For example, SCP 796 may attemipt to read a fivmware routine
or other code or data from common memory deviee 704. However, before SCP 706 is
able to complete its access, CPU 702 may preempt SCP 706 by resctting it. As noted in
paragraph 32 above, because CPU 702 does not merely interrupt SCP 706 but resets i,
SCP 706 would not be able to simply resume its access to common memory device 704 at
the level of progress as of the time when CPU 702 preempted SCP 706, Rather, SCP 706
would need to begin its access anew. If CPU 702 were to repeatedly reset SCP 706 in
this fashion, SCP 706 would effectively be prevented from covupleting its access to
comumon memory device 704, and would thus be deadlocked (i.e., prevented from making
progress). Put another way, given DeRoo’s system organization, there is no assurance
provided to SCP 706 that it will be able to complete any given read or write access to

common memory device 704.

~

3S. Second, DeRoo’s system organization creates the possibility that CPU 702 can
alter or corrupt data stored in common memory device 704 on which SCP 706 depends.
For example, because CPU 702 can gain exclusive access {and thus write capability) to
compon memory device 704 at any tme, CPU 792 may modily or overwrite SCP 7067
firmware, cither inadvertently, as a consequence of malfunctioning code cxecuting on
CPU 702, or maliciously, as a consequence of malware executing on CPU 702 that

deliberately attempts to compromise the operation of SCP 706.

36. Because of the fundamental organization of DeRoo’s system, which gives CPU
702 the unconditional ability to preempt SCP 706, DeRoo’s system cannot guarantoe
against the possibility that failure modes like deadlock or corruption of SCP 706

operation will arise.

-~

37. Because DeRoo’s system allows for the unconditional preemption of SCP 706,
and because such preeruption can compromise the behavior of SCP 706, it is my expert
opinion that DeRoe does not disclose or suggest “a first state wherein the microcontroller
is assured safe access to the non-volatile memory,” as recited i claims 1 and 6 of the

'576 patent.

Page 108 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

£, DeRoo does not disclose that a microcontroller is configured to “hold the system in

the first state” or “release the system from the first state.”

38, Claims 1 and 6 of the "576 patent further rocite that a microcontroller is
configured to “hold the system in the first state” and “release the system from the first
state.” In rejecting claims 1 and 6, the Office Action appears to allege that DeRoo’s
address latch enable signal N_SCPALE corresponds to the “hold the system in the first
state” feature. See Office Action at 5, 6. The precise feature that the Office Action
contends corresponds to the feature “release the system from the first state” is not clear;
the address latch ecnable signal N _SCPALE is cited again, along with a number of
references Lo portions of DeRoo that simply appear to be irrelevant to the specific clair
features for which they are cited. It is my opinion that neither the N_SCPALE signal nor
any other aspect of DeRoo related to the operation of SCP 706 discloses these particular

claim features.

39. As noted above in paragraph 32 with respect to the phrase “held in reset,” one of
ordinary skill would understand that for a device to “hold” a state, the device would be
vequired to persistently maintain that state votil that device releases the stale, allowing it
to change to a different state. That is, one of ordinary skill would recognize that
“holding” a state involves concepts of agency and control on the part of the device that
performs the holding, such that through the control of the device, the state i3 preserved or
maintained over time, as opposed to merely being mitiated but then allowed to change.
Viewed another way, if a device “holds™ a state, one of ordinary skill would understand
that but for the action on the part of the device to preserve the state, the state would be
subject to change. {This view of “holding™ a state also is consistent with DeRoo’s usage
of the term “held in reset” to describe how CPU 702 preempts SCP 706, as discussed

above,)

40, It is my expert opinion that neither DeRoo’s address latch coable signal nor any
other aspect of the operation of SCP 706 provides for “holding” a state in the manner just
described. Specifically, as to DeRoo’s address latch enable signal, it is evident that this

signal may be used to initiate access by SCP 706 to common memory device 704 during

Page 109 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

shared mode operation (which is the only mode of operation in which DeRoo specifically
describes the role of the address latch enable signal). However, DeRoo specifically states
that the state of access that is initiated by this signal is unconditionally terminated by HUI
700 “after two rising and onc falling edges of the SCP clock.” See DeRoo, col. 83, 11.55-
57, That is, after SCP 706 asserts the address latch enable signal, DeRoo describes that
CPU 702 automatically and unconditionally receives access afier approximately two and
a half clock cycles. See id. SCP 706 therefore cannot be said to preserve or “hold” the
access state, because regardless of SCP 706’s activity, this state is terminated by HUI

760.

41. This is further demonstrated by 1nspection of DeRoo’s Verilog source code. In
the source code, the signal flashSCP determines which of SCP 706 or CPU 702 has
access to common memory device 704 at a given time. This signal is set by the falling
edge of the address latch enable signal SCPALE. Further, the signal flashSCP is
unconditionally cleared by the rising edge of a delayed version of itself {(clr_flashSCP).
That is, the source code demonstrates that once set by SCP 706, flashSCP is reset by HUI

708. See DeRoo, cols. 129, 131,

42, Beyond the specific question of the address latch enable signal, it is my opinion
that SCP 706 is not capable of holding any particalar systems state as the term “hold”
would be understood by one of ordinary skill. As noted above in paragraphs 16-22, CPU
702 can arbitrarily preempt SCP 706 at any time, spectfically by holding SCP 706 in
reset. As noted above in paragraph 32, when a device 18 placed in a reset state as that
terra 18 used by DeRoo, the device is by definition unable to preserve s previous siate,
because the act of resetting causes the device to change s state to the defined reset state.
Thus, because SCP 706 can be reset at any time by CPU 702, SCP 706 cannot “hoid” a

system state as recited in various claims of the 576 patent.

43, Because “holding” a state and “releasing” a state are coruplementary coucepts, it
follows from the above points that SCP 706 also cannot be said to “release” a particular
system state, With respect to the address latch cnable signal, as noted above in

paragraphs 40-41, although this signal is deseribed by DeRoo as initiating SCP access

Page 110 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

during shared mode, it is not responsible for releasing that state. Instead, as discussed
above, the access stale is unconditionally terminated by HUI 700 regardless of the state
of SCP 736. Even when S8UP 706 is operating in exclusive mode, DeRoo does not
describe it as “releasing” or relinquishing this state when CPU 702 requests exclusive
access. Rather, as discussed above, by resetting SCP 706, CPU 702 merely asserts iis
demand for exclusive access regardless of whether or not SCP 706 is prepared to release

its own exclusive access.

44, More generally, because SCP 706 is not capable of “holding” a state as discussed
above, there is logically nothing for SCP 706 to “release.” That is, it would be
nonsensical o one of ordinary skill in the art to speak of a device “releasing” a state

when it cannot “hold” the state to begin with.

45, Thus, it is my expert opinion that DeRoo fails to disclose that a microcontroller is
configured to “hold the system in the first state” and “release the system from the first

state” as recited by claims 1 and 6 of the 570 patent.

F. The Office Action’s proposed modification to DeRoo to allow SCP 706 to reset CPU
702 would change a fundamental principle of operation of DeRoo and would render

DeRoo unsatisfactory for its intended purpose.

46. Claim 11 reciles a microcontroller that is configured to, “in response to a power
on reset, hold a system resct signal in a resct state, thereby prohibiting the processor from
accessing the non-volatile memory,” Claim 17 similarly recites “in response to a power
on reset, holding a system reset signal in a reset state, thereby prohibiting the processor
from accessing the non-volatile memory.” In rejecting claims 11 and 17, the Office
Action acknowledges that DeRoo does not actually disclose numercus features of these
claims, included the one just guoted. See Office Action at ©. However, the Office Action
alleges that it would have been obvious to modify DeRoo sach that SCP 706 could reset

CPU 702, instead of merely placing CPU 702 into a “wait state.” See id. at 10,

47. As explained in greater detail below, it is my expert opinion that modifying

DeRoo in the manner proposed by the Office Action would result in fundamentally

Page 111 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

changing a core operating principle of DeRoo’s design. Additionally, such a
modification would imcrease the system’s susceptibility to fatlure, for exarmple by
increasing the possibility of deadiocks that could hang the system, or of arbitrary resets of
CPU 702 by SCP 706, cither of which could significantly impair a user’s ability to use
DeRoo’s system as a personal computer system, which is DeRoo’s intended purpose.
Accordingly, it is my expert opinion that given the implications of the Office Action’s
proposed modification to DeRoo, oue of ordinary skill i the art would not find i obvious

to make the proposed modification.

48. If a computing system includes more requesters to a shared device than the shared
device can concurrently service, the possibility of conflicting requests {or access to the
shared device is endemic to the system. [t is a fundamental principle of computing
system design that if contlicts to a shared device could occur, some protocol, scheme, or
algorithm must be inchuded in the system design in order 1o resolve such contlicts. That
18, 1o cusure proper system operation, the possibility of conflicts must be specifically and
affirmatively accounied for in the system design; simply ignoring the possibility in the
hopes that conflicts will not actually occur will almost certainly result in system

malfunction.

49, Numerous design approaches exist with respect to the problem of conflict
resolution, ranging from in sophistication from simple to complex, and exhibiting
different properiies with respect to how the resulting sysiem resolves conflicts, For
example, a systenm architect might choose to implement a conflict resolution design in
which contlicts among devices are resolved through statically-assigned device priorities,
In such a system, different devices may be assigned different levels of priority with
respect to the shared device that are fixed. When a conflict between two such devices
occurs, the higher-priority device “wins”—i.¢., il receives its requested access, while the
lower-priority device is forced fo wait. A static or fixed-priority scheme is relatively
sumple to implement. However, because it effectively is a “winner-take-all” approach,
such a scheme will not guarantee that lower-priority devices will have access to the

shared resource in the event that higher-priority devices tend fo monopolize it.

Page 112 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

50. Other possible examples of design solutions for conflict resolution are possible.
For example, a sysiern architect might use a state machine that enforces a known order or
pattern of device accesses, such that when conflicts occur, devices are allowed to proceed
in an aliernating or round-robin fashion, or according to some other patiern {(e.g., the
defined pattern may be designed to favor some devices over others by granting some
devices more access opportunities than others), In other cases, the winner of a conflict
may be chosen through random or pseadorandor techniques, or by taking into account
historical usage patterns of various devices, e.g., in order to resolve conflicts in a manner
that promotes a selected fair use policy. For example, selecting the winuner of a counflict
may take into account how relatively frequent and/or recent a particular device’s
historical access to the shared resource has been, Granting access to devices that have
less recently or frequently used the shared resource may tend to prevent resource

starvation.

51. Regardless of the particular design solution that 1s selected for conflict resolution,
one of ordinary skill in the art would recognize that the chosen solution represents a
fundamental decision regarding the architecture of the system-—one that has potentially
wide~-ranging inoplications with respect to the various hardware and software components
of the system. Specifically, whether the conflict resolution solution is based on static
priovity or dynamic arbiiration, the various system components may be designed to

specifically rely on the chosen solution.

52, Omnce a system has been designed for a particular conflict resolution strategy, the
system’s various components may not operate efficiently under a different strategy, and
may simply not operate at all. For example, in a system using static device priority for
conflict resolution, simply changing the priority of devices may result in drastic changes

in the overall behavior of the system, including complete system fatture.

53, As a general principle, altering the contflict resolution strategy around which a
system is designed represents a fundamental change regarding a central operating
principle of the system, and a change in the design assurnptions on which various system

components rely. At a minimum, substantial testing would be required to verify that the

Page 113 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

systemn behaves as intended using the new conflict resclution strategy. In most cases,
redesign of system compouents would be needed to properly reflect the changes to the

systeny’s operating principles engendered by the new conflict resolution strategy.

54. As an example of how system components may rely on assumptions concerning a
system’s contlict resolution strategy, consider a system that employs a static priority
scheme in which a processor has priority over all other devices with respect to a shared
device. Software exccuting on the processor, or other hardware clements associated with
the processor, may specifically be designed with this priority scheme in mind, i.e., with
the understanding that the processor’s access 1o the shared device will never be delayed
or impeded on account of another device in the system. Thus, for example, time-
sensitive processes executing on the processor may be designed with the assumption that

they will enjoy immediate access to the shared device whenever necessary.

55, However, if the conflict resolution strategy were changed such that the processor
no tonger had priority over all other devices——e.g., if, instead, some form of arbitration
for the shared device were used—the assumption relied on by other system components
no fonger holds. Under the new strategy, cowpouneuts such as the time-sensitive
processes mentioned above may encounter phenomena, such as delays, that would not
have been possible under the original counflict resolution strategy. If a time-seunsitive
process incurs an unexpected delay {e.g., due to arbitration), it may miss the deadline that
renders it fime-sensitive, As a result, the process may malfunction. To provent such an
outcome, substantial redesign and testing would be required to ensure that the system

operates as intended under the changed conflict resolution strategy.

56, Tuming specifically to the details of DeRoo’s system, as noted above in
paragraph 22, DeRoo discloses a system in which, by virtue of the basic organization of
the system, a processor’s {i.c., CPU 702’s} access priority with respect to the shared
memory is unconditionally higher than the wicrocontroller’s (i.e., SCP 706°s). This
corresponds to a fixed or static priority scheme of the sort discussed in paragraph 49
above. One of ordinary skill would recognize DeRoo’s chotce of a static priority scheme

as a basic architectural feature of DeRoo’s system organization that gives rise o a

Page 114 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

fundamental principle of operation: when CPU 702 demands access to common memory
device 704, CPU 702 will uncondutionally receive such access. In order for DeRoo’s
systenm to operate correctly, the other components of the system need to rely on and
reflect this principle of operation in their own behavior. For example, software that
executes on CPU 702 may reasonably rely on having unfetiered access to common

memory device 704, whereas SCP 706 cannot rely on such access.

5

el
I
i

One of ordinary skill in the art would appreciate that if DeRoo were altered such
that CPU 702 wo longer was guaranteed higher priority than SCP 706 with respect o
common memory device 704, such a modification would alter a fundamental principle of
operation of DeRoo. That s, as described 1o detail ip paragraphs 51-54 above, a system’s
conflict resclution scheme is central to the systenmy’s principle of operation; it in turn
drives other design decisions with respect to the system and its components. 1t is highly
likely that DeRoo’s system would have to be redesigned in order to work properiy if such

a modification to DeRoo’s conflict resolution scheme were made.

58. The modification proposed in the Office Action is exactly the sort of modification
just veferred to. If) as the Office Action proposes, DeRoo were modified such that SCP
706 could reset CPU 702 in the same manner that CPU 702 can reset SCP 706, the
necessary result would be that CPU 706 would no longer be guaranteed higher prionity
than SCP 706 with respect to common memory device 704, That is, following such a
modification, CPU 702 could no longer expect unfeticred access to commen memory
device 704, but would rather be subject to substantial interference or delay owing to its

being reset by SCP 706.

59, Therefore, it is my expert opinion that the medification of DeRoo proposed 1u the

(ffice Action would change the principle of operation of DieRoo,

60, In addition to changing a core principle of operation of DeRoo, it is my expert
opinion that the modification proposed in the Office Action would substantially degrade
the performance of DeRoo, rendering DeRoo unsuitable for is intended purpose of use

within a personal computer system.

Page 115 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

61. First, providing SCP 706 with the ability to reset CPU 702 in a manner that is
symmetrical to the ability of CPU 702 to reset SCP 706 would mean that both devices
would have the ability to concurrently attempt to reset each other. If both CPU 702 and
SCP 706 were to succeed in holding cach other in reset, then DeRoo’s sysiem would
effectively be deadlocked in reset with neither device able to proceed. The likely result
of this scenario would be a system hang that would require, ¢.g., that the system be power
cycled i order to restore normal system operation, which would likely result in loss of

user data.

62. Second, DeRoo specifically describes that the intended purpose of the
arrangement of SCP 706, CPU 702, and HUI 700 shown in Figure 20 is within a personal
computer, where CPU 702 corresponds to the general purpose processor of the personal
computer. See, e.g., DeRoo, col, 81, 1L.37-42; col. 4, 1L.24-26, One of ordinary skill in
the art would expect that in the context of a personal computer, CPU 702 would be
expecied to run an operating system (such as, ¢.g., a version of Microsofi Windows™) as

well as various user applications, such as web browsers, word processors, and the like.

63. The Office Action’s proposed modification to DeRoo would give SCP 706 the
ability to arbitrarily resct CPU 702 in the same manner in which CPU 702 can resct SCP
706. As noted above in paragraph 32, to one of ordinary skill in the art, “resetting” a
device would entail unconditionally placing the device in a consistent, reproducible reset
state in such a manner that the device would not be capable of simply resuming an
operation that was in progress at the time the device was reset. H SCP 706 had this reset
ability with respect to CPU 702, it could arbitranily erase the current operating state of
CPU 702, interrupting any operating system or application software that was executing at
the time. This would effectively amount to spontancously rebooting the personal
computer, and would almost assuredly result in data loss if implemented as the Office

Action proposes.

64. Thus, the Office Action’s proposed modification to DeRoo would increase the
susceptibility of DeRoo’s personal computer system both to systemn hangs and

spontancous resetting/rebooting of CPU 702, both highly undesirable faiture modes that

20

Page 116 of 264

Declaration of Thormas M, Conte under 37 C.FR. § 1.132 Reexamination Cirl. No, 90/011,754

are likely to result in user data loss. Such phenomena would significantly degrade the

performance of DeRoo’s personal computer system.

65, Therefore, it is my cxpert opinion that the modification of DeRoo proposed in the
Office Action would render DeRoo unsatisfactory for its intended purpose of use within a

personal computer system.

66. It is my understanding that i a proposed modification to a prior art reference
would either change the principle of operation of the prior art reference or render the
prior art reference unsatisfactory for its intended purpose, the proposed modification
cannot suppott a prima facie case of obvicuspess of a claimed imvention. Because in my
expert opinion, the proposed modification to DeRoo would produce both of these

impermissible results, claims 11 and 17 are not obvious in view of DeRoo.

67. I hercby declare that all staterments made herein of my own knowledge are truc
and that all statements made on information and belief are believed to be true; and further
that these statements were made with the knowledge that willful false statements and the
ke so made are punishable by fine or imprisonment, or both, under Section 1801 of Title
18 of the United States Code and that such wiliful false statements may jeopardize the

validity of the application or any patent issued thereon.

Tl (s

Date Thomas M. Conte

4/19/2012

Page 117 of 264

EXHIBIT 1

Page 118 of 264

THOMAS MARTIN CONTE
CURRICULUM VITAE

PositioNns HELD

Professor, School of Electrical and Computer Engineering, College of Engineering, and 8/11 — present
Professor, School of Computer Science, College of Computing (joint appointment)
Georgia Institute of Technology

Professor, School of Computer Science, College of Computing 7/08 - 8/11
Georgia Institute of Technology

Professor, Department of Electrical and Computer Engineering 8/02 - 7/08
North Carolina State University

Director, Center for Efficient, Scalable and Reliable Computing 1/07 - 7/08
North Carolina State University

Director, Center for Embedded Systems Research 1/01 - 12/06
North Carolina State University

Chief Microarchitect and Manager, Back End Compiler Development 6/00 — 6/01
BOPS, Inc. (VLIW DSP startup, while on leave from NCSU for AY00-01)

Representative to EDN Embedded Benchmarking Consortium 6/00 — 6/01
BOPS, Inc.

Associate Professor, Department of Electrical and Computer Engineering 7/98 — 7/02
North Carolina State University

Assistant Professor, Department of Electrical and Computer Engineering 8/95 — 8/98
North Carolina State University

Assistant Professor, Department of Electrical and Computer Engineering 8/92 — 8/95

University of South Carolina

EDUCATION

Doctor of Philosophy, Electrical Engineering, University of lllinois, Urbana-Champaign: 1992
Master of Science, Electrical Engineering, University of [llinois, Urbana-Champaign: 1988
Bachelor of Electrical Engineering, University of Delaware: 1986

HONORS

* IEEE Fellow (citation: “for contributions to computer architecture, compiler code generation and
performance evaluation™)

¢ Young Alumni Achievement Award, Dept. of ECE, University of Illinois at Urbana-Champaign, 2004

* National Science Foundation Faculty Early Career Development (CAREER) Award, 1996

* IBM Partnership Award for Faculty Development, 1995, 1996

* Best paper awards: “Dynamic rescheduling: 4 technique for object code compatibility in VLIW
architectures,” 1995 International Symposium on Microarchitecture; "4 technique to determine
power-efficient, high-performance superscalar processors,” 1995 Hawuaii International Conference on
System Sciences; "Architectural resource requirements of contemporary benchmarks: A wish list,"
1993 Hawaii International Conference on System Sciences

* Professional societies: IEEE (fellow), ACM (member)

* Honor societies: Tau Beta Pi (engineering), Eta Kappa Nu (electrical engineering)

* While a student: President of University of Delaware IEEE Student Branch, 1985; University of
Delaware Engineering Scholar

Page 119 of 264

PUBLICATION HISTORY

BOOKS

{11 T. M. Conte and C. E. Gimarc, eds., Fast Simulation of Computer Archifectures, Kluwer Academic
Publishers: Boston, MA 7 1995, ISBN 0-7923-9593-X.

BOOK CHAPTERS

{11 T. M. Conte and K. N. P. Menezes, “The effects of traditional compiler optimizations on superscalar
architectural design,” in The Interaction of Compilation Technology and Computer Architecture (D. 1
Lilja and P. L. Bird, eds.), Kluwer Academic Publishers: Boston, MA, 1994, pp. 119-136.

[2] T. M. Conte and W. W. Hwu, “Advances in benchmarking techniques: New standards and quantitative
metrics,” in Advances in Computers, vol. 41, (M. V. Zelkowitz, ed.), Academic Press: New York, 1995,

[3] T.M. Conte, “Superscalar and VLIW Processors,” in Handbook of Parallel and Distributed Computing,
(A.-Y. Zomaya, ed.), McGraw-Hill: New York, 1995.

[4] T. M. Conte, “Superscalar and VLIW processors (instruction-level parallelism)”, Encvclopedia of
Electrical and Electronics Engineering (3. G. Webster, ed.), John Wiley & Sons: New York, NY, 1998.

{51 T. M. Conte and P. D. Bryan, “Statistical sampling for processor and cache simulation,” Performance
Evaluation and Benchmarking, (L. John and L. Eeckhout, eds.), CRC Press, 2006.

[6] T. M. Conte, “Appendix D: Embedded systems,” in Computer Architecture: A Quantitative Approach,
4" ed. (J. Hennessy and D. Patterson), Morgan-Kaufmann: San Francisco, 2006.

JOURNAL PAPERS
{11 T.M. Conte and W. W. Hwu, “Benchmark characterization,” IEEE Computer, pp. 48-56, Jan. 1991.

[2] W.Y. Chen, P. P. Chang, T. M. Conte and W. W. Hwu, “The effect of code expanding optimizations on
mstruction cache design,” IEEE Transactions on Computers, vol. C-42, no. 9, pp. 1045-1057, Sep.
1993.

{31 W.W. Hwuand T. M. Conte, “The susceptibility of programs to context switching,” IEEE Transactions
on Computers, vol. C-43, no. 9, pp. 993-1003, Sep. 1994.

f4] T. M. Conte, B. A. Patel, K. N. Menezes and J. S. Cox, “Hardware-based profiling: An effective
technique for profile-driven optimization,” International Journal of Parallel Programming, vol. 24, no.
2, Feb. 1996.

{51 T.M. Conte and S. W. Sathaye, “Optimization of VLIW object code compatibility systems employing
dynamic rescheduling, ” International Journal of Parallel Programming, vol. 25, no. 2, Feb. 1997,

[6] T.M. Conte, P. K. Dubey, M. D. Jennings, R. B. Lee, S. Rathnam, M. Schlansker, P. Song, A. Wolfe,
“Challenges to combining general-purpose and multimedia processors into one package,” [EFE
Computer, vol. 30, no. 12, Dec. 1997,

[7] M. Schiansker, T. M. Conte, J. Dehnert, K. Ebciogly, J. Fang, C. Thompson, “Compiling for Instruction-
Level Parallelism,” JEEE Computer, vol. 30, no. 12, Dec. 1997.

{8] P.Bose and T. M. Conte, “Performance analysis and its impact on design”, IEEE Computer, vol. 31, no.
5, May 1998.

{91 T. M. Conte, M. A. Hirsch, and W. W. Hwu, “Combining trace sampling with single pass methods for
efficient cache simulation,” IEEE Transactions on Computers, vol. C-47, no. 6, Jun. 1998.

{10] S. Banerjia, S. W. Sathaye, K. N. Menezes and T. M. Conte, “MPS: Miss path scheduling for multiple-
issue processors,” [EEE Transactions on Computers, vol. C-47, no. 12, Dec. 1998.

[11] M. D. Jennings and T. M. Conte, “Subword extensions for video processing on mobile systems,” JEEE
Concurrency, July-September, 1998, pp. 13-16.

{12] P. Bose, T. M. Conte, T. M. Austin, “Challenges in processor modeling and validation,” [EEE Micro,
May-June, 1999, pp. 2-6.

Page 120 of 264

{13]

{14}

[15]
{16]

{17]

{18]
{19]
{20]

{21]

{22]

{23]

T. M. Conte, S. W. Sathaye, K. N. Menezes, and M. C. Toburen “System-level power consumption
modeling and tradeoff analysis techniques for superscalar processor design,” [EEE Transactions on
VLSI Systems, vol. 8, no. 2, Apr. "00, pp.129-137.

T. M. Conte and S. W, Sathaye, “Properties of rescheduling size invariance for dynamic rescheduling-
based VLIW cross-generation compatability”, IEEE Transactions on Computers, vol. C-49, no. 8, Aug.
00, pp. 814-825.

T. M. Conte, “Choosing the brain(s) of an embedded system,” IEEE Computer, vol. 35, no. 7., Jul. *02,
pp. 106-107.

C. Fu, 1. T. Bodine, T. M. Conte, “Modeling value speculation: An optimal edge selection problem,”
IEEE Transactions on Computers, vol. C-52, no. 3, Mar. *03, pp. 277-292.

H. Zhou, M. C. Toburen, E. Rotenberg, and T. M. Conte. "Adaptive Mode Control: A Static-Power-
Efficient Cache Design". ACM Transactions in Embedded Computing Systems (TECS), vol. 2, no. 3,
Aug. "03, pp. 347-372.

P. Mehrotra, V. Rao, T. M. Conte and P. D. Franzon, “Optimal Chip Package Co-design for High
Performance DSP,” IEEE Transactions on Advanced Packaging, vol. 28, no. 2, May ‘05, pp. 288 - 297.
A. Bechini, T. M. Conte, C. A. Prete, “Opportunities and challenges in embedded systems,” IEEE Micro,
July-August, ‘04, pp. 2-3.

H. Zhou and T. M. Conte, “Enhancing memory-level parallelism via recovery-free value prediction,”
IEEE Transactions on Computers, vol. C-54, no. 7, Jul. ’05, pp. 897-912.

E. Ozer and T. M. Conte, “High-performance and low-cost dual-thread VLIW processor using WELD
architecture paradigm,” IEEE Transactions on Parallel and Distributed Systems, vol. 16, no. 12, Dec.
"05.

S. Sharma, J. G. Beu and T. M. Conte, “Spectral prefetcher: An effective mechanism for L2 cache
prefetching,” ACM Transactions on Architecture and Code Optimization, vol. 2 | no. 4, Dec. '05, pp.
423-450.

J. A. Poovey, M. Levy, S. Gal-On, T. M. Conte, “A benchmark characterization of the EEMBC
benchmark suite” IEEE Micro, Sep.-Oct. *09.

PEER-REVIEWED CONFERENCE PUBLICATIONS

{1

{21

{31

W. W. Hwu and T. M. Conte, “A simulation study of simultaneous vector prefetch performance in
multiprocessor memory subsystems (extended abstract),” in Proceedings of the ACM Conference on
Measurement and Modeling of Computer Svstems (SIGMETRICS 89), (Berkeley, CA), p. 227, May
1989.

W. W. Hwu, T. M. Conte, and P. P. Chang, “Comparing software and hardware schemes for reducing
the cost of branches.,” in Proceedings of the 16" Annual International Symposium Computer
Architecture (ISCA-16), (Jerusalem, Israel), pp. 224-233, June 1989.

T. M. Conte and W. W. Hwu, “Benchmark characterization for experimental system evaluation,” in
Proceedings of the 23 Hawaii International Conference on System Sciences, Vol. 1, (Kona, HI), pp. 6-
18, Jan. 1990.

T. M. Conte and W. W. Hwu, “Benchmark characterization,” in Proceedings of the 24" Hawaii
International Conference on System Sciences, vol. 1, (Kauai, HI), pp. 364-372, Jan. 1991.

T. M. Conte and W. W. Hwu, “Systematic prototyping of superscalar computer architectures,” in
Proceedings of the 3" IEEE International Workshop on Rapid System Prototyping, (Research Triangle
Park, NC), June 1992.

T. M. Conte, “Tradeoffs in processor/memory interfaces for superscalar processors,” in Proceedings of
the 25" Annual International Symposium on Microarchitecture (MICRO-25), (Portland, OR), pp. 202-
205, Dec. 1992.

Page 121 of 264

t7]

£}

{91

{10]

{11]

[12]

[13]

[14]

{15}

{16}

{17]

{18}

{19]

{20]

{21]

{22}

T. M. Conte, “Architectural resource requirements of contemporary benchmarks: A wish list,” in
Proceedings of the 26"™ Hawaii International Conference on System Sciences, vol. 1, (Maui, HI), pp.
517-529, Jan. 1993. (winner: best paper)

T. M. Conte and W. Mangione-Smith, “Determining cost-effective multiple issue processor designs,” in
Proceedings of the 1993 International Conference on Computer Design (ICCD'93), (Cambridge, MA),
Oct. 1993.

T. M. Conte, B. A. Patel, and J. S. Cox, “Using branch handling hardware to support profile-driven
optimization,” in Proceedings of the 27" Annual International Symposium on Microarchitecture
(MICRO-27), (San Jose, CA), pp. 12-21, Dec. 1994,

T. M. Conte, K. N. P. Menezes and S. A. Sathaye, “A technique to determine power efficient, high-
performance superscalar processors,” in Proceedings of the 28" Hawaii International Conference on
Svstem Sciences, vol. 1, (Maui, HI), pp. 324-333, Jan. 1995. (winner: best paper)

J. 8. Cox, D. P. Howell, and T. M. Conte, “Commercializing profile-driven optimization,” in
Proceedings of the 28" Hawaii International Conference on System Sciences, vol. 1, (Maui, HI), pp.
221-228, Jan. 1995,

T. M. Conte, K. N. Menezes, P. M. Mills and B. A. Patel, “Optimization of instruction fetch mechanisms
for high issue rates,” in Proceedings of the 22™ Annual International Symposium on Computer
Architecture (ISCA-22), (Santa Margherita, Italy), Jun. 1995.

A. Singla and T. M. Conte, “Bipartitioning for hybrid FPGA-software simulation,” in Proceedings of the
1996 IEEE International Conference on VLSI Design, (Banglore, India), Jan. 1996.

T. M. Conte and S. W. Sathaye, “Dynamic rescheduling: A technique for object code compatibility in
VLIW architectures,” in Proceedings of the 28" Annual International Symposium on Microarchitecture
(MICRO-28), (Ann Arbor, MI), Nov. 1995. (winner: best paper)

T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss for effective trace sampling of
superscalar processors,” in Proceedings of the 1996 International Conference, on Computer Design
(ICCD’96), (Austin, TX), Oct. 1996.

T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes and S. W. Sathaye, “Instruction fetch mechanisms
for VLIW architectures with compressed encodings,” in Proceedings of the 29" Annual International
Symposium on Microarchitecture (MICRO-29), (Paris, France), Nov. 1996.

T. M. Conte, K. N. Menezes and M. A. Hirsch, “Accurate and practical profile-driven compilation using
the profile buffer,” in Proceedings of the 29" Annual International Symposium on Microarchitecture

(MICRO-29), (Paris, France), Nov. 1996,

T. M. Conte, S. Banerjia and S. W. Sathaye, “A persistent rescheduled-page cache for low overhead
object code compatibility in VLIW architectures,” in Proceedings of the 29" Annual International
Svmposium on Microarchitecture (MICRO-29), (Paris, France), Nov. 1996.

S. Banerjia, W. A. Havanki, T. M. Conte, “Treegion scheduling: A technique for extracting instruction
level parallelism”, in Proceedings of the 1997 Furopean conference in Parallel Processing, (Passau,
Germany), Aug., 1997.

K. N. Menezes, S. W. Sathaye and T. M. Conte, “Path prediction for high issue-rate processors,” in
Proceedings of the 1997 International Conference on Parallel Architectures and Compilation
Techniques (PACT97), (San Francisco, CA), Nov. 1997,

W. A. Havanki, S. Banerjia and T. M. Conte, “Treegion scheduling for wide-issue processors,” in
Proceedings of the 1997 4" International Symposium on High-Performance Computer Architecture
(HPCA-4), (Las Vegas), Feb. 1998.

C. Fu, M. D. Jennings, and T. M. Conte, “Value speculation scheduling for high performance
processors,” in Proceedings of the 8" International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-VIII)}, (San Jose, CA), Oct., 1998.

Page 122 of 264

[23]

{24]

[25]

{26]

{27}

[28]

[29]

{30]

{31]

{32]

{33]

{34]

[35]

{36]

{37]

{38]

E. Ozer, S. W. Sathaye, K. N. Menezes, S. Banerjia, M. D. Jennings and T. M. Conte, “A fast interrupt
handling scheme for VLIW processors,” in Proceedings of the 1998 International Conference on
Parallel Architectures and Compilation Techniques (PACT 98), (Paris, France), Oct. 1998.

E. Ozer, S. Banerjia, T. M. Conte, “Unified assign and schedule: A new approach to scheduling for
clustered register file microarchitectures,” in Proceedings of the 31° Annual International Symposium
on Microarchitecture, (Dallas, TX), Nov. 1998.

S. Y. Larin and T. M. Conte, “Compiler-driven cached code compression schemes for embedded ILP
processors,” in Proceedings of the 32™ Annual International Symposium on Microarchitecture
(MICRO-32), (Haifa, Isreal), Nov. 1999.

K. M. Hazelwood and T. M. Conte, “A lightweight algorithm for dynamic if-conversion during dynamic
optimization,” in Proceedings of the 2000 International Conference on Parallel Architectures and
Compilation Techniques (PACT 00), (Philadelphia, PA), Oct. 2000.

H. Zhou, M. C. Toburen, E. Rotenberg and T. M. Conte, “Adaptive mode control: A static-power-
efficient cache,” in Proceedings of the 2001 International Conference on Parallel Architectures and
Compilation Techniques (PACT (1), (Barcelona, Spain), Sep. 2001.

E. Ozer and T. M. Conte, “Weld: A multithreading technique towards latency-tolerant VLIW
processors,” in Proceedings of the 8" International Conference on High Performance Computing
(HiPC-8), (Hyderabad, India), Dec. 2001.

H. Zhou, M. D. Jennings, and T. M. Conte, “Tree traversal scheduling: A global scheduling technique
for VLIW/EPIC processors,” in Proceedings of the 14" Annual Workshop on Languages and Compilers
Jfor Paraliel Computing (LCPC01), (Cumberland Falls, KY), August 2001.

H. Zhou and T.M. Conte, "Code size efficiency in global scheduling for ILP processors," in Proceedings

of the 6th Annual Workshop on the Interaction between Compilers and Computer Architectures
(INTERACT-6) held in conjunction with the 8th International Symposium on High Performance
Computer Architecture (HPCA-8), (Cambridge, MA), February 2002.

G. G. Pechanek, S. Larin and T. Conte, “Any-size instruction abbreviation technique for embedded
DSPs,” in Proceedings of the 15th Annual IEEE ASIC/SOC Conference, (Rochester, NY), September
2002.

H. Zhou, J. Flanagan, T. M. Conte, “Detecting global stride locality in value streams,” Proceedings of
the 30th Annual International Symposium on Computer Architecture (ISCA-30), {San Diego, CA), June
2003, pp. 324-335.

H. Zhou and T. M. Conte, “Enhancing memory level parallelism via recovery-free value prediction,” in
Proceedings of the 2003 International Conference on Supercomputing (ICS'03) (San Francisco, CA),
June 2003.

M. C. Rosier and T. M. Conte, “Treegion Instruction Scheduling in GCC,” in Proceedings of the 2006
GCC Developers’ Summit, (Ottowa, Canada), June 2006.

P. D. Bryan, M. C. Rosier and T. M Conte, “Reverse State Reconstruction for Sampled
Microarchitectural Simulation,” in Proceedings of the 2007 I[EEE International Symposium on
Performance Analysis of Systems and Software (ISPASSS’07), (San Jose, CA), April 2007.

P. D. Bryan and T. M Conte, “Combining Cluster Sampling with Single Pass Methods for Efficient
Sampling Regimen Design,” in Proceedings of the 2007 International Conference, on Computer Design
(ICCD G7), (Lake Tahoe, CA), Oct. 2007.

B. V. Iyer and T. M. Conte, “A Power Model for Register-Sharing Structures,” in Proceedings of the
2008 IFIP Working Conference on Distributed and Parallel Embedded Svstems (DIPES’08), (Milano,
Ttaly), Sep. 2008.

B. V. Iyer, J. A. Poovey and T. M. Conte, “Energy-Aware Opcode Design.” in Proceedings of the 26th
International Conference on Computer Design (ICCD 08), (Lake Tahoe, California), Oct. 12-15, 2008,

Page 123 of 264

[39] B. V. Iver, J. G. Beu, and T. M. Conte, "Length Adaptive Processors: The solution for
Energy/Performance Dilemma in Embedded Systems," Workshop on Interaction Between Compilers
and Computer Architecture (INTERACT-13), held in conjunction with HPCA-15, (Raleigh, NC), Feb
16th, 2009.

[40] B. V. Iyer and T. M. Conte, “On power and energy trends of IEEE 802.11n PHY,” Proceedings of the
12th International ACM Svmposium on Modeling Analvsis and Simulation of Wireless and Mobile
Svstems (MSWiM 2009), (Tenerife, Canary Islands, Spain), Oct. 26-19, 2009.

[41] J. A. Poovey, B. P. Railing and T. M. Conte, “Parallel pattern detection for architectural improvements,”
Proceedings of the 3rd USENIX Workshop on Hot Topics in Parallelism (HotPar’l 1), (Berkeley, CA),
May 26-27, 2011.

[42] R. Bheda, J. A. Poovey, J. G. Beu and T. M. Conte, “Energy Efficient Phase Change Memory Based
Main Memory for Future High Performance Systems,” 2™ International Green Computing Conference
(IGCC'11), (Orlando, FL) July, 201 1.

{431 J. G. Beu, M. C. Rosier and T. M. Conte, “Manager-Client Pairing: A Framework for Implementing
Coherence Hierarchies,” Proceedings of the 44" Annual International Symposium on Microarchitecture
(MICRO-44), (Porto Alegre. Brazil), Dec., 2011.

PEER-REVIEWED TECHNICAL REPORTS AND NOTES
{11 D. J. Farber, G. Delp, and T. M. Conte, “Thinwire protocol for connecting personal computers to the
Internet,” Request for Comment RFC-914, Defense Data Network Network Information Center (Internet
NIC), 1984, {Internet protocol document]

[2] T. M. Conte and W. W. Hwu, “A brief survey of benchmark usage in the architecture community,”
Computer Architecture News, vol. 19, no. 4, pp. 37-44, June 1991.

PATENTS

Issued:

[1] US Patent No. 7,028,286, “Methods and apparatus for automated generation of abbreviated instruction
set and configurable processor architecture,” S. Y. Larin, P. G. Pechanek and T. M. Conte, issued April
11, 2006, 33 claims.

{2] US Patent No. 7,865,692, “Methods and apparatus for automated generation of abbreviated instruction
set and configurable processor architecture,” S. Y. Larin, P. G. Pechanek and T. M. Conte, issued
January 4, 2011, 6 claims.

{31 US Patent No. 7,953,955, “Methods and apparatus for automated generation of abbreviated instruction
set and configurable processor architecture,” S. Y. Larin, P. G. Pechanek and T. M. Conte, issued May
31, 2011, 14 claims.

[4] US Patent No. 8,131,970, “Compiler based cache allocation,” T. M. Conte and A. Wolfe, issued March
6, 2012, 20 claims.

