US006009176A

United States Patent [(1] Patent Number: 6,009,176
Gennaro et al. 451 Date of Patent: Dec. 28, 1999
[54] HOW TO SIGN DIGITAL STREAMS [56] References Cited
[75] Inventors: Resario Gennaro, New York; Pankaj U.S. PATENT DOCUMENTS
Rohatgi, Yorktown Heights, both of 5,646,907 T/1997 BArton .oooeeeeveeeereeeerooerrreerreenn. 380/23
N.Y.
Primary Examiner—Bernarr E. Gregory
[73] Assignee: International Business Machines Attorney, Agent, or Firm—Douglas W. Cameron; Anne
Corporation, Armonk, N.Y. Vachon Dougherty
[57] ABSTRACT
[21] Appl. No.: 08/799,813
o A method of signing digital streams so that a receiver of the
[22] Filed: Feb. 13, 1997 stream can authenticate and consume the stream at the same
. rate which the stream is being sent to the receiver. More
[51] Int. CL® .., HO04L 9/00, HO4L 9/30 Speciﬁcau}/, this invention involves Computing and Verifying
a single digital signature on at least a portion of the stream.
[52] US. Cl .o 380/25; 380/23; 380/30; The properties of this single signature will propagate to the
380/49; 370/522 rest of the stream through ancillary information embedded in
[58] Field of Search ... 380/9, 23, 25, the rest of the stream.

380/29, 30, 37, 43, 49, 50, 59; 370/522,

527, 528 11 Claims, 13 Drawing Sheets

'/1.100

1.5
fl 0 FRAME 1 FRAME 2 FRAME n
SER DATA: 000! USER DATA: 0000 [USER DATA: 0000 ISER DATA: 0000
0000000000000/ 0000000000000 | 0000000000000 | oo eeeee 00000000000 4/ 0000000000000

STEP 1) SPLIT THE STREAM INTO BLOCKS, EACH BLOCK CORRESPONDING TO A FRANE

BLOCK 0 BLOCK 1 BLOCK i~1 BLOCK i BLOCK i+1 BLOCK n
FRAME 0 FRAME 1 FRAME i-1 FRAME i FRAME i+1 FRAME n
USER DATA: SER DATAY USER DATA: USER DATA: USER DATA: USER DATA:
0...00000 4...00000 CEREN] 0...00000 0...00000 0..00000 | eoese 0...00000

PREDECESSOR SUCCESSOR
OF BLOCK i OF BLOCK i 1.10 1.50L

STEP 2) PROCESS BLOCKS IN REVERSE SEQUENTIAL ORDER. BLOCK BEING PROCESSED ALL 0's AS IN 20

BLOCK 0 110 BLOCK i+1 BLOCK i COMBINED BLOCK i+1 COMBINED BLOCK i+2 / COMBINED BLOCK n
(o | FRAME FRAME i+1 [SizE,1 FRANE i+2 FRAME n
| USER DATK; 1-SIZE 1 (ER DATR USER DATA: SER DATA:
0000 0120 fasnl 0124 0000
00000000 df093042 87323042 00000000
00000000 9260932 92340032 [« + « «_0000000
UNPROCESSED BLOCKS A Il [0
HASH 1.50 1.10c N\ 110

1,504 AS IN 2b)
SIZE FIELD IN BLOCK i = SIZE
OF BLOCK i+1 IN BYTES
HASH FIELD IN BLOCK i = MDS
HASH OF BLOCK i+1

COMBINED BLOCKS
(ALREADY PROCESSED)

2c: AFTER PROCESSING ALL BLOCKS, COMPUTE HASH OF COMBINED BLOCK 0, SIGN
THE HASH AND [TS SIZE USING RSA-MDS SIGNATURE SCHEME AND CREATE
INITIAL AUTHENTICATION DATA CONSISTING OF SIGNATURE, HASH AND SIZE.

1,200
<—1 COMPUTE RSA-MD5 SIGNATURE I/

SIGNATURE: 939
HASH: 289238

1.10¢

41391394938

abedef12

r\83782323

1.50

Dolby Exhibit 1008
IPR2020-00660
Page 00001

6,009,176

Sheet 1 of 13

Dec. 28,1999

U.S. Patent

(G3SS3004d AQYINTY)
Y0078 QINIBNOD

1+! X078 10 HSVH
GON = ! %0018 NI Q1313 HSVH
SILAG NI 1+ 0078 40
375 = 1 %0078 NI 073K 371S
(9z N SY VoS’

I WIN 08 HSvH
$H0078 Q3SSIN0UANN
0000000~ e « « « | 7E60¥526 75600426 00000000
00000000 0057518 7908604P 00000000
0000 yao | azio 0000
IV Y35 ¥IVQ 435N URES Rer g gUUE S N e cones
u IRV H IV PPIDS| 1+ IRV | INVY
U ¥J08 GINIBNOD | 7+ XD0T8 GINIBAOD 14! %0008 CINIEN0D 1 %0078 1+ Y0078 o 0 078
D7 NI SV S0 TV 03553008d ONI38 %0078 Y3040 TYININDIS 3SU3ATY NI SXD0TE S5300ud (7 daLS
051 Oy yoone 40 1 %0078 40
40SS100NS 40551030344
0000070 | s>+ | 0000070 00000™"0 000000 | cee-* | 6000070 00000™"0
¥IVQ ¥3SN IYQ ¥3SN YI¥Q 435N YIYQ 435N . VIV ¥3SN
U IV 1+ IV | IHVH 1-1 3KVY3 T 0 INVY
U %0079 I+ %0078 1 Y0078 I-1 %0078 | Y0078 0 %0078
V43 ¥ 01 ONIONOASTHN0D Y0078 HOV3 ‘SHOOTE OLNI AVIMLS FHL LS (1 dals
0000000000000, 00000000000 |™, = ===+« | 0000000000000 | 0000000000000 | ~G000000000000000
0000 VIVQ ¥3S 0000 :V1YQ ¥3SN | 0000 VLVQ ¥3Sn| 0000 :VLvQ ¥3S
U IV 7 VY | 3NV b

co_._\

\ARDIE

IPR2020-00660 Page 00002

6,009,176

Sheet 2 of 13

Dec. 28, 1999

U.S. Patent

81914
. yrou | b OI
g1 94
o
A \ \ £1578158 0l
2011 201'] 00 90/ 7149poqD
— T10 7S 0 3AVe3
071 857687 HSVH 210 0 Y0078 GINGAO3
856765168 17S656 TANLINIIS e
* 85768 2001
A 3nivnois can-vey andwoy |\ W
007}

LS ANV HSYH ‘JUNLYNIIS 40 ONILSISNOD VLVQ NOILYIILNIHLAY TVILINI
J1VIYO ONV 3W3HOS JUNIVNIIS SOA-VSY ONISN 3ZIS SII ONY HSYH JHL
N9IS ‘0 Y0078 GINIGNOD 4O HSYH 3LNANOD ‘SHI0T8 TIV ONISSID0¥ ¥ILIY 37

IPR2020-00660 Page 00003

6,009,176

Sheet 3 of 13

Dec. 28, 1999

U.S. Patent

%3078 SNOIA3Yd 40
NOILD3S VLvQYISN Q¥vISIa NV %0078 INIW¥ND 40 NOILO3S VLVO¥3sn 3¥ols (W

0078 SNOIAA 40 NOILOIS VIVQYISN JO L¥Vd HSYH HLM LINS3Y J¥VdNOD (!

)08 SNOIATY WO¥S NMONX SI 3ZIS 3SOHM X0078 ONIKOONI 40 HSYH SO 3LNdAOJ (!
43040 WIININDIS NI %D018 HOVI SS300¥d (5 d3LS

¥343n8 934N OL AVIULS QUVM¥O4 (7 diS

7'l 0z’ .
. 0 %0078 0l U %0078
A \ (3NIBHOD (3NIBNOJ

0 %2078 40 3ZIS ANV é‘

HSYH GON 1OVHIX3
JUNLYNOIS

JUNLYNOIS
GON-YSY AJIH3A

.oc_._\ ooo_.._\\

*¥0008 LXIN 40 IS ONV HSVH oIS onv IAwizy OF)
‘TUNLYNIIS TVLIOI AJRIA “VIVO NOLVOLNIHINY TVILNI IN3DI (1 d3lS

VZ 'Ol

IPR2020-00660 Page 00004

6,009,176

Sheet 4 of 13

Dec. 28,1999

U.S. Patent

\\

0V}

87’914 .
] AR
. < *
az°'914 ¢
JYVMLA0S 93dN ~ 01
141 %0078 U %078
| Y007 INIBNO) QINIBNOD
(HSVYH'3ZIS)
JUVMLIOS 93dN OL | VLV
INVES QYYMY04 SII00NS __yisn_ cecooe
NOILYDIJRIA HSYH 4l
¢ dIIS YOI AL

