US 20030056071A1

a2 Patent Application Publication o) Pub. No.: US 2003/0056071 A1l

a9 United States

Triece et al.

43) Pub. Date: Mar. 20, 2003

(549) ADAPTABLE BOOT LOADER

(76) Inventors: Joseph W. Triece, Phoenix, AZ (US);
Timothy J. Phoenix, Peperell, MA
(Us)

Correspondence Address:

BAKER BOTTS, LLP

910 LOUISIANA

HOUSTON, TX 77002-4995 (US)

(21) Appl. No.: 09/955,328

22) Filed: ep. 18,
iled Sep. 18, 2001
Publication Classification
(51) Int. CL7 e GO6F 12/00
(52) US. Cl e 711/165; 713/2
EXTERNAL
MEMORY

BOOT CODE IN EXTERNAL

(7) ABSTRACT

A microcontroller, which addresses program memory sepa-
rately from data memory, is disclosed. The microcontroller
includes a CPU and a boot memory coupled to the CPU. A
control is coupled to the CPU and to the boot memory. In a
first state, the control causes the boot memory to be con-
figured as data memory. In a second state, the control causes
the boot memory to be configured as program memory. A
method for loading the boot memory is also disclosed. The
method includes configuring the boot memory to be
addressed as data memory unless it is already configured to
be addressed as data memory, loading a program from an
external program memory into the boot memory, configur-
ing the boot memory to be addressed as a program memory,
and executing the program in the boot memory. A method
for using the microcontroller and method to debug software
is described.

INTERNAL
MEMORY

MEMORY

800 -

805
_\\\

Page 1 of 20

TBLRD

WORK REGISTER

MOVWF f,a
MOVFF f_f,

400H

GPR
BANK 4

500H

GPR
BANK 5§

Nuvoton Exhibit 1007

Patent Application Publication Mar. 20, 2003 Sheet 1 of 11 US 2003/0056071 A1

P L

EXTERNAL

Y

PROGRAM 110
ADDRESSAND | |7 /O BUSSES AND
DATA BUSSES 145 CONTROL LINES
AND CONTROL N\
LINES
105
CONTROL |« CPU -
_ DATA
135 — == ADDRESS AND
10 DATA
PROGRAM | BUSSES
ADDRESS AND
DATA 115
BUSSES TS U B
I |
< 5 < 5 i |
{ 1
. | |REMAINDER OF | 1
> SELECT ! | ONBOARD RAM | |
I
o1 I
i
‘ ! 130 |
SELECTED ! |
ADDRESS AND . !
DATA BUSSES ! i
|
T T ’ |
: -~ :
| 125
s PORTION OF ONBOARDRAM |7 !
|
! (BOOT MEMORY) !
| :
! .

Page 2 of 20

Patent Application Publication Mar. 20, 2003 Sheet 2 of 11 US 2003/0056071 A1

| PC<20:0> |——210 o1

CALL, BSUB, RETURN 4 J;
RETFIE, RETLW v /

Stack Level 1

215
N

Stack Level 31

e,

Reset Vector 000000h A

High Priority Interrupt Vector | 000008h

Low Priority Interrupt Vector | 000018h

FI G. 2 External

User Memory Space

(PROGRAM Progr}e\uﬂm and Table
MEMORY) emory
/— 135
0 | CONTROL

\¥ 200

205 ™~

1FFFFFh

Internal Memory External Memory

Page 3 of 20

Patent Application Publication Mar. 20, 2003 Sheet 3 of 11 US 2003/0056071 A1

| PC<20:0> L—210 o
CALL, BSUB, RETURN 4 /
RETFIE, RETLW Y /

Stack Level 1

215

Stack Level 31

Reset Vector 000000h Y

High Priority Interrupt Vector |000008h

Low Priority Interrupt Vector |000018h
FIG. 3 .
S
(PROGRAM =3
MEMORY) External >
Program and Table 2

Memory c
=
o)
/— 135 @
1 | CONTROL
e 200
/— 125
1FFEQOCH
External
Boot Memory Table Memory
1FFFFFh Y
Internal Memory External Memory

Page 4 of 20

Patent Application Publication Mar. 20, 2003 Sheet 4 of 11 US 2003/0056071 A1

DATA PROGRAM
MEMORY MEMORY

000H
ACCESS RAM

GPR 07FH

BANK O

100H
GPR
BANK 1

200H
GPR
BANK 2

300H
GPR
BANK 3

400H
GPR
BANK 4

500H
GPR
BANK 5

BANKS 6
gt TO 14 —

UNUSED

FOOH
UNUSED

F80H

SFR 135
\ -
00— | Jo] contROL]

200

FIG. 4

(INTERNAL
MEMORY)

Page 5 of 20

Patent Application Publication Mar. 20, 2003 Sheet 5 of 11 US 2003/0056071 A1

DATA PROGRAM
MEMORY MEMORY
000H
ACCESS RAM
BANK 0
100H
GPR
BANK 1
200H
GPR
BANK 2
300H
GPR
BANK 3
1FFEOOH
GPR
BANK 4
BANKS 4 1FFFOOH
— TO 14 T GPR
UNUSED BANK 5
FOOH
UNUSED
F80H
SFR
/— 135
| |1] conTroL]
FIG.5 "
(INTERNAL
MEMORY)

