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SUMMARY 

In this exposition we hope to dispel some common misconceptions about the nature of hysteresis in electronic circuits. 
We show that the jumps which one observes when measuring the driving point or transfer characteristics of common 
'hysteretic' elements are associated with parasitic dynamics in the circuit and therefore should not be considered part 
of the static characteristics. 

We examine the Schmitt trigger circuit, which exhibits 'hysteresis' in its transfer characteristic, and study a neural­
type pulse oscillator, one of a class of oscillators which relies for its operation on driving point 'hysteresis'. We 
illustrate the concepts of DC characteristics, the dynamic route, the jump phenomenon and parasitic dynamics. We 
show how a clear understanding of these circuit theoretic principles leads to better analysis and synthesis methods 
for 'hysteretic' circuits. 

1. INTRODUCTION 

In this paper we study the phenomenon whereby the driving point or transfer characteristic of an 
electronic circuit exhibits a 'loop'. The presence of such a 'loop' is commonly referred to as 'hysteresis' 
because the value of the output depends on both the present and past values of the input. 

The principal features of electronic hysteresis elements which endear them to design engineers are rapid 
switching between states, inherent noise immunity and memory of the input. Consequently, these elements 
have become indispensable building blocks in a variety of noise rejection and oscillator circuits. 

Traditionally, driving point and transfer hysteresis characteristics have been exploited in comparators, 
Schmitt triggers I and multivibrator circuits. 2 They are used in noisy environments to guard against false 
triggers, in communication systems to convert slowly varying analogue signals to digital form and in non­
linear oscillators to produce relaxation wave forms. 2 - 4 More recently, they have been used to generate 
chaos 3•5 and in artificial neural networks4 •6 to model biological behaviours. 

Despite its pervasive use, the loop hysteresis phenomenon is not widely understood. Consequently, 
models of it are often misleading; typical representations of the driving point (DP) and transfer 
characteristics (TC) of hysteretic elements consist of closed loops or disjoint line segments connected 
together by dashed lines and labelled with arrows, 1•2•7•8 quite unlike 'normal' DC characteristics (see 
Figure I). In particular, the symbol commonly used in the integrated circuits literature to denote a Schmitt 
trigger is a stylized representation of a hysteresis loop in a transfer characteristic (see Figure 2). The loop 
consists of a flat top and bottom, joined together by two line segments. These joining lines are usually 
very steep, suggesting a region of high gain in the transfer characteristic. This begs the questions: what 
is the value of this gain? How do we measure it? Indeed, does it make sense to talk about a gain at all? 9 

In this work we hope to dispel some common misconceptions about the nature of hysteresis in electronic 
circuits. We will explain how it arises and, with an understanding of the mechanism, how to model it. 
We will show by example that resistive models of hysteresis which assume discontinuous characteristics 
and jumps are incorrect. Not only do they complicate the analysis unnecessarily at times, but they do not 
always yield solutions. Further, we will show that it is necessary to augment these resistive models with 
parasitic energy storage elements in order to explain the mechanism for switching between states. 
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Figure I. Typical representations of hysteresis in (a) driving point and (b) transfer characteristics (adapted from References 2 and 
7 respectively) 
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Figure 2. Schmitt trigger symbols: (a) from Reference I; (b) from Reference 8; (c) adapted from Reference 10 

In Section 2 we review the concepts of driving point and transfer characteristics. In Sections 3 and 4 
we examine representative examples of circuits which exhibit hysteretic behaviour-the regenerative 
comparator (more commonly known as the Schmitt trigger), whose voltage transfer characteristic exhibits 
a 'hysteresis loop', and the neural-type pulse oscillator, 10 which relies for its operation on a 'hysteresis 
resistor' driving point characteristic. 2 We show how the operation of these circuits can be explained 
precisely by using non-linear circuit theory. 11 •12 

The circuits which we present here are not new; most will be well known to students and practising 
engineers alike. Some of the behaviours, though, may be quite surprising. Our objective is to present an 
alternative perspective on hysteresis in electronic circuits: to illustrate the conceptual framework of non­
linear circuit theory in the context of which hysteretic behaviour is readily understood. 

2. DRIVING POINT AND TRANSFER CHARACTERISTICS 

Before we proceed further, it is important to be clear on what are meant by the driving point (DP) and 
transfer characteristics (TC) of a network. 11 This section briefly reviews these concepts. 

The goal of circuit modelling is to produce a simple mathematical macromodel of a network which gives 
an adequate analytical description of its operation. The first step in analysing a circuit model N (such as 
that shown in Figure 3(a)) which contains resistive and energy storage elements is to split the network into 
two parts. The energy storage subnetwork NE is formed by extracting all capacitors and inductors from 
N. What remains are the resistive elements (resistors, independent and controlled sources, ideal 
transformers, gyrators) which are grouped together to form a single resistive subnetwork NR 
(Figure 3(b)). 
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(a) 

(b) 

Figure 3. (a) Network N to be analysed; (b) partition the network into resistive and energy storage subnetworks (NR and Nt 
respectively) 

A solution or operating point of this resistive subnetwork is a set of branch voltages and currents 
(normally piled up to form a solution vector) which satisfy Kirchhoff's current law (KCL), Kirchhoff's 
voltage law (KVL) and the constitutive relations of the resistive elements which comprise the circuit. 11 

The locus of operating points is the set of all solutions of the network. We typically describe the locus 
of operating points by looking at two components of the solution vector (branch voltages or currents) 
at a time. If we apply an ideal DC voltage or current source at one branch of the circuit NR and measure 
the corresponding voltage or current at another branch, we obtain a graphical relationship between two 
components. This relationship is called a driving point or transfer characteristic depending on where the 
measurements are made. 

The locus of operating points in the V-1 plane obtained by applying a voltage source Vs (current source 
Is, respectively) at one pair of terminals of NR (called the driving point terminals) and measuring the 
resulting current i into (voltage v across, respectively) the same pair of terminals (as shown in Figure 4) 
is called a driving point (DP) characteristic. 

The locus of operating points obtained by making measurements at a pair of terminals (called the 
transfer terminals) different from the driving point terminals (see Figure 5) is called transfer characteristic 
(TC). 



INTEL - 1021

474 M. P. KENNEDY AND L. 0. CHUA 

+ 
I,, V 

'V 

(a) (b) 

Figure 4. Driving point characteristics of resistive subnetworks NR: (a) NR voltage-controlled and driven by a voltage source; (b) 
NR current-controlled and driven by a current source 

Clearly, each graphical relationship between a pair of branch voltages and/or currents is either a driving 
point or a transfer characteristic: 

The importance of the DP representation at a pair of terminals of NR is that it can be interpreted as 
the V-J curve of the equivalent two-terminal resistor obtained by considering the entire network NR as 
a two-terminal black box as far as the driving point terminals are concerned. 11 We will use this fact when 
analysing the switching behaviour of 'hysteretic' elements in Sections 3 and 4. 

The DP characteristic of a 'black box' network is independent of how the box is connected to other 
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V 
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Figure 5. Voltage transfer characteristic for a resistive network NR, Note that the dependent voltage must be measured without 
loading the measurement port 11 
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components and is thus a true characterization of the network. 11 In contrast the TC is an incomplete 
characterization of the network since it is defined for a specific load on the measurement port (open circuit 
for a transfer voltage, short circuit for a transfer current) and therefore changes when the transfer 
terminals are connected to a different load. Consequently, the TC is of little use in predicting the 
behaviour of a circuit when embedded in a larger network unless the load matches that specified in the 
definition. 

It is important to keep in mind that the driving point and transfer characteristic are defined and 
meaningful only for resistive networks. To use them to represent a network as a 'black box' is to assume 
that the effects of internal dynamics are negligible; equivalently, one supposes that the circuit is entirely 
resistive. Therein lies the problem with describing 'hysteretic' elements in terms of their driving point and 
transfer characteristics: the 'hysteretic' behaviour is caused by parasitic energy storage elements, which 
one fails to include in a purely resistive model. If parasitic dynamics are included in the model, the 
switching mechanism and associated hysteresis are readily understood. 

3. HYSTERETIC TRANSFER CHARACTERISTICS 

3.1. The Schmitt trigger 

In this subsection we study a class of circuits which have 'hysteretic' transfer characteristics. By a 
hysteretic transfer characteristic we mean that the output changes state at one value of the input if the 
latter is increasing and at a different value of the input if it is decreasing. The most common example 
of such an element is the regenerative comparator, usually referred to as the Schmitt trigger. 13 

The Schmitt trigger is widely used in mixed mode systems to convert a slowly varying analogue input 
voltage to an almost discontinuous signal having abrupt jumps. This circuit has extensive applications for 
noise rejection in line receivers, comparators and other signal-processing circuits. The basic voltage­
follower Schmitt trigger can be realized by using positive feedback around an operational amplifier as 
shown in Figure 6. 14 

Like many op amp circuits, the Schmitt trigger is routinely described in terms of its transfer 
characteristic. In the following we will show that the discontinuous voltage transfer characteristic which 
one obtains (by measurement or simulation) by increasing the input voltage and then decreasing it, all 
the while monitoring the output voltage, is typically not the complete DC transfer characteristic of the 
Schmitt trigger. 

Further, by definition, even the correct DC transfer characteristic is insufficient to describe the 
behaviour of the circuit because switching is a dynamic phenomenon which results from the presence of 
parasitic energy storage elements. 

