
I 1111111111111111 11111 lllll 111111111111111 1111111111 111111111111111 11111111
US006697948B 1

(12) United States Patent
Rabin et al.

(10) Patent No.:
(45) Date of Patent:

US 6,697,948 Bl
Feb.24,2004

(54)

(76)

(*)

METHODS AND APPARATUS FOR
PROTECTING INFORMATION

Inventors: Michael 0. Rabin, 243 Concord Ave.,
Apt. 13, Cambridge, MA (US) 02138;
Dennis E. Shasha, 2 Washington Sq.,
Apt. 4A, New York, NY (US) 10012

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

WO

5,761,651 A
5,825,883 A
5,892,900 A
5,910,987 A
5,915,019 A
5,917,912 A
5,920,861 A
5,922,208 A
6,134,327 A

6/1998 Hasebe et al. 705/400
10/1998 Archibald et al. 380/25

4/1999 Ginter et al. 395/186
6/1999 Ginter et al. 380/24
6/1999 Ginter et al. 380/4
6/1999 Ginter et al. 380/24
7 /1999 Hall et al. 707 /9
7/1999 Demmers 210/741

* 10/2000 Van Oorschot 380/30

FOREIGN PATENT DOCUMENTS

WO 98/45768 10/1998

(21) Appl. No.: 09/305,572 * cited by examiner

(22)

(51)
(52)
(58)

(56)

Filed: May 5, 1999 Primary Examiner-Norman M. Wright

Int. Cl.7 G06F 9/00 (74) Attorney, Agent, or Firm-Hamilton, Brook, Smith &
Reynolds, P.C. U.S. Cl. .. 713/200; 705/52

Field of Search 713/201, 200; (57) ABSTRACT
705/52

References Cited

U.S. PATENT DOCUMENTS

A system, method, or apparatus for enabling owners and
vendors of software products to protect the property rights of
their software. The system and method utilizes a unique
vendor tag system for each instant of a specific software
product. This system interacts with a monitoring program,
which, is running on the user's device to ensure that no
unauthorized use takes place.

3,996,449 A
4,458,315 A
4,658,093 A
4,866,769 A
5,023,907 A
5,745,569 A

12/1976 Attanasio et al. 235/61.7
7/1984 Uchenick 364/200
4/1987 Hellman 380/25
9/1989 Karp 380/4
6/1991 Johnson et al. 380/4
4/1998 Moskowitz et al. 380/4 18 Claims, 18 Drawing Sheets

150
OBTAIN COPY_SW OF NAMED SOFTWARE

(NAME_SW. SW) AND REQUEST FOR TAGS FD
INSTANCES OF SW FROM VENDOR

l
151B

ASSIGN UNIQUE NUMBER (NUM_INST _SW) TAKEN FROM
SECRET SPARSE SET SPARESET TO INSTANCE INST_SW

OF NAMED SOFTWARE (NAME_SW, SW)

i
152

COMPUTE HASH_SW = HASH(SW)

l
153

CREATE HASH VALUE FOR INST _SW
HASH_INST _SW= HASH(NAME_SW, NUM_INST _SW, HASH_SW)

l
154B

CREATE UNSIGNED TAG FOR SOFTWARE
TAG_INST_SW = (NAME_SW, NUM_INST_SW, HASH_INST_SW)

l
I 156 SECURELY DISTRIBUTE TAG_INST _SW TO

VENDOR AND/OR GUARDIAN CENTER
AND/OR USER DEVICE

UNSIGNED TAG CREATION BY TAG SERVER

Dolby Exhibit 1016
IPR2020-00660

Page 00001

U.S. Patent Feb.24,2004 Sheet 1 of 18 US 6,697,948 Bl

109"\
--108-------,-------

101..K

IQ! c::J

SOFTWARE
VENDOR

FIG. 1

104,,.. □~--I
105

=

A

102

TAG
SERVER

COMMUNICATION
NETWORK

100

USER DEVICES 104-107

FIG. 1

103

(QI c::J

GUARDIAN
CENTER

[@]

107 000

(])

IPR2020-00660 Page 00002

U.S. Patent Feb.24,2004 Sheet 2 of 18 US 6,697,948 Bl

102
TAG

SERVER

PUBLIC_KEY_TS 116

PRIVATE_KEY _ TS 117

SPARSE SETS 118

109~
110

VENDOR
STORAGE

111 112

~ 1--sw_1 +-s_w_2--1
~ 113 114

INSTANCES OF
---SOFTWARE 111-114,---t

REQUEST FOR TAGS

TAGS 120 FOR EACH INSTANCE,

PUBLIC_KEY _TS 116

INSTANCES OF SOFTWARE 111-112,

SW3 SW4

101

SOFTWARE
VENDOR

ASSOCIATED TAGS INFRINGING SOFTWARE,
TAGS 120 FOR EACH INSTANCE

TAGS 120 FOR
EACH iNST ANGE,
PUBLIC _KEY_ TS

116_-TAGS 120 FOR EACH INSTANCE-----.

104

USER DEVICE

TAG TABLE 210,
FINGERPRINT TABLE 126

103
GUARDIAN
CENTER

PUBLIC_KEY_GC 121
CONTINUATION

----ESSAGE 212,------1 ...__PR_IV_A_TE ___ KE_Y __ G_C_1_22 __

111

INST_SW1

112

200

USER DEVICE
STORAGE

129

UNTAGGED
SOFTWARE

INST _SW2 126
'-----1 FINGERPRINT

TABLE

PUBLIC_KEY _GC

210
TAG

TABLE

FIG. 2

300

GUARDIAN
CENTER

DATABASE

IPR2020-00660 Page 00003

U.S. Patent Feb.24,2004 Sheet 3 of 18

150
OBTAIN COPY_SW OF NAMED SOFTWARE

(NAME_SW, SW) AND REQUEST FOR TAGS FO
INSTANCES OF SW FROM VENDOR

151A

ASSIGN UNIQUE NUMBER (NUM_INST _SW) TO INSTANCE
INST _SW OF NAMED SOFTWARE (NAME_SW, SW)

,,
152

COMPUTE HASH_SW = HASH(SW)

' .
153

US 6,697,948 Bl

CREATE HASH VALUE FOR INST _SW
HASH_INST_SW = HASH(NAME_SW, NUM_INST_SW, HASH_SW)

,,
154A

CREATE SIGNED TAG FOR SOFTWARE
TAG_INST_SW = (NAME_SW, NUM_INST_SW, HASH_INST_SW,

SIGN_ TS(HASH_INST _SW))

, ,
156

SECURELY DISTRIBUTE T AG_INST _SW TO
VENDOR AND/OR GUARDIAN CENTER

AND/OR USER DEVICE

SIGNED TAG CREATION BY TAG SERVER

FIG. 3A

IPR2020-00660 Page 00004

U.S. Patent Feb.24,2004 Sheet 4 of 18

150
OBTAIN COPY_SW OF NAMED SOFTWARE

(NAME_SW, SW) AND REQUEST FOR TAGS FO
INSTANCES OF SW FROM VENDOR

151B

US 6,697,948 Bl

ASSIGN UNIQUE NUMBER (NUM_INST _SW) TAKEN FROM
SECRET SPARSE SET SPARESET TO INSTANCE INST _SW

OF NAMED SOFTWARE (NAME_SW, SW)

' ,
152

COMPUTE HASH_SW = HASH(SW)

153

CREATE HASH VALUE FOR INST _SW
HASH_INST _SW = HASH(NAME_SW, NUM_INST _SW, HASH_SW)

154B

CREATE UNSIGNED TAG FOR SOFTWARE
TAG_INST_SW = (NAME_SW, NUM_INST_SW, HASH_INST_SW)

156
SECURELY DISTRIBUTE TAG_INST _SW TO

VENDOR AND/OR GUARDIAN CENTER
AND/OR USER DEVICE

UNSIGNED TAG CREATION BY TAG SERVER

FIG. 38

IPR2020-00660 Page 00005

U.S. Patent Feb.24,2004 Sheet 5 of 18 US 6,697,948 Bl

150
OBTAIN COPY OF SW OF NAMED SOFTWARE
(NAME_SW, SW) AND REQUEST FOR TAGS FO

INSTANCES OF SW FROM VENDOR

i
151C

ASSIGN UNIQUE NUMBER (NUM_INST_SW) TO INSTANCE
INST_SW OF NAMED SOFTWARE (NAME_SW, SW)

+
151 D

DETERMINE FINGERPRINT
LOCATIONS AND FINGERPRINT

VALUES

i
151 E

·,_

COMPUTE HASH_SW =
HASH(FINGERPRINT VALUES)

i
153

CREATE HASH VALUE FOR INST_SW
HASH_INST _SW= HASH(NAME_SW, NUM_INST _SW, HASH_SW)

+
154B

CREATE UNSIGNED TAG FOR SOFTWARE
TAG_INST _SW = (NAME_SW, NUM_INST _SW, HASH_INST _SW)

+
156

SECURELY DISTRIBUTE T AG_INST _SW TO
VENDOR AND/OR GUARDIAN CENTER

AND/OR USER DEVICE

TAG CREATION USING SAME LOCATION FINGERPRINTING BY TAG SERVER

FIG. 3C

IPR2020-00660 Page 00006

U.S. Patent Feb.24,2004 Sheet 6 of 18 US 6,697,948 Bl

TO COMMUNICATION NETWORK 100
JI.

FIG. 4
USER DEVICE

205 201 104 203
INTERCONNECTION

CLOCK PROCESSOR MECHANISM
(E.G., MODEM)

••

'" ' ' :::us 206
H. ...
'r 202

204 MEMORY

USER
INPUT/OUTPUT 207

OPERATING ,.
SYSTEM

200

I
208

I KERNEL 210
USER DEVICE ...

~
TAG

~STORAGE_/
.. TABLE

209
SUPERVISING ◄
PROGRAM (SP) ◄~ 126

207
JI. ... H. FINGER PRINT

111 TABLE

OPERATING INST_SW1-
SYSTEM 112

INST_SW2 129
208

I
,. ·• 1. 4i

KERNEL 111 112 113
UNTAGGED
SOFTWARE 129 SW1 SW2 SW3

UNTAGGED
209-A 209 SOFTWARE a
ID(SP)

SUPERVISING
PROGRAM (SP) 210

TAG
126 TABLE

FINGERPRINT
TABLE

USER 213

IPR2020-00660 Page 00007

U.S. Patent Feb.24,2004 Sheet 7 of 18 US 6,697,948 Bl

UNSIGNED

SUPERVISING PROGRAM
SP VERIFIES

HASH_INST _SW IN THE
UNSIGNED TAG
TAG_INST_SW

YES

250

USER DEVICE OBTAINS INSTANCE INST _SW
OF NAMED SOFTWARE (NAME_SW, SW)

251

USER DEVICE SECURELY OBTAINS
T AG_INST _SW FOR NAMED SOFTWARE

NO

254
REJECT INSTANCE OF

SOFTWARE (SW)

256

ACTIVATE DEVICE
PUNITIVE ACTION

255

SIGNED

ERVISING PROG
ERIFIES HASH V

SIGNATURE FOR
HASH_INST _SW) I

HE SIGNED TA

YES

STORE TAG (T AG_INST _SW) FOR
.._ NAMED SOFTWARE

,..__----.i~ (NAME_SW,SW) INTO TAG TABLE r4--
AND INSTALL INST _SW ON USER

DEVICE

INSTALLING TAG GED INSTANCE OF VENDOR
SOFTWARE (SW) ON USER DEVICE

FIG. 5

IPR2020-00660 Page 00008

T
A

G
 T

A
B

LE

21
0

H
E

A
D

E
R

_T
A

G
_T

A
B

LE
=

(I
D

_T
A

G
_T

A
B

LE
,

LA
S

T
_G

C
_C

M
,

LA
S

T
_C

A
LL

U
P

 _T
IM

E
,

N
U

M
B

E
R

_D
E

V
IC

E
_B

O
O

T
U

P
S

)

T
A

G
S

U

S
A

G
E

S

T
A

T
U

S

A
C

T
IO

N

R
U

N

T
IM

E

C
O

U
N

T

T
A

G

IN
S

T
 S

W
1

C
O

N
T

IN
U

E
D

11

/2
2/

98
 1

1
:0

2
10

-

-

T
A

G
_I

N
S

T
_S

W
2

IN
S

T
A

LL
E

D

11
/2

4/
98

 2
1

:3
6

3

R
E

M
O

V
E

D

11
/2

6/
98

 0
~:

31

T
A

G

IN
S

T
 S

W
3

G

C

D
IS

A
B

LE
D

11

/2
2/

98
 1

1
:0

2
0

-
-

T
A

G

IN
S

T
 S

W
4

C

O
N

T
IN

U
E

D

11
/2

5/
98

 1
4:

17

4
-

-
U

N
T

A
G

G
E

D
_S

W
1

U
N

T
A

G
G

E
D

11

/2
5/

98
 1

4:
17

0

N
O

T
E

:
ID

_T
A

G
_T

A
B

LE
 =

 (I
D

(U
S

E
R

)*
,

ID
(D

E
V

IC
E

)*
,

ID
(P

P
)*

,
ID

(O
S

)*
)

*M
A

Y
O

R
 M

A
Y

 N
O

T
 B

E
 A

V
A

IL
A

B
LE

FI
G

.
6

U
S

E
 T

IM
E

00
:5

8

00
:1

1

00
:0

0

10
:3

4

00
:0

0

d • r:J
J.

