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l l SPEECH RECOGNlZER 

SPECIFICATION 

FIELD OF THE INVENTION 

,. 

This invention relates generally to a computer, and more specifically, to a 

computer with speech recognition capability. 

5 BACKGROUND OF 1HE INVENTION 

The recent development of speech recognition technology has opened up a new 

era of man-machine interaction. A speech user interface provides a convenient and 

highly natural method of data entry. However, traditional speech recognizers use 

complex: algorithms which in turn need large storage systems and/or dedicated digital 

10 signal processors with high performance computers. Further, due to the computational 

complexity, these systems generally cannot recognize speech in real-time. Thus, a need 

exists for an efficient speech recognizer that can operate in real-time and that does not 

require a dedicated high performance computer. 

The advent of powerful single chip computers has made possible compact and 

15 inexpensive desktop, notebook, notepad and palmtop computers. These single chip 

computers can be incorporated into personal items such as watches, rings, necklaces 

and other forms of jewelry. Because these personal items are accessible at all times, 

the computerization of these items delivers ~ruly personal computing power to the users. 

These personal systems are constrained by the battery capacity and storage capacity. 

20 Further, due to their miniature size, the computer mounted in the watch or the jewelry 

cannot house a bulky keyboard for tex:t entry or a writing surface for pen-based data 

entry. Thus, a need exists for an efficient speaker independent, continuous speech 

recognizer to act as a user interface for these tiny personal computers. 

U.S. Patent No. 4,717,261, issued to Kita, et al., discloses an electronic wrist 

25 watch with a random access memory for recording voice messages from a user. Kita 

et al. further discloses the use of a voice synthesizer to reproduce keyed-in characters 

as a voice or speech from the electronic wrist-watch. However, Kita only passively 

records and plays audio messages, but does not recognize the user's voice and act in 

response thereto. 

30 U.S. Patent No. 4,509,133, issued to Monbaron et al. and U.S. Patent No. 

4,573,187, issued to Bui et al. disclose watches which recognize and respond to verbal 

commands.. These patents teach the use of preprogrammed training for the references 

stored in the vocabulary. When the user first uses the watch, he or she pronounces a 

word corresponding to a command to the watch to train the recognizer. After training, 

3S the user can repeatedly pronounce the trained word to the watch until the watch display 
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shows the corTect word on the screen of the watch. U.S. Patent No. 4,635,286, issued 

to Bui et al., further discloses a speech-controlled watch having an electro-acoustic 

means for converting a pronounced word into an analog signal representing that word, 

a means for transforming the analog signal into a logic control information, and a 

5 means for transforming the logic information into a control signal to control the watch 

display. When a word is pronounced by a user, it is coded and compared with a part 

of the memorized references. The watch retains the reference whose coding is closest 

to that of the word pronounced. The digital information corresponding to the _reference 

is converted into a control signal which is applied to the control circuit of the watch. 

10 Although wearable speech recognizers are shown in Bui and Monbaron, the devices 

disclosed therein do not provide for speaker independent speech recognition. 

Another problem facing the speech recognizer is the presence of noise, as the 

user's verbal command and data entry may be made in a noisy environment or in an 

environment in which multiple speakers are speaking simultaneously. Additionally, the 

15 user's voice may fluctuate due to the user's health and mental state. These voice 

fluctuations severely test the accuracy of traditional speech recognizers. Thus, a need 

exists for an efficient speech recognizer that can handle medium and large vocabulary 

robustly in a variety of environments. 

Yet another problem facing the portable voice recognizer is the power 

20 consumption requirement. Additionally, traditional speech recognizers require the 

computer to continuously monitor the microphone for verbal activities directed at the 

computer. However, the continuous monitoring for speech activity even during an 

extended period of silence wastes a significant amount of battery power. Hence, a need 

exists for a low-power monitoring of speech activities to wake-up a powered-<lown 

25 computer when commands are being directed to the computer. 

Speech recognition is particularly useful as a data entry tool for a personal 

. information management (PIM) system, which tracks telephone numbers, appointments, 

travel expenses, time entry, note-taking and personal data collection, among others. 

Although many personal organizers and handheld computers offer PIM capability, these 

30 systems are largely under-utilized because of the tedious process of keying in the data 

using a miniaturized keyboard. Hence, a need exists for an efficient speech recognizer 

for entering data to a PIM system. 

35 

SUMJ\fARY OF THE INVENTION 

In the present invention, a speech transducer captures sound and delivers the 

data to a robust and efficient speech recognizer. To minimize power consumption, a 

voice wake-up indicator detects sounds directed at the voice recognizer and generates 

a power-up signal to waice up the speech recognizer from a powered-<lown state. 

Further, to isolate speech in noisy environments, a robust high order speech transducer 

40 comprising a plurality of microphones positioned to collect different aspects of sound 
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3 

is used. Alternatively, the high order speech transducer may consist, of a microphone 

and a noise canceller which characterizes the background noise when the user is not 

speaking and subtracts the background noise when the user is speaking to the computer 

to provide a cleaner speech signal. 

The user's speech signal is next presented to a voice feature extractor which 

extracts features using linear predictive coding, fast Fourier trans(orm, auditory model, 

fractal model, wavelet model, or combinations thereof. The input speech signal. is 

compared with word models stored in a dictionary using a template matcher, a fuzzy 

logic matcher, a neural network, a dynamic programming system, a hidden Markov 

10 model, or combinations thereof. The word model is stored in a dictionary with an 

entry for each word, each entry having word labels and a context guide. 

A word preselector receives the output of the voice feature extractor and queries 

the dictionary to compile a list of candidate words with the most similar phonetic labels. 

These candidate words are presented to a syntax checker for selecting a first 

IS representative word from the candidate words, as ranked by the context guide and the 

grammar structure, among others. The user can accept or reject the first representative 

word via a voice user interface. If rejected, the voice user interface presents the nex_t 

likely word selected from the candidate words. If all the candidates are rejected by the 

user or if the word does not exist in the dictionary, the system can generate a predicted 

20 word based on the labels. Finally, the voice recognizer also allows the user to 

manually enter the word or spell the word out for the system. In this manner, a robust 

and efficient human-machine interface is provided for recognizing speaker independent, 

continuous speech. 

25 BRIEF DESCRIPTION OF THE DRAWINGS 

A better understanding of the present invention can be obtained when the 

following detailed description of the preferred embodiment is considered in ·conjunction 

with the following drawings, in which: 

Figure I is a block diagram of a computer system for capturing and processing 

30 a speech signal from a user; 

35 

Figure 2 is a block diagram of a computer system with a wake-up logic in 

accordance with one aspect of the invention; 

Figure 3 is a circuit block diagram of the wake-up logic in accordance with one 

aspect of the invention shown in Figure 2; 

Figure 4 is a circuit block diagram of the wake-up logic in accordance with 

another aspe.ct of the invention shown in Figure 2; 

Figure S is a circuit block diagram of the wake-up logic in accordance with one 

aspect of the invention shown in Figure 4; 

Figure 6 is a block diagram of the wake-up logic in accordance with another 

40 aspect of the invention shown in Figure 2; 

, I 

I 
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Figure 7 is a block diagram of a computer system with a high order noise 

cancelling sound transducer in accordance with another aspect of the present invention; 

Figure 8 is a perspective view of a watch-sized computer system in accordance 

with another aspect of the present invention; 

5 Figure 9 is a block diagram of the computer system of Figure 8 in accordance 

lO 

with another aspect of the invention; 

9· , 

Figure 10 is a block diagram of a RF transmitter/receiver system of Figure 9; 

Figure 11 is a block diagram of the RF transmitter of Figure 10; 

Figure 12 is a block diagram of the RF receiver of Figure 10; 

Figure 13 is a block diagram of an optical transmitter/ receiver system of Figure 

Figure 14 is a perspective view of a hand-held computer system in accordance 

with another aspect of the present invention; 

Figure 15 is a perspective view of a jewelry-sized computer system in 

15 accordance with yet another aspect of the present invention; 

20 

Figure 16 is a block diagram of the processing blocks of the speech recognizer 

of the present invention; 

Figure 17 is an expanded diagram of a feature extractor of the speech recognizer 

of Figure 16; 

Figure 18 is an expanded diagram of a vector quantizer in the feature extractor 

speech recognizer of Figure 16; 

Figure 19 is an expanded diagram of a word preselector of the speech recognizer 

of Figure 16; 

Figures 20 and 21 are diagrams showing the matching operation performed by 

25 the dynamic programming block of the word preselector of the speech recognizer of 

Figure 19; 

Figure 22 is a diagram of a HMM of the word preselector of the speech 

recognizer of Figure 19; 

Figure 23 is a diagram showing the relationship of the parameter estimation 

30 block and likelihood evaluation block with respect to a plurality of HMM templates of 

Figure 22; 

35 

Figure 24 is a diagram showing the relationship of the parameter estimation 

block and likelihood evaluation block with respect to a plurality of neural network 

templates of Figure 23; 

Figure 25 is a diagram of a neural network front-end in combination with the 

HMM in accordance to another aspect of the invention; 

Figure 26 is a block diagram of a word preselector of the speech recognizer of 

Figure 16; 

Figure 27 is another block diagram illustrating the operation of the word 

40 preselector of Figure 26; 

Samsung Exhibit 1057 
Page 10 of 102



5 

5 

Figure 28 is a state machine for a grammar in accordance with another aspect 

of the present invention; 

Figure 29 is a state machine for a parameter state machine of Figure 28; 

Figure 30 is a state machine for an edit state machine of Figure 28; and 

Figure 31 is a block diagram of an unknown word generator in accordance with 

yet another aspect of the present invention. 

DETAJLED DESCRIPTION OF THE INVENTION 

Referring now to Figure I, a general purpose architecture for recognizing speech 

10 is illustrated. As shown in Figure I, a microphone 10 is connected to an analog to 

digital converter (ADC) 12 which interfaces with a central processing unit (CPU) 14. 

The CPU 14 in tum is connected to a plurality of devices, including a read-only

memory (ROM) 16, a random access memory (RAM) 18, a display 20 and a keyboard 

22. For portable applications, in addition to using low power devices, the CPU 14 has 

15 a power-down mode where non-essential parts of the computer are placed in a sleep 

mode once they are no longer needed to conserve energy. However, to detect the 

presence of voice commands, the computer needs to continually' monitor the output of 

the ADC 12, thus unnecessarily draining power even during an extended period of 

silence. This requirement thus defeats th~ advantages of power-down. 

20 Figure 2 discloses one aspect of the invention which wakes up \he computer 

from its sleep mode when spoken to without requiring the CPU to continuously monitor 

the ADC output. As shown in Figure 2, a wake-up logic 24 is connected to the output 

of microphone 10 to listen for commands being directed at the computer during the 

power-down periods. The wake-up logic 24 is further connected to the ADC 12 and 

25 the CPU 14 to provide wake-up commands to tum-on the computer in the event a 

command is being directed at the computer. 

