
INTEL - 1012

United States Patent [19J

DeHon et al.

[54] DPGA-COUPLED MICROPROCESSORS

[75] Inventors: Andre DeHon, Cambridge; Michael
Bolotski, Somerville; Thomas F.
Knight, Jr., Belmont, all of Mass.

[73] Assignee: Massachusetts Institute of
Technology, Cambridge, Mass.

[21] Appl. No.: 08/471,836

[22] Filed: Jun. 6, 1995

Related U.S. Application Data

[63] Continuation-in-part of application No. 08/426,524, Apr. 10,
1995, abandoned, which is a continuation-in-part of appli­
cation No. 08/388,230, Feb. 10, 1995, abandoned.

[51] Int. Cl.7 .. G06F 15/00
[52] U.S. Cl. 712/43; 712/43; 712/229
[58] Field of Search 395/800.37, 800.36,

395/800.41, 800.42, 800.43, 384; 712/32,
36,41, 42, 43,208,729

[56] References Cited

U.S. PATENT DOCUMENTS

4,336,601 6/1982 Tanaka 364/900
4,354,228 10/1982 Moore et al. 364/200
4,493,029 1/1985 Thierbach 364/200

(List continued on next page.)

OIBER PUBLICATIONS

DeHon, Notes on Coupling Processors with Reconfigurable
Logic, Mar. 1995.
Estrin et al. "Parallel Processing in a Restructurable Com­
puter", 1963.
Estrin et al. "Automatic Assignment of Computations in a
Variable Structure Computer", 1963.
Wittis "One Chip: An FPGA Processor With Reconfigurable
Logic", 1995.

G. Estrin, et al., "Automatic Assignment of Computations in
a Variable Structure Computer System," IEEE Transactions
on Electronic Computers, pp. 755-773 (1963).

10

FIXED
LOGIC

1Jl

i-CACHE
1§

D-CACHE
gg

I 1111111111111111 11111 1111111111 lllll lllll 111111111111111 111111111111111111
US006052773A

[11] Patent Number:

[45] Date of Patent:

6,052,773
Apr.18,2000

G. Estrin, et al., "Parallel Processing in a Restructurable
Computer System," IEEE Transactions on Electronic Com­
puters, pp. 747-755.
Hadley, J.D., et al., "Design Methodologies for Partially
Reconfigured Systems," IEEE Symposium on FPGAs for
Custom Computing Machines, FCCM '95, Napa, CA, (Apr.
19-Apr. 21, 1995).
Razdan, R., "PRISC: Programmable Reduced Instruction
Set Computers", doctoral thesis, Harvard University, Cam­
bridge, Massachusetts (May 1994).

(List continued on next page.)

Primary Examiner-Larry D. Donaghue
Attorney, Agent, or Firm-Hamilton, Brook, Smith &
Reynolds, P.C.

[57] ABSTRACT

A single chip microprocessor or memory device has repro­
grammable characteristics according to the invention. In the
case of the microprocessor, a fixed processing cell is pro­
vided as is common to perform logic calculations. A portion
of the chip silicon real-estate, however, is dedicated a
programmable gate array. This feature enables application­
specific configurations to allow adaptation to the particular
time-changing demands of the microprocessor and provide
the functionality required to best serve those demands. This
yields application acceleration and in system-specific func­
tions. In other cases the configurable logic acts as network
interface, which allows the same basic processor design to
function in any environment to which the interface can
adapt.

The invention also concerns a memory device having a
plurality of memory banks and configurable logic units
associated with the memory banks. An interconnect is pro­
vided to enable communication between the configurable
logic units. These features lessen the impact of the data
bottle-neck associated with bus communications, since the
processing capability is moved to the memory in the form
programmable logic, which can be configured to the needs
of the specific application. The inherently large on-chip
bandwidth can then be utilized to increase the speed at which
bulk data is processed.

22 Claims, 30 Drawing Sheets

CONFIGURABLE
ARRAY

100a

INTEL - 1012

6,052,773
Page 2

U.S. PATENT DOCUMENTS

4,594,661 6/1986 Moore et al. 364/200
4,700,187 10/1987 Furtek 340/825.83
4,748,585 5/1988 Chiarulli et al. 364/900
4,771,285 9/1988 Agrawal et al. 340/825.83
4,791,602 12/1988 Resnick 364/900
4,870,302 9/1989 Freeman 307/465
4,879,688 11/1989 Turner et al. 365/201
4,918,440 4/1990 Furtek 340/825.83
4,969,121 11/1990 Chan et al. 364/900
4,992,933 2/1991 Taylor 364/200
5,019,736 5/1991 Furtek 307/465
5,027,315 6/1991 Agrawal et al. 364/900
5,038,386 8/1991 Li .. 382/49
5,081,375 1/1992 Pickett et al. 307/465
5,301,344 4/1994 Kolchinsky 395/800
5,315,178 5/1994 Snider 307/465
5,336,950 8/1994 Popli et al. 307/465
5,352,940 10/1994 Watson 307/465
5,361,373 11/1994 Gilson 395/800
5,379,382 1/1995 Work et al. 395/275
5,426,378 6/1995 Ong ... 326/39
5,737,631 4/1998 Trimberger 395/800.37
5,742,180 4/1998 DeHon et al. 326/40
5,748,979 5/1998 Trimberger 395/800.37
5,752,035 5/1998 Trimberger 395/705

OIBER PUBLICATIONS

Wirthlin, M.J., et al., "A Dynamic Instruction Set Com­
puter," IEEE Symposium on FPGAs for Custom Computing
Machines, FCCM '95, Napa, CA, (Apr. 19-Apr. 21, 1995).
Bolotski, M., et al., "Unifying FPGAs and SIMD Arrays,"
2nd International ACM/SIGDA Workshop on FPGAs, Ber­
keley, CA (Feb. 13-15, 1994). *For information regarding
reference, see Information Disclosure Statement.
Elliott, D.G., "Computational Ram: A Memory-SIMD
Hybrid and its Application to DSP," The Proceedings of the
Custom Integrated Circuits Conference, pp. 30.6 1-4 (May
3-6, 1992).
Jones, D, et al., "A Time-Multiplexed FPGA for Logic
Emulation," University of Toronto, to appear in CICC, pp.
1-20 (May, 1995).
Wang, Q, et al., "An Array Architecture for Reconfigurable
Datapaths," More FPGAs, W R Moore & W Luk (eds.),
Abingdon EE&CS Books (Oxford OX2 8HR, UK), pp.
35-46 (1994).
Athanas, P.M., "An Adaptive Machine Architecture and
Compiler for Dynamic Processor Reconfiguration," Doc­
tor's Thesis, Division of Engineering at Brown University,
(1992).

Lemoine, E., et al., "Run Time Reconfiguration ofFPGAfor
Scanning Genomic DataBases," IEEE Symposium on
FPGAs for Custom Computing Machines, FCCM '95, Napa,
CA, (Apr. 19-Apr. 21, 1995).

Jones, C., et al., "Issues in Wireless Video Coding Using
Run-Time-Reconfigurable FPGAs," IEEE Symposium on
FPGAs for Custom Computing Machines, FCCM '95, Napa,
CA, (Apr. 19-Apr. 21, 1995).

Li, J., et al., "Routability Improvement Using Dynamic
Interconnect Architecture," IEEE Symposium on FPGAs for
Custom Computing Machines, FCCM '95, Napa, CA, (Apr.
19-Apr. 21, 1995).

Chen, D.C., et al., "A Reconfigurable Multiprocessor IC for
Rapid Prototyping of Algorithmic-Specific High-Speed
DSP Data Paths," IEEE Journal of Solid-State Circuits,
27(12):1895-1904 (Dec., 1992).

Denneau, M.M., "The Yorktown Simulation Engine," IEEE
19th Design Automation Conference, pp. 55-59 (1982).

Razdan, R., et al., "A High Performance Microarchitecture
with Hardware-Programmable Functional Units," Micro-27
Proceedings of the 27th Annual International Symposium on
Microarchitecture, San Jose, California, pp. 172-180 (Nov.
30---Dec. 2, 1994).

Ling, X.P., "WASMII: A Data Driven Computer on a Virtual
Hardware," Keio University, Yokohama, Japan, pp. 1-10.
(Apr. 5-7, 1993), FCCM '93, Napa, CA

Bhat, N.B., "Performance-Oriented Fully Routable
Dynamic Architecture for a Field Programmable Logic
Device," Memorandum No. UCB/ERL M93/42, University
of California, Berkeley (Jun. 1, 1993).

DeHon, A., et al., "DPGA-Coupled Microprocessors: Com­
modity ICs for the Early 21st Century," IEEE Workshop on
FPGAs for Custom Computing Machines, Napa, CA (Apr.
10---13, 1994). *For additional information regarding refer­
ence, see information Disclosure Statement.

Fried, J., et al., "NAP (No ALU Processor) The Great
Communicator," IEEE, 2649(2):383-389 (1988).

Yeung, AK., "A 2.4 GOPS Reconfigurable Data-Driven
Multiprocessor IC for DSP," Dept. of EECS, University of
California, Berkeley, pp. 1-14, (Feb. 14, 1995) ISSCC '95,
pp. 108-109.

Hawley, D., "Advanced PLD Architectures," In FPGAs, W
R Moore & W Luk (eds.) (UK: Abingdon EE&CS Books),
pp. 11-23 (1991).

INTEL - 1012

U.S. Patent Apr.18, 2000

\

>-
<(
a:
((
<(

w
.....J

co 01 I!)

<(0
a: T"""

::::>
CJ
LL
z
0
0

T"""

T"""

Sheet 1 of 30

>­a:
a_ <(
-0 Iz
0::::,

0 co

(9 u.:
LL ((N z w T"""

0 I-Oz

""'" T"""

a:
0
(/)J
(/)J Ww
gool a: w T"""

a_ a:
00 wO
X
LL

6,052,773

Cf)
T"""

,--
.

(!)

LL

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 2 of 30

~I a:
co w
C\J rw
I.{) en _J --
~ (9 LL
C\J w
I.{) a:

0 co
,- ,-

rl_ __________ I.{) - -

I

C\J
C\J
I.{)

0
C\J
I.{)

1 a: ~11---+--+-f---'--..i
: w I.{)

: rw
,----- en _J

I
I
I
I
I
I
I
I
I
I

(9 LL
w
a:

~---------------------------------

::::, C\J I _J ,-
<CI.{)

6,052,773

(()
,--

.
(!)

LL

<(
,--

.
(!)

LL

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 3 of 30 6,052,773

::::> 'q"
LL ,-

0 a_ l.{)

0 a: ,-
l.{)

w ,--
~ w • (f'J _J (9 --(!) LL -w ,-

LL a: C\J ::::> C\J l.{)
_J,-
<(LO

INTEL - 1012

d .
r:JJ. .

nw x data_width

REGISTER FILE
nr - read ports 510 nw - write ports

nr x data_width

CONCENTRATOR: nresult -> nw 530

FIG. 1 D

INTEL - 1012

nr - read ports

nw x data_width

REGISTER FILE
510 nw - write ports

nr x data_ width

EXPANDER: nr -> nsrc 528

CONCENTRATOR: nresult -> nw 530

FIG. 1 E

d .
r:JJ. .

•••

INTEL - 1012

nr - read ports

nw x data_ width

REGISTER FILE
510 nw - write ports

nr x data_width

EXPANDER: nr -> nsrc 528

CONCENTRATOR: nresult -> nw 530

FIG. 1 F

•••

536

PROCESSOR
1/0 PADS

d .
r:JJ. .

INTEL - 1012

nr - read ports

nw x data_width

REGISTER FILE
510 nw - write ports

nr x data_ width

EXPANDER: nr -> nsrc
536

_.__,,__.___ __ ...l.....l..r-F===:::!::::!::::=f_~_~.i~PROCESSOR
1/0 PADS

CONCENTRATOR: nresult -> nw 530

FIG. 1 G

d .
r:JJ. .

INTEL - 1012

U.S. Patent Apr.18, 2000

~ ~I
a:
w
1-
(f)

CD
w
a:

C\J
~
I.!')

Sheet 8 of 30 6,052,773

a:
Q.....J
cnO
(f) a: -stl w I-~ (.) z I.!')

oo a:o
a_

0
~
I.!')

+-'

+-' ::s ::s en
Cl. (])
C l,,_

I I
(])
l,,_

-0 +-' I co (])
(]) l,,_

l,,_ .,-
.

CJ
LL

::) C\JIJ -r-
<(I.!')

INTEL - 1012

U.S. Patent

,....

\

w
I
0 <01 <C ,....
0

I ·~

0 ,....

Apr.18, 2000

w
.....J
Ill
<C >-
a: <C col :::) a: 0
CJ a: 0 - ,....
LL <(
z
0
0

LL01 a:(\J

oo w-
~I X CJ

-0
LLJ

Sheet 9 of 30 6,052,773

(j)
C\J

•

CJ CJ w
a: LL

w
I
o (\JI <C (\J

Q_ 0
I

~ 0
0
0

INTEL - 1012

nw x data_width

REGISTER FILE

nr - read ports 510 nw - write ports

nr x data_width

•••
CONCENTRATOR: nresult -> nw 530

FIG. 2A

MISPREDICTED BRANCH
DATA_MISS -
INSTRU MISS
TLB_MISS

PROCESSOR 536
1/0 PADS

548
STALL PIPELINE
BRANCH TO EXCEPTION
COMPLETE OP
INHIBIT WRITE
FLUSH_=-PIPELINE

d .
r:JJ. .