SERVICE
PROFESSIONAL SERVICE AT A NATIONAL OR INTERNATIONAL LEVEL:

* Societal: IEEE (Fellow); ACM (Member)

* Societal: IEEE (Fellow); ACM (Member)

e Editor in chief: 4CM Transactions on Architecture and Compiler Optimization, 2009-present; Journal of
Instruction-Level Parallelism, 1998-2000, 20032005

* Associate Editor: JEEE Transactions on Computers, 1999-2003, 2010-present; ACM Transactions on
Embedded Computer Systems, 2001-2009; ACM Transactions on Architecture and Compiler Optimization,
2004-2009; Journal of Instruction-Level Parallelism, 2005-present; IEEE Micro, 2005-present; IEEFE
Computer, 2008—present

Page 124 of 264

* Societal Chair: IEEE Computer Society Technical Committee on Microarchitecture (TC-uARCH), 1998-2006;
ACM Special Interest Group on Microarchitecture (SIGMICRO), 2004-2006;

* Chair, IEEE Computer Society Awards Committee, 2008-present;

* Chair, ACM/IEEE Eckert-Mauchly Award Committee, 2004-2005;

* Chair, IEEE Harry Goode Memorial Award Committee, 2005-2008; IEEE W. Wallace McDowell Award
Committee, 2005-2008

* Member, IEEE Computer Society Board of Governors, 2009-2011;

* Vice President of Publications, /EEE Computer Society, 2012-present;

* Member, I[EEE Computer Society Fellows Evaluation Committee, 2005-2007

* Chair, [EEE Computer Society Fellows Evaluation Committee, 2011

* Member, IEEE Fellows Evaluation Committee, 2012-present

* Member, Steering Committees: IEEF/ACM International Svmposium on Microarchitecture, 1998-present;
IEEE/ACM International Svmposium on Code Generation and Optimization, 2000-present

» General (Co-)Chair: 43" IEEE/ACM International Symposium on Microarchitecture, 2010; 15" IEEE
International Symposium on High Performance Computer Architecture, 2009; 39" IEEE/ACM International
Symposium on Microarchitecture, 2006; IEEE/ACM International Symposium on Code Generation and
Optimization, 2003

* Program Chair: IEFEE International Symposium on Workload Characterization, 2009; IEEE/ACM
International Symposium on Code Generation and Optimization, 2006; 7th IEEE/ACM International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems, 2005; 7th IEEE/ACM
International Conference on Compilers, Architectures, and Synthesis for Embedded Systems, 2003; 30"
IEEE/ACM International Symposium on Microarchitecture, 1997

* Program committees: [EEE International Symposium on Performance Analysis of Systems and Software,
2003-2006; IEEE International Conference on Supercomputing, 1997, 2006, IEEE/ACM International
Symposium on Microarchitecture (MICRQO), 1993-1994, 1996-2005, 2007-2009, 2011-2012; JIFEE/ACM
International Symposium on Computer Architecture (ISCA), 1997, 2000, 2004, 2005, 2006, 2008, 2010-2012;
IEEE International Conference on High Performance Computer Architecture, 1998, 2000-2008, 2010-2011;
IEEE International Conference on Parallel Architectures and Compilation Technigues, 1998, 1999;
International Conference on Massively Parallel Computing Systems, 1998; IEEE International Computer
Performance and Dependability Symposium, 1998, 1999; IEEE International Conference on Parallel
Processing, 1999; ACM International Conference on Programming Language Design and Implementation,
2003; [EEE/ACM International Svmposium on Code Generation and Optimization (CGQO), 20032005

* Proposal reviewing: National Science Foundation, 1996, 1997, 2000, 2003, 2005, 2006

PERSONAL
Married (Catherine Linder Conte), two children (ages 10 and 13).

Page 125 of 264

EXHIBIT 2

Page 126 of 264

Theory and Operation

Including PC, XT, AT, ISA, and EISA
I/0 Bus Operation

Annabooks
San Diego

Page 127 of 264

ISA & EISA THEORY AND OPERATION

by
Edward Solari

PUBLISHED BY

Annabooks

11848 Bernardo Plaza Ct., Suite 110
San Diego, CA. 92128

USA

619-673-0870
Copyright (C) Annabooks 1992, 1993

All Rights Reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the prior written permission
of the publisher, except for the inclusion of brief quotations in a review.

Printed in the United States of America
ISBN 0-929392-15-9

Second Printing October 1993

Library of Congress Cataloging-in-Publication Data

Solari, Edward.
ISA & EISA : PC, XT, AT, and EISA PC 1/0 BUS timing / by Edward
Solari.
p. cm.
Includes bibliographical references and index.
ISBN 0-929392-15-8
1. Microcomputers--Buses. 2. EISA (Computer bus) I. Title.
II. Title: ISA and EISA.
TK76895.887S66 1992

621.39'81--dc20 92-39818
CIP

Page 128 of 264

Chapter 5, Signal Line Definition 159

IOCHRDY (8, 8/16 ISA or E-ISA & EISA CONNECTOR)

ISA OR E-ISA PLATFORM

The I/O channel ready (IOCHRDY) signal line allows
resources to indicate to the ISA or E-ISA bus master that
additional cycle time is required. If the IOCHRDY signal line is
not driven inactive, the cycle is either a no-wait-state or a standard
cycle. " If the IOCHRDY signal line is driven inactive, the cycle
length is extended until the line is driven active again. An inactive
IOCHRDY signal line causes an active SRDY* signal to be
ignored by the bus master.

On an ISA or E-ISA compatible platform, the IOCHRDY
signal line must be driven inactive within a specific time of the
COMMAND signal lines becoming active. When the IOCHRDY
signal line is active, the cycle ends within a specific amount of time.

Page 129 of 264

160 ISA & EISA Theory and Operation

Both of these events occur asynchronously to the BCLK signal line
on an ISA compatible platform. On an E-ISA platform, the
IOCHRDY signal line is sampled relative to the BCLK signal line
in addition to supporting the previously outlined "asynchronous”

support. See the IOCHRDY SIGNAL LINE ENHANCEMENT
section in this chapter.

When the bus owner is either the platform CPU, an ISA or E-
ISA add-on bus owner card, or the refresh controller, the increase
in cycle length is measured as "wait states”. The resolution of the
wait states is one BCLK signal line period. When the bus owner is
the DMA controller, the resolution of the wait states is two BCLK
signal line periods for DMA COMPATIBLE transfer cycles. The
DMA controller on an E-ISA compatible platform allows each
DMA channel to be programmed for different DMA transfer
cycles. Fach of these cycles has a different wait state resolution.
See the DMA TRANSFER CYCLE section in Chapter 6 for more
detailed information.

For a DMA transfer cycle, only the memory resource can
inactivate the IOCHRDY signal line; the 1/0 resource must be
able to accept the data within the length of a default cycle.

EISA PLATFORMS

When an ISA, E-ISA, or EISA bus master is accessing an ISA
or E-ISA resource, the IOCHRDY signal line is defined the same
as for the ISA or E-ISA compatible platform. For an E-MIX
access cycle, this signal line is sampled by the platform circuitry to
determine the cycle length. For an I-MIX access cycle, this signal
line is driven by the platform circuitry as a translation of the
EXRDY signal line. This signal line is not defined when an EISA
bus master is accessing an EISA resource.

On an EISA compatible platform, the IOCHRDY signal line is
sampled relative to the BCLK signal line, in addition to supporting
the previously outlined "asynchronous support”. See the
IOCHRDY SIGNAL LINE ENHANCEMENT section in this
chapter.

Page 130 of 264

Chapter 5, Signal Line Definition 161

; The DMA controller on an EISA compatible platform allows
each DMA channel to be programmed for different DMA transfer
cycle types. Each of these cycles has a different wait state

resolution. See the DMA TRANSFER CYCLE section in Chapter
6 for more detailed information.

For a DMA transfer cycle, only the memory participant can
drive the IOCHRDY signal line. The I/O resource must be able to
accept the data within the length of a default cycle.

ALL PLATFORMS

- The IOCHRDY signal line should not remain inactive during
access or transfer cycles longer than 15.6 microseconds. Otherwise,
a bus refresh cycle may not occur at the appropriate time and
DRAM data will be lost. The IBM Technical Reference Manual
specifies 2.5 microseconds for unknown reasons. One possible
explanation might be to allow other bus masters to arbitrate and
execute cycles prior to a another refresh occurring.

- IOCHRDY SIGNAL LINE ENHANCEMENT

As previously described, the IOCHRDY signal line must be
inactive within a "specific” time after the COMMAND signal line
becomes active for a ready cycle. The ready cycle is completed
some time after 125 nanoseconds (120 nanoseconds for E-ISA and

EISA compatible platforms) after the IOCHRDY signal line has

Page 131 of 264

162 ISA & EISA Theory and Operation

been driven active. This timing of the IOCHRDY signal line is
fairly imprecise and tends to lower performance.

In order to enhance performance, the EISA bus specification
has defined a SAMPLING WINDOW that relates the IOCHRDY
and BCLK signal lines. Figure 5-2 outlines this SAMPLING
WINDOW as viewed by the accessed memory or I/O resource and

the transfer cycle resource. The SAMPLING WINDOW can be
viewed in two parts: inactive and active.

For CASES A & B, the inactive part of the INITIAL
SAMPLING WINDOW is between the rising and falling edges of
the BCLK signal line. An IOCHRDY signal line inactive pulse of
31 nanoseconds (for a 20 nanoseconds minimum inactive pulse at
bus master) within the inactive part of the window will cause a
ready cycle to be executed. For CASE C, the minimum setup time
of 21 nanoseconds to the falling edge of the BCLK signal line
requires the receiving platform CPU or add-on bus owner card to
support an actual setup time of 10 nanoseconds. The additional 11
nanosecond loss reflects allowances for bus settling and clock
tolerances.

In the active part of the INITIAL SAMPLING WINDOW, the
IOCHRDY signal line is sampled at the rising clock edge at the
end of the INITIAL SAMPLING WINDOW. If the IOCHRDY
signal line is sampled active, the ready cycle will be completed at
the end of the next BCLK period. The IOCHRDY signal line is
specified as an open collector device with a 1K pull-up resistor.
For an E-ISA or EISA compatible platform with an 8 MHz BCLK
signal line, assume a 10 nanosecond setup time at the platform
CPU or add-on bus owner card, an 11 nanosecond signal line
settling time, and a 104 nanosecond rise time, then the total time is
125 nanoseconds. A minimum INITIAL SAMPLING WINDOW
of 125 nanoseconds and 20 nanosecond minimum pulse width
results in a one wait state ready cycle not being guaranteed. For an

Page 132 of 264

Chapter 5, Signal Line Definition 163

INITIAL SUBSEQUENT
" SAMPLING —"I*" SAMPLING —*
WINDOW WINDOW

8oLk 1) ——J l*_

“-CASE A IOCHRDY (1)

CASE B IOCHRDY (1) _j/
 GASE CIOCHRDY (1) j! ’

: 3
"/CASE D IOCHRDY (1) \ _1()
' i
INACTIVE | ACTIVE ACTIVE
PART PART PART

NOTES:
(1) MEASURED AT RESOURCE

DRIVING THE IOCHRDY

SIGNAL LINE
(2) MIN. PULSE WIDTH OF 31 NSEC
& MEASURED AT .5 VOLTS

(8) MINIMUM OF 0 NSEC.

MEASURED AT .5 VOLTS
-(4) SETUP TIME MEASURED
AT 2.0 VOLTS (10 NSEC MEASURED AT BUS MASTER)

’, FIGURE 5-2: E-ISA AND EISA IOCHRDY REFERENCE TO THE BCLK
- SIGNAL LINE

~ Page 133 of 264

164 ISA & EISA Theory and Operation

E-ISA or EISA compatible platform with an 8.33 MHz BCLK
signal line, the INITIAL SAMPLING WINDOW is 120 |
nanoseconds, the minimum inactive IOCHRDY signal line pulse |
width is 20 nanoseconds, and the rise time is now 104 nanoseconds.
Consequently, in a fully loaded E-ISA or EISA platform, |
requirements for a guaranteed one wait state ready cycle are "just !
missed”. To guarantee "conservatively” a one wait state ready cycle,
the IOCHRDY signal line must be pulsed high, or a 300 ohm pull-
up resistor must be used on the bus in that the rise time is only 29
nanoseconds instead of 104 nanoseconds.

If the IOCHRDY signal line is not sampled active at the end of
the INITIAL SAMPLING WINDOW, SUBSEQUENT
SAMPLING WINDOWS occur. These SUBSEQUENT
SAMPLING WINDOWS only have an active part. The
IOCHRDY signal line is sampled at the rising clock edge at the
end of each sampling window. If the IOCHRDY signal line is
sampled active, the ready cycle will be completed at the end of the
next BCLK period. In order to insure that the IOCHRDY is
sampled active, the following must be considered:

For CASE D, in order to insure only one wait state, the rise
time due to a 1K resistor (for a fully loaded E-ISA or EISA
backplane) of 104 nanoseconds is too long. The rise time due to a
300 ohm resistor has a rise time of 29 nanoseconds and will allow
all the requirements to be met.

Page 134 of 264

EXHIBIT 3

Page 135 of 264

intgl.

APPLICATION
NOTE

AP-69

May 1980

nnnnnnnnnnnnnnnnnnnnn

Page 136 of 264

AAAAAAAAAAAA

AP-69

In

VvSS VCC RST/VPD

XTALY
fat—t
B fs—
L
AT
XTALZ s (PORTO
[
la—o
EA/VDD ~——4d fo—o
[
PSEN w1 fa—a
[
8051 o
8351 PORT 1
ALE/PROG w— 8751 __.."
———
AXD ——] —
TXD -—
iNTO H f—
[-~
PORT —
ToO—— [‘eont2
T s
WA o
RD o

Figure 1a. 8051 Microcomputer Pinout Diagram

1. INTRODUCTION

In 1976 Intel introduced the MCS-48™ family. consisting
of the 8048, 8748, and 8035 microcomputers. These parts
marked the [irst time a complete microcomputer system.
including an cight-bit CPU, 1024 §-bit words of ROM
or EPROM program memory. 64 words of data memory.
I O ports and an eight-bit timer: counter could be inte-
grated onto a single silicon chip. Depending only on the
program memory contents, one chip could control a
limitless variety of products, ranging from appliances or
auwtomobile engines to text or data processing equipment.
Follow-on products stretched the MCS-48™ architecture
in several directions: the 8049 and 38039 doubled the
amount of on-chip memory and ran 837 faster; the 8021
reduced costs by executing a subset of the 8048 instruc-
tions with a somewhat slower clock: and the 8022 put a
unigue two-channel 8-bit analog-to-digital converter on
the same NMOS chip as the computer, letting the chip
interface directly with analog transducers.

Now three new high-performance single-chip microcom-
puters the Intel® BOSI, 8751, and 8031—extend the
advantages of Integrated Electronics to whole new prod-
uct areas. Thanks to Intel's new HMOS technology . the
MCS-51™ family provides four uites the program
memory and twice the data memory as the 8048 on a
single chip. New 1,0 and peripheral capabilities both
increase the range of applicability and reduce total system
cost. Depending on the use, processing throughput
increases by two and one-half to ten times.

This Application Note is intended to introduce the reader
to the MCS-51™ architecture and features. While it does
not assume intimacy with the MCS-48™ product line on
the part of the reader, he she should be familiar with

Page 137 of 264

Figure 1b. 8051 Microcomputer Logic Symbol

some microprocessor (preferably Intel's. of course) or
have a background in computer programming and digital
logic.

Family Overview

Pinout diagrams for the 8051, 8751, and 8031 are shown
in Figure I. The devices include the following features:

e Single-supply 3 volt operation using HMOS tech-

nology.

4096 bytes program memory on-chip (not on 8031).

128 bytes data memory on-chip.

Four register banks.

128 User-defined software flags.

64 Kilobytes each program and external RAM

addressability.

One microsecond instruction cycle with 12 MHz

crystal.

32 bidirectional 170 lines organized as four 8-bit

ports (16 lines on 8031).

Multiple mode. high-speed programmable Serial

Port.

Two multiple mode, 16-bit Timer;/ Counters.

Two-level prioritized interrupt structure.

Full depth stack for subroutine return linkage and

data storage.

Augmented MCS-48™ instruction set.

Direct Byte and Bit addressability.

Binary or Decimal arithmetic.

Signed-overflow detection and parity computation.

Hardware Multiple and Divide in 4 usec.

Integrated Boolean Processor for control applica-

tions.

® Upwardly compatible with existing 8048 software.
AFN-01502A-04

=

Intel ®
All three devices come in a standard 40-pin Dual In-
Line Package. with the same pin-out, the same timing,
and the same electrical characteristics. The primary
differencc between the three is the on-chip program

memory —different types are offered to satisfy differing
user requirements.

The 8751 provides 4K bytes of ultraviolet-Erasable,
Programmable Read Only Memory (EPROM) for
program development. prototyping, and limited pro-
duction runs. (By convention, 1K means 2'9= 1024,
Ik —with a lower case “k”—equals 10* = 1000.) This part
may be individually programmed for a specific applica-
tion using Intel's Universal PROM Programmer (UPP).
If software bugs are detected or design specifications
change the same part may be “erased” in a matter of
minutes by exposure to ultraviolet light and repro-
grammed with the modified code. This cycle may be
repeated indefinitely during the design and development
phase.

The final version of the software must be programmed
into a large number of production parts. The 8051 has
4K bytes of ROM which are mask-programmed with the
customer’s order when tne chip is built. This part is con-
siderably less expensive, but cannot be erased or altered
after fabrication.

The 8031 does not have any program memory on~chip,
but may be used with up to 64K bytes of external standard
or multiplexed ROMs, PROMs, or EPROMs. The 8031
fits well in applications requiring significantly larger or
smaller amounts of memory than the 4K bytes provided
by its two siblings.

(The 8051 and 8751 automatically access external pro-
gram memory for all addresses greater than the 4096 bytes
on-chip. The External Access input is an override for
all internal program memory—the 8051 and 8751 will
cach emulate an 8031 when pin 31 is low.)

Throughout this Note, “8051™ is used as a generic term.
Unless specifically stated otherwise, the point applies
equally to all three components. Table | summarizes the
quantitative differences between the members of the
MCS-48™ and MCS-51™ familics.

The remainder of this Note discusses the various MCS-51™

features and how they can be used. Software and/or hard-

AP-69

ware application examples illustrate many of the concepts.
Several isolated tasks (rather than one complete system
design example) are presented in the hope that some of
them will apply to the reader’s experiences or needs.

A document this short cannot detail all of a computer
system’s capabilities. By no means will all the 8051 instruc-
tions be demonstrated; the intent is to stress new or
unique MCS-51™ operations and instructions generally
used in conjunction with each other. For additional hard-
ware information refer to the Intel MCS-S1™ Family
User's Manual, publication number (21517. The assembly
language and use of ASMS5I, the MCS-51™ assembler,
are further described in the MCS-S1™ Macro Assembler
User’s Guide, publication number 9800937.

The next section reviews some of the basic concepts
of microcomputer design and use. Readers familiar
with the 8048 may wish to skim through this section
or skip directly to the next, “ARCHITECTURE AND
ORGANIZATION.”

Microcomputer Background Concepts

Most digital computers use the binary (base 2) number
system internally. All variables, constants, alphanumeric
characters, program statements, etc., are represented by
groups of binary digits (“bits™), each of which has the
value 0 or |. Computers are classified by how many bits
they can move or process at a time.

The MCS-51™ microcomputers contain an eight-bit
central processing unit (CPU). Most operations process
variables cight bits wide. All internal RAM and ROM,
and virtually all other registers are also eight bits wide.
An eight-bit (“byte”) variable (shown in Figure 2) may
assume one of 2% = 256 distinct values, which usually
represent integers between 0 and 255. Other types of
numbers, instructions. and so forth are represented by
one or more bytes using certain conventions.

For example. to represent positive and negative values,
the most significant bit (D7) indicates the sign of the other
seven bits-—-0 if positive. | if negative --allowing integer
variables. between -128 and +127. For integers with
extremely large magnitudes. several bytes are manipu-
lated together as “multiple precision™ signed or unsigned
integers— 16, 24, or more bits wide.

Table 1. Features of Intel's Single-Chip Microcomputers

EPROM ROM External | Program instr. Input/

Program | Program | Program | Memory Memory Cycle Output Interrupt Reg.
Memory Memory Memory | (Int/Max) {Bytes) Time Pins Sources Banks

8021 - (K 1K 64 8.4 uSec 20 0 1

- 8022 - 2K 2K 64 8.4 pSec 28 2 1

8748 8048 8035 IK 4K 64 2.5 uSec 27 2 2

8049 8039 2K 4K 128 1.36 uSec 27 2 2

8751 8051 8031 4K 64K 128 1.0 4¢Sec 32 5 4

Page 138 of 264

AFN-01502A-05

AP-69

The letters “MCS” have traditionally indicated
a system or family of compatible Intel® micro-
computer components, including CPUs, mem-
ories, clock generators, I/0 expanders, and so
forth. The numerical suffix indicates the micro-
processor or microcomputer which serves as
the cornerstone of the family. Microcomputers
in the MCS-48™ family currently include the
8048-series (8035, 8048, & 8748), the 8049-series
(8039 & 8049), and the 8021 and 8022; the
family aiso includes the 8243, an 1/0 expander
compatible with each of the microcomputers.
Each computer's CPU is derived from the 8048,
with essentially the same architecture, address-
ing modes, and instruction set, and a single
assembler (ASM48) serves each.

The first members of the MCS-51™ family are
the 8051, 8751, and 8031. The architecture of
the 805t-series, while derived from the 8048,
is not strictly compatible; there are more
addressing modes, more instructions, larger
address spaces, and a few other hardware dif-
ferences. In this Application Note the letters
“MCS-51" are used when referring to archi-
tectural features of the 8051-series—features
which would be included on possible future
microcomputers based on the 8051 CPU. Such
products could have different amounts of
memory (as in the 8048/8049) or different
peripheral functions (as in the 8021 and 8022)
while leaving the CPU and instruction set
intact. ASM51 is the assembler used by all
microcomputers in the 8051 family.

Two digit decimal numbers may be “packed” in an eight-
bit value, using four bits for the binary code of each digit.
This is called Binary-Coded Decimal (BCD) representa-
tion, and is often used internally in programs which
interact heavily with human beings.

Alphanumeric characters (letters, numbers, punctuation
marks, etc.) are often represented using the American
Standard Code for Information Interchange (ASCII)
convention. Each character is associated with a unique
seven-bit binary number. Thus one byte may represent

el Jel s Tofef=]-]

o7 6 os -1} 2 o1 oo

Figure 2. Representation of Bits Within an Eight-Bit
“Byte” (Value shown = 01010001 Binary =
81 decimal).

Page 139 of 264

intgl.

a single character. and a word or sequence of letters may
be represented by a series (or “string™) of bytes. Since the
ASCII code only uses 128 characters, the most significant
bit of the byte is not needed to distinguish between char-
acters. Often D7 is set to O for all characters. In some
coding schemes, D7 is used to indicate the “parity” of the
other seven bits---set or cleared as necessary to ensure
that the total number of “1* bits in the eight-bit code is
even (“even parity”) or odd (“odd parity”). The 805!
includes hardware to compute parity when it is needed.

A computer program consists of an ordered sequence of
specific, simple steps to be executed by the CPU one-at-
a-time. The method or sequence of steps used collectively
to solve the user's application is calied an “algorithm.”

The program is stored inside the computer as a sequence
of binary numbers. where each number corresponds to
one of the basic operations (“opcodes™) which the CPU
is capable of executing. In the 8051. each program
memory location is one byte. A complete instruction
consists of a sequence of one or more bytes, where the
first defines the operation to be executed and additional
bytes (if needed) hold additional information. such as
data values or variable addresses. No instruction is longer
than three bytes.

The way in which binary opcodes and modifier bytes are
assigned to the CPU’s operations is called the computer’s
“machine language” Writing a program directly in
machine language is time-consuming and tedious. Human
beings think in words and concepts rather than encoded
numbers. so each CPU operation and resource is given a
name and standard abbreviation (*'mnemonic™). Programs
are more easily discussed using these standard mnemonics.
or “assembly language.” and may be tvped into an Intel®
Intellec® 800 or Series 112 microcomputer development
system in this form. The development system can mechan-
ically translate the program from assembly language
“source™ form to machine language “object™ code using a
program called an “assembler.” The MCS-51™ assembler
is called ASMSI.

There are several important differences between a com-
puter’s machine language and the assembly language used
as a tool to represent it. The machine language or instruc-
tion set is the set of operations which the CPU can
perform while a program is executing (“at run-time™). and
is strictly determined by the microcomputer hardware
design.

The assembly language is a standard (though more-or-
less arbitrary) set of symbols including the instruction set
mnemonics. but with additional features which further
simplify the program design process. For example.
ASMS35I has controls for creating and formatting a pro-
gram listing. and a number of directives for allocating
variable storage and inserting arbitrary bytes of data into
the object code for creating tables of constants.
AFN-015024-06

intel.

In addition, ASMS5I1 can perform sophisticated mathe-
matical operations, computing addresses or evaluating
arithmetic expressions to relieve the programmer from
this drudgery. However, these calculations can only use
information known at “assembly time.”

For example, the 8051 performs arithmetic calculations
at run-time, eight bits at a time. ASMSI can do similar
operations 16 bits at a time. The 8051 can only do one
simple step per instruction, while ASMS51 can perform
complex calculations in each line of source code. How-
ever. the operations performed by the assembler may only
use parameter values fixed at assembly-time, not variables
whose values are unknown until program execution
begins.

For example, when the assembly language source line,
ADD A#LOOP_COUNT+1)*3

is assembled. ASM51 will find the value of the pre-
viously-defined constant “LOOP_COUNT?" in an internal
symbol table, increment the value, multiply the sum by
three, and (assuming it is between -256 and 255 inclusive)
truncate the product to eight bits. When this instruction
is executed, the 805! ALU will just add that resulting
constant to the accumulator.

Some similar differences exist to distinguish number
system (“radix”) specifications. The 8051 does all com-
putations in binary (though there are provisions for then
converting the result to decimal form). In the course of
writing a program, though, it may be more convenient
to specify constants using some other radix, such as base
10. On other occasions, it is desirable to specify the ASCII
code for some character or string of characters without
refering to tables. ASMS5I allows several representations
for constants, which are converted to binary as each
instruction is assembled.

For example, binary numbers are represented in the

AP-69

assembly language by a series of ones and zeros
(naturally), followed by the letter “*B” (for Binary); octal
numbers as a series of octal digits (0-7) followed by the
letter “O” (for Octal) or “Q” (which doesn't stand for any-
thing, but /ooks sort of like an “O” and is less likely
to be confused with a zero).

Hexadecimal numbers are represented by a series of hexa-
decimal digits (0-9,A-F), followed by (you guessed it) the
letter “H." A “hex™ number must begin with a decimal
digit; otherwise it would look like a user-defined symbol
(to be discussed later). A “dummy™ leading zero may be
inserted before the first digit to meet this constraint. The
character string “BACH" could be a legal label for a
Baroque music synthesis routine; the string “0OBACH” is
the hexadecimal constant BAC,,. This is a case where
adding 0 makes a big difference.

Decimal numbers are represented by a sequence of decimal
digits, optionally followed by a “D.” If a number has no
suffix, it is assumed to be decimal—so it had better not
contain any non-decimal digits. “OBAC” is not a legal
representation for anything.

When an ASCHI code is needed in a program, enclose the
desired character between two apostrophes (as in '#’) and
the assembler will convert it to the appropriate code (in
this case 23H). A string of characters between apos-
trophes is translated into a series of constants, 'BACH’
becomes 42H, 41H, 43H, 48H.

These same conventions are used throughout the asso-
ciated Intel documentation. Table 2 illustrates some of the
different number formats.

2. ARCHITECTURE AND ORGANIZATION

Figure 3 blocks out the MCS-51™ internal organization.
Each microcomputer combines a Central Processing
Unit, two kinds of memory (data RAM plus program
ROM or EPROM), Input/Output ports, and the mode,

Table 2. Notations Used to Represent Numbers

Hexa- Signed

Bit Pattern Binary Octal Decimal Decimal Decimal
00000000 0B 0Q 00H 0 0
00000001 1B 1Q 0lH ! +1
00000111 L 7Q 07H 7)
00001000 1000B 10Q 08H 8 +8
0000100t 1001B 11Q 09H 9 +9
00001010 1010B 12Q 0AH 10 +10
00001111 111B 17Q oFH 5 HS
00010000 10000B 20Q 10H 16 +16
'YERRERE ULIB 177Q 7FH 127 +127
10000000 10000000B 200Q 80H 128 -128
1000000t 10000001B 201Q 8IH 129 -127
EEERRERY) 11I11t10B 376Q OFEH 254 !
rrrirernt IHiTItIEB 377Q OFFH 255 -1

AFN-015024-07

Page 140 of 264

AP-69

S

r_
- |

P2 LATCH
PORT 2

128x 8 axs PCH|OPH w
RAM RaM pcL|ope

| mamsueren | | sewse amps | PoLATCH

o ¢ U

PORT 1
P1LATCH

R

PLA

ﬂ T™MP 2
!

S L (O

[poratcH | SCON YCON IE
{ porT0] SBUF (REC) TMOD P PORT 3
SBUF (XMIT) TLO INTERRUPT
SERIAL THO CONTROL
PORT Tt
TH1
TIMER
CONTROL

Figure 3. Block Diagram of 8051 Internal Structure

status, and data registers and random logic needed for
a variety of peripheral functions. These elements com-
municate through an eight-bit data bus which runs
throughout the chip. somewhat akin to indoor plumbing.
This bus is buffered to the outside world through an 1O
port when memory or I;0 expansion is desired.

Let's summarize what cach block does; later chapters dig
into the CPU’s instruction set and the peripheral registers
in much greater detail.

Central Processing Unit

The CPU is the “brains™ of the microcomputer, reading
the user’s program and executing the instructions stored
therein. Its primary elements are an eight-bit Arithmetic/
Logic Unit with associated registers A, B. PSW, and SP.
and the sixteen-bit Program Counter and “Data Pointer™
registers.

AFN-01502A-08

Page 141 of 264

intal.

Arithmetic Logic Unit

The ALU can perform (as the name implies) arithmetic
and logic functions on eight-bit variables. The former
include basic addition, subtraction, multiplication. and
division: the latter include the logical operations AND,
OR, and Exclusive-OR, as well as rotate, clear, comple-
ment. and so forth. The ALU also makes conditional
branching decisions, and provides data paths and tem-
porary registers used for data transfers within the system.
Other instructions are built up from these primitive func-
tions: the addition capability can increment registers or
automatically compute program destination addresses;
subtraction is also used in decrementing or comparing the
magnitude of two variables.

These primitive operations are automatically cascaded
and combined with dedicated logic to build complex
instructions such as incrementing a sixteen-bit register
pair. To execute one form of the compare instruction, for
example, the 8051 increments the program counter three
times, reads three bytes of program memory. computes a
register address with logical operations, reads internal
data memory twice, makes an arithmetic comparison of
two variables, computes a sixteen-bit destination address,
and decides whether or not to make a branch—all in two
microseconds!

An important and unique feature of the MCS-51 archi-
tecture is that the ALU can also manipulate one-bit as
well as eight-bit data types. Individual bits may be set,
cleared, or complemented, moved, tested. and used in
logic computations, While support for a more primitive
data type may initially seem a step backwards in an era
of increasing word length, it makes the 8051 especially
well suited for controller-type applications. Such algo-
rithms inherently involve Boolean (true/false) input
and output variables, which were heretofore difficult to
implement with standard microprocessors. These features
are collectively referred to as the MCS-51™ “Boolean
Processor.” and are described in the so-named chapter
to come.’

Thanks to this powerful ALU, the 8051 instruction set
farcs well at both real-time control and data intensive
algorithms. A total of 5! separate operations move and
manipulate three data types: Boolean (1-bit). byte (8-bit),
and address (16-bit). All told. there are eleven addressing
modes-—seven for data. four for program sequence con-
trol (though only eight are used by more than just a few
specialized instructions). Most operations allow several
addressing modes, bringing the total number of instruc-
tions (operation;addressing mode combinations) to 111,
encompassing 255 of the 256 possible eight-bit instruc-
tion opcodes.

Instruction Set Overview

Table 4 lists these 111 instructions classified into five
groups:

Page 142 of 264

AP-69

® Arithmetic Operations

® Logical Operations for Byte Variables

® Data Transfer Instructions

® Boolean Variable Manipulation

® Program Branching and Machine Control

MCS-48™ programmers perusing Table 4 will notice the
absence of special categories for Input/OQutput. Timer/
Counter, or Control instructions. These functions are all
still provided {and indeed many new functions are added),
but as special cases of more generalized operations in
other categories. To explicitly list all the useful instruc-
tions involving 1,0 and peripheral registers would require
a table approximately four times as long.

Observant readers will also notice that all of the 8048's
page-oriented instructions (conditional jumps, JMPP,
MOVP. MOVP3} have been replaced with corresponding
but nop-paged instructions. The 8051 instruction set is
entirely non-page-oriented. The MCS-48™ “MOVP”
instruction replacement and all conditional jump instruc-
tions operate relative to the program counter, with the
actual jump address computed by the CPU during instruc-
tion execution. The “MOVP3" and “*JMPP" replacements
are now made relative to another sixteen-bit register.
which allows the effective destination to be anywhere in
the program memory space, regardless of where the
instruction itself is located. There are even three-byte
jump and call instructions allowing the destination to be
anywhere in the 64K program address space.

The instruction set is designed to make programs efficient
both in terms of code size and execution speed. No
instruction requires more than three bytes of program
memory, with the majority requiring only one or two
bytes. Virtually all instructions execute in either one or
two instruction cycles——one or two microscconds with
a 12-MHz crystal—with the sole exceptions (multiply
and divide) completing in four cycles.

Many instructions such as arithmetic and logical func-
tions or program control, provide both a short and a long
form for the same operation, allowing the programmer
to optinrize the code produced for a specific application.
The 8051 usually fetches two instruction bytes per instruc-
tion cycle. so using a shorter form can lead to faster
execution as well.

For example. any byte of RAM may be loaded with a
constant with a three-byte, two-cycle instruction, but the
commonly used “working regigters” in RAM may be
initialized in one cycle with a twe-byte form. Any bit
anywhere on the chip may be set. cleared. or comple-
mented by a single three-byte logical instruction using
two cycles. But critical control bits, ;0 pins, and soft-
ware flags may be controlied by two-byte. single cycle
instructions. While three-byte jumps and calls can “go
anywhere™ in program memory, nearby sections of code
may be reached by shorter relative or absolute versions.

AFN-01502A-09

AP-69

ln ®

(MSB) (LSB}
LCV l ACI FO | RSiIRSOl OVL— ! P I

Symbol Position Name and Significance

Y PSW.7 Carry flag.
Set/cleared by hardware or software
during certain arithmetic and {ogical
instructions,

AC PSW.6 Auxiliary Carry flag.

Set/cleared by hardware during addition
or subtraction instructions to indicate
carry or borrow out of bit 3

Fo PSW.5 Flag ¢

Set/cleared/tested by software as a
user-defined status {lag

RS1 PSW4 Register bank Select control bits 1 & 0.
Set/cleared by software to determine

RS PSW.3 working register bank (sce Note).

Symbol Position Name and Significance

oV PSW.2 Overtlow flag.
Set/cleared by hardware during arith-
metic instructions to indicate overflow
conditions.

PSW.I (reserved)

P PSW.0 Parity flag.

Set/cleared by hardware each instruc-
tion cycle to indicate an odd/even
number of “one™ bits in the accumu-
lator, i.e., even parity.

Note— the contents of {RS1, RS0) enable the
working register banks as follows:

(0.0) --Bank 0 (00H-07H)
0,1) Bank | {08H-0FH)
(1.0y—Bank 2 (IGH-17H)
(L.1) -Bank 3 (18H-IFH)

Figure 4. PSW—Program Status Word Organization

A significant side benefit of an instruction set more
powerful than those of previous single-chip microcom-
puters is that it is easier to generate applications-oriented
software. Generalized addressing modes for byte and bit
instructions reduce the number of source code lines
written and debugged for a given application. This leads
in turn to proportionately lower software costs, greater
reliability. and faster design cycles.

Accumulator and PSW

The 8051, like its 8048 predecessor, is primarily an
accumulator-based architecture: an eight-bit register
called the accumulator (“A™) holds a source operand and
receives the result of the arithmetic instructions (addition,
subtraction, multiplication, and division). The accumula-
tor can be the source or destination for logical operations
and a number of special data movement instructions,
including table look-ups and external RAM expansion.
Several functions apply exclusively to the accumulator:
rotates, parity computation, testing for zero, and so on.

Many instructions implicitly or explicitly affect (or are
affected by) several status flags, which are grouped
together to form the Program Status Word shown in
Figure 4,

(The period within entries under the Position column is
called the “dot operator,” and indicates a particular bit
position within an eight-bit byte. “PSW.5" specifies bit 5
of the PSW. Both the documentation and ASMS1 use
this notation.)

The most “active” status bit is called the carry flag (abbre-
viated “C™). This bit makes possible multiple precision
arithmetic operations including addition, subtraction,

Page 143 of 264

and rotates. The carry also serves as a “Boolean accumu-
lator™ for one-bit logical operations and bit manipulation-
instructions. The overflow flag (OV) detects when arith-
metic overflow occurs on signed integer operands, making
two's complement arithmetic possible. The parity flag
(P) is updated after every instruction cycle with the even-
parity of the accumulator contents.

The CPU does not control the two register-bank select
bits, RSl and RSO. Rather, they are manipulated by
software to ecnable one of the four register banks. The
usage of the PSW flags is demonstrated in the Instruc-
tion Set chapter of this Note.

Even though the architecture is accumulator-based. pro-
visions have been made to bypass the accumulator in
common instruction situations. Data may be moved from
any location on-chip to any register, address. or indirect
address (and vice versa), any register may be loaded with
a constant, etc., all without affecting the accumulator.
Logical operations may be performed against registers or
variables to alter fields of bits—without using or affecting
the accumulator. Variables may be incremented, decre-
mented, or tested without using the accumulator. Flags
and control bits may be manipulated and tested without
affecting anything else.

Other CPU Registers

A special eight-bit register (“B”) serves in the execution of
the multiply and divide instructions. This register is used
in conjunction with the accumulator as the second input
operand and to return eight-bits of the result.

The MCS-51 family processors include a hardware stack
within internal RAM, useful for subroutine linkage,
AFN-01502A-10

intgl.

passing parameters between routines, temporary variable
storage, or saving status during interrupt service routines.
The Stack Pointer (SP) is an eight-bit pointer register
which indicates the address of the last byte pushed onto
the stack. The stack pointer is automatically incremented
or decremented on all push or pop instructions and all
subroutine calls and returns. In theory, the stack in the
8051 may be up to a full 128 bytes deep. (In practice, even
simple programs would use a handful of RAM locations
for pointers. variables, and so forth—reducing the stack
depth by that number.) The stack pointer defaults to 7 on
reset, so that the stack will start growing up from location
8. just like in the 8048. By altering the pointer contents the
stack may be relocated anywhere within internal RAM.

Finally, a 16-bit register called the data pointer (DPTR)
serves as a base register in indirect jumps, table look-up
instructions, and external data transfers. The high- and
low-order halves of the data pointer may be manipulated
as separate registers (DPH and DPL. respectively) or
together using special instructions to load or increment
all sixteen bits, Unlike the 8048, look-up tables can there-
fore start anywhere in program memory and be of
arbitrary length.

SR
il

Memory Spaces

Program memory is separate and distinct from data
memory. Each memory type has a different addressing
mechanism, different control signals, and a different
function,

The program memory array (ROM or EPROM), like an
elephant. is extremely large and never forgets informa-
tion, even when power is removed. Program memory is
used for information needed each time power is applied:
initialization values, calibration constants, keyboard
layout tables, etc., as well as the program itself. The pro-
gram memory has a sixteen-bit address bus; its elements

Page 144 of 264

AP-69

are addressed using the Program Counter or instructions
which generate a sixteen-bit address.

To stretch our analogy just a bit, data memory is like a
mouse: it is smaller and therefore quicker than program
memory, and it goes into a random state when electrical
power is applied. On-chip data RAM is used for variables
which are determined or may change while the program
is running.

A computer spends most of its time manipulating vari-
ables. not constants, and a relatively small number of
variables at that. Since eight-bits is more than sufficient
to uniquely address 128 RAM locations, the on-chip
RAM address register is only one byte wide. In contrast
to the program memory, data memory accesses need a
single eight-bit value --a constant or another variable—
10 specify a unique location. Since this is the basic width
of the ALU and the different memory types, those
resources can be used by the addressing mechanisms,
contributing greatly to the computer’s operating efficiency.

The partitioning of program and data memory is extended
to off-chip memory expansion. Each may be added
independently, and each uses the same address and data
busses, but with different control signals. External pro-
gram memory is gated onto the external data bus by the
PSEN (Program Store Enable) coatrol output, pin 29.
External data memory is read onto the bus by the RD
output, pin 17, and written with data supplied from the
microcomputer by the WR output, pin 16. (There is no
control pin to write external program ROM, which is by
definition Read Only.) While both types may be expanded
to up to 64K bytes, the external data memory may
opticnally be expanded in 256 byte “pages” to preserve
the use of P2 as an 10 port. This is useful with a relatively
small expansion RAM (such as the Intel® 8155) or for
addressing external peripherals.