The wake-up logic of the present invention can be implemented in a number of 

ways. In Figure 3, the output of the microphone 10 is presented to one or more stages 

of low-pass filters 25 to preferably limit the detector to audio signals below two 

30 kilohertz. The wake-up logic block 24 comprises a power comparator 26 connected to 

the filt.ers 25 and a threshold reference voltage. 

As shown in Figure 3, sounds captured by the microphone 10, including the 

voice and the background noise, are appµed to the power comparator 26, which 

compares the signal power level with a power threshold value and outputs a wake-up 

35 signal to the ADC 12 and the CPU 14 as a result of the comparison. Thus, when the 

analog input is voice, the comparator output asserts a wake-up signal to the computer. 

The power comparator 26 is preferably a Schmidt trigger comparator. The threshold 

reference voltage is preferably a floating DC reference which allows the use of the 

detector under varying conditions of temperature, battery supply voltage fluctuations, 

40 and battery supply types. 
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Figure 4 shows an embodiment of the wake-up logic 24 suitable for noisy 

environments. In Figure 4, a root-mean-square (RMS) device 27 is connected to the 

output of the microphone 10, after filtering by the low-pass filter 25, to better 

distinguish noise from voice and wake-up the computer when the user's voice is 

5 directed to the computer. The RMS of any voltage over an interval Tis defined to be: 

T 

RMS= ½f f(t) 2 dt 
0 

Figure 5 shows in greater detail a low-power implementation of the RMS device 

27. In Figure 5, an amplifier 31 is connected to the output of filter 25 at one input. 

At the other input of amplifier 31, a capacitor 29 is connected in series with a resistor 

28 which is grounded at the other end. The output of amplifier 31 is connected to the 

10 input of amplifier 31 and capacitor 29 via a resistor 30. A diode 32 is connected to the 

output of amplifier 31 to rectify the waveform. The rectified sound input is provided 

to a low-pass filter, comprising a resistor 33 connected to a capacitor 34 to create a 

low-power version of the RMS device. The RC time constant is chosen to . ~e. ,· 
1 

considerably longer than the longest period present in the signal, but short enough .t~- -·' 

15 follow variations in the signal' s RMS value without inducing excessive delay error~. 

The ·output of the RMS circuit is converted to a wake-up pulse to activate the computer. 

system. Although half-wave rectification is shown, full-wave rectification can be used. 

Further, other types of RMS device known in the art can also be used. 

Figure 6 shows another embodiment of the wake-up logic 24 more suitab\e for 

20 multi-speaker environments. In Figure 6, a neural network 36 is connected to the ADC. 

12, the wake-up logic 24 and the CPU 14. Wnen the wake-up logic 24 detects speech 

being directed to the microphone 10, the wake-up logic 24 wakes up the ADC 12 t~ 

acquire sound data. The wake-up logic 24 also wakes up the neural network 36 to 

examine the sound data for a wake-up command from the user. The wake-up command 

25 may be as simple as the word "wake-up" or may be a preassigned name for the 

computer to cue the computer that commands are being directed to it, among others. 

The neural network is trained to detect one or more of these phrases, and upon 

detection, provides a wake-up signal to the CPU 14. The neural network 36 preferably 

is provided by a low-power microcontroller or programmable gate array logic to 

30 minimii.e power consumption. After the neural network 36 wakes up the CPU 14, the 

neural network 36 then puts itself to sleep to conserve power. Once the CPU 14 

completes its operation and before the CPU 14 puts itself to sleep, it reactivates lhe 

neural network 36 to listen for the wake-up command. 

A particularly robust architecture for the neural network 36 is referred to as the 

35 back-propagation network. The training process for back-propagation type neural 

networks starts by modifying the weights at the output layer. Once the weights in the 

output layer have been altered, they can act as targets for the outputs of the middle 
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layer, changing the weights in the middle layer following the same procedure as above . 

This way the corrections are back-propagated to eventually reach the input layer. After 

reaching the input layer, a new test is entered and forward propagation takes place 

again. This process is repeated until either a preselected allowable error is achieved 

5 or a maximum number of training cycles has been executed . 

Referring now to FIG. 6, the first layer of the neural network is the input layer 

38, while the last layer is the output layer 42. Each layer in between is called a middle 

layer 40. Each layer 38, 40, or 42 has a plurality of neurons, or processing elements, 

each of which is connected to some or all the neurons in the adjacent layers. The input 

10 layer 38 of the present inven~on comprises a plurality of units 44, 46 and 48, which 

are configured to receive input information from the ADC 12. The nodes of the input 

layer does not have any weight associated with it. Rather, its sole pul'l)Ose is to store 

data to be forward propagated to the next layer. A middle layer 40 comprising a 

plurality of neurons 50 and 52 accepts as input the output of the plurality of neurons 

15 44-48 from the input layer 38. The neurons of the middle layer 40 transmit output to 

a neuron 54 in the output layer 42 which generates the wake-up command to CPU 14. 

The connections between the individual processing units in an artificial neural 

network are also modeled after biological processes. Each input to an artificial neuron 

unit is weighted by multiplying it by a weight value in a process that is analogous to 

20 the biological synapse function . In biological systems, a synapse acts as a connector 

between one neuron and another, generally between the axon (output) end of one 

neuron and the dendrite (input) end of another cell . Synaptic junctions have the ability 

to enhance or inhibit (i.e. , weigh) the output of one neuron as it is inputted to another 

neuron . Artificial neural networks model the enhance or inhibit function by weighing 

25 the inputs to eac.h artificial neuron. During operation, the output of each neuron in the 

input layer is propagated forward to each input of each neuron in the next layer, the 

middle layer. The thus arranged neurons of the input layer scans the inputs which are 

neighboring sound values and after training using techniques known to one skilled in 

the art, detects the appropriate utteranc;e to walce-up the computer. Once the CPU 14 

30 wakes up, the neural network 36 is put to sleep to conserve power. In this manner, 

power consumption is minimized while retaining the advantages of speech recognition. 

Although an accurate speech recognition by humans or computers requires a 

quiet environment, such a requirement is at times impracticable. In noisy 

environments, the present invention provides a high-order, gradient noise cancell.ing 

35 microphone to reject noise interference from distant sources. The high-order 

microphone is robust to noise because it precisely balances the phase and amplitude 

response of each acoustical component. A high-order noise cancelling microphone can 

be constructed by combining outputs from lower-order microphones. As shown in 

Figure 7, one embodiment with a first order microphone is built from three zero order, 

40 
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or conventional pressure-based, microphones. Each microphone is positioned in a port 

located such that the pon captures a different sample of the sound field . 

The microphones of Figure 7 are preferably positioned as far away from each 

other as possible to ensure that different samples of the sound fie ld are captured by each 

5 microphone. If the noise source is relatively distant and the wavelength ·of the noise 

is sufficiently longer than the distance between the ports, the noise acoustics differ from 

the user's voice in the magnitude and phase. For distant sounds, the magnitude of the 

sound waves arriving at the microphones are approximately equal with a small phase 

difference among them. For sound sources close to the microphones, the magnitude 

10 of the local sound dominates that of the distant sounds. After the sounds are captured, 

the sound pressure at the ports adapted to receive distant sounds are subtracted and 

converted into an electrical signal for conversion by the ADC 12. 

As shown in Figure 7, a first order microphone comprises a plurality of zero 

order microphones 56, 58 and 60. The microphone 56 is connected to a resistor 62 

15 which is connected to a first input of an analog multiplier 70. Microphones 58 and 60 

are connected to resistors 64 and 66, which are connected_ to a second input of the 

analog multiplier 70. A resistor 68 is connected between ground and the second input 

of the analog multiplier 70. The output of the analog multiplier 70 is connected to the 

first input of the analog multiplier 70 via a resistor 72. In this embodiment, 

20 microphones 56 and 58 are positioned to measure the distant sound sources, while the 

microphone 60 is positioned toward the user. The configured multiplier 70 takes the 

difference of the sound arriving at microphones 56, 58 and 60 to arrive at a less noisy 

representation of the user's speech. Although Figure 7 illustrates a first order 

microphone for cancelling noise, any high order microphones such as a second order 

25 or even third order microphone can be utilized for even better noise rejection . The 

second order microphone is built from a pair of first order microphones, while a third 

order microphone is constructed from a pair of second order microphone. 

Additionally, the outputs of the microphones can be digitally enhanced to 

separate the speech from the noise. As disclosed in U.S. Patent No. 5,400,409, issued 

30 to Linhard , the noise reduction is perfonned with two or more channels such that the 

temporal and acoustical signal properties of speech and interference are systematically 

detennined. Noise reduction is first executed in each individual channel. After noise 

components have been estimated during speaking pauses, a spectral substraction is 

performed in the spectral range that corresponds to the magnitude. In this instance the 

35 temporally stationary noise components are damped. 

Point-like noise sources are damped using an acoustic directional lobe which, · 

together with the phase estimation, is oriented toward the speaker with digital 

directional filters at the inlet of the channels. The pivotable, acoustic directional lobe 

is produced for the individual voice channels by respective digital directional filters and 

40 a linear phase estimation to correct for a phase difference between the two channels. 
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The linear phase shift of the noisy voice signals is determined in the power domain by 

means of a specific number of maxima of the cross-power density. Thus, each of the 

first and second related signals is transformed into the frequency domain prior to the 

step of estimating, and the phase correction and the directional filtering are carried out 

5 in the frequency domain. This method is effective with respect to noises and only 

requires a low computation expenditure. The directional filters are at a fixed setting . 

The method assumes that the speaker is relatively close to the microphones, preferably 

within I meter, and that the speaker only moves within a limited area . Non-stationary 

and stationary point-like noise sources are damped by means of this spatial evaluation. 

10 Because noise reduction cannot take place error-free, distortions and artificial insertions 

such as "musical tones" can occur due to the spatial separation of the receiving channels 

(microphones at a specific spacing). Wnen the individually-processed channels are 

combined , an averaging is performed to reduce these errors . 

The composite signal is subsequently further processed with the use of 

15 cross-correlation of the signals in the individual channels, thus damping diffuse noise 

and echo components during subsequent processing. The individual voice channels are 

subsequently added whereby the statistical disturbances of spectral subtractioi:i are 

averaged. Finally , the composite signal resulting from the addition is subsequently 

processed with a modified coherence function to damp diffuse noise and echo 

20 components. The thus disclosed noise canceller effectively reduces noise using minimal 

computing resources. 

Figure 8 shows a portable embodiment of the present invention where the voice 

recognizer is housed in a wrist-watch. As shown in Figure 8, the personal computer 

includes a wrist-watch sized case 80 supponed on a wrist band 74. The case 80 may 

25 be of a number of variations of shape but can be conveniently made a rectangular, 

approaching a box-like configuration. The wrist-band 74 can be an expansion band or 

a wristwatch strap of plastic, leather or woven material . The wrist-band 74 further 

contains an antenna 76 for transmitting or receiving radio frequency signals. The 

wristband 74 and the antenna 76 inside the band are mechanically coupled to the top 

30 and bottom sides of the wrist-watch housing 80. Funher, the antenna 76 is electrically 

coupled to a radio frequency transmitter and receiver for wireless communications with 

another computer or another user. Although a wrist-band is disclosed, a number of 

substitutes may be used, including a belt, a ring holder, a brace, or a bracelet, among 

other suitable substitutes known to one skilled in the art. 