Page 6 of 20

Patent Application Publication Mar. 20, 2003 Sheet 6 of 11 US 2003/0056071 A1

ALE <—ﬂ——> ALE 105
205 V(\)/E 3 > \(/)vg v b
| <2005 (= N A<20:0> e 1%
D<15:0> f—+——N D<15:0> EBI o| onTL
A] ¥
X DATA | | DATA
RAM | | rRA
MEMORY 110 — L M
600 130 125_/
vl 100
COPY OF I —— slo
BOOTLOADER t
SERIAL
INTERFACE
FIG. 6
ALE [A > 1/0 105
WE [« »{1/0 ceu bV
205 OE [« > 1/0 135
A I} /_
A<20:0> [—io<200> |
D<15:0> N 1o<15:0> | /3 [[]1] ene
j/ BUFF | |PROG
RAM | | RAM
MEMORY 145
130 — 105 _/
600 100
copyor |7 — SI0

SERIAL
INTERFACE

FIG. 7

Page 7 of 20

Patent Application Publication Mar. 20, 2003 Sheet 7 of 11 US 2003/0056071 A1

EXTERNAL INTERNAL
MEMORY MEMORY

BOOT CODE IN EXTERNAL

800——////

805
\ WORK REGISTER
MOVWF f,a
MOVFF f_f,
F IG. 8 400H
GPR
BANK 4
500H
GPR
BANK 5
RESET
RESET VECTOR -
1FFEQOH g 1FFE00H
GPR
BANK 4
1FFFQOH
GPR
FIG. 9

Page 8 of 20

Patent Application Publication Mar. 20, 2003 Sheet 8 of 11 US 2003/0056071 A1

1025
/= 1030
/ pd
0| CONFIGAL
1998\ HALT
0| SLG-BUG 7
- 1035
1050 +——
BACKGROUND SRESET | e L ,| DEBUG
DEBUGGER C 1045 COMPUTER
DEBUG 1000 =7
FIRMWARE 1005
N0 N 00 N 01 N 1010
TEST TRAP VECTOR
1FFEQOH 200028H

1060

FIG. 10

Page 9 of 20

Patent Application Publication Mar. 20, 2003 Sheet 9 of 11 US 2003/0056071 A1

1100
CONFIGURE BOOT MEMORY

TO BE DATA MEMORY

Y

LOAD COMMUNICATION
CODE INTO BOOT MEMORY

y

-
—_
-
o

BOOT MEMORY

!

RESET AND EXECUTE
BOOTLOADER

-
—_
—_
(&)}

DR

1145

<

!

MODIFY PROGRAM CODE IN
EXTERNAL MEMORY

-
Y
N
o

I
I
(
I
I
I
I
I
I
I
| | LOAD BOOT LOADER INTO
I
I
I
I
I
I
I
I
I
I
I

-
—_
N
(&)

LOAD DEBUG SOFTWARE
INTO BOOT MEMORY

Y

RESET AND EXECUTE DEBUG

I
I
l
|
|
I
I
FIG. 11 I o
I
I
|
I
I
I
I
I
I

!

RE-ESTABLISH
COMMUNICATIONS AND
EXECUTE PROGRAM CODE

Q
-
W
[$)]

____x__:____ﬂ____

-
-
N
o

Y

OBSERVE OPERATIONS OF
DEVICE

—
=9
n
o

Page 10 of 20

Patent Application Publication Mar. 20,2003 Sheet 10 of 11 US 2003/0056071 A1

EXTERNAL 1200 INTERNAL
MEMORY //’— MEMORY
DEBUG CODE IN EXTERNAL TBLRD

MEMORY
/— 1205

WORK REGISTER

MOVWF f,a
MOVFF f_f,
400H
FIG. 12 GPR
BANK 4
500H
GPR
BANK 5
RSBUG = 1
RESET
TEST TRAP VECTOR -
1FFEOOH g 1FFEQOH
GPR
S 1060 BANK 4
1FFFOOH

FIG. 13 AN 5

Page 11 of 20

Patent Application Publication Mar. 20,2003 Sheet 11 of 11 US 2003/0056071 A1

CONFIGURE BOOT MEMORY
TO BE DATA MEMORY

1400
a

l

TRANSFER BOOT LOADER
PROGRAM FROM EXTERNAL
MEMORY TO DATA RAM

140

l

CONFIGURE BOOT MEMORY
TO BE PROGRAM MEMORY

1410
e

l

EXECUTE BOOT LOADER IN
BOOT MEMORY

/—1415

Page 12 of 20

FIG. 14

US 2003/0056071 Al

ADAPTABLE BOOT LOADER

FIELD OF THE INVENTION

[0001] The present invention relates generally to micro-
controllers, and more particularly to adaptable bootloaders
for microcontrollers.

BACKGROUND OF THE INVENTION
TECHNOLOGY

[0002] For microcontrollers that have the capability to
execute commands from off-chip (“external”) program
memory, it is desirable to have the ability to perform
in-system program modification of external memory. To
accomplish this, some program code must be configured
onboard the microcontroller in order to execute an external
program memory loader routine. Such onboard program
code is sometimes referred to as a “bootloader,” because it
is usually executed when the device “boots” up out of reset.

[0003] Some microcontrollers that have an external bus
interface have a small onboard ROM program memory
customized to perform programming of external memory.
The program stored in the on-board ROM typically is
customized by the microcontroller manufacturer for each
customer’s application. AROMIless microcontroller does not
contain an onboard program ROM or FLASH memory.

[0004] Most external memories that can be modified, such
as flash memory or RAM, can be addressed with a tradi-
tional address and data bus. Some external devices (such as
serial memories, input/output devices, etc.) require unique
programming algorithms that cannot be performed using
traditional address and data busses.

[0005] A way to provide an adaptable bootloader, for
example to modify external memory, or another type of
adaptable program in an onboard memory in a ROMless
microcontroller is needed.

SUMMARY OF THE INVENTION

[0006] The invention overcomes the above-identified
problems as well as other shortcomings and deficiencies of
existing technologies by providing an onboard boot memory
that can function as either program memory or as data
memory. The boot memory is loaded with a program when
it is configured as data memory. The boot memory is then
converted to program memory and the program it stores is
executed.