+ + 

Figure 6. Non-inverting operational amplifier Schmitt trigger circuit. R; = 10 kll, Rr = 20 kll, the op amp is 1/4 TL074 
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(a) (b) 

Figure 7. Experimentally measured voltage transfer characteristics for the op amp Schmitt trigger circuit in Figure 6: (a) hysteresis 
loop; (b) discontinuous characteristic. Horizontal and vertical scales are Vin and Vout, respectively, 2 V/div each 

Experimental observations. If one measures the characteristics of the op amp Schmitt trigger circuit 
shown in Figure 6 by slowly increasing the input voltage Vin and recording the output Vour, one finds that 
as the input is increased from a large negative value, the output remains in negative saturation until a 
positive threshold voltage VH is reached, at which time the output quickly switches to positive saturation. 
The output remains in positive saturation until the input is reduced through VL, the lower threshold for 
switching, at which point it jumps back to negative saturation. The difference between VH and VL is called 
the hysteresis voltage VHvsr (see Figure 2(c)). 

Figure 7 shows two X- Y oscilloscope traces produced by applying a triangular voltage wave form Vin 

at the input of the Schmitt trigger in Figure 6 (X-axis) and plotting the output on the Y-channel. With 
an input sweep frequency of 10 kHz we obtain a closed 'hysteresis' loop (Figure 7(a)). If the frequency 
is reduced almost to DC, the jumps become breaks and the measured transfer characteristic appears to 
be discontinuous (Figure 7(b)). 

Our experimental observations (Figure 7) that the shape of the input-output voltage transfer 
characteristic varies with frequency suggest that switching is a dynamic phenomenon. We shall show in 
Section 3.3 that the jump mechanism is indeed a manifestation of parasitic dynamics. Before we begin 

+ 
+ 

vin -=- Vee 

Figure 8. TTL Schmitt trigger circuit (adapted from Reference I). Vee= 5 V, R1 = 3·9 kn, Ri = 2·7 kn, RE= I kn, Q1 and Qi are 
2N1893 
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to develop a complete dynamic model of the circuit, though, we should be sure that the resistive 
subnetwork accurately reflects its DC characteristics. 

Simulation results. Computer simulations as well as experimental observations can easily lead one to 
believe that the TC of the Schmitt trigger is discontinuous. Consider the transistor circuit shown in 
Figure 8. This is the standard circuit configuration which is used in the digital TTL series Schmitt 
trigger. 1•15 We measured the transfer characteristic of this circuit experimentally by applying 0-5 V 
sawtooth voltage wave form at the input. The sweep frequency was 0·05 Hz. The observed TC is shown 
in Figure 9(a). Note that it consists of two disconnected horizontal segments. 

Using SPICE 2G6 and the default BJT model parameters, we plotted the DC transfer characteristic of 
the network by increasing the input voltage from zero to 4 V and then decreasing it back to zero. The 
resulting transfer characteristic is shown in Figure 9(b). This characteristic too is discontinuous. 

It is tempting to conclude that the Schmitt trigger has a two-segment discontinuous transfer 
characteristic. The fact that the segments are disconnected (or are possibly connected by steep sides) 
should not cause concern. Because the DC characteristics of networks are relationships (between voltages 
and currents which satisfy Kirchhoff's voltage and current laws) and not necessarily functions, it is 
perfectly legitimate from a circuit theoretic point of view to have a discontinuous transfer characteristic. 
It is also perfectly legitimate to have vertical segments joining the horizontal portions of the characteristic 
to form a loop. 

It might come as a surprise, therefore, to learn that the true DC transfer characteristic of the Schmitt 
trigger neither exhibits a loop nor is discontinuous. With careful analysis, experimental methods and 
simulation techniques we will show how to determine the true DC characteristics of these circuits. 

3.2 The non-inverting op amp Schmit/ trigger: transfer characteristic 

In this subsection we will derive the complete DC transfer characteristic of the op amp Schmitt trigger 
shown in Figure 6 by using piecewise-linear (PWL) circuit analysis. 12 Similar PWL studies of other 
Schmitt trigger circuit configurations can be found in References 16 and 17. 

While the characteristics which we derive here can be obtained by other (possibly quicker) means, PWL 
analysis has the advantage that it provides an algorithm for reducing a complex non-linear problem to 
an equivalent set of linear problems. 18• 19 The solutions and regions of validity of these linear circuits are 
determined symbolically either by hand (as we do here) or by computer. The linear regions are then 
jointed together to reconstruct the solution of the original non-linear problem. 

l.SOO ~~-~-~~-~-~-~--~-' 

-o. 500 4 .500 
(a) (b) 

Figure 9 . Partial input-output voltage transfer characteristics for the TTL Schmitt trigger of Figure 8: (a) measured (horizontal and 
vertical scales u;0 and Uou, 500 mV/div); (b) SPICE simulation (default BJT model parameters) 
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(a) (b) 

Figure 10. (a) Finite gain op amp model 12 and (b) its three-segment PWL voltage transfer characteristic 

Throughout this paper we model the op amp by a voltage-controlled voltage source with a three­
segment piecewise-linear DC transfer characteristic (finite gain non-linear op amp model 12 ). The transfer 
characteristic of the finite gain op amp model is shown in Figure 10 and summarized in Table I; the value 
of Vd determines whether the op amp is operating in the negative saturation, linear or positive saturation 
region. For completeness, this model takes into account the finite gain A associated with the linear region 
region of a real op amp; by letting A become infinite, we recover the ideal (infinite gain) op amp model. 12 

Piecewise-linear circuit analysis of the op amp Schmitt trigger is performed by replacing the op amp 
with its linear and saturation models in turn and performing a linear analysis in each region. We first 
substitute the idealized finite gain model of Figure 10 for the real op amp in Figure 6 and then replace 
this voltage-controlled voltage source by its equivalent circuit in each of the three regions of operation, 
as shown in Figure I I. We analyse the resulting three linear circuits shown in Figure 12. For convenience 
we have abbreviated Vin by V; and Vout by v0 in the analysis. 

Op amp in negative saturation (Figure 12(a)). Writing KCL at the non-inverting input of the op amp, 
we obtain 

i = Gi(Vd - V;) + Gr(Vd - Vo)= - G;v; +(Gr+ G;)Vd - Grvo 

-Sat 

A 

Vo= -E.-;., 

NEGATIVE SATURATION 

i----7 

,i I • I 
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Table I 

Linear 

E,-;., E.+ .. , 
--~ Vd~-A....., ...., A 

Vo= Avd 
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Figure 11. Equivalent finite gain op amp models for (a) the negative saturation region, (b) the linear region and (c) the positive 
saturation region 
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Figure 12. Equivalent circuits for the non-inverting op amp Schmitt trigger (Figure 6) in each region of the finite gain op amp model: 
{a) negative saturation region; (b) linear region; (c) positive saturation region 

where Gi = 1/ Ri and Gr= 1/ Rr. In this region Vo = - E,---;.,. Hence 

i = GiVi +(Gr+ Gi)Vd + GrE,---;., 

For the ideal op amp model the controlling branch is an open circuit (i = 0); this gives 

GiVi-GrE,---;., 
Vd=-----

Gi+Gr 

(1) 

To determine the boundary of the negative saturation region, we have from Table I that Vo= - E.---;., 
when Vd ~ -E,---;.iJA. Equivalently, 

GiVi - GrE,---;., ~ E,---;., 
Gi+Gr ~ A 

Thus the op amp is in negative saturation when 

. ~ _ (1 - A )Gr+ Gi E-
v,~ AGi sat 
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Op amp linear (Figure 12(b)). In the linear region Vo= AVd, Hence 

i = - GiVi +(Gr+ Gi)Vd - GrAvd = - G;Vi + [(l - A )Gr+ Gd Vd 

With i = 0 as before this gives 

G;Vj 
Vd=------

(1- A)Gr+ Gi 

(2) 

The input-output voltage gain for the Schmitt trigger when the op amp is in its linear region is thus 
defined by 

AGi 
Vo=------ Vi 

(1- A)Gr+ Gi 

To determine the extent of the linear region, recall that the op amp operates in its linear region 
whenever 

Equivalently, 

_ £;;_, ~ G;v; ~ E/a1 
A """' (1 - A )Gr+ Gi "" A 

Thus the op amp behaves linearly for 

(1 - A )Gr + G; E + ~ . ~ _ (1 - A )Gr+ G; E -
AG; sat-..,, V1--: AGi sat 

Op amp in positive saturation (Figure 12(c)). In this region Vo== Es~,. Hence 

i = - G1Vi +(Gr+ G;)Vd - GrE.+a, 

With i = 0 once more, 

Now Vo = Es~t when 

Equivalently, 

G;v;+GrE.+a1 
Vd=-----

Gi+Gr 

V >-, E.+,11 
d r A 

G;v; + GrE/,u >- E.-1;,_, 
Gi+ Gr r A 

Thus the op amp is in positive saturation when 

. >- (I - A)Gr+ G; E+ 
V1 ~ AG; sat 

(3) 

The resulting transfer characteristic is shown graphically in Figure I 3 and summarized in Table II. 
Note that the characteristic consists of three distinct segments whose endpoints correspond to the 

breakpoints of the piecewise-linear TC of the op amp. Because the characteristic is folded back on itself 
to form a mirrored letter Z, a given value of v; between the folds (in the region of 'hysteresis') does not 
produce a unique output voltage v0 • Nevertheless, the output is uniquely determined by specifying both 
v; and vd, 
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Figure 13. Voltage transfer characteristic (summarized in Table II) for the op amp Schmitt trigger shown in Figure 6 (identify v, 
with Vin and Vo with Voud 

Experimental verification. We confirmed this analysis experimentally by using the circuit shown in 
Figure 14. The network consists of a summing amplifier (top), a Schmitt trigger (with AC feedback, 
bottom) and an independent voltage source (top left). To measure the TC, we must find all operating 
points of the Schmitt trigger, where each operating point corresponds to a DC solution of this circuit. t 
For simplicity we assume that the op amps are ideal; 12 they have infinite input impedance, zero output 
impedance and exhibit infinite gain in their linear regions of operation. We shall see that this model 
accurately reflects the behaviour of the real circuit. In particular, the error is assuming A -+ oo instead 
of the typical experimental value of 100 000 is just 0·001 OJo. 