• ~

~

.

~
 =

.....
.

"'!
"j
~
 ?'

N

~,
J;

..

N

0 0 ,J
;..

'J
J. = ~ ~ 0
0

0,

'"""

'
0

0
 e rJ'

J.
_,.a

-... a-.
.. '° -...,l \0

,I;
;..

~

~

I■
-

IPR2020-00660 Page 00009

U.S. Patent Feb.24,2004 Sheet 9 of 18

330

USER INSTALLS INSTANCE OF UNTAGGED
SOFTWARE ON USER DEVICE
UNTAGED_SW = STRING[0 ... N]

,,
331

SUPERVISING PROGRAM FINGERPRINTS UNTAGGED SOFTWARE
Xi = FP (STRING[i, i+k-1])

US 6,697,948 Bl

FOR m CHOSEN INDEXES 0<= i <=N-k+ 1, FOR A FIXED STANDARD k

1 r

332

SUPERVISING PROGRAM STORES THE
FINGERPRINTS X1 , ... Xim IN THE USER DEVICE'S

FINGERPRINT TABLE

337

CREATE UNTAGGED_SW TAG ENTRY IN TAG
TABLE

INSTALLING UNTAGGED SOFTWARE (UNTAGGED_SW) ON USER DEVICE

FIG. 7

IPR2020-00660 Page 00010

U.S. Patent

CONTINUE

275
ALLOW
ACCESS

Feb.24,2004 Sheet 10 of 18 US 6,697,948 Bl

YES
GC_DISABLED

, .
276

DENY
ACCESS

270
USER REQUESTS
INVOCATION OF

INSTANCE OF
SOFTWARE

271

SUPERVISING PROGRAM
INTERCEPTS CALL TO

REQUESTED SOFTWARE

YES

NO

279

PERFORM USER DEVICE
PUNITIVE ACTION

OPTIONAL

273
PERFORM
CALL-UP

PROCESSING

277
UPDATETAG 1------'

TABLE

USAGE SUPERVISION PROCESSING

FIG. 8

IPR2020-00660 Page 00011

U.S. Patent Feb.24,2004 Sheet 11 of 18 US 6,697,948 Bl

TO COMMUNICATION NETWORK 100

304

CLOCK

301

PROCESSOR

103

GUARDIAN CENTER

GUARDIAN CENTER DATABASES

137
FINGERPRINT

DATA
STRUCTURE

138
TAGGED

SOFTWARE
DATABASE

129
UNSIGNED

TAGS

FIG. 9

303
INTERCONNECTION

MECHANISM
(E.G., MODEM

302

MEMORY

315

VERIFICATION
PROGRAM (VRP)

126
FINGERPRINT

TABLE

210
TAG

TABLE

IPR2020-00660 Page 00012

32
0

(N
U

M
_I

N
S

T
_S

W
,

T
A

G
_I

N
S

T
_S

W
,

N
A

M
E

_S
W

,
H

A
S

H
(S

W
),

P

O
LI

C
Y

(T
A

G
_I

N
S

T
_S

W
),

P
O

IN
T

E
R

 T
O

 S
P

A
R

S
E

_S
E

T
(S

W
))

--

->

C
A

L
L

U
P

 _R
E

C
O

R
D

1-
--

>
 C

A
L

L
U

P
 _R

E
C

O
R

D
2

--
->

G
A

LL
U

P

R
E

G
O

R
D

3
--

->
 .

..

32
1

G
A

LL
U

P
 _

R
E

C
O

R
D

-N
 =

 (C
A

L
L

U
P

 _T
IM

E
,

H
E

A
D

E
R

_
T

A
G

_
T

A
B

L
E

 O
F

 C
A

L
L

IN
G

D

E
V

IC
E

,

L
A

S
T

_
G

A
L

L
U

P
 _T

IM
E

 F
R

O
M

 D
E

V
IC

E
,

H
A

S
H

(T
A

G
_

T
A

B
L

E
),

 A
C

T
IO

N
S

)

G
U

A
R

D
IA

N
 C

E
N

T
E

R
 D

A
T

A

F
IG

.
10

d • r:J
J.

• ~

~

.

~
 =

.....
.

"'!
"j
~
 ?'

N

~,
J;

..

N

0 0 ,J
;..

'J
J.

 = ~ ~ '"""
'

N

0,

'"""
'

0
0

 e rJ'
J.

_,.a
-... a-.
.. '° -...,l \0

,I;
;..

~

~

i,
-

IPR2020-00660 Page 00013

U.S. Patent Feb.24,2004 Sheet 13 of 18

340

VENDOR DETECTS INFRINGING
SOFTWARE (INF _SW)

341

US 6,697,948 Bl

VENDOR SUBMITS COPY OF INFRINGING SOFTWARE (INF _SW) TO
GUARDIAN CENTER

INF _SW = STRING_INF[0 ... N]

342
GUARDIAN CENTER COMPUTES ALL

FINGERPRINTS Yi ON INFRINGING SOFTWARE
Yi= FP(STRING_INF[i,i+k-1]), WHERE

0<=i<=N-k+ 1

343

GUARDIAN CENTER INCORPORATES Y1 , ... YN-k+ 1
INTO THE FINGERPRINT DATA STRUCTURE

GUARDIAN CENTER MADE AWARE OF INFRINGING SOFTWARE

FIG. 11

IPR2020-00660 Page 00014

U.S. Patent Feb.24,2004 Sheet 14 of 18 US 6,697,948 Bl

370
USER DEVICE'S SUPERVISING PROGRAM CALLS UP THE GUARDIAN CENTER IN

ACCORDANCE WITH CALLUP _POLICY OR GALLUP _P0LICY(SW) FOR THE
PARTICULAR SOFTWARE (SW) REFERENCED IN TAGS TAG_INST _SW IN

TAG_TABLE

..-----YEs------<

NO

372

SUPERVISING PROGRAM SECURELY SENDS TAG TABLE AND FINGERPRINT
TABLE TO GUARDIAN CENTER

..----1'110---<

YES

374

SUPERVISING PROGRAM RECEIVES FROM GUARDIAN CENTER THE
CONTINUATION MESSAGE FOR THE PRESENT CALL UP

375

SUPERVISING PROGRAM VERIFIES THE CONTINUATION MESSAGE AND
EXECUTES THE ACTIONS OF THE CONTINUATION MESSAGE AND UPDATES THE

TAG TABLE

FIG. 12

376
SUPERVISING PROGRAM PERFORMS ANY
SPECIFIED PUNITIVE ACTION DEFINED IN

CONTINUATION MESSAGE

CALL UP OF GUARDIAN CENTER FROM USER DEVICE

IPR2020-00660 Page 00015

U.S. Patent Feb.24,2004 Sheet 15 of 18 US 6,697,948 Bl

410
GUARDIAN CENTER SECURELY RECEIVES TAG_TABLE AND, IF UNTAGED SOFTWARE IS

PRESENT, ALSO RECEIVES FINGERPRINT TABLE FROM USER DEVICE

416
PREPARE SPECIFIED

PUNITIVE ACTION

417
PREPARE SPECIFIED PUNITIVE
ACTION FOR EACH UNVERIFIED

T AG_INST _SW

418
PREPARE SPECIFIED PUNITIVE

ACTION FOR EACH IMPROPERLY
USED INST _SW

SUFFICIENT
NUMBER OF
MATCHES

FOUND

420
PREPARE SPECIFIED PUNITIVE

ACTION. INFORM VENDOR

YES

YES

CHECK EACH VERIFIED

TAG_INST_SW AGAINST GUARDIAN

ARE (INST _SW) AND VERIFY THAT

USED IN ACCORDANCE WITH POLICY

(TAG_INST_SW)

YES

ACH FING

INT TABLE A

RDIAN CENT

ABOUT SUSPECTED INFRINGING YE
SOFTWARE ON USER DEVICE ---- :-,;..----<

NO

+ -------------- TO STEP 421 IN FIG. 13B

FIG. 13A
GUARDIAN CENTER GALLUP PROCESSING

IPR2020-00660 Page 00016

U.S. Patent Feb.24,2004 Sheet 16 of 18

421

FOR EVERY PAY _PER_USE INST _SW IN TAG_ TABLE, SEND
USAGE DATA TO VENDOR AND FOR EVERY EXPIRED INST _SW

IN TAG TABLE, PREPARE ACTION= DISABLE(TAG_INST _SW)

1 r

422
FOR EVERY FULLY VERIFIED AND

UNEXPIRED INST _SW, PREPARE ACTION =
CONTINUE (TAG_INST _SW)

423

PREPARE CONTINUATION MESSAGE
CM= (TIME, ID_TAG_TABLE, ACTIONS, HASH(TAG_TABLE),
SIGN_GC(TIME, HASH(ID_ TAG_ TABLE), HASH(ACTIONS),

HASH(TAG_ TABLE)), WHERE ACTIONS=(ACTION1, ACTION2,
...) SELECTED FROM LIST OF ACTIONS AND PUNITIVE

ACTIONS FOR USER DEVICE'S SUPERVISING PROGRAM

'Ir

424

SECURELY SEND CONTINUATION MESSAGE TO USER
DEVICE FOR RECEIPT BY SUPERVISING PROGRAM

H

425

FOR EVERY TAG_INST _SW IN TAG TABLE, CREATE GALLUP
RECORD AND APPEND TO DATA FOR THAT INSTANCE OF

SOFTWARE (INST _SW)

GUARDIAN CENTER GALLUP PROCESSING

US 6,697,948 Bl

FIG. 138

IPR2020-00660 Page 00017

U.S. Patent

601 /

Feb.24,2004 Sheet 17 of 18 US 6,697,948 Bl

600

ID_TAG_TABLE, TAG_INST_SW,
TIME_OF _LAST _ACCESS, HASH(ID_ TAG_ TABLE,

TAG_INST _SW, TIME_OF _LAST _ACCESS)

DATA TRANSFERRED WITH SHARED SOFTWARE DATA

TAG ACCESS TIMES

FEBRUARY 2, 1999 09:11 AM,

TAG_INST _SW1
DECEMBER 2, 1999 07:24 AM,
FEBRUARY 1, 1999 09:36 PM,

FEBRUARY 2, 1999 011 :17 AM ...

JANUARY 5, 1999 10:19 PM,
TAG_INST _SW2 FEBRUARY 8, 1999 08:34 AM,

FEBRUARY 5, 1999 01 :33 PM ...