Single-chip controller programs are finalized during the
project design cycle, and are not modified after produc-
tion. Intel's single-chip microcomputers are not “von
Neumann” architectures common among main-frame
and mini-computer systems: the MCS-51™ processor
dara memory—on-chip and external—may nor be used
for program code. Just as there is no write-control signal
for program memory, there is no way for the CPU to
execute instructions out of RAM. In return, this con-
cession allows an architecture optimized for efficient
controller applications: a large, fixed program located in
ROM, a hundred or so variables in RAM, and different
methods for efficiently addressing each.

{Von Neumann machines are helpful for software develop-
ment and debug. An 805! system could be modified to
have a single off-chip memory space by gating together
the two memory-read controls (PSEN and RD) with a
two-input AND gate (Figure 5). The CPU could then
write data into the common memory array using WR and

AFN-01502A-11

AP-69

l—————————
wr WEWWR 10
8051 MEMORY

AD :'D__. r—— L0\
PFSEN

Figure 5. Combining External Program and Data
Memory Arrays

external data transfer instructions, and read instructions
or data with the AND gate output and data transfer or
program memory look-up instructions.)

In addition to the memory arrays. there is (yet) another
(albeit sparsely populated) physical address space. Con-
nected to the internal data bus are a score of special-
purpose eight-bit registers scattered throughout the chip.
Some of these—B, SP, PSW, DPH, and DPL--have
been discussed above. Others—I/O ports and peripheral
function registers—will be introduced in the following
sections. Collectively, these registers are designated as the
“special-function register” address space. Even the accu-
mulator is assigned a spot in the special-function register
address space for additional flexibility and uniformity.

Thus, the MCS-51™ architecture supports several distinct
“physical” address spaces, functionally separated at the
hardware level by different addressing mechanisms, read
and write control signals, or both:

¢ On-chip program memory;

* On-chip data memory;

e Off-chip program memory;

o Off-chip data memory;

& On-chip special-function registers.

What the programmer sees, though, are “logical” address
spaces. For example, as far as the programmer is
concerned, there is only one type of program memory,
64K bytes in length. The fact that it is formed by com-
bining on- and off-chip arrays (split 4K/60K on the 8051
and 8751) is “invisible™ to the programmer; the CPU
automatically fetches each byte from the appropriate
array, based on its address.

(Presumably, future microcomputers based on the
MCS-51™ architecture may have a different physical split.
with more or less of the 64K total implemented on-chip.
Using the MCS$-48™ family as a precedent, the 8048’s 4K
potential program address space was split 1K/ 3K between
on- and off-chip arrays; the 8049’s was split 2K/2K.)

Why go into such tedious details about address spaces?
The logical addressing modes are described in the Instruc-
tion Set chapter in terms of physical address spaces.
Understanding their differences now will pay off in under-
standing and using the chips later.

10

Page 145 of 264

][]
e T
857 comim |

Input/Output Ports

The MCS-51™ 1/0 port structure is extremely versatile.
The 8051 and 8751 each have 32 1/0 pins configured as
four eight-bit parallel ports (PO, P1, P2, and P3). Each pin
will input or output data (or both) under software con-
trol, and each may be referenced by a wide repertoire of
byte and bit operations.

In various operating or expansion modes. some of these
1/0 pins are also used for special input or output func-
tions. Instructions which access external memory use
Port 0 as a multiplexed address,/data bus: at the beginning
of an external memory cycle eight bits of the address are
output on P0; later data is transterred on the same eight
pins. External data transfer instructions which supply
a sixteen-bit address, and any instruction accessing
external program memory, output the high-order eight
bits on P2 during the access cycie. (The 8031 a/ways uses
the pins of PO and P2 for external addressing, but Pl and
P3 are available for standard 1/0.)

The eight pins of Port 3 (P3) each have a special function.
Two external interrupts, two counter inputs. two serial
data lines, and two timing control strobes use pins of P3
as described in Figure 6. Port 3 pins corresponding to
functions not used are available for conventional 1/0.

Even within a single port. /O functions may be combined
in many ways: input and output may be performed using
different pins at the same time, or the same pins at different
times; in parallel in some cases, and in serial in others: as
test pins, or (in the case of Port 3) as additional special
functions.

AFN-01502A-12

AP-69

(MsB) (LSB)

l nulwn['rvl vo[mn[mwlunlaxo]
Symbol Position Name and Significance

RD P37 Read data control output. Active low

puise generated by hardware when
external data memory is read.

Write data control output. Active low
pulse generated by hardware when
external data memory is written.

Ti P35 Timericounter 1 external input or test
pin.

TO P34 Timer;counter 0 external input or test

pin.

Symbol Position Name and Significance

INTI P33 Interrupt 1 input pin. Low-level or
falling-edge triggered.

INTO P32 Interrupt 0 input pin. Low-level or
falling-edge triggered.

TXD P3.1 Transmit Data pin for serial port in
UART mode. Clock output in shift
register mode.

RXD P30 Receive Data pin for serial port in

UART mode. Data 1:O pin in shift
register mode.

Figure 6. P3—Alternate Special Functions of Port 3

Special Peripheral Functions

There are a few special needs common among control-
oriented computer systems:

® keeping track of elapsed real-time;
maintaining a count of signal transitions;
measuring the precise width of input pulses:
communicating with other systems or people:
closely monitoring asynchronous external events.

Untii now, microprocessor systems needed peripheral
chips such as timer/counters, USARTS, or interrupt con-
trollers to meect these needs. The 8051 integrates ail of
these capabilities on-chip!

Timer/Counters

There are two sixteen-bit multiple-mode Timer/Counters
on the 8051, each consisting of a “High™ byte (correspond-
ing to the 8048 “T" register) and a low byte (similar to the
8048 prescaler, with the additional flexibility of being

Page 146 of 264

software-accessible). These registers are called. naturally
enough, THO, TLO, THI, and TLI. Each pair may be
independently software programmed to any of a dozen
modes with a mode register designated TMOD (Figure
7)., and controlled with register TCON (Figure 8).

The timer modes can be used to measure time intervals,
determine pulse widths, or initiate events, with one-micro-
second resolution, up to a maximum interval of 65,536
instruction cycles (over 65 milliseconds). Longer delays
may easily be accumulated through software. Configured
as a counter, the same hardware will accumulate external
events at frequencies from D.C. to 500 KHz. with up to
sixteen bits of precision.

Serial Port Interface

Each microcomputer contains a high-speed, full-duplex.
serial port which is software programmable to function
in four basic modes: shift-register 1;0 expander, 8-bit
UART. 9-bit UART, or interprocessor communications
link. The UART modes will interface with standard 1/O
devices (e.g. CRTs, teletypewriters, or modems) at data
rates from 122 baud to 31 kilobaud. Replacing the
standard 12 MHz crystal with a 10.7 MHz crystal allows
110 baud. Even or odd parity (if desired) can be included
with simple bit-handling software routines. Inter-processor
communications in distributed systems takes place at 187
kilobaud with hardware for automatic address/data
message recoguition. Simple TTL or CMOS shift registers
provide low-cost }/O expansion at a super-fast | Mega-
baud. The serial port operating modes are controlled by
the contents of register SCON (Figure 9).

Iriterrupt Capability and Control

(Interrupt capability is generally considered a CPU
function. It is being introduced here since, from an appli-
cations point of view, interrupts relate more closely to
peripheral and system interfacing.)

AFN-01502A-13

11

AP-69

INtal.

(MSB) {L8B)
{oare] cr [wi | mo Tamre| ca T [mo |
J

TIMER 1 TIMER 0

GATE Gating control. When set, Timer/counter
“x" is enabled only while “INTX" pin is
high and “TRx" control bit is set. When
cleared, timer/counter is enabled
whenever “TRX" control bit is set.

Cc/T Timer or Counter Selector. Cleared for
Timer operation (input from internal
system clock). Set for Counter opera-
tion {input from “Tx" input pin).

M1

Mo

Operating Mode
MCS-48 Timer. “TLx" serves as five-
bit prescaler.

16-bit timer-counter. “THx™ and “TLx"
are cascaded: there is no prescaler.

8-bit auto-reload timer counter. “THx"
holds a value which is to be reloaded
into “TLx" each time it overflows.

(Timer 0) TLO is an eight-bit timer
counter controlled by the
standard Timer 0 control
bits.

THO is an eight-bit timer
only controlled by Timer !
control bits.

(Timer 1) Timer.counter | stopped.

Figure 7. TMOD —Timer/Counter Mode Register

l TF1 l TR] TFO I TROTIEY W l tE0 T(%

Symbot Position Name and Signiticance

TF! TCON.7 Timer | overflow Flag. Set by hardware
on timer/counter overflow. Cleared
when interrupt processed.

TRt TCON.6 Timer | Run control bit. Set/cleared
by software to turn timer/counter
on/off.

TF0 TCON.5 Timer 0 overflow Flag. Set by hardware
on timer/counter overflow. Cleared
when interrupt processed.

TRO TCON.4 Timer 0 Run control bit. Set/cleared by
software to turn timer/counter on;off.

Symbol Position

1E1

Tl

tEU

1TO

TCON.3

TCON.2

TCON.I

TCON.O

Name and Significance

Interrupt | Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt 1 Type control bit. Set cleared
by software to specify falling edge low
level triggered external interrupts.

Interrupt 0 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed

Interrupt 0 Type control bit. Set cleared
by software to specify falling edge low
level iriggered external interrupts.

Figure 8. TCON~—Timer/Counter Control/Status Register

12

Page 147 of 264

AFN-01502A-14

intel.

AP-69

(MSB) (LSB)

ISHOISMIISMZIHENITBQIRB!I T I Hll

Symbol Position Name and Significance

SM0 SCON.7 Serial port Mode control bit 0.
Set/cleared by software (see note).

SM1i SCON.6 Serial port Mode control bit 1.
Set/cleared by software (see note).

SM2 SCON.S Serial port Mode control bit 2. Set by
software to disable reception of frames
for which bit 8 is zero.

REN SCON.4 Receiver Enable control bit. Set/cleared
by software to enable/disable serial
data reception.

TBS SCON.3 Transmit Bit 8. Set/cleared by hard-
ware 1o determine state of ninth data
bit transmitted in 9-bit UART mode.

Symbol Position Name and Significance

RB8 SCON.2 Receive Bit 8. Set/cleared by hardware
to indicate state of ninth data bit
received.

Tl SCON.} Transmit Interrupt flag. Set by hard-

ware when byte transmitted. Cleared

by software after servicing.

Rl SCON.0 Received Interrupt flag. Set by hard-
ware when byte received. Cleared by
software after servicing.

Note— the state of (SM0,SMI) selects:
(0.0)-—Shift register 1-O expansion.
(0.1)—8 bit UART, variable data rate.
(1.0)—9 bit UART, fixed data rate.
(1.)—9 bit UART, variable data rate.

Figure 9. SCON—Serial Port Control/Status Register

These peripheral functions allow special hardware to
monitor real-time signal interfacing without bothering
the CPU. For example, imagine serial data is arriving from
one CRT while being transmitted to another, and one
timer/counter is tallying high-speed input transitions
while the other measures input pulse widths. During all
of this the CPU is thinking about something else.

But how does the CPU know when a reception, transmis-
sion, count, or pulse is finished? The 805! programmer
can choose from three approaches.

TCON and SCON contain status bits set by the hardware
when a timer overflows or a serial port operation is com-
pleted. The first technique reads the control register into
the accumulator, tests the appropriate bit, and does a
conditional branch based on the result. This “polling”
scheme (typically a three-instruction sequence though
additional instructions to save and restore the accu-
mulator may sometimes be neceded) will surely be
familiar to programmers used to multi-chip microcom-
puter systems and peripheral controller chips. This
process is rather cumbersome, especially when monitoring
multiple peripherals.

As a second approach, the 8051 can perform a conditional
branch based on the state of any control or status bit or
input pin in a single instruction; a four instruction
sequence could poll the four simultaneous happenings
mentioned above in just eight microseconds.

Unfortunately, the CPU must still drop what it's doing
to test these bits. A manager cannot do his own work
well if he is continuously monitoring his subordinates;
they should interrupt him (or her) only when they need
attention or guidance. So it is with machines: ideally, the
CPU would not have to worry about the peripherals until
they require servicing. At that time, it would postpone the

Page 148 of 264

background task long enough to handle the appropriate
device, then return to the point where it left off.

This is the basis of the third and generally optimal solu-
tion, hardware interrupts. The 8051 has five interrupt
sources: one from the serial port when a transmission or
reception is complete, two from the timers when over-
flows occur, and two from input pins INTO and INTI.
Each source may be independently enabled or disabled
to allow polling on some sources or at some times, and
each may be classified as high or low priority. A high
priority source can interrupt a low priority service
routine; the manager’s boss can interrupt conferences
with subordinates. These options are selected by the inter-
rupt enable and priority control registers, IE and IP
(Figures 10 and 11).

Each source has a particular program memory address
associated with it (Table 3). starting at 0003H (as in the
8048) and continuing at eight-byte intervals. When an
event enabled for interrupts occurs the CPU automatically
executes an internal subroutine call to the corresponding
address. -A user subroutine starting at this location (or
jumped to from this location) then performs the instruc-
tions to service that particular source. After completing
the interrupt service routine, execution returns to the
background program.

Table 3. 8051 Interrupt Sources and Service Vectors

Interrupt Service Routine

Source Starting Address
(Reset) 0000H
External 0 0003H
Timer, Counter 0 000BH
External | 0013H
Timer/ Counter | 001BH
Serial Port 0023H

AFN-01502A-15

13

AP-69 |n .

(M58) (LS8)
lEAI - I - I ES IET‘IE!I'ETG]EXD
Symbot Position Name and Significance Symbol Position Name and Significance
EA IE.7 Enable All control bit. Cleared by EX1 IE.2 Enable External interrupt | control bit.
software to disable all interrupts, Set cleared by software to enabie
independent of the state of 1E.4-1E.0. disable interrupts from INTL.
- 1E.6 {reserved) ETO 1E.1 Enable Timer 0 control bit. Set cleared
— IE.S (reserved) by software to enable disabie interrupts
from timer counter 0
ES IE.4 Enable Serial port control bit.
Set/cleared by software to enable EX0 1E.0 Enable External interrupt 0 control bit.
disable interrupts from T1 or RI flags. Set cleared by software to enable
disable interrupts from INTO.
ET! 1E.3 Enable Timer | control bit. Set/cleared

by software to enable/disable interrupts
from timer/counter 1.

Figure 10. IE—Interrupt Enable Register

(MsB) (L38)

I—I ,[—Ips]pn]pnlmevan

Symbol Position Name and Significance Symbol Position Name and Significance

— 1P.7 (reserved) PX1 IP.2 External interrupt 1 Priority control

— IP.6 (reserved) bit. Set cleared by software to specify

— IP.5 (reserved) high tow priority interrupts for INTI.

PS IP.4 Serial port Priority control bit. PTO 1P Timer 0 Priority control bit.
Set/cleared by software to specify Set cleared by software to specify
high/low priority interrupts for Serial high low priority interrupts for
port. timer counter (.

PTI IP.3 Timer | Priority control bit. PX0 1P.G External interrupt 0 Priority control
Set/cleared by software to specify bit. Set cleared by software to specify
high, low priority interrupts for high low priority interrupts for INTO,

timer/counter 1.

Figure 11. |P—Interrupt Priority Control Register

AFN-01502A-16

14

Page 149 of 264

AP-69

Table 4. MCS-51™ Instruction Set Description

ARITHMETIC OPERATIONS

LOGICAL OPERATIONS

Mnemonic Destination Byte €
ANL ARn AND register 10 Accumulator 1
ANE Adirect AND direct byte 1o Accumulator 2
AN A.@Ri AND indirect RAM to Accumulator !
AN A¥data AND immediate data w Accumulator 2
AN direct.A AND Accumulator to direct byte 2
ANE direct *duta AND immediate data to direct byte 3
ORt ARn OR register to Accumulator !
ORt A direct OR direct byte to Accumolator 2
ORE A@RL OR indirect RAM to Accumulator 1
ORI AMdata OR \mmediate data 10 Accumulator 2
ORL direct. A OR Accumulator to direct hyte 2
ORL direct Bdata OR immediate data to direct byte 3
XRF A.Rn Exclusive-OR register to Accumulator 1
XRI Adirect Exclusive-OR direct byte to Accumulator 2
XR! A@Ri Exclusive-OR indirect RAM 1o A i
XRt ARdata Exclusive-OR immediate data to A 2
XRI direct. A Exclusive-OR Accumulator to direct byte 2
XR1 direct #data Exclusne-OR rmmediate data to direct 3
CiR A Clear Accumulator i
CPL A Complement Accumulator 1
Rl A Rotate Accumulator 1.eft i
RIC A Rotate A [eft through the Carry flag i
RR A Rotate Accumulator Right 1
RRC A Rotate A Right through Carry flag i
SWAP A Swap nibbles within the Accumutator i

DATA TRANSFER

Mnemonie Deseription Byte (
MOV ARn Move register to Accumalator 1
MOV Adirect Muse direct byte to Accumulator 2
MOV A@Ri Move indirect RAM (o Accumulator 1
MOV Asdata Move immediate data 10 Accumnulator 2
MOV RnA Move Accumulator to register 1
MOV Ra.direct Move direct byie wo register 4
MOV Ra.#data Move immediate data to register 2
MOV direct. A Move Accumulator to direct byte 2
MOV diect.Rn Move register to direct byte 2
MOV i i Muave dircet byte 1o direet 3
MOV Move indirect RAM (0 direct byte 2
MOV direct Fdata Move immediate data o direct bye 3
MOV @RI A Move Accumulator to indirect RAM !
MOV @Ridirect Move direct byte o indirect RAM 2
MOV (@R Bduta Move immediate data 10 indirect RAM 2
MOV DPTR.#datal6 1oad Duta Pointer with 4 16-bit constant 3

e e 1 e e g

10— 1 = F 10 b g) i

Muaemonic Description Byte Cye
ADD ARn Add register 1o Accumulator 1 t
ADD Adirect Add direct byie w Accunulator 2 [}
ADD A.@Ri Add indirect RAM 10 Accumulator 1 1
ADD Asdata Add immediawe data 1 Accumulator 2 t
ADDC ARa Add register to Accumulator with Carry 1 1
ADDC Adireet Add direct byte to A with Carry flag 2 I
ADDC AJ@Ri Add indirect RAM 10 A with Carry flag ! t
ANDC A #data Add immediate data 10 A with Carry flag 2 [}
SUBB ARn Subtract register from A with Borrow 1 I
SUBB Adirect Subtract direct byte from A with Borrow 2 1
SUBR A.@Ri Subtract indirect RAM from A w Borrow 1|
SUBB Axdata Subtract imimed. data from A w Borrow 2]
INC A Increment Accumulator | i
INC Rn Increment register 1 1
INC direct Increment direct byte 2 1
INC @R Inerement indirect RAM i i
DEC A Decrement Accumulator | [}
DEC Rn Decrement register | 1
DEC direct Decrement direct byte 2
DEC @R Decrement indirect RAM !]
INC DPTR Increment Data Pointer ! 2
MU AB Muluply A& B 1 4
DIV AB Divide A by R 14
DA A Decimal Adjust Accumulator ! 1

<

3

DATA TRANSFER (cont.)

Mnemonic Description Byte Cye
MOVC A @A+DPTR Move Code byte relative to DPTR to A 1 2
MOVC A @A+PC Move Code byie relative 1o PC 10 A] 2
MOVX A.@Ri Move External RAM (8-bit addr) 1o A t 2
MOVX A.@DPTR Move External RAM (16-bit addr) to A i 2
MOVX @Ri.A Mave A (o External RAM (8-bit addr) o2
MOVX @DPTR.A Move A to Fxternal RAM (16-bit addc) t 2
PUSH direct Push direct byte onto stack 2 2
POP direct Pop direct byte from stack 2 2
XCH ARn Exchange register with Accumulator i i
XCH Adirect Exchange direct byte with Accumulator 2 1
XCH A.@Ri £xchange indircet RAM with A [
XCHD A @Ri Exchange low-order Digit ind. RAM w A 1 1
BOOLEAN VARIABLE MANIPULATION

Mnemonic Description Byte Cyc
CLR C Clear Carry flag ! {
CLR Clear direct bit 2 |
SFTB Set Carry flag [
SETB Set direct Bit 2 (
CP1 Complement Carry flag [
CPl Complement direct bit 2 |
AN1 AND direct bit to Carry flag 2 2
ANI AND complement of direct bit to Carry 22
ORI OR direct bit 1o Carry flag 22
ORI OR complement of direct bt 1o Carry 202
MOV Jbit Move direct bit to Carry flag 2 |
MOV b€ More Carry flag to direct bt 2 2
PROGRAM AND MACHINE CONTROL.

Mnemonic Description Byte Cxe
ACALL addrlt Absolute Subroutine Call 22
LCALL addrie L.ong Subroutine Call 3 2
RET Return from subroutine [
RETH Return from iaterrupt i 2
AIMP addrll Absolute Jump 2 2
LIMP addrl6 Long Jump 32
SIMP el Short Jump (relative addr) 2 2
mr @A+DPIR Jump indirect relative to the DPTR 1 2
i 4 rel Jump if Accumulator is Zero 2 2
INZ rel Jump if Accumulator ts Not Zero 2 2
3 rel Jump i Carry flag is set 2 2
INC rel Jump if No Carry flag 22
B bit.rel Jump if direct Bit set ER
INB bit.rel Jump if direct Bit Not set 2
JRC bit.rel Jump if dircct Bit is sct & Clear bit : 2
CINE Adirect.rel Compare direct to A & Jump if Not Equal 3 2
CINE Atdatarel Comp. immed. 10 A & Jump \f Not Equal 3 2
CINE Rosdaterel Comp. immed to reg. & Jump if Not Equal 3 2
CINE @Risdatarel Comp. immed o ind. & Jump if Not Equal 3 2
DINZ Rael Decrement register & lump if Not Zero 2 2
DINZ direct.rel Decrement direct & Jump if Not Zero 3 2
Nop No operation L

Notes on data addressing modes:
Rn Working register RO-R7

direct 128 internal RAM Jocations. any 1 O port. control or status register
@RI Indirect mternal RAM location addressed by register RO or R
sdata K-hit constant included in instruction

Hdatat6 16-bit consant included as bytes 2 & 3 of instruction

hit 12% software flags. any | O pin, control or status bit

Notes on program addressing modes:

addrlh Destination address for LCALL & LIMP may be anywhere within
the 64-Kilobyie program memory address space.
addrll - Destination address for ACALL & AJMP will be within the same

2-Kilohyte page of program memary as the finst hyte of the tollowing
instrucuion

SIMP and all condinonal jumps include an 8-t offset byte. Range i
+127 -12% hytes relative 1o first byte of the Tollowing instruction

ref

Al mnemeonics copyrighted @ lotel Corporation 1979

3. INSTRUCTION SET AND ADDRESSING MODES

The 8051 instruction set is extremely regular, in the sense
that most instructions can operate with variables from
several different physical or logical address spaces. Before
getting deeply enmeshed in the instruction set proper. it
is important to understand the details of the most
common data addressing modes. Whereas Table 4 sum-
marizes the instructions set broken down by functional

Page 150 of 264

group, this chapter starts with the addressing mode
classes and builds to include the related instructions.

Data Addressing Modes

MCS-51 assembly language instructions consist of an
operation mnemonic and zero to three operands separated
by commas. In two operand instructions the destination
is specified first, then the source. Many byte-wide data

AFN-01502A-17

15

AP-69

operations (such as ADD or MOYV) inherently use the
accumulator as a source operand and/or to receive the
result. For the sake of clarity the letter “A™ is specified in
the source or destination field in all such instructions.
For example. the instruction,

ADD A<source>

will add the variable<source>to the accumulator. leaving
the sum in the accumulator.

The operand designated “<source>" above may use any
of four common logical addressing modes:

® Register—one of the working registers in the cur-
rently enabled bank.

® Direct—an internal RAM location, 1O port, or
special-function register.

® Register-indirect--an internal RAM location,
pointed to by a working register,

® Immediate data—an eight-bit constant incorporated
into the instruction.

The first three modes provide access to the internal RAM
and Hardware Register address spaces, and may therefore
be used as source or destination operands; the last mode
accesses program memory and may be a source operand
only.

(It is hard to show a “typical application™ of any instruc-
tion without involving instructions not yet described. The
following descriptions use only the self-explanatory ADD
and MOV instructions to demonstrate how the four
addressing modes are specified and used. Subsequent
examples will become increasingly complex.)

Register Addressing

The 8051 programmer has access to eight “working regis-
ters,” pumbered RO-R7. The least-significant three-bits of
the instruction opcode indicate one register within this
logical address space. Thus, a function code and operand
address can be combined to form a short (one byte)
instruction (Figure 12.a).

The 8051 assembly language indicates register addressing
with the symbol Rn (where n is from 0 to 7) or with a
symbolic name previously defined as a register by the
EQUate or SET directives. (For more information on
assembler directives see the Macro Assembler Reference
Manual.)
Example | —Adding Two Registers Together

i REGADR ADD CONTENTS OF REGISTER 1

N YO CONTENTS OF REGISTER O

REGADR MOV ARO

ADD A RL
oV RO, &

There are four such banks of working registers, only one
of which is active at a time. Physically, they occupy the
first 32 bytes of on~chip data RAM (addresses 0-1FH).
PSW bits 4 and 3 determine which bank is active. A

16

Page 151 of 264

intel.

hardware reset enables register bank 0: to select a
different bank the programmer modifies PSW bits 4 and
3 accordingly.

Example 2-—Selecting Alternate Memory Banks

mov PSW. $O00100008 : SELECT BANK 2

Register addressing in the 8051 is the same as in the 8048
family, with two enhancements: there are four banks
rather than one or two. and 16 instructions (rather than
12) can access them.

Direct Byte Addressing

Direct addressing can access any on-chip variable or
hardware register. An additional byte appended to the
opcode specifies the location to be used (Figure 12.b).

Depending on the highest order bit of the direct address
byte, one of two physical memory spaces is selected
When the direct address is between 0 and 127 (Q0H-7FH)
one of the 128 low-order on-chip RAM locations is used.
(Future microcomputers based on the MCS-51™ archi-
tecture may incorporate more than 128 bytes of on-chip
RAM. Even if this is the case, only the low-order 128
bytes will be directly addressable. The remainder would
be accessed indirectly or via the stack pointer.)

Example 3 —Adding RAM Location Contents
DIRADR ADD CONTENTS OF RAM LOCATION 41H
TO CONTENTS DF RAM LOCATION 40H
leADR mav A 40H
ADD AL 4IH
MOV 40H, A
All 1/0 ports and special function. control. or status
registers are assigned addresses between (28 and 255
(80H-0FFH). When the direct address byte is between
these limits the corresponding hardware register is
accessed. For example, Ports 0 and 1 are assigned direct
addresses 80H and Y0H, respectively. A complete list is
prescnted in Table 5. Don’t waste your time trying to
memorize the addresses in Table 5. Since programs using
absolute addresses for function registers would be difficult
to write or understand, ASM51 allows and understands
the abbreviations listed instead.

Example 4 — Adding Input Port Data to Qutput Port
Data

iPRTADR ADD DATA INPUT ON PORT §
. TO DATA PREVIQUSLY OUTPUT

ON PORT O
PRTADR MOV A PO

ADD APl

oy PO, A

Direct addressing allows all special-function registers in
the 8051 to be read, written, or used as instruction
operands. In general. this is the on/y method used for
accessing 170 ports and special-function registers. If direct
addressing is used with special-function register addresses
other than those listed. the result of the instruction is

undefined.
AFN-01502A-18

intal.

The 8048 does not have or need any generalized direct
addressing mode. since there are only five special registers
(BUS. P1, P2, PSW, & T) rather than twenty. Instead, 16
special 8048 opcodes control output bits or read or write
each register to the accumulator. These functions are all
subsumed by four of the 27 direct addressing instructions
of the 8051.

Table 5. 8051 Hardware Register Direct Addresses

Register | Address Function
Po 8OH* Port 0
SP &1H Stack Pointer
DPIL 82H Data Pointer (Low)
DPH 83H Data Pointer (High)
TCON S8H* Timer register
T™OD 89H Timer Mode register
TLO 8AH Timer 0 Low byte
It §BH Timer | Low byte
THO 8CH Timer 0 High byte
THI {DH Timer 1 High byte
idl IOH* Port |
SCON 98H* Serial Port Control register
SBUF 99H Sertal Port data Buffer
P2 OAOH* Port 2
IE OABH* Interrupt Enable register
P3 OBOH* Port 3
1P OBSH* {nterrupt Priority register
PSW ODOH* Program Status Word
ACC OEOH* Accumulator (direct address)
B OFOH* B register

"= bit addressable register.

Register-indirect Addressing

How can you handle variables whose locations in RAM
are determined. computed. or modified while the program
is running? This situation arises when manipulating
sequential memory locations. indexed entries within tables
in RAM, and multiple precision or string operations.
Register or Direct addressing cannot be used. since their
operand addresses are fixed at assembly time.

The 80S1 solution 1s “register-indirect RAM addressing.”
RO and R1 of each register bank may operate as index
or pointer registers, their contents indicating an address
into RAM. The internal RAM location so addressed is
the actual operand used. The least significant bit of the
instruction opcode determines which register is used as
the “pointer” (Figure 12.¢).

In the 8051 assembly language, register-indirect addressing
is represented by a commercial “at” sign (*@") preceding
RO. RI. or a symbol defined by the user to be equal to
RO or RI.

Example 5—Indirect Addressing

. INDADR ADD CONTENTS OF MEMORY LOCATION
. ADDRESSED BY REGISTER 1
TO CONTENTS OF RAM LOCATION
ADDRESSED BY REGISTER O

INDADR MOV A, @RQ
ADD A, @R1
MOV eR0. A

Page 152 of 264

AP-69

Indirect addressing on the 8051 is the same as in the
8048 family. except that all eight bits of the pointer register
contents are significant; if the contents point to a non-
existent memory location (i.c.. an address greater than
7FH on the 8051) the result of the instruction is undefined.
(Future microcomputers based on the MCS-51™ archi-
tecture could implement additional memory in the
on-chip RAM logical address space at locations above
7FH.) The 8051 uses register-indirect addressing for five
new instructions plus the 13 on the 8048.

Immediate Addressing

When a source operand is a constant rather than a vari-
able (i.e. —the instruction uses a value known at assembly
time), then the constant can be incorporated into the
instruction. An additional instruction byte specifies the
value used (Figure 12.d).

The value used is fixed at the time of ROM manufacture
or EPROM programming and may not be altered during
program execution. In the assembly language immediate
operands are preceded by a number sign (“#7). The
operand may be either a numeric string, a symbolic
variable, or an arithmetic expression using constants.

Example 6 — Adding Constants Using Immediate
Addressing
. IMMADR ADD THE CONSTANT 12 (DECIMAL)
" O THE CONSTANT 34 (DECIMAL)
LEAVE SUM IN ACCUMULATOR

1MMADR MOV A 812
400 A, %34

The preceding example was included for consistency; it
has little practical value. Instead, ASMS51 could compute
the sum of two constants at assembly time.

Example 7 —Adding Constants Using ASM5I
Capabilities
+ ASMSUM LOAD ACC WITH THE SUM OF
i THE CONSTANT 12 (DECIMAL) AND
THE CONSTANT 34 (DECIMAL)

ASMSUM MOV A #(12+34)

a) Register Addressing:

b.} Direct Addressing:

T T ¥ T T 7T T
opcode I [
| S N SO N B | !

T 1T T7T
direct address
| S W -

ADD A direct
) Register-indirect Addressing:
T T T T 7
opcode i
") 1 1 L L 1
ADD AGR i

4.) immediate Addressing:
1 1 v T 1 T T T ¥ 1 T T
opcode data
§ WS TR S T N ¥ O SN GO TR R S |

ADD A data

Figure 12. Data Addressing Machine Code Formats

AFN-01502A-19

17

AP-69

Addressing Mode Combinations

The above examples all demonstrated the usc of the four
data-addressing modes in two-operand instructions
(MOV, ADD) which use the accumulator as one
operand. The operations ADDC. SUBB. ANL, ORL,
and XRL (all to be discussed later) could be substituted
for ADD in each example. The first three modes may be
also be used for the XCH operation or. in combination
with the Immediate Addressing mode (and an additional
byte). loaded with a constant. The one-operand
instructions INC and DEC. DINZ, and CINE may all
operate on the accumulator, or may specifv the Register,
Direct. and Register-indirect addressing modes.
Exception: as in the 8048, DINZ cannot use the
accumulator or indirect addressing. (The PUSH and
POP operations cannot inherently address the
accumulator as a special register either. However, all
three can direct/v address the accumulator as one of the
twenty special-function registers by putting the symbol
“ACC™ in the operand field.)

Advantages of Symbolic Addressing

Like most assembly or higher-level programming
languages. ASM31 allows instructions or variables to be
given appropriate, user-defined symbolic names. This is
done for instruction lines by putting a label followed by a
colon () before the instruction proper. as in the above
cxamples. Such symbols must start with an alphabetic
character (remember what distinguished BACH from
OBACH?). and may include any combination of letters.
numbers, question marks (*“”") and underscores (*_*). For
very long names only the first 31 characters are relevant.
Assembly language programs may intermix upper- and
tower-case letters arbitrarily. but ASMS51 converts both
to upper-case. For example. ASMS1 will internally
process an "1 for an *i” and. of course.“A_TOOTH" for
“a_tooth.”

The underscore character makes symbols easier to read
and can climinate potential ambiguity (as in the tabel for
a subroutine to switch two entires on a stack.
“S_EXCHANGE™). The underscore is significant. and
would distinguish between otherwise-identical character
strings.
ASMSI allows afl variables (registers, ports. internal or
external RAM addresses, constants, etc.) to be assigned
labels according to these rules with the EQUate or SET
directives.
Examplec 8- Symbolic Addressing of Variables
Defined as RAM Locations

vaR_0 SET 201
vaR! SET 211

. SYMB_1 ADD CONTENTS OF VAR 1
TO CONTENTS OF VAR O

SymB_1

mav &, VAR O
app A vAR L
mov var_0.a

18

Page 153 of 264

intel.

Notice from Table 4that the MCS-51™instruction set has
relatively few instruction mnemonics (abbreviations) for
the programmer to memorize. Different data types or
addressing modes are determined by the operands
specified, rather than variations on the mnemonic. For
example, the mnemonic “MOV™ is used by 18 different
instructions to operate on three data types (bit, bvte. and
address). The fifteen versions which move byte variables
between the logical address spaces are diagrammed in
Figure 13. Each arrow shows the direction of transfer
from source to destination.

Notice also that for most instructions allowing register
addressing there is a corresponding direct addressing
instruction and vice versa. This lets the programmer
begin writing 8051 programs as if (s)he has access to 128
different registers. When the program has evolved to the
point where the programmer has a fairly accurate idea
how often each variable is used. he she may allocate the
working registers in each bank to the most “popular™
variables. (The assembly cross-reference option will show
exactly how often and where each symbol is referenced.)
If symbolic addressing is used in writing the source
program only the lines containing the symbol definition
will need to be changed: the assembler will produce the
appropriate instructions even though the rest of the
program is left untouched. Editing only the firsttwo lines
of Example 8 will shrink the six-byte code segment
produced in half.

How are instruction sets “counted”? There is
no standard practice; different people assess-
ing the same CPU using different conventions
may arrive at different totals.

Each operation is then broken down according
to the different addressing modes (or com-
binations of addressing modes) it can accom-
modate. The "CLR" mnemonic is used by two
instructions with respect to bitvariables (“CLR
C” and "CLR bit") and once ("CLR A”) with
regards to bytes. This expansion yields the 111
separate instructions of Table 4.

The method used for the MCS-51# instruction
set first breaks it down into “operations”: a
basic function appliedto asingle data type. For
example, the four versions of the ADD instruc-
tion are grouped to form one operation —
addition of eight-bit variables. The six forms of
the ANL instruction for byte variables make up
a different operation; the two forms of ANL
which operate on bits are considered still
another. The MOV mnemonic is used by three
different operation classes, depending on
whether bit, byte, or 16-bit values are affected.
Using this terminology the 8051 can perform
51 different operations.

AFN-01502A-20

INDIRECT
(@R

Figure 13. Road map for moving data bytes

Example 9 —Redeclaring Example 8 Symbols as

Registers
VAR O SET RO
VAR 1 SET Rt

/SYMB_2 ADD CONTENTS OF VAR_t
. TO CONTENTS OF vaR_0

SYMB_2 MOV A.VAR O

ADD A VAR _1
Hov VaR_0, A

Arithmetic Instruction Usage — ADD, ADDC, SUBB
and DA

The ADD instruction adds a byte variable with the
accumulator, leaving the result in the accumulator. The
carry flag is set if there is an overflow from bit 7 and
cleared otherwise. The AC flag is set to the carry-out
from bit 3 for use by the DA instruction described later.
ADDC adds the previous contents of the carry flag with
the two byte variables, but otherwisc is the same as ADD.

The SUBB (subtract with borrow) instruction subtracts
the byte variable indicated and the contents of the carry
flag together from the accumulator, and puts the result
back in the accumulator. The carry flag serves as a
“Borrow Required™ flag during subtraction operations:
when a greater value is subtracted from a lesser value (as
tn subtracting 5 from 1) requiring a borrow into the
highest order bit, the carry flag is set: otherwise it is
cleared.

When performing signed binary arithmetic. certain
combinations of input variables can produce results
which seem to violate the Laws of Mathematics. For
example. adding 7FH (127} to itself produces a sum of
OFEH. which is the two's complement representation of
-2 (refer back to Table 2)! In “normal” arithmetic, two
positive values can't have a negative sum. Similarly. it js
normally impossible to subtract a positive value from a
negative value and leave a positive result but in two’s
complement there are instances where this toco may
happen. Fundamentally, such anomolies occur when the
magnitude of the resulting value is too great to “fit” into
the seven bits allowed for it: there is no one-bvte two’s
complement representation for 254, the true sum of 127
and 127

Page 154 of 264

AP-69

The MCS-51™ processors detect whether these situations
occur and indicate such errors with the OV flag. ({OV may
be tested with the conditional jump instructions JB and
JNB, described under the Boolean Processor chapter.)

At ahardware level. OV issetif there is acarry out of bit 6
but not out of bit 7. or a carry out of bit 7 but not out of
bit 6. When adding signed integers this indicates a
negative number produced as the sum of two positive
operands. or a positive sum from two negative operands;
on SUBB this indicates a negative result after subtracting
a negative number from a positive number, or a positive
result when a positive number is subtracted from a
negative number.

The ADDC and SUBB instructions incorporate the
previous state of the carry (borrow) flag to allow multiple
precision calculations by repeating the operation with
successively higher-order operand bytes. In either case,
the carry must’ be cleared before the first iteration.

If the input data for a multiple precision operation is an
unsigned string of integers, upon completion the carry
flag will be set if an overflow (for ADDC) or underflow
(for SUBB) occurs. With two’s complement signed data
(i.e.. if the most significant bit of the original input data
indicates the sign of the string). the overflow flag will be
set il overflow or underflow occurred.

Example 10— String Subtraction with Signed Overflow
Detection
; BUBSTR SUBTRACT STRING INDICATED BY R1
P FROM STRING INDICATED By RO TGO
i PRECISION INDICATED BY R2
P CHECK FOR SICNED UNDERFLOW WHEN DONE

SUBSTR CLR c . BORROW= O

suBS1 MOV A. 8RO
suse A.@R1 i SUBTRACT NEXT PLACE
MoV ero. A
INC RO . BUMP POINTERS
INC Rt

LOOP AS NEEDED
WHEN DONE. TEST IF OVERFLOW OCCURED
ON LAST ITERATION OF LOOP
NB ov. Ov_0K
. (OVERFLOW RECDVERY ROUTINE)
ov_ok ReT FTURN

Decimal addition is possible by using the DA instruction
in conjunction with ADD and/or ADDC. The eight-bit
binary value in the accumulator resulting from an earlier
addition of two variables (each a packed BCD digit-pair)
is adjusted to form two BCD digits of four bits each. 1f the
contents of accumulator bits 3-0 are greater than nine
(xxxX 1010-xxxx 1111), orif the AC flag had been set, six
is added to the accumulator producing the proper BCD
digit in the low-order nibble. (This addition might itself
set - but would not clear - the carry flag.) If the carry
flag is set, or if the four high-order bits now exceed nine
(1010xxxx~1 I 1xxxX). these bits are incremented by six.
The carry flag is left set if originally set or if either
addition of six produces a carry out of the highest-order
bit. indicating the sum of the original two BCD variables
is greater than or equal to decimal 100.