At DC the capacitor Cr draws no current, so we can replace it by an open circuit when drawing the 
DC equivalent circuit for the network. Since no current flows into the input terminals of the ideal op amp 
model, 12 the voltage drop across Rb at DC is zero. Hence we can also remove Rb and examine the reduced 
DC equivalent circuit, shown in Figure 15. 

Op amp 

-Sat 

Linear 

-Sat 

Table II 

Vo 

AG; 
V; 

(I - A)Gr+ G; 

E,+,., 

Valid for 

(l-A)Gr+G;E+ (l-A)Gr+G; _ 
sat~ V; ~ - -'----'---'-----' Esat 

AG; AGi 

(I - A )Gr + G; E + 
Vi;;:: sat 

AG; 

t A real op amp such as the TL074 has a small non-zero output impedance which in this case is considerably smaller than RH and 
consequently has negligible loading effect on the TC. 
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Figure 14. Op amp network for determining the TC of the Schmitt trigger of Figure 6. The circuit consists of an independent voltage 
source u (top left), an inverting summer (top) and a Schmitt trigger with AC feedback (bottom). Ru= 20 kn, RH= 20 kO, 

Rv = 20 k(l, Rr = 20 kn, Ri = IO kO, Rb= 470 n, Cr= 470 pF, op amps are 1/4 TL074 

+ u 

r---------7 
I I 
I I 
I ~I __. 

+ 
+ 
Vout 

I -=- I L _________ J 
SCHMITT TRIGGER 

Figure I 5. DC equivalent circuit of Figure 14. Note the Schmitt trigger at the bottom, which is similar to that in Figure 6 
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We assume initially that the upper op amp is operating in its linear region; therefore its inverting input 
is a virtual ground. Writing KCL at the inverting input of the upper op amp, we obtain 

GuU + GHVout + GvVin = 0 

where Gu= 1/Ru, GH = 1/RH and Gv == 1/Rv. We recognize this as the governing equation of an inverting 
summing amplifier. 

If we let Gu = GH = Gv, then the summing amplifier is simply imposing the constraint 

U + Vout + Vin = 0 

or equivalently, 

U = - (Vout + Vin) 

Setting u = 0, we obtain Vou1 = - Vin• Since the ideal op amp model has zero output impedance (and is 
therefore insensitive to loading effects), the DC solution(s) (operating point(s) of the circuit) can be 
determined by intersecting the line Vou• = - Vin with the transfer characteristic of the Schmitt trigger. 

The particular set of values in our experimental circuit (A-+ oo, Est.1 = 4 V, Es--._1 = 4 V, Rr = 20 kO, 
Ri = IO kO) yields the three-segment piecewise-linear transfer characteristic shown graphically in 
Figure 16(a) and summarized in Table III. 

Intersecting the line Vou1 = Vin with the characteristic (as shown in Figure 16(b)) now gives a unique 
operating point at the origin, exactly as is found experimentally. It is instructive to note that this 
immediately rules out the possibility that the TC is either discontinuous (which would yield no operating 
point (Figure 16(c)) or forms a loop (which would produce multiple solutions (Figure 16(d)). 

By sweeping u from - 8 to 8 V, we traced out the entire transfer characteristic. The resulting plot of 
Vou1 versus Vin is shown in Figure 16(e) and confirms our analysis. Note that - 8 < u < 8 V implies that 
- 4 < Vin < 4 V, so the summing op amp remains in its linear region throughout; this validates our earlier 
assumption that its inverting terminal is a virtual ground. 

Verification by simulation. How do we reconcile this transfer characteristic with the SPICE results 
which suggested that the TC might be discontinuous? The reason for the discrepancy is simply that the 
two-segment transfer characteristic is incomplete because circuit simulation programmes such as SPICE 
which use the Newton-Raphson method 20 for DC analysis have trouble locating more than one solution. 
The Newton-Raphson method depends for its convergence on having a good initial guess of the answer. 
If there are multiple solutions (as in the 'hysteresis' region of the transfer characteristic), the simulator 
either finds one operating point or bounces back and forth between solutions without converging (as 
happens at the turning points of the TC). 

With more care we plotted the complete DC transfer characteristic of the TTL Schmitt trigger circuit 
using SPICE; the result is a continuous curve (Figure l 7(a)). The upper and lower horizontal segments 
are exactly as before (compare with Figure 9); the middle segment of this plot was obtained by starting 
the DC analysis almost at the centre of the negative gain portion (Vin= 2· l V), increasing Vin and then 
restarting from the centre and decreasing Vin• These results were confirmed experimentally (Figure l 7(b)) 
by using the constraining circuit shown in Figure 18. t Once again our experimental observations match 
the SPICE simulations exactly and confirm that the TC is continuous. 

3.3. Hysteresis: the complete picture 

We have shown that the TC of the op amp Schmitt trigger circuit is neither a loop nor discontinuous 
but is shaped like a mirrored letter Z. Nevertheless, even this complete TC cannot explain the switching 

t The unity-gain buffer on the lower left is necessary because the TC description specifies non-instrusive (no-load) voltage and 
current measurements. 11 
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(a) (b) 

(c) (d) 

(cl 

Figure 16. Complete transfer characteristics of the non-inverting op amp Schmitt trigger oscillator . (a) Theoretical solution. (b) DC 
solution for the circuit of Figure 14 determined by intersecting the line Vou, = -(Vin+ u) with the theoretical input-output voltage 
transfer characteristic. With u = 0 there is a unique solution at the origin. (c,d) DC solutions for the circuit of Figure 14 (with u = 0) 
predicted by assuming (c) a discontinuous TC and (d) a loop TC with vertical sides. The discontinuous TC predicts no solution; 
the loop ought to have two solutions at (Vin, Vout) = (2, - 2) and ( - 2, 2). (e) Experimentally measured TC for the circuit in Figure 14 

(horizontal and vertical scales are 2 V / div each); compare with (a) 

Op amp 

-Sat 
Linear 
+Sat 

Table III 

Vout 

-4 V 
-2Vin 

4V 

Valid for 

Vin~ 2 V 
-2 V ~Vin~ 2 V 
Vin;;,, 2 V 
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1.500 ~-~-~-~-~-~-~-~-~-~~ 

-0.500 < .500 

(a) 

Figure 17. Complete input-output voltage transfer characteristic for the TTL Schmitt trigger of Figure 8: (a) SPICE simulation; 
(b) measured (horizontal and vertical scales 500 mV/div) 

Ru 

+ u 
R,, 

Vee 

-:-

Figure 18. Circuit to measure the voltage TC of the TTL Schmitt trigger shown in Figure 8. Capacitor Cr provides stabilizing AC 
feedback . The unity-gain buffer isolates the output from the load RH. Ru = 18 k!l, RH= 18 k!l, R, = 18 k!l, R 1 = 3·9 k!l , 

R2 = 2·7 k!l, RE = I kf!, Cr= 5 µF, Q1 and Qz are 2Nl893, op amps are 1/4 TL074 
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mechanism. The inadequacy of the TC description stems from the simple fact that the DC transfer 
characteristic of any circuit is a static object which characterizes onJy the resistive part of the network. 

Recall that every DC operating point lies on the transfer characteristic. Our experimental evidence 
(Figure 7(a)) shows that in the course of switching, when the input voltage increases monotonically, the 
output voltage also increases monotonically. In particular, the output voltage does not move from - £ 5-;_1 

to Es!, along the (static) transfer characteristic, since this would require that the input should decrease 
while the output switched from negative to positive saturation (in order to follow the Z-characteristic). 
The jumps which occur when one measures the physical circuit are clearly not part of the transfer 
characteristic and therefore must be dynamic phenomena which result from the presence of parasitic 
energy storage elements. 

Equivalently, we known from Section 3·2 that the TC of the op amp Schmitt trigger is continuous: it 
consists of three connected segments. Experimentally we could measure just the two saturated segments 
of the open-loop characteristic. We could not see the middle segment; therefore it is unstable, implying 
that dynamics are involved. 

By expecting to be able to characterize the Schmitt trigger with a transfer characteristic, one implicitly 
assumes that the network is resistive, i.e. that the effects of parasitics are negligible at the frequencies of 
interest. This is clearly not a valid assumption. Therefore a complete model of the Schmitt trigger must 
include at least one energy storage element. 

3.4. Dynamical analysis of the op amp Schmitt trigger 

Let us consider the op amp Schmitt trigger circuit once more, this time assuming that there is a smaU 
amount of parasitic capacitance Cp across the input terminals of the op amp (see Figure 19). Once again, 
for the sake of completeness, we use the finite gain (resistive) op amp model: 12 the input terminals draw 
no current, the output resistance is zero and the voltage transfer relation is a three-segment piecewise­
linear characteristic (see Figure 10). The op amp has finite gain A (• 1) in its linear region. 

