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CHAPTER 1 

Computing and Computers 

This chapter provides a broad overview of digital computers while introducing 
many of the concepts that are covered in depth later. It first examines the nature 
and limitations of the computing process. Then it briefly traces the historical devel­
opment of computing machines and ends with a discussion of contemporary VLSI­
based computer systems. 

1.1 
THE NATURE OF COMPUTING 

Throughout history humans have relied mainly on their brains to perform calcula­
tions; in other words, they were the computers [Boyer 1989]. As civilization 
advanced, a variety of computing tools were invented that aided, but did not 
replace, manual computation. The earliest peoples used their fingers, pebbles, or 
tally sticks for counting purposes. The Latin words digitus meaning "finger" and 
calculus meaning "pebble" have given us digital and calculate and indicate the 
ancient origins of these computing concepts. 

Two early computational aids that were widely used until quite recently are the 
abacus and the slide rule, both of which are illustrated in Figure I. I. The abacus 
has columns of pebblelike beads mounted on rods. The beads are moved by hand to 

positions that represent numbers. Manipulating the beads according to certain sim­
ple rules enables people to count, add, and perform the other basic operations of 
arithmetic. The slide rule, on the other hand, represents numbers by lengths marked 
on rulerlike scales that can be moved relative to one another. By adding a length a 
on a fixed scale to a length b on a second, sliding scale, their combined length c = 
a + b can be read off the fixed scale. The slide rule's main scales are logarithmic, 
so that the process of adding two lengths on these scales effectively multiplies two 
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Figure 1.1 
(a) Japanese abacus (soroban) displaying the number 0011234567890; 
(b) slide rule illustrating the multiplication 1.30 x 2.30 = 2.99. 

numbers. 1 Slide rules are marked with various other scales that allow m; experi­
enced user to evaluate complicated expressions such as 2.15 X 17 _9-50 sin 1t in sev­
eral steps. 

As the size and complexity of the calculations being carried out increases, two 
serious limitations of manual computation become apparent. 

• The speed at which a human computer can work is limited. A typical elementary 
operation such as addition or multiplication talces several seconds or minutes. 
Problems requiring billions of such operations could never be solved manually in 
a reasonable period of time or at reasonable cost. Fortunately, modem computers 
routinely tackle and quickly solve such problems. 

• Humans are notoriously prone to error, so long calculations done by hand are 
unreliable unless elaborate precautions are talcen to eliminate mistalces. Most 
sources of human error (distraction, fatigue, and the like) do not affect machines, 
so they can provide results that are, within broad limits, free from error. 

The English computer pioneer Charles Babbage (1792-1871) often cited the 
following example to justify construction of his first automatic computing 

1Logarithms are defined by the relation 10" = A, where a= log 10 A. A length marked A on a log scale is 

proportional to log 10 A = a. When we add two lengths marked A and B on a slide rule, we are actually add~ 

ing a= log10 A and b = log10 B. Therefore, the result c represents log 10 A+ logwB. Now 10" x 10b = 10a+b 

implies c = log 10 A + log 10 B = log rn (A x B), so if we read c from the first scale, we will obtain the number 

whose log is c, that is, Ax B. 
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machine, the Difference Engine [Morrison and Morrison 1961]. In 1794 the French 
government began a project to compute entirely by hand an enormous set of math­
ematical tables. Among the many required tables were the logs of the numbers 
from 1 to 200,000 calculated to 19 decimal places. The entire project took two 
years to complete and employed about 100 people. The mathematical abilities of 
most of these human computers were limited to addition and subtraction, and they 
performed their calculations using pen and paper. A few skilled mathematicians 
provided the instructions. To minimize errors, each number was calculated inde­
pendently by two human calculators. The final set of tables occupied 17 large vol­
umes. The log table alone contained about 8 million digits. 

1.1.1 The Elements of Computers 

Every computer, human or artificial, contains the following components: a proces­
sor able to interpret and execute programs; a memory for storing the programs and 
the data they process; and input-output equipment for transferring information 
between the computer and the outside world. 

The brain versus the computer. Consider the actions involved in a manual cal­
culation using pencil and paper-for example, filling out an income tax return. The 
purpose of the paper is information storage. The information stored can include a 
list of instructions-more formally called a program, algorithm, or procedure-to 
be followed in carrying out the calculation, as well as the numbers or data to be 
used. During the calculation intermediate results and ultimately the final results are 
recorded on the paper. The data processing takes place in the human brain, which 
serves as the (central) processor. The brain performs two distinct functions: a con­
trol function that interprets the instructions and ensures that they are performed in 
the proper sequence and an execution function that performs specific steps such as 
addition, subtraction, multiplication, and division. A pocket calculator often serves 
as an aid to the brain. Figure l .2a illustrates this view of human computation. 

A computer has several key components that roughly correspond to those just 
mentioned; see Figure 1.2b. The main memory corresponds to the paper used in the 
manual calculation. Its purpose is to store instructions and data. The computer's 
brain is its central processing unit (CPU). It contains a program control unit (also 
known as an instruction unit) whose function is to fetch instructions from memory 
and interpret them. An arithmetic-logic unit (ALU), which is part of the CPU's 
data-processing or execution unit, carries out the instructions. The ALU is so called 
because many instructions specify either arithmetic (numerical) operations or vari­
ous forms of nonnumerical operations that loosely correspond to logical reasoning 
or decision making. 

There are important similarities and differences between human beings and 
artificial computers in the way in which they represent information. In both cases 
information is usually in digital or discrete form. This is contrasted with analog or 
continuous information as used, for example, in the slide rule of Figure I. lb. Dis­
tance is a continuous quantity, and on a slide-rule scale it represents, or serves as an 
analog for, a continuous sequence of numbers. The problem is that such analog 
quantities have very limited accuracy. The numbers on a slide rule, for example, 
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Input­
output 

equipment 

Main 
memory 

Input-
output 

equipment 

Main components of (a) human computation and (b) machine computation. 

cannot be read to more than three decimal places. On the other hand, a digital 
device can easily handle a large number of digits. Even the simple abacus of Figure 
I.la can display a number-admittedly just one-to 13 places of accuracy. This 
advantage of digital data representation over analog is also seen in the higher fidel­
ity of the sound recorded on a compact disc (CD), a digital device, compared to an 
old-fashioned record (LP), which is an analog device. 

Humans employ languages with a wide range of digital symbols, and they usu­
ally represent numbers in decimal (base 10) form. It is not practical to build com­
puters to handle symbolic or decimal data directly. Instead, computers process data 
in binary form, that is, using the two symbols O and I called bits (binary digits). 
Computers are built from electronic switches that have two natural states: off (0) 
and on (!). Hence the internal "language" of computers comprises forbidding­
looking strings of bits such as 10010011 11011001. To provide communication 
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Processor P 

Read~write head 

r?.__.._I ...,_I _._I __.l_,_I ..... I _.__,.___._........__,---'-'I ~ Mem°J tape 

Figure 1.3 
A Turing machine. 

between a computer and its human users, a means of translating information 
between human and machine (binary) formats is necessary. The input-output 
equipment shown in Figure 1.2b performs this task. 

An abstract computer. We are interested in the computational abilities of gen­
eral-purpose digital computers. One might raise the following question at the out­
set: Are there any computations that a "reasonable" computer can never perform? 
Three notions of reasonableness are widely accepted. 

• The computer should not store the answers to all possible problems. 
• The computer should only be required to solve problems for which a solution 

procedure or program can be given. 
• The computer should process information at a finite speed. 

A reasonable computer can therefore solve a particular problem only if it is sup­
plied with a program that can generate the answer in a finite amount of time. 

In the 1930s the English mathematician Alan M. Turing (1912-54) introduced 
an abstract model of a computer that satisfies all the foregoing criteria [Barwise 
and Etchemendy 1993]. This model, now called a Turing machine, has the struc­
ture shown in Figure 1.3. As we noted earlier two essential elements of any com­
puter are a memory and a processor. The memory of a Turing machine is a tape M 
which resembles that of a tape recorder. Unlike the tape recorder, however, the 
Turing machine's tape is of unbounded length and is divided lengthwise into 
squares. Each square can be blank, or it can contain one of a small set of symbols. 
The Turing machine's processor Pis a simple device with a small number of inter­
nal configurations or states. It is linked to M by a read-write head that can read the 
contents of one square Q and write a new symbol. into Q to replace the old one in a 
single time step. Instead of writing on the tape, the processor can also just read the 
current symbol and move the tape one square to the left or right of the current 
square Q. 

We can view the Turing machine as having a set of instructions that we will 
write in the compact, four-part format 

sh T; oj sk 

This instruction is interpreted in the following way: If the present state of the pro­
cessor P is S1, and the symbol it reads on the square of M under the read-write 
head is T;, then perform the action (such as write a new symbol or move the tape) 
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specified by Oj and change the state of P to Sk. Another way of expressing this 
instruction, which is more in tune with the style of a modem computer program­
ming language, is 

if oldstate = s,, and input = T; then output= Oj and newstate = Sk; 

The output operation indicated by Oj can be any one of the following: 

1. Oj = ½' meaning write the symbol ½ on the tape to replace the symbol T;. 
2. Oj = R, meaning move the tape so that the read-write head is over the square to 

the right of the current square. (The tape is moved one square to the left.) 
3. Oj = L, meaning move the tape so that the read-write head is over the square to 

the left of the current square. (The tape is moved one square to the right.) 
4. Oj = H, meaning halt the computation. 

The foregoing apparently restricted form of instruction, with just a few differ­
ent symbols to write on Mand a few different states for P, turns out to be sufficient 
to define programs that can perform all reasonable computations. To determine the 
value of Z = F(X) via a Turing machine, where F is some function of interest, we 
proceed as follows: The input data Xis placed in a suitably coded form on an other­
wise blank tape M. The processor P is supplied with a program that specifies a 
sequence of steps that are designed to compute F. The Turing machine is then 
started and executes instruction after instruction, moving the tape M and writing 
intermediate results on it. Eventually, the Turing machine should halt, and the final 
result Z should be found on the tape. 

EXAMPLE 1.1 A TURING MACHINE TO ADD TWO UNARY NUMBERS. Any 
natural number n, that is, a positive integer selected from the set we usually write as 0, 
1, 2, 3, 4, 5, . .. , can be written in the unary form consisting of a sequence of n ls. For 
example, 5 can be written as 11111 and 13 as 1111111 I 11111. When we record num­
bers using tally or check marks only, we are using a unary notation. (Surprisingly, 
unary numbers still have a small place in computer design [Poppelbaum et al. 1985].) 

We will now show how to program a Turing machine to compute the sum of two 
unary numbers n1 and n2. The tape symbols needed are 1 and b, where b denotes a 
blank. We start with a blank tape (one containing bin every square) and write the two 
input numbers in the following format: 

... bb]llll ... lblll ... lbbb ... 
'---.-"' '---.-"' 

n1 nz 

We position the read-write head over the blank square (underlined above) to the left of 
the left-most 1. Our Turing machine then computes n1 + n2 by the simple expedient of 
finding the single blank that separates n1 and n2 and replacing it with 1. The machine 
then finds and deletes the left-most I of n1• The resulting pattern of ls and bs 

... bb]lbl I ... 11111 ... 1 b b b ... 
'---.,,------' 

n1 + n2 

appearing on the tape is the required answer in the same unary format as the input data. 
The behavior of a seven-instruction Turing machine that implements this procedure is 
given with explanatory comments in Figure 1.4. Observe that although the tape M can 
have an arbitrarily large number of states, the processor P has only the four states S0, 

S1, S2, and S3. 
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r 
Instruction Comment 

s, b R s, Move read-write head one square to right. 

s, R s, Move read-write head rightward across 11 1• 

s, b s, Replace blank between n1 and n2 by 1. 

s, L s, Move read-write head leftward across n1• 

s, b R s, Blank square reached; move one square to right. 

s, b s, Replace left-most I by blank. 

s, b H s, Halt; the result n1 + 112 is now on the tape. 

Figure 1.4 
Turing machine program to add two unary numbers. 

One of Turing's most remarkable achievements was to prove that a universal 
Turing machine (not unlike the above unary adding machine) can by itself perform 
every reasonable computation. A universal Turing machine is essentially a simula­
tor of Turing machines. If given a description of some particular Turing machine 
TM-a program description like that of Figure I .4 will do-the universal machine 
simulates all the operations performed by TM. A universal Turing machine needs 
only t different tape symbols and s different processor states, where ts < 30, imply­
ing that it can have a very small instruction set. Nevertheless, such a machine can 
perform any reasonable computation. It can therefore do anything that any real com­
puter can do and so serves as an abstract model of the modem general-purpose com­
puter. The universal Turing machine also captures a little of the flavor of reduced 
instruction set computers (RISCs), which, despite having relatively few instruction 
types, are among the most powerful computing machines available today. 

1.1.2 Limitations of Computers 

We tum next to the question of what problems computers can and cannot solve, 
either in principle or in practice [Barwise and Etchemendy 1993; Carmen and Leis­
erson 1990; Garey and Johnson 1979]. 

U11solvable problems. Problems exist that no Turing machine and therefore no 
practical computer can solve. There are well-defined problems, some quite famous, 
for which no solutions or solution procedures are known. An example from pure 
mathematics is Goldbach' s conjecture, formulated by the mathematician Christian 
Goldbach (1690-1764), which states that every even integer greater than 2 is the 
sum of exactly two prime numbers. For instance, 8; 3 + 5 and 108; 37 + 71. Gold­
bach's conjecture has been tested for an enormous number of even integers and is 
true in all test cases. Nevertheless, it is not yet known if the conjecture is true for 
every even integer, nor is any reasonable procedure known to determine whether the 
conjecture is true. The number of even integers is infinite, so a complete or exhaus­
tive examination of all even integers and their prime factors is not feasible. 

Goldbach's conjecture is an example of an unsolved problem that may eventu­
ally be solved-we just don't have a suitable solution procedure yet. Turing 
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machines have proven another class of problems to be unsolvable, so there is no 

hope of ever solving them; such problems are said to be undecidable. An example 

of an undecidable problem is to determine if an arbitrary polynomial equation of the 

form 

a0 + a1x + a2x2 + ··· + a,,_,x•-1 + a,;x" = b 

has a solution consisting entirely of integers. This problem may be answerable for 

specific equations, but a general procedure or program can never be constructed that 

can analyze any possible polynomial equation and decide if it has an integer solution. 

Turing identified an undecidable problem that involves the basic nature of Tur­

ing machines. Does a procedure exist to determine if an arbitrary Turing machine 

with arbitrary input data will ever halt once it has been set in motion? Turing 

proved that the answer is no, so the Turing machine halting problem as this partic­

ular problem is called, is also undecidable. This result has some practical implica­

tions. A common and costly error made by inexperienced computer programmers 

is to write programs that contain infinite loops and therefore fail to halt under cer­

tain input conditions. It would be useful to have a debugging program that could 

determine whether any given program contains an infinite loop. The undecidability 

of the Turing machine halting problem implies that no such infinite-loop-detecting 

tool can ever be realized. 
The Turing machine model of a computer has one unrealistic, if not unreason­

able, aspect: The length of the tape memory, and hence the total number of states in 

the Turing machine, is infinite. Real computers have a finite amount of memory 

and are therefore referred to as finite-state machines. Therefore, Turing machines 

can perform some computations that, in principle, finite-state machines cannot per­

form. For example, a finite-state machine cannot multiply two arbitrarily large 

numbers because it eventually runs out of the states needed to compute the product. 

The number of states of a typical computer is enormous, so this finiteness limita­

tion has little significance. A typical general-purpose computer has billions of 

states and can quickly multiply numbers of any practical length. 

Intractable problems. Real (finite-state) computers can solve most computa­

tional problems to an acceptable degree of accuracy. The question then becomes: 

Can a computer of reasonable size and cost solve a given problem in a reasonable 

amount of time? If so, the problem is said to be tractable; otherwise, it is intracta­

ble. Whether a given problem is tractable depends on several factors: the nature of 

the problem itself, the solution method or program used, and the computing speed 

or peiformance of the computer available to solve it. Figure 1.5 gives an indication 

of the speed of modem computers. It shows how the number of basic operations, 

such as the addition of two numbers, that a CPU can perform has been evolving 

with advances in computer hardware. 
Example 1.2 illustrates the impact of the solution method on problem diffi­

culty. 

EXAMPLE 1.2 FINDING AN EULER CIRCUIT IN A GRAPH. A well-known 

problem associated with the Swiss mathematician Leonhard Euler (1707-1783) is the 
following: Given a set of connected paths such as the aisles in an exhibition hall (Fig­
ure 1.6a), is it possible to make a tour of the hall so that one walks along, every aisle 
exactly once and ends up at the starting point? The problem can be ..represented 

abstractly by means of a graph, as shown in Figure 1.6b. Each aisle is modeled by a 
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Number of basic 
Component technology Date operations per second 

Electromechanical: relays 1940 IO 

Electronic: vacuum tubes (valves) 1945 103 

Electronic: transistors 1950 10• 

Small-scale integrated circuits 1960 105 

Medium-scale integrated circuits 1980 106 

Very large-scale integrated circuits 2000 109 

Figure 1.5 
Influence of hardware technology on computing speed. 

line called an edge, and the junction of two or more aisles by a point called a node. 
The graph of Figure l.6b has five nodes A, B, C, D, and E and eight edges a, b, c, d, e, 
f, g, and h. Restated in graph terms, the walking-tour problem becomes that of finding 
a closed path around the graph that contains every edge exactly once; such a path is 
known as an Euler circuit. We consider two possible ways to determine whether a 
graph contains an Euler circuit. 

A "brute force" or exhaustive approach is to generate a list of the possible order­
ings or permutations of the edges of the graph. Each permutation then corresponds to a 
potential tour of the exhibition hall. The list of permutations can be written in the form 

abcdefgh, acbdefgh, adbcefgh, aebcdfgh, ajbcdegh, ... (1.1) 

We can search the permutation list and check each entry to see if it specifies an Euler 
circuit. Clearly, the list is huge, and most of its entries do not represent Euler circuits. 
For example, the first permutation abcdefgh does not represent an Euler circuit, 
because while it is possible to go from a to b and from b to c, it is not possible to go 
directly from c to d. A tour starting at node A that traverses a, b, and c must continue 
along g, at which pointfor h may be followed. The permutation abcgfdhe appearing 

a 

~ A B 

North b 

e f 

West 
d Wing C 

C 

g I, 

D E 

(a) (b) 

Figure 1.6 
(a) Plan of the aisles in an exhibition hall and (b) the corresponding graph 
model. 
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somewhere down the list represents a circuit of the desired kind, as can be quickly ver­

ified. Thus we conclude that the graph of Figure 1.6b does indeed contain an Euler cir­

cuit. 
The main drawback of this brute-force method is the length the permutation list; 

the time needed to generate, store, and check it is enormous. Most of the list's entries 

do not represent Euler circuits, but in the worst case, we might have to search the entire 

list to find an Euler circuit or prove that none exists. The number of possible permuta­

tions of the eight edges in our example is 8 !, which denotes eight factorial. Therefore 

8! = 8 X 7 X 6 X 5 X 4 X 3 X 2 X 1 = 40,320 

is the length of list (1.1). When q, the number of edges present, is large, the size of the 

permutation list q! is approximated by 

which shows that the size of the brute-force procedure in terms of storage requirements 

and computing speed increases exponentially with q. If q were 80 instead of 8, then we 

would have q! = 80! ~ 7.16 x 10118
. This huge number exceeds the estimated number 

(1010
) of neurons in the human brain. A very fast computer capable of processing a Uil­

lion (1012) permutations per second would spend 2.27 x 1099 years dealing with 80! • 

permutations. We can therefore conclude with some confidence that the problem of 

finding an Euler circuit is intractable via the brute-force approach. 

An alternative but very tractable solution procedure for the same problem depends 

on Euler's discovery that a graph has the desired circuit if and only if every node is the 

junction of an even number of edges. Intuitively, this result follows from the fact that 

every edge used to enter a node must be paired with an edge used to exit the node. Now 

the task of determining whether a graph contains an Euler cycle reduces to checking 

each node in tum and counting the edges that it connects. In the example of Fig­

ure 1.6b, nodes A, B, C, D, and E form the junctions of 4, 4, 4, 2, and 2 edges, respec­

tively. It follows immediately that the graph has an Euler circuit. While the brute-force 

method requires a computation time and a storage capacity th~t grow exponentially 

with the number of edges q, the second method has a computational complexity that is 

proportional to q. The second method can easily solve problems with 80 or more edges. 

Because the problem of finding an Euler circuit has an efficient and practical 

solution procedure, as shown in Example 1.2, we regard the problem itself as 

inherently tractable. We usually regard a problem as intractable if all its known 

solution methods grow exponentially with the size of the problem. Many problems, 

some of great practical importance, are inherently intractable in this way. Only 

small versions of such intractable problems can be solved in practice, where small­

ness is measured by some problem-dependent parameter such as the number of 

input variables present. 
An example of an intractable problem related to Example 1.2 is the traveling 

salesman problem. Here the goal is also to make a tour, this time by car or plane 

through a given set of n cities, and eventually return to the starting point. The dis­

tance between each pair of cities is known, and the problem is to determine a tour 

that minimizes the total distance traveled. Again it is convenient to use a graph 

model with nodes denoting cities and edges denoting intercity highways with dis­

tances marked on them-the graph is tantamount to a roadmap. The best solution 

procedures known for this problem, although better than the brute-force approach 
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of listing all possible tours through the n cities, are exponential in n. Quite a few 
practical problems are closely related to the traveling salesman problem: The 
scheduling of airline flights, the routing of wires in an electronic circuit, and the 
sequencing of steps in a factory assembly line are examples. Such difficult comput­
ing problems are a major motivation for the design and construction of bigger and 
faster computers. 

An intractable problem can be solved exactly in a reasonable amount of time 
only when its size n is below some maximum value nMAX· The value of nMAX 
depends both on the problem itself and on the speed of the computers available to 
solve it. It might be expected that computer speeds could be increased to make 
nMAX any desired value. We now present arguments to indicate that this is highly 
unlikely. 

Speed limitations. An algorithm A has time complexity of order f(n), denoted 
O(f(n)), if the number of basic operations-the precise nature of these operations 
is not important-A uses to solve a problem of size n is at most cf(n), wheref(n) is 
some function of n and c is a constant. The functionf(n) therefore indicates the rate 
at which the computing time that A needs to obtain a solution grows with the prob­
lem size n. 

To gauge the impact of computing speed on the size nMAX of the largest solv­
able problem, we consider four algorithms A 1, A2, A3, and A4 of varying degrees of 
difficulty. Let the time complexities of A 1, A2, A3, and A4 be O(n), O(n1

), O(n100), 
and 0(2"), respectively. Because A4 has a time complexity that is exponential in n, 
it is the only obviously intractable procedure. Suppose that all four algorithms are 
programmed on a computer M having a speed of S basic operations per second. Let n, denote the size of the largest problem that algorithm A; can solve in a fixed time 
period of T seconds. Let n;' denote the size of the largest problem that the same 
algorithm A; can solve in T seconds on a new computer M' that is 100 times faster 
than M; the speed of M' is therefore 100S operations per second. M' could be 
implemented by a different and faster hardware technology than M. It could also­
at least in principle-be implemented by a "supercomputer" consisting of 100 cop­
ies of M all working in parallel on the same problem, a technique referred to as 
parallel processing. 

Figure 1.7 shows the values of n;' relative ton; for the four algorithms. In the 
case of the intractable algorithm A4, the increase in the size of the largest problem 
that can be handled on moving from M to M' is insignificant. This is also true for 
A3, even though it does .not fall within the strict definition of intractability. To 
increase the size of the maximum problem that A3 and A4 can solve in the given 

Time 
Maximum problem size 

Algorithm complexity ComputerM ComputerM~ 

A, O(n) n, 
, 

= 100n1 n, 

A, O(n2) n, 
, 

= l0n2 n, 

A, O(n 100J 113 113 
, 

= 1.047113 Figure 1.7 

A4 0(2") n, n4 ~ = 114 + 6.644 Effect of computer speedup 
by 100 on four algorithms. 
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time period by a factor of 100, we would need computers with speeds of 10200s and 
J030"4S, respectively. It is reasonable to expect that problems of these magnitudes 
can never be solved by the given algorithms on realistic computers. 

Because so many important problems are intractable, we often devise approxi­

mate or inexact methods to solve them. Two major techniques follow. 

I. We replace the intractable problem Q with a tractable problem Q' whose solu­
tion approximates that of Q. 

2. We examine a relatively small set of possible solutions to Q using reasonable, 

intuitive, and often poorly understood selection criteria and take the "best" of 

these as the solution to Q. Methods that are designed to produce acceptable, if 
not optimal, answers using a reasonable amount of computing time are some­
times called heuristic procedures. 

To illustrate the heuristic approach, consider again the traveling salesman prob­

lem. The salesman must visit n cities and return to his starting point. All intercity 
distances are specified, and the objective of the problem is to find a tour that mini­
mizes the total distance traveled by the salesman. We can represent the problem on 
a graph similar to that of Figure 1.6b, whose nodes denote cities and whose edges 

denote intercity links. A brute-force approach of the kind discussed in Example 1.2, 
which involves listing all n! possible tours and their distances, is intractable, and no 
obviously tractable method to obtain a minimum-distance tour is known. 

Real traveling salesmen often use the following simple heuristic: Go to the pre­
viously unvisited city that is closest to the current city and return to the start in the 

final leg of the tour. Hence for each of the n legs, the only computation needed is to 

compare the distances between the current city and each of at most n - I other cities. 
The city that is the shortest distance away (if there are several such cities, select any 
one of them) is visited next. Because this heuristic makes decisions that are optimal 

on a local basis only, it will not always find an overall optimum. Nevertheless, for 
most practical problems this heuristic provides a solution of minimum or near-min­
imum length, but there is no guarantee that it will do so in any particular case. 

Computers are continually being applied to new problems whose computa­
tional requirements far exceed those of older problems. For example, the process­

ing of high-quality speech and visual images for multimedia applications can 

require speeds measured in trillions of basic operations per secondc-To meet the 
ever-increasing demand for high-performance computation, we need better algo­
rithms and heuristics, as well as faster computers. Although computers continue to 

increase in speed because of advances in hardware technology, the rate of increase 

(see Figure 1.5) has not kept pace with demand. As a result, we still need to find 
new ways to improve the performance of computers at reasonable cost-which is 
the basic rationale for the study of computer architecture and organization. 

1.2 
THE EVOLUTION OF COMPUTERS 

Calculating machines capable of performing the elementary operations of arith­

metic (addition, subtraction, multiplication, and division) appeared in the 16th 
century, and perhaps earlier [Randell 1982; Augarten 1984]. These were clever 
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mechanical devices constructed from gears, levers, and the like. The French philos­
opher Blaise Pascal (1623-62) invented an early and influential mechanical calcu­
lator that could add and subtract decimal numbers. Decimal numerals were 
engraved on counter wheels much like those in a car's odometer. Pascal's main 
technical innovation was a ratchet device for automatically transferring a carry 
from a digit d; to the digit d;+i on its left whenever d; passed from 9 to 0. In Ger­
many, Gottfried Leibniz (1646-1716) extended Pascal's design to one that could 
also perform multiplication and division. Mechanical computing devices such as 
these remained academic curiosities until the 19th century, when the commercial 
production of mechanical four-function calculators began. 

1.2.1 The Mechanical Era 

Various attempts were made to build general-purpose programmable computers 
from the same mechanical devices used in calculators. This technology posed some 
daunting problems, and they were not satisfactorily solved until the introduction of 
electronic computing techniques in the mid-20th century. 

Babbage's Dijfere11ce E11gi11e. In the 19th century Charles Babbage designed 
the first computers to perform multistep operations automatically, that is, without a 
human intervening in every step [Morrison and Morrison 1961]. Again the technol­
ogies were entirely mechanical. Babbage's first computing machine, which he 
called the Difference Engine, was intended to compute and print mathematical 
tables automatically, thereby avoiding the many errors occurring in tables that are 
computed and typeset by hand. The Difference Engine performed only one arith­
metic operation: addition. However, the method of (finite) differe11ces embodied in 
the Difference Engine can calculate many complex and useful functions by means 
of addition alone. 

EXAMPLE 1.3 COMPUTING x2 BY THE METHOD OF DIFFERENCES. Con­
sider the task of calculating a table of the squares Yj = x/, for xi= 1, 2, 3, ... using the 
method of differences. To understand the underlying concept, suppose we already 
have the list of squares given in Figure I.Sa. Subtract each square Yj = x/ from the 
next value Yj+ 1 = (xj + I )2 in the list. The result (xi + I )2 -x/ = 2xj + I is called the first 
difference of y and is denoted by 111 Yj; the corresponding list of values in Figure I.Sa 
is 3, 5, 7, ... If we subtract two consecutive first-difference values, we obtain 2(xj + 1) 
+ 1 - (2xi + 1) = 2, which is the second difference !!? Yj of y. Note that the second dif­
ference is constant for all j. 

The Difference Engine evaluates x2 by taking the constant second difference t} Yj 

and adding it to the first difference 1:!1 
Yj. The result is 

I I 2 
il Yj+l = il Yj+i\. Yj (1.2) 

which is the next value of the first difference. At the same time, the engine calculates 
I 

Yj + 1 = Yj + il Yj (1.3) 

which is the next value of x'. By repeatedly executing the two addition steps (1.2) and 
(1.3), the Difference Engine can generate any desired sequence of consecutive 
squares. It must be "primed" by manually inserting the initial values y1 = 1, /:! 

1y1 = 3, 
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j =Xf 2 3 4 5 6 Initial values 

\ 
2 4 9 16 25 36 Yj=xj: 

y 1 = 1 ~ Yj register 

\I\I\I\I\I\ ~Adder 

First difference 8 1 y j: 3 5 7 9 11 13 

\I\I\I\I\I\ 
Second difference 82y/ 2 2 2 2 2 2 

(a) (b) 

Figure 1.8 
Computing 2- by the method of differences: (a) a representative computation and 
(b) the corresponding Difference Engine configuration. 

and ~2y1 = 2 for j = I, which appear at the left end of the corresponding lists in Fig­
ure I.Sa. Then the Difference Engine computes ~

1
Yi = 3 + 2 = 5 according to (1.2) 

and y2 =I+ 3 = 4 according to (1.3). It never has to recompute ~
1
yj, which remains 

unchanged at 2 for all j. Once the values for j = 2 are known, the Difference Engine 
can calculate .11y3 and y3, and so on indefinitely. At the end of the computation illus­
trated in Figure I.Sa, we have y6 = 36, ~

1
y6 = 13, and ~ 2y6 = 2. One more iteration 

yields ~ 1
y7 = 13 + 2 = 15 and y7 = 36 + 13 = 49, which is, of course, 72

. 

Figure l .Sb outlines the essential features of a small Difference Engine that exe­
cutes the foregoing procedure. It contains several registers; these are memory devices, 
each of which stores a sinple number. Here we need three registers to store the three 
numbers Yj• .11

yj, and .1 Yj• The engine employs a pair of processing units called 
adders to perform the addition steps specified by (1.2) and (1.3). Each adder takes the 
contents of two registers, calculates their sum, and returns it to one of the registers so 
that the sum becomes that register's new contents. The arrows in Figure I.Sb indicate 
the manner in which information flows through the Difference Engine during operation. 

We can easily show that the nth difference of x' is always a constant, from 
which it follows the nth difference of any nth-order polynomial of the form 

(1.4) 

is also a constant K. A Difference Engine can therefore calculate y(x) by evaluating 
a set of n difference equations of the form 

i i i+ I 
flyj = flyj-1 +fl Yj-1 

where O ~ i ~ n- I, ~oYj = y1, and~•\= K. Many useful functions encountered in 
science and engineering are expressible as polynomials like (1.4) and therefore can 
be evaluated by the method of differences. The trigonometric sine function, for 
instance, can be written as 

3 5 7 9 11 . xxxxx 
smx = x-- +---+ ---+ ··· 

3! 5! 7! 9! 11! 
(1.5) 
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The first k terms of (1.5) form a (2k - !)th-order polynomial that approximates 
sinx. A higher-order polynomial will produce more accurate results. 

Babbage constructed a small portion of his first Difference Engine in 1832, 
which served as a demonstration prototype. He later designed an improved version 
(Difference Engine No. 2), which was to handle seventh-order polynomials and 
have 31 decimal digits of accuracy. Like some of his modem successors, Babbage 
conceived his computers on a grand scale that strained the limits of the technol­
ogy-and funds-available to build them. He never completed Difference Engine 
No. 2, mainly because of the difficulty of fabricating its 4000 or so high-precision 
mechanical parts. The complexity of this 3-ton machine can be appreciated from 
Figure 1.9, which is based on one of Babbage's own drawings. The vertical "fig­
ure-wheel columns" constitute the registers for storing 31-digit numbers, while the 
adders are implemented by the rack-and-lever mechanism underneath. It was not 
until 1991 that a working version of Difference Engine No. 2 was actually con­
structed (at a cost of around $500,000) by the Science Museum in London to cele­
brate the bicentennial of Babbage's birth [Swade 1993]. 

The Analytical Engine. Another reason for Babbage's failure to complete his 
Difference Engine was that he conceived of a much more powerful computing 
machine that he called the Analytical Engine. This machine is considered to be the 
first general-purpose programmable computer ever designed. 

The overall organization of the Analytical Engine is outlined in Figure I.I 0. It 
contains in rudimentary form many of the basic features found in all subsequent 
computers-compare Figure 1.10 to Figure 1.2. The main components of the 

PRINTER 

Figure 1.9 

15 

CHAPTER 1 
Computing and 

Computers 

FIGURE­
WHEEL 
COLUMNS 

HANDLE 

Diagram by Babbage of Difference Engine No. 2 [Courtesy of the National Science Museum/Science & Society 
Picture Library]. 
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Input~ 

Arithmetic~ Main output 

logic unit Data memory 
equipment 

(the mill) (the store) 
(printer 
and card 
punch) 

Instructions 

Operation Variable 
cards cards 

Program control unit 

Figure 1.10 
Structure of Babbage's Analytical Engine. 

Analytical Engine are a memory called the store and an ALU called the mill; the 
latter was designed to perform the four basic arithmetic operations. To control the 
operation of the machine, Babbage proposed to use punched cards of a type 
developed earlier for controlling the Jacquard loom. A program for the Analytical 
Engine was composed of two sequences of punched cards: operation cards used to 
select the operation to be performed by the mill, and variable cards to specify the 
locations in the store from which inputs were to be taken or results sent. An action 
such as ax b = c would be specified by an instruction consisting of an operation card 
denoting multiply and variable cards specifying the store locations assigned to a, b, 
and c. Babbage intended the results to be printed on paper or punched on cards. 

One of Babbage's key innovations was a mechanism to enable a program to 
alter the sequence of its operations automatically. In modern terms he conceived of 
conditional-branch or if-then-else instructions. They were to be implemented by 
testing the sign of a computed number; one course of action was taken if the sign 
were positive, another if negative. Babbage also designed a device to advance or 
reverse the flow of punched cards to permit branching to any desired instruction 
within a program. This type of conditional branching distinguishes the Analytical 
Engine from the Difference Engine: a program for the latter could only execute a 
fixed set of instructions in a fixed order. Conditional branching is the source of 
much of the power of the Analytical Engine and subsequent computers; it is the 
feature that makes them truly general purpose. 

Again Babbage proposed to build the Analytical Engine on a grand scale using 
the same mechanical technology as his Difference Engines. The store, for instance, 
was to have a capacity of a thousand SO-digit numbers. He estimated that the addi­
tion of two numbers would take a second, and multiplication, a minute. Babbage 
spent much of the latter half of his life refining the design of the Analytical Engine, 
but only a small part of it was ever constructed. 

Later developments. Many improvements were made to the design of four­
function mechanical calculators in the 19th century, which led to their widespread 
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use. The Comptometer, designed by the American Dorr E. Felt (1862-1930) in 
1885, was one of the earliest calculators to use depressible keys for entering data 
and commands; it also printed its results on paper. A later innovation was the use 
of electric motors to drive the mechanical components, thus making calculators 
"electromechanical" and greatly increasing their speed. Another important devel­
opment was the use of punched cards to sort and tabulate large amounts of data. 
The punched-card tabulating machine was invented by Herman Hollerith (1860-
1929) and used to process the data collected in the 1880 United States census. In 
1896 Hollerith formed a company to manufacture his electromechanical equip­
ment. This company subsequently merged with several others and in 1924 was 
renamed the International Business Machines Corp. (IBM). 

No significant attempts to build general-purpose, program-controlled compute 
ers were made after Babbage's death until the 1930s [Randell 1982]. In Germany, 
Konrad Zuse built a small mechanical computer, the Zl, in 1938, apparently 
unaware of Babbage's work. Unlike previous computers, the Zl used binary, 
instead of decimal, arithmetic. A subsequent Zuse machine, the Z3, which was 
completed in 1941, is believed to have been the first operational general-purpose 
computer. Zuse's work was interrupted by the Second World War and had little 
influence on the subsequent development of computers. Of great influence, how­
ever, was a general-purpose electromechanical computer proposed in I 937 by 
Howard Aiken (1900-73), a physicist at Harvard University. Aiken arranged to 
have IBM construct this computer according to his basic design. Work began on 
Aiken's Automatic Sequence Controlled Calculator, later called the Harvard Mark 
I, in 1939; it became operational in 1944. Like Babbage's machines, the Mark I 
employed decimal counter wheels for its main memory. It could store seventy-two 
23-digit numbers. The computer was controlled by a punched paper tape, which 
combined the functions of Babbage's operation and variable cards. Although less 
ambitious than the Analytical Engine, the Mark I was in many ways the realization 
of Babbage's dream. 

1.2.2 Electronic Computers 

A mechanical computer has two serious drawbacks: Its computing speed is limited 
by the inertia of its moving parts, and the transmission of digital information by 
mechanical means is quite unreliable. In an electronic computer, on the other hand, 
the "moving parts" are electrons, which can be transmitted and processed reliably 
at speeds approaching that of light (300,000 km/s). Electronic devices such as the 
vacuum tube or electronic valve, which was developed in the early 1900s, permit 
the processing and storage of digital signals at speeds far exceeding those of any 
mechanical device. 

The first generatioll. The earliest attempt to construct an electronic computer 
using vacuum tubes appears to have been made in the late 1930s by John V. Atana­
soff (1903-95) at Iowa State University [Randell 1982]. This special-purpose 
machine was intended for solving linear equations, but it was never completed. The 
first widely known general-purpose electronic computer was the Electronic Numer­
ical Integrator and Calculator (ENIAC) that John W. Mauchly (1907-80) and J. 
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Presper Eckert (1919-95) built at the University of Pennsylvania. Like Babbage's 
Difference Engine, a motivation for the ENIAC was the need to construct mathe­
matical tables automatically-this time ballistic tables for the U.S. Army. Work on 
the ENIAC began in 1943 and was completed in 1946. lt was an enormous machine 
weighing about 30 tons and containing more than 18,000 vacuum tubes. It was also 
substantially faster than any previous computer. While the Harvard Mark I required 
about 3 s to perform a 10-digit multiplication, the ENIAC required only 3 ms. 

The ENIAC had a set of electronic memory units called accumulators with a 
combined capacity of twenty 10-digit decimal numbers. Each digit was stored in a 
JO-bit ring counter, where the binary pattern 1000000000 denoted the decimal digit 
0, 0100000000 denoted 1, 0010000000 denoted 2, and so on. The ring counter was 
the electronic equivalent of the decimal counter wheel of earlier mechanical calcu­
lators. Like counter wheels, the ENIAC' s accumulators combined the function of 
storage with addition and subtraction. Additional units performed multiplication, 
division, and the extraction of square roots. The ENIAC was programmed by the 
cumbersome process of plugging and unplugging cables and by manually setting a 
master programming unit to specify multistep operations. Results were punched on 
cards or printed on an electric typewriter. In computing ability, the ENIAC is 
roughly comparable to a modem pocket calculator! 

Like the Analytical Engine, the Harvard Mark I and the ENIAC stored their 
programs and data in separate memories. Entering or altering the programs was a 
tedious task. The idea of storing programs and their data in the same high-speed 
memory-the stored-program concept-is attributed to the ENIAC' s designers, 
notably the Hungarian-born mathematician John von Neumann (1903-57) who 
was a consultant to the ENIAC project. The concept was first published in a 1945 
proposal by von Neumann for a new computer, the Electronic Discrete Y ariable 
Computer (EDY AC). Besides facilitating the programming process, the stored­
program concept enables a program to modify its own instructions. (Such self­
modifying programs have undesirable aspects, however, and are rarely used.) 

The EDY AC differed from most of its predecessors in that it stored and pro­
cessed numbers in true binary or base 2 form. To minimize hardware costs, data 
was processed serially, or bit by bit. The EDY AC had two kinds of memory: a fast 
main memory with a capacity of 1024 or lK words (numbers or instructions) and a 
slower secondary memory with a capacity of 20K words. Prior to their execution, a 
set of instructions forming a program was placed in the EDYAC's main memory. 
The instructions were then transferred one at a time from the main memory to the 
CPU for execution. Each instruction had a well-defined structure of the form 

(1.6) 

meaning: Perform the operation OP (addition, multiplication, etc.) on the contents 
of main memory locations or "addresses" A1 and A2 and then place the result in 
memory location A3. The fourth address A4 specifies the location of the next 
instruction to be executed. A variant of this instruction format implements condi­
tional branching, where the next instruction address is either A3 or A4, depending 
on the relative sizes of the numbers stored in A1 and A2• Yet another instruction 
type specifies input-output operations that transfer words between main memory 
and secondary memory or between secondary memory and a printer. The EDY AC 
became operational in 1951. 
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keyboard, printer, Data execution) Data I processing J 
etc. 

Figure 1.11 
Organization of a first-gener,ation Computer. 