IN
TEL - 1012

100a

PC 552

I-CACHE
16

554

ARG RECONFIGURABLE
DECODER BREG

.____ AS RC

L-------f+---. BS RC
L-------1~ ALU_ OP

L__----1+--.- WRITEBACK
L__------;~DsT

FIG. 2B

• •
•

100a

PC 552

I-CACHE
16

L---~ AR EG
....._-------1~ BR EG

L--------++-~ DST

RECONFIGURABLE
DECODER 554

.___-ASRC
'------+~ BS RC

L-------1~ALU_OP
1.....-------~ WRITEBACK

FIG. 2C
•
•
•

d .
r:JJ. .

INTEL - 1012

NEXT
INSTR

.------

534

PROCESSOR
CONTROL

544 NEXT PC

nw x data_ width

REGISTER FILE
nr - read ports 510 nw - write ports

•••
CONCENTRATOR: nresult -> nw

FIG. 2D

559

PROCESSOR
1/0 PADS

d .
r:JJ. .

INTEL - 1012

U.S. Patent Apr.18, 2000

I-
()
w
z
z
0
()
a:
w
I-z
w
_J

co
<(
a:
:)

CJ
u::
z
0
()
w
a:

a:
0 Cf)
Cf) 0
Cf) <(
w a..
()0 o_
a: -
0...

,-

E
C:

~

0

~

Sheet 13 of 30 6,052,773

w
C\I

(!)

LL

co
LO
LO

co
LO
LO

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 14 of 30 6,052,773

570

Memory

,____

G
Array RF Configurable -~<---1

G FU

ooa

100d 570

Memory

FIG. 2F

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 15 of 30 6,052,773

RECONFIGATION NETWORK INTERFACE

FIXED PROCESSOR
CORE CELL

10

FIG. 3

100c

DATA

DATA

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 16 of 30 6,052,773

0
T"""

_J
_J

w
0
a:
0 co
Cl) 0
Cf) L!) w

<(_J w co
0 I- 0 <(<(ca 0 0 a: I- ::::::
a: ::)- 0 a_ Cl)
a_ a: c:,Z

g1 I - ::) •

0 0 LLQ <(0 CJ I- 0 z- I

Cf) <(o- LL
LL LL w _J 0 0 (f) I- w _J

Cf) 0 a: I-
::) 0
co
a_

I
0

I z
0

0
T"""

_J
_J T"""

w \ 0
a:
0
Cf)
(f)
w (9 0
0

LL(.) '-'I 0 a: Zc:,o I- 0 <(a_ o 0 o Cf)
::::::

0
0 T""" - a_ Cl) w....J 0

I- co a: _J (\JI I •

(f) 0 og <(0 CJ w L!) I

<(w LL
Cl) I- X LL LL Cf)

a: <(LL 0
::) 0 co 0 _J

a_ 0
_J a:

<(I-
I a: 0
0 I-

I 0 z
0

INTEL - 1012

U.S. Patent Apr.18, 2000

l

>- ~

a: ~

001
~ co
w
~

Cf)
w

Cf) 0 w a: Cf) :::,
Cf) co
:::, 0 0
cc LO Cf)

a.. <(z
- I- a.. I <(
(.) 0 a: 0 I ::::::::: z 0
0 0 X

<(.....J :::,
a: ~
I-
0

co
0
LO

Sheet 17 of 30

~ -

CJ I-

w
.....J
cc

"O
0
0

'T
I

~(.)
:::, CJ
CJo
LLJ
z
0
(.)

LL -z z ()
o=>8
OOT-w:::::::::
a:

0
:::::::::

0
w
X
LL

N
0
LO

Cf)
w
0
a:
:::,
0
Cf)

z
a..
0
:::::::::

X
:::,
~

~
0
LO

6,052,773

•

CJ
LL

0 () 0 :::::::::

a.. Cl)

<(I .
0 CJ I

LL
LL LLJ 0 a:

I-
0

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 18 of 30 6,052,773

A3 -C

C

C

C

A2

A1

AO

1a \

MEMORY MEMORY MEMORY MEMORY
BANK BANK BANK BANK

564 lt 564 lt 564 lt 566 564 lt
57~PROG.I -

- I I - I I .\ _I• I :l
1PROG.1_ 1PROG. _11 1PROG.

562 BLOCK1 578 1BLOCK1 1BLOCK V IBLOCK
I J ---1 J~ "562 562 I I \

578 11 562
--.. /

IT I 7 LJ"' M3
1~ T M2

M3 c-\
MEMORY MEMORY MEMORY MEMORY 566

BANK BANK BANK BANK

564 lt
' 564 lt ' 564 lt 1,, 5641t ,.

~• I
- I ' I - I 'I I - I ' I

PROG.1 _ 1PROG.L 1PROG. _ 1PROG.
562 BLOCK1 - 562 __.-,1~LOCK1

562
~,i ~LOCK - 1BLOCK

I
M3 r~

I 562
...__,_, : ::ffl~~ I M3 I

MEMORY MEMORY MEMORY MEMORY
BANK BANK BANK BANK

564 lt 562
564 lt 562

564 lt , sr52 564 lt 1
5/62

,r (. (I

I " I
~ I " I ~1 fl I ~I f I

PROG.I~ - 1PROG.L - I PROG.1 -IPROG.
BLOCKI~ 1BLOCKI~ IBLOCK1- IBLOCK

I I J~ I l I J~
I I ~, r(~M3 ----M1

I L.......J

M3

MEMORY MEMORY MEMORY MEMORY
BANK BANK BANK BANK

564 lt ' 564 lt ,, 564 lt 1
5,,62 564 lt 11, 5r52

562 PROG.I~ ~" I

BLOCK•-
I

I I

1',/
I

M3

I
y I I r I

-IPROG.I_ - IPROG.
562 J BLOCKI - IBLOCK

I I

-
I

~11
MO

' MEMORY
OUTPUT

I r I

-IPROG. - IBLOCK
I

I I

~M3

FIG. 5

INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 19 of 30 6,052,773

I-
0
w
z
z
0
0 (0

a: (0

w
l{)

I-z
+
X

I-
0
w 0 z co <C 0 z l{)

I- a: z -.;t
0 <CO- [o om I- Os a:C.0
wl{) 0
I- w <(z z

z l.{)
+ . ::::s::: I O (0

CJ o C\JI >- 0 (0
•

>- Oom a: l{) (!)
a:J l{)

w ---- LL (f) a.. co I- 0
(f) co z <C @s co W© a: l{) ~~"I ~ 0 9-t----0---. <CZ <O 0 s I- l{) 0 a: <C l{) <C 0 ::> 0 CO 0 0 s f'-.. a: l{)

0 0
a: s~

I- ::::s::: l{)

0 z
w <C
z co
z
Oco
0 c.o a: l{)

w
I-z

I

X

INTEL - 1012

d .
r:JJ. .

AE

PROGRAMMABLE
INTERCONNECT AE

BANK WORD 576 w •
DATA WORD IN 574 w •

X+IN wx •
X- IN wx

566
Y+IN wy AE

Y- IN wy

w DATA WORD OUT 578 t----+--------
w --..:;.a._ ____ DATA WORD WRITEBACK 580

566
wx t----+--------X+

I-+-~------ X- 566
1--+-____,_ ______ v+
11-+----L-----Y-

FIG. 5B

INTEL - 1012

U.S. Patent

0

~\

(/)
0
<t:
a..
f-z ::J

0 a..
f­
::J

8
::J
a..
z

Apr.18, 2000

j:::: 5 (/)
::J a.. 0
a.. I-<(
z ::J a.. -o

_1-
f- ::J (/)
::J a.. 0
a.. I- <(
z ::J a.. -o

w
0

$
0

Sheet 21 of 30 6,052,773

(/)
0

~ (0
f- (/) .
ii Q (!)
f- LL
::J

8
::J
a..
z

INTEL - 1012

:------ ---------------------------,
I
I
I
I
I

L1----l ~,---....1 CID

AE-,._

IL

LIB1

LIM1

LIB2

LIM2

LIB3

LIM3

LIM4

CID I

CID

I
I
I
I
I
I
I

L---------------------------------------1

FIG. 7A

r-- --------------------------7

4 X 16 BIT MEMORY BLOCK

CMA1

CMA2

CMA4

16

16:1
MUX

LEM

EO CID

D
FLIP
FLOP

CID

-CM

CLK OFF

I
I
I
I
I
I
I
I
I
I

f-OS
I
I
I
I
I

~---:

d .
r:JJ. .

INTEL - 1012

GLOBAL1

3

5

7

LOCAL 2

4

6

8

2

4

6
8
3

7

I) (DI) I) CD c D1) t <DI) ID I) (J () <D I) <D c) CDI l CD c) <D I) I) I) I) D <D t I) ()

~ MUX /4 8:1 LIM 1 ~ MUX /4
8:1 LIM 2 ~ MUX /4

8:1 LIM 3
~ MUX/

8:1 \

DRAM-OUT
u ~; ~,) u LIM 4

0 o DRAM-OUT 3 c1> DRAM-OUT 23 ct, DRAM-OUT 26 I)