The equivalent circuit N is shown in Figure 20(a), where /( • ) is the voltage transfer characteristic of 
the op amp. Choosing Vd as the state variable and writing the state equation, we obtain 

dVd 
Cp dt = Gi ( Vi - Vd) + Gr( Vo - Vd) 

where Gi = 1/Ri and Gr= 1/Rr. 
The output voltage is defined by the piecewise-linear read-out map 

Vo =/(Vd) 

+ + 

Figure 19. Op amp Schmitt trigger with parasitic input capacitance Cp 
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Figure 20. (a) Equivalent circuit model N for Figure 19, showing the input voltage v; as a voltage source. (b) Resistive subnetwork 
NR formed by extracting the energy storage elements (just the single capacitor Cp) from N 

Substituting for v0 in the state equation gives 

dvd 
Cp dt = GiVi + [Grf(vd) - Grvd - GiVd] = - g(vd, v;) 

Let us now extract the energy storage element Cp and form the resistive subnetwork NR shown in 
Figure 20(b). The driving point characteristic of this network (from the point of the capacitor Cp) can 
be obtained by applying an ideal voltage source across its terminals 1-1 ' and determining the current 
which flows. The DP plot (which is described by equations (1)-(3) from Section 3.2) is shown in 
Figure 21. Note that the curve is parametrized by Vi, the effect of which is to shift the characteristic up 
or down by an amount equal to - G;Vi. 

We have seen in Section 2 that the DP plot of a network is the v-i characteristic of the equivalent 
resistor connected across the driving point terminals. Thus NR can be replaced by a single non-linear 
resistor described by iR = g(vR, Vi)- When Vi is fixed, we can drop the dependence on v; and write 
iR = g(VR). 

_ [(l-A)G1 +Gi ] _ 
l max--G;V; - A Esa, 

I _ G [(l-A)G1 +G; ] + 
min-- ,v; + A E,01 

Figure 21. Driving point characteristic at terminals 1-1' of NR in Figure 20(b) assuming the finite gain PWL op amp model. 12 The 
port exhibits negative resistance when the op amp is operating in its linear region 
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Equilibrium points. The network N is now equivalent to the first-order RC circuit shown in Figure 22, 

whose equilibrium points (Qa, Qb and Qc in Figure 21) are defined by g(vR) = 0. Note that Vd = VR and 
that i = iR, The function g( ·) has a local minimum at 

and a local maximum defined by 

(l - A )Gr + G; + 
~n=-~¼+------E~, 

A 

I _ _ G· . _ (1 - A )Ge + G; E _ 
max - 1V1 A sat 

The number of equilibrium points depends on the signs of /min and Imax: one if /min > 0 or Imax < 0; 
two if /min= 0 or lmax = 0; and three if /min < 0 and Imax > 0. 

There is an equilibrium point Qb for which the op amp is in its linear region of operation only if 

Equivalently, 

(l - A )Ge + Gi E + ~ . ~ (l - A )Ge + Gi E -
AG; sat--: V,---: - AG; sat 

Otherwise, the op amp is in saturation at equilibrium. 

Stability. We can determine the stability of the equilibrium points by considering the linearization of 

the state equation in each of the three regions of operation of the op amp. 
We have that 

Linearizing about an equilibrium point Vd0, we obtain 

Cp d;d = [Gr(/'(Vd0 )- 1) - G;] Vd 

When Vdo > Es~t/ A or VJ0 < -Esat/ A (corresponding to saturation), f'( ·) = 0; in the linear region 
f'( ·)=A. Thus equilibrium points Qa and Qc in the saturated regions are stable for all positive resistors 
R; and Rr. On the other hand, an equilibrium point Qb in the linear region is almost always unstablet 
since we have assumed A • 1. Therefore noise in the circuit will prevent us from observing an equilibrium 
point in the linear region. Hence the output of the Schmitt trigger is only ever observed in the saturated 

region. This is why we could not see the central portion of the TC when we tried to measure it in 
Section 3.1. Let us now see how switching occurs. 

Figure 22. Reduced equivalent circuit for N of Figure 19. NR has been replaced by a single non-linear resistor with driving point 
characteristic iR = g(vR) given by Figure 21. Note that Vd = VR and that i = iR 

tQb is stable only if Gr{A - I)< G;. 
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The Jump mechanism. The state equation for our RC equivalent circuit for N is Cp dvct/dt = - i. This 
implies that Vct decreases when i > 0 and Vd increases when i < 0. We denote this graphically by marking 
the driving point characteristic with arrows to indicate the dynamic route (Figure 23(a)). 11 •12 

Let us assume initially that the Schmitt trigger is in negative saturation, with a stable equilibrium point 
Qa. Of the other two equilibrium points, point Qb (corresponding to the linear regime) is unstable while 
Qc is stable. As Vi is increased slowly, t the driving point characteristic g(vd, Vi) slides downwards (Qa 

Vet vd V.; 

Qa.,b 

iR Vo Vo 

QC 

.QC 
0 Qc 

V<[ Va vi 

(a) (b) (c) 

Figure 23. The jump mechanism. Column (a) ,hows how the DP characteristic of Figure 21 moves downwards as v, is increased. 
The stable operating point Q. eventually collides with the unstable one Qh at Ima,= 0, where the two coalesce and disappear, leaving 
just one stable equilibrium Qc when /""" < 0, to which all initial conditions comerge. Columns (b) and (c) show the corresponding 

behaviour of the Vd - Vo and v,-vo transfer characteristics. Note that only the v,-v0 TC exhibits a 'jump' 

t We are assuming that v, is varying much slower than the dynamics on the dynamic route. This is a quasi-static condition which 
enables us to assume that v, is always fixed and thereby to drop the Vi-dependence of g( ·, · ). 
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moves to the right, Qb moves left) until /max= 0 (Figure 23(a)), where Qa and Qb coalesce. This is the 
threshold for switching. For this value of input there are just two equilibrium points: Qa,b is one-sided 
stable; Oc is asymptotically stable (and corresponds to positive saturation). 

When Vi is increased beyond this value, the equilibrium points at Qa and Qb disappear, leaving just one 
stable equilibrium point (Qc) to which all initial conditions will settle. In the course of switching, the 
capacitor voltage trajectory follows the dynamic route along the driving point characteristic from Qa,b 

through the linear region until it reaches equilibrium at Qc. It must follow this route since the driving 
point characteristic is the set of all possible solutions. Correspondingly, the output voltage (v0 = f(vd )) 

moves smoothly from negative saturation through the linear region to positive saturation (Figure 23(b)). 
On the transfer characteristic alone does the transition between saturation states appear as a jump 
(Figure 23(c)). The time constant associated with switching is very small since the linear region has a 
negligible resistance (approximately equal to I/ A Gr, and A • 1); this is why switching between saturated 
states is so fast. 

In summary, we have seen that the TC of a Schmitt trigger is neither discontinuous nor does it consist 
of a loop. The discontinuities which arise when one tries to measure the transfer characteristic of the 
circuit are due to the instability of the central portion, which in turn is caused by unmodelled parasitic 
dynamics. The mechanism for switching between states can be explained by including at least one parasitic 
energy storage element in the model. 

4. HYSTERESIS DRIVING-POINT CHARACTERISTICS 

4. I. Hysteresis resistors 

The second class of circuits which we examine are those which exhibit hysteresis in their driving point 
characteristics; such circuits have been called 'hysteresis resistors'. 2 Their hysteretic behaviour manifests 
itself in a manner similar to transfer characteristic hysteresis. When the driving voltage applied to a 
current-controlled hysteresis resistor is increased beyond a threshold VH, there is a sudden and rapid jump 
in current. The driving voltage must reduced below a lower threshold VL before the current switches back 
to its original value. The difference between VH and VL is called the hysteresis voltage VHvsr. Because 
the current experiences jumps, this type of hysteresis resistor has been labelled 'jump-along-i'. 2 The dual 
element is a 'jump-along-v' hysteresis resistor which has associated with it a hysteresis current IHYST• 

Just like transfer hysteresis elements, the DP characteristic of hysteresis resistors are variously denoted 
by disconnected curves or loops with open- or short-circuit-like segments, dots and arrows (see 
Figure l(a)). 

One might suspect, having seen the mechanism which produces TC hysteresis, that DP hysteresis occurs 
in a similar manner. We shall see that this is indeed the case, that 'hysteresis resistance' is due to negative 
resistance and unmodelled parasitic dynamics. 

Hysteresis oscillators. Many oscillator circuits which are commonly used in digital systems depend for 
their operation on the hysteretic driving point characteristic of a resistor. 2 •3 These oscillators appear 
throughout the literature under various classifications: as multivibrators, 11 ' 15 first-order 'hysteresis 
resistor' oscillators 2 and neural-type pulse oscillators. 4 

Such circuits have traditionally found applications in pulse and digital systems. More recently, they are 
being used in neural-type microsystems, 4 circuits which perform computation and signal processing by 
mimicking the pulse-handling capabilities of biological neural systems. 21 Several authors have stressed the 
importance of 'hysteresis' in the generation of neural-type pulses and in biological membrane 
oscillations. 2•10 

The operation of this class of first-order hysteretic oscillator circuits is readily understood in terms of 
non-linear resistors. Although we shall concentrate in this section on a particular 'hysteresis oscillator' 22 

which is of interest in neural-type microsystems, the principles and method which we apply can be used 
to analyse any other oscillator in this class. We shall show that a thorough understanding of the 
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underlying mechanism of 'hysteresis' resistance simplifies both the analysis and design of 'hysteretic' 
oscillators. 

4.2. Hysteretic neural-type pulse oscillator 

Figure 24 shows the 'hysteretic neural-type pulse oscillator' of Kiruthi et al. 10 (later implemented in 
modified form by Linares-Barranco et al. 23 ), which consists of an integrating amplifier fed by an 
independent input voltage u, with a linear resistor Rv and a 'hysteresis' element H (the op amp Schmitt 
trigger analysed in Section 3) in the feedback loop. With the input voltage u fixed 'within the design range 
of the circuit' 10 the neural-type pulse oscillator produces a periodic output. The independent input voltage 
u can be used to control the 'firing rate' (oscillation frequency) of the neuron. H( ·) is the binary-valued 
relation between the input and output voltages of the 'hysteresis' element and is described by 

[ 
H+ 

H(v)= IH+, -H-1, 
-H-, 

v> V+ 
-V-<v<V+ 

-V_ > V 

where {H +, - H- I is the two-element set comprised of H + and - H _. The relation is shown graphically 
in Figure 25. 