In 1947 van Neumann and his colleagues began to design a new stored-pro­
gram electronic computer, now referred to as the IAS computer, at the Institute for 
Advanced Studies in Princeton. Like the EDV AC, it had the general structure 
depicted in Figure 1.11, with a CPU for executing instructions, a main memory for 
storing active programs a second,rry memory for backup storage, and miscella­
neous input-outpu equipment. uiillk{ the EDVAC, however, the IAS machine was 
designed to proce s all bits of a binary number simultaneously or in parallel. Sev­
eral reports describ~ng the IAS computer were published [Burks, Goldstine, and 
van Neumann 1946] )ind had far-reaching influence. In its overall design the IAS is 
quite modern, and it {can be regarded as the prototype of most subsequent general­
purpose computers. Because of its pervasive influence, we will examine the IAS 
computer in more detail below. 

In the late 1940s and 1950s, the number of vacuum-tube computers grew rap­
idly. We usually refer to computers of this period as first generation, reflecting a 
somewhat narrow view of computer history [Randell 1982]. Besides those men­
tioned already, important early computers included the Whirlwind I constructed at 
the Massachusetts Institute of Technology and a series of machines designed at 
Manchester University [Siewiorek, Bell, and Newell 1982]. In 1947 Eckert and 
Mauchly formed Eckert-Mauchly Corp. to manufacture computers commercially. 
Their first successful product was the Universal Automatic Computer (UNIV AC) 
delivered in 1951. IBM, which had earlier constructed the Harvard Mark I, intro­
duced its first electronic stored-program computer, the 701, in 1953. Besides their 
use of vacuum tubes in the CPU, first-generation computers experimented with 
various technologies for main and secondary memory. The Whirlwind introduced 
the ferrite-core memory in which a bit of information was stored in magnetic form 
on a tiny ring of magnetic material. Ferrite cores remained the principal technology 
for main memories until the 1970s. 

The earliest computers had their instructions written in a binary code known as 
machine language that could be executed directly. An instruction in machine lan­
guage meaning "add the contents of two memory locations" might take the form 

00111011000000001001100100000111 

Machine-language programs are extremely difficult for humans to write and so 
are very error-prone. A substantial improvement is obtained by allowing opera­
tions and operand addresses to be expressed in an easily understood symbolic 

19 

CHAPTER I 
Computing and 
Computers 



INTEL - 1022

20 

SECTION I.2 
The Evolution of 
Computers 

form such as 

ADD Xl,X2 

This symbolic format, which is referred to as an assembly language, came into use 
in the 1950s, as computer programs were growing in size and complexity. An 
assembly language requires a special "system" program (an assembler) to translate 
it into machine language before it can be executed. First-generation computers were 
supplied with almost no system software; often little more than an assembler was 
available to the user. Moreover, assembly and machine languages varied widely 

from computer to computer so first-generation software was far from portable. 

The IAS computer. It is instructive to examine the design of the Princeton IAS 
computer. Because of the size and high cost of the CPU's electronic hardware, the 
designers made every effort to keep the CPU, and therefore its instruction set, 
small and simple. Cost also heavily influenced the design of the memory sub­
system. Because fast memories were expensive, the size of the main memory (ini­
tially lK words but expandable to 4K) was less than most users would have 
wished. Consequently, a larger (16K words) but cheaper secondary memory based 
on an electromechanical magnetic drum technology was provided for bulk storage. 
Essentially similar cost-performance considerations remain central to computer 
design today, despite vast changes over the years in the available technologies and 
their actual costs. 

The basic unit of information in the IAS computer is a 40-bit word, which is 
the standard packet of information stored in a memory location or transferred in 
one step between the CPU and the main memory M. Each location in M can be 
used to store either a single 40-bit number or else a pair of 20-bit instructions. The 
IAS's number format is fixed-point, meaning that it contains an implicit binary 
point in some fixed position. Numbers are usually treated as signed binary frac­
tions lying between -1 and + 1, but they can also be interpreted as integers. Exam­
ples of the IAS' s binary number format are 

01101000000 0000000000 0000000000 0000000000 = +.8125 

10011000000 0000000000 0000000000 0000000000 = -0.8125 

Numbers that lie outside the range ±1 must be suitably scaled for processing by 
IAS. 

An IAS instruction consists of an 8-bit opcode (operation code) OP followed 
by a 12-bit address A that identifies one of up to l12 = 4K 40-bit words stored in 
M. The IAS computer thus has a one-address instruction format, which we repre­
sent symbolically as 

OP A 

This format may appear very restrictive compared with the EDVAC's four-address 
instruction format (1.6). The IAS's shorter format clearly saves memory space. 
The fact that it does not restrict the machine's computational capabilities follows 
from two key aspects of the IAS 's design that have been incorporated into all later 
computers: 

1. The CPU contains a small set of high-speed storage devices called registers, 

which serve as implicit storage locations for operands and results. For example, 
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Address 

0 M(O) 
I M(l) 
2 M(2) 
3 (3) 
4 M(4) 
5 M(S) 

4,093 M(4,093) 
4,094 M(4,094) 
4,095 M(4,095) 

Main 
memoryM 

Figure 1.12 

Program 
control 
unit PCU 

Data 
processing 
unitDPU 

Arithmetic-logic unit 

Control 
signals 

Legend 

Program control unit PCU 
AR: Memory address register 
IR: Instruction opcode register 
IBR: Next• instruction buffer register 
PC: Program counter 

Data processing unit DPU 
AC: Accumulator register 
DR: General-purpose data register 
MQ: Multiplier-quotient register 

Organization of the CPU and main memory of the !AS computer. 

an instruction of the form 

ADD X (1.7) 

fetches the contents of the memory location X from main memory and adds it to 
the contents of a CPU register known as the accumulator register AC. The 
resulting sum is then placed in AC. Hence X and AC play the role of the three 
memory addresses A1, A2, and A3 appearing in (1.6). 

2. A program's instructions are stored in M in approximately the sequence in 
which they are executed. Hence the address of the next instruction word is usu­
ally that of the current instruction plus one. Therefore, the EDVAC's next­
instruction address A4 can be replaced by a CPU register (the program counter 
PC), which stores the address of the current instruction word and is incremented 
by one when the CPU needs a new instruction word. Branch instructions are 
provided to permit the instruction execution sequence to be varied. 

Figure 1.12 gives a programmer's perspective of the IAS, using modern nota­
tion and terminology. One of the two main parts of the CPU is responsible for 
fetching instructions from main memory and interpreting them; this part is vari­
ously known as the program control unit (PCU) or the I-unit (instruction unit). The 
second major part of the CPU is responsible for executing instructions and is 
known as the data processing unit (DPU), the datapath, or the E-unit (execution 
unit). 

The major components of the PCU are the instruction register IR, which stores 
the opcode that is currently being executed, and the program counter PC, which 
automatically stores and keeps track of the address of the next instruction to be 
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fetched. The PCU has circuits to interpret opcodes and to issue control signals to 
the DPU, M, and other circuits involved in executing instructions. The PCU can 
modify the instruction execution sequence when required to do so by branch 
instructions. There is also a 12-bit address register AR in the PCU that holds the 
address of a data operand to be fetched from or sent to main memory. Because the 
IAS has the unusual feature of fetching two instructions at a time from M, it con­
tains a second register, the instruction buffer register (!BR), for holding a second 
instruction. 

The main components of the DPU are the ALU, which contains the circuits 
that perform addition, multiplication, etc., as required by the possible opcodes, and 
several data registers to store data words temporarily during program execution. 
The IAS has two general-purpose 40-bit data registers: AC (accumulator) and DR 
(data register). It also has a third, special-purpose data register MQ (multiplier­
quotient) intended for use by multiply and divide instructions. 

Main memory M is a 4096 word or 4096 x 40-bit array of storage cells. Each 
storage location in Mis associated with a unique 12-bit number called its address, 
which the CPU uses to refer to that location. To read data from a particular mem­
ory location, the CPU must have its address X (which it can store in PC or AR). 
The CPU accomplishes the read operation by sending the address X to M accompa­
nied by control signals that specify "read." M responds by transferring a copy of 
M(X), the word stored at address X, to the CPU, where it is loaded into DR. In a 
similar way the CPU writes new data into main memory by sending to M the desti­
nation address X, a data word D to be stored, and control signals that specify 
"write.'' 

Instruction set. The IAS machine had around 30 types of instructions. These 
were chosen to provide a balance between application needs-the machine's focus 
was on numerical computation for scientific applications-and computer hardware 
costs as they existed at the time. To represent instructions, we will use a notation 
called a hardware description language (HDL) or register-transfer language 
(RTL) that approximates the assembly language used to prepare programs for the 
computer; the designers of the IAS computer also used such a descriptive language 
[Burks, Goldstine, and von Neumann 1946]. The HDL introduced here and used 
throughout this book is largely self-explanatory. Storage locations in M or the CPU 
are referred to by acronym. The transfer of information is denoted by the assign­
ment symbol:=, which suggests the left-going arrow f-. Hence, AC := MQ means 
transfer (copy) the contents of register MQ to register AC without altering the con­
tents of MQ. Elements of main memory M are denoted by appending to M an 
address in parentheses. For example, M(X) denotes the 40-bit memory word with 
address X, while M(X,0: 19) denotes the half-word consisting of bits 0 through 19 
ofM(X). 

Figure I. 13 illustrates our descriptive notation for a simple three-instruction 
IAS program that adds two numbers. The numbers to be added are stored in the 
main memory locations with addresses 100 and 101; their sum is placed in memory 
location 102. Note the role played by the accumulator AC as an intermediate 
source and destination of data. 

The set of instructions defined for the IAS computer is given in Figure 1.14 
[Burks, Go!dstine, and von Neumann 1946], omitting only those intended for 
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Instruction Comment 

AC:= M(l00) Load the contents of memory location 100 into the accumulator. 

AC := AC + M( 10 I) Add the contents of memory location 101 to the accumulator. 

M(102) := AC Store the contents of the accumulator in memory location 102. 

Figure 1.13 
An IAS program to add two numbers stored in main memory. 

input-output operations. We have divided them into three categories: data-transfer, 
data-processing, and program-control instructions. Observe that some instructions 
have all their operands in CPU registers; others have one operand in memory loca­
tion M(X). The data-processing instructions do most of the "real" work; all the 
others play supporting roles. Because only one memory address X can be speci­
fied at a time, multioperand instructions such as add and multiply must use CPU 
registers to store some of their operands. Consequently, it is necessary to precede 
or follow a typical data-processing instruction by data-transfer instructions that 
load input operands into CPU registers or transfer results from the CPU to mem­
ory. This requirement is illustrated by the add operation in Figure 1.13, where two 
data-transfer instructions and one add instruction are needed to accomplish a sin­
gle addition operation. Hence the IAS like many of its successors contains quite a 
few data-transfer instructions whose purpose is to shuttle information unchanged 
(except possibly in sign) between CPU registers and memory. The IAS's data-pro­
cessing instructions perform all the basic operations of arithmetic on signed 40-bit 
numbers. The IAS can also perform nonnumerical operations, but with some diffi­
culty, because it treats all its operands as numbers. 

The group of instructions called program-control or branch instructions deter­
mine the sequence in which instructions are executed. Recall that the program 
counter PC specifies the address of the next instruction to be executed. Instructions 
are normally executed in a fixed order determined by incrementing the program 
counter PC. The program-control instructions are designed to change this order. 
The IAS has two unconditional branch instructions (also called "jump" or "go to" 
instructions), which load part of X into PC and cause the next instruction to be 
taken from the left half or right half of M(X). The two conditional branch instruc­
tions permit a program branch to occur if and only if AC contains a nonnegative 
number. These instructions allow the results of a computation to alter the instruc­
tion execution sequence and so are of great importance. 

The last two instructions listed in Figure 1.14 are "address-modify" instruc­
tions that permit 12-bit addresses to be computed in the CPU and then inserted 
directly into instructions stored in M. Address-modify instructions allow a program 
to alter itself, enabling, for example, the same data-processing instruction to refer 
to different operands at different times. Modifying programs during their execution 
is now considered obsolete and undesirable, but it was an important feature of early 
computers like IAS. 

Instruction execution. The IAS fetches and executes instructions in several 
steps that form an instruction cycle. Since two instructions are packed into a 40-bit 

23 

CHAPTER I 

Computing and 
Computers 



INTEL - 1022

24 

SECTION 1.2 
The Evolution of 
Computers 

Instruction type Instruction 

Data transfer AC:=MQ 

AC :=M(X) 

M(X) :=AC 

MQ :=M(X) 

AC :=-M(X) 

AC:= IM(X)I 

AC:=-IM(X)I 

Data processing AC := AC + M(X) 

AC :=AC+ IM(X)I 

AC := AC -M(X) 

AC :=AC- IM(X)I 

AC.MQ := MQ x M(X) 

MQ.AC :=AC+ M(X) 

AC :=AC x2 

AC:=AC+2 

Program control go to M(X, 0: 19) 

go to M(X, 20:39) 

if AC ~O then 
go to M(X, 0: 19) 

if AC~ 0 then 
go to M(X, 20:39) 

M(X, 8:19) := AC (28:39) 

M(X, 28:39) := AC(28:39) 

Figure 1.14 
Instruction set of the !AS computer. 

Description 

Transfer contents of register MQ to register AC. 

Transfer contents of memory location X to AC. 

Transfer contents of AC to memory location X. 

Transfer M(X) to MQ. 

Transfer minus M(X) to AC. 

Transfer absolute value of M(X) to AC. 

Transfer minus I M(X) I to AC. 

Add M(X) to AC putting the result in AC. 

Add absolute value of M(X) to AC. 

Subtract M(X) from AC. 

Subtract I M(X) I from AC. 

Multiply MQ by M(X) putting the double-word 
product in AC and MQ. 

Divide AC by M(X) putting the quotient in AC and 
the remainder in MQ. 

Multiply AC by two (!-bit left shift). 

Divide AC by two (1-bit right shift). 

Take next instruction from left half of M(X) 

Take next instruction from right half of M(X). 

If AC contains a nonnegative number, then take next 
instruction from left half ofM(X). 

If AC contains a nonnegative number, then take next 
instruction from right half of M(X). 

Replace left instruction address field in M(X) by 12 
right-most bits of AC. 

Replace right instruction address field in M(X) by 
12 right-most bits of AC. 

word, the IAS fetches two instructions in each instruction cycle. One instruction 
has its opcode placed in the instruction register IR and its address field (if any) 
placed in the address register AR The other instruction is transferred to the IBR 
register for possible later execution. Whenever the next instruction needed by the 
CPU is not in IBR, the program counter PC is incremented to generate the next 
instruction address. 

Once the desired instruction has been loaded into the CPU, its execution phase 
begins. The PCU decodes /he instruction's opcode, and the PCU's subsequent 
actions depend on the opcode's bit pattern. Typically, these actions involve one or 
two register-transfer (micro) operations of the form S := f(S1, S2, ... , Sk), where the 
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S;'s are the locations of operands and/is a data-transfer or arithmetic operation. 
For example, the add instruction AC := AC + M(X) is executed by the following 
two register-transfer operations: 

DR :=M(AR); 

AC:=AC+DR 

First, the contents of the memory location M(AR) specified by the address register 
AR are transferred to the data register DR. Then the contents of DR and the accu­
mulator AC are added via the DPU's arithmetic-logic unit, and the result is placed 
in AC. The unconditional branch instruction go to M(X,0: I 9) has an address field 
containing some address X; after fetching this instruction, X is placed in AR. This 
instruction is then executed via the single register-transfer operation PC := AR, 
which makes PC point to the desired next instruction stored in the half-word 
M(X,0:19). 

EXAMPLE 1.4 AN IAS PROGRAM TO PERFORM VECTOR ADDITION. Let 
A= A(l), A(2), ... , A(I000) and B = B(1), B(2), ... , B(IO00) be two vectors, that is, 
one-dimensional arrays, of numbers to be added. The desired vector sum C = A + B is 
defined by 

C(l), C(2), ... , C(l000) =A(!)+ B(l), A(2) +B(2), ... , A(l000) + B(l000) 

For simplicity we will assume that the numbers processed by the !AS, including the 
vector elements A(!), B(I), and C(I) are 40-bit integers, and that the input vectors are 
prestored in the IAS's main memory M. We need to perform the add operation 

C(l) := A(]) + B(I) 

1000 times, specifically for!= I, 2, ... , 1000. Using the operations available in the !AS 
instruction set, the basic addition step above can be realized by the following three­
instruction sequence (compare Figure 1.13): 

AC:= A(!) 

AC :=AC+ B(l) 

C(l) := AC 

(1.8) 

Clearly, a program with 1000 copies of these three instructions, each with a different 
index I, would implement the vector addition. However, such a program, besides being 
very inconvenient to write, would not fit in M along with the three vectors A, B, and C. 
We need some type of loop or iterative program that contains one copy of (1.8) but can 
modify the index I to step through all elements of the vectors. 

Figure 1. 15 shows such a program. The vectors A, B, and C are assumed to be 
stored sequentially, beginning at locations 1001, 2001, and 3001, respectively. The 
symbol to the left of each instruction in Figure 1.15 is its location in M. For instance, 
2L (2R) denotes the left (right) half of M(2). The first location M(0) is used to store a 
counting variable N and is initially set to 999. N is systematically decremented by one 
after each addition step; when it reaches -1, the program halts. The conditional branch 
instruction in 5R performs this termination test. The three instructions in locations 3L, 
3R, and 4L are the key ones that implement (1.8). The address-modify instructions in 
SL, 9L, and l0L decrement the address parts of the three instructions in 3L, 3R, and 
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Location Instruction or data Comment 

0 999 Constant (count N). 

Constant. 

2 1000 Constant 

3L AC := M(2000) Load A(!) into AC. 

3R AC :=AC+ M(3000) Compute A(!)+ B(I). 

4L M(4000) := AC Store sum C(I). 

4R AC:= M(0) Load count N into AC. 

5L AC:= AC -M(l) Decrement count N by one. 

5R if AC;, 0 then go to M(6, 20:39) Test N and branch to 6R if nonnegative. 

6L go to M(6, 0:19) Halt. 

6R M(0) := AC Update count N. 

7L AC:= AC+ M(l) Increment AC by one. 

7R AC:= AC+ M(2) Modify address in 3L. 

SL M(3, S:19) :=AC(2S:39) 

SR AC :=AC+ M(2) Modify address in 3R. 

9L M(3, 28:39) := AC(2S:39) 

9R AC :=AC+ M(2) Modify address in 4L. 

lOL M(4, S:19) :=AC(28:39) 

!OR go to M(3, 0:19) Branch to 3L. 

Figure 1.15 
An IAS program for vector addition. 

4L. respectively. Thus the program continuously modifies itself during execution. Fig­
ure 1.15 shows the program before execution commences. At the end of the computa­
tion, the first three instructions will have changed to the following: 

3L AC:= M(I00I) 

3R AC:= AC+ M(2001) 

4L M(3001) := AC 

Critique. In the years that have elapsed since the !AS computer was com­
pleted, numerous improvements in computer design have appeared. Hindsight 
enables us to point out some of the IAS's shortcomings. 

I. The program self-modification process illustrated in the preceding example for 
decrementing the index I is inefficient. In general, writing and debugging a pro­
gram whose instructions change themselves is difficult and error-prone. Further, 
before every execution of the program, the original version must be reloaded 
into M. Later computers employ special instruction types and registers for index 
control, which eliminates the need for address-modify instructions. 
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2. The small amount of storage space in the CPU results in a great deal of unpro­
ductive data-transfer traffic between the CPU and main memory M; it also adds 
to program length. Later computers have more CPU registers and a special 
memory called a cache that acts as a buffer between the CPU register~ and M. 

3. No facilities were provided for structuring programs. For example, the IAS has 
no procedure call or return instructions to link different programs. 

4. The instruction set is biased toward numerical computation. Programs for non­
numerical tasks such as text processing were difficult to write and executed 
slowly. 

5. Input-output (IO) instructions were considered of minor importance-in fact, 
they are not mentioned in Burks, Goldstine, and van Neumann [1946] beyond 
noting that they are necessary. IAS had two basic and rather inefficient IO 
instruction types [Estrin 1953]. The input instruction INPUT(X, N) transferred 
N words from an input device to the CPU and then to N consecutive main mem­
ory locations, starting at address X. The OUTPUT(X, N) instruction transferred 
N consecutive words from the memory region with starting address X to an out­
put device. 

1.2.3 The Later Generations 

In spite of their design deficiencies and the limitations on size and speed imposed 
by early electronic technology, the IAS and other first-generation computers intro­
duced many features that are central to later computers: the use of a CPU with a 
small set of registers, a separate main memory for instruction and data storage, and 
an instruction set with a limited range of operations and addressing capabilities. 
Indeed the term von Neumann computer has become synonymous with a computer 
of conventional design. 

The second generation. Computer hardware and software evolved rapidly 
after the introduction of the first commercial computers around 1950. The vacuum 
tube quickly gave way to the transistor, which was invented at Bell Laboratories in 
1947, and a second generation of computers based on transistors superseded the 
first generation of vacuum tube-based machines. Like a vacuum tube, a transistor 
serves as a high-speed electronic switch for binary signals, but it is smaller, 
cheaper, sturdier, and requires much less power than a vacuum tube. Similar 
progress occurred in the field of memory technology, with ferrite cores becoming 
the dominant technology for main memories until superseded by all-transistor 
memories in the I 970s. Magnetic disks became the principal technology for sec­
ondary memories, a position that they continue to hold. 

Besides better electronic circuits, the second generation, which spans the 
decade 1954-64, introduced some important changes in the design of CPUs and 
their instruction sets. The !AS computer still served as the basic model, but more 
registers were added to the CPU to facilitate data and address manipulation. For 
example, index registers were introduced to store an index variable I of the kind 
appearing in the statement 

C(I) := A(!) + B(l) (1.9) 
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Index registers make it possible to have indexed instructions, which increment or 

decrement a designated index I before ( or after) they execute their main operation. 

Consequently, repeated execution of an indexed operation like (1.9) allows it to 

step automatically through a large array of data. The index value I is stored in a 

CPU register and not in the program, so the program itself does not change during 

execution. Another innovation was the introduction of two program-control 

instructions, now referred to as call and return, to facilitate the linking of pro­

grams; see also Example 1.5. 
"Scientific" computers of the second generation, such as the IBM 7094 which 

appeared in 1962, introduced floating-point number formats and supporting 

instructions to facilitate numerical processing. Floating point is a type of scientific 

notation where a number such as 0.0000000709 is denoted by 7.09 X 10-8
• A 

floating-point number consists of a pair of fixed-point numbers, a mantissa M 

and an exponent E, and has the value M X s-E. In the preceding example M = 

7.09, E = -8, and B = 10. In their computer representation Mand E are encoded in 

binary and embedded in a word of suitable size; the base B is implicit. Floating­

point numbers eliminate the need for number scaling; floating-point numbers are 

automatically scaled as they are processed. The hardware needed to implement 

floating-point arithmetic instructions directly is relatively expensive. Conse­

quently, many computers (then and now) rely on software subroutines to imple­

ment floating-point operations via fixed-point arithmetic. 

Input-output operations. Computer designers soon realized that IO operations, 

that is, the transfer of information to and from peripheral devices like printers and 

secondary memory, can severely degrade overall computer performance if done 

inefficiently. Most IO transfers have main memory as their final source or destina­

tion and involve the transfer of large blocks of information, for instance, moving a 

program from secondary to main memory for execution. Such a transfer can take 

place via the CPU, as in the following fragment of a hypothetical IO program: 

Location Instruction Comment 

LOOP AC := D(I) Input word from IO device D into AC. 

M(I) := AC Output word from AC to main memory. 

I := I + 1 Increment index I. 

if I::;: MAX go to LOOP Test for end of loop, 

Clearly, the IO operation ties up the CPU with a trivial data-transfer task. 

Moreover, many IO devices transfer data at low speeds compared to that of the 

CPU because of their inherent reliance on electromechanical rather than electronic 

technology. Thus the CPU is idle most of the time when executing an IO program 

directed at a relatively slow device such as a printer. To eliminate this bottleneck, 

computers such as the IBM 7094 introduced input-output processors (IOPs), or 

channels in IBM parlance, which are special-purpose processing units designed 

exclusively to control IO operations. They do so by executing IO programs (see 

preceding sample), but channeling the data through registers in the IO processor, 

rather than through the CPU. Hence IO data transfers can take place independently 
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of the CPU, permitting the CPU to execute user programs while IO operations are 
taldng place. 

Programming languages. An important development of the mid-1950s was 

the introduction of "high level" programming languages, which are far easier to 
use than assembly languages because they permit programs to be written in a form 
much closer to a computer user's problem specification. A high-level language is 

intended to be usable on many different computers. A special program called a 
compiler translates a user program from the high-level language in which it is writ­

ten into the machine language of the particular computer on which the program is 
to be executed. 

The first successful high-level programming language was FORTRAN (from 
FORrnula TRANslation), developed by an IBM group under the direction of John 
Backus from 1954 to 1957. FORTRAN permits the specification of numerical 

algorithms in a form approximating normal algebraic notation. For example, the 
vector addition task in Figure 1.16 can be expressed by the following two-line pro­
gram in the original version of FORTRAN: 

DO 5 I= 1, 1000 

5 C(I) = A(I) + B(I) 

FORTRAN has continued to be widely used for scientific programming and, like 
natural languages, it has changed over the years. The version of FORTRAN known 

as FORTRAN90 introduced in 1990 replaces the preceding DO loop with the sin­
gle vector statement 

C(l:1000) = A(l:1000) + B(]:1000) (1.10) 

High-level languages were also developed in the 1950s for business applica­

tions. These are characterized by instructions that resemble English statements and 

operate on textual as well as numerical data. One of the earliest such languages was 
Common Business Oriented Language (COBOL), which was defined in 1959 by a 
group representing computer users and manufacturers and sponsored by the U.S. 

Department of Defense. Like FORTRAN, COBOL has continued (in various 

revised forms) to be among the most widely used programming languages. FOR­
TRAN and COBOL are the forerunners of other important high-level languages, 
including Basic, Pascal, C, and Java, the latter dating from the mid-1990s. 

EXAMPLE 1.5 A NONSTANDARD ARCHITECTURE: STACK COMPUTERS. 

Although most computers follow the van Neumann model, a few alternatives were 

explored quite early in the electronic era. In the stack organization illustrated in Fig­
ure 1.16a a stack memory replaces the accumulator and other CPU registers used for 
temporary data storage. A stack resembles the array of contiguous storage locations 
found in main memory, but it has a very different mode of access. Stack locations have 
no external addresses; all read and write operations refer to one end of the stack called 
the top of the stack TOS. A push operation writes a word into the next unused location 
TOS + I and causes this location to become the new TOS. A pop operation reads the 
word stored in the current TOS and causes the location TOS - I below TOS to become 
the new TOS. Hence TOS serves as a dynamic entry point to the stack, which expands 
and contracts in response to push and pop operations, respectively. The region above 
the stack (shaded in Figure I.I 6a) is unused, but it is available for future use. Among 
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Figure 1.16 
(a) Essentials of a stack processor; (b) stack states during the execution of 
Z := W + 3 X (x-y). 

the earliest stack computers was the Burroughs B5000, first delivered in 1963 
[Siewiorek, Bell. and Newell 1982]; a recent example is the Sun picoJava micropro­
cessor designed for fast execution of compiled Java code_ [O'Connor and Tremblay 
1997]. 

In a stack machine an instruction's operands are stored at the top of the stack, so 
data-processing instructions do not need to contain addresses as they do in a conven-
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tional, von Neumann computer. The add operation x + y is specified for a stack 
machine by the following sequence of three instructions: 

PUSHx 

PUSHy 

ADD 

The first PUSH instruction loads x into TOS. Execution of PUSH y causes x's location 
to become TOS-1 and places yin the new TOS immediately abovex. To execute ADD, 

the top two words of the stack are popped into the ALU where they are added, and the 

sum is pushed back into the stack. Hence in the preceding program fragment, ADD 

computes x + y, which replaces x and y at the top of the stack. The electronic circuits that 

carry out these actions can be complicated, but they are hidden from the programmer. A 
key component is a register called the stack pointer SP which stores the internal address 

of TOS, and automatically adjusts the TOS for every push and pop operation. A pro­

gram counter PC keeps track of instruction addresses in the usual manner. 
A stack computer evaluates arithmetic and other expressions using a format 

known as Polish notation, named after the Polish logician Jan Lukasiewicz (1878-
1956). Instead of placing an operator between its operands as in x + y, the operator is 

placed to the right of its operands as in x y +. A more complex expression such as z := 
w + 3 x (x-y) becomes 

zw3xy-x+:= (1.1 I) 

in Polish notation, and the expression is evaluated from left to right. Note that Polish 

notation eliminates the need for parentheses. The Polish expression (1.11) leads 

directly to the eight-instruction stack program shown in Figure 1.16a. The step-by-step 

execution of this code fragment is illustrated in Figure 1.16b. Here it is assumed that 

w,x,y,z represent the values of operands stored at the memory addresses W,X,Y, and Z, 

respectively. 
Stack computers such as the B5000 employ a main memory M to store programs 

and data in much the same way as a conventional computer. For cost reasons, the CPU 
contains only a small stack-a two-word stack in the B5000 case-implemented by 
high-speed registers. However, the stack expands automatically into M by treating 
some main memory locations as if they were stack registers and coupling them with 
those in the CPU. While stack processors can evaluate complex expressions such as 
(1.1 I) efficiently, they are generally slower than van Neumann machines, especially 
when executing vector operations such as (1.10). Large stack computers were success­
fully marketed for many years, notably by Burroughs Corp. However, the stack con­
cept eventually became widely used in only two specialized applications: 

1. Pocket calculators sometimes employ a stack organization to take advantage of the 
conciseness of Polish notation when entering data and commands manually via a 
keypad. 

2. Stacks are included in most conventional computers to implement subroutine call 

and return instructions. In its basic form, a call-subroutine instruction takes the fonn 
CALL SUB. It first saves the current contents of PC-the calling routine's return 
address-by pushing it into a stack region of M that is under the control of a stack 
pointer SP. Then SUB, the start address of the subroutine being called, is loaded 
into PC, and its execution begins. Control is returned to the calling program when 

the subroutine executes a RETURN instruction, whose function is to pop the return 
address from the top of the stack and load it back into PC. 
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System management. In the early days, all programs or jobs were run sepa­
rately, and the computer had to be halted and prepared manually for each new pro­
gram to be executed. With the improvements in IO equipment and programming 
methodology that came with the second-generation machines, it became feasible to 
prepare a batch of jobs in advance, store them on magnetic tape, and then have the 
computer process the jobs in one continuous sequence, placing the results on 
another magnetic tape. This mode of system management is termed batch process­
ing. Batch processing requires the use of a supervisory program called a batch 
monitor, which is permanently resident in main memory. A batch monitor is a rudi­
mentary version of an operating system, a system program (as opposed to a user or 
application program) designed to manage a computer's resources efficiently and 
provide a set of common services to its users. 

Later operating systems were designed to enable a single CPU to process a 
set of independent user programs concurrently, a technique called multiprogram­
ming. It recognizes that a typical program alternates between program execution 
when it requires use of the CPU, and IO operations when it requires use of an 
IOP. Multiprogramming is accomplished by the CPU temporarily suspending exe­
cution of its current program, beginning execution of a second program, and 
returning to the first program later. Whenever possible, a suspended program is 
assigned an IOP, which performs any needed IO functions. Consequently, multi­
programming attempts to keep a CPU (usually viewed as the computer's most 
precious resource) and any available IOPs busy by overlapping CPU and IO oper­
ations. Multiprogrammed computers that process many user programs concurrently 
and support users at interactive terminals or workstations are sometimes called 
time-sharing systems. 

The third generation. This generation is traditionally associated with the intro­
duction of integrated circuits (ICs), which first appeared commercially in 1961, to 
replace the discrete electronic circuits used in second-generation computers. The 
transistor continued as the basic switching device, but ICs allowed large numbers 
of transistors and associated components to be combined on a tiny piece of semi­
conductor material, usually silicon. IC technology initiated a long-term trend in 
computer design toward smaller size, higher speed, and lower hardware cost. 

Perhaps the most significant event of the third-generation period (which began 
around 1965) was recognition of the need to standardize computers in order to 
allow software to be developed and used more efficiently. By the mid-1960s a few 
dozen manufacturers of computers around the world were each producing 
machines that were incompatible with those of other manufacturers. The cost of 
writing and maintaining programs for a particular computer-the software cost­
began to exceed that of the computer's hardware. At the same time many big users 
of computers, such as banks and insurance companies, were creating huge amounts 
of application software on which their business operations were becoming very 
dependent. Switching to a different computer and making one's old software obso­
lete was thus an increasingly unattractive proposition. 

Influenced by these considerations, IBM developed (at a cost of about $5 bil­
lion) what was to be the most influential third-generation computer, the System/ 
360, which it announced in 1964 and delivered the following year; see Figure 1.17. 
System/360 was actually a series of computers distinguished by model numbers 
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Figure 1.17 
Structure of the IBM System/360. 

and intended to cover a wide range of computing performance [Siewiorek, Bell, 

and Newell 1982; Prasad 1989], The various System/360 models were designed to 

be software compatible with one another, meaning that all models in the series 

shared a common instruction set. Programs written for one model could be run 

without modification on any other; only the execution time, memory usage, and the 

like would change. Software compatibility enabled computer owners to upgrade 

their systems without having to rewrite large amounts of software. The System/360 

models also used a common operating system, OS/360, and the manufacturer sup­

plied specialized software to support such widely used applications as transaction 

processing and database management. In addition, the System/360 models had 

many hardware characteristics in common, including the same interface for attach­

ing IO devices. 
While the System/360 standardized much of IBM's own product line, it also 

became a de facto standard for large computers, now referred to as mainframe 

computers, produced by other manufacturers. The long list of makers of System/ 

360-compatible machines includes such companies as Amdahl in the United States 

and Hitachi in Japan. The System/360 series was also remarkably long-lived. It 

evolved into various newer mainframe computer series introduced by IBM over the 

years, all of which maintained software compatibility with the original System/ 
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360; for example, the System/370 introduced in 1970, the 4300 introduced in 1979, 
and the System/390 introduced in 1990. 

The System/360 added only modestly to the basic principles of the von Neu­
mann computer, but it established a number of widely followed conventions and 
design styles. It had about 200 distinct instruction types (opcodes) with many 
addressing modes and data types, including fixed-point and floating-point numbers 
of various sizes. It replaced the small and unstructured set of data registers (AC, 
MQ, etc.) found in earlier computers with a set of 16 identical general-purpose reg­
isters, all individually addressable. This is called the general-register organization. 
The System/360 had separate arithmetic-logic units for processing various data 
types; the fixed-point ALU was used for address computations including indexing. 
The 8-bit unit byte was defined as the smallest unit of information for data trans­
mission and storage purposes. The System/360 also made 32 bits (4 bytes) the 
main CPU word size, so that 32 bits and "word" have become synonymous in the 
context of large computers. 

The CPU had two major control states: a supervisor state for use by the operat­
ing system and a user state for executing application programs. Certain program­
control instructions were "privileged" in that they could be executed only when the 
CPU was in supervisor state. These and other special control states gave rise to the 
concept of a program status word (PSW) which was stored in a special CPU regis­
ter, now generally referred to as a status register (SR). The SR register encapsu­
lated the key information used by the CPU to record exceptional conditions such as 
CPU-detected errors (an instruction attempting to divide by zero, for example), 
hardware faults detected by error-checking circuits, and urgent service requests or 
interrupts generated by IO devices. 

Architecture versus implementation. With the advent of the third generation, a 
distinction between a computer's overall design and its implementation details 
became apparent. As defined by System/360's designers [Prasad 1989], the archi­
tecture of a computer is its structure and behavior as seen by a programmer work­
ing at the assembly-language level. The architecture includes the computer's 
instruction set, data formats, and addressing modes, as well as the general design of 
its CPU, main memory, and IO subsystems. The architecture therefore defines a 
conceptual model of a computer at a particular level of abstraction. A computer's 
implementation, on the other hand, refers to the logical and physical design tech­
niques used to realize the architecture in any specific instance. The term computer 
organization also refers to the logical aspects of the implementation, but the 
boundary between the terms architecture and organization is vague. 

Hence we can say that the models of the IBM System/360 series have a com­
mon architecture but different implementations. These differences reflect the exist­
ence of physical circuit technologies with different cost/performance ratios for 
constructing processing circuits and memories. To achieve instruction-set compati­
bility across many models, the System/360 also used an implementation technique 
called microprogramming. Originally proposed in the early 1950s by Maurice V. 
Wilkes at Cambridge University, microprogramming allows a CPU's program 
control unit PCU to be designed in a systematic and flexible way [Wilkes and 
Stringer 1953]. Low-level control sequences known as microprograms are placed 
in a special control memory in the PCU so that an instruction from the CPU's main 
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instruction set is executed by invoking and executing the corresponding micropro­
gram. A CPU with no floating-point arithmetic circuits can execute floating-point 
instructions (albeit slowly) if microprograms are written to perform the desired 
floating-point operations by means of fixed-point arithmetic circuits. Micropro­
gramming allowed the smaller System/360 models to implement the full System/ 
360 instruction set with Jess hardware than the larger, faster models, some of which 
were not microprogrammed. 

Other developments. The System/360 was typical of commercial computers 
aimed at both business and scientific applications. Efforts were also directed by 
various manufacturers towards the design of extremely powerful (and expensive) 
scientific computers, loosely termed supercomputers. Control Data Corp., for 
instance, produced a series of commercially successful supercomputers beginning 
with the CDC 6660 in 1964, and continuing into the 1980s with the subsequent 
CYBER series. These early supercomputers experimented with various types of 
parallel processing to improve their performance. One such technique called pipe­
lining involves overlapping the execution of instructions from the same program 
within a specially designed CPU. Another technique, which allows instructions 
from different programs to be executed simultaneously, employs a computer with 
more than one CPU; such a computer is called a multiprocessor. 

A contrasting development of this period was the mass production of small, 
low-cost computers called minicomputers. Their origins can be traced to the 
LINC (Laboratory Instrument Computer) developed at MIT in the early 1960s 
[Siewiorek, Bell, and Newell 1982]. This machine influenced the design of the 
PDP (Programmed Data Processor) series of small computers introduced by Dig­
ital Equipment Corp. (Digital) in 1965, which did much to establish the mini­
computer market. Minicomputers are characterized by short word size-CPU 
word sizes of 8 and 16 bits were typical-limited hardware and software facili­
ties, and small physical size. Most important, their low cost made them suitable 
for many new applications, such as the industrial process control where a com­
puter is permanently assigned to one particular application. The Digital VAX 
series of minicomputers introduced in 1978 brought general-purpose computing 
to many small organizations that could not afford the high cost of a mainframe 
computer. 

1.3 
THE VLSI ERA 

Since the 1960s the dominant technology for manufacturing computer logic and 
memory circuits has been the integrated circuit or IC. This technology has evolved 
steadily from !Cs containing just a few transistors to those containing thousands or 
millions of transistors; the latter case is termed very large-scale integration or 
VLSI. The impact of VLSI on computer design and application has been profound. 
VLSI allows manufacturers to fabricate a CPU, main memory, or even all the elec­
tronic circuits of a computer, on a single IC that can be mass-produced at very low 
cost. This has resulted in new classes of machines ranging from portable personal 
computers to supercomputers that contain thousands of CPUs. 

35 

CHAPTER 1 

Computing and 
Computers 



INTEL - 1022

36 

SECTION 1.3 

The VLSI Era 

(a) (b) (c) 

Figure 1.18 
Some representative IC packages: (a) 32-pin small-outline J-lead (SOJ); (b) 132-pin plastic 
quad flatpack (PQFP); (c) 84-pin pin-grid array (PGA). [Courtesy of Sharp Electronics 

Corp.] 

1.3.1 Integrated Circuits 

The integrated circuit was invented in 1959 at Texas Instruments and Fairchild 

Corporations [Braun and McDonald 1982]. It quickly became the basic building 

block for computers of the third and subsequent generations. (The designation of 
computers by generation largely fell into disuse after the third generation.) An IC is 
an electronic circuit composed mainly of transistors that is manufactured in a tiny 

rectangle or chip of semiconductor material. The IC is mounted into a protective 

plastic or ceramic package. which provides electrical connection points called pins 
or leads that allow the IC to be connected to other ICs, to input-output devices like 
a keypad or screen, or to a power supply. Figure 1.18 depicts several representative 

IC packages. Typical chip dimensions are 10 X 10 mm, while a package like that of 

Figure 1.18b is approximately 30 X 30 X 4 mm. The IC package is often consider­
ably bigger than the chip it contains because of the space taken by the pins. The 
PGA package of Figure 1.18c has an array of pins (as many as 300 or more) pro­

jecting from its underside. A multichip module is a package containing several IC 

chips attached to a substrate that provides mechanical support, as well as electrical 
connections between the chips. Packaged ICs are often mounted on a printed cir­
cuit board that serves to support and interconnect the ICs. A contemporary com­

puter consists of a set of I Cs, a set of IO devices, and a power supply. The number 
of I Cs can range from one IC to several thousand, depending on the computer's 

size and the IC types it uses. 

IC density. An integrated circmt 1s roughly characterized by its density, 
defined as the number of transistors contained in the chip. As manufacturing tech­

niques improved over the years, the size of the transistors in an IC and their inter­

connecting wires shrank, eventually reaching dimensions below a micron or 1 µm. 
(By comparison, the width of a human hair is about 75 µm.) Consequently, IC den­

sities have increased steadily, while chip size has varied very little. 
The earliest ICs-the first commercial IC appeared in 1961-contained fewer 

than 100 transistors and employed small-scale integration or SSL The terms 

medium-scale, large-scale, and very-large-scale integration (MSI, LSI and VLSI, 
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Evolution of the density of commercial ICs. 
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respectively) are applied to !Cs containing hundreds, thousands, and millions of 
transistors, respectively. The boundaries between these IC classes are loose, and 
VLSI often serves as a catchall term for very dense circuits. Because their manu­
facture is highly automated-it resembles a printing process-!Cs can be manufac­
tured in high volume at low cost per circuit. Indeed, except for the latest and 
densest circuits, the cost of an IC has stayed fairly constant over the years, imply­
ing that newer generations of!Cs deliver far greater value (measured by computing 
performance or storage capacity) per unit cost than their predecessors did. 

