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Systolic architectures, which permit multiple computations 
for each memory access, can speed execution of 

compute-bound problems without increasing// 0 requirements. 

Why Systolic Architectures? 

. ·High-performance, special-purpose computer sys-
" terns ai-e typically used to meet specific application re-
quii-errients or to off-load computations that are especial­
ly taxing to general-purpose computers. As hardware co~t 
and size continue to drop a9d processing requirements 
become well-understood in areas such as signal and image 
processing, more special-purpose systems are being con­
structed. However, since most of these systems are built 
on an ad hoc basis for specific tasks, methodological 
work in this area is rare. Because the knowledge gaihed 
from individual experiences is neither accumulated nor 
properly organized, the same errors are repeated. 1/0 and 
computation imbalance is a notable example-often, the 
fact that 1/0 interfaces cannot keep up with device speed 
is discovered only after constructing a high-speed, 
special-purpose device. 

We intend to help correct this ad hoc approach by pro­
viding a general guideline-specifically, the concept of 
systolic architecture, a general methodology for mapping 
high-level computations into hardware structures. In a 
systolic system, data flows from the computer rriemory in 
a rhythmic fashion, passing through mariy processing 
elements before it returns to memory, much as blood cir­
culates to and from the heart. The system works like an 
au tomb bile assembly line where different people work on 
the same car at different times and many cars are assem­
bled simultaneously. An assembly line is always linear, 
however, and systolic systems are sometimes two-dimen­
sional. They can be rectangular, triangular, or hexagonal 
to make use of higher degrees of parallelism. Moreover, 
to implement a variety of computations, data flow in a 
systolic system may be at multiple speeds in multiple di­
rections-both inputs and (partial) results flow, whereas 
only results flow in classical pipelined systems. Generally 
speaking, a systolic system is easy to implement because 
of its regularity and easy to reconfigure (to meet various 
outside constraints) because of its modularity. 

The systolic architectural concept was developed at 
Carnegie-Mellon University, 1-7 and versions of systolic 
processors are being designed and built by several indus­
trial and governmental organizations. 8-10 This article 

H. T. Kung 
Carnegie-Mellon U ni~ersity 

reviews the basic princip\e of systolic architectures and ex­
plains why they should result in cost-effective, high­
performance special-purpose systems for a wide range of 
problems. 

Key architectural issues in designing 
special-purpose systems 

Roughly, the cycle for developing a special-purpose 
system can be divided into three phases-task definition, 
design, and implementation. During task definition, 
some system performance bottleneck is identified, and a 
decision on whether or not. to resolve it with special­
purpose hardware is made. The evaluation required for 
task definition is most fundamental, but since it is often 
application-dependent, we will concentrate only on archi­
tectural issues related to the design phase and will assume 
routine implementation. 

Simple and regular design. Cost-effectiveness has 
always been a chief concern in designing special-purpose 
systems; their cost must be low enough to justify their 
limited applicability. Costs cari be classified as nonrecur­
ring (design) and recurring (parts) costs. Part costs are 
dropping rapidly due to advances in integrated-circuit 
technology, but this advantage applies equally to both 
special-purpose and general-purpose systems. Further­
more, since special-purpose systems are seldom produced 
in large quantities, part costs are less important than 
design costs. Hence, the design cost of a special-purpose 
system must be relatively smail for it to be more attractive 
than a general-purpose approach. 

Fortunately, special-purpose design costs can be reduced 
by the use of appropriate architectures. If a structure can 
truly be decomposed into a few types of simple substruc­
tures or building blocks, which are used repetitively with 
simple interfaces, great savings can be achieved. This is 
~specially true for VLSI designs where a single chip com­
prises hundreds of thousands of components. To cope 
with that complexity, simple and regular designs, similar 
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to some of the techniques used in constructing large soft­
ware systems, are essential. 11 In addition, special-purpose 
systems based on simple, regular designs are likely to be 
modular a_nd therefore adjustable to various performance 
goals-that is, system cost can be made proportional to 
the performance required. This suggests that meeting the 
architectural challenge for simple, regular designs yields 
cost-effective special-purpose systems. 