1- 4- 24- 27
3- 5- 25,- 28-

DRAM-OUT

El1-4~) I) -
SELF-

--.'I-: -

~~~ 21 ¼~ OFF 
20- -----e- D Q re-

19 18- REGISTER ~M 17 -e---1> CLK 
- ~4-

16- ~ 
15 MUX MUX ,~ 

~ LOCAL 13 14- ~ - ~ 
16:1 ~ \ - 2:1 µ 

~ ~ -
11 12- OE 

10-
DRAM-OUT22 '----G---~ o LOCAL 5 

9 "" 7 
8-

/LEM 122 
6- FIG. 78 

d . 
r:JJ. . 

'JJ. 

=-~ 
~ .... 
N 
~ 

0 ...., 
~ 
0 

1 

0--, 
'-a = Ul 
N 

'-a 

.....:a 

.....:a 
~ 



INTEL - 1012

U.S. Patent Apr.18, 2000 

\._ 

0 
Ct) 

LO 
C\l 

0 
C\l 

LO 

0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
IU IC >U 
0 IC >O 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

>O :c >IC 
IC >IC > CJ 
0 0 0 
0 0 0 

Sheet 24 of 30 6,052,773 

0 
0 
0 __. 

~ 

0 
0 
0 
0 
0 
0 
0 
0 
10 
0 
0 
0 
0 
0 
0 

• 

(!) 
0 LL 
0 
0 
0 
C> 
C > 

0 
0 
0 
0 
0 
u 
0 
0 



INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 25 of 30 6,052,773 

EWV 

MC 

EWE CLK 

WV DRAM-CELL RV 

WE0 WE 1 RE RE0 

WV DRAM-CELL RV 

WE1 WE 2 RE RE1 

WV DRAM-CELL RV 

WE2 WE 3 RE RE2 

WV DRAM-CELL RV 

WE3 WE 4 RE RE3 

IWE 

WE4 
\ 
110 

DRAM-OUT 

FIG. 7D 



INTEL - 1012

U.S. Patent 

WRITEVALUE 

WRITEENABLE 

Apr.18, 2000 Sheet 26 of 30 

DRAM-CELL 

CHARGE 
STORAGE T2 

FIG. 7E 

------, 
,--------,, I ,--------,, 

r - - -

I 

L------

FIG. 8A 

6,052,773 

READVALUE 

READ ENABLE 

SA 
{ 



INTEL - 1012

U.S. Patent Apr.18, 2000 

CV) 
(I) 

~ 

C\J 
(I) 

~ 

0 
CV) 
T""" 

OT""" C\J cry 

wwww 
a:a:a:a: 

>­a: 
0 
~ w 
~ 

>-a: 
0 
~ w 
~ 

>-a: 
0 
~ 
w 
~ 

>­a: 
0 
~ 
w 
~ 

w 
0 
0 
() 
w 
0 

Sheet 27 of 30 

0 
() 

LL 
I'--

• 

(!J 
LL 

6,052,773 



INTEL - 1012

U.S. Patent Apr.18, 2000 Sheet 28 of 30 

8 GLOBAL 
INPUTS 
FROM 

SOUTH 

FIG. 8B 

6,052,773 

(SA 



INTEL - 1012

U.S. Patent 

z 
co 
0 

Apr.18, 2000 

s co 
0 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

-co z .__, 

Sheet 29 of 30 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

(0 
T"" 

w 
<( 

w 
<( 

w 
<( 

w 
<( 

6,052,773 

<( 
0) 

. 
CJ 
LL 



INTEL - 1012

16 
L2B1 L2B2 

CID L2M1 

16 
L2B3 

MEMOR 

4 

L2M2 

SA1 

16 16 
L2B4 L2B5 

MEMOR MEMOR 

SA2 

FIG. 9B 

16 16 
L2B6 

MEMOR 

1 CBOUT,IN 

L2B7 

MEMOR 

4 

L2M6 

16 
L2B8 

MEMOR 

4 

L2M7 

d . 
r:JJ. . 

16 

L2M8 



INTEL - 1012

6,052,773 
1 

DPGA-COUPLED MICROPROCESSORS 

RELATED APPLICATIONS 

This is a Continuation-in-Part of application of U.S. 
patent application Ser. No. 08/426,524, filed Apr. 10, 1995, 
abandoned which is a Continuation-in-Part application of 
U.S. patent application Ser. No. 08/388,230, filed Feb. 10, 
1995 abandoned and is related to U.S. Ser. No. 08/386,851, 
filed on Feb. 10, 1995, all of which are incorporated herein 

10 
by this reference. 

GOVERNMENT SUPPORT 

2 
functional units can be arranged to provide almost propor­
tional improvements. Each application class, however, 
requires a different selection and arrangement of units to 
achieve such improvements. Any fixed collection of func­
tional units control, and data paths will necessarily be 
sub-optimal for most applications. Moreover, any special­
ization must be balanced against market size to maintain 
commodity economics. The danger is that over-
specialization will reduce the market base. 

In the present invention, a microprocessor includes a fixed 
logic processor as is common to perform logic calculations. 
A portion of the chip silicon real-estate, however, is dedi­
cated to a programmable gate array. This feature enables 
application-specific configurations. The gate array is con-The invention described herein was supported in whole or 

in part by Grant Nos. N00014-91-5-1698 and DABT63-92-
C-0093 from the Advanced Research and Programs Admin­
istration (ARPA). 

BACKGROUND OF THE INVENTION 

15 figurable to adapt to the particular time-changing demands 
of the microprocessor to provide the functionality required 
to best serve those demands. This yields application accel­
eration and in-system-specific functions. As a result, the 

Semiconductor processing has continued to improve 20 

steadily, allowing the fabrication of smaller and smaller 
devices. This trend shows little signs of abating. 

inventive microprocessor can serve as the principle building 
block for a wide range of applications including personal 
computers, embedded systems, application-specific 
computers, and general and special-purpose 
multiprocessors, but operate at speeds only achievable if the 
device were specifically designed for the applications. 

In specific implementations, the programmable gate array 
is configurable by the processor rather than some off-chip 
configurer. This capitalizes on the inherently high bandwidth 
that is available on-chip, allowing fast configurations and 

30 :~~~t~:e~1n:s:~.e I~l:~:~e p~~sl~~/;:~~:t t~a:et~~~ 

Effective device densities and integrated circuit (IC) 
capacity improve at an exponential rate. Presently, micro­
processor operational performance increases by roughly 25 

60% per year while the number of gates increases by 25% 
per year. Three million gates are available for current 
microprocessors and over 12 million gates is expected by the 
end of the century. 

As gate densities have improved, more of the computing 
system has been integrated onto the microprocessor die and 
larger processors have been implemented. What started as 
minimal instruction stream control and a simple, 4-bit, ALU 
has grown with the available area to include multiple 64-bit 
functional units including hardwired floating-point support. 
The basic microprocessor design has expanded to include 
large, on-chip memories to prevent off-chip input and output 
(i/o) latency from significantly degrading performance, 
thereby increasing instruction throughput. Today's high-

40 
performance microprocessors move towards higher execu­
tion rates using aggressive pipelining and superscalar execu­
tion utilizing multiple functional units. Cost consciousness 
motivates the integration of the common system and periph­
eral functions onto the IC die to reduce system cost and 

45 

programmable gate array is configurable to operate as a 
function unit of the microprocessor. For example, it could 
operate as a multi-precision ALU, modulo ALU or special 

35 
purpose Huffman encoder depending upon demand. 

In other implementations, latency may be an issue. Since 
the configuration programmed into the programmable gate 
array will determine the speed of its operation, control 
signals may be necessary to coordinate on-chip communi­
cation between the gate array and the processor. Specifically, 
a ready-result signal is used to indicate that the program-

power consumption. 

On a different front, reconfigurable logic has emerged as 

mable gate array has concluded calculations on data 
received from the processor. In addition, a ready-input signal 
is sometimes helpful to indicate that the programmable gate 
array is ready to receive new data from the processor. 

In still other implementations, the programmable gate 
array is deployed to operate in close cooperation with a 
cache of the microprocessor to transform logic signals either 
being read from or written to the cache. Specifically, in the 

50 case of an instruction-cache, the programmable gate array 
cooperates with this cache to convert instructions to a new 
format that is compatible with the processor. 

a commodity technology comparable to memories and 
microprocessors. Like memories, reconfigurable logic 
arrays rapidly adapt to new technology since the design 
consists of an array of simple structures. Also like memory, 
the regularity allows designers to focus on adapting the key 
logic structures to extract the highest performance from the 
available technology. Each reconfigurable array can be 
designed and tested in a single IC design yet gains volume 55 
from the myriad of diverse applications to which the 
general-purpose array is applied. 

SUMMARY OF THE INVENTION 

As trends continue, microprocessors will include more 
memory, more floating point units (FPUs), more arithmetic 
logic units (ALUs), and more system functionality, but it is 
not clear this will be the most judicious use of the silicon 
real-estate becoming available in the near future. Addition of 
fixed functional units will not bring about broad-based 
acceleration of applications in proportion to the area these 
fixed units consume. For a given application, the fixed 

In further implementations, the microprocessor has an 
expander, a concentrator, and at least one memory unit 
receiving addresses and data from the expander and provid­
ing data to the concentrator. The memory is deployable as 
instruction and data caches or an explicit scratch pad 
memory, for example. 

According to another aspect, the invention concerns a 
60 microprocessor having a configurable network interface. 

Such a device includes a processor for performing logic 
calculations in response to input data and instructions and a 
configurable input/output interface for the processor. This 
allows the same basic processor design to function in any 

65 environment to which the interface can adapt. As a result, 
during design and development, the microprocessor can be 
completed when incomplete information is available about 



INTEL - 1012

6,052,773 
3 

the bus to which it will connect, for example. Alternatively, 
the same microprocessor can be deployed in a range of 
products with different bus and peripheral features to extend 
its product life time. 

In specific implementations, the configurable interface is 
connected to address and data lines of on-chip buses of the 
processor and input/output pads for off-chip communica­
tions. If a hardwired load and store unit is also used, a 
multiplexor can selectively connect address and data lines of 
on-chip buses either to the load and store unit directly or the 

10 
reconfigurable input/output interface. 

4 
FIG. lD shows an implementation in which the PFU's are 

connected in parallel with other functional units such as 
fixed processing units (FPU's) and ALU's between an 
expander 528 and a concentrator 530; 

FIG. lE shows another implementation in which the 
multiple PFU's have been replaced with a single large PFU 
532; 

FIG. lF shows an implementation in which the PFU logic 
532 subsumes the load and store unit (LD/ST) 538 of the 
processor; 

FIG. lG shows another implementation in which the PFU 
logic 532 is connected in parallel with the LD/ST 538 to the 
i/o pads; 

FIG. lH shows a PFU 514 generating two control signals 
that indicate when a logic calculation is complete and when 
the PFU is ready for a new input; 

FIG. 2 is a block diagram of a microprocessor with 
reconfigurable array to directly access data in functional 

20 units such as registers, caches, and ALU's of the core 

According to still another aspect, the invention also 
concerns a memory device. As with most such devices, a 
plurality of memory banks are provided each comprising an 
array of memory cells. In the present invention, however, 15 
configurable logic units are associated with the memory 
banks and an interconnect is provided to enable communi­
cation between the configurable logic units. These features 
increase the speed at which data processing can take place. 
Typically, the processing is performed by the microproces­
sor and data storage is performed at the memory with a bus 
interconnecting the two devices. This bus, however, repre­
sents a data bottle-neck in which communications must be 
serialized and slowed to accommodate the physical extent of 
the bus. In the present invention processing capability is 25 
moved to the memory in the form of programmable logic 
which can be configured to the needs of the specific appli­
cation. With the processing power on the memory device, 
the inherently large on-chip bandwidth can be used to 
increase the speed at which bulk data is processed as 30 
required, for example, in video image processing. 

In specific implementations, bank output multiplexors are 
provided to select between the bank words read from the 
memory banks and the data words generated by the config­
urable logic unit. Bank input multiplexors are helpful for 35 
writing a word to the memory banks from an input to the 
memory device, the bank words from the memory banks or 
the data word generated by the configurable logic unit. 

The above and other features of the invention including 
various novel details of construction and combinations of 40 

parts, and other advantages, will now be more particularly 
described with reference to the accompanying drawings and 
pointed out in the claims. It will be understood that the 
particular method and device embodying the invention is 
shown by way of illustration and not as a limitation of the 45 

invention. The principles and features of this invention may 
be employed in various and numerous embodiments without 
the departing from the scope of the invention. 

processor; 
FIG. 2A is a schematic diagram showing one implemen­

tation for enabling configurable logic to operate as control 
logic for the processor; 

FIG. 2B is a more detailed block diagram showing the 
reconfigurable array 100a serving as a reconfigurable 
decoder for the instruction cache 16; 

FIG. 2C shows a hybrid scheme in which the reconfig­
urable decoder 100a generates only a portion of the instruc­
tions 554; 

FIG. 2D is a schematic diagram of the VLIW processor 
architecture in which configurable memory blocks have 
been added to the collection of processing resources; 

FIG. 2E is another schematic diagram showing an imple­
mentation in which the register file 510 is constructed from 
deployable memory units 558; 

FIG. 2F schematically shows a revised model for a 
computing device in which functional units and memory are 
embedded in configurable array; 

FIG. 3 is a block diagram of a third embodiment of the 
microprocessor of the present invention in which a recon­
figurable network interface is provided to format data for the 
core processor cell and format data from the core cell to the 
surrounding network; 

FIG. 3A is a block diagram of a specific implementation 
of the third embodiment in which configurable logic is 
integrated into the i/o operations; 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the accompanying drawings, reference characters refer 
to the same parts throughout the different views. The draw­
ings are not necessarily to scale; emphasis has instead been 
placed upon illustrating the principles of the invention. Of 
the drawings: 

FIG. 3B is an implementation in which the off-chip i/o is 
50 completely subsumed by the configurable logic 100c; 

FIG. 1 is a block diagram showing the co-location of a 
configurable array 100 with a fixed logic processor core cell 
10 on a single semiconductor chip according to the present 
invention; 

FIG. lA shows a specific implementation of the present 
invention in which a programmable function unit (PFU) 514 
is located with an arithmetic logic unit (ALU) 512 to operate 
on logic values stored in the register file 510; 

FIG. lB shows an alternative implementation in which 
the ALU 512 and the PFU 514 are located in parallel; 

FIG. IC shows another implementation in which the ALU 
512 and PFU 514 share some lines from the register file; 

FIG. 3C shows another implementation which provides 
full configurability but allows the reconfigurable i/o unit 
100c to be by-passed with little speed degradation; 

FIG. 4 is a block diagram of a third embodiment of the 
55 present invention in which a memory device is provided 

with configurable logic; 
FIG. 5 shows a memory device la incorporating finer 

granularity in which a configurable PFU 562 is associated 

60 
with each memory bank 564; 

FIG. SA shows a single memory bank and programmable 
PFU block 562; 

FIG. SB shows the programmable interconnect 566 and 
array element connections AE of the programmable logic 

65 562; 
FIG. 6 is a block diagram of the dynamically program­

mable gate array (DPGA) 100 of the present invention 



INTEL - 1012

6,052,773 
5 

showing the organization of the subarrays SA of array 
elements and the crossbars CB of the interconnect; 

FIG. 7Ais a simplified block diagram of an array element 
(AE) showing the level-one interconnect Ll, the look up 
table CM, and the output selector OS; 

FIG. 7B is a schematic of the AE showing the details of 
the level-one interconnect without the memory block; 

6 
require the higher performance in bursts, but not continually, 
the configurable array 100 can be reconfigured in between 
tasks dynamically during the application execution. 

Alternatively, a separate configurer can be implemented 
either on or off-chip to provide the configuration program­
ming to the array 100. This will allow fast reconfiguration in 
between the bursty usage of the array to enable dynamic 
