
United States Patent [19J

Renaud et al.

[54]

[75]

IMPLEMENTING DIGITAL SIGNATURES
FOR DATA STREAMS AND DATA ARCHIVES

Inventors: Benjamin J. Renaud, Woodside; John
C. Pampuch, Morgan Hill; Avril E.
Hodges Wilsher, Palo Alto, all of Calif.

[73] Assignee: Sun Microsystems, Inc., Palo Alto,
Calif.

[21] Appl. No.: 08/780,817

[22] Filed: Jan. 9, 1997

[63]

[51]
[52]
[58]

[56]

Related U.S. Application Data

Continuation-in-part of application No. 08/753,716, Nov.
27, 1996.

Int. Cl.6
.. G06F 12/14

U.S. Cl. .. 713/200
Field of Search 395/186; 364/222.5,

4,405,829
4,868,877
4,981,370
5,005,200
5,031,214
5,163,091
5,191,613
5,214,702
5,311,591
5,457,746
5,499,294
5,572,590
5,572,673
5,579,393

364/286.4, 286.5; 326/8; 380/4, 23, 24;
340/825.34

References Cited

U.S. PATENT DOCUMENTS

9/1983 Rivest et al. 178/22.1
9 /1989 Fischer 380/25
1/1991 Dziewit et al. 380/25
4/1991 Fischer 380/30
7/1991 Dziewit et al. 380/23

11/1992 Graziano et al. 380/25
3/1993 Graziano et al. 380/25
5 /1993 Fischer 380/30
5/1994 Fischer .. 380/4

10/1995 Dolphin 380/4
3/1996 Friedman 380/10

11/1996 Chess .. 380/4
11/1996 Shurts 395/186
11/1996 Conner et al. 380/25

I 1111111111111111 11111 lllll lllll 111111111111111 1111111111111111 Ill lllll llll
US005958051A

[11] Patent Number:

[45] Date of Patent:

5,958,051
Sep.28,1999

5,619,571
5,675,650
5,677,953
5,703,951

4/1997 Sandstrom et al. 380/4
10/1997 Cordery et al. 380/23
10/1997 Dolphin 380/4
12/1997 Dolphin 380/25

OTHER PUBLICATIONS

"Public-Key Digital Signature Algorithms", Applied Cryp
tography, 2nd Edition, ISBN 0--471-11709-9, Chapt. 20, pp.
483-502, 1996.
Schneier, "E-Mail Security", John Wiley & Sons, Inc, pp.
54--57, 67-74 and 225-226, Dec. 1995.
Garfinkel, "PGP: Pretty Good Privacy", O'Reilly & Asso
ciates, Inc., pp. 17-21 and 217-232, Dec. 1995.
Kent, "PGP Companion for Windows", Ventana Press, pp.
85-97, Dec. 1995.

Primary Examiner-Robert W. Beusoliel, Jr.
Assistant Examiner-Stephen C. Elmore
Attorney, Agent, or Firm-Beyer & Weaver, LLP

[57] ABSTRACT

Methods, apparatuses and products are provided for estab
lishing and verifying the authenticity of data within one or
more data files. In accordance with one aspect of the present
invention, a method for verifying the authenticity of data
involves providing at least one data file which includes an
identifier and a signature file which includes the identifier
for the data file as well as a digital signature. The digital
signature is then verified using a computer system, and the
identifier in the data file is compared with the identifier in the
signature file using the computer system. In one
embodiment, the identifier for the data file includes at least
one certificate authority, site certificate, software publisher
identifier, or a site name, and verifying the authenticity of
data involves setting a security level for at least one of the
certificate authority, the site certificate, the software pub
lisher identifier, and the site name.

32 Claims, 7 Drawing Sheets

20

434

422 ! !

Alert User

Compare Computed
Identifier for ith

File with ith File
Identifier from
Signature File

424 1 ~32

Abort the Load i
of jth File ·

430

Mark ith File
as Signed

NO

428

Ignore i
th File

Dolby Exhibit 1012
IPR2020-00660

Page 00001

U.S. Patent

12

Source User
Computer

20~

28

Input/Output
Device(s)

Sep.28,1999 Sheet 1 of 7

30

22

16

Data Link

FIG. 1
(PRIOR ART)

Network
Communication

lnterface(s)

Buses

32

Processor(s)

FIG. 2
(PRIOR ART)

5,958,051

14

Reciever User
Computer

26

Secondary
Memory

Primary
Memory

24

IPR2020-00660 Page 00002

U.S. Patent Sep.28,1999 Sheet 2 of 7 5,958,051

300~

SIGNATURE FILE
302

FILE 1 304

FILE 2 306

FILE 3 308

FILE 4
310

FILE 5 312

•

C:
~

302~
FILE n ~4

FIG. 3a 320 IDENTIFIER ID

(FILE 1)!
316 ' L------••

318

(FILE 2) !

I (FILE 3) !

l<FILE 4) i
I (FILE 5) !

• • •
I (FILE n)!

322 SIGNATURE

FIG. 3b

IPR2020-00660 Page 00003

U.S. Patent Sep.28,1999 Sheet 3 of 7 5,958,051

402

404

406

408

410

412

Start

Generate
Files

Generate
Identifier for

Each File

Create a
Signature File

Sign the
Signature File

Send Signature
File to

Receivin User

Verify
Signature File

End

YES

Store Signature
File to Secure

Location

416

.---.,__--~-- 418
Iterate from
i=1 to i=n,
when i<n

Load i th File

End

Compute
Identifier

for ith File

434
422 !---------------- ________S :

: :

Compare Computed
Identifier for i th

File with ith File
Identifier from
Signature File

Mark ith File
as Signed

FIG.4

i Alert User !
! ! l ________ ... ______ j

.-432
424 _______ j___ ______ _ '---------------- __________) --

: I

i Abort the Load i
[of jth File [
' ' ' ' I ________________ •••••••••••••••• I

430

NO Ignore ith File

428

IPR2020-00660 Page 00004

U.S. Patent Sep.28,1999

500 ~

START

Sheet 4 of 7

SET SECURITY
LEVELS FOR
CERTIFICATE
AUTHORITY

SET SECURITY
LEVELS FOR SITE

CERTIFICATES

SET SECURITY
LEVELS FOR
SOFTWARE

PUBLISHERS

SET SECURITY
LEVELS FOR SITE

NAMES

SET CERTIFICATE
TYPES

FIG. 5

5,958,051

508

IPR2020-00660 Page 00005

U.S. Patent Sep.28,1999 Sheet 5 of 7 5,958,051

506)

Document Tvoe ll=lllolllll~I

File Edit View Places Help

I Wed Dec 11 9:01 I □□□□□□□ I I

Enter URL: I http://www.java.sun.com/java.sun.com I
568 572

564 ~
r-1 ~ ~

V XXXXXXX 6 580 0 Applet Permissions
yyyyyyy

~ ~ 574
zzzzzzz File Access~ 576

0
r--J

y_ Network Access

1<11 I t>I

I Details I I Add Site I ~dd Groug l~g~ificate I I Remove I
Applets with this permission are Applets with this permission are
allowed to read these files and allowed to write these files and

58 4 directories:
590

directories: , __
--,aaaaa -6 v ,aaaaa 6

58 2
'-.