01}

0171

IPR2020-00660 Page 00005

6,009,176

Sheet 5 of 13

Dec. 28,1999

U.S. Patent

0e°¢

5t .
éo...gqﬁxs o 000™000:43HL0 BETY6ET0ST6YEI60S6YE “TUNLYNIIS
000000000 ™\ £0v£606 il
¥ ong A3¥ onand \\ L 0z’
(oxS) 31vAd (OMd) orand '¥iYQ ¥3sn '¥1YQ ¥3sn /
divd AM INIL-INO 0 Y00l PR —— TUNLYNIIS SAN-YSY 3LNdWOD

018 .
20ve JHNIYNYIS FHL WONS VIV NOLLYDLNIHLAY
TYILINE Y04 "WHLINO9TY SON-VSY HLIM O Y2078 QIHSINONISIA NoIS (a
"0 X078 NI NOILISOd ONIONOASINN0D NI AIX Jriand JNIL-INO INIONOJSIHN0D
Ad0D ONV AIX 3LVAIMd INIL-INO JHL J¥OIS “¥Ivd AIX INIL-INO ¥ ILVYINID
"(V1¥Q ¥3SN ISNM HLM XD078 93dK NV) 0 2078 Q3HSINONILSIO ALIA3 N 3Lv3¥D (P

43040 WILNINDIS NI SX0078 SSIN0¥d (Z d3LS

ST !0 oL } 19018 40 : org
SOSSTONS 4055303034 0V N
seeeeecoes | 000070 000000 0000070 | ve+e-* | 000000 000000
RS LYO 335N VO 335N VO 43S NIVG 335N
41 3RV ! IHVY -1 3NV LT 0 IV
01
14 %0018 \ ! 007 -1 0078 | %0018 0 %0018
0K
INV43 ¥ OL ONIONOGSTHI0D XI018 HOVZ ‘SXD0TE OINI AVIULS HL INdS (1 d3s
AN

oooooo:..ci 000000"""000 00007000

® 00 0090000

NIVO 43S0 VAVO 335N UV REN)
§ Ve 7 IV LT .
5t
¢ /
004
Ve old

IPR2020-00660 Page 00006

6,009,176

Sheet 6 of 13

Dec. 28, 1999

U.S. Patent

8g 9N
g9¢°914 veod | €791
4015
I INV44 NI NOILISOd
ONIONOASIHH0D NI | Xd 10¥1d ONV ! XS
OIS I NS NV -Md Wve ADY /| 8y5v1686178581578658
JML-3NO MIN ¥ 3LVHAN39 (7005°€) ez 85781 78-5816-S8YSB0
J— 06°s I=1 d 0L ONIONOJSIN¥00
I I-1 XS AN 134035 Q3M0LS

10078 NI UNLYNOIS ~~

401 ANV 1-! XS SE—
ONISN HSYH SON NOIS

(w™o0gg) 1 8L¥B16SBYLE

: TUNLYNIIS JNIL

INO 31A8 880!

81658101580

 GYVBITLSR6L
TUNLYNIIS IKIL (035530044 AQYIYTV)
INO 318 8801 SY2078 GINIGN0D 40
03S0dN0D WYIMLS QINIENOD

S01771805¥6 7708178051 2001°¢
1 ¥d AN ol W A \
®® 00 mand ILAg-9) Jnand L8 91

‘VLYQ ¥3sn -Y1va ¥3sn ceses

HSVH SO

m_@omo%mvx / 3NV \ / |+ 3nvdld \ ed ed

d 204§ 201'¢
TN Q3SS3004d 9py°¢ = -1 %0078 0 %0078
I Y008 oNi3g X007 1=} %0078 G3NIEW0D (INIBROD QINIGHO?

(3553004d N338 JAVH 1! HONOYHL | SXJ07 J9¥IS SIHL LV "I X078 ¥04 ONISSIN0Yd (2

IPR2020-00660 Page 00007

6,009,176

Sheet 7 of 13

Dec. 28, 1999

U.S. Patent

I-1 VLVQYISN WO¥A AN INIL-1 QUVOSID ONV ! VLVOY3SH WO¥A AIM IMIL-4 J¥OLS (M

I=! VIVQY3SN NOILI3S 3H1 NI Q3INIVINOD A3X
N8nd INIL-1 IHL ISNIVOV Ll AJRITA ONV ! VIVQYISN WH0J L¥vd JUNLYNOIS LOVAILX3 (!

!
| VLVQYISN 40 L¥vd AN 9nand IMIL-4 PuD | JWVHA 40 HSVH SO LNAWOD (!
43040 TWIININD3S NI ! %078 HOVI SS3008d (£ dalS

00'¢

TS

JUNLIVNIIS

¥334n@ 93dN 0L WVIYLS Q¥VMYOS (T daLS

0 %0018 Q3NIBN0D

AN JNand JniL-1 LIVYLX3

JUNLYNIIS
GON-YSY AdI43A

OXd AN

po—

20

I'e

05°¢

—

2001°¢

| %018 U3NIBNOD

05°¢

6v6¥6G786
¥SvY6v06

I INVYS

Y

11 NI A3 J1and 3AIL-1 FHOLS ONY JAINLIY 4 0 XD078 NO
TUNLYNIIS WLI9ID AJ3A ‘0 XOO0TE ONV JYNLVYNOIS TWLIOIQ N30 (4 d3LS

V¥ Ol4

IPR2020-00660 Page 00008

6,009,176

Sheet 8 of 13

Dec. 28, 1999

U.S. Patent

gv Ol

A K

way | VOl

JUVMLI0S 93dA

06"

JYVMLI0S
J1dN 0L INVYL QYvMYOd
SQ3320NS NOILYDHIY3A AI

¢ d3IS N¥0J¥3d

-t}

1 %0078 G3NIBA0?

L]
(3UnLyNIIS

A3 3WL-1)
oz

Loy

I INVYd

\\

201'¢

I+ %0078 (3NIBNOD

01'¢

IPR2020-00660 Page 00009

6,009,176

Sheet 9 of 13

Dec. 28,1999

U.S. Patent

3¥0LS

P@D,

LVAIYd

oxn_. Ad0J

000000 :SOT3l4 ¥IHIO 07's £6£6¥BL6YBEYBLE TINLYNDIS
dore—""]
A0S N £6yE8Ye imﬁ; _g,m J71S

mN.m\. \]

£¥T7862E8:ATN Or18Nd
178 91 v1vQ ¥3Sn

Jnand

Yivd A3 INIL-INO (o

GG

0 Nvd4

v

JANLYNOIS GAN-VSY 3LNdNOD

0078 1SY1 40 3ZIS JHL ANV HSVH SIHL JUNLYNOIS
GON-VSY NY 3LNdNOD “A3X OMANd JMIL INO + XJ0T8 LSTUIJ TYNIOMO IHL HSVH (g
20078 1SH13 40 14vd AYVTIONY NI 7311 ONIONOdSIHH0D
OLNI A3X O1iand SLI AdOD ANV Ll 340IS “¥ivd AN IWIL-INO HSIYJ v L3O (0

43040 TVIININD3S NI SX0078 SS300¥d (Z dliS

L2 B BE BN R R BN J

\

01's

| 1 Y0078 40 . 015
t X018 O ¥0SS3030Tud 01'S
000000 000000 | ee++e | 0000070 00000°0
YIVO 4350 YIVO Y35 R ES YIVO ¥350
| INVY -1 TNV LT 0 IV
| Y0078 -1 Y0 | 00 0 Y0078

INVYA Y OL ONIONOASINY0D D01 HOVI ‘SHD078 OLNI WVIMLS 3HL LNdS (1 d3iS

cesescccnne 000000"""000 [\ 000000""***000 0000 000
'¥1va ¥3sn '¥1¥Q ¥3sN 'YLy ¥3Isn
7 IAvYd | INVY4
g
g \
004°G
\ASRIE