Figure 1.19 shows the evolution of IC density as measured by two of the dens­
est chip types: the dynamic random-access memory (DRAM), a basic component 
of main memories, and the single-chip CPU or microprocessor. Around 1970 it 
became possible to manufacture all the electronic circuits for a pocket calculator on 
a single IC chip. This development was quickly followed by single-chip DRAMs 
and microprocessors. As Figure 1.19 shows, the capacity of the largest available 
DRAM chip was IK = 2 tO bits in 1970 and has been growing steadily since then, 
reaching IM = 220 bits around 1985. A similar growth has occurred in the com­
plexity of microprocessors. The first microprocessor, Intel's 4004, which was 
introduced in 1971, was designed to process 4-bit words. The Japanese calculator 
manufacturer Busicom commissioned the 4004 microprocessor, but after Busi­
corn's early demise, Intel successfully marketed the 4004 as a programmable con­
troller to replace standard, nonprogrammable logic circuits. As IC technology 
improved and chip density increased, the complexity and performance of one-chip 
microprocessors increased steadily, as reflected in the increase in CPU word size to 
8 and then 16 bits by the mid-1980s. By 1990 manufacturers could fabricate the 
entire CPU of a System/360-class computer, along with part of its main memory, 
on a single IC. The combination of a CPU, memory, and IO circuits in one IC (or a 
small number of !Cs) is called a microcomputer. 
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IC families. Within IC technology several subtechnologies exist that are dis­
tinguished by the transistor and circuit types they employ. Two of the most impor­
tant of these technologies are bipolar and unipolar; the latter is normally referred to 
as MOS (metal-oxide-semiconductor) after its physical structure. Both bipolar and 
MOS circuits have transistors as their basic elements. They differ, however, in the 
polarities of the electric charges associated with the primary carriers of electrical 
signals within their transistors. Bipolar circuits use both negative carriers ( elec­
trons) and positive carriers (holes). MOS circuits, on the other hand, use only one 
type of charge carrier: positive in the case of P-type MOS (PMOS) and negative in 
the case ofN-type MOS (NMOS). Various bipolar and MOS IC circuit types or IC 
families have been developed that provide trade-offs among density, operating 
speed, power consumption, and manufacturing cost. An MOS family that effi­
ciently combines PMOS and NMOS transistors in the same IC is complementary 
MOS or CMOS. This technology came into widespread use in the 1980s and has 
been the technology of choice for microprocessors and other VLSI ICs since then 
because of its combination of high density, high speed, and very low power con­
sumption [Weste and Eshragian 1992]. 

EXAMPLE 1.6 A ZERO-DETECTION ClRCUIT EMPLOYING CMOS TECH­

NOLOGY. To illustrate the role of transistors in computing, we examine a small 
CMOS circuit whose function is to detect when a 4-bit word xo,r1xr3 becomes zero. 

The circuit's output z should be I when xcr1x,x3 = 0000; it should be 0 for the other 15 
combinations of input values. Zero detection is quite a common operation in data pro­

cessing. For example, it is used to determine when a program loop terminates, as in the 

if statement (location 5R) appearing in the !AS program of Figure 1.15. 
Figure 1.20 shows a particular implementation ZD of zero detection using a repre­

sentative CMOS subfamily known as static CMOS. The circuit is shown in standard 
symbolic form in Figure 1.20a. It consists of equal numbers of PMOS transistors 

denoted S1;S7 and NMOS transistors denoted S8:S14' Each transistor acts as an on-off 

switch with three terminals, where the center terminal c controls the switch's state. 

When turned on, a signal propagation path is created between the transistor's upper and 

lower terminals; when turned off, that path is broken. An NMOS transistor is turned on 
by applying I to its control terminal c; it is turned off by applying Oto c. A PMOS tran­

sistor, on the other hand, is turned on by c::;::; 0 and turned off by c::;::; 1. 
Each set of input signals applied to ZD causes some transistors to switch on and 

others to switch off, which creates various signal paths through the circuit. In Figure 

1.20 the constant signals O and 1 are applied at various points in ZD. (These signals are 
derived from ZD's electrical power supply.) The 0/1 signals "flow" through the circuit 

along the paths created by the transistors and determine various internal signal values, 

as well as the value applied to the main output line z. Figure 1.20b shows the signals 

and signal transmission paths produced by XoX1x,x3 = 0001. The first input signal x0 = 0 

is applied to PMOS transistor S 1 and NMOS transistor S8 ; hence S1 is turned on and S8 

is turned off. Similarly, x1 = 0 turns S2 on and S9 off. A path is created through S I and 

S2, which applies 1 to the internal line y1, as shown by the left-most heavy arrow in Fig­

ure 1.20b. In the same way the remaining input combinations make y2 ::;::; 0 and y3 ::;:; 1. 

The latter signal is applied to the two right-most transistors turning S7 off and S14 on, 
which creates a path from the zero source to the primary output line via S14, so z::;:; 0 as 

required. 
If we change input x3 from I to 0 in Figure 1.20b, the following chain of events 

occurs: S4 turns on and S 11 turns off, changing y2 to 1. Then S 13 turns on and S6 turns 

off, making y3 = 0. Finally, the new value of y3 turns S7 on and S14 off, so z becomes I. 
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Figure 1.20 
(a) CMOS circuit ZD for zero detection; (b) state of ZD with input combination 
xcr1x,x3 = 0001 making z = 0. 
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Hence the zero input combination xoX,xr3 = 0000 makes z = 1 as required. It can 
readily be verified that no other input combination does this. 

A transistor circuit like that of Figure 1.20 models the behavior of a digital 
circuit at a low level of abstraction called the switch level. Because many of the 
!Cs of interest contain huge numbers of transistors, it is rarely practical to analyze 
their computing functions at the switch level. Instead, we move to higher abstrac­
tion levels, two of which are illustrated in Figure 1.21. At the gate or logic level 
illustrated by Figure 1.21a, we represent certain common subcircuits by symbolic 
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Figure 1.21 
The zero-detection circuit of Figure 1.20 modeled at (a) the gate level and (b) the regis­
ter level of abstraction. 

components called (logic) gates. This particular logic circuit comprises four gates 

A, B, C, and D of three different types as indicated; note that each gate type has a 

distinct graphic symbol. In moving from the switch level, we collapse a multi­

transistor circuit into a single gate and discard all its internal details. A key advan­

tage of the logic level is that it is technology independent, so it can be used equally 

well to describe the behavior of any IC family. In dealing with computer design, 

we also use an even higher level of abstraction known as the register or register­

transfer level. It treats the entire zero-detection circuit as a primitive or indivisible 

component, as in Figure 1.21b. The register level is the level at which we describe 

the internal workings of a CPU or other processor as, for example, in Figures 1.2 

and 1.17. Observe that the primitive components (represented by boxes) in these 

diagrams include registers, ALUs, and the like. When we treat an entire CPU, 

memory, or computer as a primitive component, we have moved to the highest 

level of abstraction, which is called the processor or system level. 

1.3.2 Processor Architecture 

By 1980 computers were classified into three main types: mainframe computers, 

minicomputers, and microcomputers. The term mainframe was applied to the tradi­

tional "large" computer system, often containing thousands of ICs and costing mil­

lions of dollars. It typically served as the central computing facility for an 

organization such as a university, a factory, or a bank. Mainframes were then 

room-sized machines placed in special computer centers and not directly accessible 

to the average user. The minicomputer was a smaller ( desk size) and slower ver­

sion of the mainframe, but its relatively low cost (hundreds of thousands of dollars) 

made it suitable as a "departmental" computer to be shared by a group of users-in 

a small business, for example. The microcomputer was even smaller, slower, and 

cheaper (a few thousand dollars), packing all the electronics of a computer into a 

handful of ICs, including microprocessor (CPU), mem01y, and IO chips. 

Personal computers. Microcomputer technology gave rise to a new class of 

general-purpose machines called personal computers (PCs), which are intended for 

a single user. These small, inexpensive computers are designed to sit on an office 

desk or fold into a compact form to be carried. The more powerful desktop com­

puters intended for scientific computing are referred to as workstations. A typical 
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PC has the van Neumann organization, with a microprocessor, a multimegabyte 
main memory, and an assortment of IO devices: a keyboard, a video monitor or 
screen, a magnetic or optical disk drive unit for high-capacity secondary memory, 
and interface circuits for connecting the PC to printers and to other computers. Per­
sonal computers have proliferated to the point that, in the more developed societ­
ies, they are present in most offices and many homes. Two of the main applications 
of PCs are word processing, where personal computers have assumed and greatly 
expanded all the functions of the typewriter, and data-processing tasks like finan­
cial record keeping. They are also used for entertainment, education, and increas­

ingly, communication with other computers via the World Wide Web. 
Personal computers were introduced in the mid- l 970s by a small electronics 

kit maker, MITS Inc. [Augarten I 984]. The MITS Altair computer was built 
around the Intel 8008, an early 8-bit microprocessor, and cost only $395 in kit 
form. The most successful personal computer family was the IBM PC series intro­
duced in 1981. Following the precedent set by earlier IBM computers, it quickly 
become the de facto standard for this class of machine. A new factor also aided the 
standardization process-namely, IBM's decision to give the PC what came to be 
called an open architecture, by making its design specifications available to other 
manufacturers of computer hardware and software. As a result, the IBM PC 
became very popular, and many versions of it-the so-called PC clones-were 
produced by others, including startup companies that made the manufacture of 
low-cost PC clones their main business. The PC's open architecture also provided 
an incentive for the development of a vast amount of application-specific software 

from many sources. Indeed a new software industry emerged aimed at the mass­
production of low-cost, self-contained programs aimed at specific applications of 
the IBM PC and a few other widely used computer families. 

The IBM PC series is based on Intel Corp.'s 80X86 family of microprocessors, 
which began with the 8086 microprocessor introduced in 1978 and was followed 

by the 80286 (1983), the 80386 (1986), the 80486 (1989), and the Pentium2 (1993) 
[Albert and Avnon 1993]; the Pentium II appeared in 1997. The IBM PC series is 
also distinguished by its use of the MS/DOS operating system and the Windows 
graphical user interface, both developed by Microsoft Corp. Another popular per­

sonal computer series is Apple Computer's Macintosh, introduced in I 984 and 
built around the Motorola 680X0 microprocessor family, whose evolution from the 
68000 microprocessor (1979) parallels that of the 80X86/Pentium [Farrell 1984]. 
In 1994 the Macintosh CPU was changed to a new microprocessor known as the 
PowerPC. 

Figure 1.22 shows the organization of a typical personal computer from the 
mid-1990s. Its legacy from earlier van Neumann computers is apparent-compare 
Figure 1.22 to Figure 1.17. At the core of this computer is a single-chip micropro­
cessor such as the Pentium or PowerPC. As we will see, the microprocessor's inter­
nal (micro) architecture usually contains a number of speedup features not found in 
its predecessors. A system bus connects the microprocessor to a main memory 
based on semiconductor DRAM technology and to an IO subsystem. A separate IO 
bus, such as the industry standard PCT (peripheral component interconnect) "local" 

2 A legal ruling that microprocessor names that are numbers cannot have trademark protection, resulted in the 
80486 being followed by a microprocessor called the Pentium rather than the 80586. 
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Figure 1.22 
A typical personal computer system. 
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bus, connects directly to the IO devices and their individual controllers. The IO bus 
is linked to the system bus, to which the microprocessor and memory are attached 
via a special bus-to-bus control unit sometimes referred to as a bridge. The IO 
devices of a personal computer include the traditional keyboard, a CRT-based or 
flat-panel video monitor, and disk drive units for the hard and flexible (floppy) disk 
storage devices that constitute secondary memory. More recent additions to the IO 
device repertoire include drive units for CD-ROMs (compact disc read-only mem­
ories), which have extremely high capacity and allow sound and video images to 
be stored and retrieved efficiently. Other common audiovisual IO devices in per­
sonal computers are microphones, loudspeakers, video scanners, and the like, 
which are referred to as multimedia equipment. 

Performance considerations. As processor hardware became much less expen­
sive in the 1970s, thanks mainly to advances in VLSI technology (Figure 1.19), 
computer designers iucreased the use of complex, multistep instructions. This 
reduces N, the total number of instructions that must be executed for a given task, 
since a single complex instruction can replace several simpler ones. For example, a 
multiply instruction can replace a multiinstruction subroutine that implements mul­
tiplication by repeated execution of add instructions. Reducing Nin this way tends 
to reduce overall program execution time T, as well as the time that the CPU 
spends fetching instructions and their operands from memory. The same advances 
in VLSI made it possible to add new features to old microprocessors, such as new 
instructions, data types, instruction sets, and addressing modes, while retaining the 
ability to execute programs written for the older machines. 

The Intel 80X86/Pentium series illustrates the trend toward more complex 
instruction sets. The 1978-vintage 8086 microprocessor chip, which contained a 
mere 20,000 transistors, was designed to process 16-bit data words and had no 
instructions for operating on floating-point numbers [Morse et al. 1978]. Twenty­
five years later, its direct descendant, the Pentium, contained over 3 million transis­
tors, processed 32-bit and 64-bit words directly, and executed a comprehensive set 
of floating-point instructions [Albert and Avnon 1993]. The Pentium accumulated 
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most of the architectural features of its various predecessors in order to enable it to 
execute, with little or no modification, programs written for earlier 80X86-series 
machines. Reflecting these characteristics, the 80X86, 680XO, and most older com­
puter series have been called complex instruction set computers (CISCs).3 

By the 1980s it became apparent that complex instructions have certain disad­
vantages and that execution of even a small percentage of such instructions can 
sometimes reduce a computer's overall performance. To illustrate this condition, 
suppose that a particular microprocessor has only fast, simple instructions, each of 
which requires k time units, to execute. Thus the microprocessor can execute 100 
instructions in 100k time units. Now suppose that 5 percent of the instructions are 
slow, complex instructions requiring 21k time units each. To execute an average 
set of 100 instructions therefore requires (5 X 21 + 95)k = 200k time units, assum­
ing no other factors are involved. Consequently, the 5 percent of complex instruc­
tions can, as in this particular example, double the overall program execution time. 

Thus while complex instructions reduce program size, this technology does not 
necessarily translate into faster program execution. Moreover, complex instructions 
require relatively complex processing circuits, which tend to put CISCs in the larg­
est and most expensive IC category. These drawbacks were first recognized by John 
Cocke and his colleagues at IBM in the mid-1970s, who developed an experimental 
computer called 80 I that aimed to achieve very fast overall performance via a 
streamlined instruction set that could be executed extremely fast [Cocke and Mark­
stein 1990]. The 801 and subsequent machines with a similar design philosophy 
have been called reduced instruction set computers (RISCs). A number of commer­
cially successful RISC microprocessors were introduced in the 1980s, including the 
IBM RISC System/6000 and SPARC, an "open" microprocessor developed by Sun 
Microsystems and based on RISC research at the University of California, Berkeley 
[Patterson 1985]. Many of the speedup features of RISC machines have found their 
way into other new computers, including such CISC microprocessors as the Pen­
tium. Indeed, the term RISC is often used to refer to any computer with an instruc­
tion set and an associated CPU organization designed for very high performance; 
the actual size of the instruction set is relatively unimportant. 

A computer's performance is also strongly affected by other factors besides 
its instruction set, especially the time required to move instructions and data 
between the CPU and main memory M and, to a lesser extent, the time required to 
move information between M and IO devices. It typically takes the CPU about 
five times longer to obtain a word from M than from one of its internal registers. 
This difference in speed has existed since the first electronic computers, despite 
strenuous efforts by circuit designers to develop memory devices and processor­
memory interface circuits that are fast enough to keep up with the fastest micro­
processors. Indeed the CPU-M speed disparity has become such a feature of stan­
dard (van Neumann) computers that is sometimes referred to as the von Neumann 
bottleneck. RISC computers usually limit access to main memory to a few load 
and store instructions; other instructions, including all data-processing and pro­
gram-control instructions, must have their operands in CPU registers. This so-

3The public became aware of CISC complexity when a design flaw affecting the floating-point division 
instruction of the Pentium was discovered in I 994. The cost to Intel of this bug, including the replacement 
cost of Pentium chips already installed in PCs, was about $475 million. 
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called load-store architecture is intended to reduce the impact of the von Neu­

mann bottleneck by reducing the total number of the memory accesses made by 

the CPU. 

Performance measures. A rough indication of CPU speed is the number of 

"basic" operations that it can perform per unit of time. A typical basic operation is 

the fixed-point addition of the contents of two registers Rl and R2, as in the sym­

bolic instruction 

Rl := Rl +R2 

Such operations are timed by a regular stream of signals (ticks or beats) issued by a 

central timing signal, the system clock. The speed of the clock is its frequency f 

measured in millions of ticks per second; the units for this are megahertz (MHz). 

Each tick of the clock triggers a basic operation; hence the time required to execute 

the operation is !if microseconds (µs). This value is called the clock cycle or clock 

period T,1o,k· For example, a computer clocked at 250 MHz can perform one basic 

operation in the clock period Tc1ock = l/250 = 0.004 µs. Complicated operations 

such as division or operations on floating-point numbers can require more than one 

clock cycle to complete their execution. 
Generally speaking, smaller electronic devices operate faster than larger ones, 

so the increase in IC chip density discussed above has been accompanied by a 

steady, but less dramatic, increase in clock speed. For example, from 1981 to 1995 

microprocessor clock speeds increased from about 10 MHz to 100 MHz. Clock 

speeds of I gigahertz (1 GHz or 1000 MHz) and beyond are feasible using faster 

versions of current CMOS technology. It might therefore seem possible to achieve 

any desired processor speed simply by increasing the CPU clock frequency. How­

ever, the rate at which clock frequency is increasing due to IC technology improve­

ments is relatively slow and may be approaching limits determined by the speed of 

light, power dissipation, and similar physical considerations. Extremely fast cir­

cuits also tend to be very expensive to manufacture. 
The CPU's processing of an instruction involves several steps, each of which 

requires at least one clock cycle: 

I. Fetch the instruction from main memory M. 

2. Decode the instruction's opcode. 
3. Load (read) from M any operands needed unless they are already in CPU regis­

ters. 
4. Execute the instruction via a register-to-register operation using an appropriate 

functional unit of the CPU, such as a fixed-point adder. 

5. Store (write) the results in M unless they are to be retained in CPU registers. 

The fastest instructions have a]I their operands in CPU registers and can be exe­

cuted by the CPU in a single clock cycle, so steps 1 to 3 all take one clock cycle. 

The slowest instructions require multiple memory accesses and multiple register­

to-register operations to complete their execution. Consequently, measures of 

instruction execution performance are based on average figures, which are usually 

determined experimentally by measuring the run times of representative or bench­

mark programs. The more representative the programs are, that is, the more accu­

rately they reflect real applications, the better the performance figures they provide. 
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Suppose that execution of a particular benchmark program or set (suite) of 
such programs Q on a given CPU takes T seconds and involves the execution of a 
total of N machine ( object) instructions. Here N is the actual number of instructions 
executed, including repeated executions of the same instruction; it is not the num­
berof instructions appearing in Q. As far as the typical computeruser is concerned, 
the key performance goal is to minimize the total program execution time T. While 
T can be determined accurately only by measurement of Q's run time in actual or 
simulated execution, we can relate T to some basic parameters of the computer's 
architecture and implementation. One such parameter is the (average) number of 
instructions executed per second, which we denote by JPS. Clearly, T = NIIPS s. 
Another common measure of the performance of a CPU is the average number of 
cycles per instruction or CPI needed to execute Q. Now CPI = (f X 106 )/IPS, 
where f is the CPU's clock frequency in MHz. Hence, the program execution time 
Tis given by 

T = NxCPI s 
fx 106 (1.12) 

It is also common to measure CPU performance in terms of millions of instruc­
tions executed per second, denoted MIPS, where MIPS = JPS X 106. Clearly 
MIPS= f /CPI. 

Equation (1.12) indicates how the three separate factors software, architecture, 
and hardware technology jointly determine a computer's performance. 

I. Software: The efficiency with which the programs are written and compiled into 
object code influences N, the number of instructions executed. Other factors 
being equal, reducing N tends to reduce the overall execution time T. 

2. Architecture: The efficiency with which individual instructions are processed 
directly affects CPI, the number of cycles per instruction executed. Reducing 
CPI also tends to reduce T. 

3. Hardware: The raw speed of the processor circuits determines f, the clock fre-
quency. Increasingftends to reduce T. 

In general, the complex instruction sets of CISC processors aim to reduce Nat the 
expense of CPI, whereas RISC processors aim to reduce CPI at the expense of N. 
Advances in VLSI technology affecting all types of computers tend to increase f 

Speedup techniques. A number of speed-enhancing features have been incor­
porated into the design of computers in recent years [Hwang 1993]; they are sum­
marized in Figure 1.23. These methods were defined as far back as the I 960s and 
1970s for use in mainframe computers. A cache is a memory unit placed between 
the CPU and main memory M and used to store instructions, data, or both. It has 
much smaller storage capacity than M, but it can be accessed (read from or written 
into) more rapidly and is often placed (at least partly) on the same chip as the CPU. 
The cache's effect is to reduce the average time required to access an instruction or 
data word, typically to just a single clock cycle. Special hardware and software 
techniques support the complex flow of information among M, the cache, and the 
registers of the CPU. 

Another important speedup technique known as pipelining allows the process­
ing of several instructions to be partially overlapped. Pipelining is most easily done 
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Figure 1.23 

Objective 

To provide the CPU with faster 
access to instructions and data. 

To increase performance by allowing 
the processing of several instructions 
to be partially overlapped. 

To increase performance by allowing 
several instructions to be processed 
in parallel (full overlapping). 

Description 

A cache is a memory unit inserted between 
the CPU and main memory M. It is faster 
than M but has less storage capacity. 

The CPU is constructed from independent 
subunits (stages), which can hold several 
instructions in different stages of execution. 

Multiple (pipelined) units are provided for 

instruction processing. Instructions can be 
issued simultaneously to each unit. 

Some important speedup features of modern computers. 

for a sequence of instructions of the same or similar types that employ a single E­
unit, such as a floating-point processor. However, all the common steps involved in 
instruction processing by the CPU can be pipelined: instruction fetching (IF), 
instruction decoding (ID), operand loading (OL), execution (EX), and operand 
storing (OS). A pipelined system is often compared to an assembly line on which 
many products are in various stages of manufacture at the same time. In a nonpipe­
lined CPU, instructions are executed in strict sequence, as depicted in Figure 1.24a. 
Pipelining permits the situation shown in Figure 1.24b, where each major step of 

Instruction I 1 Instruction Ii Instruction /3 

Instruction fetch IF: ~ ~ ~ 
Instruction decode ID: ~ [§] [§1 
Operand load OL: 1oq ~ ~ 
Execution EX: IEX1I IEX,I IEX,I 
Operand store OS: ~ 1os,I §;] 
Time (clock cycles): 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 

(a) 

---~~1~11~11~1c11~11~11~11]•• 1~11~1~11w,,1 
Instruction decode rn,Olrn1 llrn,llrn, llrn,11 =11rn, Urn, llrn, l[]OC llrn,llrn, IIID10I 
Operand load OL: 0[ I IOL,IIOL·2IIOL,IIOh4I [JIOL,I IOL,IIOLil I JDDIOL,IIOL,I 
Execu1ion EX: DD []IEX1IIEX,I IEX,I IBX,I IEX.il IEXsllEX,I IEx,IOO[llEX,I 
Operand s1ore OS: DOD[ Uosij1os,llos,II =11os,11os,11os,IODDD 
Time (clock cycles): 2 3 4 5 6 7 8 9 IO 11 12 13 14 15 

Figure 1.24 
Instruction processing: (a) sequential or nonpipelined and (b) pipelined. 
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instruction processing is assigned to, and handled independently by, a separate sub­
unit (stage) of the CPU pipeline. In this example, up to five instructions can be 
overlapped, provided the necessary pipeline stages are available. Note that perlor­
mance-reducing delays occur, as in the case of instruction !4 (shaded), which must 
use the EX stage for two consecutive cycles. A similar problem occurs in the case 
of branch instructions like !7 in Figure 1.24b, where the outcome of !7 s EX step 
must be known before the location of the next instruction ([8) to be processed can 
be identified. 

A microprocessor's effective MIPS rate can also be increased by replicating 
various instruction-processing circuits so that several instructions can be in the 
same processing phase at the same time. This makes it possible to start the process­
ing of, or issue, two or more instructions simultaneously or in parallel; in other 
words, the instructions can be completely overlapped. CPUs with this capability are 
said to be superscalar. (Note that two instructions in the same pipeline must be 
issued sequentially rather than in parallel.) For example, if the logic needed for the 
IF, ID, OL, EX, and OS steps is duplicated (with or without pipelining), then two 
instructions can be issued simultaneously. However, if the instructions are not inde­
pendent, for example, if they share the same operands or one takes as input a result 
computed by the other, then delays not unlike those illustrated in Figure 1.24b can 
occur. Pipelining and superscalar design are both instances of instruction-level par­
allelism. The logic circuits needed to deal with parallelism of this kind add consid­
erable complexity to the CPU's program control and execution units. 

EXAMPLE 1.7 THE POWERPC MICROPROCESSOR SERIES [MOTOROLA 
1993 J. In the early 1990s Apple, IBM, and Motorola jointly developed the PowerPC. 
It is a family of single-chip microprocessors, including the 601,603, and other models, 
which share a common architecture derived from the POWER architecture used in 
IBM's RISC System/6000 [Diefendorf, Oehler, and Hochsprung 1994; Weiss and 
Smith 1994]. Although it is also designated a RISC, the PowerPC has a large number 
of instructions-more than 200 distinct types, in fact-and its design is far from sim­
ple. Nevertheless, it exhibits the following features that are typical of contemporary 
RISC-style designs: 

I. Instructions have a fixed length (32 bits or one word) and employ just a few opcode 
formats and addressing modes. 

2. Only load and store instructions can access main memory; all other instructions 
must have their operands in CPU registers. This load/store architecture reduces the 
time devoted to accessing memory. This time is further reduced by the use of one or 
more levels of cache memory. 

3. Instruction processing is heavily pipelined. For example, the PowerPC has an E-unit 
for integer (fixed-point) operations that has the four pipeline stages: fetch, decode, 
execute, and write results. Hence if an E-unit's pipeline can be kept full, a new 
result emerges from it every clock cycle, thus achieving the ideal performance level 
of one fully executed instruction per clock cycle. 

4. The CPU contains several E-units-the number depends on the model-which 
allow it to issue several instructions simultaneously and puts the PowerPC in the 
superscalar category. 

The organization shown in Figure 1.25 is typical of the early PowerPC models, 
such as the 601 and 603, which have three E-units: an integer execution unit, a float­
ing-point unit, and a branch processing unit, allowing up to three instructions to be 
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Figure 1.25 
Overall organization of the PowerPC. 

issued in the same clock cycle. The integer unit ex.ecutes all fixed-point numerical and 
logic operations, including those associated with load-store instructions. Although part 
of the CPU's program control unit, the branch processing unit is considered an E-unit 
for branch instructions. Each PowerPC chip also contains a cache memory, whose size 
and organization vary with the model. For example, the PowerPC 603, which was 
introduced in l 995 and is aimed at low-power applications like laptop computers, has 
a I 6 KB cache, half of which stores data while the other half stores instructions. A hint 
of the complexity of the 603 can be seen from Figure 1.26. It contains 1.6 million tran­
sistors in an IC chip of area 7.4 x I 1.5 mm (in its earliest versions) and consumes less 
than 3 watts of power. 

To illustrate the PowerPC's instruction set, consider the vector addition discussed 
earlier and expressed by tbe FORTRAN90 statement 

C( l: l000) = A( l :1000) + B(l:1000) 

Assume that each vector consists of I 000 double-precision (64-bit), floating-point 
numbers. An assembly-language program for the PowerPC that carries out this vector 
operation appears in Figure 1.27. (We have slightly simplified the language syntax 
here.) The last five instructions form the program's main loop and are executed 1000 
times. The key data-processing instruction in this loop has the opcode fadd, and per­
forms a double-precision, floating-point addition. All fadd's operands are in 64-bit 
floating-point registers, of which the PowerPC bas 32, denoted fr0:fr3 I here. The 
program communicates with memory via the instructions lw (load word), lfdu (load 
floating-point double-precision with update), and stfdu (store floating-point double­
precision with update); these are just a few of the PowerPC's many types of load-store 
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Figure 1.26 
Photomicrograph of the PowerPC 603 micro­
processor chip. [Courtesy of Motorola Inc.] 

instructions. The PowerPC has 32 general-purpose registers r0:r31, several of which 
serve as memory address registers in our program. The update option, indicated by the 
u suffix on lfdu and stfdu invokes a kind of automatic indexing, which causes the con­
tents of the memory address register to be initially incremented. For example, the 
instruction 

lfdu fr!, l(r5) 

invokes the following two operations: increment the address register r5 and then load 
the data register frl. In other words 

r5 :=r5 + I; fr! :=mem(r5); 

Location Instruction Comment 

mtspr 

lw 

lw 

lw 

LOOP lfdu 

lfdu 

fadd 

stfdu 

bne 

Figure 1.27 

CTR,/11000 

r5, /IA 

r6,IIB 

r7,/IC 

fr], l(r5) 

fr2, I(r6) 

fr], fr2, fr! 

frl, l(r7) 

LOOP 

Move vector length N = 1000 to special register CTR. 

Load start address of vector A into general register r5. 

Load start address of vector B into general register r6. 

Load start address of vector C into general register r7. 

Load A(i + 1) into floating-point register frl; update r5. 

Load B(i + 1) into floating-point register fr2; update r6. 

Perform floating-point addition frl := frl + fr2. 

Store frl as C(i + l); update r7. 

Decrement CTR, then branch to LOOP if CTR 7'- 0. 

A PowerPC program for vector addition. 

(1.13) 
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The memory data denoted by mem(r5) in (1.13) is normally in the PowerPC's 
cache memory which, at any time, mimics a portion of the main memory M that is in 
active use. Thus if the current memory address defined by r5 is assigned to the cache, 
the data required by Lfdu is fetched from the cache, rather than from M, where a "mas­
ter" copy of the same data resides. Similarly, the store instruction stfdu writes its data 
into a cache Location, although (eventually) the corresponding data in M must be 
updated. Should mem(r7) not be currently assigned to the cache, the PowerPC' s elabo­
rate memory access control automatically transfers data between M and the cache to 
assign the relevant portion of the processor's address space to the cache. The last 
insuuction bne (branch if not equal) appearing in Figure 1.27 is a powerful conditional 
branch inst.ruction. First bne automatically decrements the "special" register called 
CTR (cow1ter) and tests it for zero. If CTR* 0, then the next instruction executed is the 
one stored in location LOOP. When CTR reaches zero, the vector addition terminates 
and the instruction following bne is executed. Observe that the five-instruction pro­
gram loop typically resides in the cache for the duration of the program's execution. 

As Figure 1.25 indicates, the Power PC has three (more in some models) separate 
E-units for executing integer, floating-point, and branch instructions. This superscalar 
design allows up to three separate instructions to be dispatched (issued) for execution 
in every clock cycle. Moreover, these E-units are pipelined to varying degrees, so that 
an active E-unit can contain several consecutive instructions in various stages of execu­
tion. Hence, for our vector adilition task, we would expect to find the CPU concur­
rently executing several operations of the form 

C(j) := A(j) + B(j), C(j + L) := A(j + I)+ B(j + I), C(j + 2) := A(j + 2) + B(j + 2), ... 

The concurrency achieved, and therefore the execution time of the program, depend on 
various implementation details and cannot be determined from inspection of the pro­
gram code alone. 

The vector addition programs forthe IAS (Figure 1.15) and the PowerPC (Fig­
ure 1.27) reflect the evolution of computer architecture over a 50-year period. The 
two programs are fundamental ly similar in that each program is designed to loop N 
times through the three basic steps: load data from M, add data in CPU registers, 
and store results in M. The computers share the same basic features of the von 
Neumann architecture. However, the IAS machine has far fewer data types, a 
much weaker instruction set (especially in the area of program control), and essen­
tially no instruction-level parallelism. The IAS lacks floating-point data formats 
and instructions, so a much more complicated ]AS program would be required to 
handle double-precision, floating-point numbers comparable to those assumed in 
Figure 1.27. The IAS also lacks the following features of the PowerPC's instruc­
tion set: indexed addressing modes; conditional branch instructions that can decre­
ment and test a variable; and powerful arithmetic instructions such as multiply, 
divide, and mu!Liply-and-add. Note also the vast differences in physical size, per­
formance, and cost between the IAS and PowerPC. 

1.3.3 System Architecture 

We next review the overall organization of contemporary computer systems, 
including those formed by linking computers together into large networks. 
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Figure 1.28 
Overview of computer system operation. 

Basic organization. A stand-alone computer system, which is most commonly 
seen as a desktop machine (a PC or workstation) intended for a single user, has the 
basic organization illustrated by Figure 1.28; see also Figure 1.22. This organiza­
tion has changed little from that found in earlier generations, despite the massive 
improvements in implementation technologies that have occurred in recent years. 
The computer's main hardware components continue to be a CPU, a main memory, 
and an IO subsystem, which communicate with one another over a system bus. Its 
main software component is an operating system that performs most system man­
agement functions. 

The key hardware element is a single-chip microprocessor, embodying a mod­
em version of the von Neumann architecture. The microprocessor serves as the com­
puter's CPU and is responsible for fetching, decoding, and executing instructions. 
Data and instructions are typically composed of 32-bit words, which constitute the 
basic information units processed by the computer. The CPU is characterized by an 
instruction set containing up to 200 or so instruction types, which perform data 
transfer, data processing, and program control operations that have changed little 
over the years. The CPU may be augmented by on-chip or off-chip coprocessors that 
implement such specialized functions as managing the graphical user interface 
(GUI). 

The role of the computer's main or primary memory M is to store programs 
and data as they are being processed by the CPU. M is a random-access memory 
(RAM) comprising a linear store of items (usually 8-bit bytes), each of which is 
assigned a unique address that permits the CPU to read or change (write) its con­
tents via load or store instructions, respectively. M is backed up by a much larger 
but slower secondary memory, typically implemented by hard disks employing 
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magnetic or optical storage technology and fonning part of the IO subsystem. As in 

the PowerPC (Figure 1.25), an intermediate memory called a cache may also be 

inserted between the CPU and M. Thus we find a hierarchy of memory devices 

composed of the CPU's registers, the cache, the main memory, and the secondary 

memory. This complex structure results from the fact that the fastest memory 

devices are also the most costly. The memory hierarchy is intended to provide the 

CPU with fast access to large amounts of data at a fairly low cost. 

The purpose of the IO system is to enable a user to communicate with the com­

puter. IO devices are attached to the host computer by means of IO ports, whose 

function is to control data transfers between IO devices and main memory. Active 

programs communicate with IO ports in much the same way as they communicate 

with M. An IO device is assigned a set of memory-like addresses, which allow 

input and output instructions to be implemented in essentially the same way as load 

and store instructions, respectively. However, the CPU usually takes much longer 

to access a word stored in the IO system than to access a word stored in M-most 

IO operations are quite slow. 
The traditional input and output devices are a keyboard and screen (provided 

by a CRT or a flat-panel display), respectively, which are convenient for handling 

textual information. Adding a pointing device like a mouse makes a display screen 

into an input device, permitting communication between the user and the computer 

via graphical images. Special software, such as the Windows interface found in 

personal computers, supports GUis. Audio interfaces for speech generation and 

recognition extend the computer into a multimedia system. A major component of 

most IO systems is a set of secondary memory devices that provide bulk storage of 

programs and data. Rapid transfer of information between primary and secondary 

memories is often a key factor in a system's overall performance. 

Microcontrollers. Their small size and low cost have made it feasible to use 

miniature general-purpose computers, referred to as microcontrollers, for tasks that 

previously employed either special-purpose control circuits or had no control logic 

at all, for example, controlling a home washing machine or the ignition system of a 

car. Programs stored in a read-only memory (ROM) that forms a part of the main 

memory tailor a microcontroller to a particular application. The microcontroller is 

built into, or embedded in, the controlled device, often in a way that is invisible to 

the end user. Hence an embedded microcontroller that has been programmed to 

handle the application in question can replace application-specific control circuits, 

often at substantial cost savings. Furthermore, by bringing the power of a computer 

to bear on relatively mundane applications, manufacturers can readily introduce 

many new features to improve flexibility, performance, or ease of use. As a result, 

most computers in operation today are microcontrollers in embedded systems. 

Figure 1.29 shows one of the first applications of a microcontroller: a point-of­

sale (POS) terminal that has replaced cash registers in retail stores. The microcon­

troller has a conventional computer organization built around a system bus to 

which are attached a microprocessor (the CPU), one or more ROM chips for pro­

gram storage, and one or more RAM chips for data and working storage. All IO 

devices are also connected to the system bus using IO ports with standard inter­

faces. The IO devices in a typical POS tenninal are a keyboard, a receipt printer, a 

visual display, a product-code scanner, and a credit-card reader. The latter is used 
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for credit authorization and requires a connection to the telephone system. The 
final component is a link to a central computer used to provide pricing information, 
perform inventory control, and so forth. 

Computer 11etworks. The computer in Figure 1.29 is linked directly to a central 
computer and indirectly to a potentially huge number of computers via the tele­
phone network. The linking of computers to form networks of various types has 
become an increasingly important feature of modem computing; see Figure 1.30. A 
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computer in an office or industrial environment is typically linked to other comput­
ers in the same organization via communication links that can be thought of as an 
extension to the system bus. The linked computers then form a small, closed com­
puter network known as a local-area network (LAN) or intranet. The physical 
links between the computers can be built in various ways, includi ng electrical 
cables, optical fibers, and radio (wireless) links. Special 10 programs (communica­
tion software) enable the computers on the network to exchange information and 
access common computing resources called servers. 

Computer networks have several advantages over the large, centralized (main­
frame) computers that they have come to replace. The individual user has direct 
access to a computer (his or her personal computer) that can quickly and conve­
niently handle many routine computing tasks. Users can also access computing 
facilities that they need less frequently, for example a high-performance supercom­
puter or costly IO equipment, via the computer network. Many widely dispersed 
users can share such specialized equipment via the network, thus lowering its cost 
to individual users. Furthermore, a computer network provides useful new services 
such as electronic mail, remote library services, and on-line shopping. 

Several LANs can be linked together by various means including the telephone 
networks, which increasingly are designed to accommodate digital data transmis­
sion, including video data, as well as the traditional (digitized) voice communication. 
In Figure 1.30, one computer serves as a gateway device that manages communica­
tion between the LAN and other computer networks. A collection of linked LANs 
forms a large computer network that can be worldwide in scope. In the early l 990s 
a network of this sort known as the Internet emerged, which because of its huge size 
and global reach-an estimated 16 million server sites in 180 countries with 72 mil­
lion users in 1997-has had a profound impact on the way people compute and com­
municate .. 

The Internet had its origins in a computer network called the ARP ANET spon­
sored by the Advanced Research Projects Agency of the U.S. Department of 
Defense around 1970. This experimental network was originally designed to con­
nect research institutions in the United States via leased lines; Figure 1.31 shows the 
structure of the ARPANET at an early stage in its evolution (1972) when it linked 
26 research organizations in the United States. The ARPANET pioneered an infor­
mation-transmission technique calJed packet switching, which divides both long 
and short messages into packets of fixed length that can be transmitted indepen­
dently from source to destination via variable numbers of intermediate nodes. Each 
node contains a server that is responsible for sorting the packets from the various 
messages and forwarding them to the appropriate next destinations. Different pack­
ages can be sent by different routes determined by the network traffic conditions. At 
the final destination, a message is reassembled from its constituent packets. The 
communication software designed for the ARPANET and known as TCP/IP 
(Transmission Control Protocol/!ntemet Protocol) defines the communication 
standards for the Internet. 

In the early years the Internet was used almost exclusively to transfer text files 
such as electronic mail (e-mail) messages. This situation changed fundamentally in 
1989 when scientists at CERN (Centre Europeen pour la Recherche Nucleaire) in 
Geneva overlaid on TCP/IP a new, high-level protocol called http (hypenext trans­
port protocol) and an associated programming language html (hypertext markup 
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Figure 1.31 
The ARP ANET in 1972. 

language) to permit the linking of diverse file types-text, still pictures, movies, 
sound, etc.-in an simple way. This combination enabled users to create multime­
dia files easily and transmit them rapidly over the Internet. For example, using html, 
a text file can be tagged with commands that tell a computer where to find and insert 
visual images into the text file; the required image files can be located anywhere on 
the Internet. The human end user can access the information from a remote host via 
a simple point-and-click operation on a PC or workstation. The result is an enor­
mously rich collection of easily accessible data that has come to be known as the 
World Wide Web. 

Parallel processi11g. So-called supercomputers capable of executing many 
instructions in parallel have existed since the 1950s. Early commercial supercom­
puters relied heavily on pipeline processing and had a single CPU organized 
around one or more multistage pipelines. This organization allows several instruc­
tions to be in process simultaneously in each pipeline, resulting in a potential 
increase in performance of a factor of n per n-stage pipeline. The Cray-1 super­
computer, first marketed by Cray Research Inc. in 1976, contained 12 pipeline pro­
cessors for arithmetic-logic operations, several of which could operate in parallel 
[Russell 1978]. The Cray-1 could execute up to 160 million operations such as 
floating-point addition per second. Computers of this type have been most success­
fully applied to scientific computations involving large amounts of vector and 
matrix calculations; consequently they are sometimes called vector processors. 
The degree of parallelism n possible with a pipeline is small, typically less than I 0. 
As the PowerPC demonstrates (Example 1.7), pipeline processing of instructions is 
now a standard feature of microprocessors. Indeed, single-chip microprocessors 
reached the Cray-I's level of performance in scientific computation in the mid-
1990s. 
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An alternative approach to parallel processing with the potential of achieving 
unlimited degrees of parallelism is to use many independent processors operating 
in unison. For example, a network of computers can be programmed to work con­
currently on different parts of the same task. Such a loosely coupled or distributed 
system is useful for computing tasks that can easily be partitioned into independent 
subtasks, with infrequent communication of results among the subtasks. However, 
many large-scale scientific computations permit a task to be partitioned into sub­
tasks but require frequent and rapid exchange of results between the subtasks. The 
time required for such exchanges-they are essentially slow IO transfers-limits 
the usefulness of a computer network as a supercomputer. To address the interpro­
cessor communication problem, computers have been built that employ n separate 
CPUs that are tightly coupled, both physically and logically. Processors in these 
machines can access one another's data rapidly and are called multiprocessors. The 
task of writing parallel programs and optimizing compilers for multiprocessors is 
far less well understood than the corresponding problem for a single (pipelined or 
nonpipelined) processor. Nevertheless, machines of this type have been studied for 
many years, and in the 1980s powerful multiprocessors employing many low-cost 
microprocessors as their CPUs began to be manufactured commercially, mainly as 
scientific computers. 

