
Dolby Exhibit 1009
IPR2020-00660

Page 00001

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Advisory Board: W. Brauer D. Gries J. Stoer

I
... , --- - ... '? - ' - "":',.

l • . ·-· llllilliiillllylll
3 1924 081 470 746 ... ~

1294

MAR - 4 1998

All books are subject to recall after two weeks.
Engineering Library

DATE DUE

1~. .. .a.a. -,.,, .,
Jilli

- I II I C} i1 ~
- - ·- . ~- , ...

I
nrr ')" ?nn? - - ·- ·-

GAYLORD PRINTED IN U.$.A.
~

IPR2020-00660 Page 00002

Burton S. Kaliski Jr. (Ed.)

Advances in Cryptology -
CRYPTO '97

17th Annual International
Cryptology Conference
Santa Barbara, California, USA
August 17-21, 1997
Proceedings

Springer

IPR2020-00660 Page 00003

•

Series Editors

Gerhard Goos, Karlsruhe University, Germany

Juris Hartmanis, Cornell University, NY, USA

Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Burton S. Kaliski Jr.
RSA Laboratories
20 Crosby Drive, Bedford, MA 01730-1402, USA
E-mail: burt@rsa.com

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Advances in cryptology: proceedings/ CRYPTO '97, 17th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 17 - 21, 1997. Burton S. Kaliski (ed.). [IACR]. - Berlin;
Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ;
London ; Milan ; Paris ; Santa Clara ; Singapore ; Tokyo : Springer,
1997

(Lecture notes in computer science ; Vol. 1294)
ISBN 3-540-63384-7

CR Subject Classification (1991): E.3, G.2.1, D.4.6, K.6.5,F.2.1-2, C.2, J.l,
E.4

ISSN 0302-9743
ISBN 3-540-63384-7 Springer-Verlag Berlin Heidelberg New York

,.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1997
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10546375 06/3142 - 5 4 3 2 IO Printed on acid-free paper

IPR2020-00660 Page 00004

How to Sign Digital Streams

Rosario Gennaro and Pankaj Rohatgi

I.B.M. T.J.Watson Research Center
P.O.Box 704, Yorktown Heights, NY l 0598, U.S.A.
Email:rosario,rohatgi@watson.ibm.com

Abstract We present a new efficient paradigm for signing digital streams. The
problem of signing digital streams to prove their authenticity is substantially differ­
ent from the problem of signing regular messages. Traditional signature schemes
are message oriented and require the receiver to process the entire message before
being able to authenticate its signature. However, a stream is a potentially very
long (or infinite) sequence of bits that the sender sends to the receiver and the
receiver is required to consumes the received bits at more or less the input rate
and without excessive delay. Therefore it is infeasible for the receiver to obtain
the entire stream before authenticating and consuming it. Examples of streams
include digitized video and audio files, data feeds and applets. We present two
solutions to the problem of authenticating digital streams. The first one is for the
case of a finite stream which is entirely known to the sender (say a movie). We
use this constraint to devise an extremely efficient solution. The second case is
for a (potentially infinite) stream which is not known in advance to the sender(for
example a live broadcast). We present proofs of security of our constructions. Our
techniques also have applications in other areas, for example, efficient authenti­
cation oflong files when communication is at a cost and signature based filtering
at a proxy server.

1 Introduction

Digital Signatures (see [5, I 7]) are the cryptographic answer to the problem of
infonnation authenticity. When a recipient receives digitally signed infonnation
and she is able to verify the digital signature then she can be certain that the
infonnation she received is exactly the same as what the sender (identified by his
public key) has· signed. Moreover, this guarantee is non-repudiable, i.e., the entity
identified by the public key cannot later deny having signed the infonnation. Thus,
the recipient can hold the signer responsible for the content she receives.1

However current digital signature technology was designed to ensure message
authentication and its straightforward application does not yield a satisfactory

1 This distinguishes digital signatures from message authentication codes (MAC) which allow
the receiver to have confidence on the identity of the sender, but not to prove to someone else
this fact, i.e. MAC's are repudiable.

IPR2020-00660 Page 00005

181

solution when applied to infonnation resources which are not message-like. In this
paper we discuss one such type of resource: streams. We point out shortcomings in
several approaches (some of them used in practice) to tackle the problem of signing
streams and then present our solution which does not have such shortcomings.