AFN-015028-21

19

AP-69

Example [1 —Two Byte Decimal Add with Registers
and Constants
BCDADV ADD THE CONSTANT 1.234 (DECIMAL) VD THE
CONTENTS OF REGISTER PAIR <R3I><R.
{ALREADY A & BCD-DIGIT VM!ABLEI

BCDADD MOV A R2

ADD A, #38H
DA A
HOV R2.4

rov aR3
ADDC A w12H
DA

A
HOv R3.A
RET

Muitiplication and Division

The instruction “MUL AB" multiplies the unsigned
eight-bit integer values held in the accumulator and B-
registers. The low-order byte of the sixteen-bit product is
left in the accumulator. the higher-order byte in B. If the
high-order cight-bits of the product are all zero the
overflow flag is cleared; otherwise it is set. The
programmer can poll OV to determine when the B
register is non-zero and must be processed.

“DIV AB" divides the unsigned eight-bit integer in the
accumulator by the unsigned eight-bit integer in the B-
register. The integer part of the quotient is returned in the
accumulator; the remainder in the B-register. If the B-
register originally contained 00H then the overflow flag
will be set to indicate a division error, and the values
returned will be undefined. Otherwise OV is cleared.

The divide instruction is also useful for purposes such as
radix conversion or scparating bit fields of the
accumulator. A short subroutine can convert an eight-bit
unsigned binary integer in the accumulator (between 0 &
255) to a three-digit (two byte) BCD representation. The
hundred’s digit is returned in one register (HUND) and
the ten's and one’s digits returned as packed BCD in
another (TENONE).

Example 12 —Use of DIV Instruction for Radix
Conversion

iBINBCD CONVERT 8-BIT BINARY VARIABLE IN ACC
TO 3-DIGIT PACKED BCD FORMAT
HUNDREDS * PLACE LEF) IN VARIABLE ‘HUND'
TENS’ AND ONES’ PLACES IN /[ENONE’

HUND EQU 21K

TENONE EQU 224
BINBCD MOV B.#100 . DIVIDE BY 100 TQ
oIV AD DETERMINE NUMBER OF WUNDREDS
mov HUND, A
oV A, 10 DIVIDE REMAINDER BY 10 7O
XCH B s DETERMINE # OF TENS LEFT
D1V »8 »TENS DIGIT IN ACC. REMAINDER 15 ONES
1)
SWaP a
ADD AB . PACK BCD DIGITS IN ACC
MOV TENONE. A

REY

The divide instruction can also separate eight bits of data
in the accumulator into sub-fields. For example, packed
BCD data may be separated into two nibbles by dividing
the data by 16, leaving the high-nibble in the accumulator
and the low-order nibble (remainder) in B. The two digits
may then be operated on individually or in conjunction
with each other. This example receives two packed BCD

20

Page 155 of 264

n

digits in the accumulator and returns the product of the
two individual digits in packed BCD format in the
accumulator.

Example 13 —Implementing a BCD Multiply Using
MPY and DIV

MULBCD UNPACK TWO BCD DIGITS RECEIVED IN ACC.
FIND THEIR PRODUCT. AND RETURN PRODUCT
IN PACKED BCD FORMAT IN ACC

MULBCD. MOV B.W10M . DIVIDE INPUT BY 16
iV AB ©A % B HOLD SEPARATED DIGI
+ CEACH RIGHT JUSTIFIED IN HEG[STER)

ML AB i# HOLDS PRODUCT IN BINARY FORMAT (0 -
J9F(DECIMALY = O - &3H)

Hov 8.#10 .DIVIDE PRODUCT BY 10

oIV AR iA HOLDS » OF TENS. B HOLDS REMAINDER

SWAP A

ORL AR LPACK D1CITS

Logical Byte Operations — ANL, ORL, XRL

The instructions ANL, ORL. and XRL perform the
logical functions AND, OR.and’or Exclusive-OR on the
two byte variables indicated. Jeaving the results in the
first. No flags are affected. (A word to the wise — do not
vocalize the first two mnemonics in mixed company.)

These operations may use all the same addressing modes
as the arithmetics (ADD, etc.) but unlike the arithmetics,
they are not restricted to operating on the accumulator.
Directly addressed bytes may be used as the destination
with either the accumulator or a constant as the source,
These instructions are useful for clearing (ANL), setting
(ORL), or complementing {XRL) one or more bits in a
RAM, output ports, or contro| registers. The pattern of
bits to be affected is indicated by a suitable mask byte.
Use immediate addressing when the pattern to be affected
is known at assembly time (Figure 14); use the
accumulator versions when the pattern is computed at
run-time.

;O ports are often used for paraltel data in formats other
than simple eight-bit bytes. For example, the low-order
five bits of port 1 may output an alphabetic character
code (hopefully) without disturbing bits 7-5. Thiscan be a
simple two-step process. First. clear the low-order five
pins with an ANL instruction: then set those pins corres-
ponding to ones in the accumulator. (This example
assumcs the three high-order bits of the accumulator are
originally zero.)

Example 14 —Reconfiguring Port Size with Logical
Byte Instructions

QUT_PX- ANL P1.#i11000008 CLE-\N BITS Pi 4 -
oRL P A ET P PINS coRlE‘umu(Nc TO SET acc
. BIYS
RET

[opcode _” direct address ” mask l

ANL 3 adata

Figure 14. Instruction Pattern for Logical Operation
Special Addressing Modes

AFN-01502A-22

intgl.

In this example, low-order bits remaining high may
“glitch low for one machine cycle. If this is undesirable,
use a slightly different approach. First. set all pins
corresponding to accumulator one bits, then clear the
pins corresponding to zeroes in low-order accumulator
bits. Not all bits will change from original to final state at
the same instant. but no bit makes an intermediate
transition.

Example 15— Reconfiguring 1/0 Port Size without
Glitching
ALT_PX- ORL PL.A
ORL 4. 9111000008
ANL P1.&
RET

Program Control — Jumps, Calls, Returns

Whereas the 8048 only has a single form of the simple
jump instruction. the 8051 has three. Each causes the
program to unconditionally jump to some other address.
They differ in how the machine code represents the
destination address.

LIJMP (Long Jump) encodes a sixteen-bit address in the
second and third instruction bytes (Figure {S5.a). the
destination may be anywhere in the 64 Kilobyte program
memory address space.

The two-byte AJMP (Absolute Jump) instruction
encodes its destination using the same format as the 8048:
addiess bits 10 through 8 form a three bit field in the
opcode and address bits 7 through 0 form the second byte
(Figure 15.b). Address bits 15-12 are unchanged from the
(incremented) contents of the P.C.. so AJMP can only be
used when the destination is known to be within the same
2K memory block. (Otherwise ASMS5] will point out the
error.)

A different two-byte jump instruction is legal with any
nearby destination. regardless of memory block
boundaries or “pages.” SJIMP (Short Jump) encodes the
destination with a program counter-relative address in
the second byte (Figure 15.c). The CPU calculates the

a) Long Jump (LIMP addr16).

] [addr15 — addr®] I adde7 — addr0 |

) Absolute Jump (AJMP addr11)

| T T T 1

addr10- addr8| opcode I l
[Lot

c.) Short Jump (SIMP rel):

T T T T T T
opcods J | J
FIN T SN S B S| .

Figure 15. Jump Instruction Machine Code
Formats

=

adds7 — addr0 I

relative offset

Page 156 of 264

AP-69

destination at run-time by adding the signed eight-bit
displacement value to the incremented P.C. Negative
offset values will cause jumps up to 128 bytes backwards:
positive values up to 127 bytes forwards. (SJMP with
00H in the machine code offset byte will proceed with the
following instruction).

In keeping with the 805! assembly language goal of
minimizing the number of instruction mnemonics. there
is a “generic” form of the three jump instructions.
ASMS5! recognizes the mnemonic JMP as a “pseudo-
instruction.” translating it into the machine instructions
LIMP. AJMP. or SIMP. depending on the destination
address.

Like SJMP. all conditional jump instructions use relative
addressing. JZ (Jump if Zero) and JNZ (Jump if Not
Zero) monitor the state of the accumulator as implied by
their names, while JC (Jump on Carry) and INC (Jump
on No Carry) test whether or not the carry flag is set. All
four are two-byte instructions, with the same format as
Figure 15.c. JB (Jump on Bit). INB (Jump on No Bit) and
JBC (Jump on Bit then Clear Bit) can test any status bit
or input pin with a three byte instruction: the second byte
specifies which bit to test and the third gives the relative
offset value.

There are two subroutine-call instructions. LCALL
(Long Call) and ACALL (Absolute Call). Each
increments the P.C. to the first byte of the following
instruction, then pushes it onto the stack (low byte first).
Saving both bytes increments the stack pointer by two.
The subroutine’s starting address is encoded in the same
ways as LIMP and AJMP. The generic form of the cafl
operation is the mnemonic CALL. which ASM51 will
translate into LCALL or ACALL as appropriate.

The return instruction RET pops the high-and low-order
bytes of the program counter successively from the stack.
decrementing the stack pointer by two. Program
execution continues at the address previously pushed: the
first byte of the instruction immediately following the
call.

When an interrupt request is recognized by the 8051
hardware, two things happen. Program control is
automatically “vectored™ to one of the interrupt service
routine starting addresses by. in effect. forcing the CPU
to process an LCALL instead of the next instruction.
This automatically stores the return address on the stack.
(Unlike the 8048, no status information is automatically
saved.)

Secondly. the interrupt logic is disabled from accepting
any other interrupts from the same or lower priority.
After completing the interrupt service routine. executing
an RETI (Return from Interrupt) instruction will return
execution to the point where the background program
was interrupted — just like RET — while restoring the
interrupt logic to its previous state.

AFN-015024-23

21

AP-69

Operate-and-branch instructions — CJNE, DIJNZ

Two groups of instructions combine a byte operation
with a conditional jump based on the results.

CJINE (Compare and Jump if Not Equal) compares two
byte operands and executes a jump if they disagree. The
carry flag is set following the rules for subtraction: if the
unsigned integer value of the first operand is less than
that of the second it is set; otherwise, it is cleared.
However. neither operand is modified.

The CJNE instruction provides, in effect, a one-
instruction “case™ statement. This instruction may be
executed repeatedly, comparing the code variable to a list
of “special case” value: the code segment following the
instruction (up to the destination label) will be executed
only if the operands match. Comparing the accumulator
or a register to a serics of constants is a convenient way to
check for special handling or error conditions; if none of
the cases match the program will continue with “normal®
processing.

A typical example might be a word processing device
which receives ASCH characters through the serial port
and drives a thermal hard-copy printer. A standard
routine translates “printing” characters to bit patterns,
but control characters (KDEL> <CR> <LF> <BEL>
<ESC> or <SP>) must invoke corresponding special
routines. Any other character with an ASCI code less
than 20H should be translated into the <NUL>value,
O0H. and processed with the printing characters.

Example 16 - Case Statements Using CINE

CHAR EQU R7 . CHARACTER CODE VARIABLE

INTERP: CUNE CHAR, W7FH, INTP 1

. (SPECIAL ROUTINE FOR RURQUT CODE)
RET

INTP_L. CUNE CHAR. #O7M, INTP 2

i (SPECIAL ROUTINE FOR BELL CODE)
RET

INTE_2 CUNE CHAR, #OAH, INTP 3

. (SPECIAL ROUTINE FOR LFEED CODE)
RET

INTP_3. CJUNE CHAR, #ODK, INTP_4&

i USPECIAL ROUTINE FOR RETURN CODE)

RET

INTP_3 CUNE CHAR. KIDH, INTP_S

. (SPECTAL ROUTINE FOR ESCAPE CODE)
RET

INTP_5 CJUNE CHAR, ¥20H, INTP_é

. (SPECIAL ROUTINE FOR SPACE CODE}

RET
INTP_ 6 JC PRINTC . JumMP IF CODE > 20H
MoV CHAR, #0 . REPLACE CONTROL CHARACTERS WITH
. NULL CODE
PRINTC . PROCESS STANDARD PRINTING
i . CHARACTER
RET

DJINZ (Decrement and Jump if Not Zero) decrements
the register or dircet address indicated and jumps if the
result is not zero. without affecting any flags. This
provides a simple means for executing a program loop a
given number of times. or for adding a moderate time
delay (from 2 to 512 machinc cyeles) with a single
instruction. For example. a 99-usec. software delay loop
can be added to code forcing an 1/0 pin low with only
two instructions,

Example 17 —Inserting a Software Delay with DIJNZ

CLR WR

OV RZ. 449
DUNZ R2. %
sETH WR

22

Page 157 of 264

intel.

The doltar sign in this example is a special character
meaning “the address of this instruction.™ It 1s useful in
eliminating instruction labels on the same or adjacent
source lines. CINE and DJNZ (like ali .conditional
jumps) use program-counter relative addressing for the
destination address.

Stack Operations — PUSH, POP

The PUSH instruction increments the stack pointer by
one. then transfers the contents of the single byte variable
indicated (direct addressing only) into the internal RAM
location addressed by the stack pointer. Conversely,
POP copies the contents of the internal RAM location
addressed by the stack pointer to the byte variable
tndicated. then decrements the stack pointer by one.

(Stack Addressing follows the same rules. and addresses
the same locations as Register-indirect. Future micro-
computers based on the MCS-51™ CPU could have up to
256 bytes of RAM for the stack.)

Interrupt service routines must not change any variable
or hardware registers modified by the main program. or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error.)
Resources used or altered by the service routine
(Accumulator. PSW. etc.) must be saved and restored to
their previous value before returning from the service
routine. PUSH and POP provide an efficient and
convenient way to save register states on the stack.

Example 18 —Use of the Stack for Status Saving ou
Interrupts

LOC_THP EQU * .REMEMBER LOCATION COUNTER
ORG 0003H . STARTING ADDRESS FOR INTERRUPT ROUTINE
Lome SERVER , JUMP TOU ACTUAL SERVICE ROUTINE LOCATED
» ELSEWHERE
orRe LOC_TMP . RESTORE LOCATION COUNTER
SERVER PUSH "
PUSH acc . SAVE ACOUMULATOR (NOTE DIRECT ADDRESSING
. NOTATION)
PUSH 8 +SAVE D REGISTER
PUSH DPL LSAVE DATA POINTER
PUSH DPH .
mov PSW. #000010008 . SELECT REGISTER BAMK 1
POP DPH /RESTORE REGISTERS IN REVERSE ORDER
POP DPL
POP B
POP acC
POP PSW LRESTORE PSW AND RE-SELECT ORIGINAL

+ REGISTER BANK
RETI LRETURN [0 MAIN PROGRAM AND RESTORE
. INTERRUPT LDGIC

if the SP register held 1FH when the interrupt was
detected. then while the service routine was in progress
the stack would hold the registers shown in Figure 16: SP
would contain 26H.

The example shows the most general situation: if the
service routine doesn’t alter the B-register and data
pointer, for example, the instructions saving and
restoring those registers would not be necessary.
The stack may also pass parameters to and from
subroutines. The subroutine can indirectly address the
parameters derived from the contents of the stack
pointer.

AFN-01502A-24

RAM

ADDR
7FH
26H OPH ~-— (SP)
254 DPL
248 8
23H acc
221 PSW
211 PC (HIGH)
204 PC (LOW)
1N
o0H

Figure 16. Stack contents during interrupt

One advantage here is simplicity. Variables need not be
allocated for specific parameters. a potentially large
number of parameters may be passed. and different
calling programs may use different techniques for
determining or handling the variables.

For example, the following subroutine reads out a
parameter stored on the stack by the calling program.
uses the low order bits to access a local look-up table
holding bit patterns for driving the coils of a four phase
stepper motor. and stores the appropriate bit pattern
back in the same position on the stack before returning.
The accumulator contents are left unchanged.

Example |9 — Passing Variable Parameters to Sub-
routines Using the Stack

NXTPOS MOV RO, 5P
DEC RO I ACCESS LOCATION PARAMETER PUSHED INTO
DEC RO
XCH A, @RO . READ INPUT PARAMETER AND SAVE
i LACCUMULATOR
ANL A, #O03H . MASK ALL BUT LOW-CRDER TWO BITS
ADD A 92 L ALLDW FOR UFFSET EROM MOVC TG TADLE
move A, @A+PC ,READ LOOK-UP TABLE ENTRY
xCH A.@RO | PASS BACK TRANSLATED VALUE AND RESTORE
. ACC
RET L RETURN TO BACKGROUND PROGRAM
STPTBL DB 011011118 +POSITION D
DB 010111118 SPOSITION 1
oB 100113118 1 POSITION 2
oB 101011118 . POSITION 3

The background program may reach this subroutine with
several different calling sequences. all of which PUSH a
value before calling the routine and POP the result after
A motor on Port 1 may be initialized by placing the
desired position {zero) on the stack before calling the
subroutine and outputing the results directly to a port
afterwards.

Example 20 —Sending and Receiving Data Parameters
Via the Stack

CLR A

PUSH acc
caLL NXTPDS
POP Pi

Page 158 of 264

AP-69

If the position of the motor is determined by the contents
of variable POSMI (a byte in internal RAM) and the
position of a second motor on Port 2is determined by the
data input to the low-order nibble of Port 2. a six-
instruction sequence could update them both.

Example 21 — Loading and Unloading Stack Direct
from 1/0O Ports

POSM EGU 51
PUsk POSMI
cALL NXTPOS
POP P1
PUSH P2
CALL NXTPOS
POP P2

Data Pointer and Table Look-up instructions —
MOV, INC, MOVC, JMP

The data pointer can be loaded with a 16-bit value using
the instruction MOV DPTR. #datal6. The data used is
stored in the second and third instruction bytes. high-
order byte first. The data pointcr is incremented by INC
DPTR. A 16-bit increment is performed; an overflow
from the low byte will carry into the high-order byte.
Neither instruction affects any flags.

The MOVC (Move Constant) instructions (MOVC
A.@A+DPTR and MOVC A.@A+PC) read into the
accumulator byvtes of data from the program memory
logical address space. Both use a form of indexed
addressing: the former adds the unsigned cight-bit
accumulator contents with the sixteen-bit data pointer
register. and uses the resulting sum as the address from
which the byte is fetched. A sixteen-bit addition is
performed: a carry-out from the low-order eight bits may
propagate through higher-order bits. but the contents of
the DPTR are not altered. The latter form uses the incre-
mented program counter as the “basc™ value instead of
the DPTR (figure 17). Again, neither version affects the
flags.

2} MOVCA @A +PC
{LOCAL TABLE
LOOK—UP)

ACC
EFFECTIVE
Cooe ApbrEss

16—BIT | PPTR

EFFECTIVE
16 —BIT

n) MOVC A.@ A+ DPTR
(GLOBAL TABLE
LOOK—UP)

c

JMP @ A~ DPTR
{GLOBAL INDIRECT
JUMP)

Figure 17. Operation of MOVC instructions

AFN-015024-25

AP-69

Each can be part of a three step sequence to access look-
up tables in ROM. To use the DPTR-relative version,
load the Data Pointer with the starting address of a look-
up table; load the accumulator with (or compute) the
index of the entry desired; and execute MOVC
A, @A+DPTR. Unlike the similar MOVP3 instructions
in the 8048, the table may be located anywhere in
program memory. The data pointer may be loaded witha
constant for short tables. Or to allow more complicated
data structures. or tables with more than 256 entries. the
values for DPH and DPL may be computed or modified
with the standard arithmetic instruction set.

The PC-relative version has the advantage of not
affecting the data pointer. Again. a look-up scquence
takes three steps: load the accumulator with the index:
compensate for the offset from the look-up instruction to
the start of the table by adding the number of bytes
separating them to the accumulator; then cxecute the
MOVC A.@A+PC instruction,

Let's look at a non-trivial situatton where this instruction
would be used. Some applications store large multi-
dimensional look-up tables of dot matrix patterns. non-
linear calibration parameters, and so on in a linear (one-
dimensional) vector in program memory. To retrieve
data from the tables, variables representing matrix
indices must be converted to the desired entry’s memory
address. For a matrix of dimensions (MDIMEN x
NDIMEN) starting at address BASE and respective
indices INDEXI and INDEXJ. the address of element
(INDEX]. INDEXJ) is determined by the formula.
Entry Address = BASE + (NDIMEN x INDEXI) +
INDEXJ
The code shown below can access any array with ess than
255 entries (i.e.. an 11x21 array with 231 clements). The
table entries are defined using the Data Byte (“DB™)
directive. and will be contained in the assembly object
code as part of the accessing subroutine itself.

Example 22— Use of MPY and Data Pointer Instruc-
tions to Access Entries from a Multi-
dimensional Look-Up Table in ROM

/MATRX1 LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP

. TABLE TN PROGRAM MEMORY INTO ACCUMULATOR
USING LOTAL TABLE LOOK-UP INSTRUCTION. ‘MOVC A @aspC
THE TOTAL NUMBER OF TABLE ENTRIES 1S ASSUMED TC

. BE SMALL, ! E LESS THANM ABOUT 250 ENTRIES)

' TABLE USED IN THIS EXAMPLE (S (11 X 21)

‘ DESIRED ENTRY ADDRESS 1S GIVEN BY THE FORMULA,
[(BASE ADDRESS) + (2i X INDEXI) + (INDEXJ) 1]

INDEX1 EQU

Re . FIRST CODRDINATE OF ENTRY (0101
INDEXJ EQU 23K

. SECOND COORDINATE OF ENTRY (0-20:
MATRXS MOV
O

A, INDEXT
v 0. %21

oL aB
DEX.)
ALLOW FOR [NSTRUCTION BYTE BETWEEN “MOVC™ AND
ENTRY (0, O)
INC a
MovC A RA+PC
RET
BAsE: DB 1 . centry 0,0
oB 2 Centry 0. 1)
DB 21 . tentry 0.20)
oB a2 i (entry 1.0}
0B a2 L tentry 1.20)
DB 23 itentry 10.20}

24

Page 159 of 264

intgl.

There are several different means for branching to
sections of code determined or selected at run time. (The
single destination addresses incorporated into
conditional and unconditional jumps are. of course,
determined at assembly time). Each has advantages for
different applications.

The most common is an N-way conditional jump based
on some variable, with all of the potential destinations
known at assembly time. One of a number of small
routines is selected according to the value of an index
variable determined while the program is running. The
most efficient wav to solve this problem is with the
MOVC and an indirect jump instruetion, using a short
table of one byte offset values in ROM to indicate the
relative starting addresses of the several routines.

JMP @A+DPTR is an instruction which performs an
indirect jump to an address determined during program
execution. The instruction adds the eight-bit unsigned
accumulator contents with the contents of the sixteen-bit
data pointer, just like MOVC A@A+DPTR. The
resulting sum is loaded into the program counter and is
used as the address for subsequent instruction fetches.
Again. a sixteen-bit addition is performed: a carry out
from the low-order eight bits may propagate through the
higher-order bits. In this case. neither the accumulator
contents nor the data pointer is altered.

The example subroutine below reads a byte of RAM into
the accumulator from one of four alternate address
spaces. as selected by the contents of the vartable
MEMSEL. The address of the byte to be read is
determined by the contents of RO (and optionally R1). It
might find use in a printing terminal application. where
four different model printers all use the same ROM code
but use different types and sizes of buffer memory for
different speeds and options.

Example 23 -- N-Way Branch and Computed Jump
Instructions via JMP @ ADPTR

MEMSEL EGU R3
GUMP_a mOv A. MEMSEL
may DP TR, #MPTBL
mMove A, @ASDPTR
JMP @A+DETR
JHPTEL DB MEMSPC-JMPYBL
0B MEMSP1-JMPTBL
DB MEMSP2-MP TBL
0B NEMSPI-JUNPTBL
PEMSPO MOV A/ RO ;READ FROM INTERNAL RaM
RET
MEMSP1 MOVX A.8R0 ,READ FROM 255 BYTES OF EXTERNAL RAM
RET
MEMSP2. MO DPL. RO
Oy DPH, R1
HOVX A, @DPTR ;READ FROM 44K BYIES UF EXTERNAL RaM
RET
MEMSP3 MOV A R1
ANL 4, BOTH
ANL £1.#111110008
ORL PL.A

:2‘7” A, #RO +READ FROM 4® BYTES OF EXTERNAL HAM
Note that this approach is suitable whenever the size of
jump table plus the length of the alternate routines is less
than 256 bytes. The jump table and routines may be
located anywhere in program memory. independent of
256-byte program memory pages.
AFN-01502A-26

intgl.

For applications where up to 128 destinations must be
selected. all of which reside in the same 2K page of
program memory which may be reached by the two-byte
absolute jump instructions. the following technique may
be used. In the above mentioned printing terminal
example. this sequence could “parse™ 128 different codes
for ASCII characters arriving via the 8051 serial port.

Example 24 —N-Way Branch with 128 Optional
Destinations

OPTION EQU LE]

unP128 MOV A.DPYION
RL

a SMULTIPLY BY 2 FOR 2 BYTE JUMP TABLE
MOV DPTR, #INSTBL . FIRST ENTRY IN JUMP TAIn E

N1 @A<DPTR L JUMP INTO JUMP TABLE
INSTBL AJMP PROCOQ ;128 CONSECUTIVE

AP PROCOL . AUMP INSTRUCTIONS

adMe PROCOZ

AJME PROC7E
AP PROC7F

The destinations in the jump tabic (PROCO00-
PROCT7F) are not all necessarily unigue routines. A large
number of special control codes could each be processed
with their own unigue routine, with the remaining
printing characters all causing a branch to a common
routine for entering the character into the output queue.

In those rare situations where even |28 options are
insufficient. or where the destination routines may cross a
2K page boundary. the above approach may be modified
slightly as shown below.

Example 25—256-Way Branch Using Address Look-

Up Tables

RYEMP (3] /7

JMP2Se MOV DPTR. ADRTBL . FIRST ENTRY IN TABLE OF ADDRESSES
~MoY 4, DPTION
CLR c
RLC A SMULTIPLY BY 2 FOR 2 BYTE JUMP TABLE
UNC LOW128
INC DPH

LOW12B MOV RTEMP. A . SAVE ACC FOR HIGH BYTE READ
MOVC A. RA+DPTR READ LOW BYTE FROM JUMP TABLE
xch. A RTEWR
INC A
Move A, @A+DPTR GET LOW-ORDER BYTE FROM TABLE
PUSH ACC
MOV & RTEMP
MOVC 4, @A+DPTR GET MIGH-ORDER BYTE FROM TABLE
PUSKH CcC

THE TWO ACC PUSMES HAVE PRODUCED

A "RETURN ADDRESS" ON THE STACK WHICH CORRESPONDS
T0 THE DESIRED STARTING ADDRESS

IT MAY BE REACHED BY POPPING THE STACK

INTO THE PC

RET

ADRTBL DWW PROCOO ,UP TO 256 CONSECUTIVE DATA

Du PROCOL . WORDS INDICATING STARTING ADDRESSES
DM PROCFF

. DUMMY CODE ADDRESS DEFINITIONS NEEDED BY ABOVE
i TWO EXAMPLES

PROCOO NOP

PROCOI NOF

PRUCO2 NOF

PROC7E NDP

PROCTF NOP

PROCFF NOP

4. BOOLEAN PROCESSING INSTRUCTIONS

The commonly accepted terms for tasks at either end of
the computational vs. control application spectrum are,
respectively, “number-crunching” and “bit-banging”.

Page 160 of 264

AP-69

Prior to the introduction of the MCS-51™ family, nice
number-crunchers made bad bit-bangers and vice versa.
The 8051 is the industry's first single-chip micro-
computer designed to crunch and bang. (In some circles,
the latter technique is also referred to as “bit-twiddling™.
Either is correct.)

Direct Bit Addressing

A number of instructions operate on Boolean (one-bit)
variables. using a direct bit addressing mode comparable
to direct byte addressing. An additional byte appended to
the opcode specifies the Boolean variable. 1'O pin. or
control bit used. The state of any of these bits may be
tested for “true™ or “false™ with the conditional branch
instructions B (Jump on Bit) and JNB (Jump on Not
Bit). The JBC (Jump on Bit and Clear) instruction
combines a test-for-true with an unconditional clear.

As in direct byte addressing. bit 7 of the address byte
switches between two physical address spaces. Values
between © and 127 (00H-7FH) definc bits in internal
RAM locations 20H to 2FH (Figure [8a): address bytes
between 128 and 255 (80H-OFFH) define bits in the 2 x
“special-function™ register address space (Figure 18b). If
no 2 x “special-function™ register corresponds to the
direct bit address used the result of the instruction is
undefined.

Bits so addressed have many wondrous properties. They
may be set. cleared. or complemented with the two byte
instructions SETB. CLLR. or CPL. Bits may be moved to
and from the carry flag with MOV. The logical AN and
ORL functions may be performed between the carry and
either the addressed bit or its complement.

Bit Manipulation Instructions — MOV

The “"MOV” mnemonic can be used to load an
addressable bit into the carry flag (*“MOV C,_ bit”) or to
copy the state of the carry to such a bit (“MOV but, C™).
These instructions are often used for implementing serial
I:O algorithms via software or to adapt the standard | O
port structure.

It is sometimes desirable to “re-arrange™ the orderof I O
pins because of considerations in laying out printed
circuit boards. When interfacing the 805! to an
immediately adjacent device with “weighted™ input pins.
such as keyboard column decoder. the corresponding
pins are likely to be not aligned (Figure 19).

There is a trade-off in “scrambling” the interconnections
with either interwoven circuit board traces or through
software. This is extremely cumbersome (if not
impossible) to do with byte-oriented computer
architectures. The 8051's unique set of Boalean
instructions makes it simple to move individual bits
between arbitrary locations,

AFN-D1502A-27

25

AP-69 l n ®

) RAM Bit Addresses. b.) Hardware Register Bit Addresses.
Direct Hacdware
RAM Bit Addresses
Byte Register
BYTE (MSB) (.58} Aress (M5B) wse) Segne
TFH OFFH
J 4 o [[[a]le[rn][n]n]|s
FH TF 7E ™ 7c n 7A 79 R OEOH E7 I €6 l ES l E4 I E3 l E2 l E1 l Eo ACC
2%€H nlw| s | m|ln|n]|n]|mw
wn | er | se | o0 | sc | oa | ea | 60 | &8 000 u7|ns[nsLmlns]nzlmlou PSW
2cH 67 | 6 | s | e | 63 [2 | 81 | 60
28H 5F SE D sC se SA 59 58
2aH s7 | o6 | ss | sa | 53| 52| s1 | s0 08eH -]—I—]nc]asln}uslea 1]
294 oF L3 4D o« 48 A 49 4.
281 47 46 45 44 Q 2 Ll 40 0BOH B7]BGIB§IBQIBGIBZ[B|IBU P3
amm 3F | 3 | b [3| | 3|3 | s
4 7 36 38 M 33 2 3 30 OASH AF]“I'IACIABIM]AD‘AB IE
25M 2k | 26| 20| 2c| 8| 2a| 28| 28
24H 27 26 25 24 23 2 2 20 QAOH A7 L] [MJ Ad l A3 l A2 [Al I A0 P2
M w | e[wfjic] w1l]| e
zn 17 16 15 14 3 12 " 10 98H 9F o€ [90 LDC I 98 | 9A L] 9% SCON
21H oF [oe | o0 [oc | o8B | oa | oo | o8
204 o7 [06 | os | 04 | 0 [o2 | o1 | 00 90H o7 ss[ssls«]m[sz 9‘1” P
FH
Bank 3
181 881 o | s [80 | sc | 88 I sa | 8] & | TCcow
TH
Bank 2
104 80N u]ee]oslulsa|u[u]w PO
oFH
Bank 1
08H
o7TH
Bank 0
00H
Figure 18, Bit Address Maps
Example 26 — Re-ordering 10 Port Configuration
ALE :] OUT_PZ RRC a . MOVE ORIGINAL ACC O INTO CY
nov P2 6. C .STORE CARHY TOD PIN P24
RRC A »MOVE ORIGINAL ACC 1 INTQ CY
PSEN j MoV P2 5.€ ,STORE CARRY TO PIN P2S
RRC A SMOVE ORIGINAL ACC 2 INTD €Y
mov P2 4,C ,STORE CARRY TO PIN P24
e j E RRC A . MOVE ORIGINAL ACC 3 INTD CY
MoV P2 3.C .STORE CARRY TO PIN P23
(LSB) RRC a iMOVE ORIGINAL ACC 4 INTO CY
P26 H A0 MoV 2 2.C .STORE CARRY TO PIw P22
RET
8351 pas F—— | as
8781
e L
DECODER "
Solving Combinatorial Logic Equations — ANL, ORL
P23 "'-—_{ A3
as Virtually all hardware designers are familiar with the
P22 :]——E - . .
(Ms8) problem of solving complex functions using
e21 [}] combinatorial logic. The technologies involved may vary
. 0 greatly. from multiple contact relay togic, vacuum tubes,
0 N . . - N Ly
TTL, or CMOS to more esoteric approaches like fluidics.
but in cach casc the goal is the same: a Boolean
Figure 19. “Mismatch” Between 1/0 port and (true false) function is computed on a number of
Decoder Boolean variables.

AFN-01502A-28

26

Page 161 of 264

AP-69

a) L

< x %<

D :

Q= (Us (VW) v (Xe V) Z

e
]

CRY

CR2
}__6_
AT

Figure 20. Implementations of Boolean functions

Figure 20 shows the logic diagram for an arbitrary
function of six variables named U through Z using
standard logic and relay logic symbols. Each is a solution
of the equation,

Q=(Ue(V+WN+(X.T)+Z

(While this equation could be reduced using Karnaugh
Maps or algebraic techniques. that is not the purpose of
this example. Even a minor change to the function
equation would reqguire re-reducing from scratch.)

Most digital computers can solve equations of this type
with standard word-wide logical instructions and
conditional jumps. Stll such software solutions seem
somewhat sloppy because of the many paths through the
program the computation can take,

Assume U and V are input pins being read by different
input ports, W and X are status bits for two peripheral
controllers (read as I O ports). and Y and Z are software
flags sct or cleared earlier in the program. The ¢nd result
must be written to an output pin on some third port.

For the sake of comparison we will implement this
{unction with software drawn from three proper subsets
of the MCS-51™ instruction set. The first two
implementations follow the flow chart shown in Figure
21. Program [low would embark an a route down a test-
and-branch tree and leaves either the “True™ or “Not
I'rue™ exit ASAP. These exits then write the output port
with the data previously written to the same port with the
result bit respectively one or zero.

In the [irst case. we assume there are no instructions for
addressing individual bits other than special flags like the
carry. This is typical of many older microprocessors and
mainframe computers designed for number-crunching.
MCS-51™ mnemonics are used here. though for most
other machines the issue would be even further clouded
by their use of operation-specific mnemonics like

Page 162 of 264

INPUT. OUTPUT. LOAD. STORE. etc., instead of the
universal MOV.

FUNCTION FUNCTION
1S FALSE 15 TRUE
[ceara] | sera]
(CONTINUE)

Figure 21. Flow chart for tree-branching logic
implementation
AFN-015024-29

27

AP-69

Example 27 —Software Solution to Logic Function of
Figure 20, Using only Byte-Wide Logical
Instructions

LBFUNC1 SOLVE A RANDOM LOGIC FUNCTION OF &
, VARIABLES BY LDADING AND MASKING THE APPROPRIATE
BITS IN THE ACCUMULATOR, THEN EXECUTING CONDITIONAL
. JUMPS BASED ON ZERO CONDITION
f (APPROACH USED 8Y BYTE-ORIENTED ARCHITECTURES >
BYTE AND MASK VALUES CORRESPOND TD RESPECTIVE
BYTE ADDRESS AND BIT POSITION

QUTBUF EQU 22K

i DUTPUT PIN STATE MaP
TESTV MOV A P2
ANL A. #000001008
INZ TESTU
HOv A.TCON
ANL 4. 4001000001
vt YESTX
TESTU MoV A P1
ANL A. #000000100
UNT SETQ
TESTX. MOV A, TCON
AN 4. 4000010000
JI TESTZ
MOV - 20K
ANL A. #000000018
Jz SETG
TESTZ. MOV A 2tH
aNL A. 4000000108
1 SETa
CLRG oy A, QUTBUF
ANL A, 4111501118
JHp 1o
SETG MoV A. OUTBUF
ORL A. #000010000
oute MoV OUTBUF, A
L5 £3. A

Cumbersome, to say the least, and error prone. 1t would
be hard to prove the above example worked in all cases
without an exhaustive test.

Each move/mask/conditional jump instruction
sequence may be replaced by a single bit-test instruction
thanks to direct bit addressing. But the algorithm would
be equally convoluted.

Example 28 —Software Solution to Logic Function of
Figure 20, Using only Bit-Test
Instructions

i BFUNC2 SOLVE A RANDOM LOGIC FUNCTION DF &
VARTABLES BY DIRECTLY POLLING EACH BIT.

f (APPROACH USING MCS-31 UNIGUE B1T-TEST

i INSTRUCTION CAPABILITY)
SYMBOLS USED IN LOGIC DIAGRAM ASSIGNED TO
CORRESPONDING BO51 B1T ADDRESSES

u BIT P13
v BIT P2 2
W BIT TFO
X BiT 1€
¥ BIY 204 0
7 BIT 21H 1
BiT P33
TESTYV UB V. TEST U
UNB W, TEST_X
TEST U B u. SET @
TEST_X. UNB X, TEST_z
JNB Y. SET_G
YEST_Z' JNB 2. SET_G
CLR G CLR [
MP NXTTST
SET G SETR O
NXTTST ; (CONTINUATION OF PROGRAM)

A more elegant and efficient 8051 implementation uses
the Boolean ANL and ORL functions to generate the
output function using straight-linc code. These
instructions perform the corresponding logical
operations between the carry flag (“Boolean
Accumulator™) and the addressed bit. leaving the result in
the carry. Alternate forms of cach instruction (specified
in the assembly Janguage by placing a slash before the bit
name) use the complement of the bit's state as the input
operand.

28

Page 163 of 264

in

These instructions may be “strung together™ to simulate a
multiple input logic gate. When finished, the carry flag
contains the result, which may be moved directly to the
destination or output pin. No flow chart is needed — itis
simple to code directly from the Jogic diagrams in Figure
20.

Example 29 —Software Solution to Logic Function of
Figure 20, Using the MCS-51 (TM)
Unique Logical Instructions on Boolean
Variables
s BFUNC3 SOLVE A RANDOM LUGIC FUNCTION OF

VARIABLES USING STRAIGHT-LINE LDGchL INSTRUCTIONS
ON MCS-51 BODLEAN VARIABLES

MoV c.v

ORL c.w . OUTPUT OF CR GATE

ANL. cu <OUTPUT OF TOP AND QATE

MOV FO.C . GAVE INTERMEDIATE STATE
MoV c.x

AN C.rv {OUTPUT OF BOTTOM AND GATE
ORL. c.Fo - INCLUDE VALUE SAVED ABOVE
aRL c./z INCLUDE LAST INPUT VARIABLE
mov 6.C L OUTPUT COMPUTED RESULT

Simplicity itself. Fast, flexible, reliable, easy to design,
and easy to debug.

The Boolean features are useful and unique enough to
warrant a complete Application Note of their own.
Additional uses and ideas arc presented in Application
Note AP-70, Using the Intels MCS-51: Boolean
Processing Capabilities, publication number 121519,

5. ON-CHIP PERIPHERAL FUNCTION
OPERATION AND INTERFACING

1/0 Ports

The 1/O port versatility results from the “quasi-
bidirectional” output structure depicted in Figure 22.
(This is effectively the structure of ports |, 2. and 3 for
normal 1/0O operations. On port 0 resistor R2 is disabled
except during multiplexed bus operations. providing

READ/MODIFY/
WRITE

5V 5V
Q2
INTERNAL e
BUS —e—0
o R2 R
FLIP Vo
FLOP PIN
at PORT 1.2
AND 2
a {
WRITE ax
putse] =
BUS
CYCLE
TIMING
INPUT
BUFFER
READ

Figure 22. Pseudo-bidirectional 1/0 port circuitry

AFN-01502A-30

intal.

essentially open-collector outputs. For full electrical
characteristics see the User's Manual.)

An output latch bit associated with each pin is updated by
direct addressing instructions when that port is the
destination. The latch state is buffered to the outside
world by R and QI. which may drive a standard TTL
input. ¢(In TTL terms, QI and R1 resemble an open-
collector output with a pull-up resistor to Vee.)

R2 and Q2 represent an “active pull-up™ device enabled
momentarily when a 0 previously output changestoa |
This “jerks™ the output pin to a I level more quickly than
the passive pull-up, improving rise-time significantly if
the pin is driving a capacitive load. Note that the active
pull-up is only activated on 0-to-! transitions at the
output latch {unlike the 8048, in which Q2 is activated
whenever a | is written out).