IPR2020-00660 Page 00010

6,009,176

Sheet 10 of 13

Dec. 28, 1999

U.S. Patent

85914 .
S'9l4
95°9|4 ¥S'9l4
b+ INVYS NI NOILISOd ONIONOSIHN0D
NI 1+ Md 35V1d ONV 1+ NS 340IS ‘14! NS ONY
N I 0078 NI J80LS
L+DNd HIVd AZX INIL-INO MIN ¥ 3iv¥INI9 (1 ONY 1 %S SNISH U 315
e NO¥J HSYH SOW zo_m?_
\‘. //
304S GBY6585G8675878 1750
000000000000000000 G¥86561581 77657860 |8Y6SYB6SYBL098GHSRY
00000000000000000 G8150¥810S¥Z0GLYE %t Nd OL ONIONOJSIH0D
"TUNLYNIIS ! 3018 40 “TUNLYNIS I NS AIX L3¥D3S QIHOLS
INIL INO 3Lkg-ggo) | | STT3M AUVTIONV /L 3m1 3N0 3LAE-6601
dol's—™T 000000000000000 NI INd HSVH ¥6£786YE0262686
"HSVH SON 31Ad 9! GON Q3LNdAOD 'HSYH SON 31A8 91 _SH0078 INIBNOD
SI QNY 1+ 901G 90015 201G

%0018 40 3z1S (W
Jriend 31A8-94
*V1vQ 43SN

mmo"uN_mu;mlv
¥205L¥80SL =
0 AN
Jnand 31A8-91
JIVQ 43S

LU

/

_ .
N 09'S 1INV
/I\A/ 1-1 %2078 0 %0078
HSYH SON
+ !
1+ %2078 NeN0D (1 1 9018 QINIGNOD QINIBNOD
X078 ¥3LVT ¥0078 ¥I¥v3
INM3dId
0r's "Ll GIYIINI ATMIN SYH 1+ %2078 ONY (030QY N338 SYH ! Md A3X 2rand INL-INo) (dol's)

INM3dId 3HL NI 43SS3308d ATL¥vd SI ! 0078 "Q3SSII0¥d NI38 3AVH 1-1 0L | SNJ08
39VLS SIHL 1V "INIM3did 39V1S OML V VIA SI ONISSID0Nd ! %078 ¥04 INISSIV0Nd (0

IPR2020-00660 Page 00011

6,009,176

Sheet 11 of 13

Dec. 28, 1999

U.S. Patent

‘G3LVOILNIHLNY SI 14! X0078 QINIBNOD LX3N 3HL 01 318¥diddV SI
HIIHM HSVH SIHL N3HL Q3IJ§3A 4i ! VIVQYHISH WO¥A A3X dnand IWIL-1 ONISn
| VLVO¥ISN INTVA HSVH 3HL NO ! VIVQ¥ISN NI JUNLYNOIS IWIL-} IHL AJR3A (M
078 SNOIAYd 10
NOILD3S VIVQYISN QY¥OSIQ ONY %0078 INIHND 40 NOILOIS ! Vivayasn 3¥ols (v
I-1 VIVQYISN WOYJ GINIVIE0 HSYH Q3LVOILNIHLNY LSNIVOY HSYH HONS AJRIA (N
| YIVOY3SN NI GINIVINOD A3 IWIL-) ONV ! JWVYS 40 HSVH SON 3LndWod (!
43040 ILNINDIS NI ! ¥0078 HOVI SS3008d (S d3IS
431408 93dA OL WVIULS QUvMY0d (T d3lS

2004°G

0 %3078 } X307
Q3NIBNOD (Q3NIBNOD

00— s
79

Gond

"3ZIS SLI ANV
0 %3078 10 L¥vd
40 HSYH GQN 1Jvd1X3

JUNLYNOIS
SON-VSY AJId3A

/S

I .oe.m\\ oc_.m\\

| “37IS SI ONY 0 %0078 40

14Vd 40 ASYH T90LS ONV JATMLIY ‘Ll AJ3A “TANLYNOIS TYLI9IQ NI (1 d3LS

LASANIE

IPR2020-00660 Page 00012

6,009,176

Sheet 12 of 13

Dec. 28, 1999

U.S. Patent

897014

49°914

v9°l 9°0l4

JYVMLI0S 934N

06°6

JYVMLI0S
93dN 01 JAVYS QYVMY04
SA3330NS NOILYDIIIY3A 4I

¢ dilS W0A¥3d

A

1 00078 Q3NIGN0D
el

0077

1+ %3018 Q3NIBNOD

(3un1IYNOIS IMIL-)
"HSVH “3ZIS ‘A3
ariend InL-1)

= ! VIVQy3sn

I INVY4

\\

201G

oo_.m\\

IPR2020-00660 Page 00013

6,009,176

Sheet 13 of 13

Dec. 28, 1999

U.S. Patent

¥ A3¥ onand JNIL-INO NO g3sva (P
INVA HSYH NO F¥NLYNAIS INIL-INO (o

%3078 1X3N 40 X20780d3NSd
2078 LXIN 40

151 40 HSYH (P

325 38 ¥ (0
‘TI0H ISIHL

JARIE

VIVQ AYVTIONY
S11A8 ¥¢

(A3¥ orand INIL-3NO)
Y ONIOIOH V1vQ
AUVTIIONY 31A8 9)

v1vQ olanvy
£F INVi4

VIVQ AYVTIIONY
SI1A8 ¥¢

23078043nSd 1X3IN
40 HSYH 404 VIvQ
AIVTIONY 3179 91

y1vQ oianv
¢ NV

A\
YIVQ AYVTIONY
SILAg ¥E

— — — — 7

A0078003nSd 1X3N
40 HSYH ¥04 v1va
AIVTIONY 3168 91

yiva ouany

LT

\m.m

doi'L

q01°L

3:\\

VIVQ AYYTIIONY
1A8 06

viva oiany

IPR2020-00660 Page 00014

6,009,176

1
HOW TO SIGN DIGITAL STREAMS

TECHNICAL FIELD

This invention describes a method of signing and authen-
ticating a stream of data using a reduced number of digital
signatures.

DESCRIPTION OF THE PRIOR ART

Several prior art solutions envisioned to solve the problem
of stream signing and are actually proposed to be have been
used in practice.

One solution splits the stream in blocks. The sender signs
each individual block and the receiver loads an entire block
and verifies its signature before consuming it. This solution
also works if the stream is infinite. However this solution
forces the sender to generate a signature for each block of
the stream and the receiver to verify a signature for each
block. With today’s signature schemes either one or both of
these operations can be very expensive computationally
which in turns means that the operations of signing and
verifying can create a bottleneck to the transmission rate of
the stream.

Another type of solution works only for finite streams. In
this case, once again the stream is split into blocks. Instead
of signing each block, the sender creates a table listing
cryptographic hashes of each of the blocks. Then the sender
signs this table. When the receiver asks for the authenticated
stream, the sender first sends the signed table followed by
the stream. The receiver first receives and stores this table
and verifies the signature on it. If the signature matches then
the receiver has the cryptographic hash of each of the
following stream blocks. Thus each block can be verified
when it arrives. The problem with the foregoing solution is
that it requires the storage and maintenance of a potentially
very large table on the receiver’s end. In many realistic
scenarios the receiver buffer is very limited as compared to
the size of the stream. E.g. in MPEG a typical movie may be
20 GBytes whereas the receiver buffer is only required to be
around 250 Kbytes. Therefore the hash table can itself
become fairly large (e.g., 50000 entries in this case or 800
Kbytes for the MD35 hash function).The hash table itself has
to be stored and this may not be possible. Secondly the hash
table itself needs to be transmitted first and if it is too large
then there will be a significant delay before the first piece to
the stream is received and consumed.

The above solution can be modified by using an authen-
tication tree: the blocks are placed as the leaves of a binary
tree and each internal node takes as a value the hash of its
children (see [3]) This way the sender needs to sign and
send only the root of this tree. However in order to authen-
ticate each following block the sender has to send the whole
authentication path (i.e. the nodes on the path from the root
to the block, plus their siblings) to the receiver. This means
that if the stream has k blocks, the authentication informa-
tion associated with each block will be O(log k) in size.