reconfiguration between different co-processing roles. For 
example, during the initial execution of an application 

FIG. 7C schematically shows the 4-context by 32 column 
memory block MB of an AE; 

FIG. 7D shows an exemplary 4-bit memory column MC 
extracted from the memory block MB of FIG. 7C; 

FIG. 7E shows a three transistor DRAM cell extracted 
from the 4-bit memory column of FIG. 7D; 

10 program, when incoming data is being de-encrypted or 
decompressed, the configurable array can dynamically 
manipulate the incoming data to the processor cell 10. Later, 
when the number-crunching features of the application 

FIG. 7F is a block diagram illustrating four memory 15 

blocks MB of separate AE's sharing a single decoder 130; 

program are executing, the configurable array can be con­
figured as a math co-processor, for example, to perform 
modulo-multiprecision ALU operations or Fast-Fourier 
transform (FF1) or Finite impulse response (FIR) operations 
to list a few examples. 

FIG. SA is a block diagram showing the level-one inter­
connect for distributing local inputs between AE's of an 
exemplary subarray SA; 

FIG. SB is a block diagram showing the interconnect for 
distributing global inputs between the AE's of a subarray 
SA; 

20 ur!~: ~~r~:f ~~i~: ~!:~:!:0~~~~~~ c;i~ fs0 
t~~yt~=a~~~efi~f 

the invention enabling high bandwidth communications 
with a low latency interface. When the configurable array is 
merely attached to a host processor as an external peripheral, FIG. 9A is a block diagram showing two exemplary 

bidirectional crossbars CBW, CBN providing the global 
signals to AE's of a subarray and receiving the sixteen local 
signals from the AE's for distribution to other sub arrays; and 

25 :;u~!f~e o::~~::d l:;~~~t ~: c~md7;::~::ioc:;itt!~;s c~:~ 
avenues for acceleration and prevents close cooperation. 
The low bandwidth similarly makes communication expen­
sive and limits the throughput achievable with the reconfig-FIG. 9B is a block diagram of the internal architecture of 

one of the unidirectional crossbars CBIN. 
30 urable array. 

The integration of the processor core cell 10 and the 
reconfigurable array 100 also decreases reconfiguration 
overhead. As a mere peripheral, the reconfiguration time for 
the array must be amortized over a large amount of pro-

DETAILED DESCRIPTION OF IBE 
PREFERRED EMBODIMENTS 

1. Configurable Logic as attached logic or function unit 

A configurable logic-coupled processor 1 constructed 
according to the principles of the present invention is 
illustrated in FIG. 1. Generally, a fixed processor core cell 10 
is located with a configurable array 100 on the same silicon 
die or chip. The processor core cell 10 is preferably con­
structed as most commonly available complex instruction 
set ( CISC) or reduced instruction set (RISC) architectures. 
Minimally, the processor cell 10 includes an arithmetic logic 
unit (ALU), possibly a fixed processing unit (FPU), register 
files (RF), instruction caches, and data caches. 

35 cessing to justify the array's reconfiguration. Further, a 
single configuration must be generally kept throughout the 
application even if different portions of the application 
might be accelerated with different kinds of specialized 
logic. In contrast, the present invention can be used produc-

40 tively in multi-tasking or time-shared systems. The reduced 
communication overhead enables greater increases in the 
kinds of application-specific specialization, providing sig­
nificant acceleration. Still further, the implementation of a 
dynamically programmable gate array (DPGA) architecture 

45 
facilitates multi-tasking by assigning each task to a different 
context of the array 100. 

In operation, the configurable array 100 initially receives 
configuration programming 14 at power-up or under appli­
cation program control from the processor cell 10. These 
instructions are presented through a configuring interface 
unit 12 that handles buffering, handshaking, and other 
programming protocols. Once the proper configuration has 50 

been programmed into the array 100, the processor cell 10 
feeds input data 11 to and receives the data output 13 from 
the configurable array 100. Control instructions 15, context 
identifiers, are also transmitted from the processor cell 10 to 
the configurable array 100 during the combinational logic 55 

functions. These instruction signals initiate array reconfigu­
rations to finish the computations or switch between multi­
tasking or multi-threading functions, for example. 

The configurable array 100 is employed by the processor 
core cell 10 as a programmable function unit (PFU) for 60 

application-specific acceleration. Each application program 
configures the reconfigurable array in a manner most ben­
eficial to that application. For example, the operating system 
and applications specialize the configurable array to serve as 
a co-processor for compute-intensive functions such as 65 

compression, encryption, signal processing, or protocol pro­
cessing. Since generally these compute-intensive tasks 

On the programming side, efficient deployment of the 
configurable logic as useful PFU's involves native integra­
tion with conventional compiler technology. Generally, sub­
routines should be provided for the configurable array as 
library routines. These routines can then be accessed from 
high-level programming languages. The compiler profiles 
the application and selects the hardware configurations and 
library routines that best accelerate each application. The 
compiler replaces sequences of the instructions on the 
processor's fixed logic with known hardware subroutines as 
potential optimization transforms and evaluates the relative 
merits in a matter similar to conventional compiler trans­
forms. The close integration of the reconfigurable array with 
the processor in some ways supplants the usefulness of 
special purpose architectures as application specific inte­
grated circuits. By including reconfigurable logic in the 
microprocessor, application oriented benefits of architecture 
specialization are combined with the economic benefits of 
commoditization. 

FIG. lAshows one option for integrating the configurable 
logic shown here as a single programmable function unit 



INTEL - 1012

6,052,773 
7 

(PFU) 514 with the traditional RF/ALU 510,512 organiza­
tion of the processor cell 10. The RF ports 516 are shared 
between the ALU 512 and PFU 514 allowing at most one 
result from each functional unit on each cycle and allowing 
at most two operands to be sent to the ALU/PFU 512,514 
combination each cycle. 

8 
as a single PFU 514, is used as shown in FIG. lE. This large 
PFU 532 is provided with np(nsrc pfJ and np(result pfJ 
inputs and outputs. This also give the PFU 532 additional 
flexibility in utilizing its RF read and write bandwidth. 

As shown by FIG. lF, in designs where flexible input/ 
output (i/o) is also desirable, it may be beneficial to merge 
the PFU reconfigurable logic 532 with i/o reconfigurable 
logic. Here, the load/store function is subsumed by recon­
figurable logic 532 in the connection to the i/o pads 536. 

FIG. lB is an alternative configuration which has inde­
pendent read ports 520,522 and write ports 524,526 from the 
register file 510 allowing the ALU 512 and the PFU 514 to 
operate independently and fully in parallel. 10 

FIG. lG shows an alternative implementation in which fixed 
load/store 538 and programmable logic 532 exist in parallel. 

Hybrids between the two extremes shown in FIGS. lA 
and lB are also possible. In FIG. lC, one of three read ports 
521 from register file 510 is shared between the ALU 512 
and PFU 514. This reduces the number of read/write ports 
from the register file 510, relative to the FIG. lB 15 

implementation, and allows the register file 510 to be 
simpler and faster. The number of ports is increased over the 
FIG. lA implementation allowing a larger range of opera­
tions to occur in parallel. 

More complex integration issues arise in the context of 20 

today's high-end microprocessors. These devices generally 
have multiple, fixed processing units (FUP's), exploiting 
parallelism to increase throughput. In these superscalar and 
VLIW configurations, the programmable function unit 
(PFU) takes its place alongside the FPU's. FIG. 1D shows 25 

the general organization of the processing core of such a 
superscalar or VLIW processor constructed according to the 
present invention. FPU's O-(np-l) reside in parallel with more 
conventional functional units such as ALU's o-(na-l) and 
FPU o-(nf-l)· Expander 528 and concentrator 530 blocks 30 

abstract away the large range of datapath sharing which 
could go into an implementation. As with the simpler 
examples of FIGS. lA, 1B and lC, the number of register 
file ports can be conserved by sharing them among func­
tional units at the expense of restricting the options for 35 

parallel operation. 

Timing control issues are created by the addition of the 
configurable logic. Assuming the processor runs at some 
fixed rate independent of the function implemented in the 
PFU, the logic coupling may have to deal with various 
timing situations which are possible in the PFU: 

Single cycle latency, Single cycle throughput-In the 
simplest case the PFU function may operate within the 
standard pipeline clock period of the processor. 

Multiple cycle latency, No new operations while opera-
tion in progress-In some cases the latency of the PFU 
operation may be multiple clock cycles. In the simplest 
multiple cycle case, the processor will not be able to 
issue a new operation until the previous operation 
completes. 

Multiple cycle latency, Single cycle throughput-If the 
programmed function is pipelined, the processor may 
still be able to issue a new operation every cycle. 

n-cycle Latency, Launch every m-cycles-In the general 
case, the processor may be able to launch a new 
operation every m cycles, while the operation com­
pletes n cycles after launched. 

Multiple Latency Function-Sometimes a PFU may 
implement several functions with differing, but predict­
able latencies. 

Variable Latency-Some operations may have data 
dependent latencies. Table 1 summarizes the parameters included in the reg­

ister file 510 and fixed unit datapath shown in FIG. 1D. 

TABLE I 

Most of these cases are handled in the same way analo­
gous cases are already handled in processors. The main 

40 difference is that fixed functional units fall into one of the 

nr RF read ports 
nw RF write ports 
na Number of ALUs 
nf Number of FPUs 
np Number of PFUs 

nsrcalu Number of sources expected into each ALU 
nsrct-pu Number of sources expected into each FPU 
nsrciifu Number of sources expected into each PFU 

nresult,1" Nunber of results generated by each ALU 
nresult,,pu Number of results generated by each FPU 
nresul~ru Number of results generated by each PFU 

nsrc Number of source paths into functional units 
nsrc = nsrcalu · na + nsrcfpu · nf + nsrcpfu · np + 2 

nresult Number of results generated by functional 
units 

nresult = nresultalu · na + nresultrpu · nf + 
nresul~ru · np + 1 

45 

categories which is known at design time, whereas the 
category of the PFU's will depend on the function being 
implemented and hence will not be known until the function 
is configured. 

Predictable delay constraints are schedulable in software. 
That is, the compiler guarantees to only emit code which 
will launch a new operation every m-cycles and expects the 
result of an operation to only be available after m-cycles. 
The compiler will know the PFU function when generating 

50 the code to accompany it, so can arrange code appropriately 
to handle the specifics of a particular PFU. 

As shown in FIG. lH, to support variable times, the 
processor control logic 544 can accommodate ready and 
busy signals from the programmable logic of the PFU 514. 

55 Here, the PFU has a pair of extra signals, one to indicate 
when the result is done (retire_result) 540 and one to 
indicate when the PFU is ready (ready_input) 542 for the 
next operation. These control signals 540, 542 generated 
from the PFU 514 can be customized with each PFU 

The Table assumes a single load/store unit taking in a single 
address-data pair and generating a single data result. Of 
course, multiple load store units with varying input/output 
interfaces are also possible. Note, read port sharing will be 60 

necessary in the expander 528 when nsrc>nr. Similarly, as 
long as nresult>nw, write port sharing will be necessary in 
the concentrator 530. 

configuration. The controller 544 then stalls the pipeline 
when the PFU 514 is not ready for input. Similarly, it can use 
the result completion signal 540 to determine when to 
writeback the result and when to stall dependent computa­
tion. The processor control 544 could, for example, use a It is also worth noting that it is generally better to share 

the logic among PFUs. Consequently, rather than designing 
the processor with independent PFUs as shown in FIG. 1D, 
alternatively one large PFU 532, perhaps np times as large 

65 standard register score-boarding strategy to force the pro­
cessor to stall only when the instruction stream attempts to 
access the PFU result before it is generated. 



INTEL - 1012

6,052,773 
9 

Ready_input 542 is asserted whenever the PFU 514 is 
ready to receive a new input. Retire_result 540 is asserted 
when the PFU 514 completes each operation. The processor 
control 544 stalls the pipeline if ready _input 542 is not 
asserted when the next operation in the pipeline requires the 
PFU 514. The processor control 544 uses retire_result 540 
to recognize when a result is done and make sure writeback 
occurs to the appropriate target register at that time. When 
the PFU instruction is issued, the result register is marked 
unavailable. If the processor control 544 encounters any 
reads to unavailable registers, it can stall the dependent 
instruction awaiting the writeback which makes the value 
available. 

Of course, a particular processor could choose to restrict 
the kinds of variability allowed to simplify control. Imple­
mentations could restrict themselves to no variability or to 
variability only in launch rate or completion latency. 

In some applications, other hooks into the processor's 
control flow may be merited. In particular, there are a 
number of applications where it would be beneficial to give 
the logic an option to divert program flow rather than simply 
stall it. Two general classes are: 

Exception/assumption detection-The processor code 
could be compiled assuming certain cases do not occur. 
The PFU could then be programmed to watch values 
and detect when these exceptional cases occur, divert­
ing the processor's control to handle the exceptional 
case accordingly. For example, compiled code could be 
written to assume a certain address range is never 
written, allowing the values to be cached in registers or 
even compiled into the code. The PFU then performs 
parallel checking to see that this assumption is met 
throughout the region of code. In a similar manner, the 
PFU might be programmed to watch for specific 
address writes to facilitate debugging. 

PFU limitations-Similarly, the PFU may implement a 
restricted version of some function-perhaps one that 
only works for certain values. When unusual values, 
those not handled by the PFU, are detected the PFU 
could divert control flow to software which implements 
the function. 

As described, flow control diversion can be activated by 
a line which signals a synchronous exception vectored into 
a handler designed to handle the specified exceptional event. 
Alternately, the line could set dirty bits in the processor state, 
thread state, result registers, or the like to indicate that the 
computed value was incorrect and should be ignored. Such 
a line might also inhibit memory writes or other side­
effecting operations which might write incorrect results 
based on the violated assumptions. 

10 
processor only takes results from the PFU when it expects 
the PFU to generate results, such control is not strictly 
required. However, if the PFU is tied up for multiple cycles 
with each operation, as suggested in some usage scenarios 
above, the PFU needs to be told when it actually needs to 
start operating on data. Additional control signals might tell 
the PFU more about what to do. For example, if a PFU is 
setup to perform more than one operation, the PFU might get 

10 
some instruction bits to specify the current operation. 
Similarly, control bits might inform the PFU about the kind 
of data it is now receiving via its register file inputs. This 
information would be particularly valuable if the PFU 
operated on more data than it received over the register file 