TAG_INST _SW3 JANUARY 12, 1999 06:41 AM

SHARED SOFTWARE DATA SSD ACCESS TABLE

FIG. 14

IPR2020-00660 Page 00018

U.S. Patent Feb.24,2004 Sheet 18 of 18 US 6,697,948 Bl

700

OPEN SHARED SOFTWARE DATA SSD AND
RECORD TAG_INST _SW T AND TIMEX OF LAST

ACCESS TO SHARED SOFTWARE DATA SSD

705

DETECT AN INSTANCE OF SOFTWARE INST _SW
ATTEMPTING TO ACCESS SHARED SOFTWARE DATA SOD

YES

703
ALLOW ACCESS TO
SHARED SOFTWARE

DATASDD

TAG TWITHIN SHA
RE DATA SOD EXIS
F CURRENT USER

YES

CONSULT LAST ACCESS TABLE TO
DETERMINE IF THE INST_SW HAVING

TAG T ACCESSED THE SHARED
SOFTWARE DATA SSD AT THE TIMEX?

NO • 704

PERFORM USER DEVICE
PUNITIVE ACTION

FIG. 15

IPR2020-00660 Page 00019

US 6,697,948 Bl
1

METHODS AND APPARATUS FOR
PROTECTING INFORMATION

2
network which can associate a piece of software with a
specific processor identification number.

BACKGROUND OF THE INVENTION

Aside from the electronic hardware and computer soft
ware application and data protection mechanisms noted

5 above, little has been done to thwart the piracy of other types
of encoded information that is accessed by electronic
devices, such as musical recordings. Software or information piracy is the activity of using or

making copies of software or information without the autho
rization of the creator or legitimate owner of that software or
information. Piracy is most prevalent in the computer soft
ware application industry where people frequently make 10

unlicensed illegal copies of a software application. The
application may be copied for personal use or for
re-production and commercial profit. Other types of piracy
include acts of copying information such as musical record
ings or an electronically readable version of documentation 15

or an electronic book. In all cases, piracy costs billions of
dollars of lost profits to business annually.

SUMMARY OF THE INVENTION
Characteristics of Prior Art Systems

Prior art techniques for protecting the unauthorized use of
software and information suffer from a variety of problems.
Systems which use a certificate of authenticity or key suffer
in that one key allows unlimited usage of the program and
nothing prevents copying of the key. As such, the owner of
a copy of the software can pass his key or certificate along
with the software or information to someone else who can
use the certificate or key to install and run the software or to
access the information. If one key allows only a single usage
or a one-time execution, the problem of copying may be The software and information technology industries have

responded to the threat of piracy through the use of locking
schemes. Locking schemes can include software locking
mechanisms, licenses and specialized hardware devices
which prevent unauthorized use of software, information, or

20 solved but then each usage requires a separate key to be
entered. To be commercially acceptable most programs
require multiple uses.

an entire electronic device. These schemes seek to prevent
adversaries from being able to freely copy software.

There are many types of software locking mechanisms.

Software locks are also easy to break on personal com
puters because the owner of the machine has unrestricted

25 privileges and unlimited time to attempt to break locks.
Hardware protection solutions lack flexibility since the

hardware designer needs to know the nature of the software
to be protected in advance of the production of the hardware
device. Furthermore, if different pieces of software using

For example, a manufacturer can encrypt portions of a
software program with the unique key. A customer who
purchases the software is given the key which allows
decryption and execution of the software. An example of
such a software protection mechanism is a "Certificate of
Authenticity" supplied with the purchase of software pro
grams such as Microsoft Windows 98, manufactured by the
Microsoft Corporation of Redmond, Wash. Microsoft and
Windows98 are trademarks of the Microsoft Corporation.
The Certificate of Authenticity indicates a unique product
number. During installation of the software, the product
number is requested by the software application and must be
entered correctly by the user. If the product number entered
matches a number expected by the application, the copy of
the application is assumed to be legitimate and is allowed to
be installed and executed as normal. If the number entered

30 different hardware protection mechanisms are to be run,
separate individual hardware devices must be provided.
Costs associated with custom hardware production and the
fact that consumers have found hardware protection
schemes difficult to deal with, prevent widespread deploy-

35 ment of hardware protection mechanisms.
Hardware protection schemes thus limit the flexibility to

move software from device to device. Users may not be able
to buy software before buying their computational devices,
because they do not know the identities of the devices at the

is incorrect, the software will not install properly.

40 time of purchase. Hardware manufacturers may cheat users
by giving the same identifier to many machines. Finally,
skilled hackers may be able to forge identities of hardware
devices by reverse engineering techniques or change soft
ware so it fails to check the hardware identifier. Hardware piracy protection schemes attach a device to the

processor, typically through a communications port. These
types of hardware devices are often called "dongles". An
example of a hardware protection scheme is provided in
U.S. Pat. No. 3,996,449 which discloses a method for
determining if a program or a portion of a program is valid
when running on a computer. In this system, a hash function 50

is applied to a users identification code or key along with the
text of the program itself in a special tamper-proof hardware
checking device. The checking device compares a resulting
value from the hash function with a verifier value to see if

45 Characteristics of Embodiments of the Invention

the program text is correct. If the text is correct, the program 55

is allowed to execute on the device.

The invention overcomes these and other problems. The
invention provides methods and apparatus to enable owners
or vendors or distributors, each of whom will be hereinafter
referred to as a vendor, of software to protect their intellec
tual property and other rights in that software. Software is
defined hereinafter in a broad sense to include such things as
computer programs, text, data, databases, audio, video,
images, or any other information capable of being repre
sented digitally or as a signal, said software being accessed
by or used by users on devices (hereinafter referred to as
user devices or devices) such as computers or special
purpose devices. The invention also enables vendors of
software to charge on a pay per-use basis for an instance of
software.

Specifically, the invention provides a system methods and
apparatus for supervising usage of software on a user's
device and for a monitoring regime that prevents a device
from employing any instance of software in a manner not
authorized by the legitimate vendor or owner of the rights to

Another hardware related approach assigns a unique
identifier to each processor that can execute programs.
Software programs are then encoded with the identity of a
designated processor identifier to which that program is 60

assigned or authorized to execute. No other processor iden
tifications are provided for the software and thus the soft
ware will not run on other processors. Obviously, such
systems can provide usage limitations when attempting to
execute software on a processor with which that software is
not specifically associated. The number assignment mecha
nism may be supervised through the use of an authorization

65 that software.
A vendor's rights in a particular software may be

infringed upon in a number of ways, including but not

IPR2020-00660 Page 00020

US 6,697,948 Bl
3 4

of an instance of software, a unique number of an instance
of software, and/or a hash function value on portions of an
instance of software. Preferably, the unique number of the
instance of software is selected from a sparse set of numbers.

limited to the following. A user may make copies of a
vendor's software purchased by him and give them to other
users who install the software on their devices, when this is
not allowed under the first user's terms of purchase of the
software. An organization purchases or rents a vendor's
software and is allowed to make and use a specified number

5 In other embodiments, each tag further comprises a unique
identifier of the supervising program. In yet another
embodiment, each tag includes at least one fingerprint
computed on portions of the instance of software associated

of copies of the software and then exceeds that specified
number. A pirating vendor makes illegal copies of a legiti
mate vendor's software and sells these copies. A pirating
vendor modifies a legitimate vendor's software, for example

10
recompiling an application program or renaming and other
wise changing a song, and distributes and sells copies of the
infringing software.

with the tag.
To verify and determine if a tag is authentic, the super-

vising program can verify a hash function value in the tag or
can verify a digital signature of the tag. In another
embodiment, the supervising program verifies that the
unique identifier of the supervising program in a tag is the

15 same as an identifier of the supervising program on the user
device. In the embodiment using fingerprinting, the super
vising program verifies that the software instance associated
with a tag satisfies a same-location fingerprint check against
the at least one fingerprint included in the tag associated with

The invention achieves the above mentioned protection of
legitimate vendor's rights in software and prevents any
infringement of these rights by users, without resorting to
encryption of instances or parts of instances of software and
requiring the user to decrypt before access, without requiring
special hardware devices or attachments ("dongels") or
special processors, and without requiring manufacturers to
build identifying numbers into hardware. Thus the disad
vantages and weaknesses associated with these solutions are
avoided in the present invention. Furthermore, the methods
and apparatus of the invention do not enable denial of
service, where an unscrupulous adversary attempts to use
the protection mechanisms of the system to prevent a 25

legitimate user from accessing software which this user is
employing in accordance with the rightful vendor's specified
regime.

20 the instance of software. The same-location fingerprint
check may be performed by the supervising program at at
least one time of before, during, and after use of the instance
of software.

In embodiments that use fingerprinting, each tag further
includes at least one list of locations containing values from
which the at least one fingerprint is computed and the
supervising program verifies that the software instance asso
ciated with each tag satisfies a same-location fingerprint
check against the at least one fingerprint associated with the Using this invention, a software vendor may have a

specific piece of software, such as a specific application
program or a specific book or song, which the vendor wishes
to sell or lease, or otherwise distribute in a controlled
manner, to users. Each particular copy of the software which
is intended to be installed on or used on a user's device, is
referred to as an instance of that software, or as a software
instance. In general, software can be installed on, accessed
by, or used on a user device, with each of these access modes
referred to hereinafter as use or use of software. Thus, for
example, use of an instance of software which is an appli
cation program includes, but is not limited to, installing that
instance or reading it or copying it or executing it. And use
of text includes, but is not limited to, installing the text on
the device or reading the text by use of the device or copying
portions of that text on or by use of the device

30 software at locations specified in the at least one list of
locations. Alternatively, general location fingerprinting may
be used. (In same-location fingerprinting, two sequence of
fingerprints on a common sequence of locations match if the
first fingerprint from the first sequence matches the first

35 fingerprint from the second sequence, the second fingerprint
from the first sequence matches the second fingerprint from
the second sequence, and so on. In general-location
fingerprinting, two sequences of fingerprints match if each
fingerprint in the first sequence matches some fingerprint in

40 the second sequence and each fingerprint in the second
sequence matches some fingerprint in the first sequence.)
Since the tag is separate from the instance of software, the
invention provides protection for software without the need

Components and Steps of Specific Embodiments of the 45

Invention
Specifically, the invention provides a system for super

vising usage of software. The system includes a software
vendor producing instances of software and a tag server
accepting the instances of software. The tag server produces 50

a plurality, of tags, one per instance of software, and each tag
uniquely identifies an instance of software with which it is
associated. A user device receives and installs an instance of
software and securely receives a tag uniquely associated
with that instance of software. The user device includes a 55

to modify the software.
According to another aspect of the invention, whenever

any data file is accessed by an instance of software, infor
mation associated with an instance of software performing
the access is stored in a location associated with the data file.
The information associated with the instance of software
may be the tag associated with the instance of software as
well as the time of modification performed by the instance
of software. Preferably, the information associated with the
instance of software performing the access is written to a
secure location which the supervising program alone can
access. Essentially, this aspect of the invention is used to
track piracy of software that uses shared software data.

In this case, when an instance of the software attempts to
access a data file (i.e., shared software data) having associ
ated information stored in the location associated with that
data file, the supervising program tests whether the associ
ated information stored is information associated with the
instance of software currently attempting access. If so, the
supervising program determines whether that instance was a
pirated copy. To do so, the supervising program according to

supervising program which detects attempts to use the
instance of software and which verifies the authenticity of
the tag associated with the instance of software before
allowing use of the instance of software. The supervising
program on the user device verifies the authenticity of the 60

tag and maintains or stores the tag in a tag table and
maintains or stores the instance of software, preferably on a
storage device, if the tag is authentic. The supervising
program rejects the instance of software if the tag associated
with the software is not authentic. 65 one aspect can use an unaliasable hash function to verify the

associated information stored in the location associated with
the data file for which access is currently being attempted.

A tag is preferably unique to an instance of software. The
tags created by the tag server include at least one of a name

IPR2020-00660 Page 00021

US 6,697,948 Bl
5

In addition, the supervising program can use the time of the
last modification. The idea is to see whether this data file was
written by a software instance having a tag of the software
instance on this device and if so whether the software
instance on this device in fact wrote that data file at the time
of the last modification. If not, at least two software
instances having the same tag are in circulation and piracy
has taken place.