It is an objective of the present invention to eliminate all
these shortcomings whereby the invention works for both
infinite and finite streams, only one expensive digital sig-
nature is ever computed, there are no big tables to store, and
the size of the authentication information associated with
each block does not depend on the size of the stream.

Some of the ideas involved in the solution for unknown
streams have appeared previously, although in different
contexts and with different usages.

Mixing “regular” signatures with 1-time signatures, for
the purpose of improving efficiency is discussed in [4].

10

15

20

40

45

50

55

60

65

2

However the focus of that invention was to make the signing
operation of a message M efficient by dividing such opera-
tion in two parts. An off-line part in which the signer signs
a 1-time public key with his long-lived secret key even
before the messages M is known. Then when M has to be
sent the signer computes a 1-time signature of M with the
authenticated 1-time public key and sends out M tagged with
the 1-time public key and the two signatures. Notice that the
receiver must compute two signature verifications: one
against the long-lived key to authenticate the 1-time key
associated to M, and one against such 1-time key to authen-
ticate M itself In our scheme we need to make both signing
and verification extremely fast, and indeed in our case each
block (except for the first) is signed (and hence verified) only
once with a 1-time key. The first is signed and verified only
once with a long-lived key. Old 1-time keys are used in order
to authenticate new 1-time keys. This has appeared in
several places but always for long-lived keys. Examples
include [5,6,7] where this technique is used to build prov-
ably secure signature schemes. We stress that the results in
[5,6,7] are mostly of theoretical interest and do not yield
practical schemes. Our on-line solution somehow mixes
these two ideas in a novel way, by using the chaining
technique with 1-time keys, embedding the keys inside the
stream flow so that old keys can authenticate at the same
time both the new keys and the current stream block.

SUMMARY OF THE INVENTION

It is therefore an object of this invention to reduce
computation time necessary to sign and authenticate a
stream of data by reducing the number of digital signatures
required for one to authenticate the data stream. The fore-
going is accomplished without having to resort to storing
large portions of the data stream and without maintaining
excessively large authentication tables. With this invention,
the receiver authenticates the stream without receiving the
entire stream. Further the receiver detects corruption of the
stream almost immediately after tampering of a portion of
the stream. As a consequence, the receiver can consume
authenticated data from the stream at the same rate he
receives such data from the stream.

The present solution makes some reasonable/practical
assumptions about the nature of the streams being authen-
ticated. First of all we assume that it is possible for the
sender to embed authentication information in the stream.
This is usually the case (e.g., USER DATA section in MPEG
video elementary stream etc.) We also assume that the
receiver has a “small” buffer in which it can first authenticate
the received bits before consuming them. Finally we assume
that the receiver has processing power or hardware that can
compute a small number of fast cryptographic ckecksums
faster than the incoming stream rate while still being able to
play the stream in real-time.

The basic idea of the present solution is to divide the
stream into blocks and embed some authentication informa-
tion in the stream itself. The authentication information
placed in block i will be used to authenticate the following
block i+1. This way the signer needs to sign just the first
block and then the properties of this single signature will
“propagate” to the rest of the stream through the authenti-
cation information. Of course the key problem is to perform
the authentication of the internal blocks fast.

In the first scenario the stream is finite and is known in its
entirety to the signer in advance. This is not a very limiting
requirement since it covers most of the internet applications
(digital movies, digital sounds, applets). In this case we will

IPR2020-00660 Page 00015

6,009,176

3

show that a single hash computation will suffice to authen-
ticate the internal blocks. The idea is to embed in the current
block the hash of the following block (which in turns
includes the hash of the following one and so on . . .)

In this first scenario, verification of the find stream is
performed by verifying the signature of the first block and
subsequently verifying hashes of the following blocks.

The second case is for (potentially infinite) streams which
are not known in advance to the signer (for example live
feeds, like sports event broadcasting and chat rooms). In this
case our solution requires several hash computations to
authenticate a block. The idea here is to use fast 1-time
signature schemes (introduced in [1,2]) to authenticate the
internal blocks. So block i1 will contain a 1-time public key
and also the 1-time signature of itself with respect to the key
contained in block i-1. This signature authenticates not only
the stream block but also the 1-time key attached to it.

In the second case described above, verification of the
signed stream is performed by verifying the long lived
signature on the first block, and subsequently verifying the
one-time signatures on the following blocks.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a digital stream being
divided into a number of blocks, where ancillary informa-
tion is added to the blocks to form combined blocks. FIG. 1
also illustrates the signing of these combined blocks to form
a combined stream which can be used for authentication.

FIG. 2 schematically illustrates the process of authenti-
cating a digital stream signed in accordance with the process
of FIG. 1.

FIG. 3 schematically illustrates the process of signing a
stream when future blocks are known in accordance with
this invention.

FIG. 4 schematically illustrates the authentication process
of a digital stream signed in accordance with FIG. 3.

FIG. 5 is the process of signing a digital stream combining
the techniques of FIGS. 1 and 3.

FIG. 6 schematically illustrates the authentication process
associated with FIG. 5.

FIG. 7 schematically illustrates the signature process of
FIG. § with the exception that the signature bits are split
among a plurality of combined data blocks.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Shown in FIG. 1 is a digital screen 1.100 having n frames.
The data stream is then divided into blocks 0 through block
n, wherein each block the ancillary data or user data is
initially set to all zeros as shown at 1.5. Shown also are the
combined blocks I+1 through block n, where each combined
block has the ancillary information 1.10C. Block I, which
corresponds to frame I, is a block that still needs to be
processed, that is ancillary information still needs to be
added. Blocks 0 through blocks I-1 are also shown as being
unprocessed blocks, which are later to be processed. Finally,
in step 2C of FIG. 1, the first block or block 0 is shown as
being processed. That is the ancillary information has been
added to block 0. At this point, the combined digital stream
which can be authenticated is now created.

Embodiment 1
Preferred Embodiment for Signing Streams Known in
Advance
The preferred embodiment for authenticating streams
known in advance to the sender has been designed to work

4

for MPEG video streams. The following is with reference to

FIG. 1. In the MPEG video encoding format, each picture

frame allows for a USER-DATA section which can act as a

placeholder to hold ancillary information. Moreover MPEG
5 standards define that no frame can be more than 1.8 M-bits
in size.

The original MPEG video stream (1.100) is generated
such that there is a 20-byte USER DATA 1.5 section in each
picture frame which will act as a placeholder for ancillary
information. All these bytes are initialized to the value of 0.

The following software process is used to create a com-
bined stream (1.100¢) from the original MPEG stream
(1.100).

Step 1) The original MPEG stream is partitioned into a
sequence of contiguous blocks (1.10) where each block
contains a video frame which has a USER-DATA section
with 20 bytes holding the value O (1.5). Such a partitioning
defines an order on the blocks in terms of where they occur
in the stream. For any block, define the successor block to
be block that immediately follows it in the stream and the
predecessor block to be the one that immediately precedes it
in the stream. The first block, which contains the first frame
is designated at a distinguished block (1.10").

Step 2) The software processes the original stream in
reverse sequential order (the last block first) and modifies
them by replacing the contents of the USER-DATA section
with ancillary information (1.50) to create combined blocks
(1.10¢). The processing is as follows:

a) The processing of the last block does not change it (see
1.50L of combined block n, i.e., the ancillary informa-
tion already present in it by default (20 bytes of 0’s) is
exactly the information that should be there after pro-
cessing.

b) When the software starts to process a given block, all
the blocks which are later in the stream have already
been processed and modified to yield combined blocks
(1.10c¢) since the software processes blocks in reverse
sequential order. The ancillary information (1.50) for
current block is computed by the following algorithm
(1.504).

i) The first four bytes of the 20 byte ancillary information
placeholder are updated to hold the size in bytes of the
successor block.

ii) The next sixteen bytes of the 20 byte ancillary infor-
mation placeholder is updated to hold the MDS5 cryp-
tographic hash of the successor block. This information
can be used to authenticate the the successor block
which already has its ancillary information in place.

Upon completion this process ensures that the following

properties hold:

i) The combined distinguished block (1.10¢") is such that
each block in the stream is directly or indirectly authen-
ticated by the hash value stored in the ancillary part of
this block (1.50".

ii) For any prefix of the stream, all blocks within it
EXCEPT the last incomplete combined block can be
authenticated from the hash value in the first block.