[0007] In accordance with an exemplary embodiment of
the present invention, the invention features a microcontrol-
ler, which addresses program memory separately from data
memory. The microcontroller includes a CPU and a boot
memory coupled to the CPU. A control is coupled to the
CPU and to the boot memory. In a first state, the control
causes the boot memory to be configured as data memory. In
a second state, the control causes the boot memory to be
configured as program memory.

[0008] Implementations of the invention may include one
or more of the following. The control may include a memory
control register. The memory control register may include a
program enable flag. When it has a first value, the program
enable flag may cause the control to be in the first state.
When it has a second value, the program enable flag may

Page 13 of 20

Mar. 20, 2003

cause the control to be in the second state. The microcon-
troller may include an external port coupled to the CPU and
to the control. The external port may be configured as a
system bus when (1) the control is in the first state, and (2)
the control is in the second state and the CPU is accessing
external memory as data memory. The external port may be
configured as an input/output port when the control is in the
second state and the CPU is not accessing the external
memory as program or data memory. The external port is
configured as a system bus when the boot memory is
addressed as data memory. The external port may be con-
figured as an input/output port when the boot memory is
addressed as program memory. The external port is config-
ured as a system bus when the boot memory is addressed as
data memory and when the CPU writes to an external
memory via the external port using an instruction that allows
writes to program memory, and otherwise, the external port
may be configured as an input/output port.

[0009] In general, in another aspect, the invention features
a microcontroller, which addresses program memory sepa-
rately from data memory. The microcontroller includes a
control, having a first state and a second state, a boot
memory coupled to the control, and an external port coupled
to the control. The external port is configured as a system
bus when (1) the control is in the first state and the boot
memory is not addressed, or (2) the control is in the second
state and the external port is used to address an external
memory as data memory. The external port is configured as
an input/output port when the control is in the second state,
the boot memory is addressed, and the external port is not
used to address the external memory as program or data
memory.

[0010] Implementations of the invention may include one
or more of the following. The boot memory may be con-
figured as data memory if the port control is in the first state
and as program memory if the port control is in the second
state. The external port may be configured as a system bus
when the CPU writes to an external memory via the external
port using an instruction that allows writes to program
memory.

[0011] In general, in another aspect, the invention features
a method for loading a boot memory onboard a microcon-
troller. The microcontroller addresses program memory
separately from data memory. The method includes config-
uring the boot memory to be addressed as data memory
unless it is already configured to be addressed as data
memory, loading a program from an external program
memory into the boot memory, configuring the boot memory
to be addressed as a program memory, and executing the
program in the boot memory.

[0012] Implementations of the invention may include one
or more of the following. Loading the program from the
external program memory into the boot memory may
include moving a word of the program from external pro-
gram memory into a working register by directly addressing
the working register, and moving the word from the working
register to a boot memory location by directly addressing the
boot memory location as a register. The boot memory may
be divided into banks and the boot memory may be addres-
sable using offset addressing within the banks. Loading the
program from the external program memory into the boot
memory may include moving a word of the program from

US 2003/0056071 Al

external program memory into a working register by directly
addressing the working register, and moving the word from
the working register to the boot memory by offset addressing
the boot memory. Configuring the boot memory to be
addressed as data memory may include setting the state of a
control flag. Setting the state of the control flag may include
setting a bit in a memory control register.

[0013] In general, in another aspect, the invention features
an apparatus for booting a microcontroller, which addresses
program memory separately from data memory, by loading
a program from an external program memory into a boot
memory on the microcontroller. The apparatus includes a
control coupled to the boot memory, which in a first state
causes the microcontroller to address the boot memory as
data memory, and in a second state causes the microcon-
troller to address the boot memory as program memory. The
apparatus also includes a first program stored in the external
program memory which causes the microcontroller to switch
the control to the first state, transfer a second program from
the external program memory to the boot memory, switch
the control to the second state, and execute the second
program in the boot memory.

[0014] Implementations of the invention may include one
or more of the following. The apparatus may include an
external port coupled to the control, which operates as a
system bus when (1) the control is in the first state, or (2) the
control is in the second state and the CPU is accessing the
external program memory as data memory, and which
operates as an input/output port when the control is in the
second state and the CPU is not accessing the external
program memory as program and/or data memory. The first
program may cause the microcontroller to transfer the
second program from the external program memory to the
boot memory via the external port. The second program may
cause the microcontroller to use the external port as an
input/output port and as a system bus.

[0015] In general, in another aspect, the invention features
a method for using a microcontroller, which addresses
program memory separately from data memory and which
includes a boot memory, to debug software stored in an
external memory. The method includes repeating the fol-
lowing until the debug process is complete: loading com-
munication software into the boot memory, loading a boot-
loader into the boot memory, executing the communication
software and the bootloader, modifying the software stored
in the external memory through the communications soft-
ware and the bootloader, loading debug software into the
boot memory, executing the debug software and the com-
munication software, executing the software stored in the
external memory, and stopping execution of the software
stored in the external memory.

[0016] Implementations of the invention may include one
or more of the following. Loading communication software
into the boot memory may include converting the boot
memory so that it is addressed by the microcontroller as data
memory unless the boot memory is already addressed as
data memory, loading the communication software into the
boot memory, and converting the boot memory so that it is
addressed by the microcontroller as program memory.