15 datapath in a single cycle and did not always get all of the 
data it operates on reloaded in a deterministic sequence. 

The processor sequencing and control can also be viewed 
as an orchestrator, coordinating dynamically programmable­
gate array (DPGA) or SIMD logical operations occurring 

20 within the PFU. This view is entirely consistent with the 
general scheme presented here. A processor designed spe­
cifically with this in mind is likely to include more PFU 
logic and less fixed ALUs. In fact, the fixed ALUs might 
exist primarily for addressing, control branching, exception 

25 handling, and configuration loading. 
The primary application for the programmable functional 

unit model is, of course, as special purpose functional units 
adapted to a particular application. Operations which are 
executed frequently in the application, but poorly supported 

30 in the fixed processing units, can be implemented in the PFU 
to accelerate the application. 

One class of operations for the specialized functional unit 
is support for efficient data filtering. When the processor 
needs to process large amounts of data looking for certain 

35 characteristics, the PFU can be programmed to identify the 
desired characteristics allowing the processor to rapidly 
walk over large data-sets. This kind of support is likely to be 
valuable in database and transaction processing applications. 

As noted above, the PFU can also be used for assumption 
40 checking and error detection in support of speculative and 

common-case execution on the fixed or programmable func­
tional units. 

PFU's implemented with fine-grained logic (e.g. FPGA's 
or DPGA's) can very efficiently take advantage of fine-

45 grained, application-specific parallelism. This kind of par­
allelism is handled particular poorly with traditional, fixed, 
wide ALU's. 

State can also be built up inside the PFU. The PFU can 
thus be used to maintain specialized state adapted to a 

50 particular application. Further, the PFU can implement logic 
to efficiently update that state as new data is collected or 
events occur. For example, the PFU could implement a 
pseudo-random number generator, maintaining the pattern 

In some cases it may be useful to place specialized control 
registers inside the PFU. For example, for a DPGA PFU it 
might be beneficial to have a dedicated context state register 
for the array inside the PFU. This would be particularly 
advantageous if the PFU performed multiple cycle functions 55 

in the same PFU, but the processor did not want to allocate 
register file or instruction bandwidth to feed the context 
identification into the PFU on every cycle. Some internal 
registers may be beneficial anytime when the PFU operates 

state internally as well as computing functional updates. A 
wide range of statistics collection could also be implemented 
this way. The processor could fire data values at the PFU, 
and the PFU would use the new data to update its statistical 
residues to be retrieved by the processor once the monitoring 
period ends. 

on logical input data larger than its register file datapath. 60 

Internal registers can always be built out of the program­
mable logic where need exists. 

So far, scenarios where the PFU simply takes data from 
the register file datapath have been described. A control 
signal into the PFU may be helpful to indicate when new 65 

data is valid and destined for the PFU. Of course, if the PFU 
can always operate on the data it is provided and the 

In summary, the programmable functional unit (FPU) 
arrangement is primarily aimed at increasing the perfor­
mance of the processor by allowing the inclusion of appli­
cation specific acceleration logic. This coupling also makes 
some operations feasible which are conventionally infea­
sible. Operation and value checking can support debugging. 
Lightweight data collection and maintenance can facilitate 
minimally intrusive profiling and monitoring. 



INTEL - 1012

6,052,773 
11 

2. Configurable logic as control logic 
12 

provided in close association with an instruction cache 16, 
and a data cache 22 for direct accessing. Also, a register file 
20 and the fixed logic unit 18 are directly accessible by the 
array 100a. 

FIG. 2A shows one implementation for enabling config­
urable logic to operate as control logic for the processor. The 
basic processor datapath with a reconfigurable logic block 
serving as a PFU and reconfigurable i/o introduced in FIG. 
lF, for example, is utilized. Hooks 548,550 are further 

Every traditional microprocessor has logic which controls 
the flow of instructions and data. This logic usually accounts 
for a very small portion of the silicon area on the processor 
die, but plays a large role in establishing how the processor 
behaves and what it does efficiently. Direct hooks into this 
logic allow reconfiguration of the basic processor behavior. 
The hooks range from allowing reconfigurable logic to drive 
into selective fixed-logic signals to replacing the fixed 
control logic with a reprogrammable substrate. The latter 
offers more flexibility while the former allows faster and 
smaller implementation of standard control structures. Just 
like the flexible input logic, default, hardwired control logic 
can be wired in parallel with reconfigurable logic to give 
some elements of both schemes. 

10 included, however, into the processor's control logic. 
Using these hooks, the processor's behavior can be 

modified, allowing it to be tuned for the characteristics of a 
particular application or adapted to provide particular 
semantics and instruction interpretation. Direct hooks allow-

In general, reconfigurable logic is adaptable to monitor: 
1) various data and address lines on the chip-the logic 

may use these inputs to detect unusual events or 
assumption violations; 

15 ing reconfigurable hardware to monitor on-chip signals 
support a wide variety of low-overhead profiling which is 
currently impossible. Key, on-chip, lines and datapaths can 
be monitored with event computation and handling pro­
cessed directly in PFU logic 532. Simple statistical gather-

2) cache miss, conflict, TLB miss lines, read/write control 
lines, processor stall, pipeline flush, branching, branch 
prediction, mispredicted branch- access to these sig­
nals will be particularly useful when the reconfigurable 
logic controls behavior in exceptional cases like, cache 
or TLB misses; and 

20 ing can update state in the reconfigurable logic without 
perturbing processor operation. Coupled with sufficient 
hooks into the i/o, the logic is connected to store events off 
to memory without interrupting the processor's execution. 
More elaborate schemes can use the reconfigurable logic 

3) i/o's----direct access to the i/o's is beneficial in adapting 
the processor to a system and the devices with which it 

25 532 to detect events then divert program flow to allow the 
processor to run code to further handle the event. 

is operating-this kind of access on some i/o signals is 
useful for adapting control and signaling even if the 
primary i/o buses are not reconfigurable. 

All of these lines can be monitored for profiling, 
debugging, and statistical purposes. 

Combining control of processor flow with event 
monitoring, the FPU logic 532 can be used to provide rich 
debugging support. Breakpoints can be set based on internal 

30 processor state. Customized action can even be defined to 
snapshot and preserve previous state when targeted events 

When reconfigurable control logic is arranged in this 
manner, the processor's behavioral patterns can be revised. 

occur. 
On chip access to internal signals is moderately inexpen­

sive. However, limitations in off chip bandwidth make it 
impractical to route internal signals off chip for observation 
or control. On-chip reconfigurable logic makes it possible to 
access these signals economically. 

Instruction Interpretation FIG. 2B is a more detailed 
diagram showing the reconfigurable array 100a serving as a 

In some cases, this may allow the reconfigurable logic to 35 

control what happens on exceptional events like traps, cache 
misses, TLB misses, or context switches. It may also allow 
the instruction stream to make more or less stringent 
assumptions about the data and provide a means of checking 
these assumptions and handling the data accordingly. 40 reconfigurable decoder for the instruction cache 16. 

Among other things, this may allow the processor to be 
adapted to match the semantics desired by a particular 
operating system or operating environment. In many modern 
systems, the operationing system (OS) ends up executing 
many instructions to switch contexts, take traps, or save/ 45 

restore registers because the processor does not quite pro­
vide the right hooks to match the OS semantics. Reconfig­
urable control can provide an opportunity to make up for 
semantic gap at the processor level, rather than incurring 
large software overheads to emulate the desired semantics. 50 

In general, the control logic on the processor is the hardest 
part to get correct. The various exceptional and hazard cases, 
and their interactions, are difficult to handle well and cor­
rectly. Sometimes it is difficult to decide what the correct 
behavior should be. With highly reconfigurable control 55 

logic, the binding time is deferred, allowing the logic to be 
fixed after the processor is fabricated and allowing the 
behavior to be revised without spinning a new design. 

FIG. 2 schematically illustrates a second embodiment of 
the present invention in which configurable logic is adapted 60 

to perform control operations. In the first embodiment, the 
reconfigurable array 100 was analogized to an on-chip 
co-processor or function unit in which the array 100 was 
configured to perform specific high-level tasks. The second 
embodiment is built upon the benefits associated with even 65 

more closely integrating the configurable array 100a into the 
processor cell. Specifically, the reconfigurable array 100a is 

Specifically, a program counter 552 provides instruction 
addresses to the instruction cache 16. The instructions are 
provided to the reconfigurable array 100a configured as a 
decoder. The reconfigurable logic 100a interprets the 
instruction stream, controlling the operation, effectively 
taking the place of the fixed decoder. 

Alternatively, the reconfigurable logic 100a can turn the 
instruction into a sequence of primitive operations and 
control their flow through the processor. This is much like 
traditional microcode, except that the control is imple­
mented in the reconfigurable logic rather than a microcode 
PROM. 

FIG. 2C shows a hybrid scheme. Here, the reconfigurable 
decoder 100a generates only a portion of the control signals 
554. The hybrid flexible/hardwired scheme provides direct 
paths for common operands such as register file addresses, 
while the reconfigurable logic asserts complete control over 
operation interpretation and control signals. 

Code Expansion-the code can also be expanded from a 
denser, memory efficient form, into a larger, more workable 
form when stored in the I-cache 16. Principles of code 
expansion were disclosed by David Ditzel, Hubert 
McLellan, and Alan Bernbaum, "The Hardware Architecture 
of the CRISP Microprocessor," The 14th International Sym-
posium on Computer Architecture, pages 309-319, ACM/ 
IEEE, IEEE Computer Society Press, June 1987 which is 
incorporated herein by this reference. According to this 



INTEL - 1012

6,052,773 
13 

operation, the instructions returned from the I-cache 16 are 
thus expanded instructions which directly control the 
on-chip resources. 

Flexible instruction interpretation allows the processor to 
be adapted to efficiently decode and run operations. The 
flexible logic decodes the provided instruction stream and 
reformulates them into the control structures for the proces­
sor. In general, this may require expanding some instructions 
into multiple operations on the core processor, for example. 

14 
With a little bit of additional control logic, these memories 

can be used as caches, cache-tags, TLBs, explicit scratchpad 
memories, FIFO buffers, or the like. These memories can 
completely subsume the separate data cache 22 shown in our 
original processor model of FIG. 2. 

Systems that do not use a TLB can reallocate memory 
blocks 558 to the cache. Applications with more or less 
virtual memory locality can adjust the size of the TLB 
accordingly. Applications with known data access can use 

The instructions can also be customized to the application 
by the decoder 100a. This can be used to compress 
executables by adapting the instruction encoding to the 
application instruction usage. As a simple example, the 
optimal Huffman source coding could be derived for binary, 
then the instruction encoding revised accordingly. Of course, 
more sophisticated recodings will provide greater benefits. 

10 explicit scratchpad memory, reallocating the memory blocks 
558 holding cache tags to data storage. Applications with 
specific spatial locality in data or instructions can build logic 
to prefetch data according to the application need. 

FIG. 2E shows another implementation in which the 

Customized instruction decoding is complimentary with 
the other reconfigurable structures introduced here, allowing 
adaptation of the instruction stream to directly accommodate 
new instructions and behaviors made possible by the recon­
figurable logic. 

15 register file 510 of FIG. 2D is viewed as another memory 
which can also be built out of the deployable memory units 
558. Thus, there is no a priori designated register file. This 
allows, for example, the reconfiguration of the register file 
width, depth, and number of simultaneous read ports. Fur-

20 ther the register file can be broken into a series of smaller 
register files where appropriate. Here, the expander/ 
concentrator is collapsed into a single reconfigurable inter­
connect 560. 

Basic Processor Architecture A classic question in pro­
cessor architecture is: where should a given resource be 
deployed. Should the cache be larger/smaller relative to the 
TLB? Do we allocate space to prefetch or writeback buffers? 25 

How much memory should go into the data cache, instruc­
tion cache, scratchpad memory? Do we include a branch 
target buffer or victim cache? 

A second question which comes along with this one is: 
How do we manage the limited resources? What's the 30 

prefetch/reload/eviction policy? 
The traditional solution to both of these questions is to 

make a static decision at design time which does, in some 
sense, reasonable well across the benchmarks the designers 
consider representative. This inevitably leads to compromise 35 

for everything, and for many applications the magnitude of 
the compromise can be quite large. 

According to the present invention, some flexibility is left 

Alternately, the register file may want to be a slightly 
specialized memory unit, but still be deployable for the 
reasons articulated here. As noted above, width, depth, and 
read cascading are moderately easily constructed by paral­
leling memory blocks just as in building basic memory 
structures. What is harder to build by composition is mul-
tiple write ports, and register files often depend heavily on 
a number of simultaneous write ports. For this reason, it may 
make sense to also include a different kind of memory block 
with multiple write ports to allow efficient construction of 
register files, as well as other structures requiring simulta­
neous write support. 

The configuration shown in FIG. 2E shows hardwired 
processor control 544 and a completely reconfigurable i/o 
unit 536. Of course, variations could implement all or much 
of the control in reconfigurable logic and/or include hard­
wired load/store units. 

Note that the reconfigurable interconnect 560 used to 
interconnect functional units differs both from the fine­
grained reconfigurable interconnect typically employed in 
FPGAs and the expander/concentrator interconnect used in 

in the architecture so the machine can be configured to 
deploy the resources most effectively for the given applica- 40 

tion. The idea is to build specialized pieces of hardwired 
logic with common utility (e.g. memories,ALUs, FPUs), but 
rather than completely hardwiring the control and datapaths, 
flexibility is left to reorganize their interconnect and hence 
use. 45 a pure VLIW. Rather, it is a hybrid of the two. Unlike 

traditional FPGA interconnect, most of the operations with 
the interconnect 560 are bus oriented. Therefore, buses are 
switched in groups. Most buses may be some nominal 
processor bus width (e.g. 16, 32, 64). Some will be able to 

FIG. 2D, for example, shows a revision of the VLIW 