Concurrency and communication. There are essential­
ly two ways to build a fast computer system. One is to use 
fast components, and the other is to use concurrency. The 
last decade has seen an order of magnitude decrease in the 
cost and size of computer components but only an incre­
mental increase in component speed. 12 With current 
technology, tens of thousands of gates can be put in a 
single chip, but no gate is much faster than its TTL 
counterpart of 10 years ago. Since the technological trend 
clearly indicates a diminishing growth rate for component 
speed, any major improvement in computation speed 
must come from the concurrent use of many processing 
elements. The degree of concurrency in a special-purpose 
system is largely determined by the underlying algorithm. 
Massive parallelism can be achieved if the algorithm is 
designed to introduce high degrees of pipelining and 
multiprocessing. When a large number of processing 
elements work simultaneously, coordination and com­
munication become significant-especially with VLSI 
technology where routing costs dominate the power, 
time, and area required to implement a computation. 13 

The issue here is to design algorithms that support high 
degrees of concurrency, and in the meantime to employ 
only simple, regular communication and control to enable 
efficient implementation. 

Balancing computation with 1/0. Since a special­
purpose system typically receives data and outputs results 
through an attached host, 1/0 considerations influence 
overall performance. (The host in this context can mean a 
computer, a memory, a real-time device, etc. In practice, 
the special-purpose system may actually input from one 
"physical" host and output to another.) The ultimate 
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performance goal of a special-purpose system is-and 
should be no more than-a computation rate that bal­
ances the available 1/0 bandwidth with the host. Since an 
accurate a priori estimate of available 1/0 bandwidth in a 
complex system is usually impossible, the design of a 
special-purpose system should be modular so that its 
structure can be easily adjusted to match a variety of 1/0 
bandwidths. 

Suppose that the 1/0 bandwidth between the host and a 
special-purpose system is 10 million bytes per second, a 
rather high bandwidth for present technology. Assuming 
that at least two bytes are read from or written to the host 
for each operation, the maximum rate will be only 5 
million operations per second, no matter how fast the 
special-purpose system can operate (see Figure 1). Orders 
of magnitude improvements on this throughput are possi­
ble only if multiple computations are performed per 1/0 
access. However, the repetitive use of a data item requires 
it to be stored inside the system for a sufficient length of 
time. Thus, the 1/0 problem is related not only to the 
available 1/0 bandwidth, but also to the available 
memory internal to the system. The question then is how 
to arrange a computation together with an appropriate 
memory structure so that computation time is balanced 
with 1/0 time. 

The 1/0 problem becomes especially severe when a large 
computation is performed on a small special-purpose sys­
tem. In this case, the computation must be decomposed. 
Executing subcomputations one at a time may require a 
substantial amount of 1/0 to store or retrieve intermediate 
results. Consider, for example, performing then-point fast 
Fourier transform using an S-point device when n is large 
and Sis small. Figure 2 depicts then-point FFT computa­
tion and a decomposition scheme for n = 16 and S = 4. Note 
that each subcomputation block is sufficiently small so that 
it can be handled by the 4-point device. During execution, 
results of a block must be temporarily sent to the host and 
later retrieved to be combined with results of other blocks 
as they become available. With the decomposition scheme 
shown in Figure 2b, the total number of 1/0 operations is 
O(n log n/log S). In fact, it has been shown that, to per­
form the n-poirit FFT with a device of O(S) memory, at 
least this many 1/0 operations are needed for any decom­
position scheme. 14 Thus, for then-point FFT problem, an 
S-point device cannot achieve more than an O(log S) 
speed-up ratio over the conventional O(n log n) software 
implementation time, and since it is a consequence of the 
1/0 consideration, this upper bound holds independently 
of device speed. Similar upper bounds have been estab­
lished for speed-up ratios achievable by devices for other 
computations such as sorting and matrix multiplication. 14,15 

Knowing the 1/0-imposed performance limit helps pre­
vent overkill in the design of a special-purpose device. 

In practice, problems are typically "larger" than 
special-purpose devices. Therefore, questions such as 
how a computation can be decomposed to minimize 1/0, 
how the 1/0 requirement is related to the size of a special­
purpose system and its memory, and how the 1/0 band­
width limits the speed-up ratio achievable by a special­
purpose system present another set of challenges to the 
system architect. 
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Systolic architectures: the basic principle 

As a solution to the above challenges, we introduce 
systolic architectures, an architectural concept originally 
proposed for VLSI implementation of some matrix oper­
ations. 5 Examples of systolic architectures follow in the 
next section, which contains a walk-through of a family 
of designs for the convolution computation. 

A systolic system consists of a set of interconnected 
cells, each capable of performing some simple operation. 
Because simple, regular communication and control 
structures have substantial advantages over complicated 
ones in design and implementation, cells in a systolic 
system are typically interconnected to form a systolic ar­
ray or a systolic tree. Information in a systolic system 
flows between cells in a pipelined fashion, and communi­
cation with the outside world occurs only at the ''bound­
ary cells." For example, in a systolic array, only those 
cells on the array boundaries may be 1/0 ports for the 
system. 