[0017] In general, in another aspect, the invention features
a microcontroller, which includes a CPU, program address
and data busses coupled to the CPU, data address and data

Page 14 of 20

Mar. 20, 2003

busses coupled to the CPU, input/output busses coupled to
the CPU, and an onboard RAM comprising a boot RAM.
The microcontroller further includes a memory selector,
coupled to the program address and data busses, the data
address and data busses and the boot RAM, which can be
actuated to select whether the boot RAM is addressed by the
program address and data busses or the data address and data
busses. The microcontroller further includes an external
interface and an output port selector, coupled to the program
address and data busses, the input/output busses and the
external interface, which can be actuated to select the
program address and data busses or the input/output busses
to couple to the external interface. The microcontroller
further includes a memory control coupled to the CPU for
actuating the memory selector, and an output port control
coupled to the CPU for actuating the output port selector.

[0018] A technical advantage of the present invention is
that external memory can be adaptively modified without the
need for a customized onboard ROM. Another technical
advantage is that an onboard memory space can be used as
either data memory or program memory. Still another tech-
nical advantage is that the entire range of external memory
can be modified by a program running from the internal
memory.

[0019] Features and advantages of the invention will be
apparent from the following description of the embodi-
ments, given for the purpose of disclosure and taken in
conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] A more complete understanding of the present
disclosure and advantages thereof may be acquired by
referring to the following description taken in conjunction
with the accompanying drawings, wherein:

[0021] FIG. 1 is a block diagram of a portion of a
microcontroller.

[0022] FIG.2 is a map of program memory when the boot
memory is configured as data memory.

[0023] FIG. 3 is a map of program memory when the boot
memory is configured as program memory.

[0024] FIG. 4 is a map of memory internal to the micro-
controller when the boot memory is configured as data
memory.

[0025] FIG. 5 is a map of memory internal to the micro-
controller when the boot memory is configured as program
memory.

[0026] FIG. 6 illustrates copying a bootloader from exter-
nal memory to the boot memory.

[0027] FIG. 7 illustrates the bootloader executing in boot
memory.

[0028] FIG. 8 illustrates the mechanics of copying the
bootloader from the external memory to the boot memory.

[0029] FIG. 9 illustrates the mechanics of executing the
bootloader on reset.

[0030] FIG. 10 illustrates the microcontroller in a debug
configuration.

[0031] FIG. 11 is a flow chart of the debug operation.

US 2003/0056071 Al

[0032] FIG. 12 illustrates the mechanics of copying the
debug code from the external memory to the boot memory.

[0033] FIG. 13 illustrates the mechanics of executing the
debug code on reset.

[0034] FIG. 14 is a flow chart of storing and executing a
program in boot memory.

[0035] While the present invention is susceptible to vari-
ous modifications and alternative forms, specific exemplary
embodiments thereof have been shown by way of example
in the drawings and are herein described in detail. It should
be understood, however, that the description herein of spe-
cific embodiments is not intended to limit the invention to
the particular forms disclosed, but on the contrary, the
intention is to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the inven-
tion as defined by the appended claims.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[0036] The present invention is directed to an adaptable
bootloader for a microcontroller.

[0037] Referring now to the drawings, the details of an
exemplary embodiment of the present invention is schemati-
cally illustrated. Like elements in the drawings will be
represented by like numbers, and similar elements will be
represented by like numbers with a different lower case letter
suffix.

[0038] In the exemplary embodiment depicted in FIG. 1,
a microcontroller 100 includes a central processing unit
(CPU) 105, which has “program” address and data busses
110 and “data” address and data busses 115. Note that FIG.
1 depicts only a portion of the elements of the microcon-
troller 100. The program busses 110 are used to access a
“program” memory and the data busses 115 are used to
access “data” memory that is separate from the program
memory. An example of such an architecture, called a
“Harvard architecture,” is described in detail in co-pending
and co-owned U.S. patent application Ser. No. 09/280,112,
filed on Mar. 26, 1999 and entitled MICROCONTROLLER
INSTRUCTION SET, incorporated by reference. The Har-
vard architecture improves bandwidth over the traditional
von Neumann architecture, in which program memory and
data memory are accessed over the same address and data
busses.

[0039] The microcontroller 100 includes an onboard ran-
dom access memory (RAM) 120. A portion 125 of the
onboard RAM 120 can be addressed as either program
memory or data memory. The onboard RAM portion 125
will be referred to hereafter as the “boot memory.” The
remainder 130 of the onboard RAM 120 is always addressed
as data memory.

[0040] The CPU 105 controls whether the boot memory
125 is addressed as data memory or program memory
through control 135, which causes a select function 140 to
select either the program busses 110 or the data busses 115
to present to the boot memory 125.

[0041] The CPU 105 also includes input/output (I/O)
busses and control lines 145. When the boot memory 125 is
configured as data memory, the program driving the CPU
105 is typically stored in external memory, which is an

Page 15 of 20

Mar. 20, 2003

off-chip memory external to the microcontroller 100. In that
case, the program busses and associated control lines 110 are
presented externally to allow the CPU 105 to access and
control the external memory. When the boot memory 125 is
configured as program memory and the CPU 105 is execut-
ing code stored in the boot memory 125, the program busses
and associated control lines 110 do not have to be presented
externally even so they could. If they are presented exter-
nally, they are held in an inactive state. Otherwise, the I/O
busses and control lines 145 are presented externally using
the same ports otherwise used for the program busses 110.

[0042] A select function 150, which is driven by the same
control 135 that selects whether the boot memory is program
memory or data memory, determines whether the program
busses and control lines 110 or the I/O busses and control
lines are presented externally. The select function 150 may
switch the I/O busses to the external interface whenever the
control indicates that the boot memory 125 is configured as
program memory. Preferably, it may make that switch only
when the boot memory 125 is actually accessed as program
memory. In this case the external bus has only I/O func-
tionality. If the CPU accesses an external memory as data
memory, for example for the TBLRD or TBLWR instruc-
tions, the select function 150 switches the program busses
and control lines 110 to the external interface, even if the
boot memory is being accessed as program memory.