¢) The hash 1.25 and the size of the combined distin-
guished block, which is the first of the combined
blocks, in the stream (1.10¢") is calculated, and the said
hash value together with the size of said block is signed
using a RSA-MD5 signature scheme (1.20a). The
signature, the hash and the size are combined to form
initial authentication data (1.20). The combined blocks
(1.10¢) in sequence now constitute the combined
stream(1.100¢). The initial authentication data (1.20)

10

15

25

30

35

40

45

60

65

IPR2020-00660 Page 00016

6,009,176

5
will be sent to the receiver before the combined stream
(1.100c¢) is sent.

FIG. 2 graphically illustrates how the combined stream
previously created is authenticated. The invention requires
additional authentication software to be added to any exist-
ing MPEG software (2.200) or hardware both of which
currently do not do any authentication. The function of this
authentication software is to authenticate blocks from the
incoming combined stream before passing them on to the
MPEG processing software (2.200) to be converted back to
video using the MPEG standard. In what follows, the
functioning of the additional authentication software is
described.

The authentication software shares with the MPEG pro-
cessing hardware/software 2.200, a bit buffer which is at
least 1.8 M-bits in size. In addition this authentication
software now controls how the MPEG processing software/
hardware is informed of incoming data.

The following constitute the steps that the authentication
software follows.

Step 1) Before receiving the combined stream (1.100c¢)
the receiver receives the initial authentication data (1.20)
consisting of a digital signature on the hash of the first
combined block (1.10c") and the size of first combined
block, together with the purported values of the hash and
size. The authentication software at this stage does the
following (2.25a): It verifies the signature. If the provided
signature verifies, then the purported hash and size values of
the first combined block (1.10¢") are authentic, and the hash
and size values 1.25 are extracted out for use in authenti-
cating the combined stream (1.100c¢).

Step 2) The receiver then receives the combined stream
which is forwarded into the MPEG bit-buffer. However the
MPEG software is not informed of incoming data before it
is authenticated. This prevents the MPEG software to con-
suming unauthenticated data.

Step 3) The incoming combined stream is split into blocks
by the authentication software shown in FIG. 2. This split-
ting is facilitated by the software always knowing in
advance the authenticated size of the next incoming com-
bined block long before the incoming block is fully received.
The following algorithm or step (2.26a), which is repeated
for all the blocks in the stream, is now applied:

i) Compute the MD5 hash of the incoming bytes as they
are transferred into the buffer of the receiver. As soon
as a block comes in, its MD5 hash gets computed, and
computation of the MD5 hash of the next incoming
block is started (although its length is not immediately
known).

if) The MD5 hash of the recently arrived block is com-
pared against what it should be according to the authen-
tication chain emanating from the Digital Signature
from (1.20). If it is different, then tampering has been
detected and processing halted. Otherwise, the MPEG
software/hardware is informed that a block of bits of a
certain size representing a frame has arrived and it can
proceed to process the incoming original block that was
authenticated.

iif) Concurrently with the above, the now authenticated
size and hash of the next block stored in the ancillary
part of the processed block (1.50) is extracted for use
to authenticate the next block.

10

15

20

25

30

35

40

50

55

60

65

6

Embodiment 2
Preferred Embodiment for Signing Streams Not Known in
Advance to the Sender
(Variant 1)

As in the earlier embodiment for streams known in
advance, the preferred embodiment for authenticating
streams has been designed to work for MPEG video streams
with the USER-DATA section in each frame acting as a
placeholder to hold ancillary information. For this variant
(Variant 1) refer to FIG. 3.

The original MPEG stream (3.100) is generated with a
USER DATA section having a 16+1088=1104 byte place-
holder to store ancillary information (3.5). This placeholder
is initialized to be all 0’s in the original stream. These 1104
bytes are organized as follows: First 16 bytes is the one time
public key to be used to authenticate the following block.
Next 1088 bytes which are organized as 136 8-byte values
are for holding the one time signature on the MD5 hash of
the current original block along with the one-time public key
field in its user data section.

The specifics of the one-time signature scheme of Variant
1 used in this embodiment is as follows: A 8-byte to 8-byte
one way function F defined as the bitwise exclusive OR of
the first and second halves of the MD5 hash of the input.

A one-time key pair is generated by the signer as follows.

Choose 136 random 8-byte values, V_1, ... ,V_136.
These constitute the private key. The public key is defined as

MD5(F(V_D|IFE(V_2) | ... |F(V_136))
where || denotes concatenation of bits.

A signature on a 128 bit value (which corresponds to the
MDS5 hash of the data being signed) is computed as follows.
First append to the 128 bit value a 8 bit value which holds
the count of the number of O bits in the binary representation
of the 128 bit value. This gives a 136 bit value.

For each bit b__i in this 136 bit value, reveal Ai=Viifb_ i
is 1, otherwise reveal A__i=F(V__i). The ordered collection
of A_1,...,A 136 is the signature.

Referring to FIG. 3, the following software process is
used to create a combined stream from the original MPEG
stream.

Step 1) The original MPEG stream 3.100 is partitioned
into a sequence of contiguous original blocks (3.10) (Block
1, Block 2, . . .), where each original block contains a video
frame which has a USER-DATA section with 1104 original
bytes all holding the value 0 (3.5). Such a partitioning
defines an order on the blocks in terms of where they occur
in the stream. For any original block, define the successor
block to be block that immediately follows it in the stream,
and define the predecessor block to be the one that imme-
diately precedes the original block in the stream.

Step 2) The software processes the original stream in
sequential block order to create combined blocks which
together constitute the combined stream as follows:

a) An “empty” distinguished block (Block 0) is created
(3.10". This “empty” distinguished block is such that it
can be parsed as a valid MPEG frame, but it contains
no video data. It does however contain a 1104 byte
USER DATA section (3.5), which can hold ancillary
information. A one-time key pair 3.30 is produced, and
the one-time private key is stored, and its public
counterpart is copied into the corresponding position in
the USER DATA section of distinguished block 0. This
process thus yields the combined block 0 (3.10c").

b) The distinguished combined block 3.10¢' is signed
using an RSA-MD5 digital signature (3.20@). The
resulting signature is the initial authentication data
(3.20) which needs to be send to the receiver before
sending the combined stream.

IPR2020-00660 Page 00017

6,009,176

7

¢) When the software starts to process a given block i, all
the blocks which are earlier in the stream have already
been processed since the software processes blocks in
sequential order. These blocks (3.10¢' and 3.10c¢)
together form the combined stream (3.100c). When
processing block 1, the predecessor combined block
i-1, holds the one-time public key (PK i-1) which will
be used to verify the current original block i, along with
some of the ancillary information to be placed in it. The
ancillary information (3.50) for block i is computed by
the following three step algorithm:

(3.50a__i) A new one-time key-pair (PKi, SKi) is gen-
erated and the public key PKi is placed in first
sixteen bytes of the ancillary information of block 1,
and the secret key SKi is stored by the signer.

(3.50a__i)) The MD5 hash of the original block i
together with said public key in the first 16 bytes of
the ancillary data field is computed.

(3.50a__iii) The above result of the hash is signed using
the one-time private key (SK i-1) corresponding to
the public key (PK i-1) in the predecessor combined
block i-1, and the computed signature is placed in
the next 1088 bytes of the ancillary data of the
current block i. The secret key used in this signature
may now be destroyed.

At this point, for the case in which blocks of the stream
are not known in advance, the combined stream, which may
be later authenticated, is now created.

FIG. 4, which graphically illustrates the authentication of
the combined stream whose blocks are not known in
advance. As with the first embodiment the invention requires
additional authentication software to be added to any exist-
ing MPEG software (2.200) or hardware, both of which
currently do not do any authentication. The function of this
authentication software is to authenticate blocks from the
incoming combined stream before passing them on to the
MPEG processing software (2.200) to be converted back to
video using the MPEG standard. The functioning of this
additional authentication software will now be described.

The authentication software shares with the MPEG pro-
cessing hardware/software, a bit buffer which is at least 1.8
M-bits in size. In addition this authentication software now
controls how the MPEG processing software/hardware is
informed of incoming data.

The following constitute the steps that the authentication
software follows.