4 59

59 6'
'

bbbbb

~ 588 bbbbb

~ vr- ccccc '-..----- ccccc

y_ V
l<l I t>I 1<11 I t>I

1--ro Warn before granting access to other files
.... r-o Warn when applet tries to delete a file

□ Don't warn when deleting writable files

FIG. 5a

IPR2020-00660 Page 00006

U.S. Patent Sep.28,1999

START

DOWNLOAD APPLET

RECIEVE SIGNED
ARCHIVE STREAM

"BRAND" APPLET

RUN APPLET

604

NO

COMPARE "BRAND"
WITH SECURITY SETTINGS

NO

Sheet 6 of 7 5,958,051

{600

624 626

NO STOP
APPLET

YES

END

FIG. 6

616

DISALLOW APPLET
>----- ACTION

ALLOW APPLET ACTION1-----~~

IPR2020-00660 Page 00007

U.S. Patent

START

DEFINE DESIRED
CONNECTION

ESTABLISH
COMMUNICATION

WTIH SITE

NO

Sep.28,1999

702

704

708

YES
CONNECT TO SITE--

END

FIG. 7

Sheet 7 of 7 5,958,051

710 714

NO TERMINATE
COMMUNICATION

YES

NO

IPR2020-00660 Page 00008

5,958,051
1

IMPLEMENTING DIGITAL SIGNATURES
FOR DATA STREAMS AND DATA ARCHIVES

CROSS REFERENCE TO RELATED
APPLICATION

The present invention is a continuation-in-part of U.S.
patent application Ser. No. 08/753,716, entitled "Digital
Signatures for Data Streams and Data Archives," filed Nov.
27, 1996, which is incorporated herein by reference in its
entirety.

FIELD OF THE INVENTION

The present invention relates generally to the sharing of
data among computing resources. More specifically, the
present invention relates to methods, apparatuses and prod
ucts for securing and verifying the authenticity of data being
processed on a computer system.

BACKGROUND OF THE INVENTION

With the increasing popularity of networked computing
environments, such as the Internet, there has been a corre
sponding increase in the demand to provide for the trans
ferring of shared information among the networked com
puters in a secure manner. For example, when a user of the
Internet sends information in the form of data to another user
it may be useful for the receiving user to verify that the data
received has not been corrupted or otherwise altered in some
manner. Furthermore, the receiving user may also find it
useful to verify that the data received was actually sent by
the proper sending user rather than an impostor.

2
with a related data file to other users. The basic concept
behind most signature algorithms is that every user (e.g.,
individuals, companies, governments, etc.) will have a "key
pair" that includes both a "private key" and a "public key".

5 A key may, for example, be a numerical sequence. The
private key is a unique key that is assigned to a single user
and intended to be kept secret by that user. The private key
may be used by the assigned user to create a digital signature
for a data file with a signature algorithm. The public key, on

10
the other hand, is typically made available to all other users.
The public key may be used by these other users to verify
that the digital signature on a received data file is authentic
(i.e., that the digital signature was created with the private
key). The verification process is accomplished with the same

15
signature algorithm. In principle, such a verification process
may provide a relatively high level of confidence in the
authenticity of the source of the received data.

In addition to digital signature generating algorithms,
there are also algorithms that may be used to authenticate

20 that the data file has not been corrupted in some manner.
These algorithms are typically known as "one-way hash
functions". One example of such an algorithm is the Mes
sage Digest, introduced above. A one-way hash function
usually does not require a key. One-way hash functions

25 typically include additional data that is inserted into the data
file. As such, when the data file is received the hash function
may be used to verify that none of the data within the data
file has been altered since the generation of the hash func
tion. However, hash functions are typically limited in that

30 the user may not necessarily infer anything about the asso
ciated file, such as who sent it. It is noted that many signature
algorithms use one-way hash functions as internal building
blocks. As a result, methods and algorithms that increase the

security of data transmitted over computer networks and
other data links have been developed and deployed with 35
some success. The more secure methods tend to include
encrypting all or part of the data prior to sending it, and
likewise decrypting the received data prior to using it. Such
encryption and decryption techniques may, for example,
include adding encryption data to the data file, and encoding 40
or otherwise transforming the data in the data file with a
computer system by running a "signature algorithm".

For relatively open, unsecured networks such as the
Internet, it may be useful for users to authenticate received
data files prior to using them as intended. Such data files may
include, but are not limited to, computer programs, graphics,
text, photographs, audio, video, or other information that is
suitable for use within a computer system. No matter the
type of data file, authentication may be accomplished with
a signature algorithm or similar type of encryption algorithm
as described above. By way of example, if the data file is a
software program the user may wish to authenticate that it
was sent by a trustworthy authority prior to exposing his or

There are currently several signature algorithms in use
today. One popular signature algorithm is actually a com
bination of a Message Digest algorithm and an RSA encryp
tion algorithm (e.g., MDS with RSA, or MD2 with RSA, or
the like). The Message Digest with RSA signature algorithm

45 her computer system to the software program, lest the
program include a "Trojan Horse" that infects the user's
computer with a virus. In such a case, the sending user may
authenticate the data as described above. is a patented algorithm (U.S. Pat. No. 4,405,829 issued Sep.

20, 1983) that is available from RSA Data Security, Inc. of
Redwood City, Calif. Another popular signature algorithm is 50

the DSA encryption algorithm. The DSA encryption
algorithm, which is available from the United States
Government, may be used for limited purposes by private
parties as a signature algorithm. These signature algorithms
will be discussed in limited detail below. For a more detailed 55

description of these and other signature algorithms and
related encryption operations, refer to Applied
Cryptography, Second Edition, 1996, by Bruce Schneier
which is available from John Wiley & Sons, Inc. New York
City, N.Y., and which is herein incorporated, in its entirety,
by reference.

The Message Digest with RSA algorithm includes the
capability to generate a "digital signature" that can be added
to data files. Digital signatures are basically mechanisms
through which users may authenticate the source of a
received data file. A digital signature is typically a special
sequence of data that can be generated and provided along

Another example is where the receiving user wishes to
authenticate a text and/or image data file prior to displaying
it on his or her computer screen. This may be useful to
control the display of text and images having undesirable
content. For example, parents may want to limit any access
their children may have to pictures and text relating to adult
subjects and materials. This can be accomplished by veri
fying that the data file (e.g., a text or image file), came from
a trusted source. Similarly, providers of text and image files
may want to provide a "stamp" of approval or authenticity
so as to control the use of tradenames and other intellectual

60 property.
Unfortunately, the process of encrypting and decrypting,

signing and verifying, and/or generating hash functions
places an additional burden on the sending and receiving
user's computational resources. The burden is compounded

65 for users who send and receive several data files. By way of
example, the growth of that aspect of the Internet known as
the World-Wide Web has lead to a tremendous increase in

IPR2020-00660 Page 00009

5,958,051
3 4

ing computer-readable program code embodied thereon for
use in verifying the authenticity of data provides at least one
data file and a signature file, where the data file includes an
identifier and the signature file includes the identifier for the

the transfer of multiple data files between users. These
multiple data files often include the components or objects
that constitute an object-oriented software process, such as
a Java TM applet. To illustrate the potential burden that can be
placed on the receiving user's computer resources in such a
multiple data file transfer, one need only calculate the
resulting processing time associated with verifying the digi
tal signatures for each of the files. For example, if an Java TM

applet included 200 digitally signed Java TM class files
(including data files), assuming that the average verification
process took about 1 second on a conventional desktop
personal computer, then the user would have to wait for
about 200 seconds after receiving the data files to use the
applet. Such delays may significantly reduce the effective
ness of such a computer network environment. This is
especially true for data files relating to a timed process, such
as streaming audio or video data file in real (or near-real)
time.