Two types of multiprocessors are shared-memory and distributed-memory 
machines. In shared-memory machines all the processors have access to a common 
main memory through which they communicate to share programs and data. In 
distributed-memory machines each processor has only a private or local main 
memory and communicates with other processors by sending them messages 
through an IO subsystem linking the processors. In each case a key issue is to 
design processor-to-memory or processor-to-processor interconnection networks 
that are of high-speed and reasonable cost. For small multiprocessors containing 
up to 30 or so processors, a fast bus can serve as an interconnection network. In 
effect, the basic organization of Figure 1.30 is used with multiple CPUs attached to 
a high-speed system bus. To construct massively parallel multiprocessors, that is, 
computers with hundreds or thousands of CPUs, various specialized interconnec­
tion networks .have been developed, which we will examine in Chapter 7. Mas­
sively parallel multiprocessors are difficult to program and cannot run 
conventional (uniprocessor) programs efficiently. As a result, these machines have 
so far had a limited impact on the commercial computer marketplace. 

1.4 
SUMMARY 

Humans have struggled with difficult computations since ancient times. Some of 
these problems are inherently unsolvable-they cannot be solved even in principle 
by a Turing machine, which is a simple, abstract, but completely general digital 
computer. Some theoretically solvable problems are intractable in that they cannot 
be solved within a reasonable amount of time by practical computers. However, 
given a suitable algorithm or solution method as well as a computer of sufficient 
power, many important problems can be satisfactorily solved. Designing practical 
computers that provide the highest possible performance at acceptable cost is the 
basic job of the computer architect. 
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The design of computing machines has evolved over a long period of time. 
Charles Babbage conceived the concept of a general-purpose, program-controlled 
computer in the mid-19th century. Such a machine was not completed until the 
1940s, however, when the first electronic computers were successfully con­
structed. Since then, progress has been dramatic, mainly driven by advances in 
computer hardware technology. 

John von Neumann and others defined the basic organization of the modern 
computer. It comprises the following major components: a CPU responsible for 
fetching and executing instructions; a main memory used for instruction and data 
storage; and a set of input-output devices, such as user terminals, printers, and sec­
ondary memory devices. Three main instruction types are found in every com­
puter: data-transfer, data-processing, and program-control instructions. The 
instruction set and the way the instructions are processed define the power of a 
computer. The computer is typically programmed in a high-level language such as 
C++ or Java, which is automatically compiled into executable code (object pro­
grams) built from its instruction set. 

Integrated circuit technology has had a profound impact on computer design 
via the single-chip microprocessor and the high-capacity RAM chip. IC technol­
ogy has enabled manufacturers to build very small, low-cost computers for gen­
eral use (personal computers and workstations) as well as for special 
applications (embedded microcontrollers). IC technology has also been the driv­
ing force in the proliferation of large-scale computer networks-the Internet, for 
example-and high-performance multiprocessors. 

As the computer industry has matured, a few computer series have tended to 
become de facto architectural standards, notably IBM's System/360 mainframe 
family introduced in the 1960s and its PC personal computer family introduced 
in the 1980s. Recent computer families are distinguished by powerful RISC­
style instruction sets and such performance-enhancing features as pipelining, 
instruction-level parallelism, and cache memories. Continuing advances in hard­
ware and software technology, such as the introduction of multimedia comput­
ing and the World Wide Web, suggest that major advances in computer design 
will continue into the foreseeable future. 

1.5 
PROBLEMS 

1.1. To what extent does each of the following items play the role of processor and/or mem­
ory when used in numerical computations: an abacus; a slide rule; an electronic pocket 
calculator? 

1.2. Consider the Turing machine program of Figure 1.4, which adds two unary numbers n1 
and n2. A unary zero is represented by one or more blanks, which is an undesirable fea­
ture of the unary system. Determine how the given Turing machine behaves (a) if n 1 = 
n2 = 0, that is, the initial tape is entirely blank; and (b) if n 1 # 0 but n2 = 0. In each case 
specify the final contents of the tape. 

1.3. Design a a Turing machine that subtracts a unary number n2 from another unary num­
ber n1 > n2. Assume that n1, n2, and the result n1 -n2 are stored in the formats described 
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Figure 2.44 
Implementation of some control points of multiplier8. 

2.3 

signals for the multiplier. In some cases several control signals implement a particular 
operation. For instance, the add operation employs c6 to select the adder's right input 
operand, c9 to select c0 ur for loading into A[O], and c2 and c5 to actually load the 8-bit 
sum into A[0:7]. The number of distinguished control signals will vary with the details 
of the logic used to implement the control unit. Figure 2.44 shows a straightforward 
implementation of the control logic associated with the accumulator and adder subcir­
cuits using the control signals defined in Figure 2.43. 

THE PROCESSOR LEVEL 

The processor or system level is the highest in the computer design hierarchy. It is 
concerned with the storage and processing of blocks of information such as pro­
grams and data files. The components at this level are complex, usually sequential, 
circuits that are based on VLSI technology. Processor-level design is very much a 
heuristic process, as there is little design theory at this level of abstraction. 
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2,3.l Processor-Level Components 

The component types recognized at the processor level fall into four main groups: 
processors, memories, IO devices, and interconnection networks; see Figure 2.45. 
In this section we give only a brief summary of the characteristics of processor­
Jevel components; they are examined individually and in much greater depth in 
later chapters. 

Central processing unit. We define a CPU to be a general-purpose, instruc­
tion-set processor that has overall responsibility for program interpretation and 
execution in a computer system. The qualifier general-purpose distinguishes CPUs 
from other, more specialized processors, such as IO processors (IOPs), whose 
functions are restricted. An instruction-set processor is characterized by the fact 
that it operates on word-organized instructions and data, which the processor 
obtains from an external memory that also stores results computed by the proces­
sor. Most contemporary CPUs are microprocessors, implying that their physical 
implementation is a single VLSI chip. 

Figure 2.46 shows the essential internal organization of a CPU at the register 
level. The CPU contains the logic needed to execute its particular instruction set 
and is divided into datapath and control units. The control part (the I-unit) gener­
ates the addresses of instructions and data stored in external memory. In this par­
ticular system a cache memory is interposed between the main memory M and the 
CPU. The cache is a fast buffer memory designed to hold an active portion of the 
system's address space; it is often placed, wholly or in part, on the same IC as 
the CPU. Each memory request generated by the CPU is first directed to the cache. 
If the required information is not currently assigned to the cache, the request is re­
directed to M and the cache is automatically updated from M. The I-unit fetches 
instructions from the cache or M and decodes them to derive the control signals 
needed for their execution. The CPU's datapath (E-unit) has the arithmetic-logic 
circuits that execute most instructions; it also has a set of registers for temporary 
data storage. The CPU manages a system bus, which is the main communication 
link among the CPU-cache subsystem, main memory, and the IO devices. 

Micro~ 
processor 

(CPU) 

Main 
memory 

Interconnection network 
(system bus) 

Input/output devices 
(keyboard, video display, 
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Major components of a computer system. 
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Internal organization of a CPU and cache memory. 

The CPU is a synchronous sequential circuit whose clock period is the com­

puter's basic unit of time. In one clock cycle the CPU can perform a register-transfer 

operation, such as fetching an instruction word from M via the system bus and load­

ing it into the instruction register IR. This operation can be expressed formally by 

IR :=M(PC); 

where PC is the program counter the CPU uses to hold the expected address of the 

next instruction word. Once in the I-unit, an instruction is decoded to determine the 

actions needed for its execution; for example, perform an arithmetic operation on 

data words stored in CPU registers. The I-unit then issues the sequence of control 

signals that enables execution of the instruction in question. The entire process of 

fetching, decoding, and executing an instruction constitutes the CPU's instruction 

cycle. 

Memories. CPUs and other instruction-set processors operate in conjunction 

with external memories that store the programs and data required by the proces­

sors. Numerous memory technologies exist, and they vary greatly in cost and per­

formance. The cost of a memory device generally increases rapidly with its speed 

of operation. The memory part of a computer can be divided into several major 

subsystems: 

I. Main memory M, consisting of relatively fast storage ICs connected directly to, 

and controlled by, the CPU. 
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2. Secondary memory, consisting of less expensive devices that have very high 
storage capacity. These devices often involve mechanical motion and so are 
much slower than M. They are generally connected indirectly (via M) to the 
CPU and form part of the computer's IO system. 

3. Many computers have a third type of memory called a cache, which is posi­
tioned between the CPU and main memory. The cache is intended to further 
reduce the average time taken by the CPU to access the memory system. Some 
or all of the cache may be integrated on the same IC chip as the CPU itself. 

Main memory M is a word-organized addressable random-access memory 
(RAM). The term random access stems from the fact that the access time for every 
location in M is the same. Random access is contrasted with serial access, where 
memory access times vary with the location being accessed. Serial access memo­
ries are slower and less expensive than RAMs; most secondary-memory devices 
use some form of serial access. Because of their lower operating speeds and serial­
access mode, the manner in which the stored information is organized in secondary 
memories is more complex than the simple word organization of main memory. 
Caches also use random access or an even faster memory-accessing method called 
associative or content addressing. Memory technologies and the organization of 
stored information are covered in Chapter 6. 

IO devices. Input-output devices are the means by which a computer commu­
nicates with the outside world. A primary function of IO devices is to act as data 
transducers, that is, to convert information from one physical representation to 
another. Unlike processors, IO devices do not alter the information content or 
meaning of the data on which they act. Since data is transferred and processed 
within a computer system in the form of digital electrical signals, input (output) 
devices transform other forms of information to (from) digital electrical signals. 
Figure 2.47 lists some widely used IO devices and the information media they 
involve. Many of these devices use electromechanical technologies; hence their 
speed of operation is slow compared with processor and main-memory speeds. 
Although the CPU can take direct control of an IO device it is often under the 
immediate control of a special-purpose processor or control unit that directs the 
flow of information between the IO device and main memory. The design of IO 
systems is considered in Chapter 7. 

Interconnection networks. Processor-level components communicate by 
word-oriented buses. In systems with many components, communication may be 
controlled by a subsystem called an interconnection network; terms such as switch­
ing network, communications controller, and bus controller are also used in this 
context. The function of the interconnection network is to establish dynamic com­
munication paths among the components via the buses under its control. For cost 
reasons, these paths are usually shared. Only two communicating devices can 
access and use a shared bus at any time, so contention results when several system 
components request use of the bus. The interconnection network resolves such 
contention by selecting one of the requesting devices on some priority basis and 
connecting it to the bus. The interconnection network may place the other request­
ing devices in a queue. 
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CHAPTER 3 

Processor Basics 

This chapter considers the overall design of instruction-set processors as exempli­
fied by the central processing unit ( CPU) of a computer. The fundamentals of CPU 
organization and operation are examined, along with the selection and formats of 
instruction and data types. Various representative microprocessors of both the 
RISC and CISC types are presented and discussed. 

3.1 
CPU ORGANIZATION 

We begin by considering the organization of the central processor (microproces­
sor) of a computer and the methods used to represent the information it is intended 
to process. 

3.1.1 Fundamentals 

The primary function of the CPU and other instruction-set processors is to execute 
sequences of instructions, that is, programs, which are stored in an external main 
memory. Program execution is therefore carried out as follows: 

I. The CPU transfers instructions and, when necessary, their input data (operands) 
from main memory to registers in the CPU. 

2. The CPU executes the instructions in their stored sequence except when the exe­
cution sequence is explicitly altered by a branch instruction. 

3. When necessary, the CPU transfers output data (results) from the CPU registers 
to main memory. 
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Consequently, streams of instructions and data flow between the external memory 
and the set of registers that forms the CPU's internal memory. The efficient man­

agement of these instruction and data streams is a basic function of the CPU. 

Extemal commu11icatio11. If, as in Figure 3.la, no cache memory is present, 

the CPU communicates directly with the main memory M, which is typically a 
high-capacity multichip random-access memory (RAM). The CPU is significantly 
faster than M; that is, it can read from or write to the CPU's registers perhaps 5 to 

10 times faster than it can read from or write to M. VLSI technology, especially the 
single-chip microprocessor, has tended to increase the processor/main-memory 
speed disparity. 

To remedy this situation, many computers have a cache memory CM posi­

tioned between the CPU and main memory. The cache CM is smaller and faster 
than main memory and may reside, wholly or in part, on the same chip as the CPU. 
It typically permits the CPU to perform a memory load or store operation in a sin­

gle clock cycle, whereas a memory access that bypasses the cache and is handled 
by main memory takes many clock cycles. The cache is designed to be transparent 
to the CPU's instructions, which "see" the cache and main memory as forming a 

single, seamless memory space consisting of 2"' addressable storage locations 
M(0), M(l), ... , M(2"'-l). In this chapter we will take this viewpoint and use M to 

refer to the external memory, whether or not a cache is present. A specific memory 
location in M with address adr is referred to as M(adr) or simply as adr. When 
necessary, we will use MM to distinguish the main memory from the cache mem­

ory CM, as in Figure 3.lb. The structure of caches and their interactions with main 
memory are further studied in Chapter 6. 

The CPU communicates with IO devices in much the same way as it communi­

cates with external memory. The IO devices are associated with addressable regis­
ters called IO ports to which the CPU can store a word (an output operation) or from 

which it can load a word (an input operation). In some computers there are no IO 
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instructions per se; all IO data transfers are implemented by memory-referencing 
instructions, an approach called memory-mapped IO. This approach requires that 
memory locations and IO ports share the same set of addresses, so an address bit 
pattern that is assigned to memory cannot also be assigned to an IO port, and vice 
versa. Other computers employ IO instructions that are distinct from memory-refer­
encing instructions. These instructions produce control signals to which IO ports, 
but not memory locations, respond. This second approach is sometimes called IO­
mapped IO. 

User and supervisor modes. The programs executed by a general-purpose com­
puter fall into two broad groups: user programs and supervisor programs. A user or 
application program handles a specific application, such as word processing, of 
interest to the computer's users. A supervisor program, on the other hand, manages 
various routine aspects of the computer system on behalf of its users; it is typically 
part of the computer's operating system. Examples of supervisory functions are 
controlling a graphics interface and transferring data between secondary and main 
memory. In normal operation the CPU continually switches back and forth between 
user and supervisor programs. For example, while executing a user program, the 
need often arises for information that is available only on some hard disk unit in the 
computer's IO system. This condition causes the supervisor to temporarily suspend 
execution of the user program, execute a routine that initiates the required IO data­
transfer operation, and then resume execution of the user program. 

It is generally useful to design a CPU so that it can receive requests for super­
visor services directly from secondary memory units and other IO devices. Such a 
request is called an interrupt. In the event of an interrupt, the CPU suspends execu­
tion of the program that it is currently executing and transfers to an appropriate 
interrupt-handling program. As interrupts, particularly from IO devices, require a 
rapid response from the CPU, it checks frequently for the presence of interrupt 
requests. 

CPU operation. The flowchart in Figure 3.2 summarizes the main functions of 
a CPU. The sequence of operations performed by the CPU in processing an 
instruction constitutes an instruction cycle. While the details of the instruction 
cycle vary with the type of instruction, all instructions require two major steps: a 
fetch step during which a new instruction is read from the external memory M and 
an execute step during which the operations specified by the instruction are exe­
cuted. A check for pending interrupt requests is also usually included in the 
instruction cycle, as shown in Figure 3.2. 

The actions of the CPU during an instruction cycle are defined by a sequence 
of microoperations, each of which typically involves a register-transfer operation. 
The time required for the shortest well-defined CPU microoperation is the CPU 
cycle time or clock period Tc1ock and is a basic unit of time for measuring CPU 
actions. Recall that f, the CPU's clock frequency (in MHz) is related to T,,ock (in 
µs) by Tc1ock = 1/f As we will see, the number of CPU cycles required to process an 
instruction varies with the instruction type and the extent to which the processing 
of individual instructions can be overlapped. For the moment we will assume that 
each instruction is fetched from M in one CPU clock cycle (this is usually true 
when M is a cache) and can be executed in another CPU cycle. 
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Accumulator-based CPU. Despite the improvements in IC technology over 
the years, CPU design continues to be based on the premise that the CPU should 
be as fast as the available technology and overall design requirements allow. 
Since cost generally increases with circuit complexity, the number of compo­
nents in the CPU must be kept relatively small. The CPU organization proposed 
by von Neumann and his colleagues for the IAS computer (section 1.2.2) is the 
basis for most subsequent designs. It comprises a small set of registers and the 
circuits needed to execute a functionally complete set of instructions. In many 
early designs, one of the CPU registers, the accumulator, 1 played a central role, 
being used to store an input or output operand (result) in the execution of many 
instructions. 

Figure 3.3 shows at the register level the essential structure of a small accu­
mulator-oriented CPU. This organization is typical of first-generation computers 
(compare Figure 1.12) and low-cost microcontrollers. Assume for simplicity that 
instructions and data have some fixed word size n bits and that instructions can be 
adequately expressed by means of register-transfer operations in our HDL. Instruc­
tions are fetched by the program control unit PCU, whose main register is the pro-

1The term accumulator originally meant a device that combined the functions of number storage and addi­
tion. Any quantity transferred to an accumulator was automatically added to its previous contents. Acc11mula­
tor is still often used in this restricted sense. 
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gram counter PC. They are executed in the data processing unit DPU, which 
contains an n-bit arithmetic-logic unit (ALU) and two data registers AC and DR. 
Most instructions perform operations of the form 

XI :=J;(Xl, X2) 

where XI and X2 denote a CPU register (AC, DR, or PC) or an external memory 
location M(adr). The operations fi performed by the ALU are limited to fixed­
point (integer) addition and subtraction, shifting, and logical (word-gate) opera­
tions. 

Some instructions have an operand in an external memory location M(adr), 
and must therefore include the address part adr. Memory addresses are stored in 
two address registers in the PCU: the program counter PC, which stores instruction 
addresses only, and the general-purpose (data) address register AR. An instruction 
I that refers to a data word in M contains two parts, an opcode op and a memory 
address adr, and may be written as I= op.adr. Each instruction cycle begins with 
the instruction fetch operation 

IR.AR := M(PC); (3.1) 

which transfers the instruction word I from M to the CPU. The opcode op is loaded 
into the PCU' s instruction register IR, and the address adr is loaded into address 
register AR. Hence (3.1) is equivalent to 

IR := op, AR := adr; 
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Instructions that do not reference M do not use AR; their opcode part specifies the 
CPU registers to use, as well as the operation.fi to be carried out. Once it has placed 
the opcode of I in IR, the CPU proceeds to decode and execute it. Note that, at this 
point, the CPU can increment PC in order to obtain the address of the next instruc­
tion. 

The two essential memory-addressing instructions are called load and store. 
The load instruction for our sample CPU is 

AC := M(adr); 

which transfers a word from the memory location with address adr to the accumu­
lator. It is often written in assembly-language programs as LD adr. The corre­
sponding store instruction is 

M(adr) := AC; 

which transfers a word from AC to M and may be written as ST adr. Note how the 
accumulator AC serves as an implicit source or destination register for data words. 

Programming considerations. Data-processing operations normally require up 
to three operands. For example, the addition 

Z:=X + Y (3.2) 

has three distinct operands X, Y, and Z. The accumulator-based CPU of Figure 3.3 
supports only single-address instructions, that is, instructions with one explicit 
memory address. However, AC and DR can serve as implicit operand locations so 
that multioperand operations can be implemented by executing several instructions 
in sequence. For example, a program to implement (3.2), assuming that X, Y, and Z 
all refer to data words in M, can take the following form: 

HDL Assembly~ Narrative 
format language format format ( comment) 

AC :=M(X); LDX Load X from M into accumulator AC. 

DR:=AC; MOY DR,AC Move contents of AC to DR. 

AC :=M(Y); LD Y Load Y into accumulator AC. 

AC:=AC+DR; ADD Add DR to AC. 

M(Z) :=AC; ST Z Store contents of AC in M. 

The preceding program fragment uses only the load and store instructions to 
access memory, a feature called load/store architecture. It is common (but as we 
will see, not always desirable) to allow other instructions to specify operands in 
memory. A CPU like that of Figure 3.3 can be designed to implement memory­
referencing instructions of the form 

AC := J;(AC, M(adr)) 
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whose execution requires two steps: one to move M(adr) to or from DR and one to 
perform the designated operation J;. With an add instruction of this form, we can 
reduce the foregoing program from five to three instructions. 

HDL Assembly~ Narrative 
Format language format format (comment) 
AC :=M(X); LD X Load X from Minto accumulator AC. 

AC :=AC+ M( !'); ADDY Load Y into DR and add to AC. 

M(Z) :=AC; ST Z Store contents of AC in M. 

The memory-referencing ADD Y instruction can be expected to take longer to exe­
cute than the original ADD instruction that references only CPU registers. Memory 
references also complicate the instruction-decoding logic in the PCU. However, 
overall execution time should be reduced because we have eliminated an LD and a 
MOV instruction completely. As we will see later, the cost-performance impact of 
replacing a simple instruction with a more complex one has subtle implications that 
lie at the heart of the RISC-CISC debate. 

Instruction set. Figure 3.4 gives a possible instruction set for our simple 
accumulator-based CPU, assuming a load/store architecture. These 10 instruc­
tions have the flavor of the instruction sets of some recent RISC machines, which 
demonstrate that small instruction sets can be both complete and efficient. We are, 
however, ignoring some important practical implementation issues in the interest 
of simplicity. We have not, for instance, specified the precise instruction or data 
formats to be used, and we do not consider such problems as numerical over­
flow-this condition occurs when an arithmetic instruction produces a result that 
is too big to fit in its destination register. 

Type Instruction HDL Assembly~ Narrative 
format language format format (comment) 

Data transfer Load AC :=M(X) LDX Load X from M into AC. 
Store M(X) :=AC STX Store contents of AC in M 

asX. 
Move register DR:=AC MOVDR,AC Copy contents of AC to DR. 
Move register AC:=DR MOVAC.DR Copy contents of DR to AC. 

Data Add AC :=AC+DR ADD Add DR to AC. 
processing Subtract AC:=AC-DR SUB Subtract DR from AC. 

And AC:= AC and DR AND And bitwise DR to AC. 
Not AC :=not AC NOT Complement contents of AC 

Program Branch PC :=M(adr) BRAadr Jump to instruction with 
control address adr. 

Branch zero if AC =0 then BZadr Jump to instruction adr if 
PC :=M(adr) AC=0. 

Figure 3.4 
Instruction set for the CPU of Figure 3.3. 
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The load and store instructions obviously suffice for transferring data between 
the CPU and main memory. We know from Boolean algebra that the AND and 
NOT operations are functionally complete, implying that the instruction set 
enables any logical operation to be programmed. We also know that addition and 
subtraction suffice for implementing most arithmetic operations. Consider, for 
example, the arithmetic operation negation, for which many CPUs have a single 
instruction of the type AC := -AC. We can easily implement negation by a three­
instruction sequence as follows: 

HDL Assembly• 
format language format 
DR := AC; MOY DR, AC 

AC :=AC-DR; SUB 

AC:=AC-DR; SUB 

Narrative 
format (comment) 
Copy contents X of AC to DR. 

Compute AC =X-X= 0. 

Compute AC= 0 -X = -X. 

Figure 3.4 also gives a small set of program control instructions: an unconditional 
branch instruction BRA and a conditional branch-on-zero instruction BZ that tests 
the contents of AC. Observe that these instructions load a new address into the pro­
gram counter PC, thus altering the instruction execution sequence. The BZ instruc­
tion allows more powerful program control operations such as procedure call and 
return to be implemented; it also facilitates complex operations such as multiplica­
tion, as we demonstrate in Example 3.1. 

EXAMPLE 3.1 A MULTIPLICATION PROGRAM. Suppose we want to use the 
tiny instruction set of Figure 3.4 to program the multiplication operation 

AC :=ACxN 

where the multiplicand is the initial contents of the accumulator AC and the multiplier 
N is a variable stored in memory. We will assume that the multiplier and multiplicand 
are both unsigned numbers and that they are sufficiently small that the product will fit 
in a single word. We can construct the desired program along the following lines. We 
will execute the basic ADD instruction N times to implement AC x Nin the form AC+ 
AC + ... + AC. We will treat the memory location storing N as a count register and, 
after each addition step, decrement it by one until it reaches zero. We will test for N::;: O 
by means of the BZ instruction, and so we will have to transfer N to AC in order to per­
form this test. We will also have to use some memory locations as temporary registers 
for storing intermediate results and some other quantities, such as the initial value Y of 
AC. In particular, we will use memory locations one, mult, ac, and prod to store the 
constant 1, N, Y, and the partial product P, respectively. Here one, mult, ac, and prod 
are symbolic names for certain memory addresses that we have arbitrarily assigned. 
They are translated into numerical memory addresses by an assembler program prior to 
execution. 

An assembly-language program implementing this plan appears in Figure 3.5. Its 
main body (lines 5 to 17) is traversed N times in the course of a multiplication. At the 
end the result Pis in memory location prod. The first two instructions (lines 5 and 6) of 
the program check the value of N by reading it into AC and testing it with the BZ 
instruction. If the initial value of N is zero, the program exits immediately with the cor­
rect result P = 0. If N is nonzero, the instructions in lines 7 to 11 load it from mult into 
AC, subtract one from it, and then return the new, decremented value of Nto mult. The 
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Line Location Instruction or data Comment 

0 one 00 ... 001 The constant one. 

1 mult N The multiplier. 

2 ac 00 ... 000 Location for initial value Y of AC. 

3 prod 00 ... 000 Location for (partial) product P. 

4 STac Save initial value Y of AC. 

5 loop LDmult Load N into AC to test for termination. 

6 BZexit Exit if N = O; otherwise continue. 

7 LDone Load I into AC. 

8 MOVDR,AC Move I from AC to DR. 

9 LDmult Load N into AC to decrement it. 

IO SUB Subtract 1 from N. 

11 ST mult Store decremented N. 

12 LDac Load initial value Y of AC. 

13 MOVDR,AC Move Y from AC to DR. 

14 LDprod Load current partial product P. 

15 ADD Add YtoP. 

16 ST prod Store the new partial product P. 

17 BRA loop Branch to loop. 

18 exit 

Figure 3.5 
A program for the multiplication operation AC := AC x N. 

main step of adding Y to the accumulating partial product, that is, P := P + Y, is imple­

mented in straightforward fashion by lines 12 to 16 of the program. Finally, a return is 
made to loop via the unconditional branch BRA (line 17). 

This program uses most of the available instruction types and illustrates several 

weaknesses of an accumulator-based CPU. Because there are only a few data registers 

in the CPU, a considerable amount of time is spent shuttling the same information back 

and forth between the CPU and memory. Indeed, most of the instructions in this pro­

gram are of the data-transfer type (ST, LD, and MOY), which do bookkeeping for the 
few instructions that actually compute the product P. It would both shorten the pro­

gram and speed up its execution if we could store the quantities 1, N, Y, and Pin their 

own CPU registers, as they are repeatedly required by the CPU. 

Program execution. We now examine the execution process for the multipli­

cation program of Figure 3.5. Of course, the program must be translated into exe­

cutable object code prior to execution, but we can treat the assembly-language 

program as a symbolic representation of the object code. Recall that we are 

assuming that every instruction is one word long and can be fetched from M in a 

single CPU clock cycle. We further assume that every instruction is also exe­

cuted in a single clock cycle. Hence each instruction requires two CPU clock 

cycles--one to fetch the instruction from M and one to execute it. At the end of 
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SECTION3.I cycle cycle PC AR PCU actions DPU actions 

CPU Organization STac 1004 IR.AR := M(PC), PC :=PC+ 1 

2 1002 M(AR) :=AC 

3 LD mult 1005 IR.AR := M(PC), PC := PC + 1 

4 1001 AC :=M(AR) 

5 BZ exit 1006 IR.AR := M(PC), PC := PC + 1 

6 1001 Test A; no further action if A :;c O None 

7 LDone 1007 IR.AR := M(PC), PC := PC + 1 

8 1000 AC :=M(AR) 

9 MOVDR,AC 1008 IR.AR := M(PC), PC := PC + I 

10 dddd DR:=AC 

II LD mult 1009 IR.AR := M(PC), PC := PC + I 

12 1001 AC :=M(AR) 

13 SUB 1010 IR.AR := M(PC), PC := PC + I 

14 dddd AC:=AC-DR 

15 STmult 1011 IR.AR := M(PC), PC :=PC+ I 

16 1001 M(AR) :=AC 

17 LDac 1012 IR.AR := M(PC), PC :=PC+ I 

18 1002 AC :=M(AR) 

19 MOVDR,AC 1013 IR.AR := M(PC), PC := PC + I 

20 dddd DR:=AC 

21 LDprod 1014 IR.AR := M(PC), PC := PC + I 

22 1003 AC:=M(AR) 

23 ADD 1015 IR.AR := M(PC), PC := PC + 1 

24 dddd AC:=AC+DR 

25 ST prod 1016 IR.AR := M(PC), PC := PC + I 

26 1003 M(AR) :=AC 

27 BRA loop 1017 IR.AR := M(PC), PC := PC + 1 

28 1005 PC:=AR None 

29 LDmult 1005 IR.AR := M(PC), PC := PC + 1 

30 1001 AC :=M(AR) 

31 BZexit 1006 IR.AR := M(PC), PC := PC + I 

32 1018 Test A: PC:= AR if A =0 None 

33 1018 

Figure 3.6 
Cycle-by-cycle execution trace of the multiplication program of Figure 3.5. 
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the fetch step, the PCU decodes the instruction's opcode to determine what oper­
ation to perform during the execution stage. It can also increment PC in prepara­
tion for the next instruction fetch. Recall that an edge-triggered register can be 
both read from and written into in the same clock cycle so that the· new data is 
ready for use at the beginning of the next clock cycle. Hence every fetch cycle 
includes the following pair of register-transfer operations: 

IR.AR := M(PC), PC := PC + I (3.3) 

The subsequent execution cycle depends on the instruction opcode placed in IR. 
Figure 3.6 depicts all the main actions taken by the CPU, including the mem­

ory addresses it generates, during execution of the program of Figure 3.5. Data of 
this type is referred to as an execution trace and is often obtained by simulation of 
the target CPU. (In effect, Figure 3.6 is a hand simulation of the multiplication pro­
gram.) Execution traces are useful for analyzing program behavior and execution 
speed. In this example the program's data and instructions have been assigned to a 
consecutive sequence of memory locations 1000, 1001, 1002, ... , where 1001 is 
the location named one in Figure 3.5. The first executable instruction is ST ac, 
which is in location 1004, so execution begins when PC is set to 1004. Observe 
how the contents of the program counter PC are incremented steadily until a branch 
instruction is encountered, at which point the branch address contained in the 
branch instruction may replace the incremented contents of PC. 

3.1.2 Additional Features 

Next we examine some more advanced features of CPUs and look at representative 
commercial microprocessors of the RISC and CISC types. 

Architecture extensions. There are many ways in which the basic design of 
Figure 3.3 can be improved. Most recent CPUs contain the following extensions, 
which significantly improve their performance and ease of programming. 

• Multipurpose register set for storing data and addresses: These replace the accumu­
lator AC and the auxiliary registers DR and AR of our basic CPU. The resulting CPU 
is sometimes said to have the general register organization exemplified by the third­
generation IBM System/360-370 (Figure 1.17), which has 32 such registers. The set 
of general registers is now usually referred to as a register file. 

• Additional data, instruction, and address types: Most CPUs have instructions to han­
dle data and addresses with several different word sizes and formats. Although some 
microprocessors have only add and subtract instructions in the arithmetic category, 
relatively little extra circuitry is required for (fixed-point) multiply and divide 
instructions, which simplify many programming tasks. Call and return instructions 
also simplify program design. 

• Register to indicate computation status: A status register (also called a condition 
code or flag register) indicates infrequent or exceptional conditions resulting from 
the instruction execution. Examples are the appearance of an all-zero result or an 
invalid instruction like divide by zero. A status register can also indicate the user and 
supervisor states. Conditional branch instructions can test the status register, which 
simplifies the programming of conditional actions. 
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• Program control stack: Various special registers and instructions facilitate the trans­
fer of control among programs due to procedure calling or external interrnpts. Many 

CPUs use a flexible scheme for program-control transfer, which employs part of the 

external memory M as a push-down stack (see also Example 1.5). The stack memory 

is intended for saving key information about an interrnpted program via push opera­

tions so that the saved information can be retrieved later via pop operations. A CPU 

address register called a stack pointer automatically keeps track of the stack's entry 

point. 

Figure 3.7 shows the organization of a processor with the foregoing features. It 
has a register file in the DPU for data and/or address storage. The ALU obtains 

most of its operands from the register file and also stores most of its results there. A 

status register monitors the output of the ALU and otber key points. The principal 

special-purpose address registers are the program counter and the stack pointer. 

Special circuits are included for address computation, although the main ALU can 

also be used for this purpose. The control circuits in the PCU derive their inputs 

from the instruction register, which stores the opcode of the current instruction, and 
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the status register. Communication with the outside world is via a system bus that 
transmits address, data, and control information among the CPU, M, and the IO 
system. Various nonprogrammable "buffer" registers serve as temporary storage 
points between the system bus and the CPU. 

Pipelillillg, As discussed in Chapter 1, modern CPUs employ a variety of 
speedup techniques, including cache memories, and several forms of instruction­
level parallelism. Such parallelism may be present in the internal organization of 
the DPU or in the overlapping of the operations carried out by the DPU and PCU. 
These features add to the CPU's complexity and will be explored in depth later in 
this book. · 

The considerable potential for parallel processing at the instruction level is evi­
dent even in the simple CPU of Figure 3.3. We see from the execution trace of Fig­
ure 3.6 that the main PCU and DPU activities take place in different clock cycles. 
If these activities do not share a resource such as the system bus, they can be car­
ried out at the same time. In other words, while the current instruction is being exe­
cuted in the DPU, the next instruction can be fetched by the PCU. For example, the 
three-instruction negation routine we gave earlier to change AC to -AC would be 
executed as follows in the style of Figure 3.6: 

Clock Instruction 
cycle cycle PC PCU actions DPU actions 

MOV DR.AC 2000 IR.AR := M(PC), PC :=PC+ I 

2 2001 DR:=AC 

3 SUB 2001 IR.AR := M(PC), PC := PC + I 

4 2002 AC :=AC-DR 

5 SUB 2002 IR.AR := M(PC), PC :=PC+ I 

6 2003 AC :=AC-DR 

By merging the execution part of each instruction cycle with the fetch part of the 
following instruction cycle, we can reduce the overall execution time from six 
clock cycles to four, as shown below. (We use subscripts to distinguish the first and 
second SUB instructions.) 

Clock Instruction 
cycle cycle PC PCU actions DPU actions 

MOY 2000 IR.AR := M(PC), PC :=PC+ I 

2 MOV/SUB 1 2001 IR.AR := M(PC), PC :=PC+ I DR:=AC 

3 SUBifSUB2 2002 IR.AR := M(PC), PC := PC + I AC:=AC-DR 

4 SUB2 2003 AC :=AC-DR 

This overlapping of instruction fetching and execution is an example of 
instruction pipelining, which is an important speedup feature of RISC processors. 
Figure 3.8 illustrates graphically the type of two-stage pipelining discussed above. 
Each instruction can be thought of as passing through two consecutive stages of 
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Figure 3.8 
Overlapping instructions in a two-stage instruction pipeline. 

processing: a fetch stage implemented mainly by the PCU and an execution stage 
implemented mainly by the DPU. Hence two instructions can be processed simul­
taneously in every CPU clock cycle, with one completing its fetch phase and the 
other completing its execute phase. A two-stage pipeline can therefore double the 
CPU's performance from one instruction every two clock cycles to one instruction 
every clock cycle. 

A problem arises when a branch instruction is encountered, such as the BRA 
loop instruction stored in address (line) 17 of the multiplication program (Figure 
3.5). Immediately before this instruction is fetched in some clock cycle i the pro­
gram counter PC stores the address 17. PC is then incremented to 18 in preparation 
for clock cycle i + I. Clearly in clock cycle i + 1, the CPU should not fetch the 
instruction stored at address 18-that instruction is not even in the multiplication 
program. In clock cycle i + I, BRA is executed, which causes loop= 5 to be loaded 
into PC, implying that the next instruction should be taken from location 5. The 
fetching of this instruction can't begin until cycle i + 2, however, as illustrated in 
Figure 3.8 with i = 4. It follows that we cannot overlap the branch instruction and 
the instruction that follows it (/3 and /4 in the case of Figure 3.8). 

Thus we see that branch instructions reduce the efficiency of instruction pipe­
lining, although we will see later that steps can be taken to reduce this problem. We 
will also see that instruction processing is usually broken into more than two stages 
to increase the level of the parallelism attainable. 

EXAMPLE 3.2 THE ARM6 MICROPROCESSOR (VAN SOMEREN AND ATACK 

J 994 J. We now examine in some detail the architecture of a microprocessor family 
that embodies the RISC design philosophy in a relatively direct and elegant fonn. The 
ARM has its origins in the Acom RISC Machine, a microprocessor developed in the 
United Kingdom in the I 980s to serve as the CPU of a personal computer. Subse­
quently, the family name was changed-without changing its acronym, however-to 
Advanced RISC Machine. The ARM family is primarily aimed at low-cost, low-power 
applications such as portable computers and games. For example, the Newton, a hand­
held "personal digital assistant" introduced by Apple Corp. in 1993 employs the 
ARM6 microprocessor, whose main features are described below. 

The ARM6 is a 32-bit processor in that both its data words and its address words 
are 32 bits (4 bytes) long. It has a load/store architecture, so only its load and store 
instructions can address external memory M. As in most computers since the IBM Sys­
tem/360, main memory is organized as an an-ay of individually addressable bytes. Thus 
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the maximum memory size of an ARM6 computer is 232 bytes, also referred to as 4 
gigabytes (4G bytes). The ARM6 employs an instruction pipeline to meet the goal of 
one instruction executed per CPU clock cycle. Note that it shares all these features with 
a more powerful (and more expensive) RISC microprocessor, the PowerPC (Example 
1.7). The ARM6's instruction set is much smaller than the PowerPC's, however-it 
has no floating-point instructions, for example. 

The internal organization of the ARM's CPU is shown in Figure 3.9. It has a 32-bit 
ALU and a file of 32-bit general-purpose registers. To permit direct interaction between 
data and control registers, the ARM has the unusual feature of placing its PC and status 
registers in the register file; conceptually, we will continue to view these registers as 
part of the PCU. There are several modes of operation, including the normal user and 
supervisor modes, and four special modes associated with intenupt handling. In user 
mode the register file appears to contain sixteen 32-bit registers designated R0:Rl5, 
where Rl5 is also the program counter PC, as well as a current program status register 
designated CPSR. (Additional registers, which we will not discuss here, are used when 
the CPU is in other operating modes; they are "invisible" in user mode.) The ALU is 
designed to perform basic arithmetic operations on 32-bit integers. It employs combina­
tional logic for addition and subtraction and a sequential shift-and-add method similar 
to that described in Example 2.7 for multiplication. A combinational shift circuit is 
attached to the ALU to support multiplication and other operations. A separate address­
incrementer circuit implements address-manipulation operations such as PC := PC + 1 
independently of the ALU. Access to external memory M (a cache or main memory) is 
straightforward. The address of the desired location in Mis placed in the PCU's address 
register. In the case of a store instruction, the data to be stored is also placed in the 
DPU's write data register. A load instruction causes a data word to be fetched from 
memory and placed in the read data register. Several internal buses transfer data effi­
ciently among the DPU's registers and data processing circuits. 

All ARM6 instructions are 32 bits long, and they have a variety of formats and 
addressing modes. There are about 25 main instraction types, which are listed in Fig­
ure 3.10. (We have omitted block move and coprocessor instructions.) This number is 
deceptively small, however, as instructions have options that substantially increase the 
number of operations they can perform. Most instructions can be applied eitl1er to 32-
bit operands (words) or to 8-bit operands (bytes). Operands and addresses are usually 
stored in registers that can be referred to by short, 4~bit names, allowing a single 
ARM6 instruction to specify as many as four operands. The available address space 
is shared between memory and IO devices (memory-mapped IO). Consequently, the 
load/store instructions used for CPU-memory transfers are also used for IO opera­
tions. 

Any instruction can be conditionally executed, meaning that execution may or 
may not occur depending on the value of designated status bits (flags) in the CPSR. 
The status flags are set by a previous instruction and include a negative flag N (the pre­
vious result R computed by the ALU was a negative number), a zero flag Z (R was 
zero), a carry flag C (R generated an output carry), and an overflow flag V (R generated 
a sign overflow). Hence every ARM6 instruction is effectively combined with a condi­
tional branch instruction. The basic unconditional move instruction MOY RO, RI can 
have any of 15 conditions attached to it to determine if it is to be executed (see problem 
3.8). Some examples: 

MOVCC R0,Rl 

MOVCS R0,RI 

MOVHI R0,RI 

; If flag C = 0, then RO:= RI 

; If flag C = I, then RO:= RI 

; If flag C = l and flag Z = 0, then RO := RI 
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Figure 3.9 
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Overall organization of the ARM6. 
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An ARM6 instruction can also include a shift or rotation operation that is applied 
to one of its operands. For instance: 

153 

MOV RO, RI, LSL /12 ; RO:= RI x4 (3.4) 
CHAPTER3 
Processor Basics 

means logically left shift (LSL) the contents of RI by 2 bits and move the result to RO. 
This shift is tantamount to multiplying RI by four before the move. 