Step 1) The receiver first receives initial authentication
information (3.20), (That is, the one block the combined
stream which is signed using an RSA-MD5 signature.) Then
receives the combined block 0 (3.10¢") from the stream. The
digital signature of combined block 0 is verified, and if it
verifies, then the now authenticated one-time public key
PKO stored in its USER DATA section (3.50) is extracted.

Step 2) Then, the receiver receives the next combined
block (3.10c¢) of the combined bit-stream (3.100¢) which is
forwarded into the MPEG bit-buffer. However, the MPEG
software is not informed of incoming data before it is
authenticated. This prevents the MPEG software consuming
unauthenticated data.

Step 3) This step is repeated for all combined blocks in the
incoming stream.

i) The authentication software computes the MD5 hash of
the combined block as it comes in to the receiver,
except for the 1088 signature bytes present in USER
DATA section in the MDS5 hash calculation.

ii) As soon as a complete block is completely processed,
the signature is extracted from the 1088 bytes in the

10

15

20

25

30

35

40

45

50

55

60

65

8

USER DATA field and it is verified using the public key
contained in the predecessor block.

iii) If such verification fails, then tampering has been
detected, and the process of receiving the combined
stream is halted. Otherwise, the public key within the
block is extracted for later use and the MPEG software/
hardware is informed that a block has arrived and it can
proceed to process that.

Embodiment 3
Preferred Embodiment for Signing Streams Not Known in
Advance to the Sender
(Variant 2)

As in the previous embodiment, this embodiment for
authenticating streams not known in advance to the sender
has been designed to work for MPEG video streams with the
USER-DATA section in each frame acting as a placeholder
to hold ancillary information. It uses exactly the same
hashing, signing and one-time signature scheme as the
previous embodiment, the only difference is that in this
scheme the one-time signature present in the ancillary
portion of a block is for the hash value of the next block (as
opposed to the current block). This variant requires a more
complex processing strategy for the signer and an easier
verification strategy for the receiver.

For Variant 2 refer to FIG. 5, which is described below.

The original MPEG stream (5.100) is generated with a
USER DATA section having a 16+4+16+1088=1124 byte
placeholder to store ancillary information (5.5), which is
initialized to be all 0’s in the original stream. These 1124
bytes are organized as follows: The first 16 bytes is the one
time public key to be used to authenticate the following
block. The next 4 bytes hold the size in bytes of the next
block. The following 16 bytes hold the MD hash of parts of
the successor block and the next 1088 bytes which are
organized as 136 8-byte values are for holding the one time
signature on the 16 byte MDy hash claimed in the prede-
cessor block.

The following software process is used to create a com-
bined stream (5.100¢) from the original MPEG stream
(5.100) described above.

Step 1) The original MPEG stream is partitioned into a
sequence of contiguous blocks where each block (5.10)
contains a video frame which has a USER-DATA section
with 1124 bytes holding the value 0. Such a partitioning
defines an order on the blocks in terms of where they occur
in the stream. For any block, define the successor block to
be block that immediately follows it in the stream and the
predecessor block to be the one that immediately precedes it
in the stream. The first block is considered to be a distin-
guished block (5.10).

Step 2) The software processes the original stream (5.100)
in sequential block order as follows:

a) A fresh one-time key pair PK0 and SKO is produced and
stored and its public part PKO0 is placed in its designated
location in the ancillary part of the first block. At this
stage, the first block is partially processed (5.10p").

b) The original first block together with PKO contained
within its ancillary part is hashed using MD5. See 5.25.
This hash value, together with the size of first block, is
signed using the RSA-MD5 signature scheme (in
essence this is a signature on the “distinguished” first
block along with extra information such as size). Said
signature, the said hash and said size information
constitute the initial authentication data (5.20) which
needs to be sent to the receiver before the combined
stream.

IPR2020-00660 Page 00018

6,009,176

9

¢) The blocks are processed in a pipelined fashion 5.40,
with two blocks in a pipeline at a time. The two blocks
in the pipeline consists of an earlier block which
entered the pipeline earlier and a later block which
entered the pipeline later. The processing is done in
stages in which each stage except the first starts by
removing from the pipeline the earlier block and out-
putting it as part of the processed combined stream,
moving the later block in the position of the earlier
block and loading the next block from the original
stream in the place vacated by the erstwhile later block
which is now an earlier block and the newly loaded
block becomes the later block. The first stage is started
by putting the first block processed as in step a 5.10p

a) in place of the earlier block and the second unprocessed
block as the later block. After this, the rest of the stage
proceeds as follows, Assume that Blocks 0 thru i-1
have been processed to yield combined blocks (5.10¢)
0 thru i-1 which together form a prefix of the combined
stream (5.100¢). Block i is the earlier block in the
pipeline and Block i+1 is the later block. The following
describes what is accomplished in a single cycle of the
pipeline. This results in the complete filling up of the
ancillary section of Block i (5.50) to yield a Combined
block (5.10¢) and the partial filling of the ancillary
section of Block i+1 resulting in a partially processed
block (5.10p). See Bottom right side of FIG. 5.

i) A fresh one-time key pair PKi+1 and SKi+1 is produced
and stored by the signer and its public part PKi+1 is
copied in its designated location in the ancillary part of
Block i+1.

ii) An MDS hash is computed on the following parts of the
Block i+1: (See 5.60.)
A) the original part of the block.
B) the public key placed in it as described above in i)

iii) The size of the Block i+1 and the computed MD; hash
(as in ii) is placed in the corresponding fields in the
ancillary part of Block i.

iv) The secret one-time key corresponding to the public
key (PKi) Block i (i.e., SKi) is used to generate a
one-time signature on the Hash value computed in step
(i) which has also been placed in the corresponding
position in Block i in step iii). This one-time signature
is then stored in the corresponding field in the ancillary
part 5.50 of Block i. At this time the one-time private
key used in the signature may be discarded by the
signer.

At this point, the piped line process of creating a com-
bined stream, which can be authenticated, is now completed.
As with the previous embodiment the invention requires
additional authentication software to be added to any exist-
ing MPEG software (2.200) or hardware which currently do
not do any authentication.

The authentication process the receiver end for the above
combined stream is described in FIG. 6 below. The function
of this authentication software is to authenticate blocks from
the incoming combined stream before passing them on to the
MPEG processing software (2.200) to be converted back to
video using the MPEG standard. In what follows the func-
tioning of the additional authentication software is
described.

The authentication software shares with the MPEG pro-
cessing hardware/software, a bit buffer which is at least 1.8
M-bits in size. In addition this authentication software now
controls how the MPEG processing software/hardware is
informed of incoming data.

10

15

20

30

35

40

45

50

55

60

65

10

The following constitute the steps that the authentication
software follows.

Step 1) Before receiving the combined stream (5.100¢)
the receiver receives the initial authentication data (5.20)
consisting of a digital signature on the purported hash value
computed on the first original block and the public key in the
ancillary part of the first combined block and the purported
size of the first combined block. This signature is verified,
and if it is authentic then the hash value 6.1 of part of the first
combined block 5.10c' and the size 6.2 of the first combined
block are authenticated and these are extracted for future
use.

Step 2) Then the receiver receives the combined bit-
stream which is forwarded into the MPEG bit-buffer. How-
ever the MPEG software is not informed of incoming data
before it is authenticated. This prevents the MPEG software
to consuming unauthenticated data.

Step 3) This step is repeated for all the blocks in the
stream.

i) The authentication software computes the MD5 hash of
the incoming bytes as they are transferred into this
buffer, ignoring the length, hash and signature fields in
its ancillary part.

ii) As soon as the full block (5.10c or 5.10c¢') is in the
buffer, its MD5 hash gets computed, and computation
of the MD5 hash of the next incoming block is started.
The MD5 hash of the relevant parts of the recently
arrived block is compared against what it should be
according to the authentication chain emanating from
the Digital Signature. If the value resulting from the
MD5 hash is different, then tampering has been
detected, and the process halted. Otherwise, the MPEG
software/hardware is informed that a block of bits of a
certain size has arrived and it can proceed to process
that.

iif) Simultaneously, the public key, length, hash and
one-time signature (5.50) are extracted from the com-
bined block 5.10c.

iv) The public key is already authenticated since it was
included in the MDS5 hash. Using this public key, the
one-time signature is checked against the hash field. If
it verifies, then the signer has claimed that such hash is
the hash of the next block. The length field is
informational, since it makes the processing easier for
the receiver without compromising security.

v) If the signature check fails then tampering has been
detected and appropriate action taken.