[0043] A map of the program memory, illustrated in FIGS.
2 and 3, changes depending on the state of the control 135.
In one example implementation, the control includes a
memory control register, MEMCON. One MEMCON bit
200, the PGRM bit, determines the state of the control 135
at least as it relates to the select function 140. If the PGRM
bit is “0,” the boot memory 125 is configured to be data
memory. If the PGRM bit is “1,” the boot memory 125 is
configured to be program memory. The PGRM bit may also
determine the state of the control 135 as it relates to the
select function 150.

[0044] Alternatively, the select function 150 may be con-
trolled by another mechanism, such as by another bit in the
MEMCON register, a bit in another register, or another
mechanism entirely. Preferably, the select function 150 is
controlled by an EBDIS bit in the MEMCON register and
the address being executed. If the EBDIS bit is set and the
address being executed is in the boot memory, then the select
function 150 will select the I/O busses and control lines 145
to present to the external interface. Otherwise, the select
function 150 will select the program address and data busses
and control lines 110 to present to the external interface.
When the boot memory is accessed for program execution,
it is assumed that TBLRD and TBLWT instructions, which
allow reads and writes, respectively, from and to program
memory, will be performed on external memory, because the
program running from the boot memory is intended to be a
bootloader. For those instructions, the EBDIS bit is not used
when a TBLWT or TBLRD is executed and the select
function 150 presents the program address and data and
control lines 110 to the external interface.

[0045] FIG. 2 shows an example program memory map
when the PGRM bit is “0” which causes the boot memory
125 to be configured to be data memory. In this case, the
entire program memory space, which extends from 000000h
to 1FFFFFh, is in external memory. Reset, high priority

US 2003/0056071 Al

interrupt and low priority interrupt vectors are located at
000000h, 000008h, and 000018h, respectively.

[0046] The memory map includes a program counter 210
and a stack 215. A variety of opcodes (CALL, BSUB,
RETURN, RETFIE, and RETLW), which cause data to be
stored in or retrieved from the program counter 210 or the
stack 2185, are illustrated in FIG. 2.

[0047] The program memory map when the PGRM bit
200 is “1” which causes the boot memory 125 to be
configured to be program memory, illustrated in FIG. 3, is
the same as that shown in FIG. 2, except that the external
memory from 1FFEOOh to 1FFFFFh is no longer available
as program memory. Instead, that range of program memory
addresses now addresses the boot memory 125, which is
onboard to the microcontroller 100.

[0048] A map of the onboard RAM (also called “internal”
memory), illustrated in FIGS. 4 and 5, also changes depend-
ing on the status of the PGRM bit 200. When the PGRM bit
200 is “0,” as in the example shown in FIG. 4, the internal
memory 400 extends from 000h to FFFh. Internal memory
400 is divided into banks, each containing 100h memory
locations. Any location in the internal memory 400 may be
directly addressed or memory locations may be addressed by
selecting a bank and specifying an offset within the bank.

[0049] Inthe example shown in FIG. 4, bank 0 is split into
an Access RAM from 000h to 07Fh and a general purpose
register (GPR) from 080h to OFFh. Similarly, bank 15 is
divided into an unused portion from FOOh to F7Fh and a
special function register (SFR) area from F80h to FFFh. In
the example shown in FIG. 4, banks 6 to 14 are unused.

[0050] The split in banks 0 and 15 enables the concept of
an “access bank.” The access bank is composed of two RAM
partitions, access RAM high and access RAM low. Access
RAM high is the SFR region mapped in bank 15 and access
RAM low is the RAM that is banked in bank 0. A bit in the
instruction word, referred to as the “a” bit, specifies if the
operation is to occur in one of banks 0-15 (known as the
BSR registers) or in the access bank. When the access bank
is addressed, the last address in RAM low is followed by the
first address in RAM high.

[0051] When the PGRM bit is set to “1,” the internal
memory map changes to that shown in FIG. 5. The only
difference is that banks 4 and 5 (which is the “boot memory”
shown in FIG. 1), which had data memory addresses
ranging from 400h to 5FFh in FIG. 4, now have program
memory address ranging from 1FEOOh to 1FFFFh.

[0052] This capability of configuring the boot memory as
either data memory or program memory allows a bootloader
600 to be copied from an external memory 205 into the boot
memory 125 when it is configured as a data memory, as
shown in FIG. 6. The boot memory 125 can then be
converted into program memory and the bootloader can be
executed from the boot memory 125, as shown in FIG. 7.
FIGS. 6 and 7 also illustrate the transformation of the
program busses and control lines 110 to I/O busses and
control lines 145. The microcontroller 100 can modify
external memory using the I/O busses and control lines 145
and data stored in the data RAM 130, as shown in FIG. 7.
Further, the microcontroller can alter external memory using
the TBLWT instruction, as discussed above.

Page 16 of 20

Mar. 20, 2003

[0053] An example of the mechanics of moving data from
the external memory into the boot memory when the boot
memory is configured as data memory, is illustrated in FIG.
8. The instructions to move data from the external memory
to the boot memory are executed from the external memory.
A TBLRD instruction is executed using a location in exter-
nal memory which contains the boot code 800 as the source
address and the Work Register (or W register) 805 as the
destination address. The TBLRD instruction has the ability
to read data from program memory, as discussed above. In
the example shown, the TBLRD instruction automatically
increments the source address when it is executed. Conse-
quently, over a series of TBLRD instructions, the entire
bootloader is transferred, one byte at a time, into the Work
Register.