1.1 Streams Defined

A stream is a potentially very long (infinite) sequence of bits that the sender sends
to the receiver. The stream is usually sent at a rate which is negotiated between
the sender and receiver or there may be a demand-response protocol in which the
receiverrepeatedly sends requests for additional (finite) amount of data. The main
features of streams which distinguish them from messages is that the receiver must
consume the data it receives at more or less the input rate, i.e., it can't buffer large
amounts of unconsumed data. In fact in many applications the receiver stores
relatively very small amounts of the stream. In some cases the sender itself may
not store the entire sequence, i.e., it may not store the information it bas already
sent out and it may not know anything about the stream much beyond what it has
sent out.
There are many examples of digital streams. Common examples include digitized
video and audio which is now routinely transported over the Internet and also
to television viewers via various means, e.g., via direct broadcast satellites and
very shortly via cable, wireless cable, telephone lines etc. This includes both pre­
recorded and stored audio/video programming as well as live feeds. Apart from
audio/video, there are also data feeds (e.g., news feeds, stock market quotes etc)
which are best modeled as a stream. The Internet and the emerging interactive TV
industry also provides another example of an information resource which is best
modeled as a stream, i.e., applets. Most non-trivial applets are actually very large
programs which are organized into several modules. The consumer's machine
first downloads and executes the startup module and as the program proceeds,
additional modules are downloaded and executed. Also, modules which are no
longer in use may be discarded by the consumermachine. This structure of applets
is forced by two factors. Firstly the amount of storage available on the consumer
machine may be limited (e.g., in the emerging interactive TV industry set-top
boxes have to be cheap and therefore resource limited) . Secondly (in the case
of the Internet), the bandwidth available to download code may be limited and
applets must be designed to start executing as soon as possible. Also it is quite
likely that some of the more sophisticated applets may have data-rich components
generated on the fly by the applet server. Therefore applets fit very nicely into the
demand/response streams paradigm.
Given the above description, it is clear that message oriented signature schemes
cannot be directly used to sign streams since the receiver cannot be expected to
receive the entire stream before verifying the signature. If a stream is infinitely

IPR2020-00660 Page 00006

182

long (e.g., the 24-hours news channel), then it is impossible for the receiver to
receive the entire stream and even if a stream is finite but long the receiver would
have to violate the constraint that the stream needs to be consumed at roughly the
input rate and without delay.

1.2 Previous Solutions and their Shortcomings

Up to the authors' knowledge there has been no proposed specific solution to
the problem of signing digital streams in the crypto literature. One can envision
several possible solutions, some of them are actually proposed to be used in
practice.
One type of solution splits the stream in blocks. The sender signs each individual
block and the receiver loads an entire block and verifies its signature before
consuming it. This solution also works if the stream is infinite. Howe'\'er this
solution forces the sender to generate a signature for each block of the stream and
the receiver to verify a signature for each block. With today's signature schemes
either one or both of these operations can be very expensive computationally.
Which in turns means that the operations of signing and verifying can create a
bottleneck to the transmission rate of the stream.
Another type of solution works for only finite streams. In this case, once again
the stream is split into blocks. Instead of signing each block, the sender creates
a table listing cryptographic hashes of each of the blocks and signs this table.
When the receiver asks for the authenticated stream, the sender first sends the
signed table followed by the stream. The receiver first receives and stores this
table and verifies the signature on it. If the signature matches then the receiver
has the authenticated cryptographic hash of each of blocks in the stream and thus
each block can be verified when it arrives. The problem with this solution is
that it requires the storage and maintenance of a potentially very large table on
the receiver's end .. In many realistic scenarios the receiver buffer is very limited
compared to the size of the stream, (e.g., in MPEG a typical movie may be 20
GBytes whereas the receiver buffer is only required to be around 250Kbytes).
Therefore the hash table can itself become fairly large (e.g., 50000 entries in this
case or 800Kbytes for the MDS hash function) and it may not be possible to store
the hash table itself. Also, the hash table itself needs to be transmitted first and
if it .is too large then there will be a significant delay before the first piece of the
stream is received and consumed. To address the problem oflarge tables one can
also come up with a hybrid scheme in which the stream is split in consecutive
pieces and each piece is preceded by a small signed table of contents.2
2

This is the case now (Java Developer Kit 1.1) for large signed java applets which are distributed
as a colJection of Java archives (JAR) where each archive has a signed table of hashes of
contents and the archives are loaded in the order given in the HTML page in which the applet
is embedded.

IPR2020-00660 Page 00007

183

The above solution can be further modified by using an authentication tree: the
blocks are placed as the leaves of a binary tree and each internal node takes as a
value the hash of its children (see [13].) This way the sender needs to sign and
send only the root of this tree. However in order to authenticate each following
block the sender has to send the whole authentication path (i.e. the nodes on the
path from the root to the block, plus their siblings) to the receiver. This means that
if the stream has k blocks, the authentication infonnation associated with each
block will be O(log k).
As we will see briefly our solution eliminates all these shortcomings. The basic
idea works for both infinite and finite streams, only one expensive digital signature
is ever computed, there are no big tables to store, and the size of the authentication
infonnation associated with each block does not depend on the size of the stream.

NON-REPUDIATION.Notice that if the receiver were only interested in establishing
the identity of the sender, a solution based on MAC would suffice. Indeed once
the sender and receiver share a secret key, the stream could be authenticated block
by block using a MAC computation on it. Since MAC's are usually faster than
signatures to compute and verify, this solution would not incur the computational
cost associated with the similar signature-based solution described above.
However a MAC-based approach would not enjoy the non-repudiation property.
We stress that we require such property for our solution. Also in order for this
property to be meaningful in the context of streams we need to require that each
prefix of the stream to be non-repudiable. That is, if the stream is B = B 1 , B2 , •••

where each Bi is a block, we require that each prefix Bi = B1 ... Bi is non­
repudiable. This rules out a solution in which the sender just attaches a MAC to
each block and then signs the whole stream at the end.
This is to prevent the sender from interrupting the transmission of the stream
before the non-repudiability property is achieved. Also it is a guarantee for the
receiver. Consider indeed the following scenario: the receiver notices that the
applets she is downloading are producing damages to her machine. She interrupts
the transfer in order to limit the damage, but at the same time she still wants some
proof to bring to court that the substream downloaded so far did indeed come
from the sender.