5 data file and a digital signature. Program code for verifying
the digital signature using the computer system and com
paring the identifier in the data file with the identifier in the
signature file is also included in the computer program
product.

10
In one embodiment, the computer program product

includes computer-readable program code for downloading
the data file to the computer system and verifying the digital
signature when the data file is an applet, and appropriately
branding the applet. In another embodiment, computer
readable program code includes code for running the applet

15 and code for determining whether the applet performs an
action that triggers a security check. In another embodiment,
code is included for use in establishing a secure connection
with a remote site.

Therefore, what is desired are more efficient methods,
apparatuses and products for securing and verifying the 20

authenticity of data files, especially for data files intended to
be transferred over computer networks.

SUMMARY OF THE INVENTION

In yet another aspect of the present invention, a computer
system arranged to verify the authenticity of a data file,
which includes an identifier and is associated with a signa
ture file that has the identifier for the data file and a digital
signature, includes a processor, a memory coupled to the
processor, and a verifier arranged to verify the digital

25 signature and compare the identifier in the data file with the
identifier in the signature file. In one embodiment, the
identifier for the data file includes at least one of a certificate
authority, a site certificate, a software publisher identifier,
and a site name. In such an embodiment, the verifier is

The present invention provides more efficient methods,
apparatuses and products for securing and verifying the
authenticity of data files, such as data files intended to be
transferred over computer networks. In accordance with one
aspect of the present invention, a method for verifying the
authenticity of data involves providing at least one data file 30

which includes an identifier and a signature file which
includes the identifier for the data file as well as a digital
signature. The digital signature is then verified using a
computer system, and the identifier in the data file is
compared with the identifier in the signature file using the 35

computer system.
In one embodiment, the identifier for the data file includes

further arranged to set a security level for at least one of the
certificate authority, the site certificate, the software pub
lisher identifier, and the site name. In another embodiment,
the data file is an applet and the verifier is arranged both to
brand the applet and to run the applet.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings in which:

at least one certificate authority, site certificate, software
publisher identifier, or a site name, and verifying the authen
ticity of data involves setting a security level for at least one

4° FIG. 1 illustrates a networked computing environment;
FIG. 2 illustrates a typical computer system for use with

the networked computing environment in FIG. 1;
of the certificate authority, said site certificate, said software
publisher identifier, and said site name. In such an
embodiment, the data file is downloaded to the computer
system, and if the data file is an applet and the digital

45
signature is verified, then verifying the authenticity of data
also involves branding and running the applet accordingly.

FIG. 3a illustrates an embodiment of an archival data
structure, including a signature file, for use with an embodi
ment of the present invention;

In another embodiment, a data communication connection
is established between the computer system and a remote
site, and a determination is made regarding whether the site
requires a secure connection, and when a secure connection
is required, a determination is made regarding whether a site
certificate for the site is valid. In such an embodiment, a
determination can be made as to whether the site certificate

FIG. 3b illustrates an embodiment of a signature file, for
use with an embodiment of the present invention; and

FIG. 4 is a flow chart of an embodiment of the present
50 invention for use with data structures having signature files.

is trusted if it is determined that the site certificate is valid. 55
In another aspect of the present invention, an apparatus

for verifying the authenticity of at least one data file, which
includes an identifier, and a signature file which includes the
identifier for the data file in addition to a digital signature,
includes a verifier for verifying the digital signature and a 60
comparator for comparing the identifier in the data file with
the identifier in the signature file. In one embodiment, the
digital signature is verified with a signature algorithm. In
another embodiment, the comparator includes a one-way
hash function algorithm. 65

In still another aspect of the present invention, a computer
program product including a computer-usable medium hav-

FIG. 5 is a flow chart which illustrates the steps associated
with setting security levels in a security manager in accor
dance with an embodiment of the present invention.

FIG. Sa is a diagrammatic representation of a browser
interface which illustrates advanced settings in accordance
with an embodiment of the present invention.

FIG. 6 is a flow chart which illustrates the steps associated
executing an applet which uses verification settings in
accordance with an embodiment of the present invention.

FIG. 7 is a flow chart which illustrates the steps associated
with establishing a connection across a computer network in
accordance with an embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

Several embodiments of the present invention provide
novel methods, apparatuses and products that reduce the

IPR2020-00660 Page 00010

5,958,051
5

computational demands placed on both source user com
puter systems and receiving user computer systems by
requiring the implementation and the verification of only a
single digital signature for an arbitrary number of data files.

6
take the form of a shared general purpose bus or can be
dedicated to transmitting specific types of data between
specific nodes. Buses 32 can include interface circuitry and
software for use in establishing a path between nodes over

5 which data can be transmitted. It is recognized that some
devices, such as processors 22 can also include one or more
buses 32 internally for transmitting data between internal
nodes therein. Data can include processed data, addresses,

In accordance with an embodiment of the present invention
the data files need not be individually signed. Instead, a
separate signature file is created such that when the separate
signature file is digitally signed and later verified, the data
files to which it corresponds can be authenticated without
running the signature algorithm for each of these data files.

10
In one embodiment, the signature file includes a list of
"identifiers", such as one-way hash functions, that are asso
ciated with each of the data files to be transferred. As such,
the signature file is essentially the cryptographic equivalent
of a digital signature for each of the data files.

and control signals.
Primary memory 24 typically provides for the storage and

retrieval of data. Primary memory 24 can, for example, be
a random access memory (RAM) or like circuit. Primary
memory 24 can be accessed by other devices or circuits,
such as processors 22, via buses 32.

Secondary memory 26 typically provides for additional
storage and retrieval of data. Secondary memory 26 can, for
example, take the form of a magnetic disk drive, a magnetic
tape drive, an optically readable device such as a CD RO Ms,
a semiconductor memory such as PCMCIA card, or like

Thus, with an embodiment of the present invention a user 15

can create a signature file that includes unique identifiers for
each data file. The signature file can be digitally signed by
using a signature algorithm. The signed signature file and
data files can then be sent to a receiving user, who can then
verify the digital signature using the appropriate signature
algorithm. Once the digital signature has been verified, the
identifiers within the signature file can be compared to the
identifiers within the data files. If the identifier within a
given data file matches the corresponding identifier in the
signature file, then the data file can be verified as being
authentic. The receiving user can then proceed to process the
verified data files with confidence in their authenticity. As a
result, computational delays can be reduced because there is

20 device. Secondary memory 26 can be accessed by other
devices or circuits, such as processors 22, via buses 32.
Secondary memory 26 can, for example, access or read data
from a computer program product including a computer
usable medium having computer-readable program code

25 embodied thereon.

no longer the need to digitally sign and later verify the
digital signature for each of the data files.