[0054] After each byte is transferred, the program trans-
fers the byte from the Work Register into banks 4 and 5 of
the data memory. The program uses the MOVWF f,a func-
tion, which transfers data from the Work Register into an
onboard register having the address “f.” The address “f” is
incremented between each transfer. Alternatively, the pro-
gram may use the MOVFF f_f, function, which transfers
data from the onboard register f, to the onboard register f;.
In the example shown in FIG. 8, the address of register f, is
set to be the address of the Work Register and the address of
register f; is incremented through the banks 4 and 5 of the
data memory. These functions make use of a feature of the
microcontroller that all of the onboard registers are directly
addressable.

[0055] If the boot memory were only configurable as
program memory, the write to boot memory would require
a TBLPTR instruction, which allows a write to program
memory. This would mean that the TBLPTR, which is the
pointer that determines the source or destination address of
a TBLRD or TBLWT, respectively, would have to be
updated between each table operation. Configuring boot
memory as data memory allows the use of the MOVWF and
MOVFF instructions, which do not have the same limitation.

[0056] Once the bootloader has been transferred into the
onboard data memory, the code accomplishing that task
jumps to the beginning of the bootloader program and
begins execution. Alternatively as illustrated in FIG. 8, the
location of the beginning of blocks 4 and 5 of the onboard
data memory when they are addressed as program memory,
1FFEQOh, is stored in the reset vector 000000h, as shown in
FIG. 9, and the microcontroller 100 is reset. The microcon-
troller 100 vectors to the reset vector and then to the
bootloader program stored in banks 4 and 5 (boot memory).

[0057] The bootloader program executing from the boot
memory provides the ability to modify any location in
external memory. The external program memory can be
mapped such that executing a TBLWT instruction to a
memory location occupied by internal program memory can
take place externally. This means that external program
memory can occupy the entire address range, and that all of
the external memory can be programmed by the bootloader
executing from boot memory. This also prevents the boot-
loader from modifying itself while executing, which could
be catastrophic.

[0058] Using this technique, a bootloader program 600
stored in external memory 205 can be transferred to the
onboard boot memory 125 configured as data memory. The

US 2003/0056071 Al

boot memory 125 can then be reconfigured as program
memory and the bootloader program can be executed. Part
of the bootloader program can be used to modify the data or
programs stored in the external memory 2085.

[0059] Another application for the circuit illustrated in
FIG. 1 is to facilitate background debugging, as illustrated
in FIG. 10. A background debugger can be used to debug
software stored in the external memory 205. The back-
ground debugger can be configured to step through the
software one instruction at a time, which allows a user to
observe the results of each program step. The background
debugger can also be configured to stop execution of the
program when it reaches a particular point (a TRAP) or
when a user stops its execution. Such a debugger typically
provides the capability of modifying the program code being
debugged to attempt to solve a problem identified during the
debugging. To perform these functions, an example back-
ground debugger 1000 provides the following features:
break on program fetch from a specific location; break on a
(HALT) signal from the debug computer; break on execution
of a TRAP instruction; break on next debug computer
instruction execution, which provides a single step capabil-
ity; and the ability to load and verify code.

[0060] In one example of an implementation of a back-
ground debugger, illustrated in FIG. 10, a software or
hardware communication protocol 1005 is established
between the microcontroller 100, which runs a background
debugger 1000, and a debug computer 1010 through a debug
interface 1015. The debug computer 1015, runs an evalua-
tion tool which displays information provided by the back-
ground debugger and provides controls for the background
debugger 1000.

[0061] A configuration bit (BKBUG) 1025 in a
CONFIGAL register 1030 determines whether the back-
ground debugger 1000 is enabled. In this example, when
BKBUG is set to “0,” the background debugger is enabled.
In the debug-enabled configuration, the microcontroller 100
is responsive to a HALT signal 1035 and to the execution of
TRAP instructions. Other functions of the microcontroller
100 are disabled to prevent the background debugger 1000
from corrupting certain registers.

[0062] In this example, when the BKBUG bit 1025 is set
to “0,” the boot memory 125 is configured as program
memory and can be used by debugger firmware 1040. When
the BKBUG bit is set to “0”, the value of the PGRM bit 200
in the control register 135 (see FIGS. 2-7) has no effect on
whether the boot memory 125 is configured as program
memory or data memory.

[0063] In one example implementation, the user (i.e., the
person using the debug computer 1010) will have a maxi-
mum of 1 k bytes of RAM 120 onboard the microcontroller
100 to store an application. The remaining 512 bytes (256
words) of onboard RAM 120 may be used to store the
onboard debugger software.

[0064] In this example, in the debug environment, the
microcontroller RESET signal 1045 can be activated by the
debug computer 1010 or by other resources in a system that
incorporates the microcontroller 100. When the BKBUG
configuration bit is set to “0”, a RESET will vector the
microcontroller 100 to a location determined by the state of
a RSBUG bit 1050 in a SLG-BUG register 1055. In this
example, when RSBUG=0 RESET will vector to code at
address 000000h.

Page 17 of 20

Mar. 20, 2003

[0065] When RSBUG=1, RESET will vector to test trap
vector location 1060 at address 200028h, which contains the
address of the beginning of the background debugger code
stored in the boot memory at address 1FFEOOh. In one
example implementation, the vector stored at location
200028h is encoded in hardware. The microcontroller 100
will vector to 1FFEOOh and begin executing the debug
software stored at that location.

[0066] In one example implementation, external memory
205, which, for example, contains the program code being
debugged, cannot be modified directly by the debug com-
puter 1010. Therefore, if modifications are required to
external memory during debugging, they will be performed
through the boot memory 125. To accomplish this, the
following steps, illustrated in FIG. 11, are performed (the
following steps assume that the user wants to modify the
program code in external memory and then debug the code):

[0067] 1. The microcontroller 100 is placed into a
mode in which the boot memory 125 can be loaded
from the debug computer 1020 (block 1100). In one
example embodiment, this is accomplished by
asserting a high voltage on a MCLR input to the
microcontroller 100 and configuring an RB6 pin and
an RB7 pin to force the microcontroller 100 into a
test mode. In the test mode, additional onboard
memory addresses, such as the test trap vector 1060,
are accessible by the microcontroller 100.