The opcode suffix S specifies whether or not an instruction affects the status flags. 
If S is present, appropriate flags are changed; otherwise, the flags are not affected. For 
example, the ARM6's move instructions affect the N, Z, and C flags, so appending S 

Type Instruction 

Data Move register 
transfer MoVe register 

Move inverted 
Load 

Store 

Data Add 
processing Add with carry 

Program 
control 

Subtract 
Subtract with 

carry 
Reverse subtract 
Reverse subtract 

with carry 
Multiply 
Multiply and add 

And 

Or 

Exclusive~or 

Bit clear 

Branch 
Branch and link 

Software interrupt 
Compare 
Compare inverted 
Logical compare 
Compare inverted 

Figure 3.10 

HDL 
format 

R3 :=R9 
RO:= 12 

R7 := RO 
RS:= M(adr) 

M(adr) := RS 

R3:=R5+25 
R3:=R5+R6+C 

R3 :=R5-9 
R3:=R5 9 C 

R3 :=9-RS 
R3:=9-R5 C 

Assembly• 
language format 

MOV R3,R9 
MOV R0,1112 

MVN R7,R0 
LDR RS, adr 

STR RS,adr 

ADD R3,R5,#25 
ADC R3,R5,R6 

SUB R3,R5,#9 
SBC R3,R5,#9 

RSB R3,R5,#9 
RSC R3,R5,#9 

Rl := R3 x R2 MUL Rl,R2,R3 
Rl := (R3 x R2) + R4 MLA Rl,R2,R3,R4 

Narrative 
format (comment) 

Copy contents of register R9 to register R3. 
Copy operand (decimal number 12) to reg­

ister RO. 
Copy bitwise inverted contents of RO to R7 
Load RS with contents of memory location 

adr. 
Store contents of RS in memory location 

adr. 

Add 25 to RS; place sum in R3. 
Add R6 and carry bit C to RS; place sum in 

R3. 
Subtract 9 from R5; place difference in R3. 
Subtract 9 and borrow bit from R5; place 

difference in R3. 
Subtract R5 from 9; place difference in R3. 
Subtract R5 and borrow bit from 9; place 

difference in R3. 
Multiply R3 by R2; place result in RI. 
Multiply R3 by R2; add R4; place result in 

RI. 
R4 := RI I and 2516 AND R4,RI l,Ox25 Bitwise AND RI l and 25 16; place result in 

R4. 
R4 := Rll or 25 16 ORR R4,Rll,0x25 Bitwise OR Rll and 2516; place result in 

R4. 
R4 := Rll xor 25 16 EOR R4,Rll,Ox25 Bitwise XOR Rll and 2516; place result in 

R4. 
R4 := Rl l A 251, BIC R4,Rll,#25 Bitwise invert 25; AND it to RI l; place 

PC :=PC+ adr 
Rl4 := PC, 

PC:= PC+ adr 

Flags := RI - 14 
Flags:= RI+ 14 
Flags := RI .<or 14 
Flags:= RI or 14 

B adr 
BLadr 

SWJ 
CMP rl,/114 
CMN rl,1114 
TEQ rl,#14 
TST rl,#14 

result in R4. 

Jump to designated instruction. 
Save old PC in "linki' register Rl4; then 

jump to designated instruction. 
Enter supervisor mode. 
Subtract 14 from Rl and set flags. 
Add 14 to RI and set flags. 
XOR 14 to RI and set flags. 
AND 14 to RI and set llags. 

Core instruction set of the ARM6. 
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to, say, MOVCS, yields MOVCSS, which checks the moved data item D. It sets N = 1 
(0) if D31 = 1 (0), it sets Z = l (0) if Dis zero (nonzero), and it sets C to the shifter's 
output value. 

Like other RISCs, the ARM6 has an instruction pipeline that permits the various 
stages of instruction processing to be overlapped. The pipeline has three stages: fetch, 
decode, and execute; in effect, the ARM6 breaks the first stage of the two-stage pipe­
line of Figure 3.8 in two. This structure permits the CPU to check every instruction's 
condition code in stage 2 to determine whether the instruction should be executed in 
stage 3. Some instructions such as multiply require more than one cycle for execution, 
but most require only one. Note that inclusion of an operand shift in an instruction as in 
(3.4) does not require an additional cycle, thanks to the fast (combinational) shifter. 

A CISC machine. We turn next to a widely used CPU family, the Motorola 
680XO family, which was introduced in 1979 with the 68000 microprocessor. This 
example of an older CJSC architecture is more streamlined and "RISC-like" than 
other CISCs. Later members of the family such as the 68060 [Circello et al. 1995] 
have speedup features such as instruction pipelining, floating-point execution 
units, and superscalar instruction issue. We examine an intermediate member of 
the series, the 68020, a 32-bit machine whose design broadly resembles that of a 
third-generation mainframe computer [Motorola 1989]. 

The 68020 is a one-chip microprocessor introduced in 1985 to serve as the 
CPU of a general-purpose computer such as a personal computer or workstation. 
Figure 3.11 outlines the organization of the 68020. It is designed to handle 32-bit 
words (termed long words in 680XO literature) efficiently, but instructions are also 
provided to handle operands of I, 8, I 6, and 64 bits. As in the ARM6, memory 
addresses are 32 bits long, permitting a total of 232 different memory locations, 
each storing 1 byte. Memory-mapped IO is also used in the 680XO series. The data­
processing unit has a register file containing sixteen 32-bit registers, half of which 
are data registers designated DO:D7 and half are address registers designated 
AO:A7. The ALU can execute a large set of fixed-point (but not floating-point) 
instructions. Instruction interpretation and other control functions of the CPU are 
implemented by a microprogrammed control unit. 

The 68020 has about 70 distinct instruction types ( or around 200 if all opcode 
variants are distinguished), which are summarized in Figure 3.12. A given instruc­
tion such as MOVE can be defined with several different types of operands, and 
the operands can be addressed in various ways. For example, the following move­
register instruction written in 680XO assembly-language format 

MOVE.L Dl,A6 (3.5) 

causes the entire contents (a long word as indicated by the opcode suffix .L) of data 
register DI to be copied to address register A6. In other words, (3.5) implements 
the register transfer A6 :~DI.If.Lis replaced by .B, then the resulting instruction 

MOVE.B DI, A6 

causes only the byte stored in the low-order position (bits 0:7) of DI to be copied 
to the corresponding part of A6. 

Besides the direct addressing mode illustrated by the preceding example, the 
68020 has several other addressing modes that give the programmer considerable 



INTEL - 1022
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D3 A3 
D4 A4 
D5 AS 

1 D6 A6 
D7 

A?! User stack pointer I 
PC I Program counter I Arithmeticn User•programmable User status register 
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f-.., 
control -

Supervisor registers circuits 

ToM _,.J System bus and IO 

Figure 3.11 
Organization of the 68020. 

flexibility in accessing data. Most instructions can address memory as well as CPU 
registers. For example, if (3.5) is replaced by 

MOVE.L DI, (A6) (3.6) 

the resulting operation is M(A6) := DI, that is, a store operation with A6 serving as 
the memory-address register. This is an instance of indirect addressing. Note that 
while (3.5) takes 4 clock cycles to execute, (3.6) takes 12 cycles because of the 
time required to access external memory. The 68020's data-processing instructions 
can also access M directly, so the 68020 does not have the load/store architecture 
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Type Opcode 

Data transfer EXG 
MOVE 
MOVEA 
MOVEC 
MOVEM 
MOVEP 
MOVEQ 
MOVES 

SWAP 

Data ABCD 
processing ADD 

ADDA 
ADDI 
ADDQ 
ADDX 
ANDx 
ASx 
CLR 
D!Vx 
EORx 
EXT 
LSx 
MULx 
NBCD 
NEG 
NEGX 
NOT 
ORx 
PACK* 
ROx 
ROXx 
SBCD 
SUB 
SUBA 
SUBJ 
SUBQ 
SUBX 
UNPK* 

Figure 3.12 

Description 

Exchange (swap) contents of two registers. 
Move ( copy) data unchanged from source to destination in CPU or M, 
Copy data to address register. 
Copy data to or from control register (privileged insttuction). 
Copy multiple data items to or from specified list of registers. 
Copy data between register and alternate bytes of memory. 
Copy "quick" (8-bit) immediate data to register. 
Copy data using address space specified by a control register (privi-

leged instruction), 
Swap left and right halves of register. 

Add decimal (BCD) numbers with carry (extend) flag. 
Add binary (twos-complement) numbers. 
Add to address register (unsigned binary addition). 
Add immediate binary open:md. 
Add "quick'' (3-bit) immediate binary operand. 
Add binary with carry (extension) flag. 
Bitwise logical AND (x = I denotes immediate operand). 
Arithmetic left (x = L) or right (x = R) shift with extension. 
Clear operand by resetting all bits to 0. 
Divide signed (x = S) or unsigned (x = U) binary numbers. 
Bitwise logical EXCLUSIVE OR (x = I denotes immediate operand). 
Extend the sign bit of subword to fill register. 
Logical (simple) left C< = L) or right (x = R) shift. 
Multiply signed (x = S) or unsigned (x = U) binary numbers. 
Negate decimal number (subtract with carry from zero). 
Negate binary number (subtract from zero). 
Negate binary number (subtract with carry from zero). 
Bitwise logical complement. 
Bitwise logical OR (x = I denotes immediate operand). 
Convert number from unpacked to packed BCD fonnat. 
Rotate ( circular shift) left (x = L) or right (x = R). 
Rotate left (x = L) or right (x = R) including the X (extend) flag. 
Subtract decimal (BCD) numbers. 
Subtract binary (twos~complement) numbers. 
Subtract from address register (unsigned binary subtraction). 
Subtract immediate binary operand. 
Subtract "quick" (3~bit) immediate binary operand. 
Subtract binary with borrow ( extend) flag. 
Convert number from packed to unpacked BCD fonnat. 

Instruction set of the 68020. 

characteristic of a RISC. For example: 

ADD (AO),DO 

specifies the memory-to-register add operation DO := M(AO) + DO. 

EXAMPLE 3.3 680X0 PROGRAM FOR VECTOR ADDITION. Figure 3.13 gives 
an example of 680XO assembly-language code that illustrates several of its basic 
instruction types and addressing methods. This program adds two 1000-element vec­
tors A and B to produce a third vector C. Each vector is assumed to be a decimal 
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Type Opcode Description 

Program Bee 
control Bxx.x 

BKPT* 
BRA 
BSR 
CALLM* 
CASx* 
CHKx 

Branch relative to PC if specified condition code cc is set 
Test, modify, and/or transfer (depending on xxx) a specified bit: set Z flag to 

indicate old bit value. 
Test, modify, and/or transfer (depending on xxx) a specified bit fieldi set t1ags 

to indicate old bit-field value. 
Execute a breakpoint trap (used for debugging). 
Branch unconditionally relative to PC. 
Call (branch to) subroutine at address relative to PC; save old PC in stack. 
Call subroutine (program module) saving specified conu·ol information in stack. 

Compare specified operands and update register. 
Check register against specified values (address bounds); trap if bounds are 

exceeded. 
CMPx Compare two operand values; set flags based on result; x indicates operand 

type, 
DBcc Loop instruction: Test condition cc and perfonn no operation if condition is 

met; otherwise, decrement specified register and branch to specified address. 
ILLEGAL* Perfonn trap operation corresponding to an illegal opcode. 
JMP Branch unconditionally to specified (nonrelative) address. 
JSR Call (jump to) subroutine at specified (nonrelative) address; save old PC in 

LEA 
LINK 
NOP 
PEA 
RTD 
RTE 
RTM* 
RTR 
RTS 
Sec 
STOP 
TRAP 
TRAPcc 
TST 
UNLK 

External cpxxx* 
synchro- RESET 
nization T AS 

stack. 
Compute effective address and load into address register. 
Allocate local data and parameter region in the stack. 
No operation (except increment PC); instruction execution continues. 
Compute effective address and push into stack. 
Return from subroutine and deallocate stack parameter region. 
Return from exception (privileged instruction). 
Return and restore control (module state) infonnation. 

Return and restore condition codes. 
Return from subroutine. 
Set operand to ls (Os) if condition code cc is true (false). 
Load status register and halt (privileged instruction). 
Begin exception processing at specified address. 
If condition cc is true, then begin exception processing. 
Test an operand by comparing it to zero and setting flags. 
Deallocate local data and parameter area in the stack. 

If condition holds, then branch with extemal coprocessor as specified by xx.x. 
Reset or restart external device (privileged instruction). 
Test operand and set one of its bits to 1 using an indivisible memoryMaccess 

cycle. 

*Instruction not in the original 68000 instruction set. 

Figure 3.12 
(continued). 

number composed of 1000 two-digit bytes, Each vector is stored in a fixed block of 

main memory whose location is known, For example, vector A is stored in memory 

locations 1001,1002,1003, ... ,1999,2000. 
The desired addition is accomplished by executing the ABCD (add using the BCD 

number fonnat) instruction 1000 times. The address registers AO, Al, and A2 are used 

as pointers to the current I-byte operands, and they are initialized to the required start­

ing values using the first three MOVE instructions. These instructions use immediate 

addressing denoted by the prefix # to specify instruction fields that contain actual 

address values, while a register name such as AO indicates that the desired operand is 
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Location Instruction Comment 

START 

TEST 

Figure 3,13 

MOVE.L 11200), AO Load address 2001 into register AO (pointer to vector A). 

MOVE.L //3001, Al Load address 3001 into register Al (pointer to vector B). 

MOVE.L 114001, A2 Load address 4001 into register A2 (pointer to vector C). 

ABCD -(AO), -(Al) Decrement contents of AO and Al by 1, then add M(AO) to 

MOVE.B (Al), -(A2) 

CMPA 111001, AO 

BNE START 

M(Al) using I-byte decimal addition. 

Decrement A2 and then store the 1 ~byte sum M(A 1) in 
location M(A2) of vector C. 

Compare 1001 to address in AO. If equal, set the Z flag 
(condition code) to 1; otherwise, reset Z to 0, 

Branch to START if Z is not equal to 1. 

680X0 assembly-language program for vector addition. 

the contents of the named register-this is direct addressing. The ABCD and MOVE.B 
(move byte) instructions use indirect addressing, indicated by parentheses. In this case 
the data specified by (AO) is the content of the memory location whose address is 
stored in AO, that is, the data in M(A0). Finally the minus prefix in the operand -(AO) 
means that AO is decremented by one before it is used to access main memory, a mode 
of addressing called autoindexing. 

The program of Figure 3.13 loads three starting addresses into the selected address 
registers. Since the ABCD and MOVE.B instructions begin by automatically decre­
menting these registers, their initial values are made one bigger than the biggest 
address assigned to the corresponding vector. The ABCD instruction petforms the fol­
lowing set of operations: 

AO:= AO I, Al:= Al l; M(Al) := M(Al) + M(A0); set flags 

which are relatively slow because of the memory access required. The MOVE.B 
instruction implements the memory-to-memory move operation with autoindexing 

A2 := A2 1; M(A2) := M(Al); set flags 

The compare-address instruction CMPA checks for program tem1ination by comparing 
the current address in AO to 1001, the lowest address assigned to vector A. It actually 
subtracts its first operand (1001 in this case) from its second and sets the status flags 
(condition code) based on the result. Hence if AO> 1001, then AO - 1001 > 0 and 
CMPA sets the zero flag Z to 0, indicating a nonzero result. (It also sets various other 
flags not used by this program). When AO finally reaches 1001, AO - 1001 = 0, so 
CMPA sets Z to 1. Now the last instruction BNE, which stands for branch if not equal 
to zero, is a conditional branch instruction whose operation is described by 

ifZ,e I then PC :=START 

It therefore transfers execution back to the ABCD instruction in location START as 
long as AO >1001. When AO finally reaches 1001, Z becomes I, and PC is incremented 
normally to exit from the program. 

It is interesting to compare this 680X0 program with the similar programs given 
earlier for the IAS (Figure 1.15) and PowerPC (Figure 1.27) computers. 
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Coprocessors. The built-in instruction repertoire of the 68020 includes fixed­
point multiplication and division and stack-based instructions for transferring con­
trol between programs. Hardware-implemented floating-point instructions are not 
available directly; however, they are provided indirectly by means of an auxiliary 
IC, the 68881 floating-point coprocessor. (The ARM6 also has provisions for 
external coprocessors.) In general, a coprocessor Pis a specialized instruction exe­
cution unit that can be coupled to a microprocessor so that instructions to be exe­
cuted by P can be included in programs fetched by the microprocessor. Thus the 
coprocessor serves as an extension to the microprocessor and forms part of tl1e 
CPU as indicated in Figure 3.14. 

The 68881 (and the similar but faster 68882) contains a set of eight 80-bit 
registers for storing floating-point numbers of various formats, including 32- and 
64-bit numbers conforming to the standard IEEE 754 format (presented later). 
Additional control registers in the 68881 allow it to communicate with the 
68020. A set of coprocessor instructions are defined for the 68020; they contain 
command fields specifying floating-point operations that the 6888 I can execute. 
When the 68020 fetches and decodes such an instruction, it transfers the com­
mand portion to the coprocessor, which then executes it. Further exchanges take 
place between the main processor and the coprocessor until the coprocessor com­
pletes execution of its current operation, at which point the 68020 proceeds to 
its next instruction. The commands executed by the 6888 I include the basic 

CPU Main memory 
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Data Representation 

arithmetic operations (add, subtract, multiply, and divide), square root, loga­

rithms, and trigonometric functions. Other types of coprocessors may be 

attached to the 68020 in similar fashion. Later members of the 680X0 family 

talce advantage of advances in VLSI to integrate a floating-point (co)processor 

into the CPU chip. 

Other design features. Like the IBM System/360-370 and the ARM6, the CPU 

has a supervisor state intended for operating system use and a user state for appli­

cation programs. As Figures 3.11 and 3.12 indicate, certain "privileged" control 

registers and instructions can be used only in the supervisor state. User and super­

visory programs are thus clearly separated-for example, they employ different 

stack pointers-thereby improving system security. 680X0-based computers are 

also designed to allow easy implementation of virtual mem01y, whereby the oper­

ating system malces the main memory appear larger to user programs than it really 

is. Hardware support for virtual memory is provided by the 68851 memory man­

agement unit (MMU), another 680X0 coprocessor. 
Provided they meet certain independence conditions, up to three 68020 instruc­

tions can be processed simultaneously in pipeline fashion. This pipelining is com­

plicated by the fact that instruction lengths and execution times vary, a problem that 

RISCs try to eliminate. Another speedup feature found in the 68020 is a small 

instruction-only cache (I-cache). The 68020 pre fetches instructions from main 

memory while the system bus is idle; the instructions can subsequently be read 

much more quickly from the on-chip cache than from the off-chip main memory. 

An unusual feature of the 68020 noted in Figure 3.11 is its use of two levels of 

microprogramming to implement the CPU's control logic. For the manufacturer, 

this feature increases design flexibility while reducing IC area compared with con­

ventional (one-level) microprogrammed control. 

3.2 
DATA REPRESENTATION 

The basic items of information handled by a computer are instructions and data. 

We now examine the methods used to represent such infomrntion, focusing on the 

formats for numerical data. 

3.2.1 Basic Formats 

Figure 3.15 shows the fundamental division of infmmation into instructions (oper­

ation or control words) and data (operands). Data can be further subdivided into 

numerical and nonnumerical. In view of the importance of numerical computation, 

computer designs have paid a great deal of attention to the representation of num­

bers. Two main number formats have evolved: fixed-point and floating-point. The 

binary fixed-point format talces the form bAbsbc···bx, where each b; is 0 or 1 and a 

binary point is present in some fixed but implicit position. A floating-point num­

ber, on the other hand, consists of a pair of fixed-point numbers M,E, which 

denote the number M x BE, where B is a predetermined base. The many formats 

used to encode fixed-point and floating-point numbers will be examined later in 
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Figure 3.15 
The basic infonnation types. 

the chapter. Nonnumerical data usually take the fonn of variable-length character 
strings encoded in one of several standard codes, such as ASCII (American Stan­
dards Committee on Information Exchange) code. 

Word length. Infonnation is represented in a digital computer by means of 
binary words, where a word is a unit of infonnation of some fixed length n. An n­
bit word allows up to 2" different items to be represented. For example, with n = 
4, we can encode the 10 decimal digits as follows: 

0 = 0000 1 = 0001 2 = 0010 3 = 0011 4 = 0100 

5=0101 6=0110 7=0111 8= 1000 9= 1001 
(3.7) 

To encode alphanumeric symbols or characters, 8-bit words called bytes are com­
monly used. As well as being able to encode all the standard keyboard symbols, a 
byte allows efficient representation of decimal numbers that are encoded in binary 
according to (3.7). A byte can store two decimal digits with no wasted space. Most 
computers have the 8-bit byte as the smallest addressable unit of infonnation in 
their main memories. The CPU also has a standard word size for the data it pro­
cesses. Word size is typically a multiple of 8, common CPU word sizes being 8, 
I 6, 32, and 64 bits. 

No single word length is suitable for representing every kind of infonnation 
encountered in a typical computer. Even within a single domain such as a com­
puter's instruction set, we often find several different word sizes. For example, 
instructions such as load and store that reference memory need long address fields. 
Instructions whose operands are all in the CPU need not contain memory addresses 
and so can be shorter. The precision of a number word is detennined by its length; 
it is common therefore to have numbers of various sizes. Figure 3.16 gives a sam­
pling of data sizes used by the Motorola 680XO. As here, the tenn word is often 
restricted to mean a 32-bit (4 byte) word. (680XO literature refers to 32-bit words 
with the nonstandard tenn long word.) Fixed-point numbers come in lengths of I, 
2, 4, or more bytes. Floating-point numbers also come in several lengths, the short­
est (single precision) number being one word (32 bits) long. 

The circuits of a CPU must be carefully designed to pennit various informa­
tion fonnats to coexist smoothly. For example, if instruction length varies, as is the 
case in many CISC microprocessors, the program control unit must be designed to 
detennine an instruction's length from its opcode and to fetch a variable number of 
instruction bytes from memory. It must also increment the program counter by a 
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Floating-point add unit of the IBM System/360 Model 91. 

Coprocessors. Complicated arithmetic operations like exponentiation and trig­
onometric functions are costly to implement in CPU hardware, while software 
implementations of these operations are slow. A design alternative is to use auxil­
iary processors called arithmetic coprocessors to provide fast, low-cost hardware 
implementations of these special functions. In general, a coprocessor is a separate 
instruction-set processor that is closely coupled to the CPU and whose instructions 
and registers are direct extensions of the CPU's. Instructions intended for the 
coprocessor are fetched by the CPU, jointly decoded by the CPU and the coproces­
sor, and executed by the coprocessor in a manner that is transparent to the pro­
grammer. Specialized coprocessors like this are used for tasks such as managing 
the memory system or controlling graphics devices. The MIPS RXOOO series, for 
example, was designed to allow the CPU to operate with up to four coprocessors 
[Kane and Heinrich 1992]. One of these is a conventional floating-point processor, 
which is implemented on the main CPU chip in later members of the series. 

Coprocessor instructions can be included in assembly or machine code just 
like any other CPU instmctions. A coprocessor requires specialized control logic to 
link the CPU with the coprocessor and to handle the instructions that are executed 
by the coprocessor. A typical CPU-coprocessor interface is depicted in Figure 
4.45. The coprocessor is attached to the CPU by several control lines that allow the 
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Connections between a CPU and a coprocessor. 
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activities of the two processors to be coordinated. To the CPU, the coprocessor is a 
passive or slave device whose registers can be read and written into in much the 
same manner as external memory, Communication between the CPU and copro­
cessor to initiate and terminate execution of coprocessor instructions occurs auto­
matically as coprocessor instructions are encountered. Even if no coprocessor is 
actually present, coprocessor instructions can be included in CPU programs, 
because if the CPU knows that no coprocessor is present, it can transfer program 
control to a predetermined memory location where a software routine implement­
ing the desired coprocessor instruction is stored, This type of CPU-generated inter­
ruption of normal program flow is tenned a coprocessor trap, Thus the 
coprocessor approach makes it possible to provide either hardware or software sup­
port for certain instructions without altering the source or object code of the pro­
gram being executed, 

A coprocessor instruction typically contains the following three fields: an 
opcode F0 that distinguishes coprocessor instructions from other CPU instructions, 
the address F1 of the particular coprocessor to be used if several coprocessors are 
allowed, and finally the type F2 of the particular operation to be executed by the 
coprocessor. The F2 field can include operand addressing information. By having 
the coprocessor monitor the system bus, it can decode and ideutify a coprocessor 
instruction at the same time as the CPU; the coprocessor can then proceed to exe­
cute the coprocessor instruction directly. This approach is found in some early 
coprocessors but has the major drawback that the coprocessor, unlike the CPU, 
does not know the contents of the registers defining the current memory addressing 
modes, Consequently, it is common to have the CPU partially decode every copro­
cessor instruction, fetch all required operands, and transfer the opcode and oper­
ands directly to the coprocessor for execution, This is the protocol followed in 
680X0-based systems employing the 68882 floating-point coprocessor, which is 
the topic of the next example, 

EXAMP!.E 4,7 THE MOTOROLA 68882 FLOATING,POINT COPROCESSOR 
[MOTOROLA 1989]. The Motorola 68882 coprocessor extends 680X0-series CPUs 
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Type Opcode Operation specified 

SECTION 4.3 
Data transfer FMOVE Move word to/from coprocessor data or control register 

Advanced Topics FMOVECR Move word to/from ROM storing constants (0.0, 11, e. etc.) 
FMOVEM Move multiple words to/from coprocessor 

Data processing FADD Add 
FCMP Compare 
FDIV Divide 
FMOD Modulo remainder 
FMUL Multiply 
FREM Remainder (IEEE format) 
FSCALE Scale exponent 
FSGLMUL Single-precision multiply 
FSGLDIV Single-precision divide 
FSUB Subtract 
FABS Absolute value 
FACOS Arc cosine 
FASIN Arc sine 
FATAN Arctangent 
FATANH Hyperbolic arc tangenl 
FCOS Cosine 
FCOSH Hyperbolic cosine 
FETOX e to the power of x 
FETOXMI (e to the power of x) minus l 

FGETEXP fa.tract exponent 
FGETMAN Extract mantissa 

FlNT Extract integer part 
FINTRZ Extract integer part rounded to zero 

FLOGN Logarithm of x to the base e 
FLOGNPl Logarithm of x + I to the base e 

FLOGlO Logarithm to the base 10 
FLOG2 Logarithm to the base 2 
FNEG Negate 
FSIN Sine 
FSINCOS Simultaneous sine and cosine 
FSINH Hyperbolic sine 
FSQRT Square root 
FTAN Tangent 
FTANH Hyperbolic tangent 
FTENTOX IO to the power of x 

FrWOTOX 2 to the power of x 

FLOGN Logarithm of x to the base e 

Program control FBcc Branch if condition code (status) cc is l 
FDBcc Test, decrement co11nt, and branch on cc 

FNOP No operation 
FRESTORE Restore coprocessor stale 
FSAVE Save coprocessor state 
FScc Set (cc= 1) or reset (cc= 0) a specified byte 
FTST Set coprocessor condition codes to specified values 
FTRAPcc Conditional trap 

Figure 4.46 
Instruction set of the Motorola 68882 floating-point coprocessor. 
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like the 68020 (section 3. 1.2) witl1 a large set of floating-point instructions. The 68882 
and the 68020 are physically coupled along the lines indicated by Figure 4.45, While 
decoding the instructions it fetches during program execution, the 68020 identifies 
coprocessor instructions by their distinctive opcodes. After identifying a coprocessor 
instruction, the 68020 CPU "wakes up" the 68882 by sending it certain control signals. 
The 68020 then transmits the opcode to a predefined location in the 68882 that serves 
as an instruction register. The 68882 decodes the instruction and begins its execution, 
which can proceed in parallel with other instructions executed within the CPU proper. 
When the coprocessor needs to load or store operands, it asks the CPU to carry out the 
necessary address calculations and data transfers. 

The 68882 employs the IEEE 754 floating-point number formats described in 
Example 3.4 with certain multiple-precision extensions; it also supports a decimal 
floating-point format. From the programmer's perspective, the 68882 adds to the CPU 
a set of eight 80-bit floating-point data registers FP0:FP7 and several 32-bit control 
registers, including instruction (opcode) and status registers. Besides implementing a 
wide range of arithmetic operations for floating-point numbers, the 68882 has instruc­
tions for transferring data to and from its registers, and for branching on conditions it 
encounters during instruction execution. Figure 4.46 summarizes the 68882's instruc­
tion set. These coprocessor instn1ctions are distinguished by the prefix F (floating­
point) in their mnemonic opcodes and are used in assembly-language programs just 
like regular 680X0-series instructions; see Fig. 3.12. The status or condition codes cc 
generated by the 68882 when executing floating-point instructions include invalid 
operation, overflow, underflow, division by zero, and inexact result. Coprocessor sta~ 
tus is recorded in a control register, which can be read by the host CPU at the end of a 
set of calculations, enabling the CPU to initiate the appropriate exception-processing 
response. As some coprocessor instructions have fairly long (multicyle) execution 
times, the 68882 can be interrupted in the middle of instruction execution. Its state 
must then be saved and subsequently restored to complete execution of the interrupted 
instruction. 

The appearance of coprocessors stems in part from the fact that until the ! 980s 
IC technology could not provide microprocessors of sufficient complexity to 
include on-chip floating-point units. Once such microprocessors became possible, 
arithmetic coprocessors began to migrate onto CPU chips, losing some of their sep­
arate identity in the process -especially in the case of CISC processors. For exam­
ple, the 1990-vintage Motorola 68040 microprocessor integrates a 68882-style 
floating-point coprocessor with a 68020-style CPU in a single microprocessor chip 
[Edenfield et al. 1990]. Aiithmetic coprocessors provide an attractive way of aug­
menting the performance of a RISC CPU without affecting the simplicity and effi. 
ciency of the CPU itself. The multiple function (execution) units in superscalar 
microprocessors like the Pentium resemble coprocessors in that each unit has an 
instruction set that it can execute independently of the program control unit and the 
other execution units. 

4.3.2 Pipeline Processing 

Pipelining is a general technique for increasing processor throughput without 
requiring large amounts of extra hardware [Kogge 1981; Stone 1993]. It is applied 
to the design of the complex datapath units such as multipliers and floating-point 
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adders. It is also used to improve the overall throughput of an instruction set pro­
cessor, a topic to which we return in Chapter 5. 

Introduction. A pipeline processor consists of a sequence of m data-processing cir­
cuits, called stages or segments, which collectively perform a single operation on a 
stream of data operands passing through them. Some processing takes place in 
each stage, but a .final result is obtained only after an operand set har; passed 
through the entire pipeline. As illustrated in Figure 4.47, a stage S; contains a multi­
word input register or latch R,, and a datapath circuit C; that is usually combina­
tional. The R/s hold partially processed results as they move through the pipeline; 
they also serve as buffers that prevent neighboring stages from interfering with one 
another. A common clock signal causes the R/s to change state synchronously. 
Each R; receives a new set of input data D;_, from the preceding stage S;_, except 
for R1 whose data is supplied from an external source. Di-I represents the results 
computed by C;_1 during the preceding clock period. Once D;_1 has been loaded 
into R;, C; proceeds to use D;_1 to compute a new data set D;. Thus in each clock 
period, every stage transfers its previous results to the next stage and computes a 
new set of results. 

At first sight a pipeline seems a costly and slow way to implement the target 
operation. Its advantage is that an m-stage pipeline can simultaneously process up 
to m independent sets of data operands. These data sets move through the pipeline 
stage by stage so that when the pipeline is full, m separate operations are being exe­
cuted concurrently, each in a different stage. Furthermore, a new, final result 
emerges from the pipeline every clock cycle. Suppose that each stage of the m­

stage pipeline takes T seconds to perform its local suboperation and store its 
results. Then Tis the pipeline's clock period. The delay or latency of the pipeline, 
that is, the time to complete a single operation, is therefore mT. However, the 
throughput of the pipeline, that is, the maximum number of operations completed 
per second is 1/T. Equivalently, the number of clock cycles per instruction or CPI 
is one. When performing a long sequence of operations in the pipeline, its perfor­
mance is determined by the delay (latency) T of a single stage, rather than by the 
delay mTof the entire pipeline. Hence an m-stage pipeline provides a speedup fac­
tor of m compared to a nonpipelined implementation of the same target operation. 

Data 
in 

Control unit 

'---y----1 '---y----1 
Stage S1 Stage S2 

Figure 4.47 
Strncture of a pipeline processor. 

Data 
out 
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Any operation that can be decomposed into a sequence of suboperations of 
about the same complexity can be realized by a pipeline processor. Consider, for 
example, the addition of two normalized floating-point numbers x and y, a topic 
discussed in section 4.3.L This operation can be implemented by the following 
four-step sequence: compare the exponents, align the mantissas (equalize the expo­
nents), add the mantissas, and normalize the result. These operations require the 
four-stage pipeline processor shown in Figure 4.48. Suppose that x has the normal­
ized floating-point representation (xM,xE), where xM is the mantissa and xE is the 
exponent with respect to some base B = 2k, In the first step of adding x = (xM,xE) to 
y = (YM,YE), which is executed by stage S1 of the pipeline, xE and YE are compared, 
an operation performed by subtracting the exponents, which requires a fixed-point 
adder (see Example 4.6). S1 identifies the smaller of the exponents, say, x6 , whose 
mantissa xM can then be modified by shifting in the second stage S2 of the pipeline 
to form a new mantissa x' M that makes (x' M•YE) = (xM,xE). In the third stage the 
mantissas x' M and YM, which are now properly aligned, are added. This fixed-point 
addition can produce an unnormalized result; hence a fourth and final step is 
needed to normalize the result. Normalization is done by counting the number k of 
leading zero digits of the mantissa (or leading ones in the negative case), shifting 
the mantissa k digit positions to normalize it, and making a corresponding adjust­
ment in the exponent. 

Figure 4.49 illustrates the behavior of the adder pipeline when performing a 
sequence of N floating-point additions of the form X; + Y; for the case N = 6. Add 
sequences of this type arise when adding two N-component real (floating-point) 
vectors. At any time, any of the four stages can contain a pair of partially processed 
scalar operands denoted (x;,Y;) in the figure. The buffering of the stages ensures that 
S; receives as inputs the results computed by stage S;_ 1 during the preceding clock 
period only. If Tis the pipeline's clock period, then it takes time 4T to compute the 
single sum x; + y;; in other words, the pipeline's delay is 4T. This value is approxi­
mately the time required to do one floating-point addition using a nonpipelined 
processor plus the delay due to the buffer registers. Once all four stages of the pipe­
line have been filled with data, a new sum emerges from the last stage S4 every T 
seconds. Consequently, N consecutive additions can be done in time (N + 3) T, 
implying that the four-stage pipeline's speedup is 

S(4) 

X"" (.rM, Xs) 
Exponent Mantissa 

R, adder R, shifter 
c, c, 

Y • (YM, Ys) 

Data 
in Stage S1 Stage S2 

(Exponent (Mantissa 
comparison) alignment) 

Figure4.48 
Four-stage floating-point adder pipeline. 
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(x6,Y6) 

C<s, Ys) (x6, Y6) 

(X4,J4) (x5, Ys) (x6, Y6) 

(x3, Y3) (X4, Y4) (Xs, Ys) (x6, Y6) 

(x2, Y2) (x3. Y1) (X4, yJ (x5, Ys) (x6, Y6) 

Current result. . . . ........... . x,+y, Xi+ Y2 XJ+Y3 X4+ )'4 X5+y5 x6+ Y6 

x,+y, X2+Y2 x, + Y1 .l4 + Y4 X5+ Ys 

x1+Y1 x, + Y2 X3+y3 X4+y4 

x ,+Y1 X2+ Y2 XJ + Y3 

X1+Y1 X2+ Y2 

Time I x, +Yi 

2 3 4 5 6 7 8 9 10 

Figure 4.49 
Operation of tl1e four-stage floating-point adder pipeline. 

For large N, S(4) z 4 so that results are generated at a rate about four times that of a 
comparable nonpipelined adder. If it is not possible to supply the pipeline with data 
at the maximum rate, then the performance can fall considerably, an issue to which 
we return in Chapter 5. 

Pipeline design. Designing a pipelined circuit for a function involves first 
finding a suitable multistage sequential algorithm to compute the given function. 
This algorithm's steps, which are implemented by the pipeline's stages, should be 
balanced in the sense that they should all have roughly the same execution time. 
Fast buffer registers are placed between the stages to allow all necessary data items 
(partial or complete results) to be transferred from stage to stage without interfer­
ing with one another. The buffers are designed to be clocked at the maximum rate 
that allows data to be transferred reliably between stages. 

Figure 4.50 shows the register-level design of a floating-point adder pipeline 
based on the nonpipelined design of Figure 4.44 and employing the four-stage 
organization of Figure 4.48. The main change from the nonpipelined case is the 
inclusion of buffer registers to define and isolate the four stages. A further modifi­
cation has been made to implement fixed-point as well as floating-point addition. 
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Figure 4.50 
Pipelined version of the floating-point adder of Figure 4.44. 
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The circuits that perform the mantissa addition in stage S3 and the corresponding 
buffers are enlarged, as shown by broken lines in Figure 4.50, to accommodate 
full-size fixed-point operands. To perform a fixed-point addition, the input oper­
ands are routed through S3 only, bypassing the other three stages. Thus the circuit 
of Figure 4.50 is an example of a multifunction pipeline that can be configured 
either as a four-stage floating-point adder or as a one-stage fixed-point adder. Of 
course, fixed-point and floating-point subtraction can also be performed by this cir­
cuit; subtraction and addition are not usually regarded as distinct functions in this 
context, however. 

279 

CHAPTER4 
Datapath 
Design 



INTEL - 1022

280 

SECTION 4.3 

Advanced Topics 

The same function can sometimes be partitioned into suboperations in several 
different ways, depending on such factors as the data representation, the style of 
the logic design, and the need to share stages with other functions in a multifunc­
tion pipeline. A floating-point adder can have as few as two stages and as many as 
six. For example, five-stage adders have been built in which the normalization 
stage (S4 in Figure 4.50) is split into two stages: one to count the number k of lead­
ing zeros ( or ones) in an unnormalized mantissa and a second stage to perlorm the 
k shifts that normalize the mantissa. 

Whether or not a particular function or set of functions F should be imple­
mented by a pipelined or nonpipelined processor can be analyzed as follows. Sup­
pose that F can be broken down into m independent sequential steps F 1 ,F 2, ... ,Fm so 
that it has an m-stage pipelined implementation P,n- Let F; be realizable by a logic 
circuit C; with propagation delay (,execution time) T;. Let TR be the delay of each 
stage S; due to its buffer register R; and associated control logic. The longest T; 
times create bottlenecks in the pipeline and force the faster stages to wait, doing no 
useful computation, until the slower stages become available. Hence the delay 
between the emergence of two results from P111 is the maximum value of T;. The 
minimum clock period (the pipeline period") Tc is defined by the equation 

Tc= max{T;} + TR for i = 1,2, ... ,m (4.44) 

The throughput of P,,. is 1/Tc = 1/(max{T;} + TR). A nonpipelined implementation 
P 1 of F has a delay of r7:1 T1 or, equivalently, a throughput of 1/(L;:1 TJ We 
conclude them-stage pipeline P,,. has greater throughput than P 1; that is, pipelining 
increases perlormance if 

m 
Tc< L i=I T; 

Equation (4.44) also implies that it is desirable for all T; times to be approximately 
the same; that is, the pipeline stages should be balanced. 

Feedback. Tbe usefulness of a pipeline processor can sometimes be 
enhanced by including feedback paths from the stage outputs to the primary inputs 
of the pipeline. Feedback enables the results computed by certain stages to be used 
in subsequent calculations by the pipeline. We next illustrate this im_portant con­
cept by adding feedback to a four-stage floating-point adder pipeline like that of 
Figure 4.50. 

EXAMPLE 4. 8 SUMMATION BY A PIPELINE PROCESSOR . Consider the prob­
lem of computing the sum of N floating-point numbers b1,b2, .. . ,bN. It can be solved by 
adding consecutive pairs of numbers using an adder pipeline and stori.1.1g the partial 
sums temporarily in external registers. The summation can be done much more effi­
ciently by modifying the adder as s hown in Figure 4.51. Here a feedback l)atb has been 
added to the output of the final stage S4, allowing its results to be fed back to the first 
stage S 1. A register R has also been connected to the output of S4, so that stage's results 
can be stored indefinitely before being fed back to S1• The input operands of the modi­
fied pipeline are derived from four separate sources: a variable X that is typically 
obtained from a CPU register or a memory location; a constant source K that can apply 
such operands as the all-0 and aU-1 words; the output of stage S4, representing the 
result computed by S4 in the preceding clock period; and, finally, an earlier result com­
puted by the pipeline and stored in the output register R. 
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Figure 4.51 
Pipelined adder with feedback paths. 