FIG. 1 illustrates a networked computing environment 10,
as represented by a block diagram of a source user computer
system 12 coupled to exchange information in the form of
data with a receiver user computer system 14 over a data link
16. Source user computer system 12 can, for example, take 35
the form of a server computer such as a web server associ
ated with the Internet. Likewise, receiving user computer
system 14 can, for example, take the form of a client system
that is networked via data link 16 to a web server. In such

1/0 devices 28 typically provide an interface to a user
through which data can be shared. 1/0 devices 28 can, for
example, take the form of a keyboard, a tablet and stylus, a
voice or handwriting recognizer, or some other well-known

30 input device such as, of course, another computer. 1/0
devices 28 can also, for example, take the form of a display
monitor, flat panel display, or a printer. 1/0 devices 28 can
be accessed by other devices or circuits, such as processors
22, via buses 32.

Network communication devices 30 typically provide an
interface to other computing resources and devices, such as
other computer systems. Network communication devices
30 typically include interface hardware and software for

a case, data link 16 can therefore represent a portion of, or
the entire, Internet and other connected networks. Data link
16 can also represent one or more local area networks
(LANs), wide area networks (WANs), "intranets" or
"extranets", or other like telecommunication or data net
works.

40
implementing data communication standards and protocols
over data communication links and networks. For example,
with a network connection, processors 22 can send and
receive data (i.e., information) over a network. The above
described devices and processes will be familiar to those of

45
skill in the computer hardware and software arts.

FIG. 2 illustrates a typical computer system 20 that can be
used by either a sending user or a receiving user, in accor
dance with FIG. 1. Alternatively, computer system 20 can be
a stand-alone computer capable of receiving data through
computer useable products. Computer system 20 includes 50
one or more processors 22, a primary memory 24, a sec
ondary memory 26, one or more input/output (1/0) devices
28, one or more network communication devices 30, and
one or more buses 32.

Processors 22 provide the capability to execute computer 55

instructions. Processors 22 can, for example, be
microprocessors, central processing units (CPUs),or micro
controllers such as found in many of the desktop, laptop,
workstation, and mainframe computers available on the
market. Processors 22 can also take the form of conventional 60

or even customized or semi-customized processors such as
those typically used in special purpose or larger frame
computers, telecommunication switching nodes, or other
networked computing devices. Processors 22 are coupled to
output data to buses 32 and to input data from buses 32. 65

Buses 32 are capable of transmitting or otherwise moving
data between two or more nodes. Buses 32 can, for example,

FIG. 3a illustrates an embodiment of an archival data
structure 300 in accordance with an embodiment of the
present invention. Data structure 300 includes a signature
file 302 and several data files 304-314. Files 304--314 can be
any digital bit stream, such as, for example, Java™ class
files, image files, audio files, text files, and even additional
signature files.

FIG. 3b illustrates an embodiment of a signature file 302.
It should be appreciated that in some embodiments, signa
ture file 302 is a header file. In the illustrated embodiment,
signature file 302 includes at least one identifier 316 for each
of the data files 304--314. Optionally, signature file 302 can
also contain additional data 318 for each of the data files
304-314. For example, additional data 318 can further
comprise the information about the name of the file, the
author of the file, the date of the file, the version of the file,
the file's rating (e.g., movie rating, such as "PG"), or any
other authenticated data that the users may want to include
within signature file 302.

Signature file 302 further includes an identifier ID 320
and a digital signature 322. Identifier ID 320 provides the
information necessary to determine the algorithm(s) used to

IPR2020-00660 Page 00011

5,958,051
7 8

made available in step 410. Step 412 can, for example,
include verifying the digital signature on the signed signa
ture file with a signature algorithm by way of a key.

Step 414 represents a decision wherein the validity of the

create the identifiers listed in signature file 302. Digital
signature 322 represents the digital signature created for the
signature file. The structure of digital signature 322 will
depend, of course, on the signature algorithm used to create
it.

FIG. 4 illustrates a method 400, in accordance with an
embodiment of the present invention, that includes step 402
for generating one or more data files. Step 402 can, for
example, include using a text program to generate a text file,
a recording program to generate an audio or video file, a
graphics program to generate an image or movie file, a
programming language to generate a class file or program
file, or any other mechanism that is capable of generating a
data file.

5 digital signature as determined in step 412 either terminates
or continues method 400. While depicted as interrupting or
otherwise preempting method 400, it is recognized that step
414 can also include invoking another process, such as an
alarm or notification process, or log process, that in some

10
way records or identifies, or otherwise addresses that that
verification of the signed signature file in step 412 failed.

Having generated one or more data files in step 402, step
404 includes generating an identifier for each of these data
files. The identifiers generated in step 404 can, for example,
be generated by a one-way hash function algorithm, or
alternatively can even take the form of a cyclic redundancy
checksum (CRC), or the like. It is recognized, however, that
generally a one-way hash function algorithm tends to pro
vide for greater security because such functions cannot be
easily or efficiently broken, or otherwise reverse-engineered.

If the decision in step 414 is that the file is valid (i.e.,
authentic), then the process continues to step 416 which
includes storing at least the identifiers from the signature
file. In one embodiment of the present invention, the iden-

15 tifiers are stored in a secure location. A secure location can,
for example, be the RAM of the receiving computer system
since this memory is readily cleared when the process is
completed. Alternatively, the identifiers can be stored to a
disk or tape drive wherein they can be retrieved at some later

20
stage. Those skilled in the art will recognize that various data

By way of example, one-way hash function algorithms, such
as MDS and SHA are typically considered to be crypto
graphically secure. Such algorithms will be known to those
having skill in the computer science art.

storage devices and other computer system configurations
pose varying and potential security risks (i.e., some storage
devices will be more secure than others). It is also recog
nized that additional security measures, such as encryption

25
and file access privileges, can be used to further secure or
increase the trustworthiness of the signature file as stored in
step 414.

Once the identifiers have been stored in a secure location Next, step 406 includes creating a signature file that lists,
or otherwise compiles, the identifiers as generated in step
404. A signature file can, for example, be a text file that lists
the identifiers. Optionally, a signature file can further
include, for example, the name of each file, the author of
each file, the file version, a date-stamp for the file, or other
data relating to each data file. Step 406 can further include
one or more programs that inquire, trace, select, or otherwise
gather or render such data from the data files. Step 406 can

30
in step 416, then the data file or data files whose identifiers
were listed in the signature file in step 406 can then be
processed in accord with a loop as represented in step 418.
Step 418 can, for example, include a counter mechanism that
iteratively controls the number of times that step 420 will be

35
entered into based on the number of identifiers listed in the
signature file. For example, if there are "n" number identi
fiers listed in the signature file (i.e., there are n data files to
be loaded), then an iterative loop can count up from i=l to
i=n, or alternatively down from i=n to i=l, or otherwise
determines when all of the data files have been loaded, or
that loading has been attempted, in accord with the remain-
der of the steps in method 400 as presented below.

Step 420 includes loading the ith data file. Step 420 can,
for example, include any of the methods in step 410 to either

be performed, for example, by processing the data files in a
batch mode process to gather the appropriate identifiers and
any additional data. Those skilled in the art will recognize

40
that there can be benefits (e.g., in efficiency) to specifically
ordering, grouping or otherwise arranging the data listed in
the signature file in some manner that expedites the steps in
method 400. For example, it can be useful to group the file
name or the author along with the identifier.