[0068] 2. Communication code, which will allows
communication between the microcontroller 100 and
the debug computer 1010, is loaded into the boot
memory 125 (block 1105).

[0069] 3. Using the communication code, a custom
bootloader provided by the debug computer 1020 is
loaded into the boot memory 125 (block 1110).

[0070] 4. The microcontroller 100 is RESET causing
it to vector to and execute the custom bootloader
(block 1115).

[0071] 5. The user can then modify the program code
stored in external memory using the communication
code and the custom bootloader (block 1120).

[0072] 6. Once external memory has been pro-
grammed, the debug computer 1010 loads the debug
software into the boot memory 125 (block 1125).

[0073] 7. The microcontroller is then RESET and the
microcontroller vectors to and executes the debug
software (block 1130).

[0074] 8. The debug software re-establishes serial
communications with the debug computer 1010 and
then vectors to the code stored in the external
memory (block 1135).

[0075] 9. The debug computer 1010 can use the
debug commands to control and observe the opera-
tion of the device controlled by the microcontroller
(block 1140). An external break (HALT), or an
internal breakpoint will vector the microcontroller
100 back to the debugger stored in the boot memory.

[0076] The cycle of (a) storing a bootloader in the boot
memory 125 to allow the debug computer to program
external memory (block 1145) followed by (b) storing debug

US 2003/0056071 Al

software in the boot memory 125 to allow execution of the
program stored in program memory (block 1150) continues
until the user of the debug computer decides to stop debug-
ging, sets the BKBUG bit to “1,” and RESETS the micro-
controller 100.

[0077] The mechanics of moving the debug code stored in
external memory from external memory into the boot
memory, illustrated in FIG. 12, are very similar to the
mechanics discussed with respect to FIG. 8. A TBLRD
instruction is executed using a location containing the debug
code 1200 in external memory as the source address and the
Work Register 1205 as the destination address. As before,
the TBLRD instruction automatically increments the source
address when it is executed. Consequently, over a series of
TBLRD instructions, the entire debug code is transferred,
one byte at a time, into the Work Register.

[0078] In the next step, the program transfers each instruc-
tion from the Work Register into banks 4 and 5 of the data
memory. The program uses the MOVWF f,a function, which
transfers data from the Work Register into a register having
the address “f.” The address “f” is incremented between
each transfer. Alternatively, the program may use the
MOVFF £, which transfers data from the register £, to the
register f;. In the example shown in FIG. 12, the address of
the register f, is set to be the address of the Work Register
and the address of f; is incremented through the banks 4 and
5 of the data memory (the boot memory 125).

[0079] Once the debug code has been transferred into the
onboard data memory as illustrated in FIG. 12, the location
of the beginning of blocks 4 and 5 of the onboard data
memory when they are addressed as program memory is
stored in the test trap vector 1060, as shown in FIG. 13, and
the microcontroller 100 is reset. The RESET vector causes
the debug code stored in banks 4 and 5 (the boot memory
125) to be executed.

[0080] The procedure for using the boot memory to
execute a program, for example to modify external memory,
is illustrated in FIG. 14. First, the boot memory is config-
ured to be data memory (block 1400). The bootloader
program is then transferred from external memory to the
data RAM (block 1405). The boot memory is then config-
ured to be program memory (block 1410) and the bootloader
in boot memory is executed (block 1415). Alternatively, the
RESET vector could be set to point at the boot memory and
the microcontroller could be reset, which would cause the
bootloader in boot memory to be executed.

[0081] An advantage of the present invention is that a
ROMless device, such as the microcontroller shown in FIG.
1, can provide the ability to adaptively modify external
memory without a customized onboard ROM.

[0082] Another advantage of the present invention is that
the boot memory 125 in the microcontroller 100 can be
loaded quickly using instructions stored in external memory.

[0083] Another advantage of the present invention is that
the same physical memory, the boot memory 125, serves as
both data memory and program memory. This avoids wast-
ing onboard memory space as a program memory when it is
not being used as such.

[0084] Another advantage of the present invention is that
the boot memory 125 can be mapped such that a write to an

Page 18 of 20

Mar. 20, 2003

address normally occupied by internal program memory can
take place externally, which means that the external program
memory can occupy the entire available address range and
all of it can be programmed using the bootloader resident in
the boot memory.

[0085] The invention, therefore, is well adapted to carry
out the objects and attain the ends and advantages men-
tioned, as well as others inherent therein. While the inven-
tion has been depicted, described, and is defined by refer-
ence to exemplary embodiments of the invention, such
references do not imply a limitation on the invention, and no
such limitation is to be inferred. The invention is capable of
considerable modification, alternation, and equivalents in
form and function, as will occur to those ordinarily skilled
in the pertinent arts and having the benefit of this disclosure.
The depicted and described embodiments of the invention
are exemplary only, and are not exhaustive of the scope of
the invention. Consequently, the invention is intended to be
limited only by the spirit and scope of the appended claims,
giving full cognizance to equivalents in all respects.