Computational tasks can be conceptually classified 
into two families-compute-bound computations and 
1/0-bound computations. In a computation, if the total 
number of operations is larger than the total number of 
input and output elements, then the computation is 
compute-bound, otherwise it is 1/0-bound. For example, 
the ordinary matrix-matrix multiplication algorithm 
represents a compute-bound task, since every entry in a 
11).atrix is multiplied by all entries in some row or column 
of the other matrix. Adding two matrices, on the other 
hand, is 1/0-bound, since the total number of adds is not 
larger than the total number of entries in the two matrices. 
It should be clear that any attempt to speed up an 1/0-
bound computation must rely on an increase in memory 
bandwidth. Memory bandwidth can be increased by the 
use of either fast components (which could be expensive) 
or interleaved memories (which could create complicated 
memory management problems). Speeding up a com­
pute-bound computation, however, may often be accom-

(a) 

plished in a relatively simple and inexpensive manner, 
that is, by the systolic approach. 

The basic principle of a systolic architecture, a systolic 
array in particular, is illustrated in Figure 1. By replacing a 
single processing element with an array of PEs, or cells in 
the terminology of this article, a higher computation 
throughput can be achieved without increasing memory 
bandwidth. The function of the memory in the diagram is 
analogous to that of the heart; it' 'pulses'' data (instead of 
blood) through the array of cells. The crux of this ap­
proach is to ensure that once a· data item is brought out 
from the memory it can be used effectively at each cell it 
passes while being "pumped" from cell to cell along the 
array. This is possible for a wide class of compute-bound 
computations where multiple operations are performed 
on each data item in a repetitive manner. 

Being able to use each input data item a number of 
times (and thus achieving high computation throughput 
with only modest memory bandwidth) is just one of the 
many advantages of the systolic approach. Other advan­
tages, such as modular expansibility, simple and regular 
data and control flows, use of simple and uniform cells, 
elimination of global broadcasting, and fan-in and (pos­
sibly) fast response time, will be illustrated in various sys­
tolic designs in the next section. 

A family of systolic designs 
for the convolution computation 

To provide concrete examples of various systolic struc­
tures, this section presents a family of systolic designs for 
the convolution problem, which is defined as follows: 

Given the sequence of weights !w1, w2, ... , wk] 
and the input sequence !x1, X2, ••• , Xn ], 

compute the result sequence LY1, Y2, ... , Yn + 1 -kl 
defined by 

(b) 

+ 
5=4 
t 

n = 16 

Figure 2. (a) 16-point fast-Fourier-transform graph; (b) decomposing the FFT computation with n = 16 and S = 4. 
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Yout ~ Yin + W · Xin 

(b) 

Figure 3. Design B1: systolic convolution array (a) and cell 
(b) where x;'s are broadcast, w;'s stay, and Y;'s move 
systolically. 

We consider the convolution problem because it is a sim­
ple problem with a variety of enlightening systolic solu­
tions, because it is an important problem in its own right, 
and more importantly, because it is representative of a 
wide class of computations suited to systolic designs. The 
convolution problem can be viewed as a problem of com­
bining two data streams, w; 's amd xi's, in a certain man­
ner (for example, as in the above equation) to form a 
resultant data stream of Yi 's. This type of computation is 
common to a number of computation routines, such as 
filtering, pattern matching, correlation, interpolation, 
polynomial evaluation (including discrete Fourier trans­
forms}, and polynomial multiplication and division. For 
example, if multiplication and addition are interpreted as 
comparison and boolean AND, respectively, then the 
convolution problem becomes the pattern matching 
problem. 1 Architectural concepts for the convolution 
problem can thus be applied to these other problems as 
well. 

The convolution problem is compute-bound, since 
each input xiis to be multiplied by each of the kweights. If 
the xi is input separately from memory for each multi­
plication, then when k is large, memory bandwidth 
becomes a bottleneck, precluding a high-performance 
solution. As indicated earlier, a systolic architecture 
resolves this I/O bottleneck by making multiple use of 
each xi fetched from the memory. Based on this principle, 
several systolic designs for solving the convolution prob­
lem are described below. For simplicity, all illustrations 
assume that k = 3. 