In Reference 10 it has been shown that the circuit operates as a neural-type pulse oscillator when the 
following constraints are met: 

H Gv Gr Gu Gv Gr Gu 
- -<---H---u<--H+--u<H+ 

GH G; GH GH G; GH 

with Gv = 1/Rv, GH = I/RH, Gr= 1/Rr and G; = 1/R;. 

r-::-_ ---=~--7 
I Ru 

I 
I + " 
I 
I 
I ~ 
I 
I 
I 
I 

11 + 
i 

r---------1 
I I 
I I 
I 

I t_ I 
I 

+ 

I I -:- HI L_______ L _________ _J N~ 

Figure 24. Hysteretic neural-type pulse oscillator (from Reference 10) showing the 'hysteresis' element Hat the bottom. We group 
the resistive elements into a single non-linear resistive one-port NR, across which is connected the capacitor C 
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v .. 
---,l'----t----,1'---- Vitt, 

v_ o 

-H -----,--

Figure 25. Suggested TC of the 'hysteresis' element Hin Figure 24 (from Reference 10) 

The authors have shown that the period of oscillation is 'of the order of RvC', where Rv and Care as 
shown in Figure 24. Because of 'hysteresis', it was not possible to obtain a more accurate estimate of the 
oscillation frequency. Because of 'hysteresis' too, it was not possible to write state equations for the 
circuit; only semi-state equations 24 could be derived. We shall show that by using non-linear circuit 
theory, one can calculate exactly the frequency of oscillation of first-order PWL RC oscillators of this 
type. 

Exact analysis: conditions for oscillation. Let us assume that the op amps in Figure 24 are modelled by 
the finite gain op amp model. 12 For maximum accuracy in our derivation we use the finite gain model. 
Later we will see that the error caused by assuming infinite gain is negligible. 

We can determine the driving point characteristic at the terminals of the capacitor by using standard 
piecewise-linear circuit analysis. 12 As before, we apply an ideal voltage source at the port and measure 
the current which flows when the op amps are replaced in turn by their negative saturation, linear and 
positive saturation models. The validating equations then determine the boundaries of the piecewise-linear 
regions in the v-i plane (see Appendix I for the complete analysis). 

The resulting DC resistive driving point characteristic seen at the terminals of the capacitor is shown 
in Figure 26. At this point we can replace the resistive part NR of the op amp circuit by a single two­
terminal resistor with the same driving point characteristic (v = h(i, u)) as far as the capacitor is 
concerned. Note that u does not affect the shape of the driving point characteristic; its only effect is to 
displace the characteristic vertically. The equivalent circuit for the entire network is now just the capacitor 
C and, attached to it, a non-linear resistor R described by v = h(i, u) (shown in Figure 27). 

From non-linear circuit theory 12 we know that this circuit will oscillate if the piecewise-linear driving 
point characteristic (see Figure 43) exhibits negative resistance and if the equilibrium point lies in the 
negative resistance region. For comparison with References IO and 22 we let A ---> oo, set 
E,~12 = E,~11 = E,~, and set £;;.12 = £,-;,_, 1 = Es-;,_,. This yields the following three conditions for oscillation: 

GHEs~t + Guu > - GHE,-;,_, + Guu 

G E + G GrGv + 
H sat + uU - ~ Esat > 0 

G E - G GrGv E- 0 - H sat + uU + ~ sat < 

If we identify Es~t with H + and E,-;,_, with H _, we see that these conditions are exactly equivalent to 
those derived in Reference IO but have been determined from graphical considerations of a simple first­
order piecewise-linear RC network. Note that we have made no reference to 'hysteresis'. 

Exact analysis of the capacitor voltage wave-form. This analysis uses the circuit theoretic concepts of 
the dynamic route and jump rule. 12 We assume that the input voltage u to the oscillator is held at some 
fixed value. Although parametrized by u, once the independent voltage source is fixed, the driving point 
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Figure 26. Driving point characteristics of NR at the terminals of the capacitor C in the hysteretic neural-type pulse oscillator. The 
independent voltage source u sets the vertical bias of the characteristic. (a) PWL model with A __, oo (derived in Appendix I). (b) 

Experimentally measured from the circuit of Figure 24 

ic i 

+ + 
C 

Figure 27. Equivalent circuit for the hysteretic neural-type pulse oscillator in Figure 24 with fixed input u. The DP characteristic 
of the non-linear resistor is shown in Figure 26 
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characteristic of the equivalent non-linear resistor is fixed, so we can write v = h(i). Applying KCL and 
KVL to the equivalent circuit (Figure 27), we find that ic = C dvc/dt, Ve= v and ic = - i. Hence 

i= -C dv 
dt 

Thus v decreases while i is positive, and when i is negative, v increases. As before, we draw arrows on 
the DP characteristic to illustrate the direction of travel of trajectories (see Figure 28). Consider an initial 
condition at point 'a'. Since i is positive, v decreases along the characteristic in the direction of the arrows, 
aiming for the virtual equilibrium point 'c' (where dv/dt = 0). After some finite time the voltage reaches 
point 'b'. This is not an equilibrium condition, since i is non-zero. From here the voltage cannot further 
decrease while staying on the DP characteristic of the resistor. This is known as an impasse point 12 •25 •26 

and results from using an incomplete model of the circuit. What happens in practice is that the current 
jumps instantaneously to another point on the characteristic, without changing v, since the voltage on a 
capacitor cannot change discontinuously. Thus the trajectory jumps to point 'd'. Now i is negative, so 
v begins to increase once again along the direction of the arrows, this time aiming for the virtual 
equilibrium point 'f'. Before it gets to 'f', though, it reaches the impasse point 'e' and jumps back to 
the upper branch of the characteristic at 'a', from where it begins to head back towards 'c' once more. 
It should be clear that this is an oscillatory condition, with the operating point circulating repeatedly 
around the loop 'abde'. 

l, 

figure 28. Dynamic route of the oscillator for fixed u. The operating point follows the counterclockwise path 'abde'; it moves 
smoothly from 'a' to 'b' and from 'd' to 'e', but jumps between 'b' and 'd' and from 'e' back to 'a' 
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Frequency of oscillation. lf we assume that the jumps between segments of the characteristic are 
instantaneous, then the period (and shape) of the capacitor voltage and current wave-forms can be 
calculated with ease. The period consists of the time taken for the voltage to decrease from 'a' to 'b' and 
the time to increase from 'd' to 'e'. These are piecewise-linear segments, each with a known resistance 
R and hence time constant r = RC. 

The time to go from 'a' to 'b' (assuming that the op amps have infinite gain in their linear regions) 
is given by 12 

I ( Va - Ve) lb - ta = T n ---
Vb - Ve 

where Ve= -(GHEs+..t + Guu)/Gv, Va= (Gf/G;)Es-;.,, Vb= -(Gr/G;)Es+..t and T = C/G •. Thus 

t _ t = i'_ I ( (G.Gf/G;)Es-;.1 + GHEs+..1 + Guu ) 
b a Gv n -(GvGf/G;) Es+..1 + GHEs+..1 + GuU 

Similarly, the time taken to go from 'd' to 'e' is given by 

(Vd - Vf) le - fct = T In ---
Ve - Vr 

where Vf = (GHEs-;.1 - Guu)/Gv, Ve= (Gr/G;)E.-;.,, Vct = -(Gr/Gi)Es+..1 and T = C/G •. Thus 

t, _ fct = i'_ In (- ( GvGr/ G; )~s+..1 - GH'::s-;_1 + Guu) 
Gv (G.Gr/G;)Esa1 - GHEsal + Guu 

The period of oscillation, T, is simply the sum of these two times: 

T= £ In[( (GvGr/G;)Es-;_: + GHE,°';i~ + Guu ) (-(GvGr/G;)~s+..1 - GH~s-;_1 + Guu)] 
Gv -(GvGf/G;)Esa1 + GHEsat + GuU (GvGr/G,)Esat - GHEsat + GuU 

Example. We built the negative resistance neural-type pulse oscillator shown in Figure 24 using the 
following parameter values: E,°';i, =Es-;,= 4 V, Rr = Rtt = Rv =Ru= 20 kO, R; = 10 kO and C = 0·01 µF. 
The op amp was a TL074 27 with Vee = 4 · 75 V and VEE = - 5 • 28 V. Note that op amp l (in Figure 24) 
remains in the linear region of operation throughout since ve [ - (Gr/G;)E.-;.,, (Gr/G;)E ~a1]; this means that 
its inverting terminal is indeed a virtual ground. Hence the output of that amplifier is approximately equal 
to the capacitor voltage; this enables us to measure v directly at the output of op amp l . 

For these component values and with u = 0 our analysis predicts an oscillation frequency of 2 · 275 kHz. 
Figure 29(a) shows the experimentally measured waveform v with frequency 2 · 29 kHz. With u = 1 · 3 V 

(a) (bl 

Figure 29. Experimental wave-forms for the neural-type pulse oscillator in Figure 24: the upper wave-form is Vin(== u); Vou, is below; 
(a) u = O; (b) u = I· 3 V 
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(a) (b) 

Figure 30. Simulated wave-forms for the neural-type pulse oscillator assuming instantaneous jumps 'b'--+ 'd' and 'e'--+ 'a': 
(a) u=O; (b) U= 1·3 V 

the predicted oscillation frequency is 1 · 85 kHz; we measured 1 · 84 kHz (see Figure 29(b)). For 
comparison we show the wave-forms generated by computer simulation assuming instantaneous jumps 
(Figures 30(a) and 30(b)). 