1.3 Our solution in a nutshell

Our solution makes some reasonable/practical assumptions about the nature of
the streams being authenticated.
First of all we assume that it is possible for the sender to embed authentication
information in the stream. This is usually the case, see Section 7 to see how to do
this in most real-world situations like MPEG video/audio. We also assume that
the receiver has a "small" buffer in which it can first authenticate the received bits

I

IPR2020-00660 Page 00008

·1·: .
. ;'/''
!

184

before consuming them. Finally we assume that the receiver has processing power
or hardware that can compute a small number of fast cryptographic checksums
faster than the incoming stream rate while still being able to play the stream in
real-time.

The basic idea of our solution is to divide the stream into blocks and embed some
authentication information in the stream itself. The authentication information of
the ith block will be used to authenticate the (i + 1)'"t block. This way the signer
needs to sign just the first block and then the properties of this single signature
will "propagate" to the rest of the stream through the authentication information.
Of course the key problem is to perform the authentication of the internal blocks
fast. We distinguish two cases.
In the first scenario the stream is finite and is known in its entirety to the signer in
advance. This is not a very limiting requirement since it covers most of the Internet
applications (digital movies, digital sounds, applets). In this case we will show
that a single hash computation will suffice to authenticate the internal blocks. The
idea is to embed in the current block a hash of the following block (which in turns
includes the hash of the following one and so on ...)
The second case is for (potentially· infinite) streams which are not known in
advance to the signer (for example live feeds, like sports event broadcasting
and chat rooms). In this case our solution is less optimal as it requires several
hash computations to authenticate a block (although depending on the embedding
mechanism these hash computations can be amortized over the length of the
block). The size of the embedded authentication information is also an issue in
this case. The idea here· is to use fast I -time· signature schemes (introduced in
[11, 12]) to authenticate the internal blocks. So block i will contain a I-time
public key and also the I-time signature of itself with respect to the key contained
in block i - 1. This signature authenticates not only the stream block but also the
I -time key attached to it.

1.4 Related Work

Some of the ideas involved in the solution for unknown streams have appeared
previously, although in different contexts and with different usage.
Mixing "regular" signatures with I -time signatures, for the purpose of improving
efficiency is discussed in [7]. However in that paper the focus is in making the
signing operation of a message M efficient by dividing it in two parts. An off-line
part in which the signer signs a I-time public key with his long-lived secret key
even before the messages M is known. Then when M has to be sent the signer
computes a I-time signature of M with the authenticated I-time public key and
sends out M tagged with the I-time public key and the two signatures. Notice
that the receiver must compute two signature verifications: one on the long-lived

IPR2020-00660 Page 00009

185

key and one on the 1-titne key. In our scheme we need to make both signing and
verification extremely fast, and indeed in our case each block (except for the first)
is signed (and hence verified) only once with a 1-time key.
We also use the idea to of using old keys in order to authenticate new keys.
This has appeared in several places but always for long-lived keys. Examples
include [I, 15, 18) where this technique is used to build provably secure signature
schemes. We stress that the results in [1, 15, 18) arc mostly of theoretical interest
and do not yield practical schemes. Our on-line solution somehow mixes these
two ideas in a novel way, by using the chaining technique with 1-timc keys,
embedding the keys inside the srream flow so that old keys can authenticate at the
same.time both the new keys and the current stream block.
The chaining technique can also be seen as a weak construction of accumulators as
introduced in [2). An accumulator for Jc blocks B1 , ••• , B,. is a single value ACC
that allows a signer to quickly authenticate any of the blocks in any particular
order. Accumulators based on the RSA assumption were proposed in [2). In our
case we have a much faster construction based on collision-free hash functions,
since we exploit the property that the blocks must be authenticated in a specific
order.

2 Preliminaries

In the following we denote with n the security parameter. We say that a function
t{n) is negligible if for all c, there exists an no such that, for all n > no,
t{n) < 1/nc.

COLLISION-RESISTANT HASH FUNCTT0NS. Let H be a function that map arbitrarily
long binary strings into elements ofa fixed domain D. We say that His acol/ision­
resistant hash function if any polynomial time algorithm who is given as input
the values H(:z:i) on several adaptively chosen values :z:;, finds a collision, i.e. a
pair (:z:,11) such that :z: -:f:. y and H(:z:) = H(11), only with negligible probability.
MD5 [16) and SHA- I [J 4) are conjectured collision-resistant hash functions.

StGNATIJRE SCHEMES. A signature scheme is a triplet (G, S, V) of probabilistic
polynomial-tune algorithms satisfying the following properties:

- G is the key generator algorithm. On input 1n it outputs a pair (SK, PK) E
{O, 1}2n. SK is called the secret (signing) key and PK is called the public
(verification) key.