Another embodiment of the invention includes a guardian
center having a tagged software database and a verification
program. The guardian center periodically communicates
with the user device via a call-up procedure to receive tags
from the user device. The tags are associated with instances
of tagged software used on the user device. The verification
program examines each tag received from the user device
against the tagged software database to ensure that the tags
are in compliance with at least one usage supervision policy.
Preferably, the usage supervision policy is associated with at
least one individual instance of software with which at least
one tag is associated. The verification program returns a
continuation message to the user device. The continuation
message indicates for the instance of software associated
with each tag on the user device an action to follow. The
supervising program on the user device receives and verifies
the continuation message for authenticity and if authentic,
performs the action to follow indicated in the continuation
message. In this manner, the guardian center can ultimately
determine access to software on user devices, by controlling
tag usage status.

Preferably, all messages between the guardian center and
the user device are sent in a secure fashion and the secure
fashion involves public key encryption.

According to another aspect of the invention, at least one
of the software vendor, the tag server, and the guardian
center are combined with another of the at least one of the
software vendor, the tag server and the guardian center.

According to another aspect of the invention, when the
supervising program on a user device communicates with
the guardian center, the process is called a call-up. The
maximum allowed time interval between successive call-up
procedures is preferably determined by at least one of a
combination of the time elapsed in the user device, a number
and duration of uses of instances of software, a number of
times the user device is powered on, and a measure of use
of the user device. When a user device fails to perform a
call-up procedure with the guardian center before the end of
a maximum allowed interval since the last call-up
procedure, the user device is disabled for a period of time or
usage of certain instances of software is denied for a period
of time. Preferably, a call-up occurs when an instance of
software is used (i.e., accessed, installed, or otherwise
detected) a first time on a user device. Alternatively, a
call-up may occur due to an request from the guardian
center.

According to one aspect of the invention, during a call-up,
the supervising program tests the authenticity of the con
tinuation message by verifying that a hash function value of
a tag table in the continuation message is the same as a hash
function value of a tag table sent in a call-up message from
the user device. Verifying a digital signature in the continu
ation message may also be used.

When a user device that receives no continuation message
following a call-up message to the guardian center, the user
device can resend a call-up message with a cancellation
command for a previous call-up message. This aspect allows
the user device to attempt call-up again.

In the guardian center, the usage supervision policy may
be associated with the entire user device with which the

6
guardian center communicates during the call-up procedure,
or the usage supervision policy is associated with an indi
vidual user of the user device with which the guardian center
communicates during the call-up procedure, or usage super-

s vision policy is associated with a usage supervision history
of the user device with which the guardian center commu
nicates during the call-up procedure.

According to another aspect of the invention, the guardian
center maintains a tag data structure in the tagged software

10 database for each tag associated with each instance of
software on each user device. Each tag data structure
includes a tag of an instance of software, a usage supervision
policy associated with the instance of software, and a
collection of references to call-up records. Each call-up

15 record in the collection of call-up records represents infor
mation concerning one call-up procedure. The continuation
message associated with the call-up procedure includes at
least one of a call-up time, a header of a tag table transferred
to the guardian center during the call-up procedure, a last

20 call-up time indicating a time stamp of a former call-up
procedure, a hash function value of the tag table transferred
to the guardian center during the call-up procedure, and
actions to follow on the user device. The reason for keeping
previous call-up records is to enable the guardian center to

25 ensure that only one device has a given header of a tag table.
Otherwise it would be possible for different physical devices
to share the same software instances in violation of usage
supervision policies.

In an alternative or combined implementation of the
30 guardian center, the guardian center includes a verification

program. According to this aspect, the guardian center
periodically communicates with the user device via a call-up
procedure to receive a unique identifier for the user device's
supervising program from the user device. The verification

35 program examines the unique identifier to ensure that at
most one supervising program has that identifier, and the
verification program returns a continuation message to the
user device. The continuation message indicates an action to
follow upon attempted use of the instances of software

40 associated with each tag on the user device. The user
device's supervising program verifies the continuation mes
sage for authenticity and if authentic, performs the action in
the continuation message.

According to this embodiment of the guardian center, the
45 supervising program identifier is generated a first time that

the supervising program is invoked, based on a rarely
duplicated number. Preferably, the rarely duplicated number
is a very precise clock value occurring when the supervising
program is first invoked in the machine. Alternatively, the

so rarely duplicated number is provided by a guardian center.
Alternatively or in combination, the number may depend on
the values of some memory locations.

According to another system of the invention, the system
also includes an untagged instance of software used on the

ss user device. In this system, the supervising program detects
the use of the untagged instance of software and performs a
fingerprinting process on the untagged instance of software
and stores fingerprints resulting from the fingerprinting
process on the user device. The user device's supervising

60 program further performs a fingerprinting process on a
tagged instance of software used on the device and stores the
fingerprints resulting from the fingerprinting process in a
fingerprint table on the user device. The supervising pro
gram stores locations from which the fingerprints are com-

65 puted. The fingerprints may be based on contents of the
instance of software. Alternatively, the fingerprints are based
on known sequences of behavior of the instance of software.

IPR2020-00660 Page 00022

US 6,697,948 Bl
7 8

According to certain embodiments of the invention, the
software vendor may include an infringing software detec
tion mechanism that detects software that is infringing on
the vendor's rights and that transfers a copy of the infringing

According to an embodiment of the guardian center in this
system, the guardian center includes a fingerprint data
structure and a verification program. The guardian center
periodically communicates with the user device via a call-up
procedure to receive all fingerprints from the user device for
an instance of software used on the user device. The veri
fication program compares every fingerprint received from
the user device against the fingerprint data structure to
determine if an instance of software used on the user device

5 software to a guardian center so that usage supervision can
be implemented to detect attempted use of an instance of the
infringing software on a user device.

According to another aspect of this embodiment, the
guardian center can invalidate any tag associated with an

10 instance of the infringing software and can send a punitive
action to any user device detected by the guardian center to
have used the instance of infringing software.

is an infringing instance of software. If the verification
program detects more than a specified number of matches
between fingerprints in the guardian center's fingerprint data
structure and fingerprints received from the user device, the
verification program specifies a punitive action to be
performed, and the verification program returns a continu
ation message to the user device. The continuation message 15

indicates the punitive action to be performed on the user
device.

The software vendor transmits a copy of an infringing
instance of software to the guardian center and the guardian
center computes fingerprints on the copy of the infringing 20

instance of software and incorporates and stores the finger
prints into the fingerprint data structure on the guardian
center.

According to one aspect of this system, the fingerprint
matching process is general location fingerprint matching. 25
For speed, the fingerprint matching uses an inverted guard
ian center fingerprint table.

The punitive action can specify that the user device be
disabled for a specified length of time, or can specify that the
instance of software associated with the fingerprint that was

30 matched to a fingerprint in the fingerprint data structure of
the guardian center should be disabled for a specified length
of time. The punitive action depends on at least one of a
combination of the history of the behavior of the user device,
the history of the behavior of a particular user on the user
device, and the collection of software present on the user 35

device.
Another embodiment of the invention provides a tag table

data structure encoded on a user device's readable medium,
such as a computer readable medium. The tag table data
structure includes at least one tag that is uniquely associated 40

with one instance of software and includes at least one field
associated with the tag in the tag table, and includes at least
one field indicating a usage status associated with the tag
associated with the instance of software. The at least one

Another embodiment of the invention is a user device that
includes an input port that receives an instance of software
and receives a tag uniquely associated with that instance of
software and also receives a request to use the instance of
software. A processor included in the user device executes a
supervising program. The supervising program detects the
request to use the instance of software and verifies the
authenticity of the tag associated with the instance of
software before allowing use of the instance of software by
the user device. The supervising program also verifies the
authenticity of the tag and stores the tag in a tag table and
maintains the instance of software if the tag is authentic and
rejects the instance of software if the tag associated with the
software is not authentic.

According to one aspect of the user device, the supervis-
ing program computes a hash function value on the instance
of software and compares the computed value with a hash
function value in the tag to determine whether the tag is
authentic and is properly associated with the instance of
software. The tag is preferably digitally signed and the
supervising program verifies the authenticity of the tag by
verifying a digital signature of the tag.

Within the user device, the tag table is a data structure
stored in storage on the user device and contains at least one
tag that is uniquely associated with an instance of software
and includes at least one field associated with the tag in the
tag table, the at least one field indicating a usage status for
the instance of software associated with the tag. The super
vising program periodically or otherwise determines that a
call-up procedure is required as defined by a call-up policy
and the supervising program performs the call-up procedure
to update the usage status of tags stored in the tag table.

The supervising program can also verify that each data
file used by tagged software is produced by a legitimate
instance of software.

During performance of the call-up procedure, the super
vising program securely transmits the tag table from the user

field may also indicate use statistics for the one instance of 45

software associated with the tag. The tag table may also
include a tag table header that uniquely identifies the tag
table. The tag table header can includes information con
cerning user device use statistics and can include a continu
ation message as well. That tag table is used to store
information concerning the ability of instances of software

50 device via an interconnection mechanism coupled to the user
device and awaits reception of a continuation message
returned to the user device, the continuation message indi
cating actions to be performed for each tag in the tag table.
Also during the performance of the call-up procedure, the

to be used on user devices.
Apparatus and methods of the invention includes a soft

ware vendor comprising a software production mechanism
creating instances of software each having at least one of a
name and software content. Each instance of software is
usable only in conjunction with a tag that is unique to that
instance of software. The tag is preferably a unique unforge
able collection of information concerning the instance of
software with which the tag is associated and includes at 60

least one of the name of the software, a unique number of the
instance of software and hash function value on portions of
content of the software, an identifier of the supervising
program associated with a user device upon which the
instance of software is to be used, or a list of fingerprints of 65

portions of the instance the software with which the tag is
associated.

55 supervising program securely transmits a tag table header
from the user device via an interconnection mechanism
coupled to the user device and awaits reception of a con
tinuation message returned to the user device that indicates
an action to be performed for each tag in the tag table.

Another embodiment of the invention allows control over
the use of untagged software. A user device according to this
embodiment includes an untagged instance of software used
on the user device. The supervising program detects the
untagged instance of software and performs a fingerprinting
process on the untagged instance of software and stores
fingerprints resulting from the fingerprinting process in a
fingerprint table on the user device. The supervising pro-

IPR2020-00660 Page 00023

US 6,697,948 Bl
9

gram periodically or otherwise determines that a call-up
procedure is required as defined by a call-up policy and the
supervising program performs the call-up procedure to
update the usage status of untagged instances of software
stored on the user device. Thus, the control of untagged 5

software may take place regardless of the existence or the
control of tagged software.

When performing the call-up procedure, the supervising
program transmits a portion of the fingerprint table from the
user device via an interconnection mechanism coupled to the 10

user device and awaits reception of a continuation message
returned to the user device that indicates actions to be
performed for each untagged instance of software stored on
the user device.

10
against the fingerprint data structure to determine if an
untagged instance of software used on a user device is an
infringing instance of software, and if so, the verification
program prepares a punitive action to be executed on the
user device.

In one embodiment, all vendor software is fingerprinted
and infringements of one vendor's software upon another
vendor's software are detected based on general location
fingerprint checking. If the verification program detects a
sufficient number of matches between a fingerprint in the
fingerprint data structure and a fingerprint within the fin-
gerprints received, the verification program specifies puni
tive action to be performed, and the verification program
transmits a continuation message, the continuation message

15 indicating a punitive action to be performed on a receiver of
the continuation message. The sufficient number of matches
may be equal to one, or greater than one, or may be
computed as a weighted sum of matches where the weight

According to another embodiment of the invention, a
guardian center is provided that comprises a tagged software
database and a verification program executing on a proces
sor in the guardian center. The guardian center periodically
executes a call-up procedure to receive, via an interconnec
tion mechanism, tags for instances of software. The verifi- 20

cation program examines each tag received against the
tagged software database maintained on the guardian center
to ensure that the tags are in compliance with at least one
usage supervision policy. The verification program transmits
a continuation message via the interconnection mechanism 25

indicating actions to follow upon attempted use of the
instances of software associated with each tag received by
the guardian center during the call-up procedure.