The N-number summation problem is solved by the pipeline of Figure 4.51 in the 
following way. The external operands b1,b2,. ,.,bN are entered into the pipeline in a con­
tinuous stream via input X. This process requires a sequence of register or memory 
fetch operations, which are easily implemented if the operands are stored in contiguous 
register/memory locations. While the first four numbers b1,b2,b3.b. are being entered, 
the all-0 word denoting the floating-point number zero is applied to the pipeline input 
K, as illustrated in Figure 4.52 for times t 1:4. After four clock periods, tlmt is, at time 
t = 5, the first sum O + b1 = b1 emerges from S4 and is fed back to the primary inputs of 
the pipeline. At this point the constant input K = 0 is replaced by the current result S4 = 
b1• The pipeline now begins to compute bt + h,. At t 6, it begins to compute b2 + b6; 

at t;;;;;; 7, computation of b3 + b7 begins, and so on. When b1 + b5 emerges from the pipe­
line at t = 8, it is fed back to SI to be added to the latest incoming number b9 lo initiate 
computation of b1 + b5 + b9• (This case does not apply to Figure 4.52, where b8 = bN is 
the last item to be summed.) In the next time period, the sum b2 + b6 emerges from the 
pipeline and is fed back to be added to the incoming number b10• Thus at any time, the 
pipeline is engaged in computing in its four stages four partial sums of the form 

b1 + b5 + b9 + b13 + .. . 
h2 + b6 + b10 + h,4 + .. . (4.45) 

b3 + h1 + htl + b15 + .. . 
h, + h, + h,2 + h16 + .. . 
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Figure 4.52 
Summation of an eight-element vector. 

When the last input operand bN has entered the pipeline, the feedback structure is 
again altered to allow the four partial sums in (4.45) to be added together to produce 
the desired result b1 + b2 + ... + b1v, The necessary modification to the feedback struc­
ture is shown in Figure 4.52 for the case N = 8. At t = 9, the external inputs to the pipe­
line are disabled by setting them to zero, and the first of the four partial sums b1 + b5 at 
the output of stage S4 is stored in register R. Then at t = 10, the new result b2 + b6 from 
S4 is fed back to the pipeline inputs, along with the previous result b1 + b5 obtained 
from R. Thus computation of b1 + b5 + b2 + b6, which is the sum of half of the input 
operands, begins at this point. After a funher delay of one time period, computation of 
the other half-sum b3 + b1 + b4 + b8 begins. When b 1 + b5 + b2 + b6 emerges from S4 at 
t = 14, it is stored in R until b4 + b8 + b3 + b1 emerges from S4 alt= 16. At this point the 
outputs of S4 and Rare fed back to S1. The final result is produced four time periods 
later- at t = 20 in the case of N = 8. 
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(continued) 

I= 14 t =- IS t = 16 

It is easily seen that for the general case of N operands, the scheme of Figure 4.52 
can compute the sum of N > 4 floating-point numbers in time (N + l l)T, where Tis the 
pipeline's clock period, that is, the delay per stage, Since a comparable nonpipelined 
adder requires time 4NT to compute SUM, we obtain a speedup here of about 4N/(N + 
11 ), which approaches 4 as N increases, 

The foregoing summation operation can be invoked by a single vector instruc­
tion of a type that characterized the vector-processing, pipeline-based "supercom­
puters" of the 1970s and 1980s [Stone 1993], For instance, Control Data Corp.'s 
STAR -100 computer [Hintz and Tate 1972) has an instruction SUM that computes 
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the sum of the elements of a specified floating-point vector B = (b1, b2, ••. ,bN) of 
arbitrary length N and places the result in a CPU register. The starting (base) 
address of B, which corresponds to a block of main memory, the name C of the 
result register, and the vector length N are all specified by operand fields of SUM. 
We can see from Figure 4.52 that a relatively complex pipeline control sequence is 
needed to implement a vector instruction of this sort. This complexity contributes 
significantly to both the size and cost of vector-oriented computers. Moreover, to 
achieve maximum speedup, the input data must be stored in a way that allows the 
vector elements to enter the pipeline at the maximum possible rate- generally one 
number-pair per clock cycle. 

The more complex arithmetic operations in CPU instruction sets, including 
most floating-point operations, can be implemented efficiently in pipelines. Fixed­
point addition and subtraction are too simple to be partitioned into suboperations 
suitable for pipelining. As we see next, fixed-point multiplication is well suited to 
pipelined design. 

Pipeli11ed multipliers. Consider the task of multiplying two n-bit fixed-point 
binary numbers X = x,._1x,._2 . . . x0 and Y = Yn-tYn- 2 •.. y0. Combinational array multi­
pliers of the kind described in section 4.1.2 are easily converted to pipelines by the 
addition of buffer registers. Figure 4.53 shows a pipelined array multiplier that 
employs the 1-bit multiply-and-add cell M of Figure 4 .19 and has n = 3. Each cell 
M computes a 1-bit product X;Yj and adds it to both a product bil from the preceding 
stage and a carry bit generated by the cell on its right. Thus the n cells in each stage 
Si, 0 :::; i :::; n - l, compute a partial product of the form 

yax 

carry-- ~-
0111 7T-1b 

sum 

Ps 

Figure4.53 

P-= P- 1 +x-iY I t - l 

P2 P1 

Multiplier pipeline using ripple-carry propagation. 

(4.46) 

Yo 

Po 
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with the final product P._1 = XY being computed by the last stage. In addition to 
storing the partial products in the buffer registers denoted R;, the multiplicand Y 
and all hitherto unused multiplier bits must also be stored in R;. 

An n-stage multiplier pipeline of this type can overlap the computation of n 
separate products, as required, for example, when multiplying fixed-point vectors, 
and can generate a new result every clock cycle. Its main disadvantage is the rela­
tively slow speed of the carry-propagation logic in each stage. The number of M 
cells needed is 1i2, and the capacity of all the buffer registers is approximately 3n2 

(see problem 4.31); hence this type of multiplier is also fairly costly in hardware. 
For these reasons, it is rarely used. 

Multipliers often employ a technique called carry-save addition, which is par­
ticularly weJJ suited to pipelining. An n-bit carry-save adder consists of n disjoint 
fuJJ adders. Its input is three n-bit numbers to be added, while the output consists of 
the n sum bits forming a word S and the n carry bits forming a word C. Unlike the 
adders discussed so far, there is no carry propagation within the individual adders. 
The outputs Sand C can be fed into another n-bit carry-save adder where, as shown 
in Figure 4.54, they can be added to a third n-bit number W. Observe that the carry 
connections are shifted to the left to correspond to nom1al carry propagation. In 
general, m numbers can be added by a treelike network of carry-save adders to pro­
duce a result in the form (S,C). To obtain the final sum, Sand C must be added by 
a conventional adder with carry propagation. 

Multiplication can be performed using a multistage carry-save adder circuit of 
the type shown in Figure 4.55; this circuit is called a Wallace tree after its inven­
tor [Wall ace 1964]. The inputs to the adder tree are n terms of the form M; = 
x;Y'2k. Here M; represents the multiplicand Y multiplied by the ith multiplier bit 
weighted by the appropriate power of 2. Suppose that M; is 2n bits long and that 
a full double-length product is required. The desired product P is :Ef;:6 M;, This 
sum is computed by the carry-save adder tree, which produces a 2n-bit sum and a 

x, x, 

Y, Yz YI Yo 

X Y Z 

CS adder 

\V 

C' S' 

Figure 4.54 
A two-stage carry-save adder. 
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X y 

Multiplier decoding 
and multiplicand gating 

CS adder 

C S 

CS adder 

C S 

CS adder 

C S 

CS adder 

C S 

Carry­
lookahead 

adder 

p 

Figure4.55 
A carry-save (Wallace tree) multiplier:. 

2n-bit carry word. The final carry assimilation is performed by a fast adder-a 
carry-lookahead adder, for instance- with normal internal carry propagation. 

The strictly combinational multiplier of Figure 4.55 is practical for moderate 
values of n, depending on the level of circuit integration used. For large n, the num­
ber of carry-save adders required can be excessive. Carry-save techniques can still 
be used, however, if the multiplier is partitioned into k m-bit segments. Only m 
terms M; are generated and added via the carry-save adder circuits. The process is 
repeated k times, and the resulting sums are accumulated. The product is therefore 
obtained after k iterations. 

Carry-save multiplication is well suited to pipelined implementation. Figme 
4.56 shows a four-stage pipelined version of the carry-save multiplier of Figure 
4.55. The first stage decodes the multiplier and transfers appropriately shifted cop­
ies of the multiplicand into the carry-save adders. The output of the first stage is a 
set of numbers (partial products) that are then summed by the carry-save adder 
tree. The carry-save logic has been subdivided into two stages by tbe insertion of 
buffer registers (denoted R in the figure). The fourth and final stage contains a 
carry-lookahead adder to assimilate the carries. This type of multiplier is easily 
modified to handle floating-point numbers. The input mantissas are processed in a 
fixed-point multiplier pipeline. The exponents are combined by a separate fixed­
point adder, and a normalization circuit is also introduced. 

The next example describes the pipelined floating-point unit of the Motorola 
68040 microprocessor, which integrates the functions of the 68020 microprocessor 
(section 3.1.2 and Examples 3.3, 3.6, and 3.8) and its 68882 floating-point copro­
cessor (Example 4.7) in a single IC containing more than 1.2 million transistors. 
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Input 
bus ! 
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CS adder 

Carry­
lookahead 

adder 

Multiplier decoding 
and multiplicand gating 

~ 

Output .,.._ ____ _, P 

bus 

Figure 4.56 
A pipelined carry-save multiplier. 

This floating-point unit also implements many of the design techniques covered in 

this section. 

EXAMPLE 4,9 THE PIPELINED FLOATING-POINT UNIT OF THE MOTOR• 

OLA 68040 [EDENFIELD ET AL. I 9901, This member of the 680X0 series of one­

chip 32-bit microprocessors was introduced in 1990. It executes the combined instrnc­

tion sets of the 68020 CPU and the 68882, which are listed in Figures 3.12 and 4.46, 

respectively, and is about four times as fast as the 68020 for a fixed clock rate. The 

68040 contains two pipelined arithmetic processors; an integer unit (!U), which handles 

integer instructions, logical instructions, and address calculations1 and a floating~point 
unit (FPU), which we now examine. A key design goal of the FPU is compatibility with 

object code written for the 68020 and 68882, as well as compatibility with the IEEE 

754 floating-point standard. Only the subset of the 68882's instmctions listed in Figure 

4.57, including the four basic arithmetic operations and square root, are actually real­

ized in hardware. Also included is a small set of data-transfer and program-control 
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Type 

Data transfer 

Data processing 

Program control 

Figure 4.57 

Opcode 

FMOVE 
FMOVEM 

FADD 
FCMP 
FDJV 
FMUL 
FSUB 
FABS 
FNEG 
FSQRT 

FBcc 

FDBcc 
FRESTORE 
FSAVE 
FScc 

FTST 
FTRAPcc 

Operation specified 

Move word to/from coprocessor data or control register 
Move multiple words to/from coprocessor 

Add 
Compare 
Divide 
Multiply 
Subtract 
Absolute value 
Negate 
Square root 

Branch if condition code (status) cc is 1 
Test, decrement coum, and branch on cc 

Restore coprocessor state 
Save coprocessor state 
Set (cc= 1) or reset (cc= 0) a specified byte 
Set coprocessor condition codes to specified values 
Conditional trap 

Subset of the 68882 floating-point instruction set implemented by the 68040. 

instructions to support floating-point operations. The remaining 68882 instructions 
must be simulated by software, for wbich the 68040 provides some hardware support 

The 68040's FPU has the three-stage pipeline organization shown in Figure 4.58. 
It is designed to handle floating-point number sizes of 32, 64, and 80 bits. The FPU is 
divided into two largely independent subunits: one for 64-bit mantissas (which expand 
to 67 bits when guard digits are included) and the other for 16-bit exponents. The FPU 
obtains its operands from and sends its results to the ru in a way that mimics the 
68882's communication with its host CPU. The pipeline's first stage S1 (refened to as 
the floating-point conversion unit) reformats input and output operands to meet IEEE 
754 requirements, and is the only stage that communicates with the TU. Stage S1 also 
has an ALU for comparing input exponents, as required in floating-point addition or 
subtraction. The second stage S2 (the -Ooating-point eJtecution unit) contains a large 
(67 bit) ALU, a fast barrel shifter, and an array multiplier; this stage is responsible for 
executing a.II major operations on mantissas. The final stage S3 (the floating-point nor­
malization unit) rounds off and normalizes results; it also deals with exceptional cases. 
Various buses shown in simplified form in Figure 4.58 provide bypass and feedback 
paths through the pipeline. The clocking of the pipeline jg complicated by the need to 
use several cycles to transfer long operands so that the minimum delay of each stage is 
two cycles. The delay of a floating-point operation can vary from 2 clock cycles to 
more than 100 in the case of the FSQRT instruction. 

Certain instructions such as FABS, FMOVE, and FNEG are executed entirely 
within stage S1 and thus have a delay of two clock cycles, The add and subtract instruc­
tions F ADD and FSUB use all three stages of the FPU and have a delay of three. These 
instructions see a pipeline whose organization resembles that of Figure 4.50, with the 
latter' s middle stages S2 and S3 merged into the 68040's second (execution) stage S2. 

FMUL is executed primarily by the 64 x 8-bit, fixed-point multiplier in S2. The multi­
plication of two mantissas requires several passes through the multiplier circuit, which 
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implements the carry-save multiplication method discussed earlier. Two passes can be 
made per clock cycle of the pipeline, so that the final set of sum-carry pairs is gener­
ated in four clock cycles. An additional cycle through S2's ALU assimilates the carries 
and yields the final product. The floating-point division instruction FDIV is imple­
mented by a shift~and-subtract algorithm of the non-restoring type; which requires no 
special division hardware but takes up to 38 clock cycles. 
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Figure 4.58 
Pipelined floating-point unit of the Motorola 68040. 
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Systolic arrays. Closely related conceptually to arithmetic pipelines are the 
data-processing circuits called systolic arrays [Johnson, Hurson, and Shirazi 
1993] formed by interconnecting a set of identical data-processing cells in a uni­
form manner. Data words flow synchronously from cell to cell, with each cell per­
forming a small step in the overall operation of the array. The data are not fully 
processed until the end results emerge from the array's boundary cells. A one­
dimensional systolic array is therefore a kind of pipeline with identical stages. A 
two-dimensional systolic array has a structure not unlike the divider array in Fig­
ure 4.27, but its cells are sequential rather than combinational. In general, a sys­
tolic array permits data to flow through the cells in several directions at once. As 
in pipelines, buffering must be included within the cells to isolate different sets of 
operands from one another. The name systolic derives from the rhythmic nature of 
the data flow, which can be compared with the rhythmic contraction of the heart 
(the systole) in pumping blood through the body. Systolic processors have been 
designed to implement various complex arithmetic operations such as convolu­
tion (problem 4.34 ), matrix multiplication, and solution techniques for linear 
equations. We illustrate the concepts involved by a two-dimensional systolic array 
that performs matrix multiplication. 

Let X be an n x n matrix of fixed-point or floating-point numbers defined by 

XI.I X1,2 .,.xi,n 

X= 
Xz, I Xz, 2 .,.X2,n 

xn, 1 xn,2 •. ,Xn,11 

For brevity we write X = [x;j], where X;j is the element in the ith row and jth col­
umn of X. The product of X and another n x n matrix Y= [Y;,j] is then x n matrix 
Z = [z;) given by 

" 
t..i,J ::::.: .L' xi, k X Yk,J (4.47) 

k=I 

A systolic array for matrix multiplication may be constructed from a cell (Figure 
4.59a) that executes the following multiply-and-add operation on individual num­
bers (scalars): 

z :;;;: z' +x xy (4.48) 

Note that the same type of operation appears in the cell M of the fixed-point array 
multiplier in Figure 4.53, with !-bit operands replacing the n-bit numbers used 
here. Multiply-and-add is also a basic instruction type in recent CPUs such as the 
PowerPC. 

Each cell C;,j of the matrix multiplier receives its x and y operands from the 
left and top, respectively. In addition to computing z, C;j propagates its x and y 
input operands rightward and downward, respectively. The systolic matrix multi­
plier is constructed from n(2n - 1) copies of C;j, which are connected in the two­
dimensional mesh configuration depicted in Figure 4.59b. Then operands forming 
the ith row of X flow horizontally from left to right through the ith row of cells as 
they might through a one-dimensional pipeline. The n operands forming the jth 
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column of Y flow vertically through the jth column of cells in a similar manner. 
The x and y operands are carefully ordered and separated by zeros as shown in the 
figure so that the specific operand pairs x;,,,Yk,j appearing in (4.47) meet at an 
appropriate cell of the array, where they are multiplied according to (4.48) and 
added to a running sum z'. The z' s emerge from the left side of C;,i, so that there is 
a flow of partial results from right to left through the cell array. Each row of cells 
eventually issues the corresponding row of the matrix product Z from its left side, 

To illustrate the operation of the matrix multiplier, consider the computation of 
z1,1 in Figure 4.59b. Specializing Equation (4.47) for the case where n 3, we get 

Z1,1 = X1.1Y1.1 + X1,2Y2,1 + X1.3Y3,1 

y(/) 

i 
x(t) _.,. x(l-1) 

Z(I) = x(I) X y(/) + z\t) z'(I) 

y(t-1) 

(a) 

7 0 0 Y3,3 0 

6 0 YJ,2 0 Y2,3 
Time t 5 Y:;,1 0 

t hi 0 

4 0 Y2,1 0 Y1,2 

3 0 0 0 

0 0 X1,3 0 X1.2 0 

0 0 0 

X3,3 0 ·'-'3.2 0 XJ,1 0 

7 6 5 4 3 2 

+--

Time t 

(b) 

Figure 4.59 
Systolic array for matrix multiplication: (a) basic cell and (b) 3 x 5 array, 
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The operand x1,1 flows rightward through the top row of cells meeting only zero 
values of y and z until it encounters Yt,l at cell C1,3 at time t = 3. This cell then com­
putes z = x1,1Yt,1 + 0, which it sends to the cell C 1,2 on its left At the same time C 1,3 
forwards y1 1 to the second row of cells for use in computing the second row of the 
result matrix Z; it also forwards x1,1 to its right neighbor C 1,4, In the next clock 
cycle (t = 4), x1,2 and ht are applied to C1,2• This cell therefore computes z = 
x1,2y2,1 + z', where z' = x1,1y1,1. Finally at I= 5, the last pair of operands x1,3 and y3,1 
converge at the boundary cell C 11 , which computes z = x13y31 + z', using the value 
z' X1,1Y1,1 + X1,2Y2,1 supplied by' C1,2; Z is the desired result Z1,1· At time t 6, c,., 
emits a zero, and at I= 7, it emits the next element z1,2 of Z. This process continues 
until all the elements of the first row of Z have been generated. Concurrently and in 
a similar way, the remaining rows of cells compute the other rows of Z. Note, how­
ever, that X;+t,j is produced two cycles later than X;j• The last result Zn,n emerges 
from the array at I= 4n - 3. Thus using O(n2) cells, this systolic array performs 
matrix multiplication in 0(11) time, that is, linear time. Roughly speaking, the array 
generates n elements of the product matrix Z in one step (two clock cycles in the 
present example). 

The major characteristics of a systolic array can be deduced from the preced­
ing example. 

1. It provides a high degree of parallelism by processing many sets of operands 
concurrently. 

2. Partially processed data sets flow synchronously through the array in pipeline 
fashion, but possibly in several directions at once, with complete results eventu­
ally appearing at the array boundary. 

3. The use of uniform cells and interconnection simplifies implementation, for 
example, when using single-chip VLSI technology. 

4. The control of the array is simple, since all cells perform the same operations; 
however, care must be taken to supply the data in the correct sequence for the 
operation being implemented. 

5. If the X and Y matrices are generated in real time, it is unnecessary to store 
them before computing Xx Y, as with most sequential or parallel processing 
techniques. Thus the use of systolic arrays reduces overall memory require­
ments. 

6. The amount of hardware needed to implement a systolic array like that of Figure 
4.59 is relatively large, even taking maximum advantage of VLSI. 

Systolic arrays have found successful application in the design of special-purpose 
arithmetic circuits for digital signal processing, where data must be processed in 
real time at very high speeds using operations like matrix multiplication. 

4.4 
SUMMARY 

The datapath or data-processing part of a CPU is responsible for executing arith­
metic and logical (nonnumerical) instructions on various operand types, including 
fixed-point and floating-point numbers. The power of an instruction set is often 
measured by the arithmetic instructions it contains. The arithmetic functions of 
simpler machines such as RISC processors may be limited to the addition and sub-
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traction of fixed-point numbers. More powerful processors incorporate multiply 
and divide instructions and in many cases have the hardware needed to process 
floating-point instructions as well. 

Arithmetic circuit design is a well-developed field. Fixed-point adders and 
subtracters are easily constructed from combinational logic. The simplest but slow­
est adder circuits employ ripple-carry propagation. High-speed adders reduce 
carry-propagation delays by techniques such as carry lookahead. Fixed-point mul­
tiplication and division can be implemented by shift-and-add/subtract algorithms 
that resemble manual methods. The product or quotient of two km-bit numbers is 
formed in k sequential steps, where each step involves an m-bit shift and, possibly, 
a km-bit addition or subtraction. Division is inherently more difficult than multipli­
cation due to the problem of determining quotient digits. Both multipliers and 
dividers can be implemented by combinational logic array circuits but at a substan­
tial increase in the amount of hardware required. 

The simplest ALU is a combinational circuit that implements fixed-point 
addition and subtraction, typically using the carry-lookahead method; it also 
implements a set of bitwise (word) logical operations. Multiplication and division 
algorithms of the shift-and-add/subtract type can be realized by adding a few 
operand registers-an accumulator AC, a multiplier-quotient register MQ, and a 
multiplicand-dividend register MD-as well as a small control unit. Datapath 
units usually contain an addressable register file-in effect, a small, high-speed 
RAM-to store ALU operands. The register file has several IO ports to allow 
operands in several different registers to be accessed simultaneously. Bit slicing is 
a useful technique for constructing a large ALU from multiple copies of a small 
ALU slice. Multicycling allows a small ALU to process large operands at lower 
hardware cost but more slowly than bit slicing. 

Floating-point and other complex operations can be implemented by an auton­
omous execution unit within the CPU or by a program-transparent extension to the 
CPU called a coprocessor. A floating-point processor is typically composed of a 
pair of fixed-point ALUs-one to process exponents and the other to process man­
tissas. Special circuits are needed for normalization and, in the case of floating­
point addition and subtraction, exponent comparison and mantissa alignment. 

Finally, the throughput of a complex datapath circuit such as a floating-point 
processor can be substantially increased with low hardware overhead by a tech­
nique called pipelining. The operations of interest are broken into a sequence of 
steps, each of which is implemented by a pipeline stage. Buffering between the 
stages allows an n-stage pipeline to execute up to n separate instructions concur­
rently. Hence the pipeline's throughput when executing a long sequence of 
instructions exceeds by a factor of up to n that of a similar but nonpipelined pro­
cessor. Systolic arrays extend the pipeline concept from one to two or more data­
processing dimensions, 

4.5 
PROBLEMS 

4.1. Figure 4.60 gives the logic diagram of a small arithmetic circuit found in a commercial 
IC with the IO signals renamed to conceal their identities. (a) What is the overall func­
tion of this circuit? (b) Identify the purpose of every IO signal. (c) Why do all input 
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CHAPTER 7 

System Organization 

This chapter considers how computers and their major components are intercon­
nected and managed at the processor or system level. It examines the methods used 
for internal and external communication, as well as the design of input-output (IO) 
systems. The final topic is the use of multiple processors to achieve high perfor­
mance, fault tolerance, or both. 

7.1 
COMMUNICATION METHODS 

In recent years computing has become intimately associated with communication. 
A computer's internal or local communication methods significantly affect its flex­
ibility and performance. External, long-distance communication allows computers 
to be linked together, for example, via the global Internet network. This section 
examines the general nature of the local and long-distance communication mecha­
nisms used with computer systems. 

7.1.1 Basic Concepts 

The difficulty in transferring information among the units of a computer largely 
depends on the physical distances separating them. We distinguish two cases: 
intrasystem communication, which occurs within a single computer system and 
involves infonnation transfer over distances of less than a meter; and intersystem 
communication, which can involve communication over much longer distances. 
Intrasystem communication is primarily implemented by groups of electrical wires 
called. buses, which support parallel, that is, word-by-word, data transmission. 
Intersystem communication, on the other hand, is realized by a variety of physical 
media, including electrical cables, optical fibers, and wireless (radio) links. Serial 

480 
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(bit by bit) rather than parallel data transmission is preferred for communication 

over longer distances. Serial links cost less, are more reliable, and are also easier to 

control than parallel links. A set of computers and other system components that 

are linked together over relatively Jong distances constitute a computer network. 

Buses. The various processor-level components, CPU, caches, main memory, 

and IO (peripheral) devices within a computer system communicate via buses. The 

term bus in this context covers not only the physical links among the components, 

but also the mechanisms for controlling the exchange of signals over the bus. 

Figure 7. l depicts the most basic computer bus structure. Here a single bus, the 

system bus, handles all intrasystem communication. All units share the system bus, 

therefore at any time only two units can communicate with each other. A typical 

system bus transaction is a memory read (load) operation that involves the transfer 

of one or more data words over the system bus from the memory ( cache or main) 

M to the CPU. A memory write (store) operation transfers data over the system bus 

in the opposite direction. Input-output operations normally involve data transfers 

between an IO device and M. In all the preceding operations Mis a passive or slave 
device with respect to system bus transactions, whereas the CPU can actively con­

trol the system bus, that is, serve as a bus master. IO devices are normally thought 

of as slave units, but they can be made into bus masters via control units such as 

specialized IO controllers or general-purpose IO processors. 
As Figure 7. 1 indicates, the system bus consists of three main groups of lines: 

address, data, and control. (Not shown are the lines that distribute electrical power 

to the bus units.) The address lines, typically 8 to 32 in number, transmit the 

addresses of data items stored in the system's main memory or IO address space. 

The data lines, typically 16 to 128 in number, transmit data words over the bus. 

Finally, the control lines pe1form such functions as identifying the transaction type 

(memory read, memory write, IO interrupt, and so forth) and synchronizing com­

munication between fast and slow units. 
The characteristics of a system bus tend to closely match those of its host CPU 

and vary widely between different microprocessor families and even between 

members of the same family. The evolution of CPUs in speed and word size has 

been matched by a corresponding evolution in their system buses. For example, the 

first member of Intel's 80X86 family, the 8086 microprocessor, had internal data 

and (real) address word sizes of 16 and 20 bits, respectively. The CPU data word 

size became 32 bits, and the address size 24 bits, with the 80286 microprocessor; 

CPU 
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Figure 7.2 
System bus of the PowerPC 603 
microprocessor. 

both became 32 bits with the 80386. The data and address sizes used inside the 
CPU are often, but not always, the same as those found in the external system bus. 
The 16-bit 8088, a variant of the 8086 used in the first IBM PC, has an 8-bit exter­
nal data bus. On the other hand, the Pentium's external data bus is 64 bits wide. 

Figure 7 .2 outlines the system bus of the PowerPC 603 microprocessor, which 
is typical of personal computers. It has 64 data-transfer lines D which are bidirec­
tional; that is, they act either as inputs or outputs of the CPU-but not simulta­
neously. The system bus can transfer from I to 8 bytes at a time. Its 32 address 
lines A allow 232 = 4G memory or IO locations to be specified. Twelve parity 
check lines, one for each byte of D and A, provide error detection. A large set of 
control lines suppo1ts data transfers, exchange of bus control, interrupt processing, 
and other bus functions. 

The principal use of the system bus is high-speed data transfer between the 
CPU and M. Most IO devices are slower than the CPU or M and present an exter­
nal inte1face that is different from that of the system bus. For example, magnetic­
disk units and other secondary memories transfer data serially. Therefore, they 
need to be connected to the system bus via interface circuits called IO controllers 
that perform series-to-parallel and parallel-to-series format conversions and other 
control functions. A single IO controller can interface many IO devices to the sys­
tem bus. This leads to the structure shown in Figure 7.3 in which the IO devices are 
connected to a separate bus called an IO bus. 

Computer manufacturers and standards organizations have standardized vari­
ous IO bus types. For example, the Small Computer System Interface known as the 
SCSI (pronounced "scuzzy") bus was adopted as a standard by the American 
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Figure 7.4 
The Small Computer System Interface (SCSI) 10 bus. 

National Standards Institute (ANSI) in 1986. This bus connects IO devices such as 
hard disk units and printers to personal computers. SCSI was originally designed to 
transfer data a byte at a time at rates up to 5 MB/s. As can be seen from Figure 7 .4, 
the SCSI bus is smaller and simpler than a system bus like the Power PC's. Its data 
subbus is only 8 bits wide and is also used to transfer addresses. Ten additional 
lines provide all the necessary control functions. Recent extensions to the original 
SCSI standard have wider data buses (16 and 32 bits), more control features, and 
higher data-transfer rates. 

Another bus with a role similar to SCSI is the so-called Industry Standard 
Architecture (ISA) bus originally developed by Intel for the IBM PC. Since it 
allows extra main-memory units as well as IO devices to be added to a computer, it 
is often refen-ed to as a local or expansion bus, rather than an IO bus. A more 
recent bus standard that we examine in detail later is the Peripheral Component 
Interconnect (PC!) bus, which can transmit 4- or 8-byte words at rates of 500 MB/s 
or more. 

Long-dista11ce communication. There are several important differences be­
tween intra- and intersystem communication methods. Whereas intrasystem com­
munication is serial by word, intersystem communication is usually serial by bit 
because of the difficulty of synchronizing data bits sent in parallel over long dis­
tances. Serial transfers also reduce the cost of the communication equipment. 
Every long-distance data transfer requires a substantial amount of time to establish 
the communication path to be used, for instance, the time associated with entering 
a telephone number. To reduce this overhead, a sequence of many bits called a 
message, which con-esponds to the concept of block or page in memory systems, is 
transmitted at one time. 

lntrasystem communication is implemented by transmitting digital signals in 
the form of discrete O and 1 pulses over multiline buses. As they are transmitted, 
the pulses are distorted by variations in the bus's electrical properties, interference 
between adjacent lines ( crosstalk), and similar phenomena collectively known as 
noise. The distortion caused by noise increases with the number of lines in the bus 
and the signal transmission frequency; it is also affected by the quality of the trans­
mission medium. Beyond some point the pulses become unrecognizable and trans­
mission en-ors result. Over long distances, therefore, it is more cost-effective to 
embed the data in analog signals that are transmitted serially, in much the same 
way as voice traffic has long been sent over telephone lines. Continuous analog 
signals called carriers are generated and varied (modulated) in some manner to 
produce distinct signal types that denote O and I. A device called a modulator-
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Figure 7.5 
Long-distance data transmission using frequency-modulated (FM) signals. 

demodulator, or modem, converts data between the modulated analog form used 
for long-distance communication and the pulse form used inside the computer. 

Figure 7.5 illustrates the modulation method called frequency modulation 
(FM) used by modems that connect a computer to a low-speed, "voice grade" tele­
phone line. The carrier is a sine wave whose frequency f can be shifted slightly to 
create two distinct frequency levels: fo denoting 0 andf1 denoting L Such signals 
are heard as beeps of different pitch. Since the 1980s, complex signal-processing 
techniques have been developed to increase the data-transfer rates over telephone 
lines from 300 bits/s-bits per second is often denoted bps in this context-to 
56,000 bits/s, which is close to the maximum possible. These techniques include 
the assignment of multiple carrier frequencies to the sender and receiver, error­
correcting codes that mask noise-induced errors, and data compression that detects 
and eliminates redundant information in the data being transmitted. 

Digital communication networks, that is, networks designed expressly for 
transmitting information in digital form, can achieve much higher data-transfer 
rates. An example is the integrated services digital network (ISDN), an interna­
tional standard for transmitting audio, video, and other data in digital form. 
Although ISDN was originally proposed around 1960, it has only recently been 
deployed worldwide. ISDN takes advantage of fiber-optic technology and fast 
communication methods to achieve data-transfer rates of 600 Mb/s or more. Wire­
less (radio) transmission using orbiting satellites to relay messages can also achieve 
very high data rates. 

Computer networks. Digital communication networks designed to link many 
independent computers are called computer networks. Their rationale is to permit 
sharing of computing resources (hardware, software, or data) that are widely dis­
persed. For communication over distances of a few kilometers or so--within a sin­
gle office building, for instance-local-area networks (LANs) are used. A LAN is 
a computer network employing data-transmission links that are private to the net­
work in question. Computer networks spread over large geographical areas, that is, 
wide-area networks (W ANs), use data-transmission facilities supplied by telecom­
munications companies, which in many countries are government-owned or -regu­
lated organizations. 

Various techniques exist for sharing the links of a computer network that aim 
at reducing communication costs. One such technique is message switching, which 
uses intermediate switching centers (servers) on long communication paths to store 
messages and subsequently forward them toward the final destination; this process 
is called store and fonvard. Messages are collected by each server, where they are 
organized (grouped into batches) to make efficient use of the data paths connected 
to that server. Complete message transmission is thus accomplished by a sequence 
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of hops through a variable number of servers. Message switching utilizes the avail­
able communication links far more efficiently than circuit switching. 

Messages vary greatly in length so that short messages can be delayed while 
longer messages are being transmitted. This problem is reduced by dividing mes­
sages into packets of fixed length and format and then transmitting packets from 
long messages interspersed with packets from short messages. The store-and­
forward servers are then responsible for sorting the packets from the various mes­
sages and transmitting them to their proper next destinations. Different packages 
can be sent by different routes dictated by network traffic conditions. At the final 
destination a message must be reassembled from its constituent packets. This form 
of communication is called packet switching and is used for fast communication of 
large amounts of data. A type of packet switching called asynchronous transfer 
mode (ATM) combines voice and data communication using short packets that can 
be transmitted very fast. An ATM packet called a cell consists of a 5-byte header 
containing the destination address and certain control information, followed by a 
48-byte data field, as depicted in Figure 7 .6. 

Although the goal of a universal or open computer network to which any man­
ufacturer's computers can be attached remains elusive, the International Standards 
Organization (ISO) has developed a set of guidelines that provides a common basis 
for computer network design. These guidelines are known as the ISO Reference 
Model for Open Systems Interconnection (OSI) and define seven functional levels 
or layers through which users exchange messages in a computer network; see Fig­
ure 7.7. Each layer is associated with certain network services--error control, for 
instance-and different computers in a network can be thought of as exchanging 
information between corresponding layers. Consequently, a distinct set of commu­
nication rules or protocol can be defined for each layer. In general, layers 1 to 3 of 
the OSI Reference Model involve services associated with data communications 
functions close to the network hardware, while layers 5 to 7 involve software 
(operating systems) functions close to the network user. The intermediate transport 
layer (layer 4) serves to interface the network's hardware and software. 

EXAMPLE 7.1 THE ETHERNET NETWORK ACCESS METHOD [SIMONDS 

1 9941. Ethernet is a popular bus-oriented architecture for LANs. Its specification 
involves only the physical and data~link layers, so it is seen as primarily an access 
method for LANs. Computer-specific hardware (Ethernet controllers) and software 
(Ethernet drivers) implement the remaining layers of network control. At the physical 
level an Ethernet LAN has the structure shown in Figure 7.8. Up to 1024 nodes (com­
puters) can be connected via coaxial cable; their maximum separation is limited to 
2.8 km. At the data-link level, communication is by messages or frames that contain 
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Layer Associated services 

1. Physical Electrical and mechanical hardware interfacing to the physical communication 
medium. 

2. Data link Message setup, transmission, and error control. 

3. Network Establishing message paths in the network (message routing and flow control). 

4. Transport Interfacing network-independent messages with the specific network being used, 

5. Session Creation and management of communication channels between the communicating 
applications programs. 

6. Presentation Data-transfonnation services such as character~code translation or encryption. 

7. Application Providing network support functions such as file-transfer routines to application 
programs (network users). 

Figure 7.7 
The protocol layers of the Open Systems Interconnection (OSI) Reference Model. 

the address. control, and check bits, as well as a variable-length data field. Total mes­
sage length can range from 64 lo 1518 bytes. 

A technique called carrier sense multiple access with collision detection (CSMA/ 
CD) controls access to the Ethernet and some other LAN types. A node wishing to send 
a message over the Ethernet first senses (listens ta) the main coaxial cable via a tap unit 
and transmits the message only if it detects no carrier signal, in which case the network 
is not currently in use. Each message is broadcast throughout the network, and its des­
tination address is examined by all nodes as it reaches them. Only the node whose 
address matches that of the message header actually reads the message. Since all com­
puters on the network have equal access to the main cable, it is possible for two nodes 
to begin message transmission at the same time, Consequently, as it transmits a mes~ 
sage, a node monitors the actual signals on the cable and compares them with the sig­
nals that the node itself is transmitting. If the transmitted and detected signals differ, 
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which will be the case if another computer is transmitting a message at the same time, 
then a collision is said to have occurred. On detecting a collision, an Ethernet node 
ceases transmission and tries to transmit the same message again later. The time of 
retransmission is randomly selected so that the chance of another collision is slight, 
although repeated collisions do occur. 

Measurements of Ethernet performance show that the CSMA/CD access scheme 
is fair in that if n nodes request continuous access to the network over some period of 
time T, each node gains access to the network for a period very close to Tin. The band­
width loss due to collisions, even under heavy traffic conditions, is modest-typically 
less than 10 percent. 

Besides the CSMA/CD method used by Ethernet, another common way of 
controlling access to a LAN is token passing, where each node in turn receives and 
passes on the right to access the network; this right is represented by a special short 
message called a token. The node that possesses the token has exclnsive use of the 
network for transmitting a message, after which it transmits the token to another 
(fixed) node. Token passing is often nsed in ring-structured networks (token rings), 
but is also used for bus-structured LANs (token buses). When a token ring is not 
passing nonnal messages, the token circnlates from node to node around the net­
work. A node having a message to transmit waits until the token reaches it. It then 
holds the token while it transmits its message. In a ring network, a (nontoken) mes­
sage is usually passed in one direction from node to node nntil it reaches the desti­
nation node; it can then be returned to the source node to confirm its receipt. After 
transmitting one message, a node puts the token back into circulation so that all 
nodes get roughly equal access to the network. 

The Internet, As discussed in section 1.3.3, the Internet is a huge, worldwide 
packet-switched computer network descended from the ARPANET, which pio­
neered the use of packet switching in the 1970s. Each ARPANET site had a 
computer called an inteiface message processor (IMP), which performed the store­
and-forward functions required for packet switching and connected one or more 
host computers to the ARPANET. Since many types of computers could be hosts, 
the IMP acted as a standard interface controller between hosts on its local network 
and a set of remote network servers. To ensure some degree of fault tolerance, the 
nodes and internode links were chosen so that at least two disjoint communication 
paths existed between every pair of !MPs. 

The Transmission Control Protocol/Internet Protocol (TCP/IP) developed for 
the ARPANET is used by every Internet server. The main function of the IP proto­
col is to handle the routing of data packets over the Internet; it corresponds to layer 
3 (the network layer) of the OSI Reference Model. In particular, IP breaks mes­
sages into packets of about 200 bytes each for transmission to remote servers. An 
Internet address is 4 bytes long, implying a total of more than 4 billion distinct 
addresses. It is normally represented by a four-part "dotted" symbolic form like 
serverl.net2.university3.edu. Because this address format is hierarchical a node 
needs only limited routing information, for example, the possible paths to all the 
networks, but not the individual Internet servers, in the domain edu assigned to 
educational institutions. 

An Internet packet is transmitted with a header containing its most recent 
source address and its final destination address H0 , as well as a sequence number 
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indicating its position in the original message, The packets leave the first server S8 

with consecutive sequence numbers 1,2,3,4, ... ; however, they can travel by differ­
ent routes to the server S0 of the final destination H0 and arrive there at different 
times, not necessarily in the original order. An Internet server that is not on the 
local network containing H0 retransmits each packet it receives to another server to 
which it is directly connected, following a routing algorithm that aims to find the 
fastest path to the ultimate destination. The actual path can vary with network traf­
fic conditions. For example, having sent a packet to server S1, the current server 
may decide to send the same package to a different server S; to avoid network con­
gestion, faulty links, or the like, 

An Internet package can pass through dozens of servers before reaching the 
target server S0 . The TCP program on S0 , which operates within the OSI transport 
layer, is responsible for assembling packets in their proper sequence and checking 
to see if any are missing or contain errors. If necessary, TCP can send a message to 
a remote server requesting it to resend a missing or erroneous package. When all a 
message's packages have been received in satisfactory condition, TCP merges 
them to reconstruct the original message, which it forwards over the local network 
to H0 . A higher-level protocol called the hypertext transport protocol (http) 
enables the Internet to transfer multimedia files easily and efficiently and is the 
basis for the World Wide Web. 

I11terco11nectio11 structures. A system's interconnection structure can be de­
fined by a graph whose nodes denote components such as computers, memories, 
communications controllers, and so forth, and whose edges denote communication 
paths such as buses. A path designed to link only two devices is said to be dedi­
cated. A path used to transfer information between different sets of devices at dif­
ferent times is said to be (time )shared or multiplexed. 

A conceptually simple interconnection method is to place dedicated buses 
between all pairs of components that need to communicate. The general case in 
which n units must be connected in all possible ways needs n(n - 1)/2 dedicated 
buses. Figure 7.9 shows such a system when n; 4, Dedicated buses allow ve1y fast 
information transfer: All n devices can send or receive data simultaneously, and 
there is no delay due to busy connections. Furthermore, systems with dedicated 
links are inherently reliable because a link failure affects only the two units con­
nected to that link. These units may still be able to communicate if they can send 
data to each other via other units. For example, if the bus linking U1 and U4 in Fig­
ure 7,9 fails, U1 and U4 can possibly communicate via U2 or U3• The main draw-

u, 

u, 

Dedicated 
bus 

Figure 7.9 
System of four units connected by six 
dedicated buses. 
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back of dedicated buses is their high cost. The number of buses needed increases as 
the square of the number of units. Adding a unit to the system is difficult, as the 
new unit must be physically attached to each existing unit. 

At the other end of the spectn1m, a single shared bus can provide all communi­
cations among n units, as illustrated by Figure 7.1. At any time only two units can 
communicate with each other via the bus; the remaining units are effectively dis­
connected from one another. A control method (protocol) is required to supervise 
sharing of the bus among then devices. Bus control can be centralized in a special 
bus-master unit, which can be one of the n communicating units U1, for example, a 
CPU. Alternatively, several units can be designed to act as bus masters at different 
times (decentralized control). 