35 The housing 80 contains the processor and associated peripherals to provide the 

human-machine interface. A display 82 is located on the front section of the housing 

80. A speaker 84, a microphone 88, and a plurality of push-button switches 86 and 90 

are also located on the front section of housing 80. An infrared transmitter LED 92 

and an infrared receiver LED 94 are positioned on the right side of housing 80 to 

40 enable the user to communicate with another computer using infrared transmission. 
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Figure 9 illustrates the electronic circuitry housed in the watch case 80 for 

detecting utterances of spoken words by the user. and converting the utterances into 

digital signals. The circuitry for detecting and responding to verbal commands includes 

a central processing unit (CPU) 96 connected to a ROM/RAM memory 98 via a bus. 

5 The CPU 96 is a preferably low power 16-bit or 32-bit microprocessor and the memory 

98 is preferably a high density, low-power RAM. The CPU 96 is coupled via the bus 

lo a wake-up logic 100, an ADC 102 which receives speech input from the microphone 

10. The ADC converts the analog signal produced by the microphone 10 into a 

sequence of digital values representing the amplitude of the signal produced by the 

10 microphone 10 at a sequence of evenly spaced times. The CPU 96 is also coupled to 

a digital to analog (D/ A) converter I 06, which drives the speaker 84 to communicate 

with the user. Speech signals from the.microphone are first amplified, pass through an 

antialiasing filter before being sampled. The front-end processing includes an 

amplifier, a bandpass filter to avoid antialiasing, and an analog-to-digital (AID) 

15 converter 102 or a codec. To minimize space, the ADC 102, the DAC 106 and the 

interface for switches 86 and 90 may be integrated into one integrated circuit to save 

space. 

The resulting data may be compressed to reduce the storage and transmission 

requirements. Compression of the data stream may be accomplished via a variety of 

20 speech coding techniques such as a vector quantizer, a fuzzy vector quantizer, a code 

excited linear predictive coders (CELP), or a fractal compression approach. Further, 

one skilled in the an can provide a channel coder to protect the data stream from the 

noise and the fading that are inherent in a radio channel. 

The CPU 96 is also connected to an radio frequency (RF) transmitter/receiver 

25 112, an infrared transceiver 116, the display 82 and a Universal Asynchronous Receive 

Transmit (UART) device 120. As shown in Figure. 10, the radio frequency (RF) 

transmitter and receiver 112 are connected to the antenna 76. The transmitter portion 

124 converts the digital data, or a digitized version of the voice signal, from UART 120 

to a radio frequency (RF), and the receiver portion 132 converts an RF signal to a 

W digital signal for the computer, or to an audio signal to the user. An isolator 126 

decouples the transmitter output when the system is in a receive mode. The isolator 

126 and RF receiver portion 132 are connected to bandpass filters 128 and 130 which 

are connected to the antenna 76. The antenna 76 focuses and converts RF energy for 

reception _and transmission into free space. 

35 The transmitter portion 124 is shown in more detail in Figure 11. As shown in 

Figure 11, the data is provided to a coder 132 prior going into a differential quaternary 

phase-shift keying (DQPSK) modulator 134. Because the modulator 134 groups two 

bits at a time to create a symbol, four levels of modulation are possible. The DQPSK 

is implemented using a pair of digital to analog converters, each of which is connected 

40 to a multiplier to vary the phase shifted signals. The two signals are summed to form 
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the final phase-shifted carrier. 

The frequency cori_version of the modulated carrier is next carried in several 

stages in order to reach the high frequency RF range. The output of the DQPSK 

modulator 134 is fed to an RF amplifier 136, which boosts the RF modulated signal to 

5 the output levels. Preferably, linear amplifiers are used for the DQPSK to minimize 

phase distortion. The output of the amplifier is coupled to the antenna 76 via a 
transmitter/receiver isolator 126, preferably a PN switch. The use of a PN switch 

rather than a duplexer eliminates the phase distortion and the power loss associated with 

a duplexer. The output of the isolator 126 is connected to the bandpass filter 128 

10 before being connected to the antenna 76. 

As shown in Figure 12, the receiver portion 132 is coupled to the antenna 76 

via the bandpass filter I 30. The signal is fed to a receiver RF amplifier 140, which 

increases the low-level DPQSK RF signal to a workable range before feeding it to the 

mixer section. The receiver RF amplifier 140 is a broadband RF amplifier, which 

15 preferably has a variable gain controlled by an automatic gain controller (AGC) 142 to 

compensate for the large dynamic range of the received signal. The AGC also reduces 

the gain of the sensitive RF amplifier to eliminate possible distortions caused by 

overdriving the receiver. 

The frequency of the received carrier is stepped down to a lower frequency 

20 called the intermediate frequency (IF) using a mixer to mix the signal with the output 

of a local oscillator. The oscillator source is preferably_ varied so that the IF is a 

constant frequency. Typically, a second mixer superheterodynes the first IF with 

another oscillator source to produce a much lower frequency than the first IF. This 

enables the design of the narrow-band fillers. 

25 The output of the IF stage is delivered to a DQPSK demodulator 144 to extract 

data from the IF signal. Preferably, a local oscillator with a 90 degree phase-shifted 

signal is used. The demodulator 144 determines which decision point the phase has 

moved to and then determines which symbol is transmitted by calculating the difference 

between the current phase and the last phase to receive signals from a transmitter source 

30 having a differential modulator. An equalizer 146 is connected to the output of the 

demodulator 144 to compensate for RF reflections which vary the signal level. Once 

the symbol has been identified, the_ two bits are decoded using decoder 148. The output 

of the demodulator is provided to an analog to digital converter 150 with a 

reconstruction filter to digitire the received signal, and eventually delivered to the 

35 UART 120 which transmits or receives the serial data stream to the computer. 

In addition to the RF port, an infrared port 116 is provided available for data 

transmission. The infrared port 116 is a half-duplex serial port using infrared light as 

a communication channel. As shown in Figure 13, the UART 120 is coupled to an 

infrared transmitter 150, which converts the output of the UART 120 into the infrared 

40 output protocol and then initiating data transfer by turning an infrared LED 152 on and 
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off. The LED preferably transmits at a wavelength of 940 nanometers. 

When the UART 120 is in a receive mode, the infrared receiver LED 158 

converts the incoming light beams into a digital form for the computer. The inc_oming 

light pulse is transformed into a CMOS level digital pulse by the infrared receiver 156. 

5 The infrared format decoder 154 then generates the appropriate serial bit stream which 

is sent to the UART 120. The thus described infrared transmitter/receiver enables the 

user to update information stored in the computer to a desktop computer. In the 

preferred embodiment, the infrared port is capable of communicating at 2400 baud. 

The mark state, or logic level • l •, is indicated by no transmission. The space state, 

10 or logic low, is indicated by a single 30 millisecond infrared pulse per bit. Using 2400 

baud, a bit takes 416 milliseconds to transmit. The software to tran~mit or receive via · 

the infrared transmitter and receiver is similar to that for serial communication, with 

the exception that the infrared I/0 por:t will receive everything it sends due to 

reflections and thus must be software compensated. 

IS Figures 14 and 15 show two additional embodiments of the ponable computer 

with speech-recognition. In Figure 14, a handheld recorder is shown. The handheld 

recorder has a body 160 comprising microphone ports 162, 164 and 170 arranged in 

a first order noise cancelling microphone arrangement. The microphones 162 and 164 

are configured to optimally receive distant noises, while the microphone 170 is 

20 optimized for capturing the user's speech. As shown in Figure 14, a touch sensitive 

display 166 and a plurality ·of keys 168 are provided to capture hand inputs. Further, 

a speaker 172 is provided to generate a verbal feedback to the user. 

Turning now to Figure 15, a jewelry-sized computer with speech recognition is 

illustrated. ln this embodiment, a body 172 houses a microphone port 174 and ·a 

25 speaker port 176. The body 172 is coupled to the user via the necklace 178 so as lo 

provide a personal, highly accessible personal computer. Due to space limitations, 

voice input/output is one of the most important user interface of the jewelry-sized 

computer. Although a necklace is disclosed, one skilled in the art can use a number 

of other substitues such as a belt, a brace, a ring, or a band to secure the jewelry-si~ 

30 computer to the user. One skilled in the art can also readily adapt the electronics of 

Figure 9 to operate with the embodiment of Figure 15. 

As shown in Figure 16, the basic processing blocks of the computer with speech 

recognition capability are disclosed. In Figure 16, once the speech signal has been 

digitired and captured into the memory by the ADC 12, the digitired speech signal is 

35 parameterired into acoustic features by a feature extractor 180. The output of the 

feature extractor is delivered to a sub-word recognizer I 82. A word preselector I 86 

receives the prospective sub-words from the sub-word recognizer 182 and consults a 

dictionary 184 to generate word candidates. A syntax checker 188 receives the word 

candidates and selects the best candidate as being representative of the word spoken by 

40 the user. 

. ' 
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With respect to the feature extractor 180, a wide range of techniques is known 

in the art for representing the speech signal. These include the short time energy, the 

zero crossing rates, the level crossing rates, the filter-bank spectrum, the linear 
' 

predictive coding (LPC), and the fractal method of analysis. In addition, vector 

S quantization may be utilized in combination with any representation techniques. 

Further, one skilled in the art may use an auditory signal-processing model in place of 

the spectral models to enhance the system's robustness to noise and reverberation. 

The preferred embodiment of the feature extractor 180 is shown in Figure 17. 

The digitized speech signal series s(n) is put through a low-order filter, typically a first-

IO order finite impulse response filter, to spectrally flatten the signal and to make the 

signal less susceptible to finite precision effects encountered later in the signal 

processing. The signal is pre-emphasized preferably using a fixed pre-emphasis 

network, or preemphasizer 190. The signal can also be passed through a slowly 

adaptive pre-emphasizer. The output of the pre-emphasizer 190 is related to the spe.ech 

15 signal input s(n) by a difference equation: 

20 

s(n)=s(n)-0.9375s(n- l) 

The coefficient for the s(n-1) term is 0.9375 for a fixed point processor. 

However, it may also be in the range of 0.9 to 1.0. 

The preemphasized speech signal is next presented to a frame blocker 192 to be 

blocked into frames of N samples with adjacent frames being separated by M samples. 

Preferably N is in the range of 400 samples while M is in the range of 100 samples. 

Accordingly, frame I contains the first 400 samples. The frame 2 also contains 400 

samples, but begins at the 300th sample and continues until the 700th sample. Because 

25 the adjacent frames overlap, the resulting LPC spectral analysis will be correlated from 

frame to frame. Accordingly, frame I of speech is indexed as : 

x 1 (n) =s (Ml •nl 

where n = 0 .. N-1 and I = 0 .. L-1. 