Embodiment 4

This embodiment, which is a hybrid of embodiments 1
and embodiment 3, is useful in several situations, an
example of which is MPEG audio.

The audio stream is not known to the sender in advance.

Without knowledge of future blocks, the sender must use
a scheme like embodiment 2 or 3. Note that this scheme
requires more than 1000 bytes of ancillary information per
block, and the receiver must have space to buffer at least one
block before forwarding it for processing.

The audio stream has its own logical structure consisting
of audio frames which allows it to be consumed in very
small pieces (say 1000 bytes at a time). The receiver
therefore has a buffer of only a few thousand bytes (say 2500
bytes).

The problem that now arises is that in the transmitted
bytes only 5% or so could reasonably be allocated for

IPR2020-00660 Page 00019

6,009,176

11

ancillary information. Definitely it is not a good idea to put
1000 bytes of ancillary information into a single audio frame
because when these bytes are send, the receiver does not get
any actual data bytes to process which may have adverse
effects (discontinuity in the audio).

Referring now to FIG. 7, the case of MPEG audio, the size
of an audio frame is fixed within a stream but the size
depends on the bit-rate of the audio stream and the type of
encoding performed on it (e.g., MPEG I Layer I or II, the
sampling frequency, whether the input is stereo or mono
etc). Therefore, we illustrate this embodiment on a hypo-
thetical MPEG audio stream in which each audio frame is
1000 bytes where 50 bytes of these bytes can hold ancillary
information (7.10f). The parameters in the method described
below can easily be modified by those with ordinary skill in
the art, to work with each of the actual frame sizes that occur
for MPEG audio.

To deal with the above situation a scheme which is a
hybrid of schemes 1 and 3 is described below. As in scheme
3 the input stream is divided in blocks. To paraphrase the
construction of scheme 3, each block would consist of the
following parts:

a) audio data 7.2, b) 16-byte one time public key 7.3 used
to verify 7.3. ¢) 4-byte size of next block, d) 16-byte
hash of parts a) and b) of the next block, and e)
1088-byte one-time signature on part d) verifiable by
using part (b).

Also, the above named parts ¢) d) and e) (See 7.4) are
useful in authenticating the next block and do not participate
in the authentication of the current block.

The original audio stream is split into original blocks each
having a size of 33000 bytes (7.10b). Notice that even one
such block cannot be stored in the receiver’s memory which
is limited to 2500 bytes. However, in 33000 bytes we can
have 33000*5%=1650 bytes of ancillary information which
is more than sufficient for our needs. The 33000 bytes also
consists of 33 audio frames. Each such frame can hold 50
bytes of ancillary information. The key idea in the hybrid
construction is that we can treat the audio frame with 16 out
of 50 bytes of ancillary information as a psuedoblock
(7.10p) and the 33 audio frames along with 16 bytes of
ancillary information each, form a finite stream of psuedob-
locks as required by the embodiment 1 and using the
construction specified in embodiment 1, this finite stream of
33 psuedoblocks can be authenticated by authenticating its
first psuedoblock. There are only two minor differences in
this hybrid construction. In the original construction the size
of the next block was stored in the ancillary section, how-
ever in this case since all psuedoblocks are of the same
length this field is not needed so only 16 bytes of ancillary
information which are enough to store an MDS5 hash are
required. Also, in the original construction of embodiment 1,
the ancillary section of the last block was kept as all 1°s.
However, in this construction it will hold the 16-byte one
time public key as described in b) above. With this
modification, the property that holds is that authenticating
the first psuedoblock implies authentication of all 33 psue-
doblocks and of the 16 byte one-time public key kept in the
ancillary part of the last psuedoblock. With this construction,
we still have 34 bytes of unused ancillary information in
each audio frame which was not included in the psuedoblock
processing. We use these 34 bytes to spread parts ¢) d) and
e) of the construction of embodiment 3. The parts account
for a total of 1108 bytes whereas 34*33=1122 bytes are
available so space is adequate. The only difference between
this scheme and the one described in embodiment 3 is that
the hash field d) is the hash of the first psuedoblock in the

10

15

20

25

30

35

40

45

50

55

60

65

12

next block rather that the hash of the next block together
with the one-time public key. However, note that our hybrid
construction, which uses a slight variant of embodiment 1,
guarantees that the hash of the first psuedoblock is sufficient
to authenticate all the data in the frames as well as the
one-time public key a) kept in the last psuedoblock.

On the receiver end using this hybrid process, the authen-
tication software performs steps from both the authentica-
tion scheme for embodiment 3 as well as the authentication
scheme for embodiment 1.

The authentication software first verifies a digital signa-
ture exactly as in embodiment 3.

When the software encounters the start of a new block of
33000 bytes, it already knows what the hash of the first
psuedoblock is. This hash is verified as the psuedoblock
comes in. Upon verification, the psuedoblock is forwarded
to the MPEG audio processing software, and the hash of the
next psuedoblock is extracted from it. Simultaneously, parts
¢), d) and) present in the ancillary section of the frame
outside the psuedoblock are extracted and stored. The psue-
doblocks as they come in are authenticated, as in embodi-
ment 1 (except that the size field is not there and all
psuedoblocks are of the same known size). The last psue-
doblock yields the authenticated one-time public key in part
b) and when the entire block is processed, the receiver also
has the complete 1108 byte information constituting parts c),
d) and e) of the scheme from embodiment 3. Then exactly
as in embodiment 3, the one-time signature) on hash d) is
verified using public key in part b) whence the receiver gets
to know the authentic value of the hash of the first pseudob-
lock in the next block of 33000 bytes.

Notice that the receiver in this case needs to store at most
1 unauthenticated psuedoblock and to store data correspond-
ing to parts b) ¢) d) and ¢) for a total of at most 1000+
1124=2124 bytes which is well within its 2500 byte capacity.
While in the above embodiments specific signature schemes
such as RAS-MDS5 were implemented, any secure signature
scheme may be used. Also, any collision resistant hash
function may be used in lieu of MD5. Further, any stream-
like application can be used. Flowever, RSA is the most
widely used signature scheme, and MD5 is the shortest hash
function used in a signature scheme. MPEG is the most
suitable application for the embodiments of this invention.

As described earlier, the main applications of the present
invention are for audio, video and data streams as well as
applets in an internet/interactive TV environment. We
briefly describe the specifics of how these techniques are
applicable for MPEG audio/video and java applets. Later we
also describe how our construction carries over to a broad-
cast environment and how in could be useful in non-stream
settings.

MPEG VIDEO AND AUDIO. In the case of MPEG video
and audio, there are several methods for embedding authen-
tication data. Firstly the Video Elementary stream has a
USER-DATA section for putting arbitrary user defined infor-
mation and this section could be embedded in each frame (or
field). Secondly, the MPEG system layer allows for an
elementary data stream to be multiplexed synchronously
with the packetized audio and video streams. One such
elementary stream could carry the authentication informa-
tion. Thirdly, techniques borrowed from digital watermark-
ing can be used to embed information in the audio and video
itself at the cost of slight quality degradation. In the case of
MPEG video since each frame is fairly large, (hundreds of
kilobits) and the receiver is required to have a buffer of at
least 1.8 Mbits, both the off-line as well as the on-line
solutions can be deployed without compromising picture

IPR2020-00660 Page 00020

6,009,176

13

quality. In the case of audio however, in the extreme case the
bit rate could be fairly small (e.g., 32 Kbits/s) and each audio
frame can also be small (a few hundred kilobytes) and
therefore the receiver’s audio buffer could also be very small
(3-4 Kbytes). In such extreme cases a direct application of
the on-line method, which requires around 1000 bytes of
authentication information per block, where a block is
limited by the size of the receiver’s audio buffer would
seriously cut into the audio quality. For these extreme cases,
the best on-line strategy would be either to send the authen-
tication information via a separate but multiplexed MPEG
data stream. If the receiver has a good sized buffer (say 32
K) then by having a large audio block (say 20 K) our method
yields a scheme which has a server-introduced delay of
approximately 5—6 seconds and a 5% quality degradation. If
the receiver buffer is really tiny (say 2-3 K) a hybrid scheme
is required: as an example of a scheme that can be built one
could use groups of 33 hash-chained blocks of length 1000
bytes each; this has a 5% degradation and a server initial
delay in the 20second range. JAVA. In the original version
of java (JDK 1.0), for a applet coming from the network, first
the startup class was loaded and then additional classes were
(down) loaded by the class loader in a lazy fashion as and
when the running applet first attempted to access them.
Since our ideas apply not only to streams which are a linear
sequence of blocks but in general to trees as well (where one
block can invoke any of its children), based on our model,
one way to sign java applets would be to sign the startup
class and each downloaded class would have embedded in it
the hashes of the additional classes that it downloads
directly. However for code signing, Javasoft has adopted the
multiple signature and hash table based approach in JDK1.1,
where each applet is composed of one or several Java
archives, each of which contains a signed table of hashes
(the manifest) of its components. It is our belief that once
java applets become really large and complex the shortcom-
ings of this approach will become apparent:

Large size of the hash table in relation to the classes
actually invoked during a run. This table has to fully
extracted and authenticated before any class gets
authenticated.