processor architecture is introduced in FIG. lD. Blocks of 
configurable memory M 0 -Mnm-i, have been added to the 
collection of processing resources. Here, some outputs from 
the ALU/PFU/FPU/memory bank are routed back to the 
expander 528 to allow cascaded operations via line 559. For 
example, a virtual memory address coming out of a register 
in file 510 may be translated through a memory before being 
feed to the i/o 536. Similarly a base address from one 
register may be added to an index from another before the 
address is fed in as an address to a cache. To facilitate this, 
additional outputs are added from the concentrator 530 and 
inputs to the expander 530, in addition to the additional 
concentrator inputs and expander outputs entailed by the 
additional memory units Mo-Mnm-l 588 they support. 

50 compose or decompose these buses to other interesting sizes 
( e.g. 1-bit entities for fine-grained logic, 8-bit entities for 
reconfigurable memories). In a traditional VLIW, the decod­
ing of the instruction specifies the configuration of buses. 
With this kind of a setup, the instruction bandwidth would 

55 be excessive if fully configured from the instruction stream. 
Similarly, the interconnect pattern would be too rigid if fully 
configured via FPGAstyle programming. Here, the configu­
ration of buses will depend partially on the instruction 
executed and partially on the way the system is currently 

60 configured. In most scenarios the decoding between the 
instruction stream specification of interconnect and the full 
interconnect specification would be done in the reconfig­
urable logic. For efficiency, the reconfigurable logic serving 

Additionally, the memories M 0 -Mnm-l can be arranged in 
standard sized chunks which can be composed, allowing the 
memory resources 558 to be shuffled at a moderate granu­
larity. For example, each basic memory could be a 2Kx8 
memory chunk. 4 or 8 of these can be grouped together to 65 

build a 32- or 64-bit wide memory. Additionally, they can be 
cascaded to build deeper memories. 

this purpose might be tailored somewhat to this application. 
This finally leads to a revised model for a computing 

device shown schematically in FIG. 2F. Here, basic, spe­
cialized functional units FU 565 (e.g. ALUs, FPUs, MDUs, 



INTEL - 1012

6,052,773 
15 

LD/ST units, DMA logic, hardwired control units) and 
memory arrays 570 are embedded in a reconfigurable inter­
connection 100a along with regions of reconfigurable logic 
which can be used for monitoring, control, i/o, decoding, 
and as PFUs. This device 1 gains the performance and space 
advantages of hardwired logic units for commonly used 
operations. At the same time, it gains performance advan­
tage over a purely fixed microprocessor by adapting the 
processor organization much more tightly to the application. 

As noted, limited resources can be deployed where they 10 

most benefit the application or system using the processor 
rather than being statically deployed according to aggregate 
statistics across all applications and systems. 

Datapaths can be organized to match the application 
requirements. For example, ALUs and register ports can be 15 

cascaded to operate on wider data efficiently. Also, data can 
flow directly from one functional unit to another without an 
intervening store into and read from the register file. 

Perhaps as a special, well understood, case of application­
specific datapath and resource arrangement, systolic arrays 20 

or pipelines of functional units can be arranged allowing 
data to flow through standard sequences of operations and 
adapting the processor to exploit task-specific parallelism. 

In general, deployable functional resources allow the 
processor to structure the parallel operations in accordance 25 

with the application. Applications with high, static parallel­
ism can schedule resources staticly for parallel operation. 
Applications suitable to pipelined parallelism can be orga­
nized in that manner. Applications with heavy dynamic 
dependencies can allocate part of the resources to detecting 30 

conditions under which serialization is necessary. With the 
addition of reconfigurable control, resources management 
characteristics can be tuned to the application. 

3. Reconfigurable logic providing flexible i/o 
FIG. 3 illustrates a third embodiment of the present 35 

invention. In this case, the reconfigurable array 100c func­
tions exclusively as a configurable network or i/o interface. 
In operation, the network interface 100c is bidirectional to 
format data and instructions received from a network includ­
ing peripheral devices, into a format for which the processor 40 

core cell 10 is designed. Further, output data from the 
processor 10 is transformed into a format that the surround­
ing network expects. This embodiment is most useful in 
situations in which the core processing cell is designed and 
built without specific knowledge as to the network in which 45 

it will operate. The interfacing reconfigurable logic 100c is 
then be reconfigured by the network or by the processing 
core cell to perform the proper interfacing roles to enable the 
core cell's logic 10 to fluidly interact with the network. 

FIG. 3Ais a block diagram showing a specific implemen- 50 

tation of the third embodiment showing the integration of 
the reconfigurable logic in the i/o operations. Specifically, 
control CTRL, address ADDR, and data lines from the 
on-chip buses of the microprocessor cell 10 are received 
both at the reconfigurable logic 100c and the fixed load and 55 

store registers 502. As a result, data from the processor cell 
10 can be provided off-chip either directly to the fixed load 
and store registers 502 or alternatively through the config­
urable logic 100c. In a similar vein, data received by the 
configurable logic-coupled processor 1 can be alternatively 60 

provided directly onto the on-chip buses to the processor cell 
10 or alternatively to these buses through the configurable 
logic 100c. 

Arranged appropriately, the latency impact on i/o opera­
tions which do not make use of the reconfigurable logic can 65 

be minimal-just an extra multiplexor delay in each path. 
When the reconfigurable array 100c processes data on its 

16 
way on or off chip, the reconfigurable processing can be 
pipelined with processor and i/o operations. The reconfig­
urable operations will increase the off chip latency, but not 
diminish bandwidth. Of course, in the configurations of 
interest the additional latency in input or output processing 
will be small compared to the latency which would be 
incurred if the processing had to be done in software using 
the fixed portion of the processor 10, itself. 

FIG. 3B shows an implementation where the off-chip i/o 
is completely subsumed by reconfigurable logic 100c. That 
is, the only path 508 to the on-chip buses of the processor 
cell 10 and the off-chip i/o is through the reconfigurable unit 
100c. Note that the relatively low-bandwidth associated with 
off-chip communications, compared to on-chip 
communication, can partially compensate for the slower 
native performance of reconfigurable logic. The datapath 
between the fixed processing core 10 and the reconfigurable 
logic 100c can be large, allowing the reconfigurable logic 
100c to use parallelism to achieve reasonable off-chip i/o 
bandwidth. 

Further, the performance hit due to reconfigurable logic 
lO0C may often be lower than the performance hit taken 
when external logic components must be inserted into the 
datapath to adapt the processor's i/o to a particular system. 

Similarly, one might worry that the reconfigurable struc­
ture l00C will take more die area than the non­
reconfigurable i/o. While the reconfigurable i/o may be 
larger, the increase in system cost which comes from having 
a larger die may well be less than the increase in system cost 
which comes from adding an external IC to adapt the 
conventional processor to fit into a particular system. 

FIG. 3C shows another implementation combining 
aspects of both FIGS. 3A and 3B. Placing multiplexors 
504,506 both on the i/o pins themselves and the internal 
datapath 508 allows the preferred bus to suffer very minimal 
speed degradation while allowing full reconfigurability of 
the i/o interface. This might be interesting, for example, in 
building a single IC to span a large range of systems. The 
fixed bus structure 502 might be tuned to the highest end 
product line. The lower end models could employ the 
reconfigurable logic lO0C to adapt the core to their systems. 
This configuration would be particularly ideal if the lower 
end systems were cheaper particularly because they ran the 
external buses at a lower speed than the high end models. 

The configurable i/o capability can be employed in a 
number of scenarios: 

Standard bus lifetimes are shortening and market win­
dows are tight. Currently, to integrate native support for 
some standard bus on a processor ( e.g. PCI, VESA-VL, 
MBUS), the market must be predicted during CPU 
design (12-18 months before product launch). A bad 
guess runs the risk of losing out on important design­
ins. Additionally, the processor's lifetime may end up 
being truncated by the next trendy standard. Reconfig­
urable i/o allows adaptation to popular standards. It 
also allows a system designer the ability to build one 
card or mother board which is soft configured for the 
bus of choice. 

In the present setting, one cannot get native bus support 
for buses which lack widespread industry popularity. 
With reconfigurable i/o, the processor can be adapted 
for direct connection to any bus system. This is par­
ticularly useful in mixed processor environments and in 
legacy system and application environments. 

A reconfigurable i/o interface can be tuned to the char­
acteristics of a particular system configuration. Block 
and burst transfer size, block alignment, timing, and 



INTEL - 1012

6,052,773 
17 

translation is adapted to the system configuration rather 
than being generic. This may allow the system to 
naturally accommodate burst transfer modes available 
from memories or peripherals rather than being limited 
by the processor's preconceived and hardwired block 
transfer modes. 

In addition to bus protocols, the i/o system can be adapted 
to handle some of the low-level details of i/o stream 
processing, particularly those which are best done with 
efficient support for bit operations. Stripping off pro- 10 

tocol headers, extracting fields, and responding rapidly 
to various signaling conditions are all tasks which are 
handled well with flexible hardware. 

18 
Kubiatowicz, "APRIL: A Processor Architecture for 
Multiprocessing," in Proceedings of the 17th International 
Symposium on Computer Architecture, pages 104-114, 
IEEE, May 1990. 

The reconfigurable i/o is configurable to perform ECC or 
parity computations on data coming and going from memory 
in systems where error checking and correction is warranted. 

The reconfigurable i/o can be used to do combining, 
checking, and voting when building highly reliable systems. 
In this setting, the standard microprocessor 10 with recon­
figurable i/o 100c is adapted to work in such tandem 
configurations. For example, in a dual checking system, one 
can be configured to provide outputs, while the other can be 
configured to listen and compare its internal results to the 
results of the master. If they ever differ, the backup processor Reconfigurable i/o logic lO0C can be arranged to strate­

gically buffer data, according to application or periph­
eral requirements, coming and going from the proces­
sor 10. The logic 100c provides FIFO buffering as may 

15 (not shown) signals the main to stop. Again, this reduces 
system cost by obviating the need for separate logic com­
ponents to do the combining and checking. Additionally, it 
makes the single microprocessor design with reconfigurable be useful when embedding a compute processor in a 

system. The buffering can be system specific, tuned to 
the devices with which the processor is communicat- 20 

ing. It can also be application specific, providing buff­
ering which is appropriate only for certain kinds of 
data. 

i/o attractive for use when building reliable systems. 
System specific synchronization is also handled by the 

reconfigurable i/o logic 100c. With hooks out to the actual 
i/o pins, the processor can generate and receive synchroni­
zation signals directly. The reconfigurable logic inside the 
processor can process the signaling accordingly. This could, 

For instance, the processor 10 pumps out program loca­
tions for profiling operations. The reconfigurable logic 
100c takes the location data, timestamps it, then buffers 
it for a free bus cycle on which to write the data into 
memory, and supply the appropriate addresses to store 
the profiling data in FIFO style into an allocated region 
of main memory. Note that this allows the system to 
take a time-stamped program trace while only requiring 
the processor 10 to execute a store instruction. Since 
the reconfigurable logic 100c is doing buffering and 
translation on-chip, the store need take no more pro­
cessor cycles than a store to the on-chip cache. 

25 for instance, be used to implement barrier synchronization in 
a multiprocessor. More interestingly, perhaps, it would allow 
one to implement application specific synchronization 
schemes. In some cases local synchronization between a few 
processors may be all that is required for correctness, and the 

30 reconfigurable processors can be adapted accordingly. 
When the native byte order for the processor differs from 

that of the data being handled, the reconfigurable logic lO0C 
provides the byte reordering as needed. Examples of cases 
where selective byte swapping may be necessary include 

35 attached peripherals or coprocessors with different byte 
orders, system or network software which expects a particu­
lar byte order, or file formats which require a specific byte 
order. 

The reconfigurable logic 100c can be used to provide 
direct interfacing to an attached long-or short-haul 
network. This would be particularly useful to adapt 
commodity processors for use in large-scale, multipro- 40 
cessor computing systems. In the Cray T3D, for 
example, a separate ASIC is used to couple an Alpha 
microprocessor into the high-speed mesh network. 
With reconfigurable i/o, the network interface can be 
built on chip. This close coupling provides much higher 45 
network i/o performance, avoiding the overhead of 
going out to a remote device over a standard bus in 
order to communicate with the network. A network 
interface is, of course, one place where i/o data buff­
ering may be necessary. 

When formatting or processing messages, protocols, or 
packed data, the processor 10 may need to selectively extract 
and rearrange fields for processing or storage. 

Often a data stream must be decoded before processing or 
encoded before exiting the processor 10. The reconfigurable 
logic 100c serves to translate data appropriately for internal 
use. Common examples include de/encryption of data for 
secure storage and transmission and (de)compression to 
minimize storage space or transmission time. 

Often the processor's i/o system needs to remap addresses 
in some systematic way to address a data structure effi-

50 ciently. For example, in the Cray T3D, an external address 
unit remaps addresses to block and distribute array elements. 
The reconfigurable i/o 100c is programmable to remap the 
addresses in an appropriate, data structure and system spe­
cific manner. 

The reconfigurable i/o is also used to directly interface 
peripherals to the processor 10, without requiring off­
chip glue logic. Chip selects and peripheral specific 
timing and control signals can be generated directly by 
the reconfigurable i/o 100c. Eliminating glue logic 55 

reduces part count and system cost. 
Generally, a few common advantages for the reconfig-

urable i/o 100c interface are summarized. Direct, on-chip 
interfacing saves the requisite chip-crossing latency associ­
ated with interfacing the processor 10 to a peripheral or 
system using a separate ASIC. System costs are reduced by 

With the reconfigurable i/o 100c, the processor 10 is 
configurable to handle external events smoothly and rapidly 
and provide special output signals. For example, in a polled 
device situation, busy or ready signals are run straight into 
the reconfigurable logic 100c. The impact of polling on 
processor cycle time need be no more than an on-chip cache 
access-less, if the signal can be computed into the proces­
sor's branch and conditioning logic. similarly, reconfig­
urable logic 100 can provide special output signals, such as 65 