- S is the signing algorithm. On input a message M and the secret key SK, it
outputs a signature u.

- V is the verification algorithm. For every (PK, SK) = G(l n) and u =
S(SK, M), it holds that V(P K, u, M) = 1.

IPR2020-00660 Page 00010

186

In (9] security for signature schemes is defined in several variants. The strongest
variant is caned "existential unforgeability against adaptively chosen message
attack". That is, we require that no efficient algorithm will be able to produce a
valid signed message, even after seeing several signed messages of its choice.

STREAM SIGNATURES. We define a stream to be a (possibly infinite) sequence of
blocks B = B1, B2 , ••• where each Bi E {O, 1y for some constant3 c.
We distinguish two cases. In the first case we assume that the stream is finite and
known to the sender in advance. We can this the off-line case. Conversely in the
on-line case the signer must process one (or a few) block at the time with no
knowledge of the future part of the stream.

Definition 1. An off-line stream signature scheme is a triplet (G, S, V) of prob­
abilistic polynomial-time algorithms satisfying the following properties:

- G is the key generator algorithm. On input 1" it outputs a pair (SK, PK) E
{O, 1}2

". SK is called the secret (signing) key and PK is caned the public
(verification) key.

- Sis the signing algorithm. On input a finite stream B = B1, ... , B1c and the
secret key SK algorithm S outputs a new stream B' = B{, ... , B~ where
B} = (Bi, Ai)-

- Vis the verification algorithm. For every (PK, SK) = G(ln) and B' =
S(SK, B), it holds that V(P K, B{, ... , Bi)= 1 for 1 :5 i :5 k.

Notice that we modeled the off-line property by the fact that the signing algorithm
is given the whole stream in advance. Yet the verifier is required to authenticate
each prefix of the scheme without needing to see the rest of the stream. As it will
become clear in the following our algorithms will not require the off-line verifier
to store the whole past stream either.

Definition 2. An on-line stream signature scheme is a triplet (G, S, V) of prob­
abilistic polynomial-time algorithms satisfying the fonowing properties:

- G is the key generator algorithm. On input 1 n it outputs a pair (SK, PK) E
{O, 1}2

n. SK is called the secret(signing) key and PK is called the public
(verification) key.

- S is the signing algorithm. Given a (possibly infinite) stream B = B1 , ... ,

algorithm S with input the secret key SK process each block one at the time,
i.e.,

S(SK, B1, ... , Bi)= Bl= (Bi, Ai)

s The assumption that the blocks have all the same size is not really necessary. We just make it
for clarity of presentation.

IPR2020-00660 Page 00011

187

- Vis the verification algorithm. Forevcry(P K,SK) = G(ln) and B;, B;, ...
suchthatB1 = S(SK, B1, ... , B,) foralli, itholdsthatV(PK,Bi, ... , BI)=
l for all i.

Notice that in the on-line definition we have the signer process each block "on the
fly" so knowledge of future blocks is not needed. In this case also the definition
seems to requires knowledge of all past blocks for both signer and verifier, however
this does not have to be the case (indeed in our solution some past blocks may be
discarded).

The above definitions say nothing about security. In order to define security for
stream signing we use the same notions of security introduced in [9]. That is, we
require that no efficient algorithm will be able to produce a valid signed stream,
even after seeing several signed streams. However notice that given our definition
of signed streams, a prefix of a valid signed stream is itself a valid signed stream.
So the forger can present a "different" signed stream by just taking a prefix of the
ones seen before. However this hardly constitutes forgery, so we rule it out in the
definition. With B(1) ~ 5(2) we denote the fact that B(1) is a prefix of 8(2).

Definition 3. We say that an off-line (resp. on-line) stream signature scheme
(G, S, V) is secure if any probabilistic polynomial time algorithm F, who is
given as input the public key PK and adaptively chosen signed streams B'(i),
outputs a new previously unseen valid signed stream B' S?; B'(i) Vj only with
negligible probability.

For signed streams we slightly abuse the notation: when we write 8 1<1> S?; B1<2>
we mean that not only 8 1

(
1) is not a prefix of B1

(
2

) but also the underlying "basic"
unsigned streams are in the same relationship, i.e. 8(1) S?; B<2 >.

This is the definition of existential unforgeability against adaptive chosen message
attack, the strongest of the notions presented in [9]. Following [9] weaker variants
can be defined.

3 The Off-Line Solution

In this case we assume that the sender knows the entire stream in advance. (e.g.,
music/movie broadcast). Assume for simplicity that the stream is such that it is
possible to reserve 20 bytes of extra authentication information in a block of size
c.