In general, connection to a shared bus is established in two different ways: 

• A unit U1 capable of acting as bus master initiates the connection of two units to 
the bus, perhaps in response to an instruction in a program being executed by U;, 

• A slave unit sends a request to the current bus master for access to the shared 
bus. The bus master then connects the requesting unit to the link if it is not in use. 
If the bus is busy, the requesting unit must wait until the bus becomes available. 
If several conflicting requests are received, the bus master uses some arbitration 
scheme to decide which request to grant first. 

The shared bus is one of 1he most widely used connection methods in computer 
systems. Its main advantage is low cost. It is also flexible in that new units can eas­
ily be introduced without altering the system's overall structure or the connections 
to the old units. However, shared buses are relatively slow, since units are forced to 
wait when the bus is busy. The system is also sensitive to failure of the shared con­
trol circuits. 

Between the extremes of a set of dedicated buses and a single shared bus lie 
various interconnection structures that involve some sharing of links, but permit 
more than one word to be transferred at a time. An example is the crossbar net­
work shown in Figure 7.10. A crossbar connects two groups of units G1 = 
{ U1,U2, .. • , U,,,} and G2 = { U\,U'2, .. • , U',,) so that any unit of G1 can be connected 
to any unit of G2, but two units in the same group need never be connected. For 
example, G1 can be a set of memory banks and G2 a set of processors. Crossbar net­
works have also been used to connect IO processors to IO devices. As Figure 7 .10 
shows, each unit in G1 (G2) is attached to a shared, horizontal (vertical) bus. The 
horizontal and vertical buses are in turn connected via a set of 11 x m controllers 
called crosspoint switches, which can logically connect any horizontal bus to any 
vertical bus. At any time only one crosspoint can be active in each row and column. 
If k = min{m, 11}, then k units in G1 can be simultaneously connected to k units in 
G2• Hence the crossbar network allows up to k data transfers to take place simulta­
neously. Access conflicts and delays occur when two units in G1 attempt to com­
municate with the same unit in G.,, or vice versa, at the same time. 

Many structures employing shared or nonshared buses have been proposed for 
intra- and intersystem communication in computer systems. More links increase 
communication speed, but they also increase cost in terms of the buses themselves 
and their interface circuits. In practice, direct, dedicated connections are provided 
among only a subset of the communicating units. Units not directly connected must 
communicate indirectly via intermediate units that relay data in store-and-forward 
fashion until the final destination is reached. Indirect communication of this type is 
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slow, and if used extensively, can significantly reduce performance. The amount of 
such communication occurring depends both on the system's structure and its com­
munication needs. Interconnection structures are therefore selected to balance 
hardware costs against communication delays for some broad class of applications. 

Figure 7 .11 shows graphs that abstractly represent some important computer 
interconnection structures [Feng 1981; Quinn 1994], a few of which we encoun­
tered earlier. Here the nodes denote computers or processor-level components such 
as IO controllers, while the edges denote shared or nonshared buses. The linear or 
one-dimensional array structure of Figure 7. I la models the basic system-bus based 
structure of Figure 7.1, provided the buses are shared. The mesh (two-dimensional 
array) structure (Figure 7. I lb) occurs in the systolic multiplier of Figure 4.59. The 
ring structure of Figure 7.llc adds an extra link to the six-node linear structure, 
thereby cutting in half the length of the longest path between any two units. It also 
introduces some tolerance of bus failures by providing two, rather than one, com­
munication paths between each unit pair. The graph of Figure 7.1 ld is called a star 
for obvious reasons and has a central or root node connected to all n - 1 other 
nodes. The linear and star graphs are special cases of a tree, which is a graph with 
no cycles. The three-dimensional hypercube is depicted in Figure 7.lle, while the 
complete graph for n = 6 nodes appears in Figure 7. l lf The ring, hypercube, and 
complete graphs are considered to be homogeneous because all nodes have pre­
cisely the same type of connections, making them imerchangeable. For instance, 
each node x has the same number d(x) of neighbors, where d(x) is called the degree 
of x and is a rough indication of the cost of its bus interface. The other examples in 
Figure 7.11 are not homogeneous, because all nodes do not have the same degree. 

Figure 7.12 summarizes some pertinent properties of the preceding intercon­
nection structures. The number of edges and the maximum node degree serve as a 
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measure of the hardware cost of the structure. The distance between two nodes is 
the number of edges along a shortest path in the graph from one node to the other. 
The maximum of these distances, called the diameter of the graph, is an indication 
of the worst-case communication delays that can occur. In the examples of Figure 
7.12, the total number of connecting edges ranges from approximately n2/2 (for 
large n) in the complete-graph case to the minimum possible value of n - I for the 
linear and star graphs. The complete graph and the star share the largest node 
degrees, while the linear structure has the largest diameter. The other structures 
exhibit various compromises between hardware cost and delay. Of particular inter­
est is the hypercube, which achieves a reasonable balance between all three param­
eters. Therefore, it has been used as the interconnection network in several 
massively parallel computers. 

7,1.2 Bus Control 

This section examines the methods to establish and control intrasystem communi­
cation via a shared bus [Thurber et al. 1972; Gustavson 1984]. Two key issues are 
the timing of transfers over the bus and the process by which a unit gains access to 
the bus. We assume the general structure of Figure 7. I, which applies to most sys­
tem and IO buses. We also assume that one particular unit acts as the bus master 

(a) (b) (c) 

(d) (e) (f) 

Figure7.11 
Interconnection structures: (a) linear; (b) mesh; (c) ring; (d) star; (e) hypercube;(/) complete. 
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Interconnection Number of Maximum Maximum internode 
structure edges (buses) node degree distance 

Linear n-1 2 n-1 

Ring II 2 n/2 

Mesh (n°5 x n°5 ) 2(11- 11°5 ) 4 2(11°·5 - 1) 

Star n-1 n-1 2 

Hypercube (n 2') (n/2) Jog2 11 log2n log2n 

Complete 11(11 - 1)/2 n-1 

Figure 7.12 
Comparison of the interconnection struclures of Figure 7 .11 assuming each 
contains 11 nodes. 

and supervises the use of the bus by the other units, the bus slaves. In many cases 
the CPU is the bus master, while the memory and IO interface circuits are slaves; 
IO controllers also serve as bus masters, however. Only a master can initiate data 
transfers, although slaves can request them. Both master and slave participate 
equally in the data-transfer process after it is initiated. 

Basic features. Buses are distinguished by the way in which data transfers 
over the bus are timed. In synchronous buses each item is transferred during a time 
slot ( clock cycle) known to both the source and destination units. Therefore, the 
bus interface circuits of both units are in step, or synchronized. Synchronization 
can be achieved by connecting both units to a common clock source, which is fea­
sible only over very short distances. The rising or falling edge of the clock signal, 
which is one of the bus's control signals, determines when other bus signals attain 
stable (valid) states. Alternatively, each bus unit can be driven by separate clock 
signals of approximately the same frequency. Synchronization signals must then be 
transmitted periodically between the communicating devices in order to keep their 
clocks in step with each other. 

Synchronous communication has the disadvantage that data-transfer rates are 
largely determined by the slowest units in the system, so some devices may not be 
able to communicate at their maximum rate. An alternative approach widely used 
in both local and (especially) long-distance communications is asynchronous tim­
ing, in which each item being transferred is accompanied by a control signal that 
indicates its presence to the destination unit. The destination can respond with 
another control signal to acknowledge receipt of the item. Because each device can 
generate bus-control signals at its own rate, data-transfer speed varies with the 
inherent speed of the communicating devices. This flexibility is achieved at the 
cost of more complex bus-control circuitry. In local communication where a clock 
signal is present, data transmission can be asynchronous in the sense that the num­
ber of clock periods between bus events (signal changes) can be indeterminate, 
while the events themselves are synchronized by the clock. 

A unit is selected for connection to the main bus in two ways. The bus master 
can initiate the selection of a slave unit U in response to an instruction in a program 
or a condition occurring in the system that requires the services of U. Alternatively, 
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U itself can request access to the shared bus by sending a bus-request signal to the 
bus master. In each case the master unit must perform a specific sequence of 
actions to establish a logical connection between U and the bus. If several units can 
generate requests for bus access simultaneously, the bus master needs a way to 
select one of the units; this selection process is called bus arbitration. The CSMN 
CD collision avoidance technique used by the Ethernet (Example 6.1) is an exam­
ple of an arbitration process for LANs. 

Bus lines fall into three functional groups: data, address, and control lines. 
The data lines transmit all bits of an n-bit word in parallel. They consist of either 
two sets of n unidirectional lines or a single set of n bidirectional lines. The data­
bus width n is usually a multiple of eight, with n = 8, 16, 32, or 64 being common 
values. The address lines identify a unit to participate in a data transfer. Sometimes 
the same lines transfer addresses as well as data, a method termed data-address 
multiplexing. This method decreases the cost of the bus, along with the number of 
external connections (pins) of the units attached to the bus. A computer's system 
bus usually contains separate address and data lines, but its IO buses often do not; 
see Figure 7 .4, for instance. This difference stems from the fact that an address 
accompanies each data-word transfer over the system bus, whereas data transfers 
via an IO bus tend to involve long blocks of consecutive words and need only the 
starting address of the block. That address can be sent at the start of the data trans­
fer. The control lines convey timing signals and status information about the units 
attached to the bus; they also identify the type of information present on the data­
address liues. 

Bus interfacing. A significant contributor to the cost of a bus is the number 
and type of circuits required to transfer signals to and from the bus. A bus line rep­
resents a signal path with potentially very large fan-in and fan-out. Consequently, 
buffer circuits called bus drivers and receivers are needed to transfer signals to and 
from the bus, respectively. 

A special transistor circuit technology called tristate logic is often used in bus 
design. It is characterized by the presence of three signal values 0, 1, and Z, where 
,:he third value Z is the high-impedance state. The binary values O and 1 have their 
urnal interpretation, and correspond to two specific electrical states of a line, such 
as O volts and 3.3 volts. The high-impedance state Z, on the other hand, denotes the 
state of a line that is electrically disconnected from all voltage sources, that is, an 
open-circuited or floating line. Figures 7. 13a and b define a tristate buffer, which 
serves as a bus-line driver. The inputs x and e are ordinary binary signals that take 
the values O and I; the output z, however, can talce all three values 0, I, and Z. The 
tristate buffer (and every other tristate device) has a special input line e called out­
put enable, which when set to O disables the output line z by changing it to the 
high-impedance state Z. When e = 1, the circuit becomes an ordinary noninverting 
buffer with z = x. Figures 7 .13c and d show equivalent circuits corresponding to the 
buffer in the enabled and disabled states. 

Tristate logic circuits have two big advantages in the design of shared buses: 

• They greatly increase the fan-in and fan-out limits of bus Jines, permitting very 
large numbers of devices to be attached to the same line. 

• They support bidirectional transmission over the bus by allowing the same bus 
connection to serve as an input port and as an output port at different times. 
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Bidirectional l 
bus lines 

Inputs Outputs 
X e z 

0 1 0 
1 1 1 
0 0 z 
j 0 z 

(a) (b) 

x-{:?---z=x .t-[>- -z=Z 
,.1 ___:.J ,-0-. .......:...J 

(c) (d) 

Figure 7.13 
Tristate buffer: (a) logic symbol; 
(b) truth table; (c) equivalent circuit 
when enabled; (d) equivalent circuit 
when disabled. 

Figure 7 .14 shows how we use tristate logic to interface two units U1 and U2 to a 

set of bidirectional bus lines. If e1 = 1 and e2 = 0, then U1 controls or drives the bus 

lines in question; information is transferred over the bus from U1 to U2, in effect 

making x2.; = z1,;for all i. Conversely, if e1 = 0 and e2 =!,then U2 drives the bus 

and information is transferred in the opposite direction from U2 to U1, making 

x1; = z2,;for all i. If e1 = e2 = 0, then the outputs of both U1 and U2 are logically dis­

connected from the bus and impose only a minuscule electrical load on it. The 

combination e1 = e2 = 1 is invalid, because it applies two different signals simulta­

neously to each bus line making the line's state indeterminate. Proper operation of 

the bus requires that at most one driver connected to each bus line be enabled at 

any time. 
The bus lines that can be driven by a particular bus unit U, that is, nsed by U to 

send data to other units, depend on U' s function in the system. Bus masters have 

the ability to drive most bus lines, including certain lines that slave units cannot 

-+----+-----+------+----+-----+-

Inputs X1,o 

Outputs ZJ,I 

,, 

Figure 7.14 
Use of tristate logic for bus interfacing. 
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drive. For example, a CPU can drive all data, address, and most control lines of a 
system bus. A main-memory unit, which is a bus slave, can drive the data lines but 
not the address lines, since it only needs to receive infonnation from the address 
lines. 

Timi11g. The details of some typical data transfers over a bus are shown in 
Figure 7.15 by means of timing diagrams. The CLOCK signal of period Tserves as 
a timing reference, making this type of transfer synchronous. In this example, the 
0-to-l transition of CLOCK, that is, its rising edge, determines when other bus sig­
nals are recognized. All active signals must be set up with their new values before 
the CLOCK signal rises. Signal changes are expected to propagate along the bus to 
their destinations before the next O-to-1 transition of CLOCK. 

Figure 7.15 also illustrates some typical signal exchanges between slave and 
master units; these exchanges follow certain ordering rules called the bus protocol. 
Consider the read operation depicted in Figure 7.15a. Communication begins when 

T T 

CLOCK 

Address 
Address 

(from master) 

Read Status 
Control 

(from master) (from slave) 

Data 
Data 

(from slave) 

(a) 

T T 

CLOCK 

Address 
Address 

(from master) 

Control 
Write 

(from master) 

Data 
Data Figure 7.15 

(from master) Synchronous data transfers: 
(b) (a) read and (b) write. 
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CLOCK 

the bus master places one or more predetermined signals on the control lines speci­
fying the desired bus transaction, for instance, read from memory (load) or read 
from IO device (input). At the same time, the master places the address of the 
desired (part of the) slave on the bus's address lines. All potential slave units then 
examine the active control and address signals. The slave with an address matching 
that on the bus responds in the next clock cycle by placing the requested data word 
on the bus's data lines; it can also optionally place status information, for example, 
(no) error occurred, on certain control lines. A synchronous write operation is sim­
ilar except that the bus master rather than the slave is the data source; see Figure 
7.15b. Note that both edges of CLOCK can be used as reference points in a bus 
transaction, and the read or write transactions of Figure 7 .15 can be designed to 
take place during one clock cycle of period 2T. 

The requirement that the slave respond immediately (in the next clock cycle) 
to the bus master is lifted by providing a control signal called an acknowledge sig­
nal ACK, as shown in Figure 7.16 for a read bus transaction. ACK is controlled by 
the slave unit and is not activated until the slave has completed its part of the data 
transfer. The master therefore waits until it has received the ACK signal for the cur­
rent data-word transfer before initiating a new one. Thus an acknowledge signal 
allows a delay of one or more bus cycles, called wait states, to be inserted in a bus 
transaction to accommodate slow devices. Although ACK may be activated in any 
cycle, its changes are synchronized with those of CLOCK. This type of communi­
cation is often used between main memory and a CPU. By inserting a variable 
number of wait states and signaling with ACK when it is ready, a memory of essen­
tially any speed can communicate with a faster CPU. 

Purely asynchronous timing eliminates the bus's clock signal and replaces it 
with timing control signals like ACK, which are generated by the communicating 
units. These units are thus self-timed, and units with quite different data-transfer 

11-cycle delay 
l+-------(n wait states) 

..........,._ T ---,.. .-~ T _ _,t::=~T -
I -

-

- T -I -

Read 
Control --'-!-----'-+-----+----­

(from master) 
I -

Status I 
(from slave) 

Data---,--,-----+-----+------

Acknowledge _~~------'------.1-----­
(control) 

Figure 7.16 
Synchronous data transfer (read) with wait states. 

I -----

I ----

Data I 
(from slave) 
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rates can communicate asynchronously. We distinguish two cases: 

• One-way control in which one of the two communicating devices supplies all 
timing signals. 

• Two-way, or interlocked, control in which both devices generate timing signals. 

If one-way control is employed, a single signal controls each address or data 
transfer. This signal can be activated by the source and destination unit, either one 
of which can be the bus master. Figure 7.17a shows a source-initiated data transfer 
of this sort. The source places the data word on the data bus. After a brief delay the 
source activates the control line with the generic name DATA READY. The delay is 
to prevent the DATA READY signal from reaching the destination before the data 
word. Alternatively, the source can activate DATA READY and place data on the 
data bus at the same time. The destination unit must then insert a delay between its 
receipt of DATA READY and its reading of the data bus. The data lines and the 
DATA READY control line must remain in the active state long enough to allow the 
destination unit to copy the data from the data bus. Figure 7 .17 b shows a data trans­
fer initiated by the destination unit. In this case the destination begins the data 
transfer by activating the control line DATA REQUEST. The source responds by 
placing the required word on the data lines. Again the data must remain active long 
enough for the destination unit to read it. 

Often the DATA READY/REQUEST signals are used to load the data from the 
source unit to the bus or from the bus to the destination unit. Such control signals 
are called strobe signals and are said to strobe data to or from the bus. For example, 
the source may generate a data word asynchronously and place it in a buffer regis­
ter connected to the bus data lines. A signal on DATA REQUEST activates the 
clock input line of the buffer, thereby "strobing" the data onto the bus; Figure 7.18 
illustrates this process. 

The disadvantage of one-way control is that it does not verify that the data 
transfer has been successfully completed. For example, in a source-initiated data 
transfer, the source unit receives no indication that the destination unit has actu­
ally received the data transmitted to it. If the destination unit is unexpectedly slow 
in responding to a DATA READY signal, the data may be lost. This problem is 
eliminated by introducing a second control line that allows the destination unit to 
send a reply signal to the source when it receives a DATA READY signal. This 
control line has the generic name DATA ACKNOWLEDGE or ACK. Figure 7.19a 

Data Data 
Data --'----~-'-- Data ---,-.,_-~ _ _, __ 

DATA READY ___ .,_ __ ___. __ _ DATA 
REQUEST ------------

(a) (b) 

Figure 7.17 
One-way asynchronous data-transfer timing: (a) source initiated and (b) destination 
initiated. 
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Source n Data bus Destination 
unit , unit 

t DATA REQUEST 

Figure 7.18 
Use of a DATA REQUEST line to strobe data. 

shows the exchange of signals, often called handshaking, that accompanies a 
source-controlled transfer in this case. The source unit maintains the data on the 
bus until it receives the ACK signal. The destination activates ACK after copying 
the data from the bus. This sequence allows delays of arbitrary length to occur 
during the data transfer. Figure 7.19b depicts a similar technique for destination­
initiated communication. The source unit activates ACK to indicate that the 
requested data is available on the bus's data lines. The source maintains the data 
on the bus until the destination unit deactivates DATA REQUEST, an action that 
confirms successful receipt of the data at its destination. As Figure 7. I 9 demon­
strates, a pair of control lines can perform the ready, request, and acknowledge 
functions for all types of asynchronous bus communications. 

Bus arbitration. The possibility exists that several master or slave units con­
nected to a shared bus will request access to the bus at the same time. A selection 
mechanism called bus arbitration is therefore required to enable the current mas-

~---------------~ 
Data 

Dala --'--'------=-=-------'-------

i=::.::------ ,.d"" 
DATA READY - --

ACK-----~,) \s;J 
(a) 

Dnta 
Data -------------'----"='-----'---

DATA REQUEST --'~=::::::::::--,.====:::~---_-_-_-_-_-_ -_ -_ -_ -_ -_ -_ -_:_ -_ -_ -_ -...,a=~J.>-"e----­
~ 7 \ 

ACK -------------_-_-_-_,..i1.__=-> ____ q__._ __ 

(b) 

Figure 7.19 
Asynchronous data transfer (handshaking): (a) source initiated and (b) destination initiated. 
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ter, which we will refer to as the bus controller, to decide among such competing 
requests. We discuss three representative arbitration schemes: daisy chaining, poll­
ing, and independent requesting. These methods differ in the number of control 
lines they require and in the speed with which the bus controller can respond to 
bus-access requests of different priorities. Some bus systems combine several dis­
tinct arbitration techniques. 

Figure 7.20 illustrates daisy-chaining arbitration. This method involves three 
control signals to which we assign the generic names BUS REQUEST, BUS 
GRANT, and BUS BUSY. All the bus units are connected to the BUS REQUEST 
line. When activated, it merely serves to indicate that one or more units are request­
ing use of the bus. The bus controller responds to a BUS REQUEST signal only if 
BUS BUSY is inactive. This response takes the form of a signal placed on the BUS 
GRANT line. On receiving the BUS GRANT signal, a requesting unit enables its 
physical bus connections and activates BUS BUSY for the duration of its new bus 
activity. 

The main distinguishing feature of daisy chaining is the way the BUS GRANT 
signal is distributed; it is connected serially from unit to unit as shown in Figure 
7 .20. When the first unit requesting access to the bus receives BUS GRANT, it 
blocks further propagation of that signal, activates BUS BUSY, and begins to use 
the bus. When a nonrequesting unit receives the BUS GRANT signal, it forwards 
the signal to the next unit. Thus if two units simultaneously request bus access, the 
one closer to the bus controller, that is, the one that receives BUS GRANT first, 
gains access to the bus. Selection priority is therefore determined by the order in 
which the units are linked ( chained) by the BUS GRANT lines. 

Daisy chaining requires very few control lines and embodies a simple, fixed 
arbitration scheme. It can be used with an essentially unlimited number of bus 
units. Since priority is wired in, a unit's priority cannot be changed under program 
control. If it generates bus requests at a sufficiently high rate, a high-priority unit 
like U1 can lock out a low-priority device like U,,. A further difficulty with daisy 
chaining is its susceptibility to failures involving the BUS GRANT lines and their 
associated circuitry. If unit U1 is unable to propagate the BUS GRANT signal, then 
no Uj where+> i can gain access to the bus. 

The bus-arbitration scheme called polling replaces the BUS GRANT line of the 
daisy-chain method with a set of poll-count lines that are connected directly to all 
units on the bus, as depicted in Figure 7 .2 I. As before, the units request access to 
the bus via a common BUS REQUEST line. In response to a signal on BUS 

BUS GRANT U1 i-- u, I->- _.., u, 
' " 

Bus 
BUS REQUEST I I I controller 
BUS BUSY 

' " 

Figure 7.20 
Bus arbitration using daisy chaining. 
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T -
Poll { 

count ... ... 
BUS REQUEST Bus 

Bus BUS BUSY 
controller ... ... 

~'igure 7.21 
Bus arbitration using polling. 

REQUEST, the bus controller proceeds to generate a sequence of numbers on the 
poll-count lines. Each unit compares these numbers, which may be thought of as 
unit addresses, to a unique address assigned to that unit When a requesting unit U; 
finds that its address matches the number on the poll-count lines, U; activates BUS 

BUSY. The bus controller responds by terminating the polling process, and U; con­
nects to the bus. 

The priority of a bus unit is determined by the position of its address in the 
polling sequence. This sequence can be programmed if the poll-count lines are 
connected to a programmable register; hence selection priority can be altered under 
software control. A further advantage of polling over daisy chaining is that in poll­
ing a failure in one unit need not affect the other units. This flexibility is achieved 
at the cost of more control lines (k poll-count lines instead of one BUS GRANT 

line). Also, the number of units that can share the bus is limited by the addressing 
capability of the poll-count lines. 

The third arbitration technique, independent requesting, has separate BUS 

REQUEST and BUS GRANT lines for every unit sharing the bus. This approach, 

U1 u, ... u,, 

BUSGRANTI {I 
BUS REQUEST! 
BUSGRANT2 
BUS REOUEST2 

Bus ... . .. 
controller BUSGRANTn 

BUS REQUEST n 

BUS BUSY 

... ... 

Figure 7.22 
Bus arbitration using independent requesting. 
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which is depicted in Figure 7 .22, provides the bus controller with immediate iden­
tification of all requesting units and enables it to respond rapidly to requests for bus 
access. The bus-control unit dete1mines priority, which is programmable. The main 
drawback of bus control by independent requesting is the fact that 2n BUS 
REQUEST and BUS GRANT lines must be connected to the bus controller in order 
to control n devices. In contrast, daisy chaining requires two such lines, while poll­
ing requires approximately log2 n lines. 

EXAMPLE 7.2 THE PERIPHERAL COMPONENT INTERCONNECT (PC!) BUS 
[SHANLEY AND ANDERSON 1995], ThePClbus,oftenreferredtoasa"local"bus, 
was developed by Intel in the early 1990s and has since become a widely adopted stan­
dard for microprocessor-based computer products such as single-board microcomput­
ers. Unlike some earlier standard buses, the PC! bus is designed to be easily interfaced 
with different microprocessor families, main memory, and a very wide range of IO 
devices. Many of the PC! bus's lines are optional, so it can be attached to bus units with 
as few as 47 pins and as many as 100. It can support either 32-bit or 64-bit data trans­
fers. In version 2.1, the maximum clock rate is 66 MHz, which allows a data-transfer 
rate of up to 524 MB/s. 

The PC! bus is basically intended for attaching IO devices to a computer, but it has 
many of the characteristics of a high-performance system bus. It can be configured as 
an IO bus as in Figure 7.3 so that the microprocessor can communicate with memory 
via its system bus while the PC! bus controller communicates independently with IO 
devices via the PC! bus. Figure 7.23 shows a different configuration in which the PC! 
bus has a more central role. Here the PC! bus is linked to the host CPU's "system" bus 
via a memory controller referred to as a bridge, which gives it direct access to the 
host's main memory, This arrangement, unlike that of Figure 7.3, allows CPU-cache 

I I I 
Micro- Memory 
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I I 
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video controller 
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and IO-memory transfers Io take place simultaneously. High-speed devices such as 

video terminals and fast network controllers that have little need of the CPU are con­

nected directly to the PC! bus. IO devices intended to confonn with other bus standards 

such as SCSI or ISA can also be interfaced to the PC! bus via appropriate IO control­

lers, such as the SCSI bus controller in Figure 7 .23. 
Each PC! device is required to implement a set of registers called its configuration 

registers, whose fonnat is defined in the PC! bus specification. When the system is first 

powered up, all such registers are accessed by the system control software to determine 

which IO devices are currently attached to the PC! bus and their basic communication 

requirements. 
Figure 7 .24 summarizes the 100 lines that make up the PC! bus. On the left are the 

signals required to support basic data transfers using 32-bit or smaller words. On the 

right are optional lines that support 64-bit data transfers, interrupt control, and other, 

less-common functions. To reduce pin counts and the size of the connectors needed by 

PCI-compatible units, addresses and data are multiplexed over a common set of lines 

denoted AD. A typical bus transaction involves two phases: In the first phase, ru1 

address is sent over AD; in the second phase, one or more data words are sent over AD. 

The remaining lines of the bus perform various control functions, which are outlined 

below. All bus operations are timed by a clock signal, so the PC! bus is considered to 

be synchronous; however, ready and acknowledge signals are provided to allow slow 

devices to insert wait states. Most lines are tristate and are considered inactive in the Z 

and O states, unless they have an overbar, in which case they are inactive in the Z and 1 

states. 
The command/byte-enable lines ~erfonn different functions at different times. 

During the address-transmLssion phase, CIBE defines a bus command that the bus mas­

ter uses to tell the bus slave the type of transaction required. The possible commands 

include memory read, memory write, IO read, IO write, interrupt acknowledge, and a 

few others. During the data-transmission phase, CIBE indicates which bytes of AD 

carry valid data. PAR specifies the parity of the 36 bits AD[31:0] and CIBE [3:0]; it 

serves the usual function of single-bit error detection. The lines designated basic inter­

face control include FRAME, which delimits a data-transfer transaction and therefore 

Required bus lines 

Address-data AD [3 l :OJ 

Command/byte-enable C/BE[3:0] 

32. 

_j,,.._..,. 

Optional bus lines 

32 

4 
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Error reporting 

Arbitration (master unit only) 

Figure 7.24 
Signals of the PC! standard bus. 
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is active for the duration of the entire transaction; a pair of data-ready/acknowledge 
lines, lRDY (initiator ready) and TRDY (target ready), for use by the master and slave, 
respectively; and a STOP line that the slave uses to ask the master to halt the current 
transaction, Th~tem clock signal CLK is responsible for synchronizing all bus trans­
actions, while RST resets all bus-control registers attached to the PC! bus. The two 
error-reporting lines indicate parity errors and related problems, 

A pair of lines REQ (hus request) and GNT (bus grant) control bus arbitration, 
The bus-arbitration method is not part of the PC! bus's specification, which requires 
only that the central bus controller receive a single request at a time on the REQ line 
and that all attached bus masters receive their fair share of access to the bus, The daisy­
chaining method discussed earlier is easily implemented. Independent requesting can 
also be implemented without difficulty by means of priority-encoding logic that selects 
one of several active requests to forward to the PC! bus's REQ line, 

Figure 7 .25 shows a representative three-word data transfer from slave to master 
via the PC! bus; for example, an IO read operation. The transaction begins when the 
initiating master unit (which is assumed to already be in control of the bus) activates 
FRAME by setting it to O in clock cycle I; as its name suggests, FRAME frames the 
entire data transfer sequence, The master then places an address and command word 
(IO read in our example) on the AD and GIBE lines, respectively; this infommtion 
should be valid when clock cycle 2 begins. During cycle 2 all the units attached to the 
bus try to decode the address and command. In this instance an IO unit containing the 
current address will be successful and will prepare to communicate with the master, In 
the next cycle the master relinquishes control of AD and places valid byte-enable infor­
mation on the GIBE lines for the remainder of the transaction. To avoid conflicts 
when the master stops driving the AD bus (and certain control lines) and the slave 
begins to do so, an idle, turnaround cycle--cycle 3 in Figure 7,25-must follow the 
address phase, The slave can transmit a sequence of data words via AD, beginning in 
cycle 4 at the maximum rate of one word ~lock cycle, The two communicating 
units control the actual transfer rate via the IRDY and TRDY lines, which permit any 
number of wait states to be inserted after each data-transfer cycle. 

1 2 I 3 4 5 6 7 

ClockCLR ~ ~ ~ --i 17 n 17 

FRAME 17 I 

CIBE I IO read I I Byte enable 

Address-data AD I Address I I Data 1 I I Data2 11 Data3 

I I Wait I 

I I Wait I 

DEVSEL I 
AD Data 

turnaround transfer 1 
Wait 
state 

Data 
transfer 2 

Wait 
state 

Figure 7.25 
Data-transfer transaction (memory read) via the PC! bus. 
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Data transfer cannot begin until the master activates IRDY to indicate that it is 
ready to receive data; this occurs in cycle 2. The slave makes the data word 1 available 
and signals this fact by making TRD Y = 0 in cycle 3; the data transfer takes place in 
cycle 4. In this example the slave immediately deactivates its ready line (TRDY = 1) 
making cycle 5 into a wait state; it then reactivates TRD Y and places data word 2 on 
AD for transmission in cycle 6. The slave places data word 3 on AD for transmission in 
cycle 7. This time, however, the master decides to insert a wait state by making !RD Y 
1 for one clock cycle. Consequently, data word 3's transfer is delayed until cycle 8. The 
master deactivates FRAME in cycle 7 to signal that the following cycle marks the end 
of the bus transaction. The last control line DEVSEL (device select) shown in the fig­
ure is activated by the slave device in cycle 2 to indicate that the slave has successfully 
decoded the address and is the target of the current bus transaction. No data transfer 
can occur until DEVSEL is active, so this line serves to tell the master when a bus 
transaction cannot be completed due to a missing or faulty slave unit. 

A write transaction (where the master is the data source rather than the slave) is 
very similar to that of Figure 7 .25. No turnaround cycle is needed after the address­
transfer phase, because the master continues to drive AD throughout the transaction. 

IO AND SYSTEM CONTROL 

The main data-processing functions of a computer involve its CPU and external 

(cache-main) memory M. The CPU fetches instructions and data from M, pro­

cesses them, and eventually stores the results back in M. The other system compo­

nents-secondary memory, user interface devices, and so on-constitute the 

input-output (IO) system. In this section we discuss the hardware and software 

needed to implement IO operations. We also discuss operating systems-the 

supervisory programs that manage a system's major resources iucluding the CPU, 

main memory, and IO subsystems. 

IO control methods. Input-output operations are distinguished by the extent 

to which the CPU is involved in their execution. (Unless otherwise stated, IO oper­
ation refers to a data transfer between an IO device and M, or between an IO 

device and the CPU.) If such operations are completely controlled by the CPU, that 

is, the CPU executes programs that initiate, direct, and terminate the IO operations, 

the computer is said to be using programmed IO. This type of IO control can be 

implemented with little or no special hardware, but causes the CPU to spend a lot 

of time performing relatively trivial IO-related functions. One such function is test­

ing the status of IO devices to determine if they require servicing by the CPU. 

A modest increase in hardware enables an IO device to transfer a block of 

information to or from M without CPU intervention. This task requires the IO 

device to generate memory addresses and transfer data to or from the bus (system 

or local) connecting it to M via its interface controller; in other words, the IO 

device must be able to act as a bus master. The CPU is still responsible for initiat­

ing each block transfer. The IO device interface controller can then carry out the 

transfer without further program execution by the CPU. The CPU and IO controller 

interact only when the CPU must yield control of the memory bus to the IO con­

troller in response to requests from the latter. This level of IO control is called 
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direct memory access (DMA), and the IO device interface control circuit is called a 
DMA controller. 

The DMA controller can also be provided with circuits enabling it to request 
service from the CPU, that is, execution of a specific program to service an IO 
device. This type of request is called an interrupt, and it frees the CPU from the 
task of periodically testing the status of IO devices. Unlike a DMA request, which 
merely requests temporary access to the system bus, an interrupt request causes the 
CPU to switch programs by saving its previous program state and transferring con­
trol to a new interrupt-handling program. After the interrupt has been serviced, the 
CPU can resume execution of the interrupted program. Most computers have DMA 
and interrupt facilities, which are supported by special DMA and interrupt control 
units. 

A DMA controller has partial control of IO operations. Essentially complete 
control of IO operations can be relinquished by the CPU if an IO processor (IOP) 
is introduced. Like a DMA controller, an IOP has direct access to main memory 
and can interrupt the CPU; however, an IOP can also execute programs directly. 
These programs, called IO programs, may employ an instruction set different from 
the CPU's-one that is oriented toward IO operations. It is common for larger sys­
tems to use general-purpose microprocessors as IOPs. An !OP can perform several 
independent data transfers between main memory and one or more IO devices 
without recourse to the CPU. Usually the IOP is connected to the devices it con­
trols hy a separate bus system, the IO bus, as illustrated in Figure 7.3. 

7 .2.1 Programmed I 0 

First we examine programmed IO, a method included in every computer for con­
trolling IO operations. It is most useful in small, low-speed systems where hard­
ware costs must be minimized. Programmed IO requires that all IO operations be 
executed under the direct control of the CPU; in other words, every data-transfer 
operation involving an IO devi~quires the execution of an instruction by the 
CPU. Typically the transfer is between two programmable registers: one a CPU 
register and the other attached to the IO device. The IO device does not have direct 
access to main memory M. A data transfer from an IO device to M requires the 
CPU to execute several instructions, including an input instruction to transfer a 
word from the IO device to the CPU and a store instruction to transfer the word 
from the CPU to M. One or two additional instructions may be needed for address 
computation and data-word counting. 

IO addressing. In systems employing programmed IO, the CPU, M, and IO 
devices usually communicate via the system bus. The address lines of the system 
bus that are used to select memory locations can also be used to select IO devices. 
An IO device is connected to the bus via an IO port, which, from the CPU's per­
spective, is an addressable data register, thus making it little different from a main­
memory location. 

A technique used in many machines, such as the Motorola 680XO series, is to 
assign a part of the main-memory address space to IO ports. This technique is 
called memory-mapped IO. A memory-referencing instruction that causes data to 
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Figure 7.26 
Programmed IO with shared memory and IO address space (memory-mapped IO). 

be fetched from or stored at address X automatically becomes an IO instruction if X 
is made the address of an IO port. The usual memory load and store instructions are 
used to transfer data words to or from IO ports; no special IO instructions are 
needed. Figure 7 .26 shows the essential structure of a computer with this type of IO 
addressing. The control lines READ and WRITE, which are activated by the CPU 
when processing a memory reference instruction, are used to initiate either a mem­
ory access cycle or an IO transfer. 

In the organization shown in Figure 7 .27, sometimes called IO-mapped IO, the 
memory and IO address spaces are separate. This scheme is used, for example, in 
the Intel 80X86 microprocessor series. A memory-referencing instruction activates 
the READ M or WRITE M control line which does not affect the IO devices. The 
CPU must execute separate IO instructions to activate the READ IO and WRITE IO 
lines, which cause a word to be transferred between the addressed IO port and the 
CPU. An IO device and a memory location can have the same address bit pattern 
without conflict. A minor modification of the circuit of Figure 7 .27 can merge the 
memory and IO address spaces, if desired. 
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"intelligent IO subsystem" [Intel 1996]. Figure 7.48 indicates the complexity of 
this IC. The IOP is built around the 80960 microprocessor, a member of the i960 
family of pipelined 32-bit RlSCs. The 80960's instruction set is noteworthy for its 
fast implementation of call and return instructions, its high-performance integer 
ALU, and its large register file. The core processor also contains a 4KB two-way 
set-associative I-cache and a 2KB direct-mapped D-cache. To provide quick 
response to interrupts, the i960 RP allows the programmer to permanently lock 
critical IO routines such as interrupt handlers in its I-cache. 

The i960 RP IOP supports a pair of 32-bit PCI buses: a primary bus for con­
nection to the host CPU and a secondary bus for IO devices. It also has a 32-bit 
internal "local" bus-the 80960' s system bus-to which IO devices can be 
attached, as well as some specialized IO buses such as the I2C (inter-integrated cir­
cuit) bus, a serial IO bus developed by Philips Semiconductor. Not surprisingly, 
this single-chip device has a very large number of IO pins-352 in all. The i960 RP 
IOP has controllers for three independent DMA channels, two dedicated to the pri­
mary PCI bus and one to the secondary PCI bus. It also has flexible controllers to 
support vectored interrupts, including the advanced programmable interrupt con­
trol (APIC) interface used by the Pentium and other Intel microprocessors. 

7 .2.4 Operating Systems 

Except when it is dedicated to a single task, a computer is usually managed by a 
supervisory program called an operating system, which provides a uniform soft­
ware interface for other system programs and for applications programs. In mul­
tiuser environments the operating system controls such shared resources as CPU 
time, memory space, IO devices, utility programs, and databases [Silberschatz 
1994]. 
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I11troductio11. Programs use a computer's resources in various, and often 
unpredictable, ways. Resource requirements also change dynamically during the 
execution of a single program. For example, programs often alternate between 
computations that use the CPU and IO operations that use IOPs and peripheral 
devices but do not require the CPU. If several programs are available for execution 
at the same time, then the computer's perforn1ance as measured by overall through­
put can be improved by assigning one program to the CPU while others are 
assigned for execution by IOPs. The scheduling of CPU and IO processing is a typ­
ical function of an operating system. Another important shared resource is mem­
ory, both main and secondary, whose management is also typically an operating 
system task. 

Several types of operating systems have evolved over the years. The earliest 
system control programs (batch monitors and spooling systems) were mainly con­
cerned with reducing the time required for IO operations involving user programs. 
Modem operating systems attempt to manage a wide range of computer resources 
efficiently-not just IO devices. They provide textual or graphical interfaces that 
allow users to interact directly with the operating system by specifying the 
resources needed for a particular job. Current operating systems have their origins 
in several influential systems developed in the l 960s, such as IBM's OS/360, 
which became a de facto standard for mainframe computers. Early work at 
Manchester University (Atlas), MIT (Multics), and elsewhere Jed to the UNIX 
operating system, which was developed at Bell Laboratories in the mid- l 970s and 
is now in wide use, especially in workstations. 

Processes. The basic unit of computing managed by an operating system is a 
process, which is loosely defined as a program module in the course of execution. 
The resources needed by a process, including processors and memory space, are 
allocated to it dynamically during execution. Examples of processes are a proce­
dure executed by a CPU and an IO program executed by an IOP. A process can be 
created in response to a user command to the operating system. Processes can also 
be created by other processes, for example, in response to interrupts. When no 
longer needed, a process (but not the underlying program) is deleted by the operat­
ing system, and the resources currently allocated to the process are released. While 
in existence, a process has three major states: ready, running, and blocked, as 
depicted in Figure 7.49a. In the ready state a process is waiting, perhaps in a queue 
with other processes, for the resources that it needs to enter the running or active 
state. A blocked process is waiting for some event to occur, such as completion of 
another process that provides it with input data. A transition from one process state 
to another is triggered by conditions such as interrupts and user instructions to the 
operating system. 

Figure 7.49b shows the state behavior of a typical user process P in a system 
with an independent IOP. It is assumed that P runs on the CPU until an IO instruc­
tion is encountered, at which point the operating system intervenes and changes P 
from running to blocked. P can also be terminated by a timer-generated interrupt, 
which the operating system uses to limit the amount of time that any one process is 
assigned to the IOP. In this case P is returned to the ready state, where it remains 
until rescheduled for execution by the operating system via the CPU. A new pro­
cess P' can now be created to run on an IOP and carry out the required IO opera-
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tion. Completion of P' results in an IO interrupt that causes the CPU to transfer P 
from hlocked to ready. At this point P' can be deleted if it is no longer needed by P 
or other active processes. As soon as the CPU is available to execute P, that is, 
when there are no CPU processes of higher priority ready for execution, P is trans­
ferred once more to the running state. It continues running until it encounters 
another IO instruction, exceeds its allocated time, or completes execution. In the 
last case a call is made to the operating system, which can then delete P. 

Kemel An operating system comprises many resource management pro­
grams, including processor scheduling routines, virtual memory management rou­
tines, and IO device control programs (device drivers). Common utility programs, 
such as compilers, text editors, and the like, often form part of the operating sys­
tem. Thus operating systems tend to contain more software than can fit comfort­
ahly in main memory. The part of an operating system that resides more or less 
continuously in main memory and consists of its most frequently used parts is 
termed the kernel or nucleus. The other, less frequently used parts, such as file 
management routines, reside in secondary ( disk) memory and are transferred to 
main memory when needed. 