4.3. Hysteresis resistance: how it occurs 

We have seen that the driving point characteristic of a network NR is the locus of solutions of the 
equivalent two-terminal resistor connected at the driving point terminals in place of the entire network. 
This locus consists of all valid voltage and current pairs for the equivalent resistor. 

Consider the voltage-controlled resistor R (Figure 31 (a)) whose driving point characteristic iR = g(vR) 

is shown in Figure 31(b)). Let us see what happens when we try to measure this curve by placing a current 
source across the terminals of the resistor (Figure 32(a)). Initially we apply a large negative value of 
current(/,= ia) for which there is a unique voltage Va. This gives us an operating point Qa on the driving­
point characteristic. Now increase /, smoothly to ib; the voltage increases smoothly to Vb as the operating 
point traces out the left segment of the DP characteristic (Figure 32(b)). 

If we now increase J, beyond ib, the corresponding value of the terminal voltage can only lie on the 
right segment of the characteristic. Thus, as we move I, through ib to ic, the voltage jumps abruptly from 
Vb to Vb', then continues to increase smoothly to Ve. Decreasing J, back to ia enables us to trace out the 
right segment as far as point Qct, where Vct jumps abruptly to Vct', and we trace out the left segment once 
more. 

+ 

(a) (b) 

Figure 31. A non-monotone voltage-controlled resistor R with branch voltage VR and current iR and (b) its voltage-controlled DP 
characteristic iR = g(vR) 
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(b) 

Figure 32. (a) Measuring the DP characteristic by driving R with a current source I,. (b) DP characteristic, with current forcing, 
exhibits 'hysteresis'. Increasing /, from ia to ic and decreasing it to ;. once more enables us to trace out just the left and right 

segments of the three-segment DP characteristic 

In this way a non-monotone voltage-controlled resistor 11 can exhibit a 'loop' or discontinuity in its 
driving point characteristic with jumps in voltage. Such behaviour has prompted the unfortunate 
classification 'jump-along-v hysteresis resistor'. 2 This 'hysteresis' arises only if we try to measure the DP 
characteristic of a non-monotone voltage-controlled resistor by forcing with a current source. If we drive 
with a voltage source, we obtain a continuous curve, since to each value of v corresponds a unique value 
of i. 'Hysteresis' in the DP characteristic is simply an artifact of the measurement technique. By a similar 
reasoning it should be clear that driving a non-monotone current controlled resistor with a voltage source 
produces a 'jump-along-i hysteresis resistor'. 2 

The jump phenomenon. Let us examine the voltage jumps in our test resistor R more carefully. As we 
increased the current smoothly through ib, the voltage jumped from Vb to Vb' while i remained constant. 
If the voltage went from Vb to Vb' without changing i, then it could not have gone along the DP 
characteristic (Figure 32(b)) but must have traversed the line segment QrQb·. This path is disallowed 
because the DP characteristic is the set of all valid terminal voltage and current pairs. So how did v get 
from Vb to Vb·? 

The answer lies in the fact that our resistor model is incomplete. Whenever we have a non-monotone 
voltage-controlled resistor, we must add a small parasitic capacitor in parallel with it. 11 •20 By duality, a 
model of a non-monotone current-controlled resistor is incomplete unless it includes a series parasitic 
inductance. 

Let us add the necessary parasitic capacitor and once more examine the voltage-controlled resistor R 
when driven by a current source. The equivalent circuit is shown in Figure 33. Now the resistor and 
current source can be combined to form a single voltage-controlled non-linear resistor NR (Figure 34(a)) 
whose DP characteristic (shown in Figure 34(b)) is described by 

ik := g(VR) - Is:= g'(VR) 

Note that the effect of I. is simply to shift the characteristic g(vR) vertically without affecting its shape 
(compare Figures 3l(b) and 34(b)). The 'jump' mechanism is now exactly as we saw for the Schmitt trigger 

+ 

R 

Figure JJ. The complete circuit model for Figure 32 includes a parasitic capacitor Cp 11 
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., . 
lR ~------~ 

+ 
V1t l 
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~--------' 
(a) 

NR 
(b) 

Figure 34. (a) The network of Figure 33 is partitioned into resistive and energy storage subnetworks. The resistive elements are 
lumped together to form the resistive subnetwork NR. (b) DP characteristic of NR for a negative value of /1 

Figure 35. (a) Dynamic route and equilibrium point at Q. (b) As /, is increased, the characteristic slides downwards until the 
equilibrium point Q on the left branch becomes unstable at /, = ib (where VR = Vb) and the operating point moves to Q' on the right 
branch of the DP characteristic. (c) Increasing /, further causes all initial conditions to converge to the single equilibrium point 

Q' on the right branch of the characteristic 
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circuit. The dynamic route is illustrated in Figure 35(a). As ls is slowly increased through ib from below, 

the equilibrium (operating) point on the left segment of the characteristic becomes unstable at Vb (see 

Figure 35(b)). The operating point then follows the dynamic route along the DP characteristic to the new 

stable equilibrium at Vb' (see Figure 35(c)). While the voltage is 'jumping', the difference in current 

between the operating point on the DP characteristic g'(vR) and ibis supplied by the capacitor Cp, A dual 

argument follows for a current-controlled resistor driven by a voltage source. 

We are now in a position to derive a complete model for the neural-type pulse oscillator. 10 

State equations. Our original description of the neural-type pulse oscillator circuit was in terms of a 

capacitor in parallel with a current-controlled resistor. This produced impasse points 25 •26 and the jump 

phenomenon. As a result we could not write state equations to describe the oscillator but were tied to 

a cumbersome semi-state description. Having seen how the jump phenomenon arises, we can now model 

it correctly by adding the required parasitic inductance Lp in series with the current-controlled non-linear 

resistor. The addition of this inductance permits us to write state equations for the circuit in order to 

analyse it exactly. 
The second-order circuit model is shown in Figure 36. Now the state equations for the network are 

C dvc = -iL 
dt ' 

L diL h(. ) 
p df = Ve - IL, U 

where h(i, u) is the piecewise-linear function describing the current-controlled negative resistor (see 

Figure 43 and Appendix I). 
The introduction of a small parasitic energy storage element in order to write state equations typically 

adds a fast new time scale to the circuit which in turn makes the system stiff. Correspondingly, in 

simulating the network, one must use an implicit integration algorithm (see e.g. Reference 28). 

4.4. Unifying the lot 

We have seen how an understanding of the jump mechanism which produces hysteretic-type behaviour 
in driving point and transfer characteristics simplifies the analysis of those circuits which exploit it. This 

knowledge can also simplify the process of synthesis. 
We have identified the neural-type pulse oscillator as a first-order RC relaxation oscillator. It was 

produced by connecting a linear capacitor to a five-segment current-controlled negative resistor, of which 

only three segments are necessary for oscillation. We can achieve the same functionality with a three­

segment characteristic; this requires just one op amp instead of two. 29 In the original circuit, frequency 
control was effected by applying a DC bias voltage to displace the DP characteristic vertically without 

changing its shape. In an ad hoc manner we can reproduce this behaviour by synthesizing the required 

DP characteristic with an S-type negative resistance converter in parallel with a current source and then 
placing a capacitor across its terminals. 

Consider the circuit shown in Figure 37 and analysed in Appendix II. It is instructive to study this 

simple oscillator closely in order to see the connection between transfer and driving point 'hysteresis'. 

+ 
C 

Figure 36. Complete second-order circuit model for the neural-type pulse oscillator of Figure 24. Lp is the parasitic inductance 
associated with the current-controlled non-linear resistor v = h(i, u) 
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+ u. 

Figure 37. Neural-type pulse oscillator, which is functionally equivalent to that in Figure 24 

Figure 38. Astable multivibrator obtained by removing the independent voltage source u and resistor Ru from the circuit in 
Figure 37 

RH 
i 

V 

+ Gu[(A+l)G; +G1] 

A(G1+G;) 
V 

-= R, Rt 

-:-

(a) (b) 

Figure 39. (a) Negative resistance converter obtained by removing the capacitor from Figure 38, and (b) its DP characteristic. See 
Appendix II for the details of constructing this DP characteristic 
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j 

+ 
V 

-:-

Ri Rr 
-E;;,, 

-:-

(a) (b) 

Figure 40. (a) Inverting op amp Schmitt trigger formed by disconnecting the feedback resistor R" in Figure 38, and (b) its 
input-output voltage transfer characteristic. See Appendix II for the derivation 

Figure 41. CMOS Schmitt trigger oscillator (from Reference 8) 

With the appropriate choice of component values this circuit is exactly equivalent in functionality to the 
neural-type pulse oscillator. The reader may recognize it as a 'square wave generator with voltage control 
of pulse width'. 30 If we remove the voltage source u and resistor Ru, what remains is the classic 'free­
running symmetrical multivibrator' (Figure 38). JO.JI If we next remove the capacitor from the circuit, we 
get an S-type negative resistance converter (Figure 39(a)), 11 more recently called an Rtt; 'hysteresis 
resistor'. 2 If we then take away the upper feedback resistor Rtt, we obtain a Schmitt trigger once more, 
this time in the inverting configuration (Figure 40(a)). 

We have stripped down an op amp hysteresis oscillator to find a Schmitt trigger within. It is worth 
noting that CMOS Schmitt trigger oscillators are constructed by reversing this process. A feedback 
resistor turns an inverting Schmitt trigger into a negative resistor; a capacitor then provides the dynamics 
to produce oscillation (see Figure 41). 

5. CONCLUDING REMARKS 

With every non-monotone resistor is intimately associated a parasitic capacitor or inductor. In most 
situations it is safe to ignore these parasitics in order to reduce the complexity of a network model. So 
often do we ignore them, however, that omitting parasitics has become the automatic first step in 
simplifying a model. This leads us to forget how important a role they can play. 