.. ,

IPR2020-00660 Page 00012

188

The stream is logically divided into blocks of size c. The receiver bas a buffer of
size c. The receiver first receives the signature on the 20 byte hash (e.g., SHA-1)
of the first block. After verification of the signature the receiver knows what the
hash of the first block should be and then starts receiving the full stream and starts
computing its hash block by block. When the receiver receives the first block,
it checks its hash against what the signature was verified upon. If it matches, it
plays the block otherwise it rejects it and stops playing the stream. How are other
blocks authenticated? The key point is that the first block contains the 20 byte
hash of the second block, the second block contains the 20 byte hash of the third
block and so on ... Thus, after the first signature check, there are just hashes to be
checked for every subsequent block.
In more detail, let (G, S, V) be a regular signature scheme. The sender has a pair
of secret-public key (SK, PK)= G(ln) of such signature scheme. Also let H
be a collision-resistant cryptographic hash function. If the original stream is

and the resulting signed stream is

the processing is done backwards on the original stream as follows:

B~ =< B,., 00 ... 0 >

Bf=< Bi, H(Bf+d > fori = 1, ... , k -1

B~ =< H(Bf), S(SK, H(B{)) >

Notice that on the sender side, computing the signature and embedding the hashes
requires a single backwards pass on the stream, hence the restriction that the
stream is fully known in advance.
The receiver verifies the signed stream as follows: on receiving B~ =< B, Ao >
she checks that

V(PK,Ao, B) = 1

then on receiving BI=< B;., A;. > (for i ~ 1) the receiver accepts Bi if

H(B:) = Ai-1

Thus the receiver has to compute a single public-key operation at the beginning,
and then only one hash evaluation per block. Notice that no big table is needed in
memory.

IPR2020-00660 Page 00013

189

4 The On-Line Solution

In this case the sender does not know the entire stream in advance (e.g, live
broadcast). In this scenario it is important that also the operation of signing (and
not just verification) be fast, since the sender himself is bound to produce an
authenticated stream at a potentially high rate.

ONE-TIME SIGNATURES. In the following we will use a special kind of signature
scheme introduced in [I l, 12). These are signatures which are much faster to
compute and verify than regular signatures since they are based on one-way
functions and do not require a trapdoor function. Conjectured known one-way
functions (as DES or SHA-1) are much more efficient then the known conjectured
trapdoor functions as RSA. However these schemes cannot be used to sign an
arbitrary number of messages but only a prefixed number of them (usually one).
Several other I-time schemes have been proposed [7, 3, 4]; in Section 6 we discuss
possible instantiations for our purpose.

In this case also the stream is split into blocks. Initially the sender sends a signed
public key for a I-time signature scheme. Then he sends the first block along with
a I-time signature on its hash based on the I-time public key sent in the previous
block. The first block also contains a new I-time public key to be used to verify
the signature on the 2nd block and this structure is repeated in all the blocks.
More in detail: let us denote with (G, S, V) a regular signature scheme and with
(g, s, v) a I -time signature scheme. With H we still denote a collision-resistant
hash function. The sender has long-lived keys (SK, PK)= G(l7"). Let

be the original stream (notice that in this case we are not assuming the stream to
be finite) and

the signed stream constructed as follows. For each i 2::, 1 let us denote with
(ski,Pki) = g(ln) the output of an independentrun of algorithm g. Then

B~ =< pko, S(SK,pko) >

(public keys of I-time signature schemes are usually short so they need not to be
hashed before signing)

J ' -

IPR2020-00660 Page 00014

190

Notice that apart from a regular signature on the first block, all the following signa­
tures are I-time ones, thus much faster to compute (including the key generation,
which however does not have to be done on the fly.)
The receiver verifies the signed stream as follows. On receiving B~ =< pko, Ao >
she checks that

V(P K, Ao,pko) = 1 ,.

and then on receiving m =< Bi, pki+1, Ai > she checks that

whenever one of these checks fails, the receiver stops playing the stream. Thus
the receiver has to compute a single public-key operation at the beginning, and
then only one I-time signature verification per block.

5 Proofs of Security

We were able to prove the security of our stream signature schemes according to
the definitions presented in Section 2, provided that the underlying components
used to build the schemes are secure on their own. The proofs of the following
theorems appear in the full version of the paper [8] due to space limitations.

THE OFF-LINE CASE. Let us denote with (9off, Soft, VoJ J) the off-line stream
signature scheme described in Section 3. With (G, S, V) let us denote the "regu­
lar" signature scheme and with H the hash function used in the construction. The
following holds.

Theorem 4. If (G, S, V) is a secure signature scheme and H is a collision­
resistant hash/unction then the resulting streamsignaturescheme(goJ J, SoJ J, VoJ f)
is secure.

THE ON-LINE CASE. Let us denote with (gon, Son, Von) the on-line stream sig­
nature scheme described in Section 4. With (G, S, V) let us denote the "regular"
signature scheme, with (g, s, v) the one-time signature scheme and with H the
hash function used in the construction. The following holds.

Theorem 5. If (G, S, V) and (g, s, v) are secure signature schemes and His
a collision-resistant hash function then the resulting stream signature scheme
(gon, Son, Von) is secure.

IPR2020-00660 Page 00015

191

Remark 1: In the bodies and proofs of the above theorems we meant security as
"existential unforgeability against adaptively chosen message attack". However
the theorems hold for any notion of security defined in [9], that is the stream
signature scheme inherits the same kind of security of the underlying signature
scheme(s) provided that the hash function is collision-resistant.