Each frame must be windowed to minimize signal discontinuities at the 

beginning and end of each frame. The windower 194 tapers the signal to zero at the 

30 beginning and end of each frame. Preferably, the window 194 used for the 

autocorrelation method of LPC is the Hamming window, computed as: 

x1 (nl =x1 (n) w(n) 
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w(n)=0.54-0.46cos( 2nn) 
N-1 

where n = 0.. N-l. Each frame of windowed signal is next autocorrelated by an 

autocorrelator 196 to give: 

N-1-m ,, 

r (ml= L x1 (n) x1 (n•m) 
n•o ~ 

S where m = 0 .. p. The highest autocorrelation value p is the order of the LPC analysis 

which is preferably is 8. 

A noise canceller 198 operates in conjunction with the autocorrelator 196 to 

minimize noise in the event the high-order noise cance\lation arrangement of Figure 7 

is not used. Noise in the speech pattern is estimated during speaking pauses, and the 

10 temporally stationary noise sources are damped by means of spectral subtraction, where 

the autocorrelation of a clean speech signal is obtained by subtracting the 

autocorrelation of noise from that of corrupted speech. In the noise cancellation unit 

198, if the energy of the current frame exceeds a reference threshold level, the user is 

presumed to be speaking to the computer and the autocorrelation of coefficients 

IS representing noise is not updated. However, if the energy of the current frame is below 

the reference threshold level, the effect of noise on the correlation coefficients is 

subtracted off in the spectral domain. The result is half-wave rectified with proper 

threshold setting and then converted to the desired autocorrelation coefficients. 

The output of the autocorrelator 196 and the noise canceller 198 are presented 

20 to one or more parameterization units, including an LPC parameter unit 200; an FFT 

parameter unit 202, an auditory model parameter unit 204, a fractal parameter unit 206, 

or a wavelet parameter unit 208, among others. The parameterization units are 

connected to the parameter weighing unit 210, which is further connected to the 

temporal derivative unit 2 12 before it is presented to a vector quantizer 214. 

25 The LPC analysis block 200 is one of the parameter blocks processed by the 

preferred embodiment. The LPC analysis converts each frame of p+ l autocorrelation 

values into an LPC parameter set as follows: 

L-1 

r(i)-}: cxJJ-11r(Ji-jl) 
k :s •1 

1 E <i-1l 

The final solution is given as: 

j , 

I 
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N t i> _N t,-11 -k a c,-1> 
~j -~1 i i - j 

E <1> = ( 1 - kfl E ti-i> 

1-k 
g =log(--m) 

., l+km 

The LPC parameter is then converted into cepstral coefficients. The cepstral 

5 coefficients are the coefficients of the Fourier transform representation of the log 

magnitude spectrum. The cepstral coefficient c(m) is computed as follows: 

10 

where sigma represents the gain term in the LPC model. 

Although the LPC analysis is used in the preferred embodi!llent, a filter banlc 

spectral analysis, which uses the short-time Fourier transformer 202, may also be used 

alone or in conjunction with other parameter blocks. FFT is well known in the art of 

digital signal processing. Such a transform converts a time domain signal, measured 

as amplitude over time, into a frequency domain spectrum, which expresses the 

15 frequency content of the time domain signal as a number of different frequency bands. 

The FFT thus produces a vector of values corresponding to the energy amplitude in 

each of the frequency bands. The FFT converts the energy amplitude values into a 

logarithmic value which reduces subsequent computation since the logarithmic values 

are more simple to perform calculations on than the longer linear energy amplitude 

20 values produced by the FFT, while representing the same dynamic range. Ways for 

improving logarithmic conversions are well known in the art, one of the simplest being 
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use of a look-up table. 

In addition, the FFT modifies its output to simplify computations based on the 

amplitude of a given frame. This modification is made by deriving an average value 

of the logarithms of the amplitudes for all bands. This average value is then subtracted 

5 from each of a predetennined group of logarithms, representative of a predetermined 

group of frequencies. The predetermined group consists of the logarithmic values, 

representing each of the frequency bands. Thus, utterances are converted from acoustic 

data to a sequence of vectors of k dimensions, each sequence of vectors identified as 

an acoustic frame, each frame represents a portion of the utterance. 

10 Alternatively, auditory modeling parameter unit 204 can be used alone or in 

conjunction with others to improve the parameterii.ation of speech signals in noisy and 

reverberant environments. In this approach, the filtering section may be represented 

by a plurality of filters equally spaced on a log-frequency scale from 0 Hz to about 

3000 Hz and having a prescribed response corresponding to the cochlea. The nerve 

I 5 fiber firing mechanism is simulated by a multilevel crossing detector at the output of 

each cochlear filter. The ensemble of the multilevel crossing intervals corresponding 

to the firing activity at the auditory nerve fiber-array. The interval between each 

successive pair of same direction, either positive or negative going, crossings of each 

predetermined sound intensity level is determined and a count of the inverse of these 

20 interspike intervals of the multilevel detectors for each spectral portion is stored as a 

function of frequency. The resulting histogram of the ensemble of inverse interspike 

intervals forms a spectral pattern that is representative of the spectral distribution of the 

auditory neural response to the input sound and is relatively insensitive to noise The use 

of a plurality of logarithmically related sound intensity levels accounts for the intensity 

25 of the input signal in a particular frequency range. Thus, a signal of a particular 

frequency having high intensity peaks results in a much larger count for that frequency 

than a low intensity signal of the same frequency. The multiple level histograms of the 

type described herein readily indicate the intensity levels of the nerve firing spectral 

distribution and cancel noise effects in the individual intensity level histograms. 

30 Alternatively, the fractal parameter block 206 can further be used alone or in 

conjunction with others to represent spectral information. Fractals have the property 

of self simi.larity as the spatial scale is changed over many orders of magnitude. A 

fractal function includes both the basic form inherent in a shape and the statistical or 

random properties of the replacement of that shape in space. As is known in the art, 

35 a fractal generator employs mathematical operations known as local affine 

transformations. These transformations are employed in the process of encoding digital 

data representing spectral data. The encoded output constitutes a "fractal transform" 

of the spectral data and consists of coefficients of the affine transformations. Different 

fractal transforms correspond to different images or sounds. The fractal transforms are 

40 iteratively processed in the decoding operation. As disclosed in U.S. Patent No. 
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5,347,600, issued on September 13, 1994 to Barnsley, et al., one fractal generation 

method comprises the steps of storing the graphical data in the CPU; generating a 

plurality of uniquely addressable domain blocks from the stored spectral data, each of 

the domain blocks representing a different ponion of infonnation such that all of the 

5 stored image infonnation is contained in at least one of the domain blocks, and at least 

two of the domain blocks being unequal in shape; and creating, from the stored ima~e 

data, a plurality of uniquely addressable mapped range blocks corresponding to different 

subsets of the image data with each of the subsets having a unique address. The 

creating step included the substep of executing , for each of the mapped range blocks, 

10 a corresponding procedure upon the one of the subsets of the image data which 

corresponds to the mapped range block. The method further includes the steps of 

assigning unique identifiers to corresponding ones of the mapped range blocks, each of 

the identifiers specifying for the corresponding mapped range block an address of the 

corresponding subset of image data; selecting , for each of the domain blocks, the one 

15 of the mapped range blocks which most closely corresponds according to pi'edetennined 

criteria; and representing the image information as a set of the identifiers of the selected 

mapped range blocks. 

In U.S. Patent No. 4,694,407, issued to Joan M . Ogden, another method for 

generating fractals using their self-similarity properties is disclosed. The self-similarity 

20 property of fractals are related to the self-similarity existing in inverse pyramid 

transforms. As discussed by P.J. Burt and E.H. Adelson in• A Multiresolution Spline 

with Application to Image Mosaics", ACM Transactions on Graphics, Vol. 2, No . 4, 

October 198~, pp. 217-236, the pyramid transform is a spectrum analysis model that 

separates a signal into a spatial-frequency band-pass components, ea.ch approximately 

25 an octave wide in one or more dif!lensions and a remnant low-pass component. The 

band-pass components have successively lower center frequencies and successively less 

dense sampling in each- dimension, each being halved from one band-pass component 

to the next lower. The remnant low-pass component may be sampled with the same 

density as the lowest band-pass component or may be sampled half so densely in each 

30 dimension. Processes that operate on the transform . result components affect, on 

different scales, the reconstruction of signals in an inverse transform process. 

Processes operating on the lower spatial frequency, more sparsely sampled transfonn 

result components affect the reconstructed signal over a larger region than do processes 

operating on the higher spatial frequency, more densely sampled transform result 

35 components. The more sparsely sampled transform result components are next 

expanded through interpolation to be sampled at the same density as the most densely 

sampled transform result. The expanded transfonn result components, now sampled 

at similar sampling density, are linearly combined by a simple matrix summation which 

adds the expanded transform result components at each corresponding sample location 

40 in the shared most densely sampled sample space to generate the fractal. The 
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pyramidal transformation resembles that of a wavelet parameterization. 

Alternatively, a wavelet parameterization block 208 can be used alone or in 

conjunction with others to generate the parameters. Like the FFT, the discrete wavelet 

transform (DWf) can be viewed as a rotation in function space, from the input space, ' 

5 or time domain, to a different domain . The Dwr consists of applying a wavelet 

coefficient matrix hierarchically, first to the full data vector of length N, then to a 

smooth vector of length N/2, then to the smooth-smooth vector of length N/4, and so . 

on. Most of the usefulness of wavelets rests on the fact that wavelet transforms can 

usefully be severely truncated, that is, turned into sparse expansions. In the DWT • 

10 parameterization block, the wavelet transform of the speech signal is performed. The 

wavelet coefficients is allocated in a nonuniform, optimized manner. In general, large 

wavelet coefficients are quantized accurately , while small coefficients are quantized 

coarsely or even truncated completely to achieve the parameterization . 

Due to the sensitivity of the low-order cepstral coefficients to the overall spectral 

15 slope and the sensitivity of the high-order cepstral coefficients to noise variations, the 

parameters generated by block 208 may be weighted by a parameter weighing block 

210, which is a tapered window, so as to minimize these sensitivities. 

Next, a temporal derivator 212 measures the dynamic changes in the spectra. 

The regression coefficient, essentially a slope measurement, is defined as: 

20 

& 

L nC,.(t+n) 
Rm(t)=~n_•-~&_a __ _ 

L n2 
n•-6 

where R is the regression coefficient and Cm(t) is the m-th coefficient of the t-th frame 

of the utterance. Next, a differenced LPC cepstrum coefficient set is computed by: 

25 where the differenced coefficient is computed for every frame, with delta set to two 

frames. 

Power features are also generated to enable the system to distinguish speech 

from silence. Power can simply computed from the waveform as: 

H 

P"'log (Y' xf> 
~ 

30 where P is the power for frame n, which has M discrete time samples that has been 

Hamming windowed. Next, a differenced power set is computed by: 
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where the differenced coefficient is computed for every frame, with delta set to two 

frames. 