Once the signature file has been created, step 408 includes
digitally signing the signature file with a signature algo
rithm. Examples of suitable signature algorithms include a
combined Message Digest algorithm and RSA encryption
algorithm (e.g., MDS with RSA, or MD2 with RSA, or the 50
like), or the DSAalgorithm (discussed above). Step 408 can
also include, for example, generating a digital signature for
the signature file with a signature algorithm by way of a
public or private key (e.g., see Schneier, above).

45 download, upload, broadcast, or otherwise move the ith data
file from one location to another location. Once the ith data
file has been loaded, step 422 includes providing, computing
or generating the identifier for the ith data file with the

The signed signature file from step 408 is then sent, 55

provided or otherwise made available to the receiving user
in step 410. Step 410 can, for example, include transmitting
the signed signature file over a data bus, data link, the
Internet, or some other computer or data communication
network or link. In addition it is recognized that step 410 60

can, for example, include storing the signature file in a
computer readable medium like a magnetic storage media or
optical storage media, and moving the signed signature file

appropriate identifier algorithm (for that data file).
Next, step 424 includes comparing the identifier provided

in step 422 with the identifier listed, for the ith data file, in
the signature file which was stored in step 416. If the
identifiers match then the ith data file is verified as authentic.
If the identifiers do not match then the ith data file is
considered not to have been verified.

Step 426 represents a decision wherein the validity of the
identifier, as determined in step 424, either interrupts or
continues the iterative loop of step 418. If the identifier for
the ith data file has been verified in step 424, then step 426
continues the iterative loop of step 418 by proceeding to step
428 which includes marking, or otherwise recording or
establishing in some manner, that the ith data file has been
verified as being authentic. Step 428 can, for example,
include modifying or marking the ith data file as having been on the computer readable medium from one computer to

another computer. 65 signed by the source user.
Upon receipt or access, the receiving user in step 412,

verifies the authenticity of the signed signature file sent or
If, on the other hand, the identifier for the ith data file is

not verified as authentic in step 424, then step 426 interrupts

IPR2020-00660 Page 00012

5,958,051
9

the iterative loop of step 418 by proceeding to step 430. Step
430 includes interrupting the iterative loop of step 418 in
some manner so as to avoid step 428 and to proceed back to
step 418. Step 430 can, for example, include ignoring the ith

data file. In addition to step 430, other steps can be included
in method 400 to somehow record or otherwise identify that
the i'h data file is not authentic.

Thus, with the data structure and steps above, a user who
is sending several data files will likely reduce the associated
processing time because rather than having to generate a
separate digital signature for each data file, the sending user
need only create a signature file and digitally sign that file.
Likewise, with the data structure and steps above, the user
who is receiving several data files will likely reduce the
associated processing time because rather having to verify
each data file as being authentic by decrypting an associated
digital signature, the receiving user need only verify that the
signature file is authentic. Such a hybrid verification process
substantially streamlines the signature and verification pro
cesses. As a result, data files may be digitally signed, and
later authenticated and processed in less time.

10
can be widely varied, in general, the actions are read and
write actions. Within a security manager, different security
levels can be implemented to provide a user with the
flexibility to set permissions for different certificates and

5 sites associated with an applet. Generally, a user can select
a particular certificate or site, or a group of certificates and
sites, and set the security level for his selection.

Using a security manager to implement security levels
generally entails identifying which applet actions are con-

10 sidered to be secure, safe, or trusted, as well as applet actions
which are considered to be unsecure, unsafe, or not trusted.
A secure action is generally an action which is not consid
ered to have serious potential for jeopardizing system secu
rity or for corrupting information stored on a client or a

15 server. By way of example, a secure action can be a
read-only action, or a read-only action for a particular
directory. On the other hand, an unsecure action is generally
any action which has potential for violating system security
or for damaging information stored on a client or a server.

20 Unsecure actions can include, but are not limited to, writing
actions, deleting actions, renaming actions, and even reading
actions which request access to sensitive documents. Unse
cure actions can further include requests to establish con-

Additionally, step 430 can lead to optional step 432 which
aborts the attempted load, and/or to optional step 434 which
alerts or otherwise warns of the failure to verify authenti
cation in step 424. Once steps 430, and optionally 432 and/or 25

434, have been completed then method 400 returns to step
418 to complete the iterative loop therein. Once the iterative
loop of step 418 has been completed, then method 400 is
ended.

nections to remote sites which are protected.

In one embodiment of the present invention, a browser
which can run Java™ applets, as for example a HotJava™
browser (available from Sun Microsystems of Mountain
View, Calif.), has a security manager with security levels
which include a high security level, a medium security level,

In one embodiment of the present invention, for each
signatory authority, a certificate is created, i.e., the unique
identifiers which are listed in a signature file are embodied
as certificates. In general, the certificates are tokens that a
site, which is typically either a source user computer system
or a receiving user computer system, can use to identify
itself. Several sites can be associated with a single certifi
cate. Alternatively, several certificates can be associated
with one site.

A source user computer system and a receiving user
computer system can be configured to exchange not only
data files but computer software in the form of "applets,"
such as those written in the Java™ programming language
available from Sun Microsystems of Mountain View, Calif.
"Applets" as used herein are software programs that are
configured to be passed from a source computer, typically a
server, to a client machine and run in conjunction with
software, as for example browser software, already installed
on the client. In the described embodiment, applets are
instantiated from class files, which are grouped together into

30 a low security level, and an untrusted level. A high security
level essentially enables applets to run with a set of safe
actions, or constraints, while blocking any unsafe actions. In
the described embodiment, the high security level enables
applets to perform most actions which are considered to be

35 safe, e.g., trusted, while denying access for any actions
which are considered to be unsafe, e.g., not trusted.

A medium security level can be used to enable applets to
run with safe constraints, while providing users with the

40
ability to grant permissions for actions which can potentially
be unsafe. With a medium security level, a user can be
warned through a user interface of an action which may not
be a safe, e.g., allowable, action. In the described
embodiment, a dialog box which describes the activity

45
appears, and the user is prompted to either grant or deny
permission for the potentially unsafe action to be executed.
A low security level allows applets to run with minimal
constraints, and in the described embodiment, does not warn
the user of potentially unsafe actions. An untrusted security

50
level is used to identify certificates and sites which are
known to be unsafe. an archival data structure as described above with respect to

FIG. 3a, that are downloaded from a source computer, or a
server, to a client machine. Typically, applets provide addi
tional functionalities to browser software by performing
various computational tasks which the browser software 55
itself is not configured to perform. Thus, users who down
load applets can provide the browser software with addi
tional functionalities that are not otherwise available to the
browser software. Such additional capabilities can include,
e.g., custom interfaces to a database.

Referring next to FIG. 5, the steps associated with setting
security levels in a security manager will be described in
accordance with one embodiment of the present invention.
In one embodiment, the security levels, also known as levels
of trust and verification settings, are the high security level,
the medium security level, the low security level, and the
untrusted security level, as previously described. Although
the security levels can be set by a user through the use of a

60 suitable graphical user interface (GUI), it should be appre
ciated that any suitable method can be used to set security
levels.

A security manager associated with a browser can be used
on either a source computer or a client machine to control
operations which are accessible to given applets, as for
example a Java TM applet. In other words, a security manager
can be used to control the actions which an applet is allowed 65

to perform, or otherwise extend privileges to applets.
Although the actions which an applet is allowed to perform

The process of setting security levels in a security man
ager 500 begins, and in step 502, security levels for the
certificate authority are set. The certificate authority enables
different security levels, or priorities, to be applied to both
individual certificates and groups of certificates. In general,

IPR2020-00660 Page 00013

5,958,051
11

the certificate authority can include, but is not limited to,
information which identifies how a particular certificate is to
be used. By way of example, a certificate authority can be set
to enable one certificate to "vouch" for, or authenticate,
other certificates.