(Semi-) systolic convolution arrays with global data 
communication. If an xi, once brought out from the 
memory, is broadcast to a number of cells, then the same 
xi can be used by all the cells. This broadcasting technique 
is probably one of the most obvious ways to make mul­
tiple use of each input element. The opposite of broad­
casting is fan-in, through which data items from a number 
of cells can be collected. The fan-in technique can also be 
used in a straightforward manner to resolve the I/O bot­
tleneck problem. In the following, we describe systolic 
designs that utilize broadcasting and fan-in. 

Design Bl-broadcast inputs, move results, weights 
stay. The systolic array and its cell definition are depicted 

(a) 

(b) 
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y 

Wout 

Figure 4. Design B2: systolic convolution array (a) and cell 
(b) where x;'s are broadcast, Y;'s stay, and w;'s move 
systolically. 

in Figure 3. Weights are preloaded to the cells, one at each 
cell, and stay at the cells throughout the computation. 
Partial results Yi move systolically from cell to cell in the 
left-to-right direction, that is, each of them moves over 
the cell to its right during each cycle. At the beginning 
of a cycle, one xiis broadcast to all the cells and oneyi, in­
itialized as zero, enters the left-most cell. During cycle 
one, w1 x 1 is accumulated to y 1 at the left-most cell, and 
during cycle two, w1 X2 and w2 X2 are accumulated to Y2 

and y 1 at the left-most and middle cells, respectively. 
Starting from cycle three, the final (and correct) values of 
Y1 , Y2, ... are output from the right-most cell at the rate 
of one Yi per cycle. The basic principle of this design was 
previously proposed for circuits to implement a pattern 
matching processor 16 and for circuits to implement 
polynomial multiplication. 17·20 

Design B2-broadcast inputs, move weights, results 
stay. In design B2 (see Figure 4), each Yi stays at a cell to 
accumulate its terms, allowing efficient use of available 
multiplier-accumulator hardware. (Indeed, this design is 
described in an application booklet for the TRW multi­
plier-accumulator chips. 21 The weights circulate around 
the array of cells, and the first weight w1 is associated with 
a tag bit that signals the accumulator to output and resets 
its contents.• In design BI (Figure 3), the systolic path for 
movingy;'s may be considerably wider than that for mov­
ing wi's in design B2 because for numerical accuracy Yi's 
typically carry more bits than wi 's. The use of multiplier­
accumulators in design B2 may also help increase preci­
sion of the results, since extra bits can be kept in these ac­
cumulators with modest cost. Design BI, however, does 
have the advantage of not requiring a separate bus (or 
other global network), denoted by a dashed line in Figure 
4, for collecting outputs from individual cells. 

Design F-fan-in results, move inputs, weights stay. If 
we consider the vector of weights (wk, wk- i, ... , w1) as 
being fixed in space and input vector (xn, Xn _ 1, ••• , x1) 

as sliding over the weights in the left-to-right direction, 
then the convolution problem is one that computes the in­
ner product of the weight vector and the section of input 
vector it overlaps. This view suggests the systolic array 

'To avoid complicated pictures, control structures such as the use of tag 
bits to gate outputs from cells are omitted from the diagrams ofthis article. 
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X5 X4 --• --• 
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Xout - Xin 

(b) 

Figure 5. Design F: systolic convolution array (a) and cell 
(b) where w;'s stay, x;'s move systolically, and Y;'s are 
formed through the fan-in of results from all the cells. 

shown in Figure 5. Weights are preloaded to the cells and 
stay there throughout the computation. During a cycle, 
all x;'s move one cell to the right, multiplications are per­
formed at all cells simultaneously, and their results are 
fanned-in and summed using an adder to form a new Y;­
When the number of cells, k, is large, the adder can be im­
plemented as a pipelined adder tree to avoid large delays 
in each cycle. Designs of this type using unbounded fan-in 
have been known for quite a long time, for example, in the 
context of signal processing33 and in the context of pat­
tern matching. 43 

(Pure-) systolic convolution arrays without global data 
communication. Although global broadcasting or fan-in 
solves the 1/0 bottleneck problem, implementing it in a 
modular, expandable way presents another problem. 
Providing (or collecting) a data item to (or from) all the 
cells of a systolic array, during each cycle, requires the use 
of a bus or some sort of tree-like network. As the number 
of cells increases, wires become long for either a bus or 
tree structure; expanding these non-local communication 
paths to meet the increasing load is difficult without slow­
ing down the system clock. This engineering difficulty of 
extending global networks is significant at chip, board, 
and higher levels of a computer system. Fortunately, as 
will be demonstrated below, systolic convolution arrays 
without global data communication do exist. Potentially, 
these arrays can be extended to include an arbitrarily large 
number of cells without encountering engineering diffi­
culties (the problem of synchronizing a large systolic ar­
ray is discussed later). 