After lhe feature extraction has been performed, the speech parameters are next 

5 assembled into a multidimensional vector and a large collection of such feature signal 

vectors can be used to generate a much smaller set of vector quantized (VQ) feature 

signals by a vector quantizer 214 that cover the range of the larger collection. In 

addition to reducing lhe storage space, the VQ representation simplifies the computation 

for determining the similarity of spectral analysis vectors and reduces the similarity 

10 computation to a look-up table of similarities between pairs of codebook vectors. To 

reduce the quantization error and to increase the dynamic range and the precision of the 

vector quantirer, the preferred embodiment partitions the feature parameters into 

separate codebooks, preferably three. In the preferred embodiment, the first, second 

and third codebooks correspond to the cepstral coefficients, the differenced cepstral 

15 coefficients, and the differenced power coefficients. The construction of one codebook, 

which is representative of the others, is described next. 

The preferred embodiment uses a binary split codebook approach shown in 

Figure 18 to generate the codewords in each codebook. In the preferred embodiment, 

an M-vector codebook is generated in stages, first with a I-vector codebook and then 

20 splitting the codewords into a 2-vector codebook and continuing the process until an M

vector codebook. is obtained, where Mis preferably 256. 

The codebook is 'derived from a set of training vectors X[q] obtained initially 

from a range of speakers who read one or more times a predetermined text with a high 

coverage of all phonemes into the microphone for training purposes. As shown in step 

25 216 of Figure 18, the vector centroid of the entire set of training vectors is computed 

by: 

30 

ln step 218, the codebook sire is doubled by splitting each current codebook to 

form a tree as: 

where n varies from 1 to the current size of the codebook and epsilon is a relatively 
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small valued splitting parameter. 

In step 220, the data groups are classified and assigned to the closest vector 

using the K-means iterative technique to get the best set of centroids for the split 

codebook. For each training word, a training vector is assigned to a cell corresponding 

5 to the codeword in the current codebook, as measured in terms of spectral distance. 

In step 220, the codewords are updated using the centroid of the training vectors 

assigned to the cell as follows: 

W[AJ " W[AJ •11 (X[q) -W(Al), o,;11,;1 

The distortion is computed by summing the distances of all training vectors in 

10 the nearest-neighbor search so as to determine whether the procedure has converged: 

N 

d1q"1;L (w,,i-Xnql 2 

n• l 

wherein w and x represent scalar elements of a vector. 

In step 222, the split vectors in each branch of the tree is compared to each 

other to see if they are very similar, as measured by a threshold. If the difference is 

15 lower than the threshold, the split vectors are recombined in step 224. To maintain the 

tree balance, the most crowded node in the opposite branch is split into two groups, one 

of which is redistributed to take the space made available from the recombination of 

step 224. Step 226 further performs node readjustments to ensure that the tree is 

properly pruned and balanced. In step 228, if the desired number of vectors has been 

20 reach, the process ends; otherwise, the vectors are split once ~ore in step 218. 

25 

The resultant set of codewords form a well-distributed codebook. During look 

up using the codebook, an input vector may be mapped t<? the nearest codeword in one 

embodiment using the formula: 

Generally, the quantization distortion can be reduced by using a large codebook. 

However, a very large codebook is not practical because of search complexity and 

memory limitations. To keep the codebook size reasonable while maintaining the 

robustness of the codebook, fuzzy logic can be used in another embodiment of the 

vector quantizer. 

30 With conventional vector quantization, an input vector is represented by the 

codeword closest to the input vector in terms of distortion. In conventional set theory, 

an object either belongs to or does not belong to a set. This is in contrast to fuzzy sets 

where the membership of an object to a set is not so clearly defined so that the object 
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can be a part member of a set. Data are assigned to fuzzy sets based upon the degree 

of membership therein, which ranges from O (no membership) to 1.0 (full membership). 

A fuzzy set theory uses membership functions to determine the fuzzy set or sets to 

which a particular data value belongs and its degree of membership therein. 

5 The fuzzy vector quantization represents the input vector using the fuzzy 

lO 

relations between the input vector and every codeword as follows: 

.whc,c x'(k~ is a fu22y VQ Fe!lFeSeRtatten of the input .oe1er x(lr) &lld ¥(it is a 

codeword, c is the number of codewords, m is a constant, and 11(i,IE) is! 

du:. xK Vr.. 
where ~is the distance of the input vector~ and the codeword :µ_ef. 

To handle the variance of speech patterns of individuals over time and to 

perform speaker adaptation in an automatic, self-organizing manner, an adaptive 

clustering technique called hierarchical spectral clustering is used . Such speaker 

15 changes can result from temporary or permanent changes in vocal tract characteristics 

or from environmental effects . Thus, the codebook performance is improved by · 

collecting speech patterns over a long period of time to account for natural variations 

in speaker behavior. The adaptive clustering system is defined as: 

-, -
W[A} =W[A ) + (X -W[A) l 

2 

20 where the vector X' is tJ1e speech vector closest in spectral distance to W[A) after 

training. 

In the preferred embodiment, a neural network is used to recognize each 

codeword in the codebook as the neural network is quite robust at recognizing 

codeword patterns. Once the speech features have been characterized, the speech 

25 rerognirer then compares the input speech with the stored templates of the vocabulary 

known by the speech recognizer. Turning now to Figure 19, the conversion of VQ 

symbols into one or more words is disclosed. A number of speaking modes may be 
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encountered, including isolated word recogmt1on, connected word recognition and 

continuous speech recognition. The recognition of isolated words from a given 

vocabulary for a known speaker is well known. In isolated word recognition, words 

or the vocabulary are prestored as individual templates, each template representing the 

5 sound pattern of a word in the vocabulary. When an isolated word is spoken, the 

system compares the word to each individual template representing the vocabulary and 

if the pronunciation of the word matches the template, the word is identified for further 

processing. However, a simple template comparison of the spoken word to a pre-stored 

model is insufficient, as there is an inherent variability to human speech which must be 

10 considered in a speech recognition system. 

As shown in Figure 19, data from the vector quantizer 214 is presented to one 

or more recognition models, including an HMM model 230, a dynamic time warping 

model 232, a neural network 234, a fuzzy logic 236, or a template matcher 238, among 

others. These models may be used singly or in combination. The output from the 

15 models is presented to an initial N-gram generator 240 which groups N-number of 

outputs together and generates a plurality of confusingly similar candidates as initial N

gram prospects. Next, an inner N-gram generator 242 generates one or more N-grams 

from the next group of outputs and appends the inner trigrams to the outputs generated 

from the initi3;i N-gram generator 240. The combined N-grams are indexed into a 

20 dictionary to determine the most likely candidates using a candidate preselector 244. 

25 

The output from the candidate preselector 244 is presented to a word N-gram model 

246 or a word grammar model 248, among others to select the most likely word in box 

250. The word selected is either accepted or rejected by a voice user interface (VUI) 

252. 

The string of phonemes representative of continuous speech needs to be 

identified before they can be decoded into discrete words. One embodiment of the 

present invention applies dynamic programming to the recognition of isolated or 

connected speech in the DTW model 232. Figures 20 and 21 show, for illustrative 

purposes, the matching of the dictionary word 'TEST" with the input "TEST" and 

30 "TESST". As shown in Figures 20 and 2 1, the effect of dynamic processing, at the 

time of recognition, is to slide, or expand and contract, an operating region, or 

window, relative to the frames of speech so as to align those frames with the node 

models of each vocabulary word to find a relatively optimal time alignment between 

those frames and those nodes. The dynamic processing in effect calculates the 

35 probability that a given sequence of frames matches a given word model as a function 

of how well each such frame matches the node model with which it has been 

time-aligned. The word model which has the highest probability score is selected as 

corresponding to the speech. 

Dynamic programming obtains a relatively optimal time alignment between the 

40 speech to be recognized and the nodes of each word model, which compensates for the 
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unavoidable differences in speaking rates which occur in different utterances of the 

same word. In addition, since dynamic programming scores words as a function of the 

fit between word models and the speech over many frames, it usually gives lhe correct 

word the best score, even if the word has been slightly misspoken or obscured by 

5 background sound. This is important, because humans often mispronounce words either 

by deleting or mispronouncing proper sounds, or by inserting sounds which do not 

belong. 

In dynamic time w~ing, the input speech A, defmed as . the sampled time 

values A = a(l) ... a(n), and the vocabulary candidate B, defined as the sampled time 

10 values B = b(l) ... b(n) , are matched up to minimize the discrepancy in each matched 

pair of samples. Computing the warping function can be viewed as the process of 

finding lhe minimum cost path from the beginning to the end of the words, where the 

cost is a function of the discrepancy between the corresponding points of the two words 

to be compared. 

15 The warping function can be defined to be: 

C = c(l) , c(2), ... , c(k) , ... c(K) 

where each c is a pair of pointers to the samples being matched: 

c(k) = [i(k), j(k)] 

In this case, values for A are mapped into i, while B values are mapped into j. 

20 For each c(k) , a cost functi?n is computed between the paired samples. The cost 

function is defined to be: 

25 

30 

d[c(k) )-= (a;(t> -bJ<1<>) 2 

The warping function minimizes lhe overall cost function: 

IC 

D(C) =}: d[c(k) J 
k•l 

subject to lhe constraints that the function must be monotonic 

i(k) 2.. i(k-1) and j(k) 2.. j(k-1) 

and that the endpoints of A and B must be aligned with each other, and that the 

function must not skip any points. 

Dynamic programming considers all possible points within the permitted domain 

for each value of i. Because the best path from the current point to the next point is 

independent of what happens beyond that point. Thus, the total cost of [i(k), j(k)] is 

the cost of the point itself plus lhe cost of the minimum path to it. Preferably, the 

values of the predecessors can be kept in an MxN array, and the accumulated cost kept 

35 in a 2xN array to contain the accumulated costs of the immediately preceding column 
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and the current column. However, this method requires significant computing 

resources. 

ln Salcoe's "Two level DP Matching--A dynamic programming based pattern 

matching algorithm for connected word recognition", IEEE Trans. Acous1ics, Speech 

5 and Signal Processing, Vol. ASSP-27, No. 6. pp. 588-595 , Dec. 1979, the method of 

whole-word template matching has been extended to deal with connected word 

recognition. The paper suggests a two-pass dynamic programming algorithm to find 

a sequence of word templates which best matches the whole input pat.tern. In the first 

pass, a score is generated which indicates the similarity between every template . 

10 matched against every possible portion of the input pattern. In the second pass, the 

score is used to find the best sequence of templates corresponding to the whole input 

pattern. 