According to aspects of this embodiment, the usage
supervision policy may be associated with each instance of 30

software with which at least one tag is associated. Also, the
usage supervision policy may be associated with a user
device with which the guardian center communicates to
receive tags. The usage supervision policy may also be
associated with an individual user of the user device with 35

which the guardian center communicates to receive tags.

of each match depends on a fingerprint that matches
According to other aspects of this embodiment, punitive

action can specify disablement of the receiver, or that the
instance of software associated with the fingerprint that was
matched to a fingerprint in the fingerprint data structure
should be disabled.

In another variation, in the guardian center, the verifica
tion program receives, via the interconnection mechanism, a
copy of an infringing instance of software and computes
fingerprints on the copy of the untagged infringing instance
of software and incorporates and stores the fingerprints in
the fingerprint data structure.

Embodiments of the invention also encompass a tag
server that accepts a copy of specific vendor software and
produces a plurality of tags, one tag per instance of the
software, with each tag uniquely identifying an instance of
software with which it is associated. Each tag preferably
comprises at least one of the name of the software associated
with the tag, a unique number of the instance of software
associated with the tag, and hash function values computed
on portions of the instance of software associated with the

The guardian center maintains a tag data structure in the
tagged software database for each tag associated with each
instance of software on each user device and receives newly
created tags associated with instances of software from a tag
server and further receives tags associated with instances of
software used on a user device in a tag table transmitted
from the user device. Each tag data structure includes at least
one of a tag of an instance of software, a name of the
instance of software, a unique number of the instance of
software, a hash function value on the instance of software,
a usage supervision policy associated with the instance of
software, and a collection of references to call-up records
associated with the tag associated with the said instance of
software.

40 tag. A digital signature mechanism may be used to digitally
sign the tags and to securely transmit the tags to an intended
receiver, such as a user device or guardian center or to the
software vendor.

Methods encompassed by the invention include a method
45 for supervising usage of software. The method includes the

steps of creating an instance of software and creating a tag
that is uniquely associated with the instance of software. The
method then distributes the instance of software and
securely distributes the tag to a user device and receives the

50 instance of software and the associated tag at the user
device. The method then detects an attempt to use the
instance of the software on the user device and determines
if the attempt to use the instance of the software is allowable

Each call-up record in the collection of call-up records
represents information concerning one call-up procedure
and includes at least one of a call-up time, a header of a tag
table transferred to the guardian center during the call-up
procedure, a last call-up time indicating a time stamp of a 55

former call-up procedure, a hash function value of the tag
table transferred to the guardian center during the call-up
procedure, and the action to follow on the user device
contained in the continuation message associated with the
call-up procedure.

by determining a status of the tag that is associated with the
instance of software to be used.

In the method, tag creation includes steps of assigning a
unique number to the instance of software and computing a
first hash function value on portions of the content of the
instance of software. Then computing a second hash func-

60 tion value for the instance of software, the second hash
function value combining the name of the software, the
unique number of the instance of software, and the first hash
function value. Next, the method includes the step of com-

A variation of the guardian center according to this
invention includes a fingerprint data structure and a proces
sor executing a verification program. The verification pro
gram periodically executes a call-up procedure with a user
device to receive, via an interconnection mechanism, fin- 65

gerprints for instances of software used on the user device.
The verification program examines each fingerprint received

puting a tag that is uniquely associated with the instance of
software, the tag including the name of the software, the
unique number of the instance of software and the second
hash value.

IPR2020-00660 Page 00024

US 6,697,948 Bl
11

The step of computing a tag may create a digitally signed
tag by applying a digital signature function to the second
hash function value to produce a signature and including the
signature in the tag.

The step of distributing the tag to a user device may
include the step of securely distributing the tag to a software
vendor and user device using a public key encryption
technique.

The step of receiving the instance of software can include
the step of obtaining the instance of software at the user
device. And the step of receiving the tag at a user device can
include the steps of securely obtaining the tag associated
with the instance of software at the user device and deter
mining if the tag associated with the instance of software is
signed, and if so, verifying a signature on a hash function
value in the tag and if the signature on the hash function
value is verified, installing the software on the user device,
and if the tag associated with the instance of software is not
signed, installing the instance of software on the user device.
The step of detecting an attempt to use the instance of the
software on the user device can include the steps of invoking
a supervising program on the user device to intercept a user
request for use of the instance of software. The step of
determining if the attempt to use the instance of the software
is allowable can also include the steps of determining if a
call-up procedure is needed based on a call-up policy and if
so performing a call-up procedure to verify the authenticity
and to determine the usage supervision policy of the tag
associated with the instance of software. Also included are
the steps of updating tag information in the user device
based upon an outcome of the call-up procedure an exam
ining status information associated with the tag to determine
if use of the instance of software associated with the tag is
allowed.

The step of performing a call-up procedure includes the
step of transmitting a tag table storing the tag associated with
the instance of software from the user device and awaiting
reception of a continuation message returned to the user
device that indicates an action to be performed for each tag
in the tag table. The user device may continue processing
local requests for execution while waiting for the continu
ation message.

The method embodiments can also including the step of
verifying that the continuation message is directed towards
a specific device and that the event history corresponds to
the event history at this device.

In the method embodiments, the step of performing a
call-up procedure can include the steps of receiving a tag
table including the tag associated with the instance of
software and examining each tag received in the tag table
against a tagged software database to ensure that tags in the
tag table are in compliance with at least one usage super
vision policy. Also included is the step of transmitting a
continuation message indicating an action to follow at the
user device upon detecting an attempted use of the instances
of software associated with each tag.

12
method continues by detecting an attempt to use the
untagged instance of the software on the user device and
determining if the attempt to use the instance of the software
is valid by comparing the fingerprints associated with the

5 untagged instance of software with a fingerprint data struc
ture of infringing fingerprints and disabling use of the
untagged instance of software if a fingerprint match is found.

The above method can also include the steps of detecting
use of a tagged instance of software on a user device and

10
creating and storing fingerprints associated with the tagged
instance of software on the user device. The step of detecting
an attempt to use the tagged instance of the software on the
user device is also included, as is the step of determining if
the attempt to use the instance of the software is valid by
comparing the fingerprints associated with the tagged

15 instance of software with a fingerprint data structure of
infringing fingerprints and disabling use of the tagged
instance of software if a fingerprint match is found.

The method may be supplemented by the steps of
detecting, by a software vendor, an instance of infringing

20 software and submitting a copy of the instance of infringing
software to a guardian center. Also included are the steps of
computing fingerprints at the guardian center on the infring
ing instance of software and incorporating and storing the
fingerprints in a fingerprint data structure. This supplemental

25 method may also be an alternative embodiment on its own
regardless of the existence of tagged software.

Another embodiment of the invention includes a method
for uniquely identifying instances of software comprising
the steps of obtaining an instance of software, assigning a

30 name to the instance of software, and assigning a unique
number to the instance of software. The unique number can
be different from any unique number assigned to another
instance of the same software. This method also includes the
steps of computing a hash function value on portions of the

35 instance of software and computing a second hash function
value on a concatenation of the name of the instance
software, the number of the instance software, and the first
computed hash function value to produce an unsigned hash
function value unique to that instance of software. The

40 method continues with the steps of signing the unsigned
hash function value using a key to produce a signed hash
function value for the instance of software and creating a tag
associated with the instance of software that uniquely iden
tifies that instance of software, the tag including the signed

45 hash value of the instance of software, the name of the
instance of software, the unique number of the instance of
software, and the unsigned hash value of the instance
software.

According to this embodiment, the steps of obtaining the
50 instance of software and assigning a name to the software

are performed by a software vendor and the steps of assign
ing a unique number to the instance of software, computing
the first and second hash function values, signing the second
hash value, and creating the tag are performed by a tag

55 server.
The invention also includes embodiments related to a

In the method embodiments, the continuation message
can include a supervising program identifier of the super
vising program to which the continuation message is to be
sent, as well as the time when the continuation message was 60

prepared, as well as an encoding of the tag table header that
accompanied the call-up from the device.

computer readable medium encoded with instructions that
when read and executed on a processor perform the steps of
detecting a request to use an instance of software and
determining if a tag corresponding to the instance of soft
ware has an associated status that allows the instance of
software to be used and periodically performing a call-up
procedure to validate the authenticity of the tag and to ensure
that the instance of software corresponding to the tag is used
in accordance with an usage supervision policy.

A method for supervising use of software is also provided
as part of the invention and includes the steps of detecting
use of an untagged instance of software on a user device and 65

then creating and storing fingerprints associated with the
untagged instance of software on the user device. The

The invention also includes embodiments directed to a
propagated signal transmitted via a carrier over a commu-

IPR2020-00660 Page 00025

US 6,697,948 Bl
13

nications medium. One such signal carries an encoded tag
table data structure which includes at least one tag that is
uniquely associated with one instance of software and
includes at least one field associated with the tag in the tag
table, the at least one field indicating a use control status for 5

the one instance of software associated with the tag.
Another such signal carries an encoded continuation

message, the continuation message containing an indication
of actions to be performed at a receiver of the propagated
signal when an attempt to use an instance of software 10

associated with the actions is detected at the receiver.

14
gram. The supervising program detects commands to the
device to use the said instance of software and verifies that
the status currently associated with the tag associated with
that instance of software, permits use of that instance.

Securely sending or receiving data or an object containing
data means that the data or the object are sent or received in
a manner that does not allow the data or the data contained
in the object to be altered by or revealed to anyone other than
the authorized sender or receiver. For example, a tag may be
securely sent from a vendor to a user device over a network
by use of the TETS I SPEC or NETSCAPE SSL or any other
protocol for secure communication, or the tag may be
handed over by the vendor to the user on a diskette placed
in a tamper-proof sealed envelope. Secure communication is

Another method is provided by the invention for ensuring
that a software program hasn't been altered. This method
embodiment includes the steps of computing an unaliasable
hash function value on the contents of the software program
and comparing the result of the unaliasable hash function
with a result of a previously held hash value to determine if
the results are the same, thus indicating if a software
program has been altered. In one version of this method, the
operating system computes the unaliasable hash function 20

value and the software program is the supervising program.

15 employed in the invention just to protect sensitive informa
tion from being divulged to eavesdroppers and is not part of
the invention's protection mechanisms proper. Any standard
protocol for secure communication between parties will
serve this purpose.

As noted in the embodiments above, the tag created by the
tag server for an instance of vendor software includes the
name of that software, a unique identifying number for that
instance of software, hereinafter referred to as the instance
number, a hash function value on some portions of the

Also provided by the invention is a method for ensuring
that data has not been altered by means of computing an
unaliasable hash function value on the contents of that data
and comparing the said value with a previously computed
hash function value. The supervising program preferably
computes the unaliasable hash function value and the data
used by the supervising program in this method.
General Summary of Operation of Above Embodiments of
the Invention

25 instance of software, and a hash function value combining
all the previous data. The instance numbers employed in the
present invention can be integers or any sequences of any
symbols, the said sequences serving as unique identifiers.
Optionally, the tag server may digitally sign the last men-

Before the detailed description of the embodiments noted
above are given, the following summary of the general
high-level operation of various embodiments of the inven
tion is provided to aid the reader in understanding certain
complexities in portions of the invention's embodiments.

30 tioned hash function value, and include the signature in the
tag.

Tags which include a signature will hereinafter be referred
to as signed tags. Tags which do not include a signature will
be referred to as unsigned tags. When preparing an unsigned

As noted in the above described embodiments, each
instance of vendor's specific software is accompanied by a
unique unforgeable tag. All software instances of the same
specific software, however, are identical and un-encrypted,
each consisting of a copy of the specific software and,
possibly, including the name of the software. For example,

35 tag for an instance INST_SW of software SW, the tag server
selects the unique identifying number for the instance from
a secret sparse set of numbers, hereinafter referred to as the
secret sparse set, associated with the software SW. Numbers
in the secret sparse set may, for example, be produced by a

40 physical process.

an instance of the specific application program software
Spread will include the program code for a spreadsheet
application as well as the name "Spread." Since no special
ized hardware devices are required for the invention, 45

instances of arbitrary kinds of software can be used together
on a common device or on different devices.