What is claimed is:

1. A microcontroller, which addresses program memory
separately from data memory, the microcontroller compris-
ing:

a CPU;

a boot memory coupled to the CPU;

a control coupled to the CPU and to the boot memory,
which

in a first state causes the boot memory to be configured as
data memory; and

in a second state causes the boot memory to be configured
as program memory.
2. The microcontroller of claim 1 where the control
includes

a memory control register, the memory control register
comprising

a program enable flag, which

when it has a first value causes the control to be in the
first state; and

when it has a second value causes the control to be in
the second state.
3. The microcontroller of claim 1, further comprising

an external port coupled to the CPU and to the control;
where

the external port is configured as a system bus when (1)
the control is in the first state, and (2) the control is in
the second state and the CPU is accessing an external
memory as data memory; and

the external port is configured as an input/output port
when the control is in the second state and the CPU is
not accessing the external memory as program or data
memory.

4. The microcontroller of claim 1, further comprising

an external port coupled to the control; where

the external port is configured as a system bus when the
boot memory is addressed as data memory; and

US 2003/0056071 Al

the external port is configured as an input/output port
when the boot memory is addressed as program
memory.

5. The microcontroller of claim 1, further comprising

an external port coupled to the control; where

the external port is configured as a system bus when the
boot memory is addressed as data memory and when
the CPU writes to an external memory via the external
port using an instruction that allows writes to program
memory; and

otherwise, the external port is configured as an input/
output port.
6. A microcontroller, which addresses program memory
separately from data memory, the microcontroller compris-
ing:

a control, having a first state and a second state;
a boot memory coupled to the control;
an external port coupled to the control; where

the external port is configured as a system bus when (1)
the control is in the first state and the boot memory is
not addressed, or (2) the control is in the second state
and the external port is used to address an external
memory as program or data memory; and

the external port is configured as an input/output port
when the control is in the second state, the boot
memory is addressed, and the external port is not used
to address the external memory as data memory.

7. The microcontroller of claim 6 where

the boot memory is configured as data memory if the port
control is in the first state; and

the boot memory is configured as program memory if the
port control is in the second state.
8. The microcontroller of claim 6 where

the external port is configured as a system bus when the
CPU writes to an external memory via the external port
using an instruction that allows writes to program
memory.

9. A method for loading a boot memory onboard a
microcontroller, the microcontroller addressing program
memory separately from data memory, the method compris-
ing

configuring the boot memory to be addressed as data
memory unless it is already configured to be addressed
as data memory;

loading a program from an external program memory into
the boot memory;

configuring the boot memory to be addressed as a pro-
gram memory; and

executing the program in the boot memory.

10. The method of claim 9 where loading the program
from the external program memory into the boot memory
comprises

moving a word of the program from external program
memory into a working register by directly addressing
the working register; and

Page 19 of 20

Mar. 20, 2003

moving the word from the working register to a boot
memory location by directly addressing the boot
memory location as a register.

11. The method of claim 9 where the boot memory is
divided into banks, the boot memory is addressable using
offset addressing within the banks, and loading the program
from the external program memory into the boot memory
comprises

moving a word of the program from external program
memory into a working register by directly addressing
the working register; and

moving the word from the working register to the boot
memory by offset addressing the boot memory.
12. The method of claim 9 where configuring the boot
memory to be addressed as data memory includes

setting the state of a control flag.

13. The apparatus of claim 12 where setting the state of
the control flag comprises setting a bit in a memory control
register.

14. An apparatus for booting a microcontroller, which
addresses program memory separately from data memory,
by loading a program from an external program memory
into a boot memory on the microcontroller, the apparatus
comprising

a control coupled to the boot memory, which in a first state
causes the microcontroller to address the boot memory
as data memory, and in a second state causes the
microcontroller to address the boot memory as program
memory; and

a first program stored in the external program memory
which causes the microcontroller to

switch the control to the first state;

transfer a second program from the external program
memory to the boot memory;

switch the control to the second state; and

execute the second program in the boot memory.
15. The apparatus of claim 14 further comprising

an external port coupled to the control, which operates as
a system bus when (1) the control is in the first state, or
(2) the control is in the second state and the CPU is
accessing the external program memory as program or
data memory, and which operates as an input/output
port when the control is in the second state and the CPU
is not accessing the external program memory as pro-
gram or data memory.

16. The apparatus of claim 15 where

the first program causes the microcontroller to transfer the
second program from the external program memory to
the boot memory via the external port; and

the second program causes the microcontroller to use the
external port as an input/output port and as a system
bus.

17. A method for using a microcontroller, which addresses
program memory separately from data memory and which
includes a boot memory, to debug software stored in an
external memory, the method comprising

repeating the following until the debug process is com-
plete:

US 2003/0056071 Al

loading communication software into the boot
memory;

loading a bootloader into the boot memory;

executing the communication software and the boot-
loader;

modifying the software stored in the external memory
through the communications software and the boot-
loader;

loading debug software into the boot memory;

executing the debug software and the communication
software;

executing the software stored in the external memory;
and

stopping execution of the software stored in the exter-
nal memory.
18. The method of claim 17 where loading communica-
tion software into the boot memory includes

converting the boot memory so that it is addressed by the
microcontroller as data memory unless the boot
memory is already addressed as data memory;

loading the communication software into the boot
memory; and

converting the boot memory so that it is addressed by the
microcontroller as program memory.

Page 20 of 20

Mar. 20, 2003

19. A microcontroller, comprising

a CPU;

program address and data busses coupled to the CPU;
data address and data busses coupled to the CPU;
input/output busses coupled to the CPU;

an onboard RAM comprising a boot RAM;

a memory selector, coupled to the program address and
data busses, the data address and data busses and the
boot RAM, which can be actuated to select whether the
boot RAM is addressed by the program address and
data busses or the data address and data busses;

an external interface;

an output port selector, coupled to the program address
and data busses, the input/output busses and the exter-
nal interface, which can be actuated to select the
program address and data busses or the input/output
busses to couple to the external interface;

a memory control coupled to the CPU for actuating the
memory selector; and

an output port control coupled to the CPU for actuating
the output port selector.