Dynamic programming requires a tremendous amount of computation. For _the 

speech recognizer to find the optimal time alignment between a sequence of frames and 

15 a sequence of node models, it must compare most frames against a plurality of node 

models. One method of reducing the amount of computation required for dynamic 

programming is to use pruning. Pruning terminates the dynamic programming of a 

given portion of speech against a given word model if the partial probability ~core for 

that comparison drops below a given threshold. This greatly reduces computation, · 

20 since the dynamic programming of a given portion of speech against most words 

produces poor dynamic programming scores rather quickly, enabling most words to be 

pruned after only a small percent of their comparison has been performed. 

To reduce the computations involved, one embodiment limits the search to that 

within a legal path of the warping. Typically, the band where the legal warp path must 

25 lie is usually defined as I i-j I _s_ r, where r is a constant representing the vertical 

window width on the line defined by A & B. To minimire the points to be computed, ' 

the DTW limits its computation to a narrow band of legal path to: 

. L 
li-2 ls-E (~) 

S 2 

where L(t) is the length of the perpendicular vector connecting L(A) with j = S(i) + 
30 r and L(B) with j = S(i) - r, and S = slope as defined by A/B. 

Considered to be a generali7.ation of dynamic programming, a hidden Markov 

model is used in the preferred embodiment to evaluate the probability of occurrence of 

a sequence ofobservations 0(1), 0(2), ... O(t), ... , O(T), where each observation O(t) 

may be either a discrete symbol under the VQ approach or a continuous vector. The 

35 sequence of observations may be modeled as a probabilistic function of an underlying 

Markov chain having state transit.ions that are not directly observable. 

In the preferred embodiment, the Markov network is used to model 
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approximately 50 phonemes and approximately 50 confusing and often slurred function 

words in the English language. While function words are spoken clearly in isolated

word speech, these function words are often articulated extremely poorly in continuous 

speech. The use of function word dependent phones improves the modeling of specific 

5 words which are most often distorted. These words include, "a", "an" , "be" , "was'', 

"will" , "would,'' among others. 

Figure 22 illustrates the hidden Markov model used in the preferred· 

embodiment. Referring to Figure 22, there are N states 254, 256, 258, 260, 262, 264 

and 266. The transitions between states are represented by a transition matrix A = 
10 [a(i,j)]. Each a(i,j) term of the transition matrix is the probability of making a 

transition to state j given that the model is in state i. The output symbol probability of 

the model is represented by a set of functions B=[bG) (O(t)] , where the bG) (O(t) term 

of the output symbol matrix is the probability of outputting observation O(t), given that 

the model is in state j. The first state is always constrained to be the initial state for 

15 the first time frame of the utterance, as only a prescribed set of left-to-right state 

transitions are possible. A predetermined final state is defined from which transitions 

to other states cannot occur. These restrictions are shown in the model state diagram 

of Figure 22 in which state 254 is the initial state, state 266 is the final or absorbing 

state, and the prescribed left-to-right transitions are indicated by the directional lines 

20 connecting the states. 

Referring to Figure 22, transitions from the exemplary state 258 is shown. 

From state 258 in Figure 22, it is only possible to reenter state 258 via path 268, to 

proceed to state 260 via path 270, or to proceed to state 262 via path 274. 

Transitions are restricted to reentry of a state or entry to one of the next two 

25 states. Such transitions are defined in the model as transition probabilities. For 

example, a speech pattern currently having a frame of feature signals in state 2 has a 

probability of reentering state 2 of a(2,2), a probability a(2,3) of entering state 3 and 

a probability of a(2,4) = I - a(2, I) - a(2,2) of entering state 4. The probability a(2, 1) 

of entering state 1 or the probability a(2,5) of entering state 5 is zero and the sum of 

30 the probabilities a(2, I) through a(2,5) is one. Although the preferred embodiment 

restricts the flow graphs to the present state or to the next two states, one skilled in the 

art can build an HMM model without any transition restrictions, although the sum of 

all the probabilities of transitjoning from any state must still add up to one. 

In each state of the model, the current feature frame may be identified with one 

35 of a set of predefined output symbols or may be labeled probabilistically. In this case, 

the output symbol probability bG) O(t) corresponds to the probability assigned by the 

model that the feature frame symbol is O(t). The model arrangement is a matrix 

A ={a(ij)] of transition probabilities and a technique of computing B= bG) O(t), the 

feature frame symbol probability in state j. 

40 The probability density of the feature vector series Y = y(I) , ... ,y(T) given the 
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state series X = x.(l), . .. , x(T) is 

[Precise solution] 

L1 (v) =E p{y,xp .. vJ 
X 

[Approximate solution] 

½ ( v) :max [.P{Y, x!), '1) 
X 

[Log approximate solution] 

L3 ( v) =max [log.P{Y, xl,l .. ")J 
X 

The final recognition result v of the input voice signal x is given by: 

v=argmax[Ln ( v) J 
V 

10 where n is a positive integer. 

The Markov model is formed for a reference pattern from a plurality of 

sequences of training patterns and the output symbol probabilities are multivariate 

Gaussian function probability densities. As shown in Figure 23, the voice signal 

15 traverses through the feature extractor 276. During learning, the resulting feature 

vector series is processed by a parameter estimator 278, whose output is provided to 

the hidden Markov model. The hidden Markov model is used to derive a set of 

reference pattern templates 280-284, each template 280 representative of an identified 

pattern in a vocabulary set of reference phoneme patterns. The Markov model 

20 reference templates 280-284 are next utilized to classify a sequence of observations into 

one of the reference patterns based on the probability of generating the observations 

from each Markov model reference pattern template. During recognition, the unknown 

pattern can then be identified as the reference pattern with the highest probability in the 

likelihood calculator 286. 

25 Figure 24 shows the recognizer with neural network templates 288-292. As 

shown in Figure 24, the voice signal traverses through the feature extractor 276. 

During learning, the resulting feature vector series is processed by a parameter 

estimator 278, whose output is provided to the neural network. The neural network is 

stored in a set of reference pattern templates 288-292, each of templates 288-292 being 

30 representative of an identified pattern in a vocabulary set of reference phoneme 

patterns. The neural network reference templates 288-292 are then utilized lo classify 
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a sequence of observations as one of the reference patterns based on the probability of 

generating the observations from each neural network reference pattern template. 

During recognition, the unknown pattern can then be identified as the reference pattern 

with the highest probability in the likelihood calculator 286. 

In Figure 23, the HMM template 280 has a number of states, each having a 

discrete value. However, because speech features may have a dynamic pattern in 

contrast to a single value. The addition of a neural network at the front end of the 

HMM in an embodiment provides the capability of representing states with dynamic 

values. In Figure 25, the inpul layer of the neural necwork comprises input neurons 

10 294-302. The outputs of the input layer are distributed to all neurons 304-310 in the 

middle layer. Similarly, the outputs of the middle layer are distributed to all output 

states 312-318, which normally would be the output layer of the neuron. However, in 

Figure 25, each output has transition probabilities to itself or to the next outputs. thus 

forming a modified HMM. Each state of the thus formed HMM is capable of 

15 responding to a particular dynamic signal, resulting in a more robust HMM. 

Alternatively, the neural network can be used alone without resorting to the transition 

probabilities of the HMM architecture. The configuration shown in Figure 25 can be 

used in place of the template element 280 of Figure 23 or element 288 of Figure 24. 

Turning back to Figure 16, the subwords detected by the subword recognizer 

20 182 of Figure 16 are provided lo a word preselector 186. In a continuous speech 

recognizer, lhe discrete words need to be identified from the stream of phonemes. One 

approach to recognizing discrete words in continuous speech is to treat each successive 

phonemes of the speech as the possible beginning of a new word, and to begin dynamic 

programming at each such phoneme against the start of each vocabulary word. 

25 However, this approach requires a tremendous amount of computation. A more 

efficient method used in the prior art begins dynamic programming against new words 

only at those frames for which the dynamic programming indicates that the speaking 

of a previous word has just ended. Although this latter method provides a considerable 

improvement over the brute force matching of the prior art, there remains a need to 

30 further reduce computation by reducing the number of words against which dynamic 

programming is to be applied. 

One such method of reducing the number of vocabulary words against which 

dynamic programming is applied in continuous speech recognition associates a phonetic 

label with each frame of the speech to be recognized. Speech is divided into segments 

35 of successive phonemes associated with a single word. For each given segment, the 

system takes the sequence of trigrams associated with that segment plus a plurality of 

consecutive sequence of trigrams, and refers 10 a look-up table to find the set of 

vocabulary words which previously have been detennined to have a reasonable 

probability of starting with that sequence of phoneme labels. The thus described 

40 wordstart cluster system limits the words against which dynamic programming could 
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start in the given segment to words in that cluster or set. 

The word-start cluster method is performed by~ word preselector 186, which 

is essentially a phoneme string matcher where the strings provided to it may be 

corrupted as a result of misreading, omitting or inserting phonemes. The errors are 

5 generally independent of the phoneme position within the string. The phoneme 

sequence can be corrected by comparing the misread string to a series of valid phoneme 

strings stored in a lexicon and computing a holographic distance 10 compare the 

proximity of each lexicon phoneme string to the speech phoneme string. 

Holographic distance may be computed using a variety of techniques, but 

IO preferably, the holographic distance measurements shares the following characteristics: 

(I) two copies of the same string exhibit a distance of zero: (2) distance is greatest 

between strings that have few phonemes in common, or that have similar phonemes in 

very different or~er; (3) deletion, insertion or substitution of a single phoneme causes 

only a small increase in distance; and (4) the position of a nonmatching phoneme within 

I 5 the string has little or no effect on the distance. 

As shown in Figure 26, the holographic distance metric uses an N-gram hashing 

technique, where a set of N adjacent letters are bundled into a string is called an 

N-gram. Common values for N are 2 or 3, leading to bigram or trigram hashing, 

respectively. In the preferred embodiment, a start trigram and a plurality of inner 

20 trigrams are extracted from the speech string in box 320, which may have corrupted 

phonemes. In box 322, the start trigrams are generated by selecting the first three 

phonemes. After the original start trigram has been pick~, extended trigrams are 

generated using the phoneme recognition error probabilities in the confusion matrix 

covering confusingly similar trigrams. For substitution errors, several phonemes with 

25 high substitution probabilities are selected in addition to the original phonemes in the 

trigram in box 322. Similarly, extended start trigrams are generated for phoneme 

omission and insertion possibilities in boxes 324-326. 

Once extended start trigrams have been generated, a plurality of inner trigrams 

is generated by advancing, or sliding, a window across the speech string one phoneme 

30 at a time in step 328. The combined extended start trigrams and the inner trigrams are 

combined into a plurality of trigram candidates in step 330. A substring search for the 

occurrences of the generated inner trigram is then performed on the candidates in box 

332, with the count of the matching inner trigrams being summed up as the measure 

of similarity. In addition to the matching of strings, the measure of similarity also 

35 rewards the similarities in the location of the trigrams. Thus, similar trigrams 

occupying similar slots in the strings are awarded more points. Summing the absolute 

values of the differences for all trigrams results in a Manhattan distance measurement 

between the strings. Alternatively, the count differences can be squared before 

summing, to yield a squared Euclidean distance measurement. The entry with the 

40 laigest count is picked as the preselected word. 
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Figure 27 shows another view of the candidate pre-selection operation. In box 

340, the representative sample word is "TESTS." As shown in box 350, the trigram · 

is "TES" . Further, the "TES" trigram is, for illustrative purpose, confusingly similar 

to "ZES", among others. In box 352, the deletion of the "E" leaves the trigram "TS 

5 ", among others. Similar, in box 354, the insertion of the "H" generates the trigram 

"THE", among others. In box 356, an inner trigram • EST" is generated by the 

grouping 344, while another inner trigram "STS" is generated by the grouping 346. 