the context ID in the April/Sparcle microprocessor disclosed 

60 reducing the number and kind of components required to 
interface the processor 10 to its peripherals and system 
environment. The reconfigurable i/o processor can adapt 
rapidly to changing and varied system architectures and 

by AnantAgarwal, Beng-Hong Lim, David Kranz, and John 

standards and can serve to differentiate products. 
4. Reconfigurable logic in memory devices 
In still another embodiment shown in FIG. 4, the inven­

tion is implemented in a predominantly memory device that 



INTEL - 1012

6,052,773 
19 

has some processing features. In many applications, video 
pixel processing, for example, the video data is organized in 
the memory substantially as it is physically arrayed in the 
displayed image. Many times in these application, for 
example, it is important to develop correlations between 
adjacent pixels. Historically, this required accessing each 
pixel and combining them in the accumulator of the micro­
processor and then writing them back to the memory device. 

In the present invention, this is accomplished by provid­
ing programmable logic array 100d in the processing 10 

memory device la on the same chip. This logic 100d can 
perform primitive logic functions such as adding, 
subtracting, or multiplying, for example, data in memory 
array 60. The configurable logic array 100d also included in 
the memory device la is then configured to perform the 15 

processing. For example, the configurable array 100d 
enables access to the locations in array 60 and performs the 
logic combination. Write back then occurs to the same 
location or a different memory location of the combined 
value. These operations can occur in serial as in conven- 20 

tional devices or parallel to offer high speed parallelism. 

20 
values from other blocks can be accomplished. These other 
values are transmitted to other blocks via the +/-y and +/-x 
lines of the interconnect 566. The output bank multiplexor 
570 can then selects a value from the programmable PFU 
block 562 or the bank word from the DRAM bank 564. Data 
written back into the memory bank 564 may come from the 
programmable PFU block 562, from the data word in 574, 
or from the bank word 576 via bank input multiplexor 572. 
The interconnect 566 allows outputs from the logical ele­
ments in each programmable PFU block 562 to feed into 
other programmable blocks. 

There is a large amount of flexibility in the implementa-
tion of the programmable PFU block 562. The number of 
array elements/block, the array element design, the amount 
of interconnect flexibility, and their topology can vary 
considerably. FIG. SB shows a general formulation of such 
a logic block 562 with array elements AE0 -AEn1 _1 , each 
with k-input bits, and a 1-bit output datapath. For local 
computation and writeback from the programmable logic, at 
least as many programmable array elements AE0 -AEn1 _1 

are needed as data bits. Each array element AE can be 
implemented in any of a number of ways, input lookup table 
or piece of hardwired logic. Generally, the array elements 
AE will have optional or mandatory flip-flops latching of the 
output values computed, especially when the logic per­
formed on the data is pipelined. 

The interconnect 566 can be very general, e.g. a full 
crossbar in the worst case. In practice it is likely to be much 
more limited. First, a full-crossbar provides more flexibility 
than is useful if the array elements AE are actually lookup 
tables. Some connections of the interconnect 566 may be 
omitted simply because they are unnecessary. For example, 
Data Word Out 578 and Data Word Writeback 580 may be 
the same port since it is unlikely they will be used simul-

The provision of processing capability takes advantage of 
the high on-chip bandwidth associated with DRAM's. Con­
ventional DRAM arrays are built out of numerous banks. 
The memory addresses are, consequently, broken into two 25 

parts: (1) a row address which selects the address to be read 
within each bank and (2) a column address which selects the 
bank whose data will actually be read. Internally, once the 
row address has been read, a large number of data bits are 
available. For a nb bank memory, with w-bit wide banks, 30 

nb·w-bits are actually available at the inputs to the final 
selection process. In the most conventional architectures, all 
but w-bits are then thrown away during the final column 
selection process. The result is a meager i/o bandwidth to 
and from the memory, despite a huge on-chip bandwidth. 

A4 megabit DRAM, old by today's standards, is likely to 
have 512 or 1024 banks, with a 4- or 8-bit data width. The 
DRAM throws away almost three orders of magnitude in 
bandwidth during the final multiplexing stage. This gap only 
gets larger as we move to larger capacity DRAM arrays. The 40 

DRAM cell area shrinks, allowing greater density. However, 
the i/o's supported on die's perimeter does not grow com­
mensurately with the internal memory capacity. In fact, the 

35 taneously. Also, there is no need to interconnect the Bank 
Word 576 to the Data Word Out 578 or Data Word Writeback 

i/o capacity hardly grows at all. 
FIG. 5 shows an implementation of the memory device 45 

incorporating a finer level of granularity. Specifically, recon­
figurable logic PFU's 562 are associated with each memory 
bank 564 of the device la. This reconfigurable PFU 562 
directly consumes the bits which are read out of the asso­
ciated DRAM bank 564. A programmable interconnect 566 50 

transmits signals between PFU's 562 and off-device la. 
Since the banks 564 are physically arrayed on the DRAM 
array, the reconfigurable PFU's 562 are also gridded. The 
bank word output 576 runs directly into the programmable 
logic block 562 and the programmable logic, in turn pro- 55 

vides a word output 578 into the final word selection tree. 
FIG. 5 shows a logarithmic depth tree of multiplexors 
M3-MO used to select the final memory output from among 
the outputs 578 of each bank/PFU block 564/562. 

FIG. SA is a more detailed block diagram of a single 60 

DRAM memory bank 564 and programmable PFU block 
562 extracted from the device lAof FIG. 5. Specifically, the 
DRAM memory bank 564 is provided with a row address 
568. The accessed data word from the DRAM bank 564 is 
provided both to an output bank multiplexor 570 and the 65 

programmable PFU block 562. In the programmable PFU 
block 562, logic calculations and combinations with other 

580 in the topology shown since there are direct connections 
which provide that effect outside of the programmable logic. 

The interconnect 566 may be hierarchical and these lines 
may be broken down into lines which span varying distances 
in the array. In these cases, while or wy or wx lines may be 
consumed at each programmable logic block 562, the full 
wy or wx lines will not be generated at each block-or more 
properly, some of the lines will likely connect straight across 
each programmable logic block 562 without being switched 
within the block. 

The output bank mux 570 is most likely controlled by read 
logic, retaining the ability to read and write straight from 
memory as a conventional DRAM without using the pro­
grammable logic 562. A control signal into the array of 
memory banks can control the desired behavior. The write­
back data is selected in a similar manner. 

The array elements and programmable logic may have 
multiple context configurations, i.e. DPGA. In these cases, 
the control lines into the array will select not only whether 
or not to use the programmable logic, as described above, 
but also which context should act at on a given cycle. One 
promising use of DPGA logic will be to perform multiple 
micro-cycle operations on each array memory operation. 
Conventional DRAMs have 50-60 ns cycle times, roughly 
half row read and half in column select and readout. DPGA 
logic, in today's technology, with one or two LUT and local 
interconnect delays can operate with a 5 ns cycle time. 
Consequently, one can reasonably expect to cycle through 
several array operation for each memory operation. 

The programmable interconnect 566 will also need to 
configured. It will generally be most convenient and eco-



INTEL - 1012

6,052,773 
21 22 

Briefly, these fifteen lines comprise one self interconnect, 
i.e., a feedback from the output of the AE, six local inter­
connects that represent the outputs of the six other AE's that 
occupy either the same row or same column as the self AE 
in the subarray, and eight global interconnects that reach the 
AE through the adjoining crossbars servicing the AE's 
subarray. 

nomical to integrate programmable logic programming with 
the memory array datapath. In the minimal case, additional 
address lines specify when writes are destined to program­
mable configuration, and configuration data is loaded from 
the Data Word In 574 associated with each bank 564. Amore 
useful configuration will be to connect the configuration 
input to the Bank Word lines, allowing the array elements 
AE to exploit the full on-chip bandwidth of the DRAM array 
for configuration reloading. Of course, there still is the 
off-chip bottleneck to load the configurations into the 
DRAM to begin with, but once the data is loaded on the 
DRAM, parallel reloads allow the logic programming to 
change very rapidly. 

More specifically, the level-one interconnect Ll com­
prises four, 8: 1, multiplexors LlMl-4, each selecting 

10 among eight interconnect lines. Each multiplexor is pro­
vided with a different subset of the fifteen interconnect lines 

5. Reconfigurable logic choices 
The reconfigurable logic can be realized as one of many 15 

different structures. 

so that the selected element input signals Ell-4 can repre­
sent a broad spectrum of logic combinations of the fifteen 
signals available to the AE. 

A 4 contextx3 bit memory LlBl-4 is associated with 
each multiplexor and locally placed in the AE. These memo­
ries LlBl-4 provide a context dependent selection signal to 
the associated level-one multiplexor. To provide this 
function, the memories LlBl-4 each comprise four context 

Traditional, fine-grained logic FPGA modules with pro­
grammable interconnect (e.g. Xilinx LCA) is one likely 
candidate. The fine-grained structure is particularly good for 
random logic and bit manipulation. 20 memory vectors that are individually enabled by the CID. 

Multiple context programmable logic, e.g. DPGA's, can 
provide density advantages over more traditional FPGAs, 
especially in situations where well defined subsets of the 
logic operate at different times. DPGA's also allow non­
destructive background loading which can help reduce 25 

effective configuration overhead. 
PAL-like array structures are good for smaller blocks of 

logic or for fast decoding. 
In some setting a block of memory can serve as an 

efficient, programmable translation resource. Most program- 30 

mable technologies are implemented out of smaller memo­
ries with programmable interconnect. 

A more coarse-grained option is taught by Qiang Wang 
and P. Glenn Gulak, "An Array Architecture for Reconfig­
urable Datapaths," in Will Moore and Wayne Luk, editors, 35 

More FPGAs, pages 35-46, Abingdon EE&CS Books, 49 
Five Mile Drive, Oxford OX2 8HR, UK, 1994 somewhere 
between a fixed processor and a bit-configurable FPGA. 

In practice, a mix of fine-grained control and more 
specialized functional units embedded in a common recon- 40 

figurable mesh may be a very attractive choice for the 
reconfigurable logic in PFU and i/o logic. 

7. Dynamically programmable gate array reconfigurable 
logic 

The preferred architecture is the dynamically program- 45 

mable gate array (DPGA). This architecture combines broad 
adaptability with intensive asset utilization and multi­
context control. 

FIG. 6 illustrates a dynamically programmable gate array 
(DPGA) 100 constructed according to the principles of the 50 

present invention. Its architecture is organized into three 
logic block hierarchies. The core feature of the DPGA is a 
simple look up table backed by a multi-context memory 
block that stores the logic operations of the programmable 
gates (not shown in this view). Sixteen ( 4x4) AE's including 55 

the programmable gates are arranged into each subarrays 
SA1,l-SA2,2 with dense programmable local interconnects. 
At the chip level, nine (3x3) subarrays are connected by 
associated bidirectional crossbars CBN, CBE, CBW, CBS. 
Communication at the edge of the nine subarrays travels to 60 

the fixed logic processing units including the core cell or 
off-chip via input/output pads of the chip 1. 

FIG. 7Ais a block diagram of array element (AE), which 
is the fundamental building block of the DPGA logic archi­
tecture. A symmetrical array architecture exploits AE com- 65 

prises a level-one interconnect Ll that selects element input 
signals Ell-4 from fifteen possible interconnect lines IL. 

The three bits of the enabled context memory vector com­
pletely define the level one multiplexor operation. Thus, the 
level-one interconnect Ll locally stores routing configura-
tions corresponding to each context, allowing routing 
changes on a context-to-context basis, and as fast as every 
clock cycle. 

The second principle element of the replicated AE is the 
programmable gate, which is implemented here as look up 
table CM. The look up table CM is programmed with four 
truth tables of the four logic operations to be performed by 
the AE in the four contexts. The element input signals Ell-4 
and a context identifier CID address the look up table CM to 
generate the appropriate output signal stored at the 
addressed location. 

An N-input look up table can emulate any N-input logic 
gate, at the cost of storing -2!' entries in memory. Given the 
tradeoffs between speed, area, and granularity of the func­
tionalities on an integrated level, a 4-input look up table is 
adopted to achieve an overall balance. Besides look up 
tables, other logic elements are possible. These include 
arithmetic logic units (ALU), larger or smaller look up 
tables, or multifunction gates having programmable inter­
connections. Generally, an ALU's range of possible opera­
tions is less and limited generally to arithmetic functions, 
such as addition, subtraction, and multiplication. This sug­
gests the programmable gate is the preferable implementa-
tion and specifically look up tables. 

The look up table CM comprises a 4 contextx16 bit logic 
operation memory LOP comprising context memory vectors 
CMAl-4. These vectors are selectively enabled by the 
context identifier CID. The 16:1 multiplexor LEM accesses 
the enabled memory vector on the basis of the element input 
signals Ell-4 to retrieve the logic value corresponding to the 
desired logic operation. Thus, any 4 inputxl output logic 
operation is emulated. 

An output selector OS receives the output signal EO from 
the look up table CM and latches it to alternatively provide 
either the current output of the look up table or the most 
recent output, the output on the last clock period. In more 
detail, the output selector OS latches the element output 
signal EO in an edge-triggered flip flop DFF in response to 
the clock signal CLK. The element output signal and the 
delayed element output signal are then presented to a 2:1 
output multiplexor OM. An output select memory OB, 4 
contextxl bits, drives this multiplexor OM to select either 
the element output signal or the delayed element output 
signal as a function of the context. 



INTEL - 1012

6,052,773 
23 

The output selector is particularly useful when computa­
tions require the execution of multiple contexts due to their 
complexity. During the initial context, combinational signals 
propagate through the array from the DPGA inputs. On the 
clock signal and the change to the next context, the resulting 
logic values are latched in the flip-flops DFF of the lastAE's 
in the computation. These logic values then form the initial 
values for the computations of the next context. Specifically, 
when the context changes on the next clock cycle, the 
multiplexors are controlled to select the output Q of the 

10 
flip-flop DFF, rather then the multiplexors LEM. Thus, the 
logic values are preserved into the next context by properly 
compiling the context information of the output memory 
OB. 

24 
FIG. 7C schematically shows a 32 column by 4 context 

memory block MB. As suggested by FIG. 7B, each of the 
level-one memory LlMl-4, the logic operation memory 
LOP, and the output memory block OB are actually imple­
mented as a single 32-column memory block MB. This 
memory block comprises four rows corresponding to each of 
the context memory vectors CMA 1-4. Each of these rows 
is 32 bits wide. 