Remark 2: The statements of the above theorems are valid not only in asymptotic
tenns, but have also a concrete interpretation which ultimately is reflected in the
key lengths used in the various components in order to achieve the desired level
of security of the full construction. It is not hard to see, by a close analysis of
the proofs, that the results are pretty tight. That is, a forger for the stream signing
scheme can be transfonned into an attacker for one of the components (the hash
function, the regular signature scheme and, a little less optimally, the I-time
signature scheme) which runs in about the same time, asks the same number of
queries and has almost the same success probability. This is turns means that there
is no major degradation in the level of security of the compound scheme and thus
the basic components can be run with keys of ordinary length.

6 Implementation Issues

6.1 The Choice of the One-Time Signature Scheme

Several one-time schemes have been presented in the literature, see for example
(11, 12, 7, 3, 4]. The main parameters of these schemes are signature length and
verification time. In the solutions we know, these parameters impose conflicting
requirements, i.e. if one wants a scheme with short signatures, verification time
goes up, while schemes with longer signatures can have a much shorter verification
time. In our on-line solution we would like to keep both parameters down. Indeed
the verification should be fast enough to allow the receiver to consume the stream
blocks at the same input rate she receives them. At the same time, since the
signatures are embedded in the stream, it's important to keep them small so that
they will not reduce the throughput rate of the original stream.
We present a scheme which obtain a reasonable compromise. In the final paper
we will present several more schemes. The scheme is based on a 1-way function
F in a domain D. It also uses a collision resistant hash function H. The scheme
allows signing of a single m-bit message. It is based on a combinations of ideas
from [11, 19]. Here are the details of the scheme.

Key Generation. Choosem+log m elements in D, let them be a1, ... , a=+log =·
This is the secret key. The pub lick key is

pk= H(F(ai), ... 1 F(am+log m))

(:
'i

J
IPR2020-00660 Page 00016

192

Signing Algorithm. Let M be the message to be signed. Append to M the binary
representation of the number of zero's in M's binary representation. Call M' the
resulting binary string. The signature of M is s1, ... , s=+log = where Si = a.i if
the i th bit of M' is 1 otherwise Si = F(a.i).

Verification Algorithm. Check if

H(t1, ... , t,n+log ,n) = pk

where ti = Si if ith bit ofM' is 0 otherwise ti = F(Si).

Security. Intuitively this scheme is secure since it is not possible to change a 0 into
a 1 in the binary representation of the message M without having to invert the
function F. It is possible to change a 1 into a 0, but that will increase the number

· of O's in the binary representation of M causing a bit to flip from Oto 1 in the last
log m bits of M', and so forcing the attacker to invert F anyway.

Parameters. This scheme has signature length ID I (m + log m) where ID I is the
number of bits required to represent elements of D. The receiver has to compute
I hash computation of H plus on the average =+1;s = computations of F.
In practice we assume that F maps 64-bit long strings into 64-bit long strings.
Since collision resistance is not required from F we believe this parameter is
sufficient. Conjectured good F's can be easily constructed from efficient block
ciphers like DES or from fast bash function like MDS or SHA-1. 4 Similarly H
can be instantiated to MOS or SHA-1. In general we may assume m to be 128 or
160 if the message to be signed if first hashed using MD5 or SHA-I.
The SHA-I implementation has then signatures which are 1344 bytes long. The
receiver has to compute F around 84 times on the average. With MD5 the numbers
become 1080 bytes and 68 respectively. When used in our off-line scheme one
also has to add 16 bytes for the embedding of the public key in the stream.

Remark: Comparing the RSA signature scheme with verification exponent3 with
the above schemes, one could wonder if the verification algorithm is really more
efficient (2 multiplications verses 84 hash computations). Typical estimates today
are that an RSA verification is comparable to l 00 hash computations. However
we remind the reader that we are trying to improve both signature generation and
verification as this scheme is used in the on-line case and as such both operations
have to be performed on-line and thus efficiently. The improvement in signature
generation is much more substantial.

• As a cautionary remark to prevent attacks where the attacker builds a large table of evaluations
of F, in practice F could be made different for each signed stream (or for each large portion
of the signed stream) by defining F(:i:) to be G(Sa.ltllX) where G is a one-way 128 bit to 64
bit function, and the Salt is generated at random by the signer once for each stream or large
pieces thereof.

IPR2020-00660 Page 00017

193

6.2 Non-Repudiation

In case of a legal dispute over a content of a signed stream the receiver must bring
to court some evidence. If the receiver saves the whole stream, then there is no
problem. However in some cases, for example because of memory limitations,
the receiver may be forced to discard the stream data after having consumed it. In
these cases what should she save to protect herself in case of a legal dispute?
In the off-line solution, assuming the last block of the signed stream always has a
special reserved value for the hash-chaining field, (say all O's) she needs to save
only the first signed block. Indeed this proves that she received something from
the sender. Now we could conceivably move the burden of proof to the sender to
reconstruct the whole stream that matches that first block and ends with the last
block which has the reserved value for the hash-chaining field.
Similarly in the on-line solution, at a minimum the receiver needs to save the first
signed block and all I-time signatures and have the sender reconstruct the stream.
However in practice, this may still be too much to save. In the final paper we will
discuss various modifications to the on-line scheme that can be used in practice
to substantially reduce the data that the receiver needs to store.