In step 358, the initial trigrams are collected together, ready for merging with the inner 

trigrams in box 356. rn step 360, the initial trigrams and the inner trigrams are 

10 combined and indexed into the dictionary 362 using the holographic trigram matching 

counts disclosed above. In box 362, the candidates TESTS and ZESTS are selected as 

the most likely candidates based on the· matching counts. In this manner, possible 

candidates to be recognized are generated to cover the possibilities that one or more 

subwords, or phonemes, may not have been properly recognized. 

15 Once the word candidates have been preselected, the preselected words are 

presented to a syntax checker 188 of Figure 16 which tests the grammatical consistency 

of preselected words in relationship with previous words. If the syntax checker 188 

accepts the preselected word as being syntactically consistent, the preselected .word is 

provided to the user via the user interface. The syntax checker 188 partially overcomes 

20 the subword preselector's inability to uniquely determine the correct word. For 

instance, the word preselector may have a difficult time determining whether the speech 

segment was "one-two-three" or "won-too-tree." Similarly, the system may have a 

hard time distinguishing "merry• from "very" or •pan• from "ban.• Yet, the context, 

in the fonn of syntax, often overcomes confusingly similar homonyms. 

25 In one embodiment, the preselected words are scored using N-gram models, 

which are statistical models of the language based on prior usage history. In the event 

of a bigram system, the bigram models are created by consulting the usage history to 

find the occurrences of the word and the pair of words. The use of bigram models 

reduces the perplexity, or the average word branching factor of the language model. 

30 In a 1,000 word vocabulary system with no grammar restriction, the perplexity is about 

1,000 since any word may follow any other word. The use of bigram models reduces 

the perplexity of a 1,000 word vocabulary system to about 60. 

[n another embodiment, a syntax analyz:er is utilized to eliminate from 

consideration semantically meaningless sentences. The analysis of a language is 

35 typically divided into four parts: morphology (word structure), syntax (sentence 

structure), semantics (sentence meaning) and pragmatics (relationship between 

sentences). Thus, English words are assigned to one more more part-of-speech 

categories having similar syntactic properties such as nouns, verbs, adjectives, and 

adverbs, among others. 

40 In the embodiment implementing an appointment calendar portion of a PIM, a 
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grammar/syntax unit is used to perform conventional syntax restrictions on the stored 

vocabulary with which the speech is compared, according to the syntax of previously 

identified words. The word candidates are also scored based on each word's part-of

speech via a grammar analyzer which processes the words to determine a higher 

5 grammatical structure and to detect mismatches. 

In the preferred embodiment, the syntax checker comprises a state machine 

specifying the allowable state transitions for a personal information manager (PIM) ," 

specifically an appointment calendar. As shown in Figure 28, the state machine is 

initialized in IDLE state 370. If the user utters "Add Appointment" , the state machine 

10 transitions to a state ADD 372. If the user utters "Delete Appointment", the state· 

machine transitions to a state DEL 378. If the user utters "Search Appointment", the 

state machine transitions to a state SRCH 3&4. If the user utters "Edit Appointment" , 

the state machine transitions to a state EDT 390. 

Once in states ADD 372, DEL 378, SRCH 384 and EDT 390, the state machine 

15 transitions to states PARAM 374, 380, 386 and 392, which are adapted to receive 

parameters for each ADD, DEL, SRCH and EDT operation. Once the parameters have 

been obtained, the state machine transitions to the SA VE state 376 to save the 

parameters into the appointment, the DELETE state 382 to remove the appointments 

having the same parameters, the SEARCH state 388 to display the results of the search 

20 for records with matching parameters, and the EDIT state 394 to alter records that 

match with the parameters. 

The operation of the state machine for the PARAM states 374, 380·, 386 and 392 

utilizes a simplified grammar to specify the calendar data input. The PARAM state is 

shown in more detail in Figure 29. From state IDLE 400, if the next utterance is a 

25 month, the state transitions to a DATE state 402 to collect the month, the date and/or 

the year. If the utterance is an hour, the state transitions from the IDLE state to a 

TIME state 404 to collect the hour and the minute information. [f the utterance ·is 

"with", the state transitions to a PERSON state 406 to collect the name or names or 

people involved. If the utterance is "at" or "in", the state machine transitions to a LOC 

30 state 408 to receive the location associated with the appointment. If the utterance is an 

activity such as •meeting• , the machine transitions to an EVENT state 410 to mark that 

an activity has been received. If the utterance is •re•, the state machine transitions to 

a state COMM 412 to collect the comment phrase. Although not shown, after each of 

the states 402-412 has collected the words expected, the states transition back .to the 

35 IDLE state 400 to receive other keywords. Upon an extended silence, the PARA.M 

states 374, 380, 386 and 392 transitions to a SA VE state 376, DELETE state 382, 

SEARCH state 388 and EDIT state 394, respectively. However, if the user utters 

·cancel", the PARAM states transition back to the IDLE state 370 of Figure 28. 

In the state machine for the calendar appointment system, lhe grammar- for data 

40 to be entered into the appointment calendar includes: 
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<appointment> .. < <time> on <date> <date> at <time>> 

< description > 

<time>::= <hour> -- <minute> -- <am/pm> 

<date>::= <weekday> -- < <month> <day> --<year>> 

<description > ::= <event> - < <with> <ID>>··< <at> <place>--

<ID> .. 

< address> > -- < <in> <location> > -- < <re> 

< word phrase> > 

< <name> < name phrase> I <name> and <name> \ 

<name>> < < title> of <dept>> \ < <title> of 

<company>> 

<address> .. < <no.> <street> -- <suite> -- <city>> 

< word phrase> .. - < <word> < word phrase> > I <word> 

where items preceded by the • --• sign indicates that the items are optional and the " i" 
l 5 sign indicates an alternate choice. 

20 

In the preferred embodiment, <event> is a noun phrase such as "meeting", 

"teleconference", "filing deadline", "lunch", etc. The simplified noun phrase gram~ar 

may be enhanced to handle a complex phrase: 

<noun phrase> ::= < noun> I < adj > < noun phrase> I < adv > 

< adj > < noun phrase> I < noun phrase> 

< post modifier> 

When the optional keyword "re" is uttered, the system enters a free text entry 

mode where the user provides a short phrase describing the event. A phrase structure 

can be annotated by referencing the part-of-speech of the word in the dictionary. The 

25 parsing of the words is performed in two phases: I) the identification of the simplex 

and/or complex noun phrases; and 2) the identification of the simplex and/or complex 

clauses. Because the word preselectcir generates a number of candidate words making 

up the short phrase, a parser selects the best combination of candidate words by ranking 

the grammatical consistency of each possible phrase. Once the candidate phrases have 

30 been parsed, the consistency of the elements of the phrases can be ranked to select the 

most consistent phrase from the candidate phrases. ln this manner, the attributes of the 

part-of-speech of each word are used to bind the most consistent words together to form 

the phrase which is the object of the utterance "re" . 

The goal of a speech recognition system is to perform certain tasks accurately 

35 and quickly. The recognizer therefore must incorporate facilities for repairing errors 

and accepting new words to minimize the amount of time that the user needs to spend 

attending to the mechanics of speech input. Figure 25 shows the state machine for 

editing an entry in the calendar PIM. The edit state machine is initiafued in an IDLE 

state 420. If the user issues the "change• or "replace" command, the machine 

40 transitions to a CHG 1 state 422. If lhe user utters a valid existing string, the machine 
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transitions to a CHG2 state 424, otherwise it exits through a RETURN state 436. If 

the user states "with", the machine transitions to CHG3 state 426. Finally, once the 

user utters the replacement string in CHG4 state 428, the change/replace sequence is 

complete and the machine replaces the original string with a new string and then 

5 transitions to RETURN state 436. 

10 

If the user requests "cut", the state machine transitions from the IDLE state 420 

to a CUTI state 430. If the user announces a valid existing string, the machine 

transitions to a CUTI state 434 where the selected string is removed before the machine 

transitions to the RETURN state 436. 

If the user requests "insert•, the machine transitions from the IDLE state 420 

to an INS l state 440. If the user then announces "before", the machine transitions to 

an INS2 state 442, or if the user announces "after", the machine transitions to an INS3 

state 44. Otherwise, the machine transitions to the RETIJRN state 436. In INS2 or 

INS3 states, if the user announces a valid existing string, then the machine transitions 

IS to an INS4 state 446, otherwise it transitions to RETURN state 436. In INS state 374, 

the next string announced by the user is inserted into the appropriate location before it 

returns to the RETURN state 436. 

[n the IDLE state 420, if the user specifies "cancel" or if the user is silent for 

a predetermined duration, the machine transitions to RETURN state 436 where control 

20 is transferred back to the machine that invoked the edit state machine. Although a 

simplified description of the speech editor has been described, one skilled in the art can 

enumerate on these features to add more modes, including the addition of the command 

"CAP" to direct the recognizer to capitalize the next word, "CAP WORD" to capitalize 

the entire word, "CAP ALL• to capitalize all words until the user issues the command 

25 "CAP OFF", "NUMBER" to display numerals rather than the word version of the 

numbers. The user can shift his view port by uttering "SCROLL FORWARD" or 

"SCROLL BACKWARD". In addition, the user can format the text by the command 

"NEW PARAGRAPH", "NEW LINE", "INDENT" and "SPACE", optionally followed 

by a number if necessary. 

30 The user must also be able to rapidly introduce new words into the system 

vocabulary and have these words be recognized accurately. In particular, the word 

estimation capability is particularly useful in estimating street names in a PIM directory 

book and enables a robust directory book without a large street lookup dictionary. The 

introduction of a new word typically involves not only the modification of the 

35 recognition component but also changes in the parser and the semantic interpreter. 

Typically, a new word to be added to the dictionary is introduced, defined, and used 

thereafter with the expectation that it will be properly understood. In one embodiment, 

the user can explicitly indicate to the system to record a new word by saying "NEW 

WORD", spelling the word verbally or through the keyboard, and then saying 'END 

40 WORD". 
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In the event that a word does not e,dst in the dictionary, the system backs out 

the spelling of a word from the phonetic content of the word. Thus, in the event the 

word spoken is not contained in the dictionary, as indicated when the score of the 

candidate words falls below a predetermined threshold, the speech recognizer initiates 

5 a new word generation based on the observed phoneme sequence. The new wor~ 

generator is shown in Figure 3 I. As shown in Figure 31, upon power-up, the speech 

recognizer loads a rule database for generating phonemes from the letters in the word 

and vice versa in step 450. The rules for generating phonemes from letters are well 

known, and one set of rules is disclosed in Appendix A of E.J. Yannakoudak.is and P .J. 