FIG. 7D shows an exemplary 4-bit column MC extracted 
from the 32 column memory block shown MB in FIG. 7C. 
Here, four DRAM cells 1-4 are separately addressable by 
read enable signals re0-3. The read value provided at 
DRAM cell ports RV is amplified by a pull-up/pull-down 
output driver and refresh inverter 110. Write enable lines 

15 we0---3 separately address the DRAM cells. The logic value 
stored in each DRAM cell is received at the write value ports 
WV under control of the write enable we0---3 and the enable 
write enable signal ewe. 

FIG. 7B is a less schematic illustration of the level-one 
interconnect and multiplexor arrangement of the AE. 
Specifically, global interconnect lines global 1-8, local lines 
2-4, 6-8 and a self signal are provided in various combi­
nations to each of the level-one multiplexors LlMl-4. 
DRAM output signals 1-5 and 23-28 are provided as 
selection signals to each of these multiplexors. The selected 20 

element input signals Ell-4 are received by the logic 
element multiplexor LEM as select signals. This 16:1 mul­
tiplexor LEM then provides one of the DRAM output 
signals 6-21. The selected element output signal is latched 
to the delay flip flop DFF and received at the 2:1 output 25 

multiplexor OM. A column driver 122 broadcasts the signal 
over the column local interconnect line, and a row driver 124 
drives the row local interconnect line of the AE. 

The AE makes use of three different types of multiplexor: 
one 16-to-l for the look up table, four 8-1 for the input fan-in 30 

selector, and one 2-1 for an optional latched output. Two 
implementations of multiplexors are probable: one is a 
CMOS full-switch implementation using both NMOS and 
PMOS gates and the other is a pass-gate implementation 
using exclusively NMOS gates. The two implementations 35 

offer different tradeoffs in power consumption, area, and 
performance. The design decision, by convention, favors 
area and performance most. 

The pass-gate implementation is more area efficient, 
requiring less than at most half of the area as the full-switch. 40 

However, a high pass-gate output signal does not reach a full 
V aa, degraded by the n-channel threshold. This degraded 
voltage raises issues of static power dissipation when a 
buffer is used to restore the full V aa- One way to improve the 
degraded output high is to add a feedback P-device from the 45 

output. This will assist the pull-up to a higher voltage and 
mitigate static power dissipation. The negative trade-off of 
the feedback is a slower output, resulting from a longer 
transition period between valid outputs due to voltage fight 
between transitive gates. Calculation shows that static power 50 

being dissipated is negligible. Therefore, it does not warrant 
the slower feedback implementation. 

The full-switch implementation requires a paired PMOS 
gate for every NMOS gate to restore voltage by assisting 
pull-up. The cost of implementing PMOS gates is high in 55 

terms of layout, however. In addition to the double transistor 
count, full-switch requires P-devices and N-wells that add 
tremendous design rule constraints when doing layout. If 
equal rise and fall times are desired, the P-devices sizings 
have to more than double those of N-devices. This would 60 

The separate write enable, write value, read enable and 
read value lines effectively make the memory block a 
two-port memory allowing simultaneous reads and writes. 
Consequently, context data can be read from one of the 
DRAM cells, DRAM cell 1, for example, while a new 
context data is written to one of the other three DRAM cells 
2-4. In the actual implementation, however, read/write 
operations of the memory is divided into two stages of 
system's single-phase clock. The read operation takes place 
in the first half of the clock cycle while the write operation 
takes place in the latter half. When the clock goes high, the 
read line charges to V aa· The cell's memory read port is 
enabled during a read operation. 

FIG. 7E shows an exemplary DRAM cell from the 
memory column shown in FIG. 7D. This is 3-transistor 
implementation in which transistor T3 functions as a read 
port, Tl a write port, and T2 a storage device to store a 
binary bit by gate capacitance. While this DRAM cell can 
alternatively be a static RAM (SRAM) or even a fusible 
write-once implementation, the three transistor DRAM cell 
is space efficient while being dynamically re-programmable. 

When a logical high is stored on the gate capacitance of 
the pull-down device T2. This pull-down device will turn on 
and fight with the pull-up device T4 of driver 110, attempt­
ing to charge the read value line. 

On the latter half of the clock cycle, both the charge 
device T6 and the read port of the DRAM cell are disabled. 
The read line, with all gate and parasitic capacitances 
associated to it, retains the same value from previous half of 
the cycle. This value controls the output of the refresh 
inverter 110 which can selectively drive either the program-
ming lines by enabling the IWE and EWE signals, or drive 
out by enabling the WE4 signal received by T7. Enabling the 
IWE and any of WE0-3 signals will cause the refresh 
inverter 110 to write a new value into that memory cell. 

Pull-up devices are typically implemented using 
P-devices. However, in order to maximize the utilization of 
silicon area, N-device T6 is used instead for charging the 
memory column. The tradeoff of doing so is that the read 
line is only pulled up to a maximum of one threshold drop 
below the power rail, V dd-vrH· In such case, the voltage is 
approximately 3.SV. The 3.5 V input, though a legal high as 
according to the inverter 110, does cause the P-device of the 
inverter to not properly turn off. The undesirable conse­
quence is a fight of the two devices. Two factors in the 
design of the inverter assure that the NMOS transistor will 

effectively more than triple the gate area required by the 
pass-gate implementation. Even though full-switch provides 
a wider channel to reduce the resistance in the single path, 
the effect on speed by the added capacitance of P-device is 
greater than that of the reduction of resistance. The use of 
full-switch implementation will prove to be profitable only 
when the load capacitance is large. 

65 prevail in this fight. First, the N-device turns on with 3.SV, 
versus the 1.SV of the P-device. Second, the NMOS tran­
sistor is sized identically to the PMOS. Because the 



INTEL - 1012

6,052,773 
25 

N-device has greater mobility of electrons that the P-device, 
the former' s relative strength is about 2.5 times stronger than 
that of the latter, and will prevail to pull the output line low. 

Referring to FIG. 7F, the read enable signals re0-3 are 
generated from the CID by a decoder 130. In an actual 
implementation, the read enable lines are distributed to 
multiple 32 column memory blocks, MBl-4. Specifically, a 
single local context identifier decoder 130 is allocated for 
each group of four AE's. The memory blocks MBl-4 of 
those AE's are physically aligned so that common read 10 

enable lines re0-3 from the decoder can control the memory 
blocks MBl-4 in common. This decreases the real-estate 
required for the CID decoding. 

The level-one interconnect provides a balanced fan-in of 
local and global signals. As schematically illustrated in FIG. 15 

SA, the local interconnect lines 2-8 of FIG. 7B originate 
from the three vector elements of the same row, right 1, 2, 
and 3, and three more from the same column: up 1, up 2, up 
3. In combination with the one self feed back signal, a total 
of 7 intra-subarray signals are provided to each AE. As 20 

shown in FIG. SB, incoming global signals global 1-8 of 
FIG. 7B come from outside the subarray SA from each of the 
four directions. In total, the level 1 interconnect provides 15 
signals to each AE: 7 locals, 8 globals, and 1 self-feedback. 

FIG. 6 shows the level-two interconnect. This shared 25 

routing network routes logic signals betweenAE's over lines 
that are assigned by context programming in response to the 
broadcast context CID, allowing the same physical line to 
transmit logic signals from different AE's. Each subarray 
SAl,1-3,3 shares four bidirectional crossbars CBN, CBE, 30 

CBW, CBS. Each of the bidirectional crossbars CB act as a 
source of the eight input global signals to each subarray and 

26 
7C, the level-two memory L2Ml-8 can be implemented in 
a single 4 context by 32 column memory block 14B. Here, 
however, four columns are assigned to each of the eight 
second-level multiplexors. Further, the memory block is 
dual port as described in reference to FIG. 7D whereby one 
context can be currently used to control the multiplexors 
while one of the other 3 dormant contexts can be repro­
grammed with new context data. And, as discussed in 
reference to FIG. 7F, each group of four crossbar memory 
blocks can share a single decoder. 

While this invention has been particularly shown and 
describe with references to preferred embodiments thereof, 
it will be understood by those skilled in the art that various 
changes in form and details may be made therein without 
departing from the spirit and scope of the invention as 
defined by the appended claims. 

We claim: 
1. A single chip microprocessor having reprogrammable 

characteristics, comprising: 
processor for performing logic calculations in response to 

data input, and including a cache; and 
programmable gate array integrated with the processor 

and configurable by the processor, wherein the pro­
grammable gate array is interfaced directly with a 
register file of the processor and transforms logic 
signals being read from the cache, 

wherein the cache is an instruction-cache, and the pro-
grammable gate array functions as a programmable 
instruction decoder and cooperates with the instruction­
cache to convert instructions to a new format that is 
compatible with the processor. 

2. A microprocessor as described in claim 1, wherein the 
processor selects the context of the programmable gate 
array. 

3. A processor as described in claim 1, wherein the 
programmable gate array is configurable to operate as a 
function unit of the microprocessor. 

as a selector to transmit eight of the 16 total element output 
signals generated by that subarray. For example, crossbar 
CBE provides eight global signals to subarray SAl,1 that 35 

originate at subarray SA2, 1. Crossbar CBE also receives the 
element output signals that are generated by the sixteen 
array elements AE of subarray SAl,1 and selects one of the 
sixteen signal to drive into each of the eight lines of the 
subarray SA2,1. 

4. A microprocessor as described in claim 3, wherein the 
configurable gate array is configurable to operate as an 

40 application-specific accelerator. 

FIG. 9A shows two crossbar interconnections for an 
exemplary one of the subarrays SA extracted from the 
DPGAlO0. Specifically, the bidirectional crossbar CBN, for 
example, contains two unidirectional input and output cross­
bars CBOUT, CBIN with respect to that subarray SA The 45 

outgoing crossbar CBOUTpicks up the sixteen column local 
interconnect lines from each of the array elements and 
selectively provides only eight to an adjoining subarray SA 
(not shown). In the similar vein, the incoming unidirectional 
crossbar CBIN selectively provides eight of the sixteen 50 

signals from that adjoining subarray as the eight global 
signals received by the illustrated subarray. 

FIG. 9B shows the internal architecture of the unidirec­
tional crossbars CBIN,CBOUT. Here, eight level-two mul­
tiplexors L2Ml-8 receive the same sixteen local signals 55 

from the sending subarray SAl. Each one of these level-two 
multiplexors selects and transmits one of the signals to the 
second subarray SA2. The selective transmission of each 
one of these level-two multiplexors L2Ml-8 is controlled by 
eight level-two memories L2Bl-8 that are positioned locally 60 

in the crossbar. The level-two memories L2Bl-8 are 4 
context by 4 bit memories which receive the context iden­
tifier CID to selectively enable one of the four context 
arrays. As a result, different global routing patterns can be 
provided on every change in the context. 65 

These level-two memories L2Bl-8 are constructed as 
shown in FIGS. 7C-7E. More specifically, as shown in FIG. 

5. A microprocessor as described in claim 1, wherein the 
programmable gate array is configurable to generate a 
ready-result signal for indicating that the programmable gate 
array has concluded calculations on data received from the 
processor. 

6. A microprocessor as described in claim 1, wherein the 
programmable gate array is adapted to generate a ready­
input signal indicating that the programmable gate array is 
ready to receive new data from the processor. 

7. A microprocessor as described in claim 1, further 
comprising input/output pads for supporting off-chip 
communications, wherein the programmable gate array 
receives input signals from and provides output signals to 
the input/output pads. 

8. A microprocessor as described in claim 7, further 
comprising load and store registers for holding signals on 
the input/output pads, wherein the programmable gate array 
receives the input signals through load and store registers. 

9. A microprocessor as described in claim 1 wherein the 
instructions in the new format are provided to the processor. 

10. A single chip microprocessor having reprogrammable 
characteristics, comprising: 

processor for performing logic calculations in response to 
data input; and 

programmable gate array, integrated with the processor 
and configurable by the processor, which functions as 
a programmable instruction decoder, 



INTEL - 1012

6,052,773 
27 

wherein the processor further comprises: 

an expander; 

a concentrator; and 
at least one memory unit receiving addresses and data 

from the expander and providing data to the concen­
trator. 

11. A microprocessor as described in claim 10, wherein 
the memory unit is deployable as instruction and data 
caches. 

10 
12. A microprocessor as claimed in claim 10, wherein the 

expander and the concentrator are partially controlled by an 
instruction decoder and partially by programmable logic. 

13. A microprocessor as described in claim 10, wherein 
the memory is deployable as an explicit scratch pad memory. 

15 
14. A single chip microprocessor having reprogrammable 

characteristics, comprising: 

processor for performing logic calculations in response to 
data input; and 

programmable gate array integrated with the processor 20 

and configurable by the processor, 
wherein the processor comprises 

an expander; 

a concentrator; and 
25 

functional units that perform logic operations on input 
data from the expander and pass results to the concen­
trator. 

15. A microprocessor as described in claim 14, further 
comprising a route from the concentrator to the expander to 

30 
allow cascaded operations. 

16. A microprocessor as described in claim 14, further 
comprising memory units between the expander and con­
centrator. 

17. A microprocessor as described in claim 16, wherein 
35 

the memory units are groupable to accommodate wider data 
paths. 

28 
18. A microprocessor as described in claim 14, wherein 

the functional units include arithmetic logic units. 
19. A single chip microprocessor having reprogrammable 

characteristics, comprising: 
processor for performing logic calculations in response to 

data input; and 
programmable gate array integrated with the processor 

and configurable by the processor, 
wherein the processor comprises: 

functional units that perform logic operations on input 
data; and 

a reconfigurable interconnect that routes data output from 
the functional units and the programmable gate array 
back to the units along reconfigurable data paths. 

20. A microprocessor as described in claim 19, further 
comprising memory units in parallel with the functional 
units. 

21. A microprocessor as described in claim 20, wherein 
the memory units are groupable to accommodate wider data 
paths. 

22. A single chip microprocessor having reprogrammable 
characteristics, comprising: 

processor for performing logic calculations in response to 
data input, and including a cache; and 

programmable gate array integrated with the processor 
and configurable by the processor, wherein the pro­
grammable gate array is interfaced directly with a 
register file of the processor and transforms logic 
signals being read from the cache, 

wherein the cache is an instruction-cache, and the pro­
grammable gate array functions as a programmable 
instruction expander and cooperates with the 
instruction-cache to convert instructions to a new for­
mat that is compatible with the processor. 

* * * * * 