Design RI-results stay, inputs and weights move in 
opposite directions. In design RI (see Figure 6) each par­
tial resulty;stays at a cell to accumulate its terms. The x;'s 
and w; 's move systolically in opposite directions such that 
when an x meets a w at a cell, they are multiplied and the 
resulting product is accumulated to the y staying at that 
cell. To ensure that each x; is able to meet every w;, con­
secutive x;'s on the xdata stream are separated by two cy­
cle times and so are thew/son thew data stream. 

Like design B2, design RI can make efficient use of 
available multiplier-accumulator hardware; it can also 
use a tag bit associated with the first weight, w1, to trigger 
the output and reset the accumulator contents of a cell. 
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Figure 6. Design R1: systolic convolution array (a) and cell 
(b) where Y; 's stay and x; 'sand Y;'s move in opposite direc­
tions systolically. 
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Wout W 

(b) Xout - Xin 

Figure 7. Design R2: systolic convolution array (a) and cell 
(b) where Y; 's stay and x; 'sand w; 's both move in the same 
direction but at different speeds. 

Design RI has the advantage that it does not require a bus, 
or any other global network, for collecting output from 
cells; a systolic output path (indicated by broken arrows 
in Figure 6) is sufficient. Because consecutive w;'s are well 
separated by two cycle times, a potential conflict-that 
more than one Y; may reach a single latch on the systolic 
output path simultaneously-cannot occur. It can also be 
easily checked that the y/s will output from the systolic 
output path in the natural orderingyi,_vi, .... The basic 
idea of this design, including that of the systolic output 
path, has been used to implement a pattern matching 
chip. 1 

Notice that in Figure 6 only about one-half the cells are 
doing useful work at any time. To fully utilize the poten­
tial throughput, two independent convolution computa­
tions can be interleaved in the same systolic array, but 
cells in the array would have to be modified slightly to 
support the interleaved computation. For example, an 
additional accumulator would be required at each cell to 
hold a temporary result for the other convolution com­
putation. 

Design R2- results stay, inputs and weights move in 
the same direction but at different speeds. One version of 
design R2 is illustrated in Figure 7. In this case both the x 
and w data streams move from left to right systolically, 
but the x;'s move twice as fast as the w/s. More precisely, 
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X3 --• --• 
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Yout 

Xout 

Yin + w · Xin 

Xin 

Figure 8. Design W1: systolic convolution array (a) and 
cell (b) where w; 's stay and x; 'sand Y; 's move systolically 
in opposite directions. 

each w; stays inside every cell it passes for one extra cycle, 
thus taking twice as long to move through the array as any 
x;, In this design, multiplier-accumulator hardware can be 
used effectively and so can the tag bit method to signal the 
output of the accumulator contents at e;..ch cell. Com­
pared to design RI, this design has the advantage that all 
cells work all the time when performing a single convolu­
tion, but it requires an additional register in each cell to 
hold a w value. This algorithm has been used for im­
plementing a pipeline multiplier. 22 

There is a dual version of design R2; we can have the 
w;'s move twice as fast as the x;'s. To create delays for the 
x data stream, this dual design requires a register in each 
cell for storing an x rather than a w value. For cir­
cumstances where the w;'s carry more bits than the x;'s, 
the dual design becomes attractive. 

Design WI-weights stay, inputs and resulrs move in 
opposite direc1ions. In design WI (and design W2, 
below), weights stay, one at each cell, but results and in­
puts move systolically. These designs arc not geared to the 
most effective use of available multiplier-accumulator 
hardware, but for some other circumstances they are 
potentially more efficient than the other designs. Because 
the same set of weights is used for computing all the y;'s 
and different sets of the x;'s are used for computing dif­
ferent y;'s, it is natural to have the w,'s preloaded to the 
cells and stay there, and let the x;'s and they;'s move along 
the array. We will see some advantages of this arrange­
ment in the systolic array depicted in Figure 8, which is a 
special case of a proposed systolic filtering array. 3 This 
design is fundamental in the sense that it can be naturally 
extended to perform recursive filtering2•3 and polynomial 
division. 23 

In design WI, the w;'s stay and the x;'s and y;'s move 
systolically in opposite directions. Similar to design RI, 
consecutive x;'s and y;'s are separated by two cycle times. 
Note that because the systolic path for moving the y;'s 
already exists, there is no need for another systolic output 
path as in designs RI and R2. Furthermore, for each i, y 1 

outputs from the left-most cell during the same cycle as its 
last input, X;+k-l (or x1+ 2 fork = 3), enters that cell. 
Thus, this systolic array is capable of outputting ay1every 
two cycle times with constant response time. Design WI, 
however, suffers from the same drawback as design RI, 