!0 Hutton's book Speech Synthesis and Rocoenition Systems, hereby incorporated by 

reference. In step 452, the speech recognizer accepts a string of phonemes from the 

phoneme recognizer. In step 454, the speech recognizer consults the rule database and 

finds the matching rules for the phoneme sequence to regenerate the associated letters. 

In step 456, the associated letters are stored. The end of word, as indicated by an 

15 extended silence, is tested in step 458. Alternatively, in the event that the unknown 

word is part of a continuous speech recognizer without the silence between words, the 

unknown word can be compared with the entries in a secondary listing of valid English 

words, such as that found in a spelling checker, using the holographic comparison 

technique discussed.earlier. The secondary listing of valid English words is a compact 

20 dictionary which differs from the primary dictionary in that the primary dictionary 

contains the phoneme sequence of the entry as well as the labels and context guides for 

each entry. In contrast, the secondary listing only contains the spelling of the entry and 

thus can compactly represent the English words, albeit without other vital information. 

If the end of the word is not reached, the speech recognizer gets the next phoneme 

25 sequence in step 460, otherwise it moves to step 462. rn step 462, if the end of the 

phoneme string is reached, the word generator is finished, otherwise it loops back. to 

step 452. In this manner, the speech recognizer is capable of generating new words not 

in its primary vocabulary. 

As discussed above, the feature extractor, the phoneme recognizer, and the 

30 preselector code form one or more candidates for the word generator to select the 

candidate closest to the spoken word based on a statistical model or a grammar model. 

Further, when a word is not stored in the dictionary, the speech recognizer is capable 

of estimating the word based on the phonetic labels. Hence, the described spee.ch 

recognizer efficiently and accurately recognizes a spoken word stored in its dictionary 

35 and estimates the word in the absence of a corresponding entry in the dictionary. 

The words selected by the synt.u checker is presented to the user for accep1ance 

or rejection through a voice user interface. The preferred embodiment of the invention 

uses an interactive protocol that packs the disconfirmation of the current utterance into 

the next utterance. In this protocol, ·the user speaks an utterance which is recognized 

40 and displayed by the recognizer. If the recognition is correct, the user can speak the 
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next utterance immediately. However, if the recognition is incorrect, the user speaks 

a special disconfirmation word and repeats the utterance. If the computer recognizes 

the disconfirmation portion of the utterance. it loops back to the beginning 10 recognize 

the next word as a replacement for the currently. However, if the computer does 001 

5 recognize the disconfirmation, it performs the action requested in the original utterance 

and continues on to the next utterance. The disconfirmation can be a constructive 

emphasis wherein the correction mechanism is a repetition of the original utterance. 

Alternatively, the user can actively provide the context by repeating the misrecognized 

word together with its left and right words. Another means to correct misrecognized 

10 speech is to type using a keyboard input. The use of keyboard data entry can be 

particularly effective for long verbal input where the cost of speech and keyboard 

editing as a whole is less than that of keyboard data entry. 

Thus, there has been shown and described a low power, robust speech 

recognizer for portable computers. Although the preferred embodiment addresses only 

15 the appointment calendar aspects of the PIM system, one skilled in the art can 

implement a speech capable PIM versions of telephone directory, the personal finance 

management system, and the notepad for jotting down notes, among others. Further, 

the grammar checking capabiliiy of the invention is applicable to large vocabulary 

dictation applications. It is to be recognized and understood, however, that various 

20 changes, modifications and substitutions in the form and of the details of the present 

invention may be made by those skjlled in the art without departing from the scope of 

the following claims: 
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I CLAIM: 

~ · 

½ )ti 
A computer system, comp ing: 

a speech transducer for capt ring speech; and 

a voice recognizer coupled to said speech transducer, including: 

6 

7 

8 

9 

IO 

11 

12 

13 

14 

15 

16 

17 

18 

2. 

a dictionary containing entry for each word in the dictionary, said 

entry having labels and a context 

a word preselector coupled to said voice feature extractor and to said 

dictionary, said word preselector enerating a list of candidate words with 

similar labels; 

a syntax checker coupled to sa word preselector, said syntax checker 

selecting a first representative word fr m the candidate words based on said 

context guide; and 

a voice user interface coupled to ·d word preselcctor and said syntax · 

checker, said voice user interface allowing the user to accept or reject the first 

representative word, said voice user interfac presenting a second representative 

word selected from said candidate wor s if the user rejects the first 

representative word. 

The computer system of claim 1, wherein said voice feature extractor extracts 

2 features using linear predictive coding, fast Fourier transform, auditory, fractal , 

3 wavelet, or noise spectral subtraction models. 

3. The computer system of claim I, further comprising a phoneme recognizer 

2 coupled to said voice feature extractor. 

4. The computer system of claim 3, wherein said phoneme recognizer recognizes 

2 phonemes using a template matching, fuzzy logic, a neural network, a dynamic 

3 programming, or a hidden Markov model. 

5. The computer system of claim I, wherein said word preselector hashes into a 

2 plurality of candidates using similarity count of start trigrams and inner trigrams. 

6. The computer system of claim I, wherein said word preselector further 

2 generates a new word based on the label when said label is not found in said dictionary. 

7. The computer system of claim I, wherein said syntax checker recognizes 

2 phonemes using an N-gram statistical model or a grammar model. 
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8. 

9. 

The computer system of claim I, further comprising ~ database. 

/t'v g 
The computer system of claim /. wherein said 

: ~ 7;Cw-. 
. 6/11 /'1) 

PIM database compnses ~ 1 . 

2 appointment calendar. 

2 

2 

3 

4 

g 
LO. The computer system of claim i, wherein said PlM database comprises a 

telephone directory. 

11. 

a wearable housing; 

a speech transducer moun on said wearaple housing; 

a voice recognizer coupled said speech transducer, said voice recognizer 

S recognizing speech using dynamic pr gramming; and 

6 means for securing the comput r system to the user. 

12. The computer system of claim I, further comprising an optical transceiver 

2 coupled to said computer. 

13. The computer system of claim 11, urther comprising a radio receiver coupled 

2 to said computer. 

14. The computer system of claim 11, furt er comprising a radio transmitter coupled 

2 to said computer. 

2 

3 

IS. A computer system, comprising: 

a wearable housing; 

a speech transducer for capturing speech, said speech transducer mounted-on 

4 said wearable housing; 

s 
6 

7 

1 

2 

2 

a voice recognizer coupled to said speec 

recognizing speech using a hidden Markov model; 

means for securing the computer system to 

said voice recognize~ 

16. The computer system of claim 15, wherein sa· d hidden Markov model further 

comprises a neural network. 

17. A computer system having a power-down mode t conserve energy, comprising: 

a speech transducer for capturing speech; 

3 a power-up indicator coupled to said speech transd cer, said power-up indicator 

4 detecting speech directed at said speech transducer and as rting a wake-up signal; and 

S a voice recognizer coupled to said speech transduc and said wake-up signal, 
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ik,,.Jn. 

said voice recognizer waking up from the power-.JW' mode 

2 assened. 

l8. The computer system of claim 17, wherein said wer-up indicator includes a 

2 low-pass filter. 

19. The computer system of claim 17, wherein said wer-up indicator includes a 

2 comparator. 

20. The computer system of claim l 7, wherein said wer-up indicator includes a 

2 half-wave rectifier. 

21. The computer system of claim 17, wherein said wer-up indicator includes a 

2 root-mean-square device. 

22. The computer system of claim 17, wherein said wer-up indicator includes a 

2 neural network. 

23. The computer system of claim l, wherein said peech transducer includes a 

2 microphone and a noise canceller which characterizes the ackground noise when a user 

3 is not speaking and subtracts the background noise whe the user is speaking to the 

4 computer. 

24. A programmable storage device having a comp ter readable program code 

2 embedded therein for recognizing a pronunciation of a o~d, said program storage 

3 device comprising: 

4 a feature extracting code, said feature extract ng code generating linear 

5 predictive coding parameters, Fourier transfonn para ters, auditory parameters, 

6 fractal parameters, or wavelet parameters representative f the pronunciation; 

7 a phoneme identifier code coupled to said feature e tracting code, said phoneme 

8 identifier code using a template matching, fuzzy logic, a neural network, a dynamic 

9 programming, or a hidden Markov model based on said 

IO an N-gram generator code coupled to said phoneme · dentifier code, said N-gram 

11 generator code generating one or more· initial N-grams 

12 phoneme sequence; 

13 a preselector code coupled to said N-gram generator ode, said preselector code 

14 

15 

16 

forming one or more candidates based on said N-grams; 

a word generator code coupled to said preselector 

code selecting the candidate closest to said word based on 

17 or a grammar model. 

e, said word generator 

N-gram statistical model 
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25. The programmable storage device of claim 4, wherein said candidates are 

::! stored in a dictionary. 

26. The programmable storage device of claim , wherein an unknown word not 

2 stored in said dictionary is generated using said ph emes. 
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ABSTRACT 

The present invention provides a speech transducer which captures sound and 

delivers the data to the robust and efficient speech recognizer. To minimize power 

consumption, a voice wake-up indicator detects sounds directed at the voice re;cognizer 

and generates a power-up signal to wake up the speech recognizer from a powered-. 

down state. Further, to isolate speech in noisy environmenis, a robust high order 

speech transducer comprising a plurality of microphones positioned to collect different 

aspects of sound is used. Alternatively, the high order speech transducer may consist · 

of a microphone and a noise canceller which characterizes the background hoise when 

the user is not speaking and subtracts the background noise when the user is speaking 

to the computer to provide a cleaner speech signal. 

The user's speech signal is next presented to a voice feature extractor which 

extracts features using linear predictive coding, fast Fourier transform, auditory model, 

fractal model , wavelet model, or combinations thereof. The input speech signal is 

compared with word models stored in a dictionary using a template matcher, a fuzzy 

logic matcher, a neural network, a dynamic programming system, a hidden Markov 

model, or combinations thereof. The word model is Stored in a dictionary with an 

entry for each word, each entry having word labels and a context .guide, 

A word preselector receives the output of the voice feature extractor and queries 

the dictionary to compile a list of candidate words with the most similar phonetic labels. 

These candidate words are presented to a syntax checker for selecting a first 

representative word from the candidate words, as ranked by the context guide and the 

grammar structure, among others. The user can accept or reject I.he first representative 

word via a voice user interface. If rejected, the voice user interface presents the next 

likely word selected from the candidate words. If all the candidates are rejected by the 

user or if the word does not exist in the dictionary, I.he system can generate a predicted 

word based on the labels. Finally, the voice recognizer also allows the user to 

manually enter the word or spell the word out for the system. In this manner, a robust 

and efficient human-machine interface is provided for recognizing speaker independent, 

continuous speech. 
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