A software vendor produces instances (copies) of some
specific software and sending one instance of that software
to a tag server, together with a request for a certain number 50

of tags for instances of that software. The tag server pro
duces the requested number of different unique tags. Each
unique tag will be associated by the vendor with one
instance of the software and will serve to uniquely identify
the instance of software with which it is associated. A user 55

device receives and attempts to use an instance of the
vendor's software and securely receives the tag uniquely
associated with that instance of software.

The user device includes the supervising program running

To determine whether a tag associated with an instance
INST of software is authentic, the supervising program of
the device on which INST is to be installed or used, extracts
the instance number NUM_INST of INST and the name
NAME_SW of SW from the tag. The supervising program
computes a hash function value on some specified portions
of the contents of the software instance INST. The super
vising program then computes a hash function value com
bining the instance number NUM_INST, the name
NAME_SW, and the previously computed hash function
value. The supervising program compares the hash function
values it computed with hash function values found in the
tag. It must also verify any digital signature which is a
component of a signed tag. The authenticity of an unsigned
tag is further checked by the supervising program before
allowing the first or some subsequent use of the associated
instance of software by securely sending the tag to the tag
server or to a guardian center described next, for authenti
cation of the tag.

As indicated above, the system also includes a guardian
center which includes a tagged software database and a
verification program. The guardian center periodically com
municates with the user device via a call-up procedure to
receive all tags from the user device for each instance of

on that device, which verifies the authenticity of the asso- 60

ciated tag and stores the tag in a tag table and stores the
instance of software on a storage device or allows use of the
software instance, only if the tag is authentic. The supervis
ing program rejects an instance of software if the tag
associated with the instance is not authentic. Every tag in the
tag table has a status such as "usable" or "removed" or
"pay-per-use", associated with it by the supervising pro-

65 software installed on the user device. The verification pro
gram examines each tag received from the user device
against the tagged software database to ensure that the tags

IPR2020-00660 Page 00026

US 6,697,948 Bl
15

are in compliance with at least one usage supervision policy.
The verification program returns a continuation message to
the user device which indicates an action to follow upon
attempted access to the instances of software associated with
each tag on the user device.

16
Another embodiment of the invention provides a tag table

data structure encoded on a computer readable medium. The
tag table data structure includes at least one tag that is
uniquely identified with one instance of software and

5 includes at least one field associated with the tag in the tag
table. The field indicates a usage supervision status for the
one instance of software identified with the tag and may also
indicate use statistics for the one instance of software

The usage supervision policy can be associated with
individual instances of software to which at least one tag is
associated, or can be associated with the entire user device
with which the guardian center communicates, or can be
associated with an individual user of the user device with 10

identified with the tag. The tag table data structure may also
include a tag table header that uniquely identifies the tag
table and that uniquely associates the tag table with one user which the guardian center communicates.

The guardian center maintains a tag data structure in the
tagged software database for each tag for each instance of
software on each user device. Each tag data structure can
include a tag of an instance of software, a name of the
instance of software, a unique number of the instance of
software, a hash value on the instance of software, a policy
associated with the instance of software, and a series of
call-up records associated with the instance of software.
Each call-up record in the series of call-up records repre
sents information concerning one call-up procedure and
includes a call-up time, a header of a tag table transferred to
the guardian center during the call-up procedure, the last
call-up time indicating a time stamp of a former call-up
procedure, a hash of the tag table transferred to the guardian
center during the call-up procedure, and the action to follow

device. The tag table header includes information concern
ing user device use statistics and includes a continuation
message. The continuation message indicates punitive

15 action and usage supervision status for an instance of
software associated with a tag.

A software vendor is provided as an aspect of the inven
tion and includes a software development mechanism that
creates instances of software having a name and having

20 software content. Each instance of software is executable
only in conjunction with a tag that is unique to that instance
of software. The tag is a unique unforgeable collection of
information concerning the instance of software to which the
tag is associated and includes the name of the software, a

25 unique number of the instance of software and a hash of the
content of the software. The software vendor also includes

on the user device contained in the continuation message
associated with the call-up procedure. Using these
mechanisms, the guardian center can track usage statistics of
instance of software for such activities as paying per use of 30

an infringing software detection mechanism that detects an
infringing instance of software that is infringing intellectual
property rights. The software vendor transfers the infringing
instance of software to a guardian center so that usage
supervision can be implemented to detect attempted uses of an instance.

According to another aspect of the invention, an untagged
instance of software may be installed on the user device. The
supervising program detects the untagged instance of soft
ware and performs a fingerprint process on the untagged
instance of software and stores fingerprints resulting from
the fingerprint process in a fingerprint table on the user
device. The guardian center, according to this aspect,
includes a fingerprint database. The guardian center peri
odically communicates with the user device via a call-up
procedure to receive all fingerprints from the user device for
each untagged instance of software installed on the user
device. The verification program examines each fingerprint
received from the user device against the fingerprint data
base to determine if an untagged instance of software is an
infringing instance of software. In this manner, the invention
can detect the use of modified software that is an illegal
copy.

the infringing instance of software.
In an alternative embodiment of this invention, a software

vendor is provided which produces at least one instance of
35 software incorporating a device identifier inside a test. The

test will be an "if statement" in a typical programming
language. The test comprises the comparison of the incor
porated identifier with the identifier of the device upon
which the software instance is to be used. If the incorporated

40 identifier equals the device identifier then the software
instance can be used normally, otherwise punitive action is
taken by the supervising program on the device. For added
protection, a digital signature of the hash of the software
instance (including the incorporated identifier) is sent, a

45 second test determines whether the digital signature is
authentic, and a third test determines whether the signed
value is the same as the hash of the software instance. If not,
punitive action is taken by the supervising program in the
device. If the verification program detects a match between a

fingerprint in the fingerprint database and a fingerprint 50

within all fingerprints received from the user device, the
verification program specifies punitive action to be
performed, and the verification program returns a continu
ation message to the user device. In this case, the continu
ation message indicates the punitive action to be performed 55

on the user device. As such, a user device can be disabled,

As noted above in the embodiment construction section,
a user device is provided and includes an input that receives
an instance of software and securely receives a tag uniquely
associated with that instance of software and receives an
attempt from a user of the user device to access the instance
of software. A processor in the user device executes a
supervising program. The supervising program detects the

for example, if caught using untagged infringing software.
Alternatively, the punitive action may specify that the

untagged instance of software associated with the fingerprint
that was matched to a fingerprint in the fingerprint database 60

should be disabled.

attempt to access the instance of software and verifies the
authenticity of the tag associated with the instance of
software before allowing access to the instance of software
by the user of the user device. The supervising program
determines that a call-up procedure is required as defined by
a call-up policy and the supervising program performs the
call-up procedure to update the status of tags stored in the
tag table. During the call-up procedure, the supervising

To obtain fingerprints at the guardian center, the software
vendor transmits a copy of an untagged infringing instance
of software to the guardian center and the guardian center
computes fingerprints on the copy of the untagged infringing
instance of software and stores the fingerprints in the fin
gerprint database.

65 program securely transmits the tag table from the user
device via an interconnection mechanism coupled to the user
device and awaits reception of a continuation message

IPR2020-00660 Page 00027

US 6,697,948 Bl
17 18

can be used to securely distributing the tag to a software
vendor and user device.

The software may be distributed by obtaining the instance
of software at the user device and securely obtaining the tag

returned to the user device that indicates an action to be
performed for each tag in the tag table. In this manner, the
user device does not need to be concerned with setting an
usage supervision policy, but rather, merely maintains a
policy that is centralized to all devices. 5 associated with the instance of software at the user device.

The user device can determine if the tag associated with the
instance of software is signed, and if so, can verify a
signature hash value in the tag and if the signature hash
value is verified, the user device can install the software.

To detect an attempt to access the instance of the software
on the user device the method of the invention includes the
steps of invoking a supervising program on the user device
to intercept a user request for access to the instance of
software. To determine if the attempt to access the instance

For untagged instances of software installed on the user
device, the supervising program detects the untagged
instance of software and performs a fingerprint process on
the untagged instance of software and stores fingerprints
resulting from the fingerprint process in a fingerprint table 10

on the user device. For untagged software, during the call-up
procedure, the supervising program transmits the fingerprint
table from the user device via an interconnection mechanism
coupled to the user device and awaits reception of a con
tinuation message returned to the user device that indicates 15 of the software is valid, the method determines if a call-up

procedure is needed based on a call-up policy. The method
performs a call-up procedure to verify the authenticity and
to determine the use policy of the tag associated with the
instance of software and updates tag information in the user

an action to be performed for each untagged instance of
software stored on the user device.

For untagged software, the verification program in the
guardian center periodically executes a call-up procedure to
receive, via an interconnection mechanism, fingerprints for
untagged instances of software. The verification program
examines each fingerprint received against the fingerprint
database to determine if an untagged instance of software is

20 device based upon an outcome of the call-up procedure.

an infringing instance of software, and if so, the verification
program prepares punitive action for the user device. If the 25

verification program detects a match between a fingerprint in
the fingerprint database and a fingerprint within the finger
prints received, the verification program specifies punitive
action to be performed, and the verification program trans
mits a continuation message to the user device. The con- 30

tinuation message indicates the punitive action to be per
formed on a receiving user device of the continuation
message.

Status information associated with the tag is examined at the
user device to determine if access to the instance of software
associated with the tag is valid. In this manner, protection to
software is provided.

During the call-up procedure, a tag table storing the tag
associated with the instance of software is transmitted from
the user device and the user device awaits reception of a
continuation message returned to the user device that indi
cates an action to be performed for each tag in the tag table.

The guardian center receives the tag table including the
tag associated with the instance of software and examines
each tag received in the tag table against a tagged software
database to ensure that tags in the tag table are in compliance
with at least one usage supervision policy. The guardian Another embodiment of the invention provides an tag

server that accepts instances of software and produces a
plurality of tags, one tag per instance of software. Each tag
uniquely identifies the instance of software to which it is
associated and each tag includes encoded information con
cerning the name of the instance of software associated with
the tag, a unique number of the instance of software asso
ciated with the tag, and a hash value computed on the
instance of software associated with the tag.

35 center transmits a continuation message indicating an action
to follow at the user device upon detecting an attempted
access to the instances of software associated with each tag.

Other embodiments of the invention include a computer
readable medium encoded with instructions for the above

40 processes, as well as a propagated signal transmitted via a
carrier over a medium which carries an encoded tag table
data structure as described above.

In the method for controlling access to software, a step of
creating an instance of software is performed. A tag is then
created that is uniquely associated with the instance of 45

software. The instance of software and the tag are then
distributed to a user device. The method then detects an
attempt to access the instance of the software on the user
device and determines if the attempt to access the instance

Using these mechanisms, the system of the invention
allows a rightful vendor/owner of the rights in an instance of
software to police those rights. If the vendor discovers that
the vendor rights are being infringed, such as by discovering
a bootleg, stolen, reverse engineered, modified or disas
sembled instance of software which essentially identical in
operation to the vendor produced software, the system can

of the software is valid by determining a status of the tag that 50 police the use of these illegal copies of software.
is associated with the instance of software to be accessed.

To create the tags, the method assigns a unique number to
the instance of software and computes a first hash value on
the content of the instance of software. A second hash value
is computed for the instance of software. The second hash 55

value includes a name of the software, the unique number of
the instance of software, the content of the instance of
software, and the first hash value. Finally, the method
computes a tag that is uniquely associated with the instance

The system of the invention at the same time protects a
rightful user of software from denial of service by dishonest
parties who attempt to create a false impression of illegal use
of software by the rightful user/owner.

The invention also allows pay-per-use statistics to be
tracked at each user device for software which is purchased
on a per use basis. During the call-up procedure, the guard
ian center can determine the use statistics for a pay-per-use
instances of software and can provide the use information

of software. The tag includes the name of the software, the
unique number of the instance of software and the second
hash value.

60 back to the software vendor for billing purposes.

The step of computing a tag can create a digitally signed
tag by applying a digital key signature function of the second
hash value to produce a signature hash value and including
the signature hash value in the tag. This allows secure
distribution of the tag. A public key encryption technique

As indicated above, the system includes a guardian center
that includes a tagged software database and a verification
program. Every user device must periodically communicate
with the guardian center via a call-up procedure and securely

65 send, for each instance of vendor software installed on that
user device, or used on the device since the last preceding
call-up procedure, the tag associated with that instance.