X7 X5 X3 --• x5--• x4 
Y3 Y2 ---• --• 
{a) 

Yout Yin + w · Xin 
X 

Xout - X 

{b) 

Figure 9. Design W2: systolic convolution array (a) and 
cell (b) where w;'s stay and x;'s and Y;'s both move 
systolically in the same direction but at different speeds. 

namely, only approximately one-half the cells work at any 
given time unless two independent convolution computa­
tions are interleaved in the same array. The next design, 
like design R2, overcomes this shortcoming by having 
both thex;'s andy;'s move in the same direction but at dif­
ferent speeds. 

Design W2-weights stay, inputs and results move in 
the same direction but at different speeds. With design 
W2 (Figure 9) all the cells work all the time, but it loses one 
advantage of design WI, the constant response time. The 
output of _v;now takes place kcycles after the last of its in­
puts starts entering the left-most cell of the systolic array .. 
This design has been extended to implement 2-D convolu­
tions, 6•24 where high throughputs rather than fast 
responses are of concern. Similar to design RI, design W2 
has a dual version for which the x;'s move twice as fast as 
the Y;'s. 

Remarks. The designs presented above by no means ex­
haust all the possible systolic designs for the convolution 
problem. For example, it is possible to have systolic 
designs where results, weights, and inputs all move during 
each cycle. It could also be advantageous to include inside 
each cell a "cell memory" capable of storing a set of 
weights. With this feature, using a systolic control (or ad­
dress) path, weights can be selected on-the-tly to imple­
ment interpolation or adaptive filtering. 24 Moreover, the 
flexibility introduced by the cell memories and systolic 
control can make the same systolic array impleme'lt dif­
ferent functions. Indeed, the ESL systolic processors.Jo 
utilizes cell memories to implement multiple functions in­
cluding convolution and matrix multiplication. 

Once one systolic design is obtained for a problem, it is 
likely that a set of other systolic designs can be derived 
similarly. The challenge is to understand precisely the 
strengths and drawbacks of each design so that an ap­
propriate design can be selected for a given environment. 
For example, if there are more weights than cells, it's 
useful to know that a scheme where partial results stay 
generally requires less 1/0 than one where partial results 
move, since the latter scheme requires partial results to be 
input and output many times. A single multiplier-accu­
mulator hardware component often represents a cost­
effective implementation of the multiplier and adder 
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RESULTS Y1-

... X3---+ 

0 MULTIPLIER 0 ADDER D . LATCH 

Figure 10. Overlapping the executions of multiply and add in design W1. 

needed by each cell of a systolic convolution array. 
However, for improving throughput, sometimes it may 
be worthwhile to implement multiplier and adder sepa­
rately to allow overlapping of their executions. Figure 10 
depicts such a modification to design WI. Similar 
modifications can be made to other systolic convolution 
arrays. Another interesting scenario is the following one. 
Suppose that one or several cells are to be implemented 
directly with a single chip and the chip pin bandwidth is 
the implementation bottleneck. Then, since the basic cell 
of some semi-systolic convolution arrays such as designs 
Bl and F require only three 1/0 ports, while that of a 
pure-systolic convolution array always requires four, a 
semi-systolic array may be preferable for saving pins, 
despite the fact that it requires global communication. 

Criteria and advantages 

Having described a family of systolic convolution ar­
rays, we can now be more precise in suggesting and evalu­
ating criteria for the design of systolic structures. 

(I) The design makes multiple use of each input data 
item. Because of this property, systolic systems can 
achieve high throughputs with modest 1/0 bandwidths 
for outside communication. To meet this criterion, one 
can either use global data communications, such as 
broadcast and unbounded fan-in, or have each input 
travel through an array of cells so that it is used at each 
cell. For modular expansibility of the resulting system, 
the second approach is preferable. 