6.3 Hybrid Schemes

In the on-line scheme, the length of the embedded authentication information is
of concern as it could cut into the throughput of the stream. In order to reduce it
hybrid schemes can be considered. In this case we assume that some asynchrony
between the sender and receiver is acceptable.
Suppose the sender can process a group (say 20) of stream blocks at a time
before sending them. With a pipelined process this would only add an initial
delay before the stream gets transmitted. The sender will sign with a one-time key
only 1 block out of 20. The 20 blocks in between these two signed blocks will be
authenticated using the off-line scheme. This way the long 1-time signatures and
the the verification time can be amortized over the 20 blocks.
A useful feature of our proposed I-time signature scheme is that it allows the
verification of (the hash of) a message bit• by bit. This allows us to actually
"spread out" the signature bits and the verification time among the 20 blocks.
Indeed if we assume that the receiver is allowed to play at most 20 blocks of
unauthenticated information before stopping if tampering is detected we can do
the following. We can distribute the signature bits among the 20 blocks and verify
the hash of the first block bit by bit as the signature bits arrive. This maintains the
stream rate stable since we do not have long signatures sent in a single block and
verification now takes 3-4 hash computations per block, on every block.

IPR2020-00660 Page 00018

194

It is also possible to remove the constraint on playing 20 blocks of unauthenticated
information before tampering is detected. This requires a simple modification to
our on-line scheme. Instead of embedding in block Bi its ov1n 1-time signature,
we embed the signature of the next block Bi+1. This means that in the on-line
case blocks have to be processed two at a time now. When this modification is
applied to the hybrid scheme, the signature bits in the current 20 blocks are used
to authenticate the following 20 blocks so unauthenticated information is never
played. However this means that now the sender has to process 40 blocks at a
time in the hybrid scheme.

7 Applications

MPEG VIDEO AND AUDIO. In the case of MPEG video and audio, there are
several methods for embedding authentication data. Firstly, the Video Elementary
stream has a USER-DATA section where arbitrary user defined information can
be placed. Secondly, the MPEG system layer allows for an elementary data stream
to be multiplexed synchronously with the packetized audio and video streams.
One such elementary stream could carry the authentication information. Thirdly,
techniques borrowed from digital watermarking can be used to embed information
in the audio and video itself at the cost of slight quality degradation. In the case
of MPEG video since each frame is fairly large, (hundreds of kilobits) and the
receiver is required to have a buffer of at least l .8Mbits, both the off-line as well
as the on-line solutions can be deployed without compromising picture quality.
In the case of audio however, in the extreme case the bit rate could be very low
(e.g., 32Kbits/s) and each audio frame could be small (approx. 1000 bytes) and
the receiver's audio buffer may be tiny (< 2 Kbytes). In such extreme cases the
on•line method, which requires around I 000 bytes of authentication information
per block cannot be used without seriously cutting into audio quality. For these
extreme cases, the best on-line strategy would be either to send the authentication
information via a separate but multiplexed MPEG data stream. For regular MPEG
audio, if the receiver has a reasonably sized buffer (say 32K) then by having a
large audio block (say 20K) our on-line scheme would a server-introduced delay
ofapproximately 5-6 seconds and a 5% quality degradation. If the receiver buffer
is small but not tiny (say 3 K) a hybrid scheme would work: as an example of
a scheme that can be built one could use groups of 33 hash-chained blocks of
length I 000 bytes each; this would typically result in a 5% degradation and a
server initial delay in the 20 second range.

JAVA. In the original version of java (JDK 1.0), for an applet coming from the
network, first the startup class was loaded and then additional classes were (down)
loaded by the class loader in a lazy fashion as and when the running applet first

IPR2020-00660 Page 00019

195

attempted to access them. Since our ideas apply not only to streams which are
a linear sequence of blocks but in general to trees as well (where one block can
invoke any ofits children), based on our model, one way to signjava applets would
be to sign the startup class and each downloaded class would have embedded in it
the hashes of the additional classes that it downloads directly. However for code
signing, Javasoftbas adopted the multiple signature and hash table based approach
in JD Kl. I, where each applet is composed of one or several Java archives, each of
which contains a signed table of hashes (the manifest) of its components. It is our
belief that once java applets become really large and complex the shortcomings of
this approach will become apparent: (1) the large size of the hash table in relation
to the classes actually invoked during a run. This table bas to fully extracted and
authenticated before any class gets authenticated; (2) the computational cost of
signing each of the manifests if an applet is composed of several archives; (3)
accommodating classes or data resources which are generated on the fly by the
application server based on a client request
These could be addressed by using some of our techniques. Also the problem of
how to sign audio/video streams will have to be considered in the future evolution
of Java, since putting the hash of a large audio/video file in the manifest would
not be acceptable.