After the security levels for the certificate authority are
set, then the security levels for site certificates are set in step
504. Site certificates are certificates which a given site can
use to initiate a secure connection over which a transaction
can be made. Security levels for site certificates generally
involve specifying secure socket layer (SSL) standard pro
tocols and security permissions which can be used to authen
ticate connections over which secure transactions are to
occur. Such secure communications technologies can be
used to identify rogue, or potentially unsecure, sites and,
hence, provide more secure channels over which transmis
sions can be made by avoiding communication with such
sites.

In step 506, security levels for software publishers are set.
It should be appreciated that in intranet environments,
software is typically not published with certificates, as an
intranet environment is usually considered to be a secure
environment. Hence, software published within such a
secure environment is generally assumed to be secure.
However, for environments in which software is published
with certificates, as for example in internet environments,
the certificates can be used to determine if software code
associated with the certificates is trusted for browser execu-
tion.

12
medium security level, the low security level, and the
untrusted security level which were previously discussed,
additional options are available to enable a user to select
specific permissions for a site certificate, for example, which

5 can be implemented in addition to selected security levels.
These specific permissions can include, but are not limited
to, allowing an applet to open windows without providing a
warning message to a user, allowing an applet to automati
cally launch local applications with or without a warning

10
dialog, allowing an applet to access all properties without
providing a warning dialog, and allowing an applet to begin
execution without providing a warning dialog.

FIG. Sa is a diagrammatic representation of a browser
interface which illustrates advanced settings in accordance
with an embodiment of the present invention. As previously

15 mentioned, advanced settings are used to select specific
permissions which can be enabled or disabled in addition to
the security levels provided with the browser interface.
Although browser interface 560 can be any suitable browser
interface 560, in the described embodiment, browser inter-

20 face 560 is a basic representation of a HotJava TM browser. As
shown, browser interface 560 includes an advanced settings
display window 564. A first region 568 of display window
564 lists sites and certificates 570, as well as groups of sites
and certificates, for which security permissions can be

25 customized. "Applet Permissions" 572, "File Access" 574,
and "Network Access" 576 are among permissions which
can be customized. In the described embodiment, a selection
580 indicates that permissions for File Access 574, i.e., files
which an applet is allowed to access, are to be set.

A second sub-region 582 displays files and directories 584
which, when selected, an applet with the selected settings,
i.e., settings determined using the Applet Permissions 572
command, is allowed to read from. Similarly, third sub
region 588 displays files and directories 590 to which an

35 applet with suitable permissions is allowed to write. Addi
tional selectable options, as for example a "Warn before
granting access to other files" option 594 or a "Warn when
applet tries to delete a file" option 596 can further enable a

Security levels for site names are set in step 508. The 30
process of setting security levels for site names is essentially
the same as the process for setting software publishers,
except that when a security level is set for a site, the security
level is applied to all software associated with the site.
Setting site name permissions generally enables software
without certificates to be tested with little risk of tampering
with system resources. Then, certificate types are set in step
510. Setting certificate types can entail determining how
certificates are to be used, and choosing authorities for the
certificates based upon how the certificates are expected to 40
be used. After the certificate sites are set in step 510, the
process of setting security levels is completed. It should be
appreciated that the order in which the security levels are set
can be widely varied depending upon the requirements of a
particular security manager.

user to customize security options.
FIG. 6 is a flow chart which illustrates the steps associated

with one process of executing an applet that uses verification
settings in accordance with one embodiment of the present
invention. The process of implementing verification settings
begins, and in step 602, an applet is downloaded to a local

45 machine on which the applet is to be executed. In the
described embodiment, downloading the applet entails
downloading at least part of the archive file, or archival data
structure, that contains the class files from which the applet
can be instantiated. After the applet is downloaded, a signed

In some embodiments, additional "advanced" settings can
be used to set security levels. In one embodiment, advanced
settings are granularity controls which a user can modify
through a GUI or similar interface enables the user to set
specific, customized security levels for individual certificate
authorities, site certificates, software publishers, or site
names. Further, advanced settings can also be configured to
enable a user to customize a security level for a group of
certificate authorities, site certificates, software publishers,

50 archive stream is received in step 604. In the described
embodiment, the archive stream contains a digital signature
that is associated with a Java™ archive file.

or site names. Advanced settings thus generally provide for 55

flexibility in controlling security levels and in overall cer
tificate handling. By way of example, through the use of
advanced settings, a user can set a particular site certificate

In step 606, a determination is made regarding whether
the signature in the signed archive stream is valid, i.e.,
whether the signature is known and acceptable. It should be
appreciated that the signed archive stream is one embodi-
ment of the signed signature file which was previously
described. The determination of whether the signature in the
archive stream is valid can entail systematically checking a
chain of authorities, e.g., certificates, in a signature file until
a known authority is found. The known authority is then
checked for validity. By way of example, a certificate "A"
can be vouched for by a certificate "B," which is known to
be a valid certificate. Hence, as certificate "B" is known to

to a medium security level, while also specifying that the
security permissions associated with the site certificate be 60

limited to only allowing read access. In addition, advanced
settings can also be used to override specifications at given
security levels, e.g., advanced settings can be used to grant
permissions which are not normally allowed at a given
security level. 65 be valid, certificate "A" can then be assumed to be valid.

In the described embodiment, advanced settings are pro
vided such that in addition to the high security level, the

If the determination is that the signature is valid, then
process flow proceeds to step 608 in which the applet is

IPR2020-00660 Page 00014

5,958,051
13

"branded." Branding, or marking, an applet generally refers
to attaching a signer to the applet, or attaching an identifier
to the applet which can be used to identify the validity of the
applet. Once the applet is suitably branded, the applet is
executed, or run, in step 610. While the applet is running, 5
various actions within the applet are called.

A determination is made in step 612 regarding whether
the applet has finished running. In other words, it is deter
mined whether each action associated with the applet has
either been executed or been disallowed from executing, as 10
will be described below. If it is determined that applet
execution has been completed, the process of executing an
applet ends. If it is determined that the applet execution has
not been completed, then in step 614, it is determined
whether the applet action triggers a security check. That is, 15
in step 614, a determination is made regarding whether a
particular applet action falls within those actions determined

14
unsigned. If the determination in step 624 is that the
unsigned stream is not to be accepted, then the applet is
stopped, or prohibited, from running in step 626, and the
process of executing an applet ends.

Referring next to FIG. 7, the steps associated with estab
lishing a connection across a computer network will be
described in accordance with one embodiment of the present
invention. The process of making a connection 700 begins at
step 702 in which the desired connection is defined. In the
described embodiment, defining the desired connection
entails specifying a universal reference language (URL)
address for the site to which a connection is desired. After
the connection is defined, communication is established with
the site to which a connection is desired in step 704.