IPR2020-00660 Page 00028

US 6,697,948 Bl
19 20

If the above signature is verified as being authentic and
the above comparisons produce matches, the supervising
program accepts the continuation message as being the
guardian center's response in the current call-up procedure.

Additional data from the tag table, up to and including the
complete tag table, may also be securely sent by the super
vising program to the guardian center during a call-up
procedure. The call-up procedure may be initiated by either
the guardian center or the user device. The guardian center's
verification program authenticates each tag it received from
the user device.

5 In this case the supervising program stores the continuation
message in the tag table and proceeds to update the status of
tags and execute actions according to the actions and puni
tive actions present in said continuation message. Essentially, the verification program examines each tag

and its associated data received from the user device against
the tagged software database to authenticate it and to ensure
that the tag is in compliance with at least one usage
supervision policy applying to the software instance with
which the tag is associated. For example, the verification
program may check whether a tag received during a call-up
was, at any time since the previous call-up from the same 15

supervising program, in usable status in the calling device's
tag table and, simultaneously, in usable status in some other
device's tag table, such an occurrence being a violation of a
possible usage supervision policy. The verification program
securely returns a continuation message to the user device
and updates the tagged software database, using the tags and
the associated information it has received during the call-up
procedure.

A usage supervision policy can be associated with an
10 individual tagged instance of software, or with a specific

software or type of software, or with the entire user device
with which the guardian center communicates, or with an
individual user of the user device with which the guardian
center communicates.

Examples of usage supervision policies defined by a
vendor of instances of software include but are not limited
to the following and any combination thereof. That an
instance of software once used on one user device will not
be used on a different user device. That an instance of

20 software not be used or be in usable status simultaneously on
two different user devices. That an instance of software be

When creating an unsigned tag for an instance of
software, the tag server securely sends the tag to the guard- 25

ian center and the guardian center's verification program
stores the received tag in the tagged software database.

used or be in usable status simultaneously only on user
devices within a specified set of devices. That an instance of
software be used for no more than a specified number of
times. That an instance of software not be used after a
specified date. That use of an instance of software be
allowed only if pay-per-use fees for that instance were
transferred to a specified account.

The methods and apparatus of the invention make it
possible to enforce any usage supervision policy defined by
a vendor or consortium of vendors with respect to use of an
instance or a class of instances of software.

The guardian center maintains a tag data structure in the
tagged software database for each individual tag associated
with some instance of software on some user device. The tag
data structure for a tag is associated with the tag itself and
not with any particular user device from which that tag was
transmitted to the guardian center during some call-up
procedure. Each tag data structure comprises the tag of an

In another implementation, the tag server sends all newly
created tags to the guardian center and the guardian center's
verification program stores each received tag in the tagged 30

software database. When the guardian center receives a tag
from a user device during a call-up procedure, the guardian
center's verification program authenticates the tag by
searching for it in the guardian center's tagged software data
base and, if not found there, declaring it as not authentic if 35

said tag is an unsigned tag. If said tag is a signed tag then
the verification program authenticates the tag by either
finding it in the tagged software database or by verifying that
said tag has the correct form and further verifying the digital
signature included in the tag.

The guardian center's continuation message to a user's
device is signed by the guardian center and includes iden
tifying data such as a time-stamp, a hash function value of
the tag table or of other data it has received from the user
device's supervising program during the current call-up. In 45

addition, the continuation message contains commands,
hereinafter called actions, to the supervising program in the
user device.

40 instance of software, the name of the software of which the
instance is a copy, the instance number of the instance of
software, a hash function value of the instance of software
or of portions of that instance, a usage supervision policy

Examples of actions used by the invention include but are
not limited to: Instructing the supervising program to (1) 50

allow continued use of a particular instance of software; or
(2) to refuse use of a software instance for a specified time
period; or (3) to refuse to install or allow use of software
having a given name or a given list of fingerprints for a
specified period of time; or (4) to disable the user device for 55

a specified period of time. Actions of types 2-4 are some
times called punitive actions.

Upon receiving, during the call-up procedure, the con
tinuation message from the guardian center, the user
device's supervising program checks the guardian center's 60

digital signature. The supervising program further checks
whether the continuation message is for the current call-up
of this device by comparing hash function values or other
data present in the continuation message, with hash function
values of portions of the device's tag table or with the hash 65

function value of the tag table or with other data present in
the tag table.

associated with the instance of software, and a collection of
references to call-up records, or a collection of call-up
records, associated with the instance of software. Each
call-up record in the said collection of call-up records
represents information concerning one call-up procedure
and may include a call-up time, a header of a tag table or
some other identifying information transferred to the guard
ian center during the call-up procedure, the last call-up time
indicating a time stamp of a former call-up procedure, a hash
function value of the tag table transferred to the guardian
center during the call-up procedure, and the continuation
message sent to the user device's supervising program
during the call-up procedure.

Using data gathered and stored during call-up procedures,
the guardian center can compile usage statistics for each
instance of software, for such purposes as billing for paying
per-use for a software instance.

An untagged instance of software may be installed or used
on the user device. The supervising program detects that the
instance is untagged and computes fingerprints of selected
portions of the untagged instance of software and stores
these fingerprints in a fingerprint table on the user device.
The guardian center, according to this aspect, includes a
fingerprint data structure. During the above mentioned call-

IPR2020-00660 Page 00029

US 6,697,948 Bl
21

up procedure with a user device, the guardian center receives
22

software is accessible or usable only in conjunction with a
unique tag that is associated with that instance of software.
The tag is a unique unforgeable collection of information
concerning the instance of software with which the tag is

all fingerprints from the user device for each untagged
instance of software installed on the user device. The
verification program compares each fingerprint received
from the user device against the fingerprints in its fingerprint
data structure to determine if an untagged instance of
software used on a user device is an infringing instance of
software. In this manner, the invention can detect the use of
a software instance that is a pirated copy of vendor software
whose tag has been removed, or a pirated derivative of
vendor software.

5 associated and includes the name of the software, a unique
identifying number of the instance of software and a hash
function value of portions of the content of the software. The
software vendor also comprises an infringing software
detection mechanism that detects an instance of software

If the verification program detects a match between more
than a specified number of fingerprints in the guardian
center's fingerprint data structure and the fingerprints
received from the user device, the verification program can
specify a punitive action or actions in the continuation
message returned to the user device. According to one such
punitive action, a user device can be disabled for a specified
period of time, if detected by the guardian center as using
untagged infringing software.

10 that is infringing on the vendor's intellectual property or
other rights. The software vendor transfers a copy of the
infringing instance of software to a guardian center so that
the methods of the present invention can be employed by the
guardian center to detect attempted uses and access to the

15 infringing instance of software, and when detected, to
impose punitive actions on the user device involved.

A user device includes an input port that receives an
instance of software and securely receives a tag uniquely
associated with that instance of software. The device also

20 receives requests to install or to use the instance of software.
In another example, a punitive action may specify that the

untagged instance of software associated with a fingerprint
that was matched to a fingerprint in the guardian center's
fingerprint data structure, should be disabled.

The fingerprint data structure at the guardian center is 25

constructed by having software vendors who detect that
infringing software is being distributed or used as untagged
software, send a copy of such untagged infringing software
to the guardian center. The guardian center computes fin
gerprints of portions of this copy of the infringing software 30

and incorporates and stores these fingerprints in the finger
print data structure.

Protection against infringement of vendor's rights in
software is also provided by fingerprinting selected portions
of any instance of software, tagged or untagged, used on a 35

user device and storing these fingerprints in the device's
fingerprint table. As before, the fingerprints in the fingerprint
table are sent by the device's supervising program to the
guardian center during execution of a call-up procedure and
the guardian center's verification program searches for 40

matches between the received fingerprints and fingerprints
in the guardian center's fingerprint data structure. This
aspect of the invention protects against infringement on a
legitimate vendor's rights by a pirating vendor who makes
an infringing version of a legitimate vendor's software and 45

distributes tagged instances of the said infringing software.
A tag table data structure encoded on a device-readable

medium accessible by the user's device. If any tagged
software has been installed on the device or used by the
device, the tag table data structure includes at least one tag 50

that is uniquely associated with one instance of software and
includes at least one field associated with the tag in the tag
table. The field indicates a usage supervision status for the
one instance of software associated with the tag and may
also indicate use statistics for the one instance of software 55

associated with the tag. The tag table data structure may also
include a tag table header that uniquely identifies the tag
table and that uniquely associates the tag table with one user
device or with one user device's supervising program. The
tag table header includes information concerning user device 60

use statistics and includes a continuation message. The
continuation message indicates possible actions and usage
supervision status for an instance of software associated
with a tag.

A software vendor provides a software development pro- 65

cess that creates instances of software having a name and
having software content. Each instance of the vendor's

A processor in the user device executes a supervising
program. The supervising program detects the attempt to
install or to use the instance of software and verifies the
authenticity of the tag associated with the instance of
software or the status associated with the tag, before allow
ing installation of or use of the instance of software. From
time to time the supervising program determines that a
call-up procedure is required as defined by a call-up policy,
and the supervising program performs the call-up procedure
to update the status of tags stored in the tag table.

During the call-up procedure, the supervising program
securely transmits the tag table from the user device via an
interconnection mechanism coupled to the user device and
awaits reception of a continuation message returned to the
user device that indicates actions to be performed for each
tag in the tag table. In this manner, the user device does not
need to be concerned with setting a usage supervision policy,
but rather just enforces a usage supervision policy that is
common to all devices or vendor's usage supervision poli
cies associated with software instances distributed by those
vendors.

Call-up policies implemented by a user device's super-
vising program may be associated with the device, with a
particular instance of software used on the said device, or
with a particular user of the device. Examples of call-up
policies include, but are not limited to, the following. The
latest time for the next call-up for a user device may be
determined by a combination of the time elapsed since the
last call-up, the number of times that the device was turned
on since the last call-up, and the total time that the device
was used since the last call-up. Similarly a call-up policy
associated with a tag or with the instance of software
associated with that tag may determine the latest time for the
next call-up as a function of the time elapsed since the last
call-up, the number of times that the instance of software
was used, and the total time that the instance of software was
used on the device. Another call-up policy associated with
an instance of software may specify execution of a call-up
every time that an attempt to use the instance of software on
the user device occurs.

The invention enforces the behavior of a user device and
its supervising program to conform to a call-up policy
applicable to the said user device or to any tag in the said
device's tag table, by having the supervising program
execute a specified punitive action in case of failure to
call-up the guardian center and to receive from the guardian
a continuation message before the latest time for call-up

IPR2020-00660 Page 00030

US 6,697,948 Bl
23

specified by the call-up policy. The invention ensures that a
user device's supervising program accept a message
received during execution of a call-up procedure as the
guardian center's continuation message for this call-up, only
if the said message is in fact sent by the guardian center as 5

the continuation message for the said call-up. This is
achieved by the guardian center signing its continuation
message and including in it identifying data uniquely linking
it with present call-up by the user device's supervising
program, as explained before, and by the supervising pro- 10

gram verifying the said signature and the said identifying
data. The above provisions of the invention prevent a user or
a user's device from circumventing the invention's protec
tions by either not calling-up the guardian center according
to a call-up policy or by attempting to create or use an 15

improper continuation message.

24
and a hash function value computed on the contents of the
software associated with the tag.

In the method for supervising the usage of software, the
step of creating an instance of software is performed as
noted above. A tag is then created that is uniquely associated
with the instance of software. The instance of software and
the tag are then distributed to a user device. The method then
detects an attempt to use the instance of the software on the
user device and determines if the attempt to use the instance
of the software is allowed by determining a status of the tag
that is associated with the instance of software to be used.

To create the tag, the method assigns a unique number to
the instance of software and computes a first hash function
value on the content of the instance of software. The method
then computes a second hash function value combining the
name of the software, the unique number of the instance of
software, and the first hash function value. Finally, the
method form a tag that is uniquely associated with the
instance of software. The tag includes the name of the
software, the unique number of the instance of software and
the second mentioned hash function value.