BROADCAST APPLICATIONS. Our schemes (both the off-line and the on-line one)
can be easily modified to fit in a broadcast scenario. Assume that the stream is
being sent to a broadcast channel with multiple receivers who dynamically join
or leave the channel. In this case a receiver who joins when the transmission is
already started will not be able to authenticate the stream since she missed the
first block that contained the signature. Both schemes however can be modified so
that every once in a while apart from the regular chaining information, there will
also be a regular digital signature on a block embedded in the stream. Receivers
who are already verifying the stream via the chaining mechanism can ignore this
signature whereas receivers tuned in at various time will rely on the first such
signature they· encounter to start their authentication chain. A different method
to authenticate broadcasted streams, with weaker non-repudiation properties than
ours, was proposed in [1 O].

LONG FILES WHEN COMMUNICATION IS AT COST. Our solution can be used also
to authenticate long files in a way to reduce communication cost in case of
tampering. Suppose that a receiver is downloading a long file from the Web.
There is no "stream requirement" to consume the file as it is downloaded, so the
receiver could easily receive the whole file and then check a signature at the end.
However if the file has been tampered with, the user will be able to detect this fact
only at the end. Since communication is at a cost (time spent online, bandwidth

r

IPR2020-00660 Page 00020

)

196

wasted etc) this is not a satisfactory solution. Using our solution the receiver can
interrupt the transmission as soon as tampering is detected thus saving precious
communication resources.

SIGNATURE BASED CONTENT-FILTERING AT PROXIES. Recently there has been in­
terest in using digital signatures as a possible way to filter content admitted in
by proxy servers through firewalls. Essentially when there is a firewall and one
wishes to connect to an external server, then this connection can only be done via
a proxy server. In essence one establishes a connection to a proxy and the proxy
establishes a separate connection to the external server (if that is permitted). The
proxy then simulates a connection between the internal machine and the external
machine by copying data between the two connections. There has been some
interest in modifying proxies so that they would only allow signed data to flow
from the external serverto the internal machine. However, since the proxy is only
copying data as it arrives from the external connection into the internal connection
and it cannot store all the incoming data before transferring it, the proxy cannot
use a regular signature scheme for solving this problem. However, it is easy to
see that in the proxy's view the data is a stream. Hence if there could be some
standardized way to embed authentication data in such streams then techniques
from this paper would prove useful in solving this problem.

8 Acknowledgments

We would like to thank Hugo Krawczyk for his advice, guidance and encourage­
ment for this work. We would also like to thank Ran Canetti and Mike Wiener for
helpful discussions.

References

1. M. Bellare, S. Micali. How to Sign Given any Trapdoor Permutation. J. of
the ACM, 39(1):214-233, 1992.

2. J. Benaloh, M. de Mare. One-Way Accumulators: A Decentralized Alterna­
tive to Digital Signatures.Advances in Cryptology-EUROCRYPT'93.LNCS,
vol. 765, pp.274-285, Springer-Verlag, 1994.

3. D. Bleichenbacher, U. Maurer. Optimal Tree-Based One-time Digital Signa­
ture Schemes. STACS'96, LNCS, Vol. 1046, pp.363-374, Springer-Verlag.

IPR2020-00660 Page 00021

197

4. D. Bleichenbacher, U. Maurer. On the efficiency of one-time digital signa­
tures. Advances in Cryptology-ASYACRYPT'96, to appear.

5. W. Diffie, M. Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22(6):74-84, 1976.

6. T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme based
on Discrete Logarithms. IEEE Transactions on Information Theory, IT-
31(4):469-472, 1985.

7. S. Even, 0. Goldreich, S. Micali. On-Line/Off-Line Digital Signatures. J.
of Cryptology, 9(1):35--67, 1996.

8. R. Gennaro, P. Rohatgi. How to Sign Digital Streams.
Final version available from
http://www.research.ibm.com/security/papers1997.html

9. S. Goldwasser, S. Micali, R. Rivest. A Digital Signature Scheme Secure
Against Adaptive Chosen Message Attack. SIAM J. Comp. 17(2):281-308,
1988.

10. G. Itkis. Asymmetric MACs. Rump talk at Crypto'96.
11. L. Lamport. Constructing Digital Signatures from a One-Way Function.

Technical Report SRI Intl. CSL 98, 1979.
12. R. Merkle. A Digital Signature based on a Conventional Encryption Function.

Advances in Cryptology-Crypto '87. LNCS, vol.293, pp. 369-378, Springer­
Verlag, 1988.

13. R. Merkle. A Certified Digital Signature. Advances in Cryptology­
Crypto '89. LNCS, vol.435, pp. 218-238, Springer-Verlag, 1990.

14. National Institute of Standard and Technology. Secure Hash Standard. NIST
FIPS Pub 180-1, 1995.

15. M. Naor, M. Yung. Universal One-Way Hash Functions and their Crypto­
graphic Applications. Proceedings of STOC 1989, pp.33-43.

16. R. Rivest. The MD5 Message Digest Algorithm. Internet Request for Com­
ments. April 1992.

17. R. Rivest, A. Shamir, L. Adleman. A Method for Obtaining Digital Signa­
tures and Public Key Cryptosystems. Comm. of the ACM, 21(2):120--126,
1978.

18. J. Rompel. One-Way Functions are Necessary and Sufficient for Secure Sig­
natures. ProceedingsofSTOC 1990, pp.387-394.

19. Wintemitz. Personal communication to R. Merkle.

IPR2020-00660 Page 00022