From step 704, process control proceeds to step 706 in
which a determination is made regarding whether the site
requires a secure connection. In one embodiment, a secure
connection is a connection over a secure socket layer (SSL),
as will be appreciated by those skilled in the art. If it is
determined that a secure connection is not required, a
connection to the site is made in step 708, and the process
of establishing a connection is completed.

to be potentially harmful to a user's system security. Such
actions will be familiar to those of skill in the computer arts,
and, more specifically, to those of skill in the computer 20
security arts. By way of example, actions which are poten
tially harmful to the user's system security can include, but
are not limited to, unrestricted write access, modification of
system resources, and open transmission to other systems.

If the applet action triggers a security check, then the
brand placed on the applet in step 608 is compared with
security settings, or permission levels, which were previ
ously provided by a user in step 616. In some embodiments,
comparing security settings with the brand on the applet
involves a consultation with a user through a user interface. 30
In such embodiments, the user can authorize a bypass of
security settings, i.e., the user can override the security
settings to either allow or deny a particular action. From step
616, process control proceeds to step 618 which is the
determination of whether security is satisfied for the applet 35
action. If security is satisfied, either by virtue of the fact that
the brand placed on the applet compares favorably with the
security settings, or by virtue of the fact that the user has
authorized the applet action, then the applet action is
allowed in step 620. Process control then returns to step 610, 40
and the continued execution of the applet. On the other hand,

If it is determined that the site requires a secure

25
connection, then in step 710, it is determined whether the
site certificate associated with the site is valid. It should be

if security is not satisfied in step 618, then the applet action

appreciated that a valid site certificate is not necessarily a
trusted site certificate, as a site certificate can be a valid
certificate for a site that is not trusted, or is known to be
unsafe. If the site certificate is valid, then process flow
moves to step 712, which is the determination of whether the
site certificate is trusted. If the determination is that the site
certificate is trusted, then process flow proceeds to step 708
in which a connection is made to the site. Alternative! y, if the
determination is that the site certificate is not trusted, then in
step 714, the communication which was established with the
site (in step 704) is terminated. Similarly, if it is determined
in step 710 that the site certificate is not valid, then com
munication with the site is terminated in step 714.

The embodiments of the present invention as described
above employs various process steps involving data stored
in computer systems. These steps are those requiring physi
cal manipulation of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or

is disallowed in step 622. After the applet action is
disallowed, process control returns to step 610 in which the
applet continues to run. 45 magnetic signals capable of being stored, transferred,

combined, compared, and otherwise manipulated. It is
sometimes convenient, principally for reasons of common
usage, to refer to these signals as bits, values, elements,

If the applet action does not trigger a security check in
step 614, then process flow returns to step 610 in which the
applet continues to run. Process flow continues to loop
between steps 610 and 614 until either the applet has
finished executing, or a determination is made in step 614 50

that the current applet action triggers a security check, in
which case process control proceeds to step 618 as previ
ously described.

Returning to the check for signature validity in step 606,
if a determination is made that the signature is not valid, then 55

the archive is considered to be unsigned, and process flow
proceeds to step 624 which is the determination of whether
the unsigned stream should be accepted. In the described
embodiment, the determination of whether the unsigned
stream should be accepted is made by a user through the use 60

of a user interface. By way of example, the user can be
prompted with a warning dialog which indicates that while
the signature was not valid, he can make the decision to run
the applet. If the determination is made that the unsigned
stream is to be accepted, process flow moves to step 608 in 65

which the applet is branded as appropriate, e.g., branded to
indicate that the stream associated with the applet is

variables, characters, data structures, or the like. It should be
remembered, however, that all of these and similar terms are
to be associated with the appropriate physical quantities and
are merely convenient labels applied to these quantities.

Further, the manipulations performed are often referred to
in terms such as generating, calculating, computing,
marking, ignoring, aborting, alerting, verifying, signing,
sending, receiving, creating, iterating, identifying, running,
or comparing. In any of the operations described herein that
form part of an embodiment of the present invention, these
operations are machine operations. Useful machines for
performing the operations of an embodiment of the present
invention include general purpose digital computers or other
similar devices. In all cases, there should be borne in mind
the distinction between the method of operations in operat
ing a computer and the method of computation itself. An
embodiment of the present invention relates to method steps
for operating a computer in processing electrical or other
physical signals to generate other desired physical signals.

IPR2020-00660 Page 00015

5,958,051
15 16

using the computer system to determine the authentic
ity of the data file, wherein processing the signature file
further includes processing the digital signature using
the computer system to determine the authenticity of
the signature file; and

d) marking the data file as signed when the first identifier
in the data file and the representation of the first
identifier in the signature file match.

2. The method as recited in claim 1 wherein when the first

An embodiment of the present invention also relates to an
apparatus for performing these operations. This apparatus
may be specially constructed for the required purposes, or it
may be a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer. 5

The processes presented herein are not inherently related to
any particular computer or other apparatus. In particular,
various general purpose machines may be used with pro
grams written in accordance with the teachings herein, or it
may be more convenient to construct a more specialized
apparatus to perform the required method steps. The
required structure for a variety of these machines will appear
from the description given above.

10 identifier in the data file and the representation of the first
identifier in the signature file do not match, the method
further includes at least one selected from the group of
ignoring the data file, aborting the loading of the data file,
and alerting a user. In addition, an embodiment of the present invention

further relates to computer readable media that include
15 program instructions for performing various computer-

implemented operations. The media and program instruc
tions may be those specially designed and constructed for
the purposes of an embodiment of the present invention, or
they may be of the kind well known and available to those

20 having skill in the computer software arts. Examples of
computer-readable media include, but are not limited to,
magnetic media such as hard disks, floppy disks, and mag
netic tape; optical media such as CD-ROM disks; magneto
optical media such as floptical disks; and hardware devices

25 that are specially arranged to store and perform program
instructions, such as read-only memory devices (ROM) and
random access memory (RAM). Examples of program
instructions include both machine code, such as produced by
a compiler, and files containing higher level code that may

30 be executed by the computer using an interpreter.
Although the foregoing invention has been described in

some detail for purposes of clarity of understanding, it will

3. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 further including:

comparing a second identifier in a second data file with a
representation of the second identifier in the signature
file using the computer system.

4. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein processing
the digital signature further includes verifying the digital
signature with a signature algorithm, the signature algorithm
being a keyed algorithm.

5. A computer-implemented method for verifying the
authenticity of data as recited in claim 4 wherein the
signature algorithm is selected from a group consisting of a
DSA algorithm, and a combined Message Digest and RSA
algorithm.

6. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein comparing
the first identifier in the data file with the representation of
the first identifier in the signature file further includes
generating one or more of the identifiers with a one-way

be apparent that certain changes and modifications may be
practiced within the scope of the appended claims. For
instance, the identifiers or signature algorithms may be
further selected, modified or otherwise limited in use so as

35 hash function algorithm.

to adhere to export regulations. This is especially true for
computers networked to provide for the global exchange of
data files.

In addition, steps involved with establishing a connection
40

7. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein comparing
the first identifier in the data file with the representation of
the first identifier in the signature file further includes
checking one or more of the identifiers with a cyclic redun
dancy checksum algorithm.

to a site, as well as steps involved with executing an applet
which uses verification settings, may be reordered. Steps
may also be removed or added without departing from the
spirit or the scope of the present invention.