(2) The design uses extensive concurrency. The process­
ing power of a systolic architecture comes from concur­
rent use of many simple cells rather than sequential use of 
a few powerful processors as in many conventional ar­
chitectures. Concurrency can be obtained by pipelining 
the stages involved in the computation of each single 
result (for example, design Bl), by multiprocessing many 
results in parallel (designs RI and R2), or by both. For 
some designs, such as WI, it is possible to completely 
overlap 1/0 and computation times to further increase 
concurrency and provide constant-time responses. 
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To a given problem there could be both one- and two­
dimensional systolic array solutions. For example, two­
dimensional convolution can be performed by a oite­
dimensional systolic array24•25 or a two-dimensional 
systolic array. 6 When the memory speed is more than cell 
speed, two-dimensional systolic arrays such as those 
depicted in Figure 11 should be used. At each cell cycle, all 
the 1/0 ports on the array boundaries can input or output 
data items to or from the memory; as a result, the 
ayailable memory bandwidth can be fully utilized. Thus, 
the choice of a one- or two-dimensional scheme is very 
depenqent on how cells and memories will be imple­
mented. 

As in one-dimensional systolic arrays, data in two­
dimensional arrays may flow in multiple directions and at 
multiple speeds. For examples of two-dimensional sys­
tolic arrays, see Guibas et al. 26 and Kung and Lehman4 

(type R), Kung and Leiserson5 and Weiser and Davis27 

(type H), and Bojanczyk et al. 28 and Gentleman and 
Kung29 (type T). In practice, systolic arrays can be 
chained together to form powerful systems such as the 
one depicted in Figure 12, which is capable of producing 
on-the-fly the least-squares fit to all the data that have ar­
rived up to any given moment.29 

For the systolic structures discussed in the preceding 
section, computations are pipelined over an array of cells. 
To permit even higher concurrency, it is sometimes possi­
ble to introduce another level of pipelining by allowing 
the operations inside the cells themselves to be pipelined. 
(Note that pipelined arithmetic units will become increas­
ingly common as VLSI makes the extra circuits needed for 

Figure 11. Two-dimensional systolic arrays: (a) type R, (b) type H, and 
(c) type T. 
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staging affordable.) Both designs WI and W2 support 
two-level pipelining. 25 Since system cycle time is the time 
of a stage of a cell, rather than the whole cell cycle time, 
two-level pipelined systolic systems significantly improve 
throughput. 

(3) Thereareonlyafewtypesofsimplecells. To achieve 
performance goals, a systolic system is likely to use a large 
number of cells. The cells must be simple and ofonly a few 
types to curtail design and implementation costs, but ex­
actly how simple is a question that can only be answered 
on a case by case basis. For example, if a systolic system 
consisting of many cells is to be implemented on a single 
chip, each cell should probably contain only simple logic 
circuits plus a few words of memory On the other hand, 
for board implementations each cell could reasonably 
contain a high-performance arithmetic unit plus a few 
thousand words of memory. There is, of course, always a 
trade-off between cell simplicity and flexibility. 

(4) Data and control flows are simple and regular. Pure 
systolic systems totally avoid long-distance or irregular 
wires for data communication. The only global commu­
nication (besides power and ground) is the system clock. 
Of course, self-timed schemes can be used instead for syn­
chronizing neighboring cells, but efficient implementa­
tions of self-timed protocols may be difficult. Fortunate­
ly, for any one-dimensional systolic array, a global clock 

parallel to the array presents no problems, even if the ar­
ray is arbitrarily long. The systolic array (with data flow­
ing in either one or opposite directions) will operate cor­
rectly despite the possibility of a large clock skew between 
its two ends. 30 However, large two-dimensional arrays 
may require slowdown of the global clock to compensate 
for clock skews. Except for this possible problem in the 
two-dimensional case, systolic designs are completely 
modular and expandable; they present no difficult syn­
chronization or resource conflict problems. Software 
overhead associated with operations such as address in­
dexing are totally eliminated in systolic systems. This ad­
vantage alone can mean a substantial performance im­
provement over conventional general-purpose com­
puters. Simple, regular control and communication also 
imply simple, area-efficient layout or wiring-an impor­
tant advantage in VLSI implementation. 

In summary, systolic designs based on these criteria are 
simple (a consequence of properties 3 and 4), modular 
and expandable (property 4), and yield high performance 
(properties 1, 2, and 4). They therefore meet the architec­
tural challenges for special-purpose systems. A unique 
characteristic of the systolic approach is that as the 
number of cells expands the system cost and performance 
increase proportionally, provided that the size of the 
underlying problem is sufficiently large. For example, a 
systolic convolution array can use an arbitrarily large 
number of cells cost-effectively, if the kernel size (that is, 
the number of weights) is large. This is in contrast to other 
parallel architectures which are seldom cost-effective for 
more than a small number of processors. From a user's 
point of view, a systolic system is easy to use-he simply 
pumps in the input data and then receives the results either 
on-the-fly or at the end of the computation. 