A case in point is 'hysteresis' in driving point and transfer characteristics, where it is common practice 
to use a purely resistive model to try to explain the jumps which one observes in an experiment. The 
fundamental problem here is that driving point and transfer characteristics are static objects; jumps, on 
the other hand, are dynamic phenomena. It is therefore futile to try to model the behaviour without 
resorting to dynamic elements. Nevertheless, we still try to do it, by adding loops, breaks, dots and arrows 
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to the characteristics. Not only does this lead to incorrect models, misleading intuition, cumbersome semi­
state descriptions and wrong answers, but it obscures an otherwise simple mechanism. 

In this work we have used elementary circuit theory to explain how parasitic dynamics manifests itself 
as 'hysteresis'. We have stressed the importance of understanding what is meant by driving point and 
transfer characteristics. We have chosen two common examples of circuits which exhibit 'hysteresis' in 
order to illustrate how the concepts of the dynamic route and jump rule can be used to explain 
experimental observations. By not ignoring critical parasitic elements, the operation of these circuits can 
be readily understood. 
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APPENDIX I: NEURAL-TYPE PULSE OSCILLATOR (SEE FIGURE 24) 

KCL (al terminals 1-1' in Figure 42) 

i = Gu(U + Vd,) + Gv(Vo, + Vd,) + GH(Voz + Vd,) = GuU + (GH +Gu+ Gv)Vd, + GvVo, + GHVo, 

t' 
V + 

i 

+ u 

3 

+ v~ 

Figure 42. Equivalent circuit for the resistive part NR of the neural-type pulse oscillator of Figure 24. In each linear region of each 
op amp we replace the outputs v0 , and Vo2 by the appropriate voltage sources 
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KCL (at node 2 in Figure 42) 

KVL (around loop 1-0-1' in Figure 42) 
V = Vct, + Vo, 

Finite gain op amp models (compare with Figure 10) 

Op amp -Sat 

Vct, ~ 
£,"7.11 

Ai 

Vo1 = -E's;_tl 

2 Vct, ~ 
E,-;,i 

Ai 

Voz = -E,-;,i 

Op amp 1 saturated negative (Vo,= - E;--;,0 ) 

If op amp 1 is in negative saturation, then 

giving 

Note that this occurs only if 

Linear 

E,-;,1 £,:,1 
---~ Vd ~--

Ai --s 1 ---: A1 

Vo,= A1Vd, 

E,-;,i E,:,2 
---~Vd ~--

Ai "' 2
"' Ai 

Vo2 = AiVd2 

E,--;,t1 
A, 

Equivalently, op amp I is in negative saturation when 

A,+ 1 E­
v~-~ sat! 

For the ideal op amp model (A 1 -> oo) we obtain 

503 

+Sat 

>.,£,:,1 
Vd 1r--

Ai 

Vo,= £,:11 

>., E,:,2 
Vdi r--

Ai 

Vo,= E,:,i 

Op amp 1 saturated negative and op amp 2 saturated negative. When op amps I and 2 are both in 
negative saturation, writing KCL at node 2 gives 

Gi(-E,--;.t1 - Vct,} = Gr(Vct, + E,--;.,2) 

yielding 

- GiE,--;,,1 - GrE,--;,12 
Vct,= 

Gi+ Gr 

Recall that op amp 2 is in negative saturation only if 
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Hence op amps 1 and 2 can both be in negative saturation only if 

A1 + 1 _ 
V ~ - --- Esatl and 

A2 

For the ideal op amp models (A 1 -+ 00, A2-+ 00) this condition reduces to 

v ~ -E.~11 and - GiEs~t1 - GrEs~t2 ~ O 
Gi+Gr "" 

When both op amps are in negative saturation, the current ; is given by 

i = Guu + ( GH + Gu + Gv )vd, - GvEs~tl - GHEs~t2 

Substituting Vd, = v + E.~11, we obtain 

i = GuU + (GH +Gu+ Gv)V + (GH + Gu)Es~tl - GHEs~t2 

Op amp 1 saturated negative and op amp 2 linear. If op amp 1 is in negative saturation and op 
amp 2 is linear, then KCL at node 2 gives 

Gi(-Es-;.tl - Vd2 ) = Gr(Vd2 - A2Vdz) 

yielding 

GiEs~u 
Vdz=------

(A2 - l)Gr - Gi 

Now op amp 2 is in its linear region of operation only if 

_ Es-;.12 ~ V ~ E :a12 
A2 "" dz"" A2 

Hence op amp 1 is in negative saturation and op amp 2 is linear only if 

A1 + 1 _ 
V ~ -~ Esatl and 

For the ideal op amp model this condition reduces to the simpler form 

Under these conditions the current is given by 

E - ..,,, Gi E- ..,,,E+ - sat2 ~ Gr sail ~ sat2 

i = GuU + (GH +Gu+ Gv)Vd, - GvEs-;.11 + A2GHVd2 

Substituting for Vd2, we obtain 

. G (G G G ) GE- A2GHGi E-
l= uU + H + u + v Vd, - v satl + (Az _ l)Gr _ Gi ~all 

If we now substitute for Vd,, the current is given by 

i = Guu + (GH +Gu+ Gv)v + (GH + Gu)Es-;_tt + (Az ~2~~~~ Gi Es-;11 

For the ideal op amp model (A 1 ---> oo, A2--+ 00) this simplifies to 

i = Guu +(Gu+ Gu+ Gv)v +(Gu+ Gu)Es-;.11 + GHGi E.-;.tt 
Gr 
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Op amp I saturated negative and op amp 2 saturated positive. When op amp 1 is in negative saturation 
and op amp 2 is saturated positive, KCL at node 2 gives 

Gi(-E,-;.11 - Vct,) = Gr(Vct, - E,:12) 

giving 

Now op amp 2 is in positive saturation only if 

E/a.1 
Vct 2 ~ 

A2 

Hence op amp 1 is saturated negative and op amp 2 is in positive saturation only if 

,,,. A1 + 1 E- d 
V"" -~ sat! an 

- GiE,-;.u + GrEs:12 ::;i E;t.1 
G1 + Gr ""' A2 

For the ideal op amp model this reduces to the condition 

Using these conditions 

- GiEs-:it1 + GrE,:,2 ~ O 
Gi+ Gr 

i = Guu + ( GH + Gu + Gv )Vct1 - GvE,-;.,1 + GHEs~t2 

which, after substituting for Vct1, yields 

i:::: GuU + (GH +Gu+ Gv)V + (GH + Gu)Es-;.tl + GHEs-t,,2 

Op amp I linear (Vo 1 = AvctJ 

If op amp 1 is in its linear region of operation, then KVL at terminals 1-1 ' gives 

Hence 

V Vct -
1 - A,+ 1 

Recall that op amp 1 is linear only if 

Equivalently, 

A1 + 1 _ A1 + 1 + 
-~ Esatl ~ V ~ ~ Esatl 

For the ideal op amp model we have the simpler constraint 

Op amp I linear and op and amp 2 saturated negative. When op amp 1 is linear and op amp 2 is in 

negative saturation, KCL at node 2 becomes 

Gi(A1Vct1 - Vct,} = Gr(Vct, + E,-;.,2) 
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This gives 

Substituting for Vd,, we obtain 

A1GiV GrEs---;,.12 
Vd = ------- - ---

z (A,+ l)(Gr+ Gi) Gr+ Gi 

For op amp 2 to be in negative saturation we require that 

Hence op amp I is linear and op amp 2 is in negative saturation only if 

AiGiv _ GrE.-;,,,2 :t::: E.-;,,,2 
(Ai+l)(Gr+Gi) Gr+G;~ Ai 

Equivalently, 

A1 + 1 E- Ai+ 1 E+ 
-~ sat! ~ V ~ ~ sa ti and 

(Ai+ l)[(Az - l)Gr- Gd 
..:..._..c.-_:....;;..;A__.;;A'--G----'---~ E.-..,i 

I 2 i 

For the ideal op amp model 

Under these conditions 

and _., Gr E­
v::::, Gi sat2 

i= GuU +(Gu+ Gtt + Gv)Vd, + AiGvVd, - GttEs-;,,12 

Grouping terms in Vd,, we obtain 

i = GuU + [GH +Gu+ (Ai+ l)Gv] Vd, - GttEs-..t2 

If we now substitute for Vd, in terms of v, this becomes 

· G (G" + Gu G ) G E -
l = uU + Ai + l + v V - H sat2 

For the ideal op amp model (A,-+ oo, Ai-+ oo) we obtain 

i =Gu+ G.v - GttE.-..,z 

Op amp J linear and op amp 2 linear. When both op amps are in their linear regions of operation, 

Gi(Aivd, - Vd,) = Gr(Vd, - A2Vd,) 

This yields 

which, after substituting for Vd,, becomes 

A1GiV 
Vd, = - -(A-1 +-1 )-[-(A_2 ___ l )_G_r ___ G_i_] 

Now op amp 2 is linear only if 
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Hence both op amps are linear only if 

Equivalently, 

Ai+ 1 _ A1 + 1 + 
-~ Esatl ~ V ~~ Esatl 

and 

For the ideal op amp this reduces to 

E E + d Gr E+ Gr£-- ,-;;ti ~ V ~ sat i an - Gi sat2 ~ V ~ Gi sat2 

When both op amps are operating in their linear regimes, 

i = Guu + (GH +Gu+ Gv)Vd, + GvA1Vd, + GHA2Vd2 

We know Vd, in terms of Vd,. so substituting and rearranging gives 

. G [G G A l)G AiA2GHGi ) 
l = uU + H + u + ( I + V - (A2 - l)Gr - Gi Vd, 

Further, substituting for Vd, yields 

· G (GH + Gu G A1A2GHGi ) l = uU + ---+ v - ___ ____;; ______ V 

Ai+ l (A1 + l)[(A2 - l)Gr- G;J 

For the ideal op amp model (A 1 ..... oo, A2 ..... oo) this simplifies to 

. G (G GHGi) l = uU + v - ~ V 

507 

Op amp I linear and op amp 2 saturated positive. When op amp 1 is linear and op amp 2 is in positive 

saturation, KCL at node 2 becomes 

This gives 

Substitute for vd, to obtain 

AiG;v GrE.+a12 
Vd2 =-------+ ---

(A 1 + l)(Gr + Gi) Gr+ G; 