The computational cost of signing each of the manifests
if an applet is composed of several archives.

Accommodating classes or data resources which are gen-
erated on the fly by the application server based on a
client request.

These could be addressed by using some of our tech-
niques. Also the problem of how to sign audio/video streams
will have to be considered in the future evolution of Java,
since putting the hash of a large audio/video file is not an
acceptable solution.

Broadcast Applications

Our schemes (both the off-line and the on-line one) can be
easily modified to fit in a broadcast scenario. Assume that
the stream is being sent to a broadcast channel with multiple
receivers who dynamically join or leave the channel. In this
case a receiver who joins when the transmission is already
started will not be able to authenticate the stream since she
missed the first block that contained the signature. Both
schemes however can be modified so that every once in a
while apart from the regular chaining information, there will
also be a regular digital signature on a block embedded in
the stream. Receivers who are already verifying the stream
via the chaining mechanism can ignore this signature
whereas receivers tuned in at various time will rely on the
first such signature they encounter to start their authentica-
tion chain. A different method to authenticate broadcasted

10

15

20

25

30

35

40

45

50

55

60

65

14

streams, with weaker non-repudiation properties than ours,

was proposed in [8].

Long Files When Communication is at Cost
Our solution can be used also to authenticate long files in

a way to reduce communication cost in case of tampering.

Suppose that a receiver is downloading a long file from the

Web. There is no “stream requirement” to consume the file

as it is downloaded, so the receiver could easily receive the

whole file and then check a signature at the end. However if
the file has been tampered with, the user will be able to

detect this fact only at the end. Since communication is at a

cost (time spent online, bandwidth wasted etc) this is not a

satisfactory solution. Using our solution the receiver can

interrupt the transmission as soon as tampering is detected
thus saving precious communication resources.

The invention has been described with reference to sev-
eral specific embodiments. One having skill in the relevant
art will recognize that modifications may be made without
departing from the spirit and scope of the invention as set
forth in the appended claims.

References

1. L. Lamport. Constructing Digital Signatures from a
One-Way Function.

Technical Report SRI Intl. CSL 98, 1979.

2. R. Merkle. A Digital Signature based on a Conventional
Encryption Function. Advances in Cryptology-Crypto
’87. LNCS, vo0l.293, pp. 369-378, Springer- Verlag, 1988.

3. R. Merkle. A Certified Digital Signature. Advances in
Cryptology-Crypto *89. LNCS, vol.435, pp. 218-238,
Springer-Verlag, 1990.

4. S. Even, O. Goldreich, S. Micali. On-Line,/Off-Line
Digital Signatures. J. of Cryptology, 9(1):35-67, 1996.
5. M. Bellare, S. Micali. How to Sign Given any Trapdoor

Permutation. J. of the ACM, 39(1):214-233, 1992.

6. M. Naor, M. Yung. Universal One-Way Hash Functions
and their Cryptographic Applications. Proceedings of
STOC 1989, pp.33-43.

7. J. Rompel. One-Way Functions are Necessary and Suf-
ficient for Secure Signatures. Proceedings of STOC 1990,
pp.387-394.

Having thus described our invention, what we claim as
new and desire to secure by Letters Patent is:

1. Amethod of creating a combined digital stream from an
original stream of data which can be authenticated, said
method comprising:

a. decomposing said original stream into a plurality of

original blocks;

b. adding ancillary information to each of said original
blocks to form a combined block for each original
block, where said ancillary information is used to
authenticate at least one of said original blocks of said
original stream; and

c. signing one of said combined blocks thereby forming
said combined stream when said combined blocks are
recombined, where later said ancillary information can
be used in conjunction with ancillary information of
other of said combined blocks to successively authen-
ticate said original blocks of said original stream.

2. A method as recited in claim 1, wherein said ancillary
information in each of said combined blocks of said stream
is a hash of some corresponding combined block of said
combined stream.

3. A method as recited in claim 1, wherein the number of
bits in said ancillary information in each block is indepen-
dent of the size of said stream.

4. A method as recited in claim 1, wherein said authen-
ticating comprises establishing non-repudiably the sender of

IPR2020-00660 Page 00021

6,009,176

15
said stream by verifying the digital signature on one of said
combined blocks.
5. Amethod of creating a combined digital stream from an
original stream of data which can be authenticated, said
method comprising:

decomposing said original stream into a plurality of
original blocks;

adding ancillary information to each of said original
blocks to form a combined block for each original
block, where said ancillary information is used to
authenticate at least one of said original blocks of said
original stream; and

signing one of said combined blocks thereby forming said
combined stream when said combined blocks are
recombined, where later said ancillary information can
be used in conjunction with ancillary information of
other of said combined blocks to successively authen-
ticate said original blocks of said original stream,
wherein said ancillary information is at least one of a
one time public key and a one time signature of some
combined block.
6. Amethod of creating a combined digital stream from an
original stream of data which can be authenticated, said
method comprising:

decomposing said original stream into a plurality of
original blocks;

adding ancillary information to each of said original
blocks to form a combined block for each original
block, where said ancillary information is used to
authenticate at least one of said original blocks of said
original stream; and

signing one of said combined blocks thereby forming said
combined stream when said combined blocks are
recombined, where later said ancillary information can
be used in conjunction with ancillary information of
other of said combined blocks to successively authen-
ticate said original blocks of said original stream,
wherein said ancillary information in some of said
combined blocks is a hash of some said combined
blocks, and wherein ancillary information in other of
said combined blocks is a one time public key and one
time signature of some of said combined blocks.
7. Amethod as recited in claim 6 wherein parts of said one
time digital signatures are inserted into a plurality of said
combined blocks.

15

25

30

35

40

45

16

8. A method of authenticating a combined stream of data,
comprising:
decomposing said stream into a plurality of combined
blocks, each of said combined blocks comprising con-
sumable information and ancillary information;

establishing non-repudiably the sender of said stream by
verifying a digital signature on one of said combined
blocks; and

authenticating some of said combined blocks by using
ancillary information extracted from said authenticated
combined blocks.
9. A method as recited in claim 8, wherein said ancillary
information is a hash of some of said combined blocks and
said combined blocks are authenticated by verifying the
value of said hash.
10. Amethod of authenticating a combined stream of data,
comprising:
decomposing said stream into a plurality of combined
blocks, each of said combined blocks comprising con-
sumable information and ancillary information;

authenticating one of said combined blocks by verifying
a digital signature;

authenticating some of said combined blocks by using
ancillary information extracted from said authenticated
combined blocks, wherein said ancillary information
comprises a one time public key and a one time
signature, and wherein authentication of said combined
blocks is performed by verifying said one time signa-
ture using said one time public key.
11. A method of authenticating a combined stream of data,
comprising:
decomposing said stream into a plurality of combined
blocks, each of said combined blocks comprising con-
sumable information and ancillary information;

authenticating one of said combined blocks by verifying
a digital signature;

authenticating some of said combined blocks by using
ancillary information extracted from said authenticated
combined blocks, wherein said ancillary information in
each of said combined blocks comprises either a hash,
at least a part of a one time public key and at least a part
of a one time signature.

#* #* #* #* #*

IPR2020-00660 Page 00022