Further, although only a few security levels have been
specified, it should be appreciated that the security levels can

8. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein the
signature file includes additional data selected from the

45 group consisting of a text, a name, an author, a version, a
time-stamp, and a rating.

be widely varied in accordance with the requirements of a
particular computer system. Therefore, the described
embodiments should be taken as illustrative and not 50
restrictive, and the invention should not be limited to the
details given herein but should be defined by the following
claims and their full scope of equivalents.

What is claimed is:
1. A computer-implemented method for verifying the 55

authenticity of data, the method comprising:
a) receiving at least one data file and a signature file,

wherein the data file and the signature file are separate,
the data file including a first identifier, the signature file
including a representation of the first identifier for the 60
data file and a digital signature, the signature file being
arranged to include representations of identifiers for
additional data files; and

9. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein the
identifier is generated using one of a one-way hash function
algorithm and a cyclic redundancy checksum algorithm.

10. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein receiving
the data file and the signature file further includes transfer
ring the data file and the signature file among networked
computers.

11. A computer-implemented method for verifying the
authenticity of data as recited in claim 1 wherein the first
identifier in the data file includes at least one of a certificate
authority, a site certificate, a software publisher identifier,
and a site name, the method further including setting a
security level for at least one of said certificate authority,
said site certificate, said software publisher identifier, and
said site name.

b) processing the signature file using a computer system
to determine the authenticity of the signature file;

c) comparing the first identifier in the data file with the
representation of the first identifier in the signature file

12. A computer-implemented method for verifying the
65 authenticity of data as recited in claim 11 including down

loading the data file to the computer system, and when the
data file comprises an applet and when the digital signature

IPR2020-00660 Page 00016

5,958,051
17

is verified, the method includes branding the applet as
verified and running the applet.

18
22. An apparatus for verifying the authenticity of data as

recited in claim 19 wherein the processor for processing the
digital signature is further arranged to verify the digital
signature with a signature algorithm.

23. An apparatus for verifying the authenticity of data as
recited in claim 22 wherein the signature algorithm is
selected from a group consisting of a DSA algorithm, and a
combined Message Digest and RSA algorithm.

13. A computer-implemented method for verifying the
authenticity of data as recited in claim 12 wherein when the
data file comprises an applet, and when the signature is not 5

verified, the method includes determining whether an
unsigned data file is acceptable for execution on the
computer, and terminating the applet if an unsigned data file

24. An apparatus for verifying the authenticity of data as
10 recited in claim 19 wherein the identifier in the data file is not acceptable for execution on said computer.

14. A computer-implemented method for verifying the
authenticity of data as recited in claim 13 including branding
the applet when the unsigned data file is determined accept
able for execution on said computer.

15. A computer-implemented method for verifying the 15

authenticity of data as recited in claim 14 including the
running the applet and determining whether the applet
performs an action that triggers a security check.

includes at least one of a certificate authority, a site
certificate, a software publisher identifier, and a site name,
the apparatus further including:

a mechanism for setting a security level for at least one of
the certificate authority, the site certificate, the software
publisher identifier, and the site name.

25. An apparatus for verifying the authenticity of data as
recited in claim 19 further including a mechanism for
establishing a data communication connection with a remote
site using the computer system, wherein the mechanism for
establishing the data communication connection is arranged
to determine whether the site requires a secure connection,
and to determine whether a site certificate for the site is valid

16. A computer-implemented method for verifying the
20

authenticity of data as recited in claim 15 wherein the
security check includes comparing the brand with the secu
rity level and allowing the action when the security check is
satisfied and disallowing the action if the security check is
not satisfied.

in response to a determination that a secure connection is
25 required.

26. An apparatus for verifying the authenticity of data as
recited in claim 25 wherein the mechanism for establishing
the data communication system is further arranged to deter
mine whether the site certificate is trusted in response to a

17. A computer-implemented method for verifying the
authenticity of data as recited in claim 1, further including
establishing a data communication connection with a remote
site using the computer system, determining whether the site
requires a secure connection, and determining whether a site
certificate for the site is valid in response to a determination
that a secure connection is required.

30 determination that the site certificate is valid.

18. A computer-implemented method for verifying the
authenticity of data as recited in claim 17, further including 35

determining whether the site certificate is trusted in response
to a determination that the site certificate is valid.

19. An apparatus for verifying the authenticity of at least
one data file and a signature file, the data file including an
identifier, the signature file including a representation of the 40

identifier for the data file and a digital signature, the appa
ratus comprising:

a processor for processing the digital signature to deter
mine the authenticity of the signature file; and 45

a comparator for comparing the identifier in the data file
with the representation of the identifier in the signature
file using the computer system to determine the authen
ticity of the data file, wherein the processor is further
arranged to process the digital signature using the 50

computer system to determine the authenticity of the
signature file, the comparator further including a
marker for marking the data file as signed when the
identifier in the data file and the representation of the
identifier in the signature file match. 55

20. An apparatus for verifying the authenticity of data as
recited in claim 19 wherein the comparator for comparing
the identifier in the data file with the representation of the
identifier in the signature file using the computer system is
further arranged to alert a user when the identifier in the data 60

file and the representation in the signature file do not match.
21. An apparatus for verifying the authenticity of data as

recited in claim 19 wherein the comparator for comparing
the identifier in the data file with the representation of the
identifier in the signature file using the computer system is 65

further arranged to compare each identifier for each data file
with the representation of the identifier in the signature file.

27. A computer program product for verifying the authen
ticity of data, the computer program product comprising:

computer code that receives at least one data file and a
signature file, the data file including an identifier, the
signature file including a representation of the identifier
for the data file and a digital signature;

computer code that process the signature file using a
computer system to determine the authenticity of the
signature file, wherein the computer code that pro
cesses the signature file further includes computer code
that processes the digital signature using the computer
system to determine the authenticity of the signature
file;

computer code that compares the identifier in the data file
with the representation of the identifier in the signature
file using the computer system to determine the authen
ticity of the data file, wherein the computer code that
compares the identifier in the data file with the repre
sentation of the identifier in the signature file using the
computer system further includes computer code that
marks the data file as signed when the identifier in the
data file and the representation of the identifier in the
signature file match; and

a computer-readable medium that stores the computer
codes.

28. A computer program product as recited in claim 27
wherein the identifier in the data file includes at least one of
a certificate authority, a site certificate, a software publisher
identifier, and a site name, the computer program product
further including computer code that sets a security level for
at least one of said certificate authority, said site certificate,
said software publisher identifier, and said site name.

29. A computer program product as recited in claim 28
further including computer code for downloading the data
file to the computer system, the computer program product
further including computer code that brands the applet as

IPR2020-00660 Page 00017

5,958,051
19

verified and computer code that runs the applet when the
data file includes an applet and when the digital signature is
verified.

30. A computer program product as recited in claim 29
further including computer code for determining whether an
unsigned data file is acceptable for execution on the
computer, and terminating the applet if an unsigned data file
is not acceptable for execution on said computer when the
data file comprises an applet, and when the signature is not
verified.

31. A computer program product as recited in claim 27
further including computer code for establishing a data

20
communication connection with a remote site using the
computer system, computer code for determining whether
the site requires a secure connection, and computer code for
determining whether a site certificate for the site is valid in

s response to a determination that a secure connection is
required.

32. A computer program product as recited in claim 31
further including computer code for determining whether the
site certificate is trusted in response to a determination that

10 the site certificate is valid.

* * * * *

IPR2020-00660 Page 00018