Operations using an input port or pin as the source
operand use the logic level of the pinitself. rather than the
output latch contents. This level is affected by both the
microcomputer itself and whatever device the pin is
connected to externally. The value read is essentially the
“OR-tied” function of Q1 and the external device. If the
external device is high-impedence, such as a logic gate
input or a three state output in the third state, then
reading a pin will reflect the logic level previously output.
To use a pin for input, the corresponding output latch
must be set. The external device may then drive the pin
with either a high or low logic signal. Thus the same port
may be used as both input and output by writing ones 10
all pins used as inputs on output operations, and ignoring
all pins used as output on an input operation.

In onc operand instructions (INC, DEC. DINZ and the
Boolean CPL.) the output latch rather than the input pin
level is used as the source data. Similarly. two operand
instructions using the port as both one source and the
destination (ANL. ORL. XR1) use the output latches.
This ensures that tatch bits corresponding to pins used as
inputs will not be cleared in the process of executing these
instructions.

The Boolean operation JBC tests the output latch bit,
rather than the input pin, in deciding whether or not to
jump. Like the byte-wise logical operations, Boolean
operations which modify individual pins of a port leave
the other bits of the output latch unchanged.

A good example of how these modes may play together
may be taken from the host-processor interface expected
by an 8243 1 O expander. Even though the 8051 does not
include 8048-type instructions for interfacing with an
8243, the parts can be interconnected (Figure 23) and the
protocol may be emulated with simple software.

Page 164 of 264

AP-69

Example 30— Mixing Paralle! Output, Input, and
Control Strobes on Port 2

INB2AT INFLT DATA FOM AM STE7 1
CONNEL TFD TD PI3-PR:
PS¢ P MIMIC C5 ¢ PROT
PQ7-Fls USED AS INPOTS
POBT T O READ IN £

2 FPANDER

[LEETS I A H1101007 1D
v A DUTPUT INSTRUSTION CODF
e FALING EOGE NF FROG
000011113 SET FQF INPLT
REaD |
BE Tupn
DF -SELE

Serial Port and Timer applications

Configuring the 8051's Serial Port for a given data rate
and protocol requires essentially three short sections of
software. On power-up or hardware reset the serial port
and timer control words must be initialized to the
appropriate values. Additional software is also needed in
the transmit routine to load the serial port data register
and in the receive routine to unload the data as it arrives.

This is best illustrated through an arbitrary example.
Assume the 805! will communicate with a CRT
operating at 2400 baud (bits per second). Each character
is transmitted as seven data bits, odd parity. and one stop
bit. This results in a character rate of 2400 10-240
characters per second.

For the sake of clarity, the transmit and receive
subroutines arc driven by simple-minded software status
polling code rather than interrupts. (It might help to refer
back to Figures 7-9 showing the control word formats.)
The serial port must be initialized to 8-bit UART mode
(MO. M1=01). enabled to receive all messages (M2-0,
REN=1). The flag indicating that the transmit register is
free for more data will be artificially set in order to let the
output software know the output register is available.
This can all be set up with one instruction.

Example 31 -- Serial Port Mode and Control Bits
LSPINIT INITIALIZE SERIAL PORT
. FOR 8-B1T UART MODF
% BET TRANSMIT READY FLAG

SPINIT MOV

SCON. #010100108
8351
8751
8243 4
P27 ""‘"} INPUTS
P2.6 [t a
P2s cs P5 <1>
P24 PROG
a
P23 P23 Ps <¢>
P22 P22
P21 P21 4
P20 P20 P7 <:¢:>

Figure 23. Connecting an 8051 with an 8243
1/0 Expander

AFN-01502A-31

AP-69 intel)

Timer | will be used in auto-reload mode as a data rate 6. SUMMARY
generator. To achieve a data rate of 2400 baud. the timer

R) This Application Note has described the architecture,
must divide the | MHz internal clock by 32 x (desired

instruction set, and on-chip peripheral features of the
dara rate): first threc members of the MCS-51™ microcomputer
family. The examples used throughout were admittedly

_L1x 10 (and necessarily) very simple. Additional examples and
(32) (2400) techniques may be found in the MCS-51™ User’s Manual
and other application notes written for the MCS-48™and
which equals 13.02 rounded down to |3 instruction MCS-51™ families.
cycles. The timer must reload the value -13. or OF3H. . o L. .
(ASMS1 will accept both the signed decimal or hexa- Since its introduction in 1977, the MCS-48™ family has

become the industry standard single-chip

decimal representations.) ’ N A
microcomputer. The MCS-51™architecture expands the

Example 32— Initializing Timer Mode and Control Bits addressing capabilities and instruction set of its
LTIINIT INITIALIZE TIMER | FOR predecessor while ensuring flexibility for the future, and
B AUTO-RELOAD AT 32%2400 HI . . e . e -
(T0 USED AS GATED 16-B1T COUNTER) maintaining basic software compatability with the past.
"TllNl' MOV YCON, #110100108
mv o TLana Designers already familiar with the 8048 or 8049 will be

able to take with them the education and experience
gained from past designs as ever-increasing system
performance demands force them to move onto state-of-
the-art products. Newcomers will find the power and
regularity of the 805! instruction set an advantage in
streamlining both the learning and design processes.

A simple subroutine to transmit the character passed to it
in the accumulator must first compute the parity bit,
insert it into the data byte. wait until the transmitter is
available, output the character, and return. This is nearly
as easy said as done.

Microcomputer system designers will appreciate the 8051
as basically a single-chip solution to many problems
which previousty required board-level computers,

Example 33 —Code for UART Output, Adding Parity.
Transmitter Loading

.SP_OUT ADD ODD PARITY TO ACC AND Designers of real-time control systems will find the high
: TRANSIIT WMEN SER1AC PORT RRADY execution speed. on-chip peripherals. and interrupt
s & capabilities vital in meeting the timing constraints of
e s © products previously requiring discrete logic designs. And
fov shur.a designers of industrial controllers will be able to convert

ReT ladder diagrams directly from tested-and-true TTL or

relay-logic designs to microcomputer software. thanks to

A simple minded routine to wait until a character is) . L
the unique Boolean processing capabilities.

received, set the carry flag if there is an odd-parity error.

and return the masked seven-bit code in the accumulator It has not been the intent of this note to gloss over the
is equally short. difficulty of designing microcomputer-based systems. To
Example 34— Code for UART Reception and Parity be surc, the hardware and sul‘twfu.e design aspects ol any
Verification new computer system are nontrivial tasks, However, the
svstem speed and level of integration of the MCS-51™
I T e T ear oy camen O microcomputers. the power and flexibility of the
SP_IN. uNB RIS instruction set. and the sophisticated assembler and other
o ssur support products combine to give both the hardware and
o &F software designer as much ol a head start on the problem

o A W7FH as possible.

AFN-01502A-32

30

Page 165 of 264

Reexamination Control No. 90/011,754
Inventor: Ian F. Harris, et al.
U.S. Pat. No.: 7,930,576

EX PARTE REEXAMINATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Reexamination

Control. No.: 90/011,754 g
Inventor: Ian F. Harris, et al. §
Request Filing Date: June 21, 2011 g
U.S. Patent No.: 7,930,576 g
Title: SHARING NON-SHARABLE g
DEVICES BETWEEN AN $
EMBEDDED CONTROLLER $

AND A PROCESSOR IN A $
COMPUTER SYSTEM $

§

§

Atty.Dkt.No.: 5707-26200
Examiner: Peikari, Behzad
Group/Art Unit: 3992

Conf. No. 4071

#*%*CERTIFICATE OF E-FILING TRANSMISSION#***

I hereby certify that this correspondence is being transmitted
via electronic filing to the United States Patent and
Trademark Office on the date shown below:

On: April 23,2012 /Anthony M. Petro/
Date Anthony M. Petro, #59,391

CERTIFICATE OF SERVICE

The undersigned hereby certifies that a true and correct copy of the Response to Office
action Mailed February 23, 2012 and Declaration of Thomas M. Conte Under 37 C.F.R. § 1.132,
which were filed with the United States Patent & Trademark Office electronically via EFS-Web
on April 23, 2012, has been deposited with the United States Postal Service and sent via First
Class Mail on April 23, 2012, to the Third Party Requester at the following address:

Jiawei Huang

J.C. Patents

4 Venture, Suite 250
Irvine, CA 92618

Date: April 23, 2012

Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
P.O. Box 398

Austin, TX 78767-0398

(512) 853-8800

Respectfully submitted,

By: /Anthony M. Petro/
Anthony M. Petro
Reg. No. 59,391

Page 1 of 1

Page 166 of 264

Electronic Acknowledgement Receipt

EFS ID: 12603784
Application Number: 90011754
International Application Number:
Confirmation Number: 4071

Title of Invention:

SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER

AND A PROCESSOR IN A COMPUTER SYSTEM

First Named Inventor/Applicant Name:

7,930,576 B2

Customer Number:

35690

Filer:

Anthony M. Petro/Jeannie Miranda

Filer Authorized By:

Anthony M. Petro

Attorney Docket Number: JCLA38862-RE
Receipt Date: 23-APR-2012
Filing Date: 21-JUN-2011
Time Stamp: 14:21:09

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment no
File Listing:
Document .. . File Size(Bytes)/ Multi Pages
Number Document Description File Name Message Digest | Part/.zip| (if appl.)
5707-26200_R to_OA 373405
1 _Response_to_OA_| yes 7

02_23_12.pdf
<74dd22c0d8a97b6d6a27350d982a37cas
48aba

Page 167 of 264

Multipart Description/PDF files in .zip description

Document Description Start End
Amendment/Req. Reconsideration-After Non-Final Reject 1 3
Claims 4 32
Applicant Arguments/Remarks Made in an Amendment 33 72
Warnings:
Information:
Conte_declaration-FINAL 125616
2 Rule 130, 131 or 132 Affidavits onte_deciaration ho 21
executed.pdf
27d5da2ba0c02a723e8dbe33d287bc7d0
1f1c0c
Warnings:
Information:
7678351
3 Rule 130, 131 or 132 Affidavits Exhibit_1.pdf no 8
4809ch2f08296d40c572d687e26f3dff806e)|
Warnings:
Information:
2120564
4 Rule 130, 131 or 132 Affidavits Exhibit_2.pdf no 9
39e9886fff4465413deb595de8ebbd 1basfi
Warnings:
Information:
4718441
5 Rule 130, 131 or 132 Affidavits Exhibit_3.pdf no 31
eaba32540fae9c845fafdcbc035498a56174
19a9
Warnings:
Information:
" 77002
" R 5707-26200_Certificate_of_ser
6 Reexam Certificate of Service - no 1
vice.pdf
206f3d2c665ff0cd8d486ab59e8e233379f1
Te68
Warnings:
Information:
Total Files Size (in bytes):i 15093379

Page 168 of 264

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Page 169 of 264

Reexamination Application/Control No. Applicant(s)/Patent Under
Reexamination

90/011,754 7,930,576 B2 ET AL.
Certificate Date Certificate Number

Requester Correspondence Address: (] patent Owner [X Third Party

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.

P.0O. BOX 398

AUSTIN, TX 78767-0398

LITIGATION REVIEW X BJP 2/14/12
(examiner initials) _(date)
Case Name Director Initials
None

Wt 1y

COPENDING OFFICE PROCEEDINGS

TYPE OF PROCEEDING

NUMBER

1. None

U.S. Patent and Trademark Office

Page 170 of 264

DOC. CODE RXFILJKT

UNITED STATES PATENT AND TRADEMARK OQFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginias 22313-1450

WWW.USPLO. 8OV

[appLicaTionNO.] FILINGDATE - | FIRST NAMED INVENTOR [ATTORNEY DOCKET NO. [~ CONFIRMATIONNO. |
90/011,754 06/21/2011 7,930,576 B2 JCLA38862-RE 4071
35690 7590 0212312012 | EXAMINER]
MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398 | ART UNIT [eaperNuUMBER |

DATE MAILED: 02/23/2012

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Page 171 of 264

' UNITED STATES PATENT AND TRADEMARK OFFICE
REX ()

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O.BOX 398 .

AUSTIN, TX 78767-0398

Commissioner for Patents
United States Patent and Trademark Office
P.0O. Box1450

Alexandria, VA 22313-1450
WY USPIO.QOV

MAILED
FEB 2 3 2012

CENTRAL REEXAMINATION UNIT

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. 90/011,754.

PATENT NO. 7,930,576 B2 ET.

ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a
reply has passed, no submission on behalf of the ex parte reexamination requester will be

acknowledged or considered (37 CFR 1.550(g)).

PTOL-465 (Rev.07-04)

Page 172 of 264

Control No. Patent Under Reexamination

90/011,754 7,930,576 B2 ET
Office Action in Ex Parte Reexamlnatlon Exarminer A Unit
BEHZAD PEIKARI 3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

alX] Responsive to the communication(s) filed on 21 June 2011 . b[_] This action is made FINAL.
cX A statement under 37 CFR 1.530 has not been received from the patent owner.

A shortened statutory period for response to this action is set to expire 2 month(s) from the mailing date of this letter.

Failure to respond within the period for response will result in termination of the proceeding and issuance of an ex parte reexamination
certificate in accordance with this action. 37 CFR 1.550(d).. EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

If the period for response specified above is less than thirty (30) days, a response within the statutory minimum of thirty (30) days

will be considered timely.

Partl THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:
1. [] Notice of References Cited by Examiner, PTO-892. 3. [Interview Summary, PTO-474.
2. [:] Information Disclosure Statement, PTO/SB/08. 4. |:| .

Partli SUMMARY OF ACTION

1a. Claims 1-23 are subject to reexamination.

N
=

UO000OXKOOOK

Claims are not subject to reexamination.

Claims have been canceled in the present reexamination proceeding.

Claims are patentable and/or confirmed.

Claims 1-23 are rejected.

Claims are objected to.

The drawings, filed on

are acceptable.

The proposed drawing correction, filed on has been (7a)[] approved (7b)(] disapproved.
Acknowledgment is made of the priority claim under 35 U.S.C. § 119(a)-(d) or (f). '

a)d Al b)[J Some* ¢)[] None of the certified copies have

1] been received.

N O 0o s w N

2[_] not been received.
3[] been filed in Application No. _____.
4[] been filed in reexamination Control No.
5[] been received by the International Bureau in PCT application No. _____
* See the attached detailed Office action for a list of the certified copies not received.

9. [0 Sincethe proceeding appears to be in condition for issuance of an ex parte reexamination certificate except for formal
matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D.
11,453 0.G. 213.

10. EI Other:

cc: Requester (if third party requester)

U.S. Patent and Trademark Office
PTOL-466 (Rev. 08-06) Office Action in Ex Parte Reexamination Part of Paper No. 20120214

Page 173 of 264

Application/Control Number: 90/011,754 Page 2
Art Unit: 3992

DETAILED ACTION

~ Reexamination
1. This is an ex parte reexamination of U.S. Patent Number 7,930,576 (the '576 patent)

requested by a third party requester. Claims 1-23 are subject to reexamination.

Prosecution Summary
2. The following is a brief summary of the prosecution to date in this ex parte
reexamination proceeding:

. On June 21, 2011, a request for ex parte reexamination of claims 1-23 of the '576
patent was filed by a third party requestor.
o On September 8, 2011, the USPTO mailed a decision granting ex parte

reexamination and ordering the reexamination of claims 1-23.

References

3. The references discussed herein are as follows:

. U.S. Patent No. 6,161,162 to DeRoo et al. ("DeRoo").

Page 174 of 264

Application/Control Number: 90/011,754 Page 3
Art Unit: 3992

SNQs Raised in the Request
4. The order mailed September 8, 2011 identified the following SNQs:
. Issue 1: A SNQ as to claims 1-2, 4-7 and 9-10 is raised by DeRoo. '

o Issue 2: A SNQ as to claims 3, 8 and 11-23 is raised by DeRoo.

Claim Rejections — Relevant Statutes

5. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the
basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless —

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or
on sale in this country, more than one year prior to the date of application for patent in the United States.

(e) the invention was described in a patent granted on an application for patent by another filed in the United
States before the invention thereof by the applicant for patent, or on an international application by another who
has fulfilled the requirements of paragraphs (1), (2) and (4) of section 371(c) of this title before the invention
thereof by the applicant for patent.

The changes made to 35 U.S.C. 102(e) by the American Inventors Protection Act of 1999
(AIPA) and the Intellectual Property and High Technology Technical Amendments Act of 2002
do not apply when the reference is a U.S. patent resulting directly or iﬁdirectly from an
international application filed before November 29, 2000. Therefore, the prior art date of the
reference is determined under 35 U.S.C. 102(e) prior to the amendment by the AIPA (pre-AIPA

35 U.S.C. 102(e)).

Page 175 of 264

Application/Control Number: 90/011,754 Page 4
Art Unit: 3992

6. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in
section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are
such that the subject matter as a whole would have been obvious at the time the invention was made to a person
having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the
manner in which the invention was made.

Claim Rejections — Detailed Explanation

Issue 1

A SNQ as to claims 1-2, 4-7 and 9-10 is raised by DeRoo.

7. The request proposed a rejection of claims 1-2, 4-7 and 9-10 under 35 U.S.C. § 102(b) as
being anticipated by DeRoo. However, DeRoo was not published until December 12, 2000,
which was after the December 18, 2007 filing date of the '576 patent.

Thus, a rejection under 35 U.S.C. § 102(b) would be improper.

The following rejection under 35 U.S.C. § 102(e) is made sua sponte.

8. Claims 1-2, 4-7 and 9-10 are rejected under 35 U.S.C. § 102(e) as being anticipated by

DeRoo.

With regard to claim 1, DeRoo discloses a system (see FIG. 20), comprising: a non-
volatile memory (FIG. 20, common memory device 704); a processor (FIG. 20, CPU 702); and a
microcontroller (FIG. 20, SCP 706 and HUI 700) coupled to the non-volatile memory and to the

processor, wherein the microcontroller is configured to: in response to a change in system state

Page 176 of 264

Application/Control Number: 90/011,754 Page 5
Art Unit: 3992 -

to a first state (FIG. 24, when the CPU SYSTEM ACCESS signal is in low level) wherein the
microcontroller is assured safe access to the non-volatile memory, hold the system in the first
state (note address latch enable N SCPALE) and switch access (note that "HUI 700 multiplexes
access to the common device between the CPU 702 and the SCP 706" in col. 82, lines 8-9; FIG.
23) to the non-volatile memory from the processor to the microcontroller (note "[tJhe HUI 700
allows both the CPU 702 and the SCP 706 to share a common memory device 704" in col. 81,
lines 40-42); while the system is held in the first state, fetch program instructions or data from
the non-volatile memory and load the program instructions or data into a memory of the
microcontroller (note "the BIOS, as well as the SCP code, can be stored in a single memory
device" in col. 81, lines 42-43, and "[f]ull access is provided to both the CPU 702, as well as
the SCP 706, utilizing a time based interleaving method as illustrated in FIG. 24" in col. 81,
lines 50-32; FIG. 24); and after the program instructions or data have been loaded, switch access
to the non-volatile memory from the microcontroller to the processor (note that "HUI 700
multiplexes access to the common device between the CPU 702 and the SCP 706" in col. 82,
lines 8-9; FIG. 23), and release the system from the first state. (FIG.20,; "The HUI solves this
problem by providing an interface to enable both the SCP and the CPU to share a common
memory device ", col. 36 lines 30-32; "Reads’ and writes by the CPU 702 to the HUI1700 are
under the control of various CPU control signals including an I/0 read strobe N_IORC, an 1/0
write strobe N_IOWC, a memory data read strobe N_MRDC and a memory data write strobe
N_MWTC", col. 36, lines 56-60. "Communication between the SCP 706 and the CPU 702, and
between the SCP 706 and the common memory device 704 is under the control of various control

signals including a memory read strobe N_SCPRD, a memory write strobe N SCPWR, and

Page 177 of 264

Application/Control Number: 90/011,754 Page 6
Art Unit; 3992

address latch enable N SCPALFE and a program store enable N_CPPSE", col. 36-37, lines 66-4,
DeRoo also discloses a CONTROL 720 in FIG. 20 for accessing the common memory device 704

Sfrom either the CPU register file 712 or the SCP register file 714, col. 37, lines 6-23).

With regard to claim 2, DeRoo teaches that the change in system state to the first state is
performed by software (note "the HUI 700 allows the SCP 706 to communicate with the CPU
702 and the common memory device 704 by way of an SCP register file 714" in col. 36, lines 42-

44).

With regard to claim 4, DeRoo disc.loses that the pfogram instructions or data comprise
firmware code or data for the microcontroller ("Write external RAM (program &/or data)" and
"Read from external Program/Data memory", col. 22, Table VII, last 2 lines).

With regard to claim 5, DeRoo teaches that the microcontroller is a peripheral device
controller for a computer system (note "The SCP 20 monitors the keyboard 22" in col. 4, line

22).

With regard to claim 6, DeRoo discloses a method for sharing a non-volatile memory
(FIG. 20, common memory device 704) between a processor (FIG. 20, CPU 702) and a
microcontroller (FIG. 20, SCP 706 and HUI 700) in a system (note the multiprocessor system of
FIG. 20), comprising: in response to a change in system state to a first state (FIG. 24, when the
CPU SYSTEM ACCESS signal is in low level) wherein the microcontroller is assured safe access
to the non-volatile memory, holding the system in the first state (note address latch enable
N_SCPALE) and switching access (note that "HUI 700 multiplexes access to the common device

between the CPU 702 and the SCP 706" in col. 82, lines 8-9; FIG. 23) to the non-volatile

Page 178 of 264

Application/Control Number: 90/011,754 Page 7
Art Unit: 3992

memory from the processor to the microcontroller (note "[tJhe HUI 700 allows both the CPU
702 and the SCP 706 to share a common memory device 704" in col. 81, lines 40-42); while the
system is held in the first state, fetching program instructions or data from the non-volatile
memory and loading the program instructions or data into a memory of the microcontroller (note
"the BIOS, as well as the SCP code, can be stored in a single memory device" in col. ;5’1, lines
42-43, and "[f]ull access is provided to both the CPU 702, as well as the SCP 706, utilizing a
time based interleaving method as illustrated in FIG. 24" in col. 81, lines 50-52; FIG. 24); and
after the program instructions or data have Been loade(d, switching access to the non-volatile
memory from the microcontroller to the processor, and releasing the system from the first state
(FIG.20; "The HUI solves this problem by providing an ihterface to enable both the SCP and the
CPU to share a common memory device ", col. 36 lines 30-32; "Reads’ and writes by the CPU
702 to the HU1700 are under the control of various CPU control signals including an I/0 read
strobe N_IORC, an I/0 write strobe N_IOWC, a memory data read strobe N MRDC and a
memory data write strobe N_MWTC", col. 36, lines 56-60. "Communication between the SCP
706 and the CPU 702, and between the SCP 706 and the common memory device 704 is under
the control of various control signals including a memory read strobe N_SCPRD, a memory
write strobe N_SCPWR, and address latch enable N SCPALE and a program store enable
N _CPPSE", col. 36-37, lines 66-4. Moreover, DeRoo also discloses a CONTROL 720 in FIG.
20for accessing the common memory device 704form either the CPU register file 712 or the SCP

register file 714, col. 37, lines 6-23).

With regard to claim 7, DeRoo discloses that the change in system state to the first state

is performed by software (note that "the HUI 700 allows the SCP 706 to communicate with the

Page 179 of 264

Application/Control Number: 90/011,754 Page 8
Art Unit: 3992

CPU 702 and the common memory device 704 by way of an SCP register file 714" in col. 36,

lines 42-44).

With regard to claim 9, DeRoo discloses the program instructions or data comprise
firmware code or data for the microcontroller ("Write external RAM (program &/or data)" and

"Read from external Program/Data memory", col. 22, Table VII, last 2 lines).

With regard to claim 10, DeRoo discloses the microcontroller is a peripheral device
controller for a computer system (note "The SCP 20 monitors the keyboard 22" in col. 4, line

22).

Issue 2

A SNQ as to claims 3, 8 and 11-23 is raised by DeRoo.

9. Claims 3, 8 and 11-23 are rejected under 35 U.S.C. § 103(a) as being upatentable over

DeRoo.

With regard to claims 3 and 8, DeRoo does not explicitly teach that the first state
comprises one or more of a power on reset (POR) state, a system réset state or a sleep state.
However, powering on, resetting and sleep mode were well known initial states for memory
system operation. Thus, it would have been obvious to one having ordinary skill in the art at the
time the invention was made to utilize one or more of a power on reset (POR) state, a system
reset state or a sleep state as the initial state, since (a) a power on reset state or a system reset

state would have allowed the most current system status, parameters and drivers to be loaded for

Page 180 of 264

Application/Control Number: 90/011,754 Page 9
Art Unit: 3992

more efficient operation and, alternatively, (b) using a sleep state as an initial state would have
the advantage of saving power while still retaining the memory state and without requiring

rebooting of the operating system.

With’regard to claim 11, DeRoo discloses a system, comprising: a non-volatile memory
(FIG 20, common memory device 704), a processor (FIG20, CPU 702), and a microcontroller
(FIG. 20, SCP 706 and HUI 700) coupled to the non-volatile memory and to the processor.

DeRoo does not explicitly teach that the microcontroller is configured to: in response to a
power on reset, hold a system reset signal in a reset state, thereby prohibiting the processor from
accessing the non-volatile memory, while the system reset signal is held in the reset state, fetch
program instructions or data from the non-volatile memory and load the program instructions or
data into a memory of the microcontroller; and after the program instructions or data have been
loaded, permit the processor in the system acces.s to the non-volatile memory, and release the
system reset signal from the reset state.

Even though DeRoo does not explicitly teach holding the processor in a reset state to
prohibit the processor from accessing the non-volatile mefnory, while allowing the
microcontroller to do so, DeRoo does teach (1) holding a processor in a wait state to prohibit the
processor from accessing the non-volatile memory, while allowing the microcontroller to do so
(note col. 81, lines 52-64) and (2) holding the microcontroller in a reset state to prohibit the
microcontroller from accessing the non-volatile memory, while allowing the processor to do so

(note, e.g., col. 81, line 64, to column 82, line 6).

Page 181 of 264

Application/Control Number: 90/011,754 Page 10
Art Unit: 3992

- Therefore, it would have been obvious to one having ordinary skill in the art at the time
the invention was made to hold the processor in the system of DeRoo in a reset state to. prohibit
the processor from .accessing the non-volatile memory, while allowing the microcontroller
exclusive access to the non-volatile memory until the reset signal is released, since (1) DeRoo
specifically taught the use of a reset state to prevent an element from accessing the non-volatile
memory; namely, holding the microcontroller in a reset state to prohibit the microcontroller from
accessing the non-volatile memory, while allowing the prdcessor to do so, (2) DeRoo
specifically taught the. use of a state to prohibit the processor from accessing the non-volatile
memory, while allowing the microcontroller exclusive access to the non-volatile memory;
namely, holding a processor in a wait state to prohibit the processor from accessing the non-
volatile memory, while allowing the microcontroller to do so and (3) it may have been
advantageous to take make use of any idle time during the wait state of the processor by

performing a reset operation in the processor to run new updates, etc.

With regard to claim 12, DeRoo discloses the program instructions or data comprise
firmware code or data for the microcontroller ("Write external RAM (program &/or data)" and

"Read from external Program/Data memory”, col. 22, Table VII, last 2 lines).

With regard to claim 13, DeRoo discloses the microcontroller is a peripheral device
controller for a computer system (note "The SCP 20 monitors the keyboard 22" in col. 4, line

22).

With regard to claim 14, DeRoo discloses the microcontroller is coupled to the non-

volatile memory via a non-volatile memory bus, and wherein the microcontroller is operable to

Page 182 of 264

Application/Control Number: 90/011,754 Page 11
Art Unit: 3992 . -

fetch the program instructions or data from the non-volatile memory via the non-volatile memory

bus (FIG. 20, FD[0:7)).

With regard to claim 15, DeRoo discloses the microcontroller is coupled to the processor
via a host memory bus, and wherein the microcontroller is operable to switchably intercept or
pass communications between the processor and the non-volatile memory (FIGs. 20 and 23,

address mux 716, data mux & latch 718).

With fegard to claim 16, DeRoo discloses the microéontroller comprises or is coupléd to
a switch, interposed between the non-volatile memory bus and the host memory bus, wherein the
switch is cqntrollable by the microcontroller to switchably intercept or pass communications
between the processor and the non-volatile memory (FIGs. 20 and 23, address mux 716, data
mux & latch 718, note "the SCP 706 can gain exclusive access to the common memory device
704 by asserting a CPU EXCLUDED signal (i.e., setting bit i of the flash interface control
register FLASH _CTRL). During such a condition, the data multiplexer 718 blocks the system
data bus SD[O:7] from the path of the memory data bus FD[0:7]" in col. 82, lines 32-39; the
address mux 716 and the data mux and latch 718 are controlled by the Voutputs of control logic

720, and the values of the registers in the control logic 720 can be set by either SCP or CPU).

With regard to claim 17, DeRoo discloses a method for sharing a non-volatile memory
(FIG 20, common memory device 704) between a processor (FIG20, CPU 702) and a

microcontroller (FIG. 20, SCP 706 and HUI 700) in a system.

Page 183 of 264

Application/Control Number: 90/011,754 Page 12
Art Unit: 3992

DeRoo does not explicitly teach in response to a power on reset, holding a system reset
signal in a reset state, thereby prohibiting the précessor from accessing the non-volatile memory;
while the system reset signal is held in the reset state, fetching program instructions or data from
the non-volatile memory and loading the program instructions or data into a memory of the
microcontroller; and after the program instructions or data have been loaded, permitting the
processor in the system éccess to the non-volatile memory, and releasing the system reset signal
from the reset state.

Even though DeRoo does not explicitly teach holding the processor in a reser state to
prohibit the processor from accessing the non-volatile memory, while allowing the
microcontroller to do so, DeRoo does teach (1) holding a processor in a wait state to prohibit the
processor from accessing the non-volatile memory, while allowing the microcontroller to do so
(note col. 81, lines 52-64) and (2) holding the microcontroller in a reset state to prohibit the
microcontroller from accessing the non-volatile memory, while allowing the processor to do so
(note, e.g., col. 81, line 64, to column 82, line 6).

Therefore, it would have been obvious to one having ordinary skill in the art at the time
the invention was made to hold the processor in the system of DeRoo in a reset state to prohibit
the processor from éccessing the non-volatile memory, while allowing the microcontroller
exclusive access to the non-volatile memory until the reset signal is released, since (1) DeRoo
specifically taught the use of a reset state to prevent an element from accessing the non-volatile
memory; namely, holding the microcontroller in a reset state to prohibit the microcontroller from
accessing the non-volatile memory, while allowing the processor to do so, (2) DeRoo

specifically taught the use of a state to prohibit the processor from accessing the non-volatile

Page 184 of 264

Application/Control Number: 90/011,754 Page 13
Art Unit: 3992

memory, while allowing the microcontroller exclusive access to the non-volatile memory;
namely, holding a processor in a wait state to prohibit the processor from accessing the non-
volatile memory, while allowing the microcontroller to do so and (3) it may have been
advantageous to take make use of any idle time during the wait state of the processor by

performing a reset operation in the processor to run new updates, etc.

With regard to claim 18, DeRoo discloses the program instructions or data comprise
firmware code or data for the microcontroller ("Write external RAM (program &/or data)” and

"Read from external Program/Data memory", col. 22, Table VII, last 2 lines).

With regard to claim 19, DeRoo discloses the microcontroller is a peripheral device
controller for a computer system (note "The SCP 20 monitors the keyboard 22" in col. 4, line

22).

With regard to claim 20, DeRoo discloses the microcontroller is coupled to the processor

via a system reset bus, and wherein the microcontroller is operable to assert the system reset

signal over the system reset bus (FIG. 20, RESET line for SCP).

With regard to claim 21, DeRoo discloses. the microcontroller is coupled to the non-
volatile memory via a non-volatile memory bus, and wherein the microcontroller is operable to
fetch the program instructions or data from the non-volatile memory via.the non-volatile memory

bus (FIGs. 20 and 23, FD[0:7]).

With regard to claim 22, DeRoo discloses the microcontroller is coupled to the processor

via a host memory bus, and wherein the microcontroller is operable switchably intercept or pass

Page 185 of 264

Application/Control Number: 90/011,754 Page 14
Art Unit: 3992

communications between the processor and the non-volatile memory (FIGs. 20 and 23, address

mux 716, data mux & latch 718).

With regard to claim 23, DeRoo teaches that the microcontroller comprises or is coupled
to a switch, interposed between the non-volatile mémory bus and the host memory bus, wherein
the switch is controllable by the microcontroller to switchably intercept or pass communications
between the processor and the non-volatile memory (FIGs. 20 and 23, address mux 716, data
mux & latch 718, note "the SCP 706 can gain exclusive access to the common memory device
704 by asserting a CPU EXCLUDED signal (i.e., setting‘bit i of the flash interface control
register FLASH CTRL). During such a condition, the data multiplexer 718 blocks the system
data bus SD[O:7] from the path of the memory data bus FD[0:7]" in col. 82, lines 32-39; the
address mux 716 and the data mux and latch 718 are controlled by the outputs of control logic '

720, and the values of the registers in the control logic 720 can be set by either SCP or CPU).

Examiner’s Statement of Reasons for Patentability/Confirmation

10. None of the claims subject to reexamination have been confirmed at this time.

Page 186 of 264

Application/Control Number: 90/011,754 Page 15
Art Unit: 3992

CONCLUSION

Amendment in Reexamination Proceedings

11. Patent Owner is notified that any proposed amendment to the specification and/or claims
in this reexamination proceeding must comply with 37 CFR 1.530(d)-(j), must be formally
presented pursuant to 37 CFR 1.52(a) and (b), and must contain any fees required by 37 CFR
1.20(c).

In order to ensure full consideration of any amendments, affidavits or declarations, or
other documents as evidence of patentab-ility, such documents must be submitted in response to
this Office action. Submissions will be governed by the requirements of 37 CFR 1.116, after
final rejection and 37 CFR 41.33 after appeal, which will be strictly enforced. See MPEP §
2250(IV) for examples to assist in the preparation of proper proposed amendments in

reexamination proceedings.

Service of Papers
12. After filing of a request for ex parte reexamination by a third party requester, any
document filed by either the patent owner or the third party requester must be served on the other
party.(or parties where two or more third party requester proceedings are merged) in the
reexamination proceeding in the manner provided in 37 CFR 1.248. The document must reflect

service or the document may be refused consideration by the Office. See 37 CFR 1.550(f).

Page 187 of 264

Application/Control Number: 90/011,754 Page 16
Art Unit: 3992 '

Extensions of Time
13. Extensions of time under 37 CFR 1.136(a) will not be pérmitted in these pfoceedings
because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a
reexamination proceeding. Additionally, 35 U.S.C. 305 requires that ex pa)‘te reexamination
proceedings "will be conducted with special dispatch” (37 CFR 1.550(a)). Extensions of time in

ex parte reexamination proceedings are provided for in 37 CFR 1.550(c)..

Litigation Reminder
14. The patent owner is reminded of the continuing responsibility under 37 CFR 1.565(a) to
apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the
patent throughout the course of this reexamination proceeding. The third party requester is also
reminded of the ability to similarly apprise the Office of any such activity or proceeding

throughout the course of this reexamination proceeding. See MPEP §§ 2207, 2282 and 2286.

Page 188 of 264

Application/Control Number: 90/011,754
Art Unit: 3992

Page 17

All correspondence relating to this ex parte reexamination proceeding should be directed:

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents

United States Patent & Trademark Office

P.O. Box 1450
Alexandria, VA 22313-1450

By FAX to: (571) 273-9900
Central Reexamination Unit

By hand to: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Registered users of EFS-Web may alternatively submit such correspondence via the electronic
filing system EFS-Web, at https://efs.uspto.gov/efile/myportal/efs-registered. EFS-Web offers

the benefit of quick submission to the particular area of the Office that needs to act on the
correspondence. Also, EFS-Web submissions are “soft scanned” (i.e., electronically uploaded)
directly into the official file for the reexamination proceeding, which offers parties the
opportunity to review the content of their submissions after the “soft scanning” process is

complete.

Any inquiry concerning this communication should be directed to the Central Reexamination

Unit at telephone number (571) 272-7705.

Signed:
/B. James Peikari/
B. James Peikari

Primary Examiner
Art Unit 3992

Page 189 of 264

Conferees:
/EBK/

b ———

MARK J. REINHART
CRU SPE-AU 3¢32

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alcxandria, Virginia 22313-1450

WWW.uspto.gov

[appLicaTION NO. [FILING DATE | FIRST NAMED INVENTOR | ATTORNEY DOCKETNO. | CONFIRMATION No. |
90/011,754 06/21/2011 7,930,576 B2 JCLA38862-RE 4071
35690 7590 09/08/2011 | EXAMINER J
MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O.BOX398
AUSTIN, TX 78767-0398 [ART UNIT | PAPER NUMBER I

DATE MAILED: 09/08/2011

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Page 190 of 264

Ex Parte Reexamination Communication Transmittal Form Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patents and Trademark Office
P.0.Box 1450

Alexandria, VA 22313-1450
WWW.uspto.gov

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS MDaAtiLE

JIAWEI HUANG (J.C. PATENTS)

4, VENTURE sgp 08 20M
SUITE 250

IRVINE, CA 92618 CENTRAL REEXAMINATION UNT

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. : 90011754
PATENT NO. : 7930576
ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a
reply has passed, no submission on behalf of the ex parte reexamination requester will be
acknowledged or considered (37 CFR 1.550(g)).

http://uspto-a-pattr-3/CRU/TransmittalForm.aspx?CtrINO=90011754 9/8/2011
Page 191 of 264

Control No. Patent Under Reexamination
. . 1011,7 7,930,576 B2 ET
Order Granting / Denying Request For S0/0 _ >4 AT
Ex Parte Reexamination Examiner | rt Unit
BEHZAD PEIKARI 3992

--The MAILING DATE of this communication appears on the cover sheet with the correspondence address--

The request for ex parte reexamination filed 21 June 2011 has been considered and a determination has
been made. An identification of the claims, the references relied upon, and the rationale supporting the

determination are attached.

Attachments: a)[_|] PTO-892, +b)[] PTO/SB/0S, c)X] Other: PTO-1449
1.[X] The request for ex parte reexamination is GRANTED. |
RESPONSE TIMES ARE SET AS FOLLOWS:

For Patent Owner's Statement (Optional): TWO MONTHS from the mailing date of this communication
(37 CFR 1.530 (b)). EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.550(c).

For Requester's Reply (optional): TWO MONTHS from the date of service of any timely filed
Patent Owner's Statement (37 CFR 1.535). NO EXTENSION OF THIS TIME PERIOD IS PERMITTED.
If Patent Owner does not file a timely statement under 37 CFR 1.530(b), then no reply by requester

is permitted.
2.[] _The request for ex parte reexamination is DENIED.

This decision is not appealable (35 U.S.C. 303(c)). Requester may seek review by petition to the
Commissioner under 37 CFR 1.181 within ONE MONTH from the mailing date of this communication (37
CFR 1.515(c)). EXTENSION OF TIME TO FILE SUCH A PETITION UNDER 37 CFR 1.181 ARE
AVAILABLE ONLY BY PETITION TO SUSPEND OR WAIVE THE REGULATIONS UNDER

37 CFR 1.183.

In due course, a refund under 37 CFR 1.26 (¢) will be made to requester:

a)] by Treasury check or,

b) [] by credit to Deposit Account No. , or
c) [] by credit to a credit card account, unless otherwise notified (35 U.S.C. 303(c)).

L_ ' L

]

U.S. Patent and Trademark Office

PTOL-471 (Rev. 08-06) Office Action in Ex Parte Reexamination

Page 192 of 264

cc:Requester (if third party requester)
Part of Paper No. 20110823

Application/Control Number: 90/011,754 Page 2
Art Unit: 3992

RESPONSE TO REQUEST FOR EX PARTE REEXAMINATION

1. The Request filed by a third part requestor on June 21, 2011 alleges that there is a
substantial new question of patentability(SNQ) affecting claims 1-23 of U.S. Patent Number
7,930,576 (the '576 patent) based on the following prior art reference:

) U.S. Patent No. 6,161,162 to DeRoo et al. ("DeRoo").

Brief Overview of the Patent

2. The '576 patent is directed to a system and method for sharing a non-volatile v

memory between a host processor and a microcontroller.

System Interface Host Memory Bus
Shared Device
System Interface Bus System (e.g., Non-Volatile
103 Manag?ment Bug Device Bus Me1rggry)
107 \ —=

Embedded
Microcontroller

In response to system state change to a first state wherein the microcontroller is assured
safe access to the memory, the microcontroller holds the system in the first state and obtains
access to the memory, accesses the memory and loads program instructions and/or data into a

memory of the microcontroller. Figure 1b of the patent is shown above.

Page 193 of 264

Application/Control Number: 90/011,754 Page 3
Art Unit: 3992

After the access, the microcontroller changes or allows change of the system state from

the microcontroller to the processor, and releases the system from the first state.