Summary and concluding remarks 

Bottlenecks to speeding up a computation are often due 
to limited system memory bandwidths, so called von Neu­
mann bottlenecks, rather than limited processing cap­
abilities per se. This problem can certainly be expected for 
1/0-bound computations, but with a conventional archi­
tectural approach, it may be present even for compute­
bound computations. For every operation, at least one or 
two operands have to be fetched (or stored) from (or to) 
memory, so the total amount of 1/0 is proportional to the 
number of operations rather than the number of inputs 
and outputs. Thus, a problem that was originally com­
pute-bound can become 1/0-bound during its execution. 
This unfortunate situation is the result of a mismatch be­
tween the computation and the architecture. Systolic ar­
chitectures, which ensure multiple computations per 
memory access, can speed up compute-bound computa­
tions without increasing 1/0 requirements. 

The convolution problem is just one of many compute­
bound computations that can benefit from the systolic 
approach. Systolic designs using (one- or two-dimen­
sional) array or tree structures are available for the 
following regular, compute-bound computations. 

Signal and image processing: 
• FIR, IIR filtering, and 1-D convolution2,3,31 ; 
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• 2-D convolution and correlation6,8, 10,24,25; 
• discrete Fourier transform2·3; 
• interpolation24 ; 
• 1-D and 2-D median filtering32 ; and 
• geometric warping. 24 

Matrix arithmetic: 
• matrix-vector multiplication5; 
• matrix-matrix multiplication5,27 ; 

• matrix triangularization (solution of linear systems, 
matrix inversion)5•29; 

• QR decomposition (eigenvalue, least-square compu-
tations)28,29; and 

• solution of triangular linear systems. 5 

Non-numeric applications: 
• data structures-stack and queue, 34 searching, 15 ,35 ,36 

priority queue,7 and sorting 7,15 ; 
• graph algorithms-transitive closure, 26 minimum 

spanning trees, 37 and connected components38 ; 
• language recognition-string matching I and regular 

expression 39 ; 
• dynamic programming26 ; 
• encoders (polynomial division)23 ; and 
• relational data-base operations. 4-40 

In general, systolic designs apply to any compute­
bound problem that is regular-that is, one where repeti­
tive computations are performed on a large set of data. 
Thus, the above list is certainly not complete (and was not 
intended to be so). Its purpose is to provide a range of 
typical examples and possible applications. After study­
ing several of these examples, one should be able to start 
designing systolic systems for one's own tasks. Some 
systolic solutions can usually be found without too much 
difficulty. (I know of only one compute-bound problem 
that arises naturally in practice for which no systolic solu­
tion is known, and I cannot prove that a systolic solution 
is impossible.) This is probably due to the fact that most 
compute-bound problems are inherently regular in the 
sense that they are definable in terms of simple .recur­
rences. Indeed, the notion of systolicity is implicit in quite 
a few previously known special-purpose designs, such as 
the sorting41 and multiply designs. 22 This should not 
come as a surprise; as we have been arguing systolic struc­
tures are essential for obtaining any cost-effective, high­
performance solution to compute-bound problems. It is 
useful, however, to make the systolic concept explicit so 
that designers will be conscious of this important design 
criterion. 

While numerous systolic designs are known today, the 
question of their automatic design is still open. But recent 
efforts show significant progress. 27•42 Leiserson and 
Saxe, for instance, can convert some semi-systolic 
systems involving broadcasting or unbounded fan-in into 
pure-systolic systems without global data communica­
tion. 42 A related open problem concerns the specification 
and verification of systolic structures. For implementa­
tion and proof purposes, rigorous notation other than in­
formal pictures (as used in this article) for specifying 
systolic designs is desirable. 

With the development of systolic architectures, more 
and more special-purpose systems will become feasi-
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ble-especially systems that implement fixed, well-under­
stood computation routines. But the ultimate goal is ef­
fective use of systolic processors in general computing en­
vironments to off-load regular, compute-bound compu­
tations. To achieve this goal further research is needed in 
two areas. The first concerns the system integration: we 
must provide a convenient means for incorporating high­
performance systolic processors into a complete system 
and for understanding their effective utilization from a 
system point of view. The second research area is to 
specify building-blocks for a variety of systolic processors 
so that, once built, these building blocks can be pro­
grammed to form basic cells for a number of systolic 
systems. The building-block approach seems inherently 
suitable to systolic architectures since they tend to use on­
ly a few types of simple cells. By combining these build­
ing-blocks regularly, systolic systems geared to different 
applications can be obtained with little effort. • 
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