Recall that op amp 2 is in positive saturation only if 

Thus op amp I is linear and op amp 2 is in positive saturation only if 

A1G;v GrEs'"a12 ....._ E,+..12 -------+ --- ...<: --

(A1 + l)(Gr + Gi) Gr+ Gi 7 Ai 
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Equivalently, 

and v~ 

For the ideal op amp this condition arises only if 

and Gr£+ 
V ~ - G; sat2 

When op amp 1 is linear and op amp 2 is in positive saturation, then 

i =Gull+ (GH +Gu+ Gv)Vct, + A1GvVd, + GH£s'°at2 

giving 

Substituting for Vct, yields 

. (GH + Gu G ) G E + 
l = GuU + A 1 + l + v V + H sa12 

For the ideal op amp model (Ai--> co, A2--> co) this further reduces to 

i = Guu + Gvv + GH£s~t2 

Op amp I saturated positive (Vo, = Es~t1) 

When op amp I is positive saturation, 

giving 

This occurs only if 

Equivalently, 

For the ideal op amp the condition reduces to 

Op amp I saturated positive and op amp 2 saturated negative. When op amp I is saturated negative 
and op amp 2 is saturated positive, KCL at node 2 becomes 

G;(Es~tl - Vct,) == Gr(Vd, +E,-;;12) 

which gives 
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Recat that op amp 2 is in negative saturation only if 

Hence op amp I is in positive saturation and op amp 2 is saturated negative only if 

and 
G£/a11 - Gr£,-;,,2 ~ _ £,-;.,2 

Gi + Gr "' A2 

For the ideal op amp model the right-hand side goes to zero and we obtain the simpler conditions 

and G£s;t l - GrEs;rz ~ O 
Gi + Gr ---= 

If op amp l is in positive saturation and op amp 2 is in negative saturation, then i is given by 

j = Guu + (GH +Gu+ Gv)Vct, + GvE/;.,1 - GHE,-..12 

With Vct, = v - Es"a11 this gives 

i = GuU + (GH +Gu+ Gv)V- (GH + Gu)Es;tl - GH£;;.t2 

509 

Op amp 1 saturated positive and op amp 2 linear. When op amp I is in positive saturation and op amp 

2 is linear, we have that 

Equivalently, 

Vct, = 

Now op amp 2 is linear only if 

Hence the amplifiers can be in this state only if 

and 

For the ideal op amp model these conditions become 

v ~ E,+.,,1 and -E- ~ _ GiE,+.111 ~ E+ 
sat2 ----, Gt ...., sat2 

Under these conditions 

Substituting for Vct, in terms of v, 

, E+ A2GHGi E+ 
/=Gull+ (GH +Gu+ Gv)Vct, + Gv sat! - (Az _ l)Gr _ Gi sat I 

. G G )£+ A2GHGi £+ 
1=Guu+(GH+Gu+G,.)v-( H+ u sa11-(Az-l)Gr-G; sat! 

For the ideal op amp model (A1-> oo, A2-> oo) this reduces to the simpler form 

. (G G )£+ GHGi E+ l=Guu+(GH+Gu+Gv)V- H+ u sa11-G sat! 
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Op amp 1 saturated positive and op amp 2 saturated positive. When both op amps are in positive 
saturation, we have (from KCL at node 2) 

giving 

G£/atl + GrEst.12 
Vd2 = -------

G; + Gr 

Recall that op amp 2 is in positive saturation only if 

Thus both op amps are in positive saturation only if 

A1 + 1 + 
V ~ --- E,atl and 

Ai 
G;Est.11 + GrEs~12 >-: Es~t2 

G;+ Gr 7 A2 

For the ideal op amp model these inequalities reduce to 

v? E.~u and 

Under these conditions we obtain 

Equivalently, 

Summary (see Figure 43) 

Op amp 1 

-Sat 

Linear 

+Sat 

Op amp 2 

-Sat 

Linear 

+Sat 

-Sat 

Linear 

+Sat 

-Sat 

Linear 

+Sat 

Guu + (GH +Gu+ G,)v + (GH + Gu)E,-;.tl - GHE,-;.,2 

A2GHG; 
GuU + (GH +Gu+ Gv)V + (GH + Gu)E,-;.,i +------ £,-;.,, 

(A2 - !)Gr - G; 

Guu + (GH +Gu+ G.)v + (GH + Gu)E,-;.n + GHE.+ .. ,2 

GuU + (GH + Gu + Gv) V - GHE,--;.,2 
Ai+ 1 

G ( GH + Gu G A 1A2GHG; ) 
uU + ---+ v - ---------- V 

Ai+ 1 (A,+ l)[(A2 - l)Gr- G;] 

GuU + (GH + Gu + Gv) V + GHEs~t2 
A,+ 1 

Guu + (GH +Gu+ G.)v- (GH + Gu)E.;,1 - GHE;..,2 

+ A2GHG; + 
GuU + (GH +Gu+ Gv)v-(GH + Gu)Esatl - ------ Esatl 

(A2 - l)Gr - Gi 

Guu + (GH +Gu+ G.)v - (GH + Gu)E.~11 + GHE,;t2 
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OP AMP 1 

LINEAR 

i 

POSITIVE + SATURATION 

G.u -GHE;;,,2 I 
I 
I 
I 

I I 
I I 
I I I 

I LINEAR I I 

V 

IE--~--+1---j POSITIVE SATURATION 

NEGATIVE SATURATION ~ 

OP AMP 2 

Figure 43. DP characteristic a! terminals 1-1' of the capacitor in the neural-type pulse oscillator (Figure 42) 

Example (see Figure 26) 

511 

We assume for simplicity that A1-> oo and A2--+ oo (this corresponds to the ideal op amp model). The 

circuit values are Gr= Gtt = Gv = Gu = to mS and G; = to mS. The saturation levels are ± 4 V. 

Op amp 1 Op amp 2 i (mA) Valid for 

-Sat -Sat 2!ou+jov+fo V ~ -4 V 

Linear -Sat /ou+i1ov-/o -4V~v~2V 
Linear 2~ U - fo V -2V~v~2V 
+Sat }o U + it V + 2% -2V~v~4V 

+Sat +Sat 2b U + 2~ V - iri v;;i,4V 
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APPENDIX II: MUL TIVIBRATOR, NEGATIVE RESISTANCE CONVERTOR, 
SCHMITT TRIGGER (REFER TO FIGURE 44) 

KCL 

At node I 

At node 2 

KVL 

Around loop 0-1-2 

Op amp saturated negative (Vo= - E,-,u) 

This condition exists when 

Equivalently (from KVL), 

Thus Vo= - E;--;.1 when 

Grvo 
V + Vd = e2 = --­

Gr+ Gi 

v ~ _ (A - l)Gr - Gi £-
,_,., A ( Gr + Gi) sat 

KCL now gives 

Ru RH 
i 

1 

u + Vd~ 

V 

e2 + o-

-:: Ri Rt 

-:: 

Figure 44. Equivalent circuit for the resistive subnetwork of Figure 37; we use the three-segment PWL finite gain op amp voltage 
transfer characteristic of Figure 10 to calculate the DP and TC 
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When Gu = 0 (corresponding to a negative resistance convertor-see Figure 39), 

i = GttV + GttE,-;., 

Op amp linear 

In this region 

From KVL we obtain 

Equivalently, 

This gives (see Figure 41) 

The linear region is defined by 

Equivalently, 

Vo= Avd 

AGrVd 
v+ Vct = G G r+ i 

(A - l)Gr- Gi 
V= Vct 

Gr+Gi 

A(Gr+ Gi) 
Vo=-----'------'--V 

(A - !)Gr- Gi 

_(A-l}Gr-GiE- ~v~(A-l}Gr-GiE+ 
A(Gr+ Gi) sat"' "' A(Gr+ Gi) sat 

KCL gives 

. ( AGH(Gr+Gi)) 
I= - Guu + (Gtt + Gu}V- AGttVct = -Guu + GH + Gu - A G G V 

( - 1) r - i 

When Gu = 0 (see Figure 39), 

Op amp saturated positive (Vo= E/;,i) 

This condition exists when 

Equivalently, 

Thus Vo= £,:1 when 

. Gtt [ ( A + 1 )Gi + Gr l 
I = - --"-''-------'------'- V 

(A - !)Gr- Gi 

GrEs~1 .___ E,-;.1 
----v1/-
Gr+ G; A 

v ~ (A - !)Gr - G; £+ 
"' A (Gr+ Gi) sat 

513 
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i 

V 

Figure 45. DP characteristic across terminals 1-0 of Figure 44. With the appropriate choice of RH, Ru, Rr and R; we can produce 
a characteristic which is identical to Figure 26 over its central three segments 

KCL now gives 

When Gu = 0 (Figure 39), 

Summary (see Figure 45) 

For the special case when Gu= 0, see Figure 39(b). 

Op amp 

-Sat 

-Linear 

+Sat 

E,-;.1 
A 

E,-;.. 
Vd >.;­,,_. A 

Vo 

A(Gr+Gi) 
V 

(A- l)Gr-G; 

E,+.11 
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