Prosecution History
3. The '576 patent matured from U.S. Patent Application No. 11/958,601, whose relevant
prosecution history may be summarized as follows:
e - The application was filed on December 18, 2007 with claims 1-25.
. In a non-final Office Action mailed September 3, 2010, claims 1-23 were rejected
under 35 U.S.C. §112, second paragraph, claims 24 and 25 were rejected under 35
U.S.C. §102(b) as being anticipated by Le et al., U.S. Patent No. 6,154,838, and
claims 1-23 were rejected under 35 U.S.C. §103 as being obvious over Le et al.,
_U.S. Patent No. 6,154,838, in view of Pang et al., U.S. Patent No. 6,925,522.
° In an amendment filed December 3, 2010, claims 1, 4,6,9,11, 12, 14, 16, 17, 18,
. and 21 were amended and claims 24 and 25 were cancelled.

. On December 17, 2010 a Notice of Allowance was mailed, in which the examiner

allowed claims 1-23.

. On April 19, 2011 the application issued as U.S. Patent No. 7,930,576.

SNOQs Raised in the Request

4. The Requester identified the following SNQs (see Request, page 6):
) Issue 1: A SNQ as to claims 1-2, 4-7 and 9-10 is raised by DeRoo.

) Issue 2: A SNQ as to claims 3, 8 and 11-23 is raised by DeRoo.

Page 194 of 264

Application/Control Number: 90/011,754 | " Page 4
Art Unit: 3992

Discussion of SNQs

5. A prior art patent or printed publication raises a substantial new question of patentability
where there is: |

(A) a substantial likelihood that a reasonable Examiner would consider the prior art

patent or printed publication important in deciding wﬁether or not the claim is

patentable, MPEP §2242 (I) and,

(B) the same question of patentability as to the claim has not been decided ina -

previous or pending proceeding or in a final holding of invalidity by a federal

court. See MPEP §2242 (III).
For any reexamination ordered on or after November 2, 2002, reliance on previously
cited/considered art, i.e., "old art," does not necessarily preclude the existence of a substantial
new question of patentability that is based exclusively on that old art. Rather, deteminations on
whether a substantial new question of patentability exists in such an instance shall be based upon

a fact-specific inquiry done on a case-by-case basis. See MPEP 2242.

Issue 1

A SNQ as to claims 1-2, 4-7 and 9-10 is raised by DeRoo.

6. DeRoo discloses a multiprocessor system that enables shared access to a memory by

multiple CPUs (note Figure 20 of DeRoo).

Page 195 of 264

Application/Control Number: 90/011,754 Page 5
Art Unit: 3992

Multiplexed address and data paths are provided from thee CPUs to the single storage
device. The paths are controlled by an arbitration circuit which allows one CPU to always have
the highest priority. The primary CPU may or may not be the highest priority CPU in the
arbitration scheme. The arbitration circuit is combined with a controller which interfaces to the

memory device.

The controller is responsive to these processors to multiplex their information signals for
selectively conveying information present at their address and data ports to ensure that the
memory device is addressable by the processors, and responsive to the controller to share

addressing of the common memory device.

Thus DeRoo discloses a system for shared access to a memory by a primary CPU (e.g.,
host CPU) and another controlling device, which it appears the examiner considered to be

allowable features of claims 1-2, 4-7 and 9-10.

7. There is a substantial likelihood that a reasonable examiner would consider the teachings
of DeRoo important in deciding the patentability of claims 1-2, 4-7 and 9-10 of the '576 patent.
DeRoo is not of record in the file of the '106 patent and is not cumulative to the art of record in
the original file. The teachings of DeRoo were not subject to a final holding of invalidity by a
federal court.

Accordingly, it is agreed that the DeRoo an SNQ as to claims 1-2, 4-7.and 9-10.

Page 196 of 264

Application/Control Number: 90/011,754 Page 6 _
Art Unit: 3992

Issue 2

A SNQ as to claims 3, 8 and 11-23 is raised by DeRoo.

8. The system of DeRoo has been described above.

Thus DeRoo discloses a system for shared access to a memory by a primary CPU (e.g.,
host CPU) and another controlling device. The request presents arguments regarding the first
state comprising one or more of: a power on reset (POR) state; a system reset state; or a sleep

state, which it appears the examiner considered to be allowable features of claims 3, 8 and 11-23.

9. There is a substantial likelihood that a reasonable examiner would consider the
combination of DeRoo important in deciding the patentability of the claims of the '576 patent.
Accordingly, it is agreed that DeRoo raises a substantial new question of patentability as

to claims 3, 8 and 11-23.

Conclusion
10. There is at least one substantially new question of patentability for each of claims 1-23.

Thus, claims 1-23 are subject to reexamination.

Page 197 of 264

Application/Control Number: 90/011,754 Page 7
Art Unit: 3992

Waiver of Right to File Patent Owner Statement
11. Inareexamination proceeding, Patent Owner may waive the right under 37 C.F.R. 1.530
to file a Patent Owner Statement. The document needs to contain a statement that Patent Owner
waives the right under 37 C.F.R. 1.530 to file a Patent Owner Statement and proof of service in
the manner provided by 37 C.F.R. 1.248, if the request for reexamination was made by a third

party requester, see 37 C.F.R 1.550(f).

Service of Papers
12. After filing of a request for ex parte reexamination by a third party requester, any
document filed by either the patent owner or the third party requester must be served on the other
party (or parties where two or more third party requester proceedings are merged) in the
reexamination proceeding in the manner provided in 37 CFR 1.248. The document must reflect

service or the document may be refused consideration by the Office. See 37 CFR 1.550(%).

Extensions of Time
13. Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings
because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a
reexamination proceeding. Additionally, 35 U.S.C. 305 requires that ex parte reexamination
proceedings "will be conducted with special dispatch"' (37 CFR 1.550(a)). Extensions of time in

ex parte reeXamination proceedings are provided for in 37 CFR 1.550(c).

Page 198 of 264

Application/Control Number: 90/011,754 Page 8
Art Unit: 3992

Litigation Reminder
14. The patent owner is reminded of the continuing responsibility under 37 CFR 1.565(a) to
apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving
Patent No. 6,119,181 throughout the course of this reexamination proceeding. The third party
requester is also reminded of the ability to similarly apprise the Office of any such activity or
proceeding throughout the course of this reexamination proceeding. See MPEP §§ 2207, 2282

and 2286.

Page 199 of 264

Application/Control Number: 90/011,754 Page 9
Art Unit: 3992

All correspondence relating to this ex parte reexamination proceeding should be directed:

By Mail to: Mail Stop Ex Parte Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent & Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

By FAX to: (571)273-9900
Central Reexamination Unit

By hand to: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314

Registered users of EFS-Web may alternatively submit such correspondence via the electronic
filing system EFS-Web, at https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html.
EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to
act on the correspondence. Also, EFS-Web submissions are “soft scanned” (i.e., electronically,
uploaded) directly into the official file for the reexamination proceeding, which offers parties the
opportunity to review the content of their submissions after the “soft scanning” process is
complete.

Any inquiry concerning this communication should be directed to the Central Reexamination
Unit at telephone number (571) 272-7705.

Signed: » Conferees:

/B. James Peikari/

B. James Peikari Tt W Atz
Primary Examiner : / “ 4/ / /W

Art Unit 3992 %/

Page 200 of 264

Receipt date: 06/21/2011 90011754 - GAU: 3992

ATTY. DOCKET NO.: JCLA38862-RE | APPLICATION No.: /
FORMPTO-1449 U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE | APPLICANT: IAN F. HARRIS et al.
INFORMATION DISCLOSURE STATEMENT BY
APPLICANT FILING DATE: HEREWITH GROUP:
U.S. PATENT DOCUMENTS
EXAMINER DOCUMENT NUMBER DATE NAME CLASS | SUBCLASS FILING DATE
INITIAL (IF APPROPRIATE)
IBJPI 1 6,161,162 12/12/2000 David T. DeRoo et al. 710 244
FOREIGN PATENT DOCUMENTS
EXAMINER DOCUMENT NUMBER | PUBLICATION COUNTRY CLASS | SUBCLASS ENGLISH
INITIAL DATE TRANSLATION
NON PATENT LITERATURE DOCUMENTS
EXAMINER Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, ENGLISH
INITIAL Jjournal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/cr county where published. TRANSLATION
EXA I
MINER /8. James Peikari DATE CONSIDERED g oc1a11

EXAMINER: INITIAL IF CITATION CONSIDERED, WHETHER OR NOT CITATION IS IN CONFORMANCE WITH MPEP
609; DRAW LINE THROUGH CITATION IF NOT IN CONFORMANCE AND NOT CONSIDERED. INCLUDE COPY OF
THIS FORM WITH NEST COMMUNICATION TO APPLICANT.

Page 201 of 264

Reexamination

Application/Control No.

90/011,754

Applicant(s)/Patent Under
Reexamination

7,930,576 B2 ET AL.

Certificate Date

Certificate Number

Requester Correspondence Address: [] Patent Owner X Third Party
MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.

P.O. BOX 398

AUSTIN, TX 78767-0398

LITIGATION REVIEW [X] BJP 8124111

(examiner initials)

(date)

Case Name

Director Initials

None

Pt/

/

COPENDING OFFICE PROCEEDINGS

TYPE OF PROCEEDING

NUMBER

1. None

U.S. Patent and Trademark Office

Page 202 of 264

DOC. CODE RXFILJKT

Search Notes

Application/Control No.

Applicant(s)/Patent under
Reexamination

90/011,754 7,930,576 B2 ET AL.
Examiner Art Unit
' BEHZAD PEIKARI 3992

SEARCHED
Class Subclass Date - Examiner
INTERFERENCE SEARCHED
Class Subclass Date Examiner

(INCLUDING SEARCH STRATEGY)

SEARCH NOTES

DATE EXMR

Review of the prosecution history of
U.S. Patent No. 7,930,576. 8/2412011 | BJP

U.S. Patent and Trademark Office

Page 203 of 264

Part of Paper No. 20110823

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O. Box 1450

Alexandria, Virginia 22313-1450
WWW.USPLO.gov
r APPLICATION NO. | FILING DATE | FIRST NAMED INVENTOR l ATTORNEY DOCKET NO. | CONFIRMATION NO. J
90/011,754 06/21/2011 7,930,576 B2 JCLA38862-RE 4071
35690 7590 08/29/2011 ﬁ EXAMINER J
MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398 [arTuNiT PAPERNUMBER |

DATE MAILED: 08/29/2011

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

Page 204 of 264

Ex Parte Reexamination Communication Transmittal Form Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE

Commissioner for Patents

United States Patents and Trademark Office
P.0.Box 1450

Alexandria, VA 22313-1450
WWW.USPo.gov

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS Date:

JIAWEI HUANG (J.C. PATENTS) MAILED

4, VENTURE '

IRVINE, CA 92618 CENTRAL REEXAMINATION UNIT

EX PARTE REEXAMINATION COMMUNICATION TRANSMITTAL FORM

REEXAMINATION CONTROL NO. : 90011754
PATENT NO. : 7930576
ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark
Office in the above identified ex parte reexamination proceeding (37 CFR 1.550(f)).

Where this copy is supplied after the reply by requester, 37 CFR 1.535, or the time for filing a
reply has passed, no submission on behalf of the ex parte reexamination requester will be
acknowledged or considered (37 CFR 1.550(g)).

Page 205 of 264

Ex Parte Reexamination Interview
Summary - Pilot Program for Waiver of
Patent Owner’s Statement

Control No. Patent For Which Reexamination
is Requested

90/011,754 7,930,676

Examiner Art Unit
3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

All participants (USPTO official and patent owner):

(1) Karen Ward, CRU

(2) Eric Meyertons, 34876

Date of Telephonic Interview: August 25, 2011.

()
(4)

MAILED

AUG 29 2011
CENTRAL REEXAMINATION UNIT

The USPTO official requested waiver of the patent owner's statement pursuant to the pilot program for waiver of
patent owner's statement in ex parte reexamination proceedings.*

D The patent owner agreed to waive its right to file a patent owner’s statement under 35 U.S.C. 304 in the event
reexamination is ordered for the above-identified patent.

] The patent owner did not agree to waive its right to file a patent owner’s statement under 35 U.S.C. 304 at this

time.

The patent owner is not required to file a written statement of this telephone communication under 37 CFR 1.560(b) or
otherwise. However, any disagreement as to this interview summary must be brought to the immediate attention of
the USPTO, and no later than one month from the mailing date of this interview summary. Extensions of time are

governed by 37 CFR 1.550(c).

*For more information regarding this pilot program, see Pilot Program for Waiver of Patent Owner’s Statement in Ex
Parte Reexamination Proceedings, 75 Fed. Reg. 47269 (August 5, 2010), available on the USPTO Web site at

http://www.uspto.gov/patents/law/notices/2010.jsp.

IZ USPTO personnel were unable to reach the patent owner.

The patent owner may contact the USPTO personnel at the telephone number provided below if the patent owner

decides to waive the right to file a patent owner's statement under 35 U.S.C. 304.

/Karen Ward/

571-272-7932

Signature and telephone number of the USPTO official who contacted or attempted to contact the patent owner.

cc: Requester (if third party requester)

U.S. Patent and Trademark Office

Paper No.

PTOL-2292 (08-10) Ex Parte Reexamination Interview Summary - Pilot Program for Waiver of Patent Owner’s Statement

Page 206 of 264

Reexam Control No. 90/011,754

Litigation Search Report CRU 3999

To: Behzad Peikari
Art Unit: 3992
Date: 08/19/11

Case Serial Number: 90/011,754

From: Karen L. Ward
Location: CRU 3999
MDW 7C76

Phone: (5671) 272-7932

Karen.Ward@uspto.gov

Search Notes

Litigation was not found involving U.S. Patent No. 7,930,576.

1) I performed a KeyCite Search in Westlaw, which retrieves all history on the patent including any litigation.

2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.

3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.

5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about

litigation on this patent.

Page 207 of 264

Page 2 of 3

Westlaw.

Date of Printing: Aug 19, 2011
KEYCITE

€ US PAT 7930576 SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROL-
LER AND A PROCESSOR IN A COMPUTER SYSTEM, Assignee: Standard Microsystems Corporation
(Apr 19, 2011)

History

Direct History

=> 1 SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER
AND A PROCESSOR IN A COMPUTER SYSTEM, US PAT 7930576, 2011 WL 1470299
(U.S. PTO Utility Apr 19, 2011) (NO. 11/958601)

Patent Family
2 SYSTEM FOR SHARING NON-VOLATILE MEMORY IN COMPUTER SYSTEM, HAS MI-
CROCONTROLLER THAT CONTROLS ACCESS OF SELF DEVICE AND MAIN PRO-
CESSOR TO NON-VOLATILE MEMORY IN RESPONSE TO CHANGE IN SYSTEM STATE,
Derwent World Patents Legal 2008-M01067

Assignments

3 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Number of Pages: 006, (DATE RECORDED: Dec 18, 2007)

Patent Status Files
.. Request for Re-Examination, (OG DATE: Aug 09, 2011)

Prior Art (Coverage Begins 1976)

5 CIRCUITRY AND METHOD FOR SHARING INTERNAL MICROCONTROLLER MEMORY
WITH AN EXTERNAL PROCESSOR, US PAT 5428760Assignee: Intel Corporation, (U.S. PTO
Utility 1995)

6 DEVICE AND METHOD CAPABLE OF CHANGING CODES OF MICRO-CONTROLLER,
US PAT 6925522Assignee: Lite-On It Corporation, (U.S. PTO Utility 2005)

7 DIRECTLY PROGRAMMABLE DISTRIBUTION ELEMENT, US PAT 5925097 Assignee: Net-
work Machines, Inc., (U.S. PTO Utility 1999)

8 DIRECTLY PROGRAMMABLE DISTRIBUTION ELEMENT, US PAT 5634004 Assignee: Net-
work Programs, Inc., (U.S. PTO Utility 1997)

9 FLASH ROM SHARING BETWEEN PROCESSOR AND MICROCONTROLLER DURING
BOOTING AND HANDLING WARM-BOOTING EVENTS, US PAT 6154838 (U.S. PTO Util-
ity 2000)

0

O 060 O O

© 2011 Thomson Reuters. All rights reserved.

http://web2.westlaw.com/print/printstream.aspx?mt=287& fn=_top&prf=HTMLE&pbc=B... 8/19/2011
Page 208 of 264

Page 3 of 3

C 10 FLASH ROM SHARING BETWEEN PROCESSOR AND MICROCONTROLLER DURING
BOOTING AND HANDLING WARM-BOOTING EVENTS, US PAT 5819087Assignee: Com-
paq Computer Corporation, (U.S. PTO Utility 1998)

Cc 11 METHOD AND APPARATUS FOR PROGRAMMING A MICROPROCESSOR USING AN
ADDRESS DECODE CIRCUIT, US PAT 5949997Assignee: NCR Corporation, (U.S. PTO Util-
ity 1999)

Cc 12 PROGRAMMABLE TASK-BASED CO-PROCESSOR, US PAT 7386326Assignee: Texas In-

struments Incorporated, (U.S. PTO Utility 2008)

© 2011 Thomson Reuters. All rights reserved.

http://web2.westlaw.com/print/printstream.aspx?mt=287& fn=_top&prft=HTMLE&pbc=B... 8/19/2011
Page 209 of 264

LexisNexis CourtLink - Patent Search - Searching Page 1 of 1

My Briefcase | Order Runner Documents | Available Courts | Learning Center

Single Search - with Terms and Connectors]
[Enter keywords - Search multiple dockets & documents] —‘Z';;:;[;ETTE(’S

ﬂ My Courtlink \i' Search m Dockets & Documents m Track m Alert M Strategic Profiles M My Account h

Q- Search > Patent Search > Searching

Patent Search 7930576 8/19/2011

No cases found.

IReburn to Search |

(Charges for search still apply)

S . . About LexisNexis | Terms & Conditions | Pricing | Privacy | Customer Support - 1-888-311-1966
® |
@ LeX|SNeX|S . Copyright © 2011 LexisNexis®. All rights reserved.

https://w3.courtlink.lexisnexis.com/Search/PatentSearch_Run.aspx 8/19/2011
Page 210 of 264

Search - 2 Results - 7930576 _ Page 1 of 1,

Switch Client | Preferences | Help | Sign Out

My Lexis™ | Search Get a Document Shepard's® More History Alerts
FOCUS™ Terms |7930576 | Search Within | Original Results (1 -2) I~]] Using Semantic
Concepts What's this? W Advanced...
View Tutorial

Source: Command Searching > Utility, Design and Plant Patents [i]

Terms: 7930576 (Suggest Terms for My Search)

¥ Select for FOCUS™ or Delivery
(] 1. 7930576, April 19, 2011, Sharing non-sharable devices between an embedded controller

and a processor in a computer system, Harris, Ian F., Kings Park, NEW YORK, United
States of America(US), United States of America(US); Dutton, Drew J., Austin, TEXAS,
United States of America(US), United States of America(US); 958601, December 18, 2007,
ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., STANDARD
MICROSYSTEMS CORPORATION, 80 ARKAY DRIVE, HAUPPAUGE, NEW YORK, UNITED
STATES OF AMERICA(US), 11788, reel-frame:020262/0609, Standard Microsystems
Corporation, Hauppauge, NEW YORK, United States of America(US), United States
company or corporation

CORE TERMS: microcontroller, memory, non-volatile, reset, processor, interface, bus,
switch, software, embedded, host, controller, sharing, safe, computer system, hardware,
fetch, flash, functionality, configured, exemplary, assured, control signals, handshake,
firmware, token, load, preempt, couple, sleep

7930576

. 5687175, November 11, 1997, Adaptive time-division multiplexing communications
protocol method and system, Rochester, Virgil Maurice, Las Vegas, United States of
America(US); Hunt, Ariel Mark, Vista, United States of America(US); Jonson, Charles
Stephen, Las Vegas, United States of America(US); Weaver, John D., Las Vegas, United
States of America(US); 341015, April 10, 1995, ASSIGNMENT OF ASSIGNORS INTEREST
(SEE DOCUMENT FOR DETAILS)., UTICS CORPORATION 9457 LAS VEGAS BLVD SOUTH
SUITE GLAS VEGAS, NEVADA, 89123, reel-frame:007424/0951, Utics Corporation, Las
Vegas, NEVADA, United States of America(US)

O
N

CORE TERMS: sensor, packet, mobile unit, transmission, poll, remote, slot, collection,
transponder, protocol, send, mobile, frequency, transmitting, platform, transceiver,
broadcast, route, requesting, allocated, equipped, data transmission, transmitted,
collecting, identifier, monitoring, stationary, message, central station, multiplexing

August 13, 1992 - 07930576, United States of America (US)

Source: Command Searching > Utility, Design and Plant Patents {i]
Terms: 7930576 (Suggest Terms for My Search)
View: Cite
Date/Time: Friday, August 19, 2011 - 11:01 AM EDT

About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us
Copyright © 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

http://www.lexis.com/research/retrieve?_m=7c92ba6d04daa71fc2a213c70c4244c2&csve=... 8/19/2011
Page 211 of 264

Search by Source Page 1 of 1

Switch Client |Preferences |Help |Sign Out

My Lexis™ | Search Get a Document Shepard’'s® More History Alerts

All I Legal | News & Business | Public Records | Find A Source gﬂ%{gg;t

Command Searching > Patent Cases from Federal Courts and Administrative Materials Y]

Search View Tutorial | Help

Select Search Type and Enter Search Terms

l Terms & Connectors 7930576 or 7,930,576 I Suggest terms

for my search
[Natural Language]

[Easy Search™,

Check spelling

(R

Restrict by Document Segment
Select a document segment, enter search terms for the segment, then click Add.

[Select a Segment 2] | 1 [Add A]
Note: Segment availability differs between sources. Segments may not be applied consistently across sources.

Restrict by Date

® lNo Date Restrictions [&] (5 From | JTo| | Date formats...

Search Connectors How Do I...?

and and w/p in same paragraph Combine sources?
) Restrict by date?

or or w/seg in same segment

Restrict by document segment?
w/N within N words w/s in same sentence Use wildcards as placeholders for one or more characters in a

search term?
pre/N precedes by N words and not and not
View Tutorials

More Connectors & Commands...

n About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us
Copyright © 2011 LexisNexis, a division of Reed Eisevier Inc. All rights reserved.

http://www.lexis.com/research/form/search? m=91bca61f44d3ecb68dcc383eff447a79& _s... 8/19/2011
Page 212 of 264

Search - No Documents Found

Page 1 of 1

No Documents Found

No documents were found for your search terms
"7930576 or 7,930,576"

Click "Save this search as an Alert" to schedule your search to run in the future.

-OR -

Click "Edit Search"” to return to the search form and modify your search.

Suggestions:

Check for spelling errors.

Remove some search terms.

Use more common search terms, such as those listed in "Suggested Words and
Concepts."

Use a less restrictive date range.

Save this Search as an Alert H Edit Search

http://www.lexis.com/research/zeroans?_m=671301d4{f54135bea27a634{f770c2e&docnu...

About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us

Copyright © 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

Page 213 of 264

8/19/2011

Search by Source Page 1 of 1

Switch Client {Preferences |Help |Sign Out

My Lexis™ | Search Get a Document Shepard’s® More History Alerts

All | Legal | News & Business | Public Records | Find A Source ‘;ﬂ‘{,{i‘;;‘

Command Searching > Patent, Trademark & Copyright Periodicals, Combined [ﬂ

Search

View Tutorial | Help

Select Search Type and Enter Search Terms

| Terms & Connectors"7930575 or 7,930,576 = Suggest terms

1l for my search
| Natural Language]

| Easy Search™,

"\ Check spelling

Restrict by Document Segment

Select a document segment, enter search terms for the segment, then click Add.

[Select a Segment 1] | | [Add A]
Note: Segment availability differs between sources. Segments may not be applied consistently across sources.

Restrict by Date

® [No Date Restrictions [&] 5 From | | To| ! Date formats...

Search Connectors . How Do I...?
and and w/p in same paragraph Combine sources?
. Restrict by date?
or or w/seg in same segment Restrict by document segment?
w/N within N words w/s in same sentence Use wildcards as placeholders for one or more characters in a
?
pre/N precedes by N words and not and not . search term?

View Tutorials

More Connectors & Commands...

n About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us
Copyright ® 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

http://www.lexis.com/research/form/search? _m=91bca61f44d3ecb68dcc383eff447a79& s... 8/19/2011
Page 214 of 264

Search - No Documents Found Page 1 of 1

No Documents Found

No documents were found for your search terms
"7930576 or 7,930,576"

Click "Save this search as an Alert" to schedule your search to run in the future.
-0OR -
Click "Edit Search” to return to the search form and modify your search.

Suggestions:
e Check for spelling errors.
e Remove some search terms.
e Use more common search terms, such as those listed in "Suggested Words and
Concepts."
e Use a less restrictive date range.

| save this Search as an Alert || Edit Search |

About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us
Copyright © 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

http://www.lexis.com/research/zeroans?_m=383411818da7be0ba93dd2d6cfcf71 67&docnu... 8/19/2011
Page 215 of 264

Search by Source Page 1 of 1

Switch Client |Preferences |Help |Sign Out

My Lexis™ | Search Get a Document Shepard’s® More History Alerts

All | Legal I News & Business | Public Records l Find A Source ‘;‘3,‘;{53‘;

Command Searching > News, All (English, Full Text) E

Search View Tutorial | Help

Select Search Type and Enter Search Terms

Suggest terms

[Terms & Connectors 7930576 or 7,930,576 . for my search

{ Natural Language

T™)
[Easy Search Check spelling

il

kil

Restrict by Document Segment

Select a document segment, enter search terms for the segment, then click Add.

| Select a Segment =1 | | [Add A]
Note: Segment availability differs between sources. Segments may not be applied consistently across sources.

Restrict by Date

@ [No Date Restrictions f~] (5 From | 7o | Date formats...

Search Connectors How Do I1...?

and and w/p in same paragraph Combine sources?
. Restrict by date?
or or w/seg in same segment Restrict by document segment?
w/N within N words w/s in same sentence Use wildcards as placeholders for one or more characters in a

?
pre/N precedes by N words and not and not search term?

View Tutorials

More Connectors & Commands...

About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us
Copyright © 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

http://www.lexis.com/research/form/search?_m=91bca61f44d3ecb68dcc383eff447a79& s... 8/19/2011
Page 216 of 264

Search - 5 Results - 7930576 or 7,930,576 Page 1 of 2

Switch Client | Preferences | Help | Sign Out

My Lexis™ | Search l Get a Document Shepard's® | More l History
Alerts

FOCUS™ Terms |7930576 or 7,930,576 i Search Within | Original Results (1 -5) I~] View

Advanced... Tutorial

Source: Command Searching > News, All (English, Full Text) i]
Terms: 7930576 or 7,930,576 (Suggest Terms for My Search)

¥ 'Select for FOCUS™ or Delivery

[

(]

1. Patent Law Practice Center, June 29, 2011 Wednesday 5:00 AM EST, , 733

words, Challenge To Unigenes Osteoporosis Patent Among The Reexamination
Requests Week Of 6/20/11, Stefanie Levine

CORE TERMS: patent, entitled, electronically, METHOD, APPARATUS,
reexamination, litigation, styled, inter partes, PUMP, Hydro-Quebec, Unigene,
Apotex, LLC, paper filed, Automation, Brookwood, Daritech, Newstex, Muth,
DECODING, S.D.N.Y, IMAGING, CODING, PTO, formulation, requested, lithium,
battery

...2011. (5) 90/011,754 (electronically filed) * U.S. Patent No. 7,930,576
entitled SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED
CONTROLLER AND A ...

2. Targeted News Service, April 22, 2011 Friday 2:03 PM EST, , 9684 words, U.S.

Patents Awarded to Inventors in Texas (April 22), Targeted News Service Targeted
News Service, Alexandria, VA.

CORE TERMS: patent, assigned, ISD, International Business Machines, published,
http, nph-Parser, Sectl, Sect2, HITOFF, full-text, abstract, netacgi, patft, uspto,
gov, Trademark Office, Austin, co-inventors, method, PTO2, PTXT, ASST, col,
Panigrahi, Satyaban, Hemanta, Armonk, Rath, data processing

... Va., April 22 -- Standard Microsystems, Hauppauge, N.Y., has been assigned a
patent (7,930,576) developed by Ian F. Harris, Kings Park, N.Y., and Drew J. ...

. Targeted News Service, April 22, 2011 Friday 10:14 AM EST, , 324 words, Standard

Microsystems Assigned Patent, Targeted News Service, Alexandria, Va.

CORE TERMS: microcontroller, non-volatile, patent, reset, Myron, ISD,
instructions, sharing, switches

... Va., April 22 -- Standard Microsystems, Hauppauge, N.Y., has been assigned a
patent (7,930,576) developed by Ian F. Harris, Kings Park, N.Y., and Drew J. ...

. Targeted News Service, April 22, 2011 Friday 10:14 AM EST, , 324 words, Standard

Microsystems Assigned Patent, Targeted News Service, Alexandria, Va.

CORE TERMS: microcontroller, non-volatile, patent, reset, Myron, ISD,
instructions, sharing, switches

... Va., April 22 -- Standard Microsystems, Hauppauge, N.Y., has been assigned a
patent (7,930,576) developed by Ian F. Harris, Kings Park, N.Y., and Drew J. ...

http://www .lexis.com/research/retrieve?_m=9d36cd25b4b565bdd1ae124bdcflf62a&csve=... 8/19/2011
Page 217 of 264

Search - 5 Results - 7930576 or 7,930,576 Page 2 of 2

0 5. US Fed News, April 20, 2011 Wednesday 10:23 AM EST, , 300 words, US Patent
Issued to Standard Microsystems on April 19 for "Sharing Non-Sharable Devices
Between an Embedded Controller and a Processor in a Computer System" (Texas,
New York Inventors), ALEXANDRIA, Va.

CORE TERMS: microcontroller, non-volatile, patent, reset, instructions, sharing,
switches, please

ALEXANDRIA, Va., April 20 -- United States Patent no. 7,930,576, issued on April
19, was assigned to Standard Microsystems Corp. (Hauppauge, N.Y.). " ...

... r=1&f=G&!=50&c01=AND&d=PTXT&s1=7930576&0S=7930576&RS=7930576
For any query with respect to this article or any other content requirement, please

Source: Command Searching > News, All (English, Full Text) H

Terms: 7930576 or 7,930,576 (Suggest Terms for My Search)
View: Cite
Date/Time: Friday, August 19, 2011 - 11:03 AM EDT

About LexisNexis | Privacy Policy | Terms & Conditions | Contact Us
Copyright © 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

http://www.lexis.com/research/retrieve?_m=9d36cd25b4b565bdd1ae124bdcflf62a&cesve=... 8/19/2011
Page 218 of 264

UNITED STATES PATENT AND TRADEMARK OFFICE

UNTTED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

PQ. Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov’

| REEXAM CONTROL NUMBER | FILING OR 371 (c) DATE | PATENT NUMBER |
90/011,754 06/21/2011 7930576
CONFIRMATION NO. 4071
JIAWEI HUANG (J.C. PATENTS) REEXAMINATION REQUEST
4, VENTURE NOTICE
SUITE 250

IRVINE. GA 62618 B

Date Mailed: 06/27/2011

NOTICE OF REEXAMINATION REQUEST FILING DATE

(Third Party Requester)

Requester is hereby notified that the filing date of the request for reexamination is 06/21/2011, the date that the
filing requirements of 37 CFR § 1.510 were received.

A decision on the request for reexamination will be mailed within three months from the filing date of the request
for reexamination. (See 37 CFR 1.515(a)).

A copy of the Notice is being sent to the person identified by the requester as the patent owner. Further patent
owner correspondence will be the latest attorney or agent of record in the patent file. (See 37 CFR 1.33). Any
paper filed should include a reference to the present request for reexamination (by Reexamination Control
Number).

cc: Patent Owner

35690

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O. BOX 398

AUSTIN, TX 78767-0398

/jawhitfield/

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900

page 1 of 1

Page 219 of 264

UNITED STATES PATENT AND TRADEMARK OFFICE

UNTTED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

PQ. Box 1450

Alexandria, Virginia 22313-1450

WWW.uspto.gov’

| REEXAM CONTROL NUMBER | FILING OR 371 (c) DATE | PATENT NUMBER |
90/011,754 06/21/2011 7930576
CONFIRMATION NO. 4071
35690 REEXAM ASSIGNMENT NOTICE

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.

P.O. BOX 398 A AN VLA
000000048430240

AUSTIN, TX 78767-0398
Date Mailed: 06/27/2011

NOTICE OF ASSIGNMENT OF REEXAMINATION REQUEST

The above-identified request for reexamination has been assigned to Art Unit 3992. All future correspondence to
the proceeding should be identified by the control number listed above and directed to the assigned Art Unit.

A copy of this Notice is being sent to the latest attorney or agent of record in the patent file or to all owners of
record. (See 37 CFR 1.33(c)). If the addressee is not, or does not represent, the current owner, he or she is
required to forward all communications regarding this proceeding to the current owner(s). An attorney or agent
receiving this communication who does not represent the current owner(s) may wish to seek to withdraw pursuant
to 37 CFR 1.36 in order to avoid receiving future communications. If the address of the current owner(s) is
unknown, this communication should be returned within the request to withdraw pursuant to Section 1.36.

cc: Third Party Requester(if any)
JIAWEI HUANG (J.C. PATENTS)
4, VENTURE

SUITE 250

IRVINE, CA 92618

/jawhitfield/

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900

page 1 of 1

Page 220 of 264

UNITED STATES PATENT AND TRADEMARK OFFICE

G R E1Em

Page 1 of 1

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office

Address: COMMISSIONER FOR
PO. Box 1450
Alcxandria, Virginia 22313-1
wWww.nspto.gov

PATENTS
450

CONFIRMATION NO. 4071

Bib Data Sheet
FILING OR 371(c)
SERIAL NUMBER DATE CLASS GROUP ART UNIT D“Jggg{"ﬁ‘é
06/21/2011 .
90/011,754 713 3992 JCLA38862-RE
RULE)
APPLICANTS

7,930,576 B2, Residence Not Provided;
STANDARD MICROSYSTEMS CORPORATION (OWNER), HAUPPAUGE, NY;
FELIX YEN (3RD PTY. REQ.), TAIPEI, TAIWAN;
JIAWE| HUANG (J.C. PATENTS), IRVINE, CA

* CONTINUING DATA ****#asanstannukstssssnss
This application is a REX of 11/958,601 12/18/2007 PAT 7,930,576
which claims benefit of 60/910,863 04/10/2007

Takad FoRElGN APPLICATIONS deddededdrdedede ek ki did

Foreign Priority claimed D yes g no
35 USC 119 (a-d) conditions [yes [no L Met after STATEOR | SHEETS g&nﬁg 'ND(E:EIE\:‘:V?SENT
met Allowance COUNTRY | DRAWING 23 4
\Verified and :
IAcknowledged Examiner's Signature Initials
IADDRESS
35690
TITLE C
SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER AND A PROCESSOR IN A
COMPUTER SYSTEM
|D All Fees |
_ |D 1.16 Fees (Filing)
FILING FEE |FEES: Authority has been given in Paper || 1.17 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT time)
. lowing:
2520 No for following |E 1.18 Fees (Issue) J
lD Other I
ID Credit |

Page 221 of 264

PTO/SB/57 (02-09)

Approved for use through 02/28/2013. OMB 0651-0064

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

(Also referred to as FORM PTO-1465)

REQUEST FOR EX PARTE REEXAMINATION TRANSMITTAL FORM

Address to:
Mail Stop Ex Parte Reexam
Commissioner for Patents Attorney Docket No.: JCLA38862-RE
P.O. Box 1450
Alexandria, VA 22313-1450 Date: JUNE 21, 2011
1. This is a request for ex parte reexamination pursuant to 37 CFR 1.510 of patent number 7,930,576
issued Aprll 19, 2011 . The request is made by:
|:| patent owner. third party requester.
2. The name and address of the person requesting reexamination is:
Felix Yeh

7th Floor-1, No. 100 Roosevelt Road, Section 2
Taipei, Taiwan

3. D a. A check in the amount of § is enclosed to cover the reexamination fee, 37 CFR 1.20(c)(1);

b. The Director is hereby authorized to charge the fee as set forth in 37 CFR 1.20(c)(1)
to Deposit Account No. 50-07 ;or

I:] c. Payment by credit card. Form PTO-2038 is attached.

4. Any refund should be made by I:‘ check or credit to Deposit Account No. 50-0710

37 CFR 1.26(c). If payment is made by credit card, refund must be to credit card account.

5. A copy of the patent to be reexamined having a double column format on one side of a separate paper is
enclosed. 37 CFR 1.510(b)(4)

6. D CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table
Landscape Table on CD

7. D Nucleotide and/or Amino Acid Sequence Submission
If applicable, items a. — c. are required.

a. |:| Computer Readable Form (CRF)
b. Specification Sequence Listing on:
i. [_] cD-ROM (2 copies) or CD-R (2 copies); or

ii. |:| paper

c. |:| Statements verifying identity of above copies
8. D A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.

9. Reexamination of claim(s) 1-23 is requested.

10. A copy of every patent or printed publication relied upon is submitted herewith including a listing thereof on
Form PTO/SB/08, PTO-1449, or equivalent.

11. D An English language translation of all necessary and pertinent non-English language patents and/or printed
publications is included.

Page 1 of 2
This collection of information is required by 37 CFR 1.510. The information i[s regquired tc]) obtain or retain a benefit by the public which is to file (and by the USPTO to
process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 18 minutes to complete,
including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on
the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Mail Stop Ex Parte Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Page 222 of 264

PTO/SB/57 (02-09)

Approved for use through 02/28/2013. OMB 0651-0064

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

12. The attached detailed request includes at least the following items:

a. A statement identifying each substantial new question of patentability based on prior patents and printed
publications. 37 CFR 1.510(b)(1)

b. An identification of every claim for which reexamination is requested, and a detailed explanation of the pertinency
and manner of applying the cited art to every claim for which reexamination is requested. 37 CFR 1.510(b)(2).

13. |:| A proposed amendment is included (only where the patent owner is the requester). 37 CFR 1.510(e)
14. . a. ltis certified that a copy of this request (if filed by other than the patent owner) has been served in its entirety on

the patent owner as provided in 37 CFR 1.33(c).
The name and address of the party served and the date of service are:

MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZEL, P.C.
P.O. BOX 398
AUSTIN, TX 78767-0398

JUNE 21, 2011

Date of Service: ;or

|:| b. A duplicate copy is enclosed because service on patent owner was not possible. An explanation of the efforts
made to serve patent owner is attached. See MPEP 2220.

15. Correspondence Address: Direct all communications about the reexamination to:

|:| The address associated with Customer Number:

OR
o Name JJAWEI HUANG (J. C. Patents)
Address
4, Venture Suite 250
City Irvine State ca ZP 92618
Country y.SA.
Telephone (949 660-0761 Email jepatents@sbcglobal.net

16. |:| The patent is currently the subject of the following concurrent proceeding(s):
a. Copending reissue Application No.

b. Copending reexamination Control No.

c. Copending Interference No.

HEnn

d. Copending litigation styled:

WARNING: Information on this form may become public. Credit card information should not be
included on this form. Provide credit card information and authorization on PTO-2038.

[JIAWEI HUANG/ June 21, 2011

Authorized Signature Date

JIAWEI HUANG 43 330 |:| For Patent Owner Requester

Typed/Printed Name Registration No. For Third Party Requester
[Page 2 of 2]

Page 223 of 264

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection
with your submission of the attached form related to a patent application or patent. Accordingly,
pursuant to the requirements of the Act, please be advised that: (1) the general authority for the
collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary;
and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark

Office is to process and/or examine your submission related to a patent application or patent. If you do
not furnish the requested information, the U.S. Patent and Trademark Office may not be able to
process and/or examine your submission, which may result in termination of proceedings or
abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1.

The information on this form will be treated confidentially to the extent allowed under the
Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from
this system of records may be disclosed to the Department of Justice to determine whether
disclosure of these records is required by the Freedom of Information Act.

A record from this system of records may be disclosed, as a routine use, in the course of
presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to

opposing counsel in the course of settlement negotiations.
A record in this system of records may be disclosed, as a routine use, to a Member of

Congress submitting a request involving an individual, to whom the record pertains, when the
individual has requested assistance from the Member with respect to the subject matter of the
record.

A record in this system of records may be disclosed, as a routine use, to a contractor of the
Agency having need for the information in order to perform a contract. Recipients of
information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 U.S.C. 552a(m).

A record related to an International Application filed under the Patent Cooperation Treaty in
this system of records may be disclosed, as a routine use, to the International Bureau of the
World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.

A record in this system of records may be disclosed, as a routine use, to another federal
agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to
the Atomic Energy Act (42 U.S.C. 218(c)).