The kernel of an operating system is responsible for the creation, deletion, and 
state switching of the many processes that define a computer's behavior. The ker­
nel performs its tasks by quickly responding to a steady flow of interrupt requests. 
These requests have many sources such as user-generated requests for operating 
system services; CPU-generated process time-outs; memory faults; IO operations; 
and hardware or software errors. The kernel achieves rapid response by briefly 
disabling other interrupts while responding to the current one and then dispatching 
or, if necessary, creating a system process to execute the appropriate interrupt­
handling routine. The perforniance and reliability of the kernel can be improved 
by implementing its more basic functions in hardware or firmware. 
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The kernel keeps track of each process by means of a data segment called a 

process control block PCB, which defines the most recent execution state or con• 
text of the process. The PCB typically contains all the programmable registers 

associated with a process, including its program counter, stack pointers, status reg­
ister, and general-purpose data and address registers. The PCB normally resides in 

main memory. When the process is about to be executed, its PCB is transferred to 
the corresponding processor registers. The transfer of control from one process to 

another (context switching) is implemented by saving the context of the old process 
in its PCB in memory and loading the PCB of the new process into the processor in 

its place. 
Figure 7 .50 shows the PCB used by the VMS operating system for the Digital 

VAX computer series. This PCB contains several stack pointers used by the oper• 

ating system, the CPU's general registers, the program counter PC, and the pro­

gram status word PSW. The latter stores CPU status (flag) bits and the interrupt 
priority level of the process. The last entries in the PCB specify the base address 

and length of two page tables: one for the user program and one for the user stack. 

Page tables play an essential role in the firmware-implemented address mapping 
that manages the VAX's virtual memory. Two VAX instructions SVPCTX (save 

process context) and LDPCTX (load process context) support context switching by 

transferring the complete PCB to and from memory, respectively. 
An operating system supervises a potentially large set of processes that func­

tion asynchronously and concurrently. Many of the more subtle problems in 

designing an operating system are due to attempts by concurrent processes to use 

shared resources in undesirable or improperly synchronized ways. Next we con­
sider two basic problems in concurrency control-mutual exclusion and dead­

lock-and their solutions. 
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similar interconnection network, as in Figure 7 .60b. All programs and data used by 

the processors are stored in the m-unit global memory and are accessed via the 

crossbar network. It is reasonable to assume that the instruction or data bandwidth 

b of a processor Pj is propo1tional to the rate at which Pj accesses memory. The lat• 

ter is, in tum, proportional to the average number of busy memory units B. Suppose 

further that the probability of any processor Pi generating a request to M; is 1/m; in 

other words, the memory requests are distributed unifonnly. Hence the probability 

that M; is idle, and therefore free to respond to memory requests, is (1 - 1/m)"; the 

probability P; that M; is busy is 1 - (1 - 1/m)". If M; is busy when a new request for 

access to it is received, that request is not serviced until M; becomes free again. The 

average number of busy memory units B is therefore given by 

(7.17) 

As might be expected, if m is fixed and n approaches infinity (n -> = ), then B • m. 
Similarly, if II is fixed and m • "",then Equation (7.17) implies B • n; that is, all 

processors become busy. Figure 7.62 plots B against m for some small values of n. 
From this analysis we see that we can improve the performance of a multiprocessor 

by placing information that is frequently accessed by Pi in a local memory assigned 

to Pi while limiting the use of global memory to the storage of infrequently shared 

programs and data. 

7.3.2 Multiprocessors 

A multiprocessor is an MIMD computer containing two or more CPUs that cooper­

ate on common computational tasks. Multiprocessors are distinguished from multi­

computers and computer networks, which are systems with multiple CPUs 

operating largely independently on separate tasks. The various processors making 

up a multiprocessor typically share resources such as communication facilities, IO 

devices, program libraries and databases and are controlled by a common operating 

system. 
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I Motivation. The main reasons for including multiple CPUs in a computer sys­
tem are to improve performance and reliability. Performance is improved either by 
distributing the computation of a large task among several CPUs or by performing 
many small tasks in parallel using separate CPUs. A multiprocessor with n identi­
cal processors can, in principle, provide n times the performance of a comparable 
SISD system or uniprocessor. A major goal, therefore, in designing an n-CPU 
multiprocessor is to achieve a speedup S(n) as close to II as possible. By enabling 
such resources as secondary memory to be shared, a multiprocessor can reduce 
overall system costs. Many multiprocessors also have the advantage of scalability; 
that is, the system size can be increased incrementally by adding processors to 
meet growing computation needs. Scalability is facilitated by making all CPUs 
identical and allowing each to execute either operating system (kernel) or user 
code; multiprocessors with these properties are said to be symmetric. Finally, sys­
tem reliability is improved by the fact that the failure of one CPU need not cause 
the entire system to fail. The functions of the faulty CPU can be taken over by the 
other CPUs; consequently, multiprocessors enable fault tolerance to be incorpo­
rated into the system. 

As discussed earlier, multiprocessors are classified by the organization of their 
memory systems (distributed memory and shared memory) and by their intercon­
nection networks (dynamic or static). Shared-memory and distributed-memory 
multiprocessors are sometimes referred to as tightly coupled and loosely coupled, 
respectively, reflecting the speed and ease with which they can interact on common 
tasks. Multiprocessors are also classified by the number of processors they contain: 
Massively parallel machines can contain thousands of processors. Most multipro­
cessors, however, are modestly parallel, containing from 2 to about 30 processors; 
such multiprocessors have existed since the 1960s. The relative success of multi­
processors with a few CPUs stems from the difficulty of programming large num­
bers of CPUs to cooperate efficiently. The lack of standard, widely used languages 
and application packages for parallel programming has been a major obstacle to 
wider use of multiprocessors. 

Shared-bus s/4tems. Most commercial multiprocessors have been built 
around a single shared system bus B because of B's relative simplicity and low cost. 
The CPUs, memory, and IO units are attached directly to Band time-share its com­
munication facilities. Only one pair of units can use B at a time, either for CPU­
memory or IO-memory communication. The memory units and IO devices on B are 
global to all the processors; hence single-bus multiprocessors are of the shared­
memory class. ff the access time to the shared memory is the same for each proces­
sor, the multiprocessor is said to be. of the uniform-memory access (UMA) type. 

The global bus B is clearly a communication bottleneck in shared-bus mul­
tiprocessors, leading to contention and delay whenever two or more units request 
access to main memory. In practice, memory contention limits to about 30 the 
number of CPUs that can be included in the system without an unacceptable deg­
radation in performance. Figure 7.63 shows that a single-bus multiprocessor's per• 
formance can be improved by supplying each CPU with a local bus. The local bus 
is connected to a local memory unit that contains part of the shared address space; 
it can also support a local IO subsystem, as illustrated in Figure 7.63. This system 
configuration removes most of the routine memory traffic from B so that it can b,e 
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Shared-bus multiprocessor with global and local resources. 

reserved primarily for interprocessor communication. Many mkroprocessor faini­

lies can be configured as multiprocessors in this way. The Intel Pentium, for exam­

ple, was designed for use in shared-bus multiprocessors, with standard buses like 

the PC! bus serving as local buses. 
Despite its relative simplicity, the shared-bus architecture exhibits some of the 

basic synchronization problems common to all multiprocessors. Consider the situa­

tion in which two CPUs share a region R of global memory where mutual exclu­

sion (section 7.2.3) applies; that is, only one processor should have access to the 

shared region at a time. Access to R is conveniently controlled by a semaphore 

(flag) F that indicates whether R is currently being used by some other process (F = 

1) or is available for use by a new process (F = 0). Before it attempts to access R, a 

CPU first reads F, which must be stored in global memory. If F 0, the CPU then 

changes F to 1 and proceeds to use R. If it finds that Fis already 1, then it does not 

attempt to use R. The mutual exclusion requirement can be violated if it is possible 

for two CPUs to independently access the semaphore at the same time and find F = 

0. This violation can occur if a second processor CPU2 can read F after the first 

processor CPU1 has read it, but before CPU1 has changed F to 1. The problem lies 

in the fact that semaphore flag test-and-set instructions issued by the CPUs can be 

broken down into interleaved bus cycles as follows: 

Global bus cycle 

i 
i + l 
i+2 
i+3 

Action 

CPU 1 fetches semaphore F = 0. 
CPU2 fetches semaphore F = 0. 
CPU 1 sets F to 1. 
CPU2 sets F to L 

At time i + 4, both CPU 1 and CPU2 assume they have exclusive control over the 

critical region R, with potentially catastrophic consequences. A solution to this 
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problem, which is discussed in section 7.3.1, is to allow semaphore test-and-set 
instructions to have exclusive control of the system bus while they are being exe­
cuted. Such instructions lock the bus until their execution is complete, thereby 
delaying any test-and-set instructions awaiting execution by other CPUs until the 
first CPU has safely set the semaphore to busy. 

EXAMPLE 7.8 THE SEQUENT SYMMETRY SHARED-BUS MULTIPROCESSOR 

[SEQUENT 1996]. The Symmetry multiprocessor series is built around a high-speed 
shared bus, multiple CPUs from the Intel 80X86/Pentium series, and the UNIX operat­
ing system. Symmetry multiprocessors can be variously characterized as MIMD, 
shared memory, tightly coupled, scalable, symmetric, and UMA. They are typically 
used in applications such as on-line transaction processing characterized by heavy 
computation requirements and a need for high reliability. 

The Symmetry 5000 system introduced in 1995 has the general organization 
depicted in Figure 7.64. It contains from 2 to 30 Pentium CPUs each with a 2MB cache; 
there are no other local memories. The CPUs are packaged two per circuit board; the 
system can be expanded to the maximum allowed by adding CPU boards. The main­
memory system is also packaged in circuit boards that facilitate modular expansion. The 
memory is interleaved (section 6.1.2) to increase performance, and an error-correcting 
code improves reliability. The IO subsystem includes one or more high-speed IO pro­
cessors designed to conununicate with magnetic disk and tape memories via high-speed 
SCSI buses. Additional, slower IO controllers support other IO devices, as well as var• 
ious standard external interfaces and communication protocols such as Ethernet. 

A key component of the Symmetry 5000 is its proprietary system bus that links 
all processors, memory units, and IO controllers. This Highly Scalable Bus (HSB) 
contains a 64-bit data-address bus designed to transmit (in multiplexed mode) 64-bit 
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data words and 32-bit addresses, It has an unusual "pipelined" data transmission mode 
that supports a simplified form of package switching, which allows memory and IO 
data to be transmitted in bursts whose transmission can be overlapped. The HSB was 
designed for a maximum data bandwidth of 240 MB/s. 

The Symmetry's operating system, DYNIX, is a version of UNIX with enhance­
ments to support multiprocessing. Each CPU acts like a uniprocessor that is executing 
independently under UNIX supervision; it executes processes from a list that all the 
CPUs share. Interrupt signals are generated at periodic intervals to force the CPUs to 
examine the list of waiting processes and schedule a high-priority process for execu­
tion. This approach forces all CPUs to share the system's workload. To avoid conflicts 
among CPUs when executing kernel routines stored in the shared memory, a sema­
phore mechanism of the kind discussed earlier enforces mutual exclusion. 

Cache coherence. In shared-bus multiprocessors like the Symmetry, caches 
play a vital role in reducing the contention for the shared system bus. Without 
caches, connecting more than two or three CPUs to the same bus might be imprac­
tical. Typically, each CPU has a private one- or two-level cache, which forms a 
local memory and allows the CPU to access data and instructions without using the 
system bus. With an independent cache in each CPU, the possibility exists for two 
or more caches to contain different (inconsistent) versions of the same information 
at the same time; this is the cache-coherence problem. This problem is alleviated, 
but not solved, by using write-through, which, as discussed in section 6.3, causes 
both the cache and main (global) memory to be updated whenever a memory write 
operation occurs. Suppose, for example, that one CPU updates variable X in both 
its cache and the global memory. If another CPU then changes X, the new value of 
X will be written into main memory, but the two caches will contain different val­
ues for X. Subsequent reads from these caches can lead to inconsistent results. Thus 
to ensure coherence we need a mechanism that informs each cache about changes 
to shared information stored in other caches. 

We can solve the cache-coherence problem with either hardware or software. 
One software-based solution is to mark (tag) information during program compila­
tion as either cacheable or noncacheable. All writable shared items are marked as 
noncacheable, meaning they can be accessed directly only from main memory. A 
write-through policy that requires a processor to mark a shared cache item X as 
invalid, or to be deallocated, whenever the processor writes into X can then ensure 
cache coherence. When the processor references X again, it is forced to bypass the 
cache and access main memory, thereby always acquiring the most recent version 
of X. This approach can significantly degrade system perfom1ance, however. Inval­
idation also forces the removal of needed data from the cache, thus increasing its 
miss ratio, which, in tum, increases the main-memory traffic. 

Hardware-based methods of maintaining cache coherence offer the advantages 
of higher speed and program transparency, but they tend to be expensive. One pos­
sible approach is for a processor to broadcast its write operations to all caches and 
the global memory via the shared bus. Every cache controller in the system then 
examines its assigned addresses to see if the broadcast item is presently allocated to 
it. If it is, the cache block (line) in question is either updated or marked as dirty 
(modified). The drawback of this technique is that every cache write forces all 
caches to check the broadcast data, making the caches unavailable for normal pro­
cessing. 
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A related, but less costly, hardware-based method known as cache snooping 
equips each CPU with circuitry to continuously monitor or "snoop" on system-bus 
activity in order to detect references by other processors to memory addresses cur­
rently in its cache. The CPU can also signal other CPUs that it has a copy of the 
referenced item and, when necessary, modify or delay the other CPUs' main-mem­
ory accesses. If CPU2 attempts to read (write) memory data with an address that is 
currently assigned to CPU i's cache, CPU 1 detects this attempt in what is called a 
snoop read (write) hit by CPU1• On making a snoop hit, CPU1 determines whether 
actual or potential incoherence exists and then takes appropriate steps to eliminate 
it. The following courses of action are typical: 

• Suppose that CPU 1 makes a snoop read hit when its cache copy of the requested 
item is dirty and it has not yet updated main memory-this situation can occur 
only when the write-back policy is used. CPU1 signals CPU2 to suspend its read 
request while CPU 1 updates main memory by writing back the block containing 
the requested word. Then CPU 1 signals CPU 2 to complete its memory read oper­
ation, 

• If CPU 1 makes a snoop write hit, it knows that its own cache copy of the 
requested item is about to become dirty. It therefore marks that copy as dirty. 
Hence the next time CPU 1 tries to read the item in question, a cache miss occurs 
that forces CPU 1 to read a valid copy from main memory. 

An alternative response to a snoop write hit by CPU 1 is for CPU 1 to capture the 
new data on the system bus as CPU2 writes it to global memory. CPU1 can then use 
the captured data to update its cache, 

EXAMPLE 7.9 THE MESI CACHE COHERENCY PROTOCOL (MOTOROLA 

1994; ANDERSON AND SHANLEY 1995], To maintain consistency in a multipro­
cessor, or in a uniprocessor with independent IO processors, a cache controller must 
keep careful track of the state of each cache block (line) under its control. It does so by 
attaching a few state bils 10 every block slored in the cache data memory and process­
ing the states according to some coherence algorithm or protocol, as it is often called. 
Microprocessors such as the Pentium and some PowerPC models employ a standard 
cache coherence protocol based on the following four states: 

• M (modifie4): The block has been modified or "dirtied" by a recent write hit to the 
cache. 

• E (exclusive): The block is "clean," that is, the same as the copy in main memory, 
and no other processor has a copy. 

• S (shared): The block is clean, but other processors may have a copy. 
• I (invalid): The data in the block is not valid. 

A cache-control algorithm using these states is known as the MESI coherence protocol 
for obvious reasons. Figure 7 .65 gives a slightly simplified version of the MESI prolo­
col, which shows how the states of a cache block change in response to various read 
and write conditions, assuming that a write-back policy and a cache-snooping mecha­
nism are used. We also assume a one-level cache, although this protocol works equally 
well with multiple cache levels. 

First consider the effect of read operations on the state of a cache block. Read hits 
to the block leave its state unchanged. Read misses, however, are not so simple. When 
a processor P 1 first tries to read the (empty) cache, the cache controller changes all 
block states to I (invalid) and forwards the read request to main memory, Thus I acts 
like a reset state that triggers a block transfer to the cache; the incoming block's state is 
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State-transition graph (simplified) for a cache block using the MESI coherence protocol. 

set to E (exclusive) if no other processor has a copy of the same block. (An initial write 

also brings into the cache a block whose state is marked E.) If during P 1 's read opera­

tion, a snooping processor P2 signals via the shared bus that its cache has a clean copy 

of the same block, in which case no incoherence exists, the state of the block in P 1' s 

cache is set to S ( shared) instead of E. If, on the other hand, P 2 signals that its cache has 

a dirty (modified) copy of the same block, the caches are no longer coherent. To 

resolve this incoherence, the signal from P2 causes P1 to postpone its memory read and 

to relinquish the system bus. P2 then assumes the role of bus master and writes its mod­

ified block back to main memory. P2 also changes the state of its copy of the cache 

block from E to S because it now knows that the block in question is shared. This state 

change is specified by the transition from E to S marked "snoop read hit" on the right 

side of Figure 7.65. Finally, the first processor PI repeats its main-memory read request 

and obtains a clean copy of the block, which it marks as S. 

Now consider the cache block's state when P1 addresses a write hit to it. If the tar­

get block is in either of the clean states Sor E, the block's state changes to M (modified 

or dirty), In the S case P1 signals the other processors that it is writing to a shared 

block; they respond by marking their copies of the shared block J (invalid). The modi­

fied cache block remains in the M state in P1 during subsequent reads and writes to it, 

unless P1's own snooping detects read or write hits addressed to the same block in 

other caches. 
A write miss by P1 triggers a memory read operation that replaces the target block 

in the cache, where it is eventually marked M. If some other processor P 2 has a clean (S 

or E) copy of the same block, P 2 changes the state of its copy to I. If P 2 has a dirty ( M) 

copy of the block in question, P2 sends a signal to this effect to P 1, causing the latter to 

delay its memmy read. P 2 then takes control of the system bus and writes its modified 

block to main memory; P2 also changes the state of its cache copy from I, since it 

knows that the copy of the shared block in main memory is about to be changed by P 1• 

Control of the bus is then returned to P1, which completes its block transfer. 
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Message-passing computers. As developments in VLSI technology during 
the 1980s ushered in powerful one-chip microprocessors and memory (RAM) 
chips with capacities in the multimegabit range, it has become feasible to build 
massively parallel multiprocessors, with hundreds or thousands of processors. 
Multiprocessor architectures with distributed memory systems, where interproces­
sor communication is by message-passing, avoid most of the contention problems 
inherent in the use of single shared memories and buses. Such computers can pro­
vide extremely high performance, but they also pose problems in algorithm and 
program design that are far from being satisfactorily solved. 

Various static and dynamic interconnection structures have been proposed for 
massively parallel multiprocessors. Static structures like hypercubes and trees are 
easier to build and control when many processors are involved. Dedicated buses or 
IO communication lines typically serve as interprocessor links. Neighboring pro­
cessors can then interact at the maximum possible rate, with little interference from 
other processors. Interconnection networks are selected to trade hardware cost for 
communication speed in some class of applications. The hypercube structure 
achieves a good balance between tl1ese parameters. Consequently, it has been used 
in several commercial computers of the massively parallel type [Hayes and Mudge 
1989]. 

An n-dimensional hypercube computer is characterized by the presence of 2" 
nodes, each consisting of a processor and its local memory. Each processor P; has 
direct links to n other processors (its neighbors); these links form the edges of the 
hypercube. A set of 2" distinct n-bit binary addresses can be assigned to the pro­
cessors in such a way that P/s address differs from each of its neighbors in exactly 
l bit; Figure 7.60c illustrates hypercube addressing for n = 3. Hypercubes have 
several attractive features: 

• A hypercube can be expanded or scaled up while maintaining a good balance 
between tl1e number of nodes and the cost of intemode communication. As n is 
incremented by one, the number of nodes doubles, but the node degree and the 
maximum intemode distance bath increase only by one (from n ton+ 1). 

• A hypercube is homogeneous in that the system appears the same when viewed 
from any of its 'nodes. This feature simplifies progranlming because an nodes can 
execute the same programs on different data when collaborating on a common 
task. 

• We can embed other useful interconnection structures, such as rings and meshes, 
efficiently in tl1e hypercube. We say that (graph) G is embeddable in H if and 
only if every node in G can be mapped into a distinct node in H such that all 
nodes that are neighbors in G are also neighbors in H. In other words, G is 
embeddable in H if we can find an exact (isomorphic) copy of G inside H. 

• A large hypercube can support multiple concurrent users witb each user program 
assigned to a private embedded hypercube or subcube that is disjoint from other 
users' subcubes. For example, in a four-dimensional hypercube (Figure 7.66b), 
four-node subcubes can be assigned to two users, and an eight-node subcube can 
be assigned to a third user. 

Embeddability can be used to compare different interconnection structures for 
multiprocessors. Let C1 with (static) interconnection network N1 and C2 with inter­
connection network N2 be computers employing similar processors. If N1 is 
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hypercube. 

embeddable in a sufficiently large version of N2, then C2 will be able to embed C1• 

Therefore, any structure embeddable in C1 is also embeddable in C2, and C2 is at 
least as powerful as C1 from a static structural viewpoint. Refening to Figure 7.11, 
it is obvious that any k- node system can be embedded in a system of k or more 
nodes with the structure of a complete graph (Figure 7.llf). A sufficiently big 
mesh-structured. system can embed any path or ring. It cannot, however, embed a 
hypercube, since for n > 4, every node of an n-dimensional hypercube has greater 
degree than every node of the mesh. A hypercube can embed both the ring and the 
star structures. Less obvious is the fact that a mesh can be embedded in a hyper­
cube. An embedding of the 12-node 3 x 4 mesh into the 16-node four-dimensional 
hypercube appears in Figure 7 .66. Heavy lines show the nodes and edges of the 
hypercube that correspond to those of the mesh. 

EXAMPLE 7.10 THE nCUBE HYPERCUBE MULTIPROCESSOR [HAYES AND 

MUDGE t 989; nCUBE 1990]. Hypercube multiprocessors were proposed as early as 
1962 at the University of Michigan, but the first working machine was not demon­
strated until the completion of the six-dimensional ( 64-node) Cosmic Cube computer at 
Caltech in 1983. Influenced by this work, several commercial hypercube computers i 

J 
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were introduced in the mid- l 980s, including Intel's iPSC series and the nCUBE (then 
written NCUBE) series developed by nCUBE Corp. The original nCUBE I family 
included hypercubes of various sizes up to a IQ-dimensional (1024 node) machine. 
Subsequent nCUBE computers increased the number of nodes to 8192 213. 

An nCUBE processor node is equipped with a set of high-speed IO channels, each 
consisting of a serial input line and a serial output line. One channel connects to a host 
or front-end computer; the remaining channels connect the node to its neighbors in the 
hypercube. Processor-to-processor communication is implemented by transmitting 
messages between buffer areas in the local memories of communicating nodes. Each 
interprocessor link has both an address register pointing to its message buffer area and 
a count register indicating the number of bytes to be sent or received. Once a processor 
initiates a message transfer, the processor can continue with other tasks while the inter­
processor message transfer proceeds as a DMA operation between the memories of the 
communicating nodes. A broadcasting instruction is also supported that allows the 
same data to be transmitted to all processors in the hypercube; see problem 7.38. 

First we consider interprocessor communication in an nCUBE 1 system. Assume 
that an n-dimensional subcube is assigned to the user and that the message source and 
destination nodes have the binary addresses S = s,, .. 1 ... s1s0 and D = dn_ 1 ... d1d0, 

respectively. The EXCLUSIVE-OR function R = S El, D = r,,_ 1 ... r1r0, where r; = s; El, 

d; for i = 0,1, ... ,n - I, controls the routing process. The values of i for which r; = I 
indicate the dimensions of the hypercube to be traversed by a message en route from 
source to destination. The operating system kernel residing in each node that receives 
the message reads the destination address D (a field in the message header); computes 
R = P El, D, where P is the address of the current node; and scans R from lel'l to right 
until it encounters some r1 = I. Node P then forwards the message to the neighboring 
node P' whose address differs from P's in tl1ejth bit. If R = 0, then P = D and P recog­
nizes itself as the destination node and proceeds to process the message. Thus in a six­
node subcube of the nCUBE I, a message being sent from node 7 to node 45 passes 
through nodes with the following sequence of addresses: 

S=000111 • 100111 • 101111 • 101101 =D 

This store-and-fonvard routing method sends each message along a shortest path so 
that the minimum number of intermediate nodes relay messages between the source 
and destination. In the nCUBE 2 computer, each node P contains a high-speed mes­
sage-routing unit that allows messages for otl1er units to pass though P without affect­
ing P's ongoing operations; this approach largely eliminates the need to temporarily 
store messages in intermediate nodes. 

A node of the nCUBE 2 consists of a full-custom 64-bit CPU on a single IC, plus 
a six-chip local memory. The CPU's archiiecture resembles that of the Digital VAX 
family; it has a CISC-style instruction set with fixed-point and floating-point arithmetic 
instructions and all the logic necessary for memory management and IO control. Its 
speedup features include a fouNtage instruction pipeline, an I-cache and a D-cache, as 
well as the special message router noted already. The local memory size can range up 
to 64 MB pernode, so an 8192-node system can have a distributed memory of256 GB. 
With a modest clock rate of 20 MHz, each processor delivers about 2.4 MFLOPS 
(assuming 64-bit operations), implying a peak performance of around 2.4 x 8192 = 
19.7 GPLOPS, so the nCUBE 2 was classed as a massively parallel "supercomputer," 

The structure of an nCUBE 2 system is outlined in Figure 7.67. The hypercube 
array of processors H is packaged into printed-circuit boards, each of which contains a 
64-node hypercube forming a subcube of H. Each processor has 14 communication 
channels, one of which connects to an IO subsystem, such as a "farm" of IO disks 
forming the system's secondary memory. Many IO channels to the hypercube array 
enable a large number of peripherals to operate in parallel to satisfy the nCUBE's 
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Figure 7.67 
Organization of the nCUBE 2 hypercube multiprocessor. 

massive computation ability. Each channel is controlled by the nCUBE processor used 
in the hypercube array. Disk storage capacity can exceed a terabyte (240 bytes), mak­

ing the nCUBE well suited to the management of very large databases. 
The nCUBE operating system provides all the usual UNIX system management 

and programmer support functions (see Example 7.8). It treats a hypercube of proces­
sors as a device, which in the Ul''1X philosophy is a special type of file. Consequently, 
a hypercube of any size can be opened, closed, written into, and read from like any 
other UNIX file. This feature permits the operating system to allocate independent sub­
cubes to different users so that one or two large applications or many small applications 
can share the processor hypercube concurrently. 

Multistage interconnection networks. Dynamic interconnection networks 

for multiprocessors can be constructed from two-state switching elements of the 

kind depicted in Figure 7.68. Each switch S has a pair of input data buses X1,X2; a 

pair of output data buses Zi ,Z,; and some control logic (not shown). All four buses 

are identical and can function as processor-processor or processor-memory links. S 

has two states determined by the control line c: a through or direct state T, as illus­

trated in Figure 7.68b where Zi = Xi (Z1 is connected to Xi) and Z, = X2, and a 

cross state X where Zi = X2 and Z, = Xi (Figure 7.68c). 

Z1 X1 

z, x, 

I 

z, x,--t~ "-+---• z, 
'---,---' 

Control c c;;;;l c;;:;0 

(c) (a) (b) 

Figure 7.68 
(a) Switching element; (b) through state T; (c) cross state X. I 
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By using S as a building block, multistage interconnection networks (MINs) 
can be constructed for use in massively parallel computers [Siegel 1990]. Figure 
7.69 shows a small MIN that has 12 switching elements arranged into three stages 
(columns) and is intended to provide dynamic connections among eight processors 
denoted P000:Pui· By setting the control signals of the switching elements in vari­
ous ways, many different interconnection patterns are possible. The processor-to­
processor connections that are possible depend on the number of stages, the fixed 
connections linking the stages, and the settings of the switching elements. The par­
ticular MIN in Figure 7.69 is called an 8 x 8 omega network. A large version of this 
MIN was used in the experimental Cedar multiprocessor designed at the University 
of Illinois in the 1980s. We now examine the major characteristics of some typical 
MINs, conceutrating on those designed for processor-to-processor communication. 

An N x N MIN SN provides a flexible set of communication links between N 
processors, which are the sources and destinations of SN. Since the processors are 
identified by n-bit binary addresses, it is convenient to make N = 2". The processor­
pairs that are connected to each other at any time by SN are determined by the 
states of the switching elements, each of which can be in either the through (T) or 
cross (X) state. Control logic associated with the MIN sets the switch states 
dynamically to satisfy interconnection requests from the processors. A particular 
MIN state is retained long enough to allow at least one package to be transferred 
through the network. The state then changes to match the source-destination 
requirements of the next set of packages, and so on. We assume that a processor 
can buffer or queue its outgoing packages until the MIN is ready to transfer them. 
The processors accept incoming packages as soon as they arrive. 

A fundamental requirement of a MIN is that it be possible to connect every 
processor P; to every other processor Pj using at least one configuration of the net­
work; this feature is termed the full-access property. It is easy to show that the 
omega network of Figure 7.69 is a full-access network. Figure 7.70 shows the 
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P100 S1,1=X S2,2 = T S3,3 T 

P101 S1,1 !:= X S2,2 = T S3,3 = X Switch settings of the three-

P110 S1,, =X S2,2 = X S4,3 = T 
stage omega network of Figure 

P111 S1,1 X S2_2 =X S4,3 =X 
7.69 to connect P000 to each of 
the other processors. 

seven unique switch configurations needed to connect P 000 to each of the other pro­
cessors; here S;; = T (X) indicates that switch i of stage j is set to the through 
(cross) state. A complete uetwork configuration in which P000 is connected to PclOl 
appears in Figure 7 .71. In this state the network also connects P 010, P 100, and P uo 
to Poll• P101 , and P111 , respectively, thns providing simultaneous communication 
among four processor-pairs. Reducing the number of stages from three to two 
eliminates the full-access property. 

Another useful property of a MIN is the ability to establish a connection 
between any pair of processors that are not using the network, without altering the 
switch settings already established to link other processors; this is the nonblocking 
property. The three-stage omega MIN of Figure 7.69 does not have this property 
and is therefore a blocking network. For example, suppose that P 000 is already con­
nected to P 001 ; this condition requires the top row of switches to be set to TT X, as 
specified in Figures 7.70 and 7.71. It is now impossible to connect P100 either to 
P010 or to P011 • The preexisting setting of S1,1 creates a path from P100 through stage 
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Figure7.71 
One slate of the three-stage omega network. 
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l• to S2,2. No links exist from S2,2 to S2,3, the third-stage switching element con­
nected to P010 and P011 ; hence S2,2 cannot be set to forward data to P010 or P011 . 

This type of blocking causes communication delays similar to those occurring in a 
single-bus system wben several processors attempt to use the system bus simulta­
neously. Nonblocking MINs require an excessive number of switches for most 
computer applications. An N x N crossbar switch is an example of a nonblocking 
network because it allows any idle row to be connected to any idle column. How­
ever, it contains N2 complex crosspoint switches, whereas an N x N omega network 
contains only (N/2) log2 N simpler 2 x 2 switches, 

A few basic interstage wiring patterns characterize the most common MIN 
types proposed for multiprocessors, Each such pattern is a mapping ~' from a set of 
sources {S;} to a set of destinations {Do/(1)} for i = 0,1, .. . ,N-1. Here S1 is the address 
of an output port of a processor or switching element, and Do/(,) is the address of the 
input port to whicb S1 is wired. The shuffle pattern is defined by the following map­
ping: 

cr(i) = 2i + l(Zi)IN J (moduloN) (7.18) 

Here cr is the shuffle function illustrated by Figure 7.72a for N = 8. The name 
shuffle comes from the fact that the destination addresses 0, 1, 2, 3, 4, 5, 6, 7 can be 
mapped into (connected to) the source addresses 0, 4, 1, 5, 2, 6, 3, 7 by interleaving 
the first half 0, I, 2, 3 of the address sequence with the second half 4, 5, 6, 7 in the 
manner of a perfectly shuffled deck of cards. Let each address i be represented by 
the corresponding n-bit binary number bn_ 1b,,_2 ... b0. An equivalent definition to 
(7.18) is 

(7.19) 

indicating that the shuffle function corresponds to rotating the source address 1 bit 
to the left to determine the destination address. By following a shuffle connection 
with N/2 switching elements, each of which can exchange (cross) a pair of buses, 
we obtain the single-stage shuffle-exchange network, shown in Figure 7.72b for the 
case N = 8. The omega network of Figure 7 .69 is built from n = log2 N shuffle­
exchange stages. 

Another useful class of MINs is based on the butterfly connection depicted in 
Figure 7.73a. The 4 x 4 single-stage butterfly network appears in Figure 7.73b; 
note that the butterfly connection is placed after, rather than before, the N/2 switch­
ing elements. Consider anNx Nmultistage network with n stages I, 2, ... , n and N 
port addresses i = 0, I, ... , N- I; where, as before, i = b,._ 1b,._ 2• .. b0. The kth but­
terfly function ~k is defined as follows fork= 1, 2, ... , n - I: 

~k(bn-1 ... bk+ 1b!Pk-l ... b1bo) = bn_ i'·· bk+ 1bobk-1 .. ·b1bk 

Thus ~k interchanges bits O and k of the source address to obtain the destination 
address. For example, when k = I and N = 4, we obtain 

~1(00) = 00 
~1(01) = 10 
~1(10) = 01 
~1(11)= 11 

corresponding to the interconnection pattern on Figure 7.73a. 
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Figure7.72 
(a) Shuffle connection for N = 8 and (b) single-stage shuffle-exchange network. 

The connection pattern defined by 

cr-1(i) = b0bn .. zbn_3 ... b1 (7.20) 

is called the inverse shuffle function a-1
• Equation (7.20) is the same as Equation 

(7.19), defining the shuffle function cr with the direction of the address bit rotation 
reversed. Figure 7.74 shows a 16 x 16 version of a MIN called the indirect hyper­
cube network, which in the N x N case consists of log2 N stages of N/2 switching 

elements; the wiring patterns following the stages are defined by ~1• ~2, ... , ~n-t• 

cr-1• This MIN' s name comes from the fact that it can easily simulate the connec­
tions of a static hypercube interconnection network; see problem 7.39. 

Indirect hypercube and shuffle-exchange MINs have similar properties. Sup­
pose that the directions of all the arrows in an N x N shuffle-exchange network are 
reversed, implying that the shuffle connection cr in each stage is replaced by cr-1• 

The resulting N X N inverse omega network and the N x N indirect hypercube net­
work are essentially the same MIN drawn in different ways. Consequently, for 

00 oo- 00 

XO! 01 01 
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Figure7.73 
11 11- 11 (a) Butterfly connection 

for N = 4 and (b) single-
(a) (b) stage butterfly network. 
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each state of the indirect hypercube network, there is a state of the inverse omega 
network that connects the N processors in exactly the same way, and vice versa. 
This equivalence is not obvious and explains the many names under which this 
class ofM!Ns appears in the literature (inverse omega, indirect binary n-cube, but­
terfly, and so forth). 

Since an address contains n = log2 N bits, at least n = Iog2 N stages must be 
present for an N x N MIN to have the full-access property. With this number of 
stages, it is also easy to determine the switch settings needed to connect an arbi­
trary pair of processors, since each stage controls I bit ( dimension) of the address 
space. We illustrate this for the indirect hypercube MIN of Figure 7.74. Suppose 
that a source processor with binary address S = s,,_ 1s,,_2·--s0 is to be connected to a 
destination processor with address D = d._ 1d,,_ 2--·d0• As in the static hypercube 
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Figure 7.74 
16 x I 6 indirect hypercube network. 
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routing algorithm (Example 7.10), we computeR = S $ D = rn-lrn_2· .. r0, and useR 

to control the MIN' s switch settings. If r; = 0, then all the switches in stage i + 1 

(assuming again that the stages are numbered 1, 2, ... , n) are set to the through (T) 

state; these switches are set to the cross (X) state if r; = 1. For example, Figure 7.74 

shows the switch settings to connect source S = 2 to destination D = 14. In this case 

R = 0010 $ 1110 = 1100, requiring two T and two X switch settings as indicated. 

The heavy lines in Figure 7.74 mark the path along which packages travel from S 

to D. If all switches are set to T, then S = D, so each processor is connected to itself 

via a path through log2 N switches. Changing the state of the switch in stage i + 1 

along this path from T to X connects the source processor to the destination proces­

sor that differs from it in the ith address bit. It follows that there is only one path 

through each of the foregoing (log2N)-stage networks linking every source-desti­

nation pair. 
The routing of packages through a MIN can be managed by a centralized con­

troller attached to the network that examines all source-destination address pairs S, 

D generated by processors and sets the appropriate switching elements to the states 

specified by R = S $ D. An alternative is to attach Ras a routing tag to each pack­

age to be transmitted from S to D and to use R to set the switching element states 

as the package passes through the MIN. When the package enters a switch Si,;+ 1 in 

stage i + 1, Sf,i+l examines the routing tag R using control logic built into the 

switch for this purpose. SJ,l+l then sets its own state to T if r; = 0, and to X if r; = 1. 
Thus the centralized controller can be replaced by decentralized control logic dis­

tributed throughout the MIN. Each package determines its own path through the 

MIN and so can be viewed as self-routing. For example, to transmit a package 

from S = 2 to D = 14 in the four-stage MIN of Figure 7.74, the routing tag R = 

r3r2r 1r0 = 1100 is appended to the package generated by the source processor P2• 

The switch S2_1 attached to P2 in stage 1 inspects bit r0 of R. Since r0 = 0, switch 

S2,1 sets itself to the through state T. This setting causes the package to be sent to 

the topmost switch S1,2 in stage 2, which also sets its state to T, since r1 = 0. The 

package proceeds to the final two stages, which set themselves to the cross state X, 

since r2 = r3 = 1. 
The Butterfly computer developed by Bolt, Beranek and Newman Inc. around 

1980 [Crowther et al. 1985] and its successor the TC2000 introduced in 1989 are 

examples of commercial multiprocessors based on MINs. They are shared-memory 

MIMD computers in which the MIN connects N processors to N memory units that 

form the shared memory. In the original Butterfly multiprocessor, tbe processors 

are based on the Motorola 680X0 series, and N ranges from I to 256. Every proces­

sor contains a microprogrammed coprocessor to handle virtual memory manage­

ment, package transfer to and from tbe MIN, and related functions. 

The Butterfly's MIN has single-chip 4 x 4 switching elements, each of which 

is obtained by cascading two copies of the basic butterfly network of Figure 7.72. 

Consequently, the processor-memory interconnection network is an N x N butter­

fly MIN composed oflog2 N stages of 2 x 2 switching elements. Data transmissiou 

through the network is by bit"serial packages, which can be transmitted at a rate of 

32 Mb/s along any processor-memory path. Each package contains its destination 

address and is made self-routing in the manner described earlier by employing 

2 bits of the destination address to determine the setting of each 4 x 4 switch 

through which the package passes. Should two packages attempt to use the same 

link in the MIN simultaneously, one is allowed to proceed and the other is retrans-
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milted after a short delay. This type of application-dependent contention increases 
the execution time of a typical program by only a few percent. 

7.3.3 Fault Tolerance 

Fault tolerance has been defined as "the ability of a system to execute specified 
algorithms correctly regardless of hardware failures and program errors" [Avizie­
nis 1971]. It is of some concern in all computer systems, while in applications such 
as spacecraft control and telephone switching, fanlt tolerance is a major design 
goal [Siewiorek and Swarz 1992]. Most hardware failures have physical causes 
such as component wear or electromagnetic interference. The nature and frequency 
of these failures can be detennined experimentally, which makes it possible to 
study the faults and their consequences using analytic or simulation models. Soft­
ware faults are primarily due to algorithm or programming mistakes (design errors) 
and so are more difficult to deal with. 

Redundancy. Fault tolerance is intimately associated with the concept of 
redundancy. When a component fails, its duties must be taken over by other, fault­
free components of the system. If those components are intended to improve only 
the reliability of the system and do not significantly affect its computing perfor­
mance, they are termed redundant. Redundancy can be introduced in several over­
lapping ways: 

• Hardware redundancy: Multiple copies of critical hardware units. 
• Software redundancy: Multiple versions of programs for critical operations. 
• Information redundancy: Error-correcting or error-detecting codes. 
• Time redundancy: Repeating or retrying critical operations. 

The goal of these redundant design features is to prevent failures due to physical 
faults or design mistakes from producing errors, that is, data values or operating 
modes that lead to system failure. Information redundancy via coding methods is 
discussed in section 3.2.1. In this section, we examine the use of redundant hard­
ware to achieve fault tolerance. 

Two broad approaches, static and dynamic redundancy, have been identified 
for designing fault-tolerant systems. Static redundancy refers to the use of redun­
dant hardware or software components, which form a permanent part of the sys­
tem, to mask the error signals generated by faults. One form of static redundancy 
replaces a critical unit that generates a word X with n 2: 3 copies of that unit, con­
figured to generate n independent copies of X in parallel. If the unit in question is a 
processor, then the resulting system is a type of multiprocessor. Then versions of X 
are applied to a circuit called a voter, which is designed to output the value of X 
appearing on the majority of its n input buses. Thus errors produced by any of the 
replicated units are masked by the voter, provided more than half of the units pro­
duce the correct X values at all times. A system of this type with n identical units 
and a voter is said to employ n-modular redundancy (nMR). . 

A frequently implemented vers\on of nMR is triple modular redundancy 
(TMR), in which n = 3, as shown in Figure 7.75. In this case the behavior of the 
voter is defined by the logic equation 

X ~ X1X2 + X1X3 + X2X3 
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