A record from this system of records may be disclosed, as a routine use, to the Administrator,
General Services, or his/her designee, during an inspection of records conducted by GSA as
part of that agency's responsibility to recommend improvements in records management
practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall
be made in accordance with the GSA regulations governing inspection of records for this
purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not
be used to make determinations about individuals.

A record from this system of records may be disclosed, as a routine use, to the public after
either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent
pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record was filed in an application which

became abandoned or in which the proceedings were terminated and which application is
referenced by either a published application, an application open to public inspection or an
issued patent.

A record from this system of records may be disclosed, as a routine use, to a Federal, State,
or local law enforcement agency, if the USPTO becomes aware of a violation or potential
violation of law or regulation.

Page 224 of 264

a2 United States Patent

Harris et al.

US007930576B2

US 7,930,576 B2
Apr. 19,2011

(10) Patent No.:
45) Date of Patent:

(54) SHARING NON-SHARABLE DEVICES
BETWEEN AN EMBEDDED CONTROLLER
AND A PROCESSOR IN A COMPUTER
SYSTEM

(75) Inventors: Ian F. Harris, Kings Park, NY (US);
Drew J. Dutton, Austin, TX (US)

(73) Assignee: Standard Microsystems Corporation,
Hauppauge, NY (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 684 days.

(21) Appl. No.: 11/958,601

(22) Filed: Dec. 18, 2007
(65) Prior Publication Data
US 2008/0256374 Al Oct. 16, 2008

Related U.S. Application Data

(60) Provisional application No. 60/910,863, filed on Apr.
10, 2007.

(51) Int.Cl

GOG6F 1/26 (2006.01)

GOG6F 15/177 (2006.01)
(52) US.CL .o 713/324; 713/2; 713/100
(58) Field of Classification Search 713/324,

713/2, 100
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,428,760 A * 6/1995 Ghorietal. ... 711/149
5,634,004 A 5/1997 Gopinath et al.
5,819,087 A * 10/1998 Leetal.cccovvvivninnnnnne 713/2
5,925,097 A 7/1999 Gopinath et al.
5,949,997 A * 9/1999 Smith

6,154,838 A * 11/2000 Leetal.
6,925,522 B2* 8/2005

7,386,326 B2* 6/2008
* cited by examiner

... 455/561

Primary Examiner — Nitin C Patel
(74) Attorney, Agent, or Firm — Meyertons Hood Kivlin
Kowert & Goetzel, P.C.; Jeffrey C. Hood; Mark S. Williams

(57 ABSTRACT

System and method for sharing a device, e.g., non-volatile
memory, between a host processor and a microcontroller. In
response to system state change to a first state wherein the
microcontroller is assured safe access to the non-volatile
memory (e.g., in response to power-on reset, system reset,
sleep state, etc.), the microcontroller holds the system in the
first state (e.g., system reset), and switches access to the
non-volatile memory from the processor to the microcontrol-
ler. While the system is held in the first state, the microcon-
troller accesses the device (e.g., non-volatile memory), e.g.,
fetches program instructions/data from the non-volatile
memory and loads the program instructions/data into a
memory of the microcontroller. After the access, the micro-
controller changes or allows change of the system state, e.g.,
switches access to the device, e.g., the non-volatile memory,
from the microcontroller to the processor, and releases the
system from the first state.

23 Claims, 5 Drawing Sheets

System Reset
403

Microcontroller

102

buffers

—>—
[>
|>
—<}-

Switch Control Non-volatile
Host memory bus 406 memory bus
105 ‘ 107
Host_Data Switch Memory_Data
Host_CLK (x3) Memory_CLK
Host_CSb 404 Memory_CSb

Page 225 of 264

US 7,930,576 B2

Sheet 1 of 5

Apr. 19,2011

U.S. Patent

Vi
a4nbi4

8
wa1sAg Jeindwon

o0 - - -

R e P

!Bnnnsu aiﬁ.sﬁ.g a

) @

/

01
Aowsaw “69

‘801A8p & Bulleys
JoJ 2160| sapnjou|

Page 226 of 264

US 7,930,576 B2

Sheet 2 of 5

Apr. 19,2011

U.S. Patent

801
(Aoway

9|l1e|oA-UON “B'9)
90IA8(Q paJeys

gl ainbi4

D 10}

sng 801A8(]

¢0l
19]|0JJU020IIA

pappaqw3

G0l
sng Alowsa 1S0H

101
sng 1uawabeuey

wo)sAg

€0l
sng aoeL8u| WasAg

901
a0eLv)U| WaIsAg

Page 227 of 264

U.S. Patent

Page 228 of 264

Apr. 19,2011 Sheet 3 of 5

in response to a system state change, such as
power on reset, where a microcontroller in a
system is assured of safe access to a shared
device, or can prevent the system from
entering a state where a processor in the
system can access the shared device, the
microcontroller sets control signals to cause
access to the shared device to be with the
microcontroller
202

!

while in the state where the microcontroller is
insured safe access to the device, or can
prohibit access by the processor in the system

to the shared device, and has properly

configured access to the device, the
microcontroller retrieves or exchanges data
with the device
204

!

once the controller has completed the data
retrieval or exchange with the device or has
determined that it may no longer be assured
of safe access, the microcontroller

reconfigures the interface through control

signals to enable access by the processor in
the system
206

US 7,930,576 B2

v

once the microcontroller has configured the
device to enable access by the processor in
the system, the microcontroller changes or
allows change of the system state, thereby
permitting the processor in the system to
access the shared device
208

Figure 2

U.S. Patent Apr. 19,2011 Sheet 4 of 5 US 7,930,576 B2

in response to a power on reset, a
microcontroller in a system holds a system
reset signal in a reset state, thereby
prohibiting a processor in the system from
accessing a non-volatile memory
302

while the system reset signal is held in the
reset state, the microcontroller fetches data
from the non-volatile memory and loads the
data into a memory of the microcontroller
304

after the microcontroller has loaded the data
from the non-volatile memory, the
microcontroller permits the processor in the
system access to the non-volatile memory,
and releases the system reset signal from the
reset state
306

Figure 3

Page 229 of 264

U.S. Patent Apr. 19,2011 Sheet 5 of 5 US 7,930,576 B2

Microcontroller

System Reset 102
403

buffers

—>—
—
Switch Control _l>_j Non-volatile
—>—
—<H

Host memory bus 406 ‘ memory bus
105 107
Host_CLK (x3) Memory_CLK
Host_CSb 404 Memory_CSb
Figure 4

VCC /

VCC PWRGD

Code/data loading from
non-volatile memory
System Reset D -
Non-volatile memory
accessible by host

Figure 5

Page 230 of 264

US 7,930,576 B2

1
SHARING NON-SHARABLE DEVICES
BETWEEN AN EMBEDDED CONTROLLER
AND A PROCESSOR IN A COMPUTER
SYSTEM

PRIORITY DATA

This application claims benefit of priority to U.S. Provi-
sional Application Ser. No. 60/910,863, titled “Sharing Non-
Sharable Devices Between an Embedded Controller and A
Processor in a Computer System”, filed on Apr. 10, 2007,
whose inventors were lan Harris and Drew J. Dutton.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to the field of computing
devices, and more specifically to sharing devices, such as
non-volatile memory, which are not designed for sharing
among processors in a system.

2. Description of the Related Art

Many hardware systems include a central processing unit
(CPU), i.e., a main processor, and one or more microcontrol-
lers for performing auxiliary functions for the system, such as
initialization, management and reset functionality. Each pro-
cessor or microcontroller, in a system generally has a corre-
sponding non-volatile memory from which the processor or
microcontroller reads instructions for performing boot-up,
reset, management (such as power state management), or
other functions, implemented in firmware. Current solutions
for providing controller memory are: (1) to have a separate
dedicated/private memory device for each controller/proces-
sor; (2) to integrate memory on-chip; or (3) to attempt to
arbitrate for the use of an existing memory device.

However, a problem with attempting to arbitrate for the use
of another device is that system performance and user expe-
rience may be degraded. Moreover, providing each processor
and microcontroller with a separate non-volatile memory is
expensive in both cost and time. For example, many current
embedded microcontroller solutions for notebook and desk-
top computers use ROM (read-only memory) solutions that
present challenges in time to market and flexibility. The time
to market issue is due to the need to finalize the microcon-
troller firmware and data early enough in the design and
manufacturing process to meet the schedule needs for pro-
duction. This usually represents at least a month in the time
schedule of a development program. In addition, any late
error found in the firmware or data means that all existing
inventory is out of date and may have to be discarded.

For the above reasons, some customers or designers prefer
using embedded flash or similar memory for storage, since
this type of memory allows updates at production test or even
in the field. However, use of embedded flash requires a very
expensive manufacturing process, because the microcontrol-
ler chip integrates flash memory on the same die, and there-
fore requires a flash manufacturing process. It is typically
30% more expensive to manufacture a chip with this process,
and thus makes the chip significantly more expensive. This
expense only makes sense if offset by some other factors, e.g.,
cost savings or product requirements. If a customer only has
one set of firmware (code) that is used and if the code never
changes, and if the customer is confident that there are no
errors in the code that might require an update, ROM and a
standard manufacturing process may be used instead of
embedded flash memory. If, on the other hand, the customer
has multiple firmware codes (e.g., one per product model),
then it may be cheaper to use flash. Thus, due to expense, use

Page 231 of 264

20

25

40

45

60

65

2

of embedded flash memory may only be viable if the risk of
ROM is too high or if there are multiple codes, low volume or
other specific business reasons.

Thus, as discussed above, current solutions are generally
expensive, inflexible, cannot be guaranteed to work reliably,
may have occasional errors, and/or can cause significant sys-
tem performance degradation.

Other corresponding issues related to the prior art will
become apparent to one skilled in the art after comparing such
prior art with embodiments of the present invention as
described herein.

SUMMARY OF THE INVENTION

Various embodiments are presented of a system and
method for sharing devices such as non-volatile memory
between processors in a computer system where one of the
processors has control over operating states, e.g., power and/
or execution states, of the other processors in the computer
system.

Inresponse to a system state change, such as power on reset
or system reset, where a microcontroller in a system is
assured of safe access to a shared device, or can prevent the
system from entering a state where a processor in the system
can access the shared device, the microcontroller may set
control signals to cause access to the shared device to be with
the microcontroller. In other words, the system may be
changedto a state (a “first” state) in which the microcontroller
is guaranteed the ability to access the shared device safely,
e.g., without interruption or interference by the processor.

In one embodiment, the microcontroller may be situated
between a system interface (and therefore, the processor in
the system) and the shared device, e.g., non-volatile memory,
e.g., embedded flash memory, and thus may intercept com-
munications between the system interface and the device. The
device may include or be associated with an interface
whereby access to the device is facilitated or implemented,
and where this interface may be configured to direct or restrict
access to the device to different system components, e.g., the
processor or the microcontroller. In one embodiment, the
microcontroller setting control signals to cause access to the
shared device to be with the microcontroller comprises the
microcontroller setting the interface to the shared device
interface with the microcontroller. Said another way, the
microcontroller may set one or more control signals to con-
figure or redirect the shared device interface to grant exclu-
sive access to the device to the microcontroller.

In one embodiment, the microcontroller controls and man-
ages power on reset (POR) for the system, and thus may
respond to and/or generate signals related to power on reset or
system reset (or other management signals) in a way that
preempts access to the device by the main processor of the
system, thereby facilitating sharing a device that otherwise
could not be shared. In some embodiments, the change in
system state may be invoked or indicated by a management
signal, e.g., a system reset or POR signal, generated or
received by the microcontroller. It should be noted, however,
that in some embodiments, control of the direction of the
interface, i.e., control of which component of the system has
access to the device, may be independent of the management
(e.g., system reset or POR) signal. In other words, the micro-
controller may control whether the shared device interface is
directed to the processor of the system, or to the microcon-
troller, independent of the management (e.g., system reset or
POR) signal.

While in the first state, i.e., the state where the microcon-
troller is ensured safe access to the device, or can prohibit

US 7,930,576 B2

3

access by the processor in the system to the shared device, and
has properly configured access to the device, the microcon-
troller may retrieve or exchange data with the device. For
example, in embodiments where the system state is depen-
dent on or indicated by a management signal, e.g., a system
reset signal, the microcontroller may receive or generate the
management signal, and hold the management signal in this
state, i.e., may maintain assertion of the management signal,
and, while this signal is asserted, may read, write, acquire, or
otherwise exchange (e.g., via invocation of a read or write by
some other component of the system), data or program
instructions from, to, or with, the device.

Once the controller has completed the data retrieval or
exchange with the device or has determined that it may no
longer be assured of safe access, the microcontroller may
reconfigure the interface through control signals to enable
access by the processor in the system, e.g., via a switch that
controls access to the device, as will be described below in
more detail. Once the microcontroller has configured the
device to enable access by the processor in the system, the
microcontroller may change or allow change of the system
state, thereby permitting the processor in the system to access
the shared device. For example, in embodiments where the
system state is dependent on or indicated by a management
signal, e.g., a system reset signal, the microcontroller may
de-assert the management signal, thereby putting the system
into a state that allows access to the shared device by the
processor of the system.

Thus, using embodiments of the above-described method,
the microcontroller may preempt or suspend access to the
device by the processor, e.g., the main CPU, of the system, or
otherwise configure safe access to the device by the micro-
controller; retrieve or otherwise exchange data or program
instructions with the device; then return access to the device
to the processor, or otherwise relinquish exclusive or safe
access to the device by the microcontroller.

It should be noted that in various other embodiments where
the microcontroller manages or controls operating states of
the system (e.g., reset, POR, sleep, and other states related to
specific system activities where it is known by the microcon-
troller that the system cannot or will not access the device),
the microcontroller may monitor (or control) such system
states, and take advantage of these states to access the device
safely, e.g., to take control and use the shared device. Note
that these system states should be such that the microcontrol-
ler either manages when the system will exit these states or is
provided sufficient warning as to when the system will again
need control of the shared interface (to the device). As one
example, when a system is being shut down, the microcon-
troller may take over the device interface, i.e., may redirect
the device interface to allow (only) access by the microcon-
troller, before power-off, i.e., before turning off the final
power rail. In this way, writes or other exchanges with the
shared device may be “saved up” or queued, and their
completion (e.g., by the microcontroller) may be guaranteed
before final power off.

Thus, the microcontroller may gracefully share access to
the device with the processor of the system. It should be noted
that in other embodiments, additional microcontrollers may
also share the device with the host or main system CPU, using
the techniques described above. In further embodiments,
such sharing of devices may also be used in other ways. For
example, in some embodiments, a plurality of processors
(e.g., microcontrollers) may share such a device, where each
processor may in turn suspend or prevent access to the device
by the other processors while it accesses the device.

Page 232 of 264

20

25

40

45

60

65

4

Below are described more specific embodiments of the
above-described general method that are particularly directed
to the sharing of non-volatile memory between a main pro-
cessor and a microcontroller in a system. In other words, in
the below embodiments, the shared device comprises a non-
volatile memory device. It should be noted, however, that
these embodiments are meant to be exemplary only, and are
not intended to limit the type or use of the shared device to any
particular form or function.

In response to a power on reset (POR), a microcontroller in
asystem, e.g., microcontroller, may hold a system reset signal
in a reset state, thereby prohibiting a processor in the system
from accessing a non-volatile memory in the system. Note
that the POR and/or the system reset may or may not be
invoked by the microcontroller.

In other words, in response to the POR, the microcontroller
may receive or generate the system reset signal, and hold the
signal in a reset state. As described above, in one embodi-
ment, the microcontroller may be situated between the system
interface (and therefore, the processor in the system) and the
shared device, e.g., non-volatile memory, e.g., embedded
flash memory, and thus may intercept communications
between the system interface and the device, e.g., the non-
volatile memory. As will be described below in more detail, in
some embodiments, when the system reset signal is in the
reset state, the interface to the non-volatile memory may be
configured by the microcontroller to preclude the processor in
the system from accessing the non-volatile memory, e.g., via
a switch.

While the system reset signal (or other management signal)
is held in the reset state, e.g., is asserted by the microcontrol-
ler (e.g., and the interface to the non-volatile memory is
configured to only allow access by the microcontroller), the
microcontroller may fetch program instructions/data from the
non-volatile memory and load the program instructions/data
into a memory of the microcontroller, or otherwise access the
non-volatile memory. In other words, the microcontroller
may generate or receive the system reset signal, and may hold
the system reset signal in the reset state (e.g., on the system
management bus via a system reset line), i.e., may maintain
assertion of the system reset signal, and, while the system
reset signal is asserted, may fetch, i.e., read, acquire, or oth-
erwise receive (e.g., via invocation of a read by some other
component of the system), program instructions/data from
the non-volatile memory and load or write the program
instructions/data into the microcontroller’s memory. Note
that the microcontroller’s memory is preferably RAM (ran-
dom access memory), although any type of re-writeable
memory may be used as desired. As noted above, in some
embodiments, the program instructions/data may include
program firmware code, that may, for example, be usable by
the embedded microcontroller for startup or reset functional-
ity, e.g., for initializing the microcontroller, among other
uses. In some embodiments, the microcontroller may be or
include a peripheral device controller for a computer system.
For example, in one exemplary embodiment, the embedded
microcontroller may be a keyboard controller, and the non-
volatile memory device 108 may store keyboard controller
(KBC) code, although in other embodiments, any other pro-
gram instructions/code or data may be used as desired.

In one embodiment, the microcontroller may include or
couple to a host memory bus, which may couple to the system
interface, and may also include or couple to a device bus, in
this embodiment, a non-volatile memory bus, which may
couple to the shared non-volatile memory device. In one
embodiment, the host memory bus and the non-volatile
memory bus are SPI (serial peripheral interface) buses,

US 7,930,576 B2

5

although other protocols may be used as desired. Note that in
some embodiments, the host memory bus and the non-vola-
tile memory bus may be considered the same bus, e.g., a
memory bus, where the microcontroller is inserted to switch-
ably intercept and possibly redirect signals signals on the
bus(es).

In one embodiment, the microcontroller includes or is
coupled to a switch controlled by a switch control, for pro-
viding switching functionality for the host memory bus and
the non-volatile memory bus, e.g., for the memory bus. The
microcontroller may thus be operable to switchably preempt
and inhibit signal flow on the memory bus (i.e., the host
memory bus and the non-volatile memory bus) between the
host interface and the non-volatile memory, e.g., by placing
the switches into a high-impedance state, and to fetch instruc-
tions/data from the non-volatile memory while communica-
tion between the host interface and the non-volatile memory
is suspended. Thus, the microcontroller may operate to con-
figure the interface to the device (e.g., the switch) to regulate
and enforce safe access to the device.

After the microcontroller has loaded the program instruc-
tions/data from the non-volatile memory, the microcontroller
may reconfigure the access to the non-volatile memory, e.g.,
via the switch, and release the system reset signal from the
reset state, thereby permitting the processor in the system
access to the non-volatile memory. In other words, upon
completion of the fetch of instructions/data from the non-
volatile memory by the microcontroller, the microcontroller
may terminate the suspension or preemption of communica-
tions between host interface and the non-volatile memory,
thereby allowing resumption of such communications, e.g.,
via switch, and de-assert the system reset signal.

Thus, using embodiments of the above-described method,
the microcontroller may preempt or suspend communica-
tions with the non-volatile memory by the main CPU and read
instructions/data from the non-volatile memory, e.g., to ini-
tialize the microcontroller and/or perform other functionality
prior to, or independent from, operation of the main system,
i.e., the main CPU, thus sharing the non-volatile memory with
the main system. For example, in some embodiments, the
microcontroller may, in addition to initialization code/data,
may also fetch program instructions and/or data related to
pre-boot security operations, and may operate to perform
such pre-boot security operations prior to boot-up of the main
system, thereby providing additional security to the system.

Thus, the microcontroller may gracefully share use of the
main system’s non-volatile memory. It should be noted that in
other embodiments, additional microcontrollers may also
share this non-volatile memory with the host or main system
CPU, using the techniques described above. In further
embodiments, such sharing of non-volatile memory may also
be used in other ways. For example, in some embodiments, a
plurality of microcontrollers may share a non-volatile
memory (e.g., that is not used by the main system CPU),
where each microcontroller may in turn suspend or prevent
access to the non-volatile memory by the other microcontrol-
lers while it loads instructions/data from the memory.

Note that in various embodiments, the system changing to
a state where the microcontroller is assured safe access to the
non-volatile memory (or device) may be performed or medi-
ated by software or hardware. In other words, in some
embodiments, the state change may be in response to hard-
ware signals, such as POR signals, etc. In other embodiments,
the state change may be in response to software events,
tokens, software conditions, software messages, software
handshakes, and so forth. Said another way, embodiments of
the present invention are intended to cover virtually any case

Page 233 of 264

—_

0

20

25

40

45

60

65

6

where the embedded controller can determine that it can
safely take control of the shared non-volatile memory,
whether the “safe” system state is mediated or signaled via
software or hardware. For example, the system may pass the
microcontroller a token, which grants the microcontroller
ownership of the memory through a software handshake.

Thus, various embodiments of the invention described
herein may allow an embedded microcontroller and a proces-
sor in a system to share a device that is not designed to be
shared.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing, as well as other objects, features, and
advantages of this invention may be more completely under-
stood by reference to the following detailed description when
read together with the accompanying drawings in which:

FIG. 1A illustrates an exemplary computer system config-
ured to implement one embodiment of the present invention;

FIG. 1B is a high-level block diagram of an exemplary
system configured to implement one embodiment of the
present invention;

FIG. 2 is a flowchart of a method for sharing a device
between a processor and a microcontroller in a system,
according to one embodiment;

FIG. 3 is a flowchart of a method for sharing non-volatile
memory between a processor and a microcontroller in a sys-
tem, according to one embodiment.

FIG. 4 illustrates a microcontroller, according to one
embodiment of the invention; and

FIG. 5 illustrates an exemplary signal timing diagram,
according to one embodiment.

‘While the invention is susceptible to various modifications
and alternative forms, specific embodiments thereof are
shown by way of example in the drawings and will herein be
described in detail. It should be understood, however, that the
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed, but on the
contrary, the intention is to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope ofthe
present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

Incorporation by Reference

The following references are hereby incorporated by ref-
erence in their entirety as though fully and completely set
forth herein:

U.S. Provisional Application Ser. No. 60/910,863, titled
“Sharing Non-Sharable Devices Between an Embedded Con-
troller and A Processor in a Computer System”, filed on Apr.
10, 2007, whose inventors were Ian Harris and Drew J. Dut-
ton.

Various embodiments of a system and method are pre-
sented for sharing devices between processors, e.g., between
a one or more main processors and a microcontroller, in a
system, e.g., a computer system, where the microcontroller
has control over the power or execution states of the main
processor(s) or other unique management capabilities rela-
tive to the other processors in the system.

Note that any headings used are for organizational pur-
poses only and are not meant to be used to limit or interpret the
description or claims. Furthermore, it should be noted that the
word “may” is used throughout this application in a permis-
sive sense (i.e., having the potential to, being able to), not a

US 7,930,576 B2

7

mandatory sense (i.e., must).” The term “include”, and deri-
vations thereof, mean “including, but not limited to”. The
term “coupled” means “directly or indirectly connected”.

Moreover, as used herein, a “set of instructions” may refer
to one or more instructions. More specifically, in some
embodiments, “instructions” may refer to programming
code, software, and/or functions implemented in the form of
a code that is executable by a controller, microprocessor,
and/or custom logic circuit adapted to execute these instruc-
tions. In some embodiments, these instructions may comprise
device drivers, control software, and/or machine code.

As used herein, a “controller” refers to any type of proces-
sor, such as a central processing unit (CPU), microprocessor,
microcontroller, or embedded controller or microcontroller,
among others.

Overview

Various embodiments of the invention described herein
may provide access by an embedded microcontroller to a
device (e.g., non-volatile memory) which allows the micro-
controller to access and read or write program instructions/
data (meaning program instructions and/or data) from or to
the device while holding the system, e.g., the CPU, in a state
such as reset where access to the non-volatile memory device
will not disrupt the normal system function.

FIG. 1A—Exemplary Computer System

FIG. 1 is a high-level block diagram of an exemplary com-
puter system 82 configured to implement some embodiments
of the present invention. The system of FIG. 1 comprises a
computer system, e.g., a personal computer (PC), although in
other embodiments, the techniques and systems described
herein may be implemented in any other systems as desired.

In preferred embodiments, the computer system 82
includes a main or central processor, i.e., a host processor, as
well as one or more microcontrollers, e.g., each in a respec-
tive system-on-chip (SoC), such as, for example, a keyboard
controller for managing or controlling communications
between a keyboard and the main processor. The memory is
preferably included on the SoC with the embedded controller,
and in various embodiments, may be a non-volatile memory,
e.g., ROM (read only memory), or a volatile memory, such as
Flash memory, as desired. As FIG. 1 shows, the computer
system 82 includes logic 104 for sharing memory, e.g.,
between the main processor and the microcontroller, accord-
ing to embodiments of the present invention. Further details
regarding exemplary embodiments of the system are pro-
vided below with reference to FIGS. 1B, 2, 4, and 6.

FIG. 1B—Exemplary System

FIG. 1B is a high-level block diagram of an exemplary
system configured to implement one embodiment of the
present invention, specifically to share a device, e.g., non-
volatile memory, between a CPU or main processor, and an
embedded microcontroller in the system. The system of FIG.
1B preferably resides in a computer system, e.g., a personal
computer (PC) such as computer system 82 of FIG. 1A,
although in other embodiments, the techniques and systems
described herein may be implemented in any other systems as
desired.

As FIG. 1B shows, the system may include an embedded
microcontroller 102, coupled to system interface 106 via a
system interface bus 103, whereby the microcontroller 102
may communicate with the CPU of the computer system,
referred to as the host CPU or processor. Note that in various
embodiments, this system interface 106 may simply be a
connection or bus suitable for communications between the
microcontroller 102 and the host CPU, or may include addi-
tional structure or functionality as desired. As indicated in
FIG. 1B, the microcontroller 102 may be further coupledto a

Page 234 of 264

20

25

40

45

60

65

8

shared device 108 that may store program instructions or
other data that may be uploaded or programmed by the
embedded microcontroller, e.g., for startup, general, or reset
functionality, via a device bus 107, as shown. The microcon-
troller 102 may be further coupled to the system interface 106
via a host memory bus 105, whereby the embedded micro-
controller 102 may intercept memory requests or other sig-
nals transmitted between the system interface (e.g., the host
CPU) and the shared device 108. Note that the program
instructions/data stored in the shared device (e.g., non-vola-
tile memory) 108 preferably includes program instructions,
e.g., firmware code, that may, for example, be usable by the
embedded microcontroller 102 for startup, general, or reset
functionality, e.g., for initializing the microcontroller 102,
among other uses. In some embodiments, the microcontroller
102 may comprise a peripheral device controller for a com-
puter system. For example, in one exemplary embodiment,
the embedded microcontroller 102 is a keyboard controller,
and the shared device 108 may store keyboard controller
(KBC) code, although in other embodiments, any other pro-
gram instructions, data or code may be used as desired.

Thus, in the embodiment shown in FIG. 1B, the embedded
microcontroller 102 is situated between the system interface
106 and the shared device (e.g., non-volatile memory) 108,
and so may function as an intermediary or intercept between
these two components, thereby facilitating sharing the device
108 between the host processor and the embedded microcon-
troller 102, as will be described below in more detail. Note
that in this embodiment, a system management bus, e.g., a
system reset bus, 101 coupling the system interface 106 and
the microcontroller 102 may be included for communicating
a reset or other management signal (or other signal) between
the two components, although in other embodiments, the
system interface bus 103 may be used. In preferred embodi-
ments, the shared device 108 is an embedded flash memory,
although other types of devices may be used as desired, e.g.,
ROM or any other type of memory.

FIG. 2—Method for Sharing a Device Between Processors in
a System

FIG. 2 is a high-level flowchart of embodiments of a
method for sharing a device, e.g., non-volatile memory,
between processors, e.g., between a processor and a micro-
controller in a system, e.g., a computer system, where the
shared device is not designed to be shared. In various embodi-
ments, some of the method elements shown may be per-
formed concurrently, in a different order than shown, or may
be omitted. Additional method elements may also be per-
formed as desired. As shown, this method may operate as
follows.

In 202, in response to a system state change, such as, for
example, power on reset (POR), system reset, or sleep mode,
where a microcontroller, e.g., microcontroller 102, in a sys-
tem is assured of safe access to a shared device, or can prevent
the system from entering a state where a processor in the
system can access the shared device, the microcontroller may
set control signals or utilize software to cause access to the
shared device to be with the microcontroller. In other words,
when the system is changed to a state, e.g., a first state, in
which the microcontroller 102 is guaranteed the ability to
access the shared device safely, e.g., without interruption or
interference by the processor, the microcontroller may hold
the system in the state and switch access to the shared device,
e.g., the non-volatile memory, from the processor to the
microcontroller. Examples of this first state may include one
or more of: a power on reset (POR) state, a system reset state,
or a sleep state, among others. Holding the system in this first

US 7,930,576 B2

9

state may prohibit the processor in the system from accessing
the shared device, e.g., non-volatile memory in the system.

Similarly, the state change may be invoked or caused by a
management signal, such as a POR, system reset, sleep, sig-
nal, etc., which may include a software signal, event, token,
handshake, etc. In one embodiment, holding the system in the
first state may include holding a management signal in a
corresponding state, e.g., holding a system reset signal in a
reset state.

Note that the management signal, e.g., the POR and/or the
system reset, and/or any other type of management signal
used, may or may not be invoked by the microcontroller.
Thus, for example, in response to a received management
signal, e.g., POR signal, or in response to generating the
management signal, e.g., the POR signal, the microcontroller
may generate or receive another management signal, e.g., the
system reset signal, then hold or assert the other management
signal in a specified state, e.g., a reset state.

As noted above with reference to FIG. 1B, in one embodi-
ment, the microcontroller 102 may be situated between the
system interface 106 (and therefore, the processor in the
system) and the shared device 108, e.g., non-volatile memory,
e.g., embedded flash memory, and thus may intercept com-
munications between the system interface and the device 108.

The device 108 may include or be associated with an inter-
face whereby access to the device is facilitated or imple-
mented, and where this interface may be configured to direct
or restrict access to the device to different system compo-
nents, e.g., the processor or the microcontroller. In one
embodiment, the microcontroller setting control signals to
cause access to the shared device to be with the microcontrol-
ler comprises the microcontroller setting the interface to the
shared device interface with the microcontroller. Said another
way, the microcontroller may set one or more control signals
to configure or redirect the shared device interface to grant
exclusive access to the device to the microcontroller. In other
embodiments, the switching of access to the shared device
from the processor to the microcontroller may be performed
via software, or a combination of software and hardware.
Note that as used herein, the term “signal” may denote a
hardware signal and/or a software signal, e.g., a software
event, message, token, handshake, etc. Thus, the term “man-
agement signal” may refer to a hardware signal or a software
signal.

Note that in a preferred embodiment, the microcontroller
controls and manages power on reset (POR) for the system,
and thus may respond to and/or generate signals or software
events or messages related to power on reset or system reset
(or other management signals) in a way that preempts access
to the device by the main processor of the system, thereby
facilitating sharing a device that otherwise could not be
shared. In some embodiments, the change in system state may
be invoked or indicated by a management signal, e.g., a sys-
tem reset or POR signal, generated or received by the micro-
controller. It should be noted, however, that in some embodi-
ments, control of the direction of the interface, i.e., control of
which component of the system has access to the device, may
be independent of the management (e.g., system reset or
POR) signal. In other words, the microcontroller may control
whether the shared device interface is directed to the proces-
sor of the system, or to the microcontroller, independent of
the management (e.g., system reset or POR) signal. More-
over, in some embodiments, instead of, or in addition to,
hardware signals, the microcontroller may respond to soft-
ware events, messages, tokens, handshakes, etc., that may

Page 235 of 264

20

25

40

45

60

65

10

indicate when the system state is such that the microcontroller
is assured safe access to the shared device, e.g., to non-
volatile memory.

In 204, while the system is in the first state, i.e., the state
where the microcontroller is insured safe access to the device,
or can prohibit access by the processor in the system to the
shared device, and has properly configured access to the
device, the microcontroller may retrieve or exchange data
with the device 108. For example, in embodiments where the
system state is dependent on or indicated by a management
signal, e.g., a system reset signal, the microcontroller may
generate or receive the management signal, and hold the
management signal in this state, i.e., may maintain assertion
of the management signal, and, while this signal is asserted,
may read, write, acquire, or otherwise exchange (e.g., via
invocation of a read or write by some other component of the
system), data or program instructions from, to, or with, the
device. In one embodiment, while the system is held in the
first state, the microcontroller may fetch program instruc-
tions/data from the non-volatile memory and load the pro-
gram instructions/data into a memory of the microcontroller.

In 206, once the controller has completed the data retrieval
or exchange with the device or has determined that it may no
longer be assured of safe access, the microcontroller may
reconfigure the interface through control signals to enable
access by the processor in the system, e.g., via a switch that
controls access to the device, as will be described below in
more detail.

In 208, once the microcontroller has configured the device
to enable access by the processor in the system, the micro-
controller may change or allow change of the system state,
thereby permitting the processor in the system to access the
shared device. For example, in embodiments where the sys-
tem state is dependent on or indicated by a management
signal, e.g., a system reset signal, the microcontroller may
de-assert the management signal, thereby putting the system
into a state that allows access to the shared device by the
processor of the system. Said another way, after the program
instructions/data have been loaded, the microcontroller may
switch access to the shared device, e.g., the non-volatile
memory, from the microcontroller to the processor, and
release the system from the first state.

Thus, using embodiments of the above-described method,
the microcontroller 102 may preempt or suspend access to the
device by the processor, e.g., the main CPU, of the system, or
otherwise configure safe access to the device by the micro-
controller; retrieve or otherwise exchange data or program
instructions with the device; then return access to the device
to the processor, or otherwise relinquish exclusive or safe
access to the device by the microcontroller.

It should be noted that in various other embodiments where
the microcontroller manages or controls operating states of
the system (e.g., reset, POR, sleep, and other states related to
specific system activities where it is known by the microcon-
troller that the system cannot or will not access the device),
the microcontroller may monitor (or control) such system
states, and take advantage of these states to access the device
safely, e.g., to take control and use the shared device. Note
that these system states should be such that the microcontrol-
ler either manages when the system will exit these states or is
provided sufficient warning as to when the system will again
need control of the shared interface (to the device).

As one example, when a system is being shut down, the
microcontroller may take over the device interface, i.e., may
redirect the device interface to allow (only) access by the
microcontroller, before power-off, i.e., before turning off the
final power rail. In this way, writes or other exchanges with

US 7,930,576 B2

11

the shared device may be “saved up” or queued, and their
completion (e.g., by the microcontroller) may be guaranteed
before final power off.

Thus, the microcontroller 102 may gracefully share access
to the device 108 with the processor of the system. It should
be noted that in other embodiments, additional microcontrol-
lers may also share the device with the host or main system
CPU, using the techniques described above. In further
embodiments, such sharing of devices may also be used in
other ways. For example, in some embodiments, a plurality of
processors (e.g., microcontrollers) may share such a device,
where each processor may in turn suspend or prevent access
to the device by the other processors while it accesses the
device.

Other Embodiments

Below are described more specific embodiments of the
above-described general method of FIG. 2 that are particu-
larly directed to the sharing of non-volatile memory between
a main processor and a microcontroller in a system. In other
words, in the below embodiments, the shared device com-
prises a non-volatile memory device. It should be noted,
however, that the embodiments of FIG. 3 are meant to be
exemplary only, and are not intended to limit the type or use
of the shared device to any particular form or function.

FIG. 3—Method for Sharing Non-Volatile Memory Between
Processors in a System

FIG. 3 is a high-level flowchart of a method for sharing
non-volatile memory between processors, e.g., between a
processor and a microcontroller in a system, e.g., a computer
system, according to one embodiment. It should be noted,
however, that in other embodiments, any other types of
memory may be used as desired, e.g., RAM, ROM, etc. In
various embodiments, some of the method elements shown
may be performed concurrently, in a different order than
shown, or may be omitted. Additional method elements may
also be performed as desired. As shown, this method may
operate as follows.

In 302, in response to a system state change, such as, for
example, power on reset (POR), system reset, or sleep mode,
where a microcontroller, e.g., microcontroller 102, in a sys-
tem is assured of safe access to a non-volatile memory, or can
prevent the system from entering a state where a processor in
the system can access the non-volatile memory, the micro-
controller may set control signals or utilize software to cause
access to the non-volatile memory to be with the microcon-
troller. In other words, when the system is changed to a state,
e.g., a first state, in which the microcontroller 102 is guaran-
teed the ability to access the non-volatile memory safely, e.g.,
without interruption or interference by the processor, the
microcontroller may hold the system in the state and switch
access to the non-volatile memory from the processor to the
microcontroller. Examples of this first state may include one
or more of: a power on reset (POR) state, a system reset state,
or a sleep state, among others.

Holding the system in this first state may prohibit the
processor in the system from accessing the non-volatile
memory in the system. Similarly, the state change may be
invoked or caused by a management signal, such as a POR,
system reset, sleep, signal, etc., which may include a software
signal, event, token, handshake, etc. In one embodiment,
holding the system in the first state may include holding a
management signal in a corresponding state, e.g., holding a
system reset signal in a reset state.

Note that the management signal, e.g., the POR and/or the
system reset, and/or any other type of management signal

Page 236 of 264

20

25

40

45

60

65

12

used, may or may not be invoked by the microcontroller.
Thus, for example, in response to a received management
signal, e.g., POR signal, or in response to generating the
management signal, e.g., the POR signal, the microcontroller
may generate or receive another management signal, e.g., the
system reset signal, then hold or assert the other management
signal in a specified state, e.g., a reset state.

As noted above with reference to FIG. 1B, in one embodi-
ment, the microcontroller 102 may be situated between the
system interface 106 (and therefore, the processor in the
system) and the shared device 108, e.g., non-volatile memory,
e.g., embedded flash memory, and thus may intercept com-
munications between the system interface and the device,
e.g., the non-volatile memory. As will be described below in
more detail, in some embodiments, when the system is held in
the first state, e.g., when the system reset signal is held in the
reset state, the interface to the non-volatile memory may be
configured by the microcontroller to preclude the processor in
the system from accessing the non-volatile memory, e.g., via
a switch.

FIG. 4 illustrates an exemplary embodiment of the micro-
controller 102 of FIG. 1B, where the device 108 comprises
non-volatile memory. As FIG. 4 shows, in this embodiment,
the microcontroller 102 includes a system reset line 403 for
communicating a reset signal, i.e., a system reset signal (or
other management signal), e.g., to or from the system inter-
face 106 over the system management bus 101 (see FIG. 1B).
While many of the embodiments described herein reference a
reset signal, it should be noted that in other embodiments, as
mentioned above, other signals may be used as desired, e.g.,
any signal that corresponds with or invokes a suspension of
non-volatile memory access by the CPU (or other specified
processor) of the system, or which indicates a system state in
which the microcontroller may have safe access to the non-
volatile memory, including software events, tokens, hand-
shakes, signals, etc. Note that FIG. 4 only illustrates features
of the microcontroller that relate directly to embodiments of
the present invention, i.e., components not necessary to
understand the present invention have been omitted for brev-
ity and simplicity.

As discussed above, in various embodiments, the switch-
ing of access to the shared device from the processor to the
microcontroller may be performed via hardware, via soft-
ware, or via a combination of software and hardware. As also
discussed above, the term “signal” may denote a hardware
signal and/or a software signal, e.g., a software event, mes-
sage, token, handshake, etc., i.e., the term “management sig-
nal” may refer to a hardware signal or a software signal.

As also indicated above, in a preferred embodiment, the
microcontroller controls and manages power on reset (POR)
for the system, and thus may respond to and/or generate
signals or software events or messages related to power on
reset or system reset (or other management signals) in a way
that preempts access to the device by the main processor of
the system, thereby facilitating sharing a non-volatile
memory that otherwise could not be shared. In some embodi-
ments, the change in system state may be invoked or indicated
by a management signal, e.g., a system reset or POR signal,
generated or received by the microcontroller. It should be
noted, however, that in some embodiments, control of the
direction of the interface, i.e., control of which component of
the system has access to the non-volatile memory, may be
independent of the management (e.g., system reset or POR)
signal. In other words, the microcontroller may control
whether the non-volatile memory interface is directed to the
processor of the system, or to the microcontroller, indepen-
dent of the management (e.g., system reset or POR) signal.

US 7,930,576 B2

13

Moreover, as noted above, in some embodiments, instead of,
or in addition to, hardware signals, the microcontroller may
respond to software events, messages, tokens, handshakes,
etc., that may indicate when the system state is such that the
microcontroller is assured safe access to the non-volatile
memory.

In 304, while the system is in the first state, i.e., the state
where the microcontroller is insured safe access to the device,
or can prohibit access by the processor in the system to the
non-volatile memory, and has properly configured access to
the non-volatile memory, the microcontroller may retrieve or
exchange data with the non-volatile memory. For example,
while the system is held in the first state, the microcontroller
may fetch program instructions/data from the non-volatile
memory and load the program instructions/data into a
memory of the microcontroller.

In one embodiment, holding the system in the first state
may include holding a system reset signal (or other manage-
ment signal) in the reset state, e.g., asserting system reset.
While the system reset signal is held in the reset state, and the
interface to the non-volatile memory is configured to only
allow access by the microcontroller, the microcontroller may
fetch program instructions/data from the non-volatile
memory and load the program instructions/data into a
memory of the microcontroller, or otherwise access the non-
volatile memory. In other words, the microcontroller may
hold the system reset signal in the reset state (e.g., on the
system management bus 101 via system reset line 403), i.e.,
may maintain assertion of the system reset signal, and, while
the system reset signal is asserted, may fetch, i.e., read,
acquire, or otherwise receive (e.g., via invocation of a read by
some other component of the system), program instructions/
data from the non-volatile memory and load or write the
program instructions/data into the microcontroller’s memory.
Note that the microcontroller’s memory is preferably RAM
(random access memory), although any type of re-writeable
memory may be used as desired. As noted above, in some
embodiments, the program instructions/data may include
program firmware code, that may, for example, be usable by
the embedded microcontroller for startup or reset functional-
ity, e.g., for initializing the microcontroller, among other
uses. In some embodiments, the microcontroller may be or
include a peripheral device controller for a computer system.
For example, in one exemplary embodiment, the embedded
microcontroller may be a keyboard controller, and the non-
volatile memory device 108 may store keyboard controller
(KBC) code, although in other embodiments, any other pro-
gram instructions/code or data may be used as desired.

Referring again to FIG. 4, as may be seen, in this embodi-
ment, the microcontroller 102 may include or couple to the
host memory bus 105, which, as indicated in FIG. 1B, may
couple to the system interface 106, and may also include or
couple to device bus 107, in this embodiment, a non-volatile
memory bus 107, which may couple to the shared non-vola-
tile memory device 108. Note that in the embodiment shown,
the host memory bus 105 and the non-volatile memory bus
107 each includes three lines, one each for data, clock, and
CSb signals, where CSb stands for Chip Select bar, which is
alow true version of the Chip Select, and as such is part of the
address structure of the block. In one embodiment, the host
memory bus 105 and the non-volatile memory bus 107 are
SPI (serial peripheral interface) buses, although other proto-
cols may be used as desired. Note that in some embodiments,
the host memory bus 105 and the non-volatile memory bus
107 may be considered the same bus, e.g., a memory bus,
where the microcontroller 102 is inserted to switchably inter-
cept and possibly redirect signals signals on the bus(es).

Page 237 of 264

20

25

40

45

60

65

14

As FIG. 4 indicates, in this embodiment, the microcontrol-
ler 102 includes a switch 404 controlled by switch control
406, for providing switching functionality for the host
memory bus 105 and the non-volatile memory bus 107, e.g.,
for the memory bus. In some embodiments, the switch 404
may comprise a Q switch, although it should be noted that the
term “Q switch” may refer not only to actual Q switches, but
to functional equivalents or analogs, as well. Said another
way, the switch 404 may be a “conceptual Q switch”, that may
perform the functionality of a Q switch (or functionality
similar to a Q switch), but which may implement this func-
tionality in ways different from a Q switch. Note that in the
embodiment of FIG. 4, the switch 404 includes a respective
switch for each of the memory bus lines, as indicates by the
“X3” (times three) label. Thus, each line on the memory bus
may be switched independently, although in preferred
embodiments, these lines may all be switched together,
thereby suspending or inhibiting communications between
the host interface 106 and the non-volatile memory 108. Of
course, in other embodiments, any numbers of bus lines/
switches may be used as desired.

It should be noted that in other embodiments, the micro-
controller 102 may not include the switch 404, but rather may
couple to a switch that is external to the microcontroller. One
benefit of this approach is that it may save pins on the micro-
controller.

As FIG. 4 further indicates, each line on the memory bus
may be coupled to respective buffers for communicating data/
signals between the memory bus (i.e., the device bus) and the
microcontroller 102, where, as noted above, most of the inter-
nal components of the microcontroller 102 have been omitted
from the figure. Thus, as FIG. 4 shows, the microcontroller
102 may be operable to switchably preempt and inhibit signal
flow on the memory bus (i.e., the host memory bus 105 and
the non-volatile memory bus 107) between the host interface
106 and the non-volatile memory 108, e.g., by placing the
switches into a high-impedance state, and to fetch instruc-
tions/data from the non-volatile memory 108 while commu-
nication between the host interface 106 and the non-volatile
memory 108 is suspended. Thus, the microcontroller may
operate to configure the interface to the device (e.g., the
switch) to regulate and enforce safe access to the device.

In 306, once the controller has completed the data retrieval
or exchange with the non-volatile memory, or has determined
that it may no longer be assured of safe access, the microcon-
troller may reconfigure the interface through control signals
to enable access by the processor in the system, e.g., via a
switch that controls access to the non-volatile memory.

In a more specific embodiment, after the microcontroller
has loaded the program instructions/data from the non-vola-
tile memory, the microcontroller may release the system reset
signal from the reset state, thereby permitting the processor in
the system access to the non-volatile memory. In other words,
upon completion of the fetch of instructions/data from the
non-volatile memory 108 by the microcontroller 102, the
microcontroller may terminate the suspension or preemption
of communications between host interface 106 and the non-
volatile memory 108, thereby allowing resumption of such
communications, e.g., via switch 404.

Thus, using embodiments of the above-described method,
the microcontroller 102 may preempt or suspend communi-
cations with the non-volatile memory by the main CPU and
read instructions/data from the non-volatile memory, e.g., to
initialize the microcontroller 102 and/or perform other func-
tionality prior to, or independent from, operation of the main
system, i.e., the main CPU, thus sharing the non-volatile
memory with the main system. For example, in some embodi-

US 7,930,576 B2

15

ments, the microcontroller may, in addition to initialization
code/data, may also fetch program instructions and/or data
related to pre-boot security operations, and may operate to
perform such pre-boot security operations prior to boot-up of
the main system, thereby providing additional security to the
system.

FIG. 5 is a signal timing diagram that illustrates timing
aspects of the above method, according to one embodiment.
As FIG. 5 shows, in this particular embodiment, a VCC, i.e.,
power supply voltage, is provided, followed by a VCC
PWRGD (“power good™) signal indicating that the power
supply voltage is valid, i.e., is at a valid level and is stable. It
should be noted that the particular names or labels for these
signals or voltages are exemplary only, and are not intended to
limit the signals or voltages used to any particular names or
representations.

As indicated, once the supply voltage is stable, the micro-
controller 102 may hold the (generated or received) system
reset signal in a reset state, here shown in the “low” state (e.g.,
a “low” or negative assertion state), during which time the
microcontroller 102 may fetch and load instructions/data,
e.g., controller firmware code, from the non-volatile memory,
and during which, due to the system reset signal being held in
the reset state, the host, i.e., the main system CPU, is inhibited
from accessing the non-volatile memory. As FIG. 5 also
shows, once this loading is done, the reset signal is de-as-
serted (shown in FIG. 5 as being put into the “high” state),
after which the non-volatile memory is accessible by the host
or main system CPU.

Thus, the microcontroller 102 may gracefully share use of
the main system’s non-volatile memory. It should be noted
that in other embodiments, additional microcontrollers may
also share this non-volatile memory (or device) with the host
or main system CPU, using the techniques described above.
In further embodiments, such sharing of non-volatile memory
may also be used in other ways. For example, in some
embodiments, a plurality of microcontrollers may share a
non-volatile memory (e.g., that is not used by the main system
CPU), where each microcontroller may in turn suspend or
prevent access to the non-volatile memory by the other micro-
controllers while it loads instructions/data from the memory.
Thus, various embodiments described with reference to FIG.
3 may allow an embedded microcontroller to upload its firm-
ware and data from a non-volatile memory device that is
already present in the system and therefore save the cost and
avoid issues associated with a private flash or ROM storage
for the microcontroller.

Note that in various embodiments, the system changing to
a state where the microcontroller is assured safe access to the
non-volatile memory (or device) may be performed or medi-
ated by software or hardware. In other words, in some
embodiments, the state change may be in response to hard-
ware signals, such as POR signals, etc., but in other embodi-
ments, the state change may be in response to software events,
tokens, software conditions, software messages, software
handshakes, and so forth. Said another way, embodiments of
the present invention are intended to cover virtually any case
where the embedded controller can determine that it can
safely take control of the shared non-volatile memory,
whether the “safe” system state is mediated or signaled via
software or hardware.

Thus, various embodiments of the invention described
herein may allow an embedded microcontroller and a proces-
sor in a system to share a device, e.g., a non-volatile memory,
that is not designed to be shared.

Page 238 of 264

20

25

30

40

45

60

65

16

We claim:

1. A system, comprising:

a non-volatile memory;

a processor; and

a microcontroller coupled to the non-volatile memory and

to the processor, wherein the microcontroller is config-

ured to:

in response to a change in system state to a first state
wherein the microcontroller is assured safe access to
the non-volatile memory, hold the system in the first
state and switch access to the non-volatile memory
from the processor to the microcontroller;

while the system is held in the first state, fetch program
instructions or data from the non-volatile memory and
load the program instructions or data into a memory
of the microcontroller; and

after the program instructions or data have been loaded,
switch access to the non-volatile memory from the
microcontroller to the processor, and release the sys-
tem from the first state.

2. The system of claim 1, wherein the change in system
state to the first state is performed by software.

3. The system of claim 1, wherein the first state comprises
one or more of:

a power on reset (POR) state;

a system reset state; or

a sleep state.

4. The system of claim 1, wherein the program instructions
or data comprise firmware code or data for the microcontrol-
ler.

5.The system of claim 1, the microcontroller is a peripheral
device controller for a computer system.

6. A method for sharing a non-volatile memory between a
processor and a microcontroller in a system, comprising:

in response to a change in system state to a first state

wherein the microcontroller is assured safe access to the
non-volatile memory, holding the system in the first state
and switching access to the non-volatile memory from
the processor to the microcontroller;

while the system is held in the first state, fetching program

instructions or data from the non-volatile memory and
loading the program instructions or data into a memory
of the microcontroller; and

after the program instructions or data have been loaded,

switching access to the non-volatile memory from the
microcontroller to the processor, and releasing the sys-
tem from the first state.

7. The method of claim 6, wherein the change in system
state to the first state is performed by software.

8. The method of claim 6, wherein the first state comprises
one or more of:

a power on reset (POR) state;

a system reset state; or

a sleep state.

9. The method of claim 6, wherein the program instructions
or data comprise firmware code or data for the microcontrol-
ler.

10. The method of claim 6, the microcontroller is a periph-
eral device controller for a computer system.

11. A system, comprising:

a non-volatile memory;

a processor; and

a microcontroller coupled to the non-volatile memory and

to the processor, wherein the microcontroller is config-

ured to:

in response to a power on reset, hold a system reset
signal in a reset state, thereby prohibiting the proces-
sor from accessing the non-volatile memory;

US 7,930,576 B2

17

while the system reset signal is held in the reset state,
fetch program instructions or data from the non-vola-
tile memory and load the program instructions or data
into a memory of the microcontroller; and

after the program instructions or data have been loaded,
permit the processor in the system access to the non-
volatile memory, and release the system reset signal
from the reset state.

12. The system of claim 11, wherein the program instruc-
tions or data comprise firmware code or data for the micro-
controller.

13. The system of claim 12, the microcontroller is a periph-
eral device controller for a computer system.

14. The system of claim 11, wherein the microcontroller is
coupled to the non-volatile memory via a non-volatile
memory bus, and wherein the microcontroller is operable to
fetch the program instructions or data from the non-volatile
memory via the non-volatile memory bus.

15. The system of claim 14, wherein the microcontroller is
coupled to the processor via a host memory bus, and wherein
the microcontroller is operable to switchably intercept or pass
communications between the processor and the non-volatile
memory.

16. The system of claim 15, wherein the microcontroller
comprises or is coupled to a switch, interposed between the
non-volatile memory bus and the host memory bus, wherein
the switch is controllable by the microcontroller to switch-
ably intercept or pass communications between the processor
and the non-volatile memory.

17. A method for sharing a non-volatile memory between a
processor and a microcontroller in a system, comprising:

in response to a power on reset, holding a system reset

signal in a reset state, thereby prohibiting the processor
from accessing the non-volatile memory;

Page 239 of 264

5

20

25

18

while the system reset signal is held in the reset state,
fetching program instructions or data from the non-vola-
tile memory and loading the program instructions or
data into a memory of the microcontroller; and

after the program instructions or data have been loaded,

permitting the processor in the system access to the
non-volatile memory, and releasing the system reset sig-
nal from the reset state.

18. The method of claim 17, wherein the program instruc-
tions or data comprise firmware code or data for the micro-
controller.

19. The method of claim 17, the microcontroller is a
peripheral device controller for a computer system.

20. The method of claim 17, wherein the microcontroller is
coupled to the processor via a system reset bus, and wherein
the microcontroller is operable to assert the system reset
signal over the system reset bus.

21. The method of claim 17, wherein the microcontroller is
coupled to the non-volatile memory via a non-volatile
memory bus, and wherein the microcontroller is operable to
fetch the program instructions or data from the non-volatile
memory via the non-volatile memory bus.

22. The method of claim 21, wherein the microcontroller is
coupled to the processor via a host memory bus, and wherein
the microcontroller is operable switchably intercept or pass
communications between the processor and the non-volatile
memory.

23. The method of claim 22, wherein the microcontroller
comprises or is coupled to a switch, interposed between the
non-volatile memory bus and the host memory bus, wherein
the switch is controllable by the microcontroller to switch-
ably intercept or pass communications between the processor
and the non-volatile memory.

* * & * *

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Ex Parte Reexamination on U.S. Patent No. 7,930,576, issued on April 19, 2011

BETWEEN AN EMBEDDED CONTROLLER
AND A PROCESSOR IN A COMPUTER
SYSTEM

Inventors : Harris; Ian F)

Dutton; Drew J.)

)

Appl. No.: 11/958,601)
) Ex Parte Reexamination

Filed : December 18, 2007)

)

For : SHARING NON-SHARABLE DEVICES)

)

)

)

REQUEST FOR EX PARTE REEXAMINATION UNDER 37 C.F.R. § 1.510

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450
Dear Sir:

Reexamination under 35 U.S.C. § 302-307 and 37 C.F.R. § 1.510 is hereby requested on
United States Patent No. 7,930,576 naming Harris; lan F. and Dutton; Drew J. as inventors
(hereinafter "the '576 patent"). The '576 patent issued on April 19, 2011. The named assignee of

the patent is Standard Microsystems Corporation. The '576 patent has not expired and remains

in effect.

Page 1 of 18

Page 240 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

CLAIMS FOR WHICH REEXAMINATION IS REQUESTED

Reexamination is requested on claims 1-23 of the ‘576 patent in light of United State
Patent No. US 6,161,162 (DeRoo et al., hereinafter DeRoo). DeRoo raises a substantial new

question of patentability that should be addressed during reexamination.

Page 2 of 18

Page 241 of 264

Atty Docket No.: JCLA38862-RE

SUBSTANTIAL NEW QUESTION OF PATENTABLILITY

Ex Parte Reexamination of Patent No. 7,930,576

il
ledeced, Lsdaseoy

Nroririn
S

4# X I8 7
57 3

et |
pn
Wil

ttx\tﬁ_

{

R Pt

mm.m«umq&mmm& .. —— Y o

Page 3 of 18

Page 242 of 264

Ex Parte Reexamination of Patent No. 7,930,576

=

B

Page 243 of 264

TN AR RTEERES SRS
A A At bbbt d®

RN
DTS QLT LY

DTS

Atty Docket No.: JCLA38862-RE

Fig., 23

W

o

2

i

=g

N

Yulr o

T e
P

PRSI e

EZ R

4

FEN NS e

~ ",
P -
WA BRI wff""“é

e,
e
(5 &8
1= =
gk_m;&- 1N
\T‘" =5

-+

-
FAELE e S A& N
-« i
- i
S i)
o TS TR e
AT A § LT
@
¥ mepn |
i
AAAAAAA i

Page 4 of 18

e

Atty Docket No.: JCLA38862-RE

Ex Parte Reexamination of Patent No. 7,930,576

=
i
o
#a
s

m
4
¢
5.
H ¢

v

N 5

‘

;
4
:
T i) bl
' i
, i

| MG

< t ‘

©
v
€

s

3

¢ ivas Aivion

abvssh Bpviey 2ivisk Fivise 3 il

TREEE

P
mxﬁﬁwM az@L i

H
H
7

assssssaan T

| ENADE

S

L WELEAS
¢ T
: levoled

R TE SR

2 OYAS

LB Y05

Figs. of DeRoo

ALYLE 4085

1808

Page 5 of 18

Page 244 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

PartI:

Requester respectfully submits that claims 1-2, 4-7 and 9-10 of the ‘576 patent are
unpatentable over DeRoo under 35 U.S.C. 102(b), claims 3, 8 and 11-23 of the '576 patent are
unpatentable over DeRoo under 35 U.S.C. 103(a). DeRoo is a continuation of 08/217,958 which
was filed on March 25 1994. Since DeRoo was published more than one year prior to the
application for the ‘576 patent was filed on December 18, 2007.

With regard to claim 1 of US 7,930,576, DeRoo discloses a system (title, “Multiprocessor
system for enabling shared access to a memory”; and FIG. 20), comprising:

a non-volatile memory (FIG 20, common memory device 704);

a processor (FIG20, CPU 702) ; and

a microcontroller (FIG. 20, SCP 706 and HUI 700) coupled to the non-volatile memory
and to the processor, wherein the microcontroller is configured to: in response to a change in
system state to a first state (FIG. 24, when the CPU SYSTEM ACCESS signal is in low level)
wherein the microcontroller is assured safe access to the non-volatile memory, hold the system in
the first state and switch access to the non-volatile memory from the processor to the
microcontroller; while the system is held in the first state, fetch program instructions or data from
the non-volatile memory and load the program instructions or data into a memory of the
microcontroller; and after the program instructions or data have been loaded, switch access to the
non-volatile memory from the microcontroller to the processor, and release the system from the
first state. (FIG.20; “The HUI solves this problem by providing an interface to enable both the

SCP and the CPU to share a common memory device”, col. 36 lines 30-32; “Reads and writes by

Page 6 of 18

Page 245 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

the CPU 702 to the HUI 700 are under the control of various CPU control signals including an I/0
read strobe N_IORC, an I/O write strobe N_IOWC, a memory data read strobe N_MRDC and a
memory data write strobe N_MWTC”, col. 36, lines 56-60. “Communication between the SCP
7006 and the CPU 702, and between the SCP 700 and the common memory device 704 is under the
control of various control signals including a memory read strobe N_SCPRD, a memory write
strobe N_SCPWR, and address latch enable N_SCPALE and a program store enable N_CPPSE”,
col. 36-37, lines 66-4. Moreover, DeRoo also discloses a CONTROL 720 in FIG. 20 for accessing
the common memory device 704 form either the CPU register file 712 or the SCP register file 714,
col. 37, lines 6-23).

In the other hand, DeRoo discloses “[t]he HUI 700 allows both the CPU 702 and the SCP
700 to share a common memory device 704" (col. 81, lines 40-42) and “the BIOS, as well as the
SCP code, can be stored in a single memory device” (col. 81, lines 42-43). DeRoo also discloses
“[flull access is provided to both the CPU 702, as well as the SCP 700, utilizing a time based
interleaving method as illustrated in FIG. 247 (col. 81, lines 50-52; FIG. 24) and “HUI 700
multiplexes access to the common device between the CPU 702 and the SCP 706" (col. 82, lines
8-9; FIG. 23), that is, DeRoo discloses “switch access to the non-volatile memory from the
microcontroller to the processor” of claim 1.

With regard to claim 2 of US 7,930,576, DeRoo discloses the change in system state to the
first state is performed by software. (“the HUI 700 allows the SCP 706 to communicate with the
CPU 702 and the common memory device 704 by way of an SCP register file 714" col. 36, lines

42-44. It is well known that to write code into a register by a software program, and the SCP

Page 7 of 18

Page 246 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

register file 714 can be controlled by a software program for establish between the SCP 706 and

the common memory device 704 is well known for a person skilled in the art)

With regard to claim 4 of US 7,930,576, DeRoo discloses the program instructions or data
comprise firmware code or data for the microcontroller. (“Write external RAM (program &or
data)” and “Read from External Program/Data memory”, col. 22, Table VII, last 2 lines.

Additionally, it is well known to store firmware code or data into a memory in a computer system).

With regard to claim 5 of US 7,930,576, DeRoo discloses the microcontroller is a
peripheral device controller for a computer system (“The SCP 20 monitors the keyboard 227, col.

4, line 22).

With regard to claim 6 of US 7,930,576, DeRoo discloses a method for sharing a
non-volatile memory (FIG 20, common memory device 704) between a processor (FIG20, CPU
702) and a microcontroller (FIG. 20, SCP 706 and HUI 700) in a system (title, “Multiprocessor
system for enabling shared access to a memory”; and FIG. 20), comprising: in response to a
change in system state to a first state (FIG. 24, when the CPU SYSTEM ACCESS signal is in low
level) wherein the microcontroller is assured safe access to the non-volatile memory, holding the
system in the first state and switching access to the non-volatile memory from the processor to the
microcontroller; while the system is held in the first state, fetching program instructions or data

from the non-volatile memory and loading the program instructions or data into a memory of the

Page 8 of 18

Page 247 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

microcontroller; and after the program instructions or data have been loaded, switching access to
the non-volatile memory from the microcontroller to the processor, and releasing the system from
the first state (FIG.20; “The HUI solves this problem by providing an interface to enable both the
SCP and the CPU to share a common memory device”, col. 36 lines 30-32; “ Reads and writes by
the CPU 702 to the HUI 700 are under the control of various CPU control signals including an I/0
read strobe N_IORC, an I/O write strobe N_IOWC, a memory data read strobe N_MRDC and a
memory data write strobe N_MWTC”, col. 36, lines 56-60. “Communication between the SCP
7006 and the CPU 702, and between the SCP 700 and the common memory device 704 is under the
control of various control signals including a memory read strobe N_SCPRD, a memory write
strobe N_SCPWR, and address latch enable N_SCPALE and a program store enable N_CPPSE”,
col. 36-37, lines 66-4. Moreover, DeRoo also discloses a CONTROL 720 in FIG. 20 for accessing
the common memory device 704 form either the CPU register file 712 or the SCP register file 714,
col. 37, lines 6-23).

In the other hand, DeRoo discloses “[t]he HUI 700 allows both the CPU 702 and the SCP
700 to share a common memory device 704" (col. 81, lines 40-42) and “the BIOS, as well as the
SCP code, can be stored in a single memory device” (col. 81, lines 42-43). DeRoo also discloses
“[flull access is provided to both the CPU 702, as well as the SCP 700, utilizing a time based
interleaving method as illustrated in FIG. 247 (col. 81, lines 50-52; FIG. 24) and “HUI 700
multiplexes access to the common device between the CPU 702 and the SCP 706" (col. 82, lines
8-9; FIG. 23), that is, DeRoo discloses “‘switch access to the non-volatile memory from the

microcontroller to the processor’ of claim 6.

Page 9 of 18

Page 248 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

With regard to claim 7 of US 7,930,576, DeRoo discloses the change in system state to the
first state is performed by software. (“the HUI 700 allows the SCP 706 to communicate with the
CPU 702 and the common memory device 704 by way of an SCP register file 714" col. 36, lines
42-44. It is well known that to write code into a register by a software program, and the SCP
register file 714 can be controlled by a software program for establish between the SCP 706 and

the common memory device 704 is well known for a person skilled in the art)

With regard to claim 9 of US 7,930,576, DeRoo discloses the program instructions or data
comprise firmware code or data for the microcontroller. (“Write external RAM (program &or
data)” and “Read from External Program/Data memory”, col. 22, Table VII, last 2 lines.

Additionally, it is well known to store firmware code or data into a memory in a computer system).

With regard to claim 10 of US 7,930,576, DeRoo discloses the microcontroller is a
peripheral device controller for a computer system (“The SCP 20 monitors the keyboard 227, col.

4, line 22).

With regard to claim 3 of US 7,930,576, DeRoo discloses the first state comprises one or
more of: a power on reset (POR) state; a system reset state; or a sleep state. Please notice here,
DeRoo fails to disclose the first state comprises one or more of power on reset state, a system reset
state or a sleep state explicitly. But it is well known to set the first state when the processor is in

one or more of power on reset state, a system reset state or a sleep state.

Page 10 of 18

Page 249 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

With regard to claim 8 of US 7,930,576, DeRoo discloses the first state comprises one or
more of: a power on reset (POR) state; a system reset state; or a sleep state. Please notice here,
DeRoo fails to disclose the first state comprises one or more of power on reset state, a system reset
state or a sleep state explicitly. But it is well known to set the first state when the processor is in

one or more 0fp0W€l" on reset state, a system reset state or a sleep state.

As detailed above, claims 1-2, 4-7 and 9-10 of the ‘576 patent are unpatentable over DeRoo
under 35 U.S.C. 102(b), claims 3 and 8 of the '576 patent are unpatentable over DeRoo under 35

U.S.C. 103(a).

With regard to claim 11 of US 7,930,576, DeRoo discloses a system, comprising:

a non-volatile memory (FIG 20, common memory device 704);

a processor(FIG20, CPU 702); and

a microcontroller (FI1G. 20, SCP 706 and HUI 700) coupled to the non-volatile memory and
to the processor, wherein the microcontroller is configured to: in response to a power on reset
(DeRoo fails to disclose the first state iswhen the system is in power on reset state, but it is well
known to set the first state when the system is in the power on reset state) , hold a system reset
signal in a reset state, thereby prohibiting the processor from accessing the non-volatile memory
(FIG 20, the CONTROL 720 can only access the common memory device 704 for one of SCP 706
and CPU 702. When SCP 706 accesses the common memory device 704 through the CONTROL

720, the CPU 702 is prohibited to access the common memory device 704);

Page 11 of 18

Page 250 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

while the system reset signal is held in the reset state, fetch program instructions or data
from the non-volatile memory and load the program instructions or data into a memory of the
microcontroller; and after the program instructions or data have been loaded, permit the processor
in the system access to the non-volatile memory, and release the system reset signal from the reset
state. (FIG.20; “The HUI solves this problem by providing an interface to enable both the SCP and
the CPU to share a common memory device”, col. 36 lines 30-32; “ Reads and writes by the CPU
702 to the HUI 700 are under the control of various CPU control signals including an I/O read
strobe N_IORC, an I/0 write strobe N_IOWC, a memory data read strobe N_MRDC and a
memory data write strobe N_MWTC”, col. 36, lines 56-60. “Communication between the SCP
7006 and the CPU 702, and between the SCP 700 and the common memory device 704 is under the
control of various control signals including a memory read strobe N_SCPRD, a memory write
strobe N_SCPWR, and address latch enable N_SCPALE and a program store enable N_CPPSE”,
col. 36-37, lines 66-4. Moreover, DeRoo also discloses a CONTROL 720 in FIG. 20 for accessing
the common memory device 704 form either the CPU register file 712 or the SCP register file 714,
col. 37, lines 6-23).

In the other hand, DeRoo discloses “[t]he HUI 700 allows both the CPU 702 and the SCP
700 to share a common memory device 704" (col. 81, lines 40-42) and “the BIOS, as well as the
SCP code, can be stored in a single memory device” (col. 81, lines 42-43). DeRoo also discloses
“[flull access is provided to both the CPU 702, as well as the SCP 700, utilizing a time based
interleaving method as illustrated in FIG. 247 (col. 81, lines 50-52; FIG. 24) and “HUI 700

multiplexes access to the common device between the CPU 702 and the SCP 7067 (col. 82, lines

Page 12 of 18

Page 251 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

8-9; FIG. 23). That is, DeRoo discloses to switch the accessing to the memory from the

microcontroller to the processor in the claim 11.

With regard to claim 12 of US 7,930,576, DeRoo discloses the program instructions or data
comprise firmware code or data for the microcontroller (“Write external RAM (program &or
data)” and “Read from External Program/Data memory”, col. 22, Table VII, last 2 lines.

Additionally, it is well known to store firmware code or data into a memory in a computer system).

With regard to claim 13 of US 7,930,576, DeRoo discloses the microcontroller is a
peripheral device controller for a computer system (“The SCP 20 monitors the keyboard 227, col.

4, line 22).

With regard to claim 14 of US 7,930,576, DeRoo discloses the microcontroller is coupled
to the non-volatile memory via a non-volatile memory bus, and wherein the microcontroller is
operable to fetch the program instructions or data from the non-volatile memory via the

non-volatile memory bus (FIG. 20, FD[0:7]).

With regard to claim 15 of US 7,930,576, DeRoo discloses the microcontroller is coupled
to the processor via a host memory bus, and wherein the microcontroller is operable to switchably

intercept or pass communications between the processor and the non-volatile memory (FIG. 20,

address mux 716, data mux & latch 718).

Page 13 of 18

Page 252 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

With regard to claim 16 of US 7,930,576, DeRoo discloses the microcontroller comprises
or is coupled to a switch, interposed between the non-volatile memory bus and the host memory
bus, wherein the switch is controllable by the microcontroller to switchably intercept or pass
communications between the processor and the non-volatile memory (FIGs. 20 and 23, address
mux 716, data mux & latch 718. “the SCP 7006 can gain exclusive access to the common memory
device 704 by asserting a CPU EXCLUDED signal (i.e., setting bit 1 of the flash interface control
register FLASH_CTRL). During such a condition, the data multiplexer 718 blocks the system data
bus SD[0:7] from the path of the memory data bus FD[0:7]”, col. 82, lines 32-39. The address
mux 716 and the data mux and latch 718 are controlled by the outputs of control logic 720, and the

values of the registers in the control logic 720 can be set by either SCP or CPU,).

With regard to claim 17 of US 7,930,576, DeRoo discloses a method for sharing a
non-volatile memory between a processor and a microcontroller in a system, comprising: in
response to a power on reset, holding a system reset signal in a reset state, thereby prohibiting the
processor from accessing the non-volatile memory; while the system reset signal is held in the reset
state, fetching program instructions or data from the non-volatile memory and loading the program
instructions or data into a memory of the microcontroller; and after the program instructions or
data have been loaded, permitting the processor in the system access to the non-volatile memory,
and releasing the system reset signal from the reset state (FIGs. 20 and 23, address mux 716, data
mux & latch 718. “the SCP 7006 can gain exclusive access to the common memory device 704 by

asserting a CPU EXCLUDED signal (i.e., setting bit 1 of the flash interface control register

Page 14 of 18

Page 253 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

FIASH_CTRL). During such a condition, the data multiplexer 718 blocks the system data bus
SD[0:7] from the path of the memory data bus FD[0:7]”, col. 82, lines 32-39. The address mux
716 and the data mux and latch 718 are controlled by the outputs of control logic 720, and the
values of the registers in the control logic 720 can be set by either SCP or CPU).

In the other hand, DeRoo discloses “[t]he HUI 700 allows both the CPU 702 and the SCP
700 to share a common memory device 704" (col. 81, lines 40-42) and “the BIOS, as well as the
SCP code, can be stored in a single memory device” (col. 81, lines 42-43). DeRoo also discloses
“[flull access is provided to both the CPU 702, as well as the SCP 700, utilizing a time based
interleaving method as illustrated in FIG. 247 (col. 81, lines 50-52; FIG. 24) and “HUI 700
multiplexes access to the common device between the CPU 702 and the SCP 7067 (col. 82, lines
8-9; FIG. 23). That is, DeRoo discloses to switch the accessing to the memory from the

microcontroller to the processor in the claim 17.

With regard to claim 18 of US 7,930,576, DeRoo discloses the program instructions or data
comprise firmware code or data for the microcontroller (“Write external RAM (program &or
data)” and “Read from External Program/Data memory”, col. 22, Table VII, last 2 lines.

Additionally, it is well known to store firmware code or data into a memory in a computer system).

With regard to claim 19 of US 7,930,576, DeRoo discloses the microcontroller is a
peripheral device controller for a computer system (“The SCP 20 monitors the keyboard 227, col.

4, line 22).

Page 15 of 18

Page 254 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

With regard to claim 20 of US 7,930,576, DeRoo discloses the microcontroller is coupled
to the processor via a system reset bus, and wherein the microcontroller is operable to assert the

system reset signal over the system reset bus (FIG. 20, RESET line for SCP).

With regard to claim 21 of US 7,930,576, DeRoo discloses the microcontroller is coupled
to the non-volatile memory via a non-volatile memory bus, and wherein the microcontroller is
operable to fetch the program instructions or data from the non-volatile memory via the

non-volatile memory bus (FIGs. 20 and 23, FD[0:7]).

With regard to claim 22 of US 7,930,576, DeRoo discloses the microcontroller is coupled
to the processor via a host memory bus, and wherein the microcontroller is operable switchably
intercept or pass communications between the processor and the non-volatile memory (FIGs. 20

and 23) .

With regard to claim 23 of US 7,930,576, DeRoo discloses the microcontroller comprises
or is coupled to a switch, interposed between the non-volatile memory bus and the host memory
bus, wherein the switch is controllable by the microcontroller to switchably intercept or pass
communications between the processor and the non-volatile memory (FIGs. 20 and 23, address
mux 716, data mux & latch 718. “the SCP 706 can gain exclusive access to the common memory
device 704 by asserting a CPU EXCLUDED signal (i.e., setting bit 1 of the flash interface control

register FLASH_CTRL). During such a condition, the data multiplexer 718 blocks the system data

Page 16 of 18

Page 255 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

bus SD[0:7] from the path of the memory data bus FD[0:7]”, col. 82, lines 32-39. The address
mux 716 and the data mux and latch 718 are controlled by the outputs of control logic 720, and the

values of the registers in the control logic 720 can be set by either SCP or CPU,).

As detailed above, claims 11-23 of the ‘576 patent are unpatentable over DeRoo under 35

U.S.C. 103(a).

Page 17 of 18

Page 256 of 264

Ex Parte Reexamination of Patent No. 7,930,576 Atty Docket No.: JCLLA38862-RE

CONCLUSION

Requester respectfully submits that, as detailed above, substantial new questions of
patentability exist with respect to claims 1-23 of the ‘576 patent. Accordingly, Requester requests
reexamination of claims 1-23 of the ‘576 patent. This Request presents overwhelming evidence
that new issues of patentability exist with respect to claims 1-23 of the ‘576 patent, those claims

should be rejected and revoked.

Respectfully submitted,
J.C. PATENTS

Date: June 21, 2011 /JTAWEI HUANG/
Jiawei Huang

4 Venture, Suite 250 Registration No. 43,330

Irvine, CA 92618 Email: jepi @msn.com

Tel.: (949) 660-0761

Fax: (949)-660-0809

Page 18 of 18

Page 257 of 264

ATTY. DOCKET NO.: JCLA38862-RE APPLICATION No.: /
FORMPTO-1449 U.S. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE | APPLICANT: IAN F. HARRIS et al.

INFORMATION DISCLOSURE STATEMENT BY
APPLICANT FILING DATE: HEREWITH GROUP:
U.S. PATENT DOCUMENTS

EXAMINER DOCUMENT NUMBER DATE NAME CLASS | SUBCLASS FILING DATE

INITIAL (IF APPROPRIATE)

1 6,161,162 12/12/2000 David T. DeRoo et al. 710 244
FOREIGN PATENT DOCUMENTS

EXAMINER DOCUMENT NUMBER | PUBLICATION COUNTRY CLASS | SUBCLASS ENGLISH

INITIAL DATE TRANSLATION

NON PATENT LITERATURE DOCUMENTS

EXAMINER Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, ENGLISH

INITIAL journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city andfor county where published. TRANSLATION

EXAMINER DATE CONSIDERED

EXAMINER: INITIAL IF CITATION CONSIDERED, WHETHER OR NOT CITATION IS IN CONFORMANCE WITH MPEP
609; DRAW LINE THROUGH CITATION IF NOT IN CONFORMANCE AND NOT CONSIDERED. INCLUDE COPY OF
THIS FORM WITH NEST COMMUNICATION TO APPLICANT.

Page 258 of 264

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention:

SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER

AND A PROCESSOR IN A COMPUTER SYSTEM

First Named Inventor/Applicant Name:

IAN F. HARRIS

Filer:

Jiawei Huang/Michelle Chang

Attorney Docket Number:

JCLA38862-RE

Filed as Large Entity

ex parte reexam Filing Fees

. . Sub-Total i
Description Fee Code Quantity Amount uUSI;)(Sa) n
Basic Filing:
Request for ex parte reexamination 1812 1 2520 2520

Pages:

Claims:

Miscellaneous-Filing:

Petition:

Patent-Appeals-and-Interference:

Post-Allowance-and-Post-Issuance:

Extension-of-Time:

Page 259 of 264

Description Fee Code Quantity

Amount

Sub-Total in
UsD($)

Miscellaneous:

Total in USD ($)

2520

Page 260 of 264

Electronic Acknowledgement Receipt

EFS ID: 10355726

Application Number: 90011754

International Application Number:

Confirmation Number: 4071

SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER

Title of Invention: AND A PROCESSOR IN A COMPUTER SYSTEM

First Named Inventor/Applicant Name: IAN F. HARRIS
Customer Number: 23900
Filer: Jiawei Huang/Michelle Chang
Filer Authorized By: Jiawei Huang
Attorney Docket Number: JCLA38862-RE
Receipt Date: 21-JUN-2011
Filing Date:
Time Stamp: 17:55:59
Application Type: Reexam (Third Party)

Payment information:

Submitted with Payment yes

Payment Type Deposit Account
Payment was successfully received in RAM $2520

RAM confirmation Number 5030

Deposit Account 500710

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Page 261 of 264

File Listing:

Document .. . File Size(Bytes)/ Multi Pages
Document Description File Name A . .
Number Message Digest | Part/.zip| (ifappl.)
38862- 421906
1 Transmittal of New Application RE_Request_Ex_Parte_Reexami no 3
nation.pdf 4bdc280e848016c266e6e6705c8e9ch9fa8
7a09f
Warnings:
Information:
C f patent f hich inati 1183083
2 opy of patent for which reexamination| — 3g86> RE_US7930576.pdf no 15
is requested
45ac3¢31385a2452ecc01d7¢39300891058)
ab8le
Warnings:
Information:
- 271873
Reexam - Affidavit/Decl/Exhibit Filed by .388§2
3 RE_Reexamination_Statement. no 18
3rd Party
pdf 4581cd394bedf3163¢89%adece5f56643113 1
14a5
Warnings:
Information:
R Info Disclosure Statement 30707
4 eexam - o isciosure Statemen 38862-RE_IDS_PTO-1449.pdf no 1
Filed by 3rd Party
68318ce130a8¢265302bb13b834b086cady
Warnings:
Information:
6490732
5 Reexam Miscellaneous Incoming Letter | 38862-RE_IDS_US6161162.pdf no 143
15239¢c5038¢chbb4906b4e658367b3d5h4f4]
e3442
Warnings:
Information:
30323
6 Fee Worksheet (SB06) fee-info.pdf no 2
08d7d19d7ba2ab5ab52aala50e5a9%293 9|
af2b7
Warnings:
Information:
Total Files Size (in bytes)1 8428624

Page 262 of 264

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

Page 263 of 264

Patent Assignment Abstract of Title

Total Assignments: 1
Application #: 11958601 Filing Dt: 12/18/2007 Patent #: 7930576 Issue Dt: 04/19/2011
PCT #: NONE Publication #: US20080256374 Pub Dt: 10/16/2008
Inventors: lan F. Harris, Drew J. Dutton :

Title: SHARING NON-SHARABLE DEVICES BETWEEN AN EMBEDDED CONTROLLER AND A PROCESSOR IN A COMPUTER
SYSTEM

Assignment: 1
Reel/Frame: 020262 / 0609 Received: 12/18/2007 Recorded: 12/18/2007 Mailed: 12/18/2007 Pages: 6
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).

Assignors: HARRIS, IAN F. Exec Dt: 12/11/2007
DUTTON, DREW J. Exec Dt: 12/05/2007

Assignee: STANDARD MICROSYSTEMS CORPORATION
80 ARKAY DRIVE ‘
HAUPPAUGE, NEW YORK 11788
Correspondent: MEYERTONS, HOOD, KIVLIN, KOWERT & GOETZE
P.O. BOX 398
AUSTIN, TX 78767-0398

Search Results as of: 06/24/2011 12:15 PM

If you have any comments or questions concerning the data displayed, contact PRD / Assignments at 571-272-3350. v.2.2
Web interface last modified: Apr. 20, 2009

Page 264 of 264