Examples of the above mentioned punitive action on a
user device executed by the said device's supervising pro
gram upon failure to conform to a call-up policy include, but
are not limited to, the following. The supervising program 20

may disable the device from any activity, except for execut
ing a call-up procedure, for a specified length of time. The
device may disable use of an instance of software if a call-up
policy associated with that instance of software was
violated, for a specified length of time.

The step of creating a tag can further produce a digitally
signed tag by applying a digital signature function to the
second mentioned hash function value included in the tag

25 and including the signed hash function value in the tag.
For untagged instances of software installed or used on

the user device, the supervising program detects the
untagged instance of software and performs a fingerprinting
process on the untagged instance of software and stores
fingerprints resulting from the fingerprinting process in a 30

fingerprint table on the user device. For untagged software,
during the call-up procedure, the supervising program trans
mits the fingerprint table from the user device via an
interconnection mechanism to the guardian center and
awaits reception of a continuation message from the guard- 35

ian center the to user device, said message indicating an
action or actions to be performed for each untagged instance
of software stored on the user device.

Software may be distributed by having the user device
obtain an instance of software at the user device as well as
the tag associated with the instance of software. The user
device can determine if the tag associated with the instance
of software is signed, and if so, can verify hash function
values in the tag and the signature in the tag. If the said
verifications succeed, the user device can install or use the
instance of software.

To detect an attempt to access the instance of the software
on the user device the method of the invention includes the
steps of invoking a supervising program on the user device
to intercept a user request for use of the instance of software.
To determine if the attempt to use the instance of the
software is valid, the method determines if a call-up proce-

40 dure is needed based on a call-up policy. The method
performs a call-up procedure to verify the authenticity and
to determine the usage supervision policy of the tag asso
ciated with the instance of software and updates tag infor
mation in the user device based upon an outcome of the

For untagged software, the user device's supervising
program periodically executes a call-up procedure to send,
via an interconnection mechanism, fingerprints for untagged
instances of software. This call-up procedure may be initi
ated by the user device's supervising program or by the
guardian center. The guardian center's verification program
examines each fingerprint received against the guardian
center's fingerprint data structure to determine if an
untagged instance of software is an infringing instance of
software, and if so, the verification program prepares puni
tive action for the user device. For example, if the verifica
tion program detects a sufficient number of matches between
the fingerprints associated with some specified software in
the fingerprint data structure and the fingerprints associated
with untagged software in the user device, the verification
program specifies punitive action to be performed, and the
verification program transmits a continuation message to the 55

user device. The continuation message indicates the punitive
action to be performed on the user device receiving the
continuation message.

The aforementioned tag server generally accepts a copy of
specific software and produces a plurality of tags, one
unique tag per instance of said software. Each tag uniquely
identifies the instance of software with which it is associated
and each tag comprises information concerning the name of
the instance of software associated with the tag, a unique
number of the instance of software associated with the tag,
and a hash function value combining the said name of
software, the said unique number of the instance of software,

45 call-up procedure. Status information associated with the tag
is examined at the user device to determine if use of the
instance of software associated with the tag is allowable. In
this manner, usage supervision of software is provided.

During the call-up procedure, a tag table storing the tag
50 associated with the instance of software is securely trans

mitted from the user device to a guardian center and the user
device awaits reception of a continuation message returned
to the user device that indicates an action to be performed for
each tag in the tag table.

The guardian center receives the tag table including the
tag associated with the instance of software and examines
each tag received in the tag table against a tagged software
database to ensure that tags in the tag table are in compliance
with at least one usage supervision policy. The guardian

60 center transmits a continuation message indicating an action
to follow at the user device upon detecting an attempted use
of the instances of software associated with each tag.

Other embodiments of the invention include a computer
readable medium encoded with instructions for the above

65 processes, as well as a propagated signal transmitted via a
carrier over a medium which securely carries a tag table data
structure as described above.

IPR2020-00660 Page 00031

US 6,697,948 Bl
25

Using these mechanisms, the system of the invention
allows a rightful vendor/owner of the rights in an instance of
software to police those rights. If the vendor discovers that
the vendor rights are being infringed, such as by discovering
a bootleg, stolen, reverse engineered, or modified instance of
software which is essentially identical in operation to the
vendor produced software, the system can police the use of
these illegal copies of software.

26
invention, when a vendor detects software that infringes on
the vendor's rights in some of his software.

FIG. 12 is a flow chart of the processing steps performed
by a user device's supervision program when executing a

5 call-up procedure to the guardian center according to one
embodiment of the invention.

The system of the invention at the same time protects a
rightful user of software from denial of service by dishonest 10

parties who attempt to create a false impression of illegal use

FIGS. 13A and 13B show a flow chart of the guardian
center call-up processing steps that are performed according
to one embodiment of the invention.

FIG. 14 shows the data structures used in an embodiment
of the invention without guardian center call-ups.

of software by the rightful user.
The invention also allows pay-per-use statistics to be

tracked at each user device for an instance of software which

FIG. 15 is a flow chart of processing steps performed by
a user device's supervision program in an embodiment of
the invention without guardian center call-ups.

is purchased on a per use basis. During the call-up 15

procedure, the guardian center can determine the use statis
tics for a pay-per-use instance of software and can provide
the use information back to the software vendor for billing

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 illustrates an example information system 109
configured according to the invention. FIG. 1 is provided to purposes.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular description of preferred embodiments of the
invention, as illustrated in the accompanying drawings in
which like reference characters refer to the same parts
throughout the different views. The drawings are not nec
essarily to scale, emphasis instead being placed upon illus
trating the principles of the invention.

FIG. 1 illustrates an information system configured
according to one embodiment of the invention.

FIG. 2 illustrates a more detailed view of the flow of
information within a system configured according to one
embodiment of the invention.

FIG. 3A is a flow chart showing the processing steps
performed to create a signed tag for an instance of software
according to one embodiment of the invention.

FIG. 3B is a flow chart showing the processing steps
performed to create an unsigned tag for an instance of
software according to one embodiment of the invention.

FIG. 3C is a flow chart showing the processing steps
performed to create an unsigned tag with fingerprints for an
instance of software according to one embodiment of the
invention.

FIG. 4 illustrates the architecture of a user device con
figured according to one embodiment of the invention.

FIG. 5 is a flow chart showing the steps performed to
install vendor software on a user device according to one
embodiment of the invention.

FIG. 6 illustrates the contents of a tag table according to
one embodiment of the invention.

FIG. 7 is a flow chart showing the processing steps
performed to install untagged software on a user device
according to one embodiment of the invention.

FIG. 8 is a flow chart showing high level processing steps
performed by the system of this invention to implement
software usage supervision according to one embodiment of
the invention.

FIG. 9 illustrates the architecture of a guardian center
configured according to one embodiment of the invention.

FIG. 10 shows the contents of a guardian center record for
an instance of software according to one embodiment of this
invention.

FIG. 11 is a flow chart of the processing performed by a
guardian center, according to one embodiment of the

20 describe the main component elements of the invention and
to generally describe their operational interrelationships
within the context of the invention. Information system 109
includes a communication network 100 which interconnects
a plurality of user devices 104 through 107 and one or more

25 software vendors 101, tag servers 102, and guardian centers
103 (one of each shown in this example embodiment). The
invention is intended to supervise usage of information (not
shown) which is used with the assistance of one of the user
devices 104 through 107, so as to prevent a user device from

30 installing or using any information in a manner infringing on
intellectual property or other rights of an owner or distribu
tor or vendor in that information.

Information, the use of which is supervised by the inven
tion for the purpose of protecting intellectual property or

35 other rights, may be any type of electronically, magnetically,
optically or otherwise represented information. Examples of
information are a computer software application or program,
data, a web page or web site, a downloadable application
program such as a Java applet, an electronic book, images,

40 video, recorded music or other information on a compact
disk, magnetic disk or tape, and so forth. Generally, the
usage of any type of information that is used with the
assistance of a computer or other device (for example, user
devices 104 through 107) can be supervised and the rights in

45 that information can protected by the invention, regardless
of what the information is or what the actual physical
medium upon which the information is stored or transmitted.

Any such information, as well as any other type of
information recognized by people skilled in the art to be

50 protectable by the invention will be referred to hereinafter as
software. Any individual copy of a specific software, such as
for example, a copy of a specific application program or a
specific book or video, will be hereinafter referred to as an
instance of software or a software instance. An owner or

55 vendor or distributor of software will be hereinafter referred
to as a vendor or software vendor. The installation of, use of,
execution of, reading of, displaying of, playing of, viewing
of, printing of, copying of, transmitting of, or access to an
instance of software by use of or on a device will hereinafter

60 be referred to as use of that instance of software.
User devices 104 through 107 may be any type of device

that is employed to use software, including but not limited
to a computer system, book reader, music player (e.g., tape
player, compact disc player, mini-disc player), video cassette

65 recorder, Digital Video Disc (DVD) player, special purpose
devices and so forth. Any such device will hereinafter be
referred to as a user device or just device.

IPR2020-00660 Page 00032

US 6,697,948 Bl
27 28

through 107, a user (not shown) of that device or the device
itself can attempt to use the software. However, before use
of the instance of software is allowed, the supervising
program (not shown) in the user device 104 through 107 that

In a preferred embodiment of the invention, the user
device (i.e., one of 104 through 107) is a computer system
and the information is a computer application program or
data and the invention provides a mechanism to supervise
usage of the software or data by a user of the computer
system so as to protect vendors'rights in that software.

The communication network 100 may be any type of
communications mechanism which enables the component
elements of the invention (101 through 107) to exchange
information such as messages or signals. Examples of com
munication network 100 are a computer network such as the
Internet, a Public Switched Telephone Network (PSTN), a
wireless network (i.e., a cellular network), or other type of
computer or information network.

5 contains the software verifies that a valid tag exists within
the user device for the instance of software requested by the
user or by the device. Periodically, each user device com
municates with the guardian center 103 via communication
network 100 to ensure that all tags associated with the

10 instances of software on that user device are valid and are
being used in compliance with a usage supervision policy.

According to the general operation of the invention, the
15

software vendor 100, and of whom there may be more than
one, produces and distributes instances of software (not
shown in FIG. 1). The instances of software can be installed
or used on each user device 104 through 107 on which the
software is intended to be used. By way of example, if the

20
software is in the form of music on tape, the tape can be
installed on user device 105, which is illustrated as a tape
player in the figure. The software may be physically or
manually transported from the software vendor 101 and
installed on a user device 104 through 107 (i.e., as in the case

25
of a physical tape), or the software may be electronically
disseminated and installed via the communication network
100 using known data transport mechanisms (i.e., as in the
case of downloading an instance of software from the
software vendor 101 to a user device 107).

30
The tag server 102, which is a computer system coupled

to the communication network 100, creates or generates a
tag (not shown in FIG. 1) for each instance of software.
Typically, all instances of a specific software are identical.
Preferably, a single tag is uniquely associated with a single
instance of software produced by the software vendor 101.
The tag server 102 has access to the software created by the
software vendor 101 preferably via the private communica
tions path 108 and the tag is preferably created based on the
contents of the software, the name, and other information
generated by the tag server (such as an instance number) or
provided by the vendor. The tag server 102 can also obtain
software for tagging by using the communication network
100.

Alternatively, there may be a single software vendor 101
selling a variety of instances of different software, and there
may be a single tag server 102 and one guardian center 103
for that single software vendor 101. The tag server 102 and
guardian center 103 may be part of the software vendor 101
(i.e., contained within the same computer system).
Alternatively, there may be a consortium of software ven
dors 101 which rely on and which are served by one or more
commonly shared tag servers 102 and guardian centers 103.

Once a tag is created for an instance of software, the tag
is securely disseminated to one of the user devices 104
through 107 that contains the installed corresponding
instance of software for that tag. Secure tag dissemination
preferably takes place electronically via the communication
network 100, for example, by use of the TETS IPSEC or the
NETSCAPE SSL protocols for secure communication.
Manual secure tag dissemination may be used by the system
of the invention as well. An example of manual secure tag
dissemination would be to distribute the tag within a tamper
proof package containing the tag and possibly also the
associated instance of software.

Once an instance of software and the tag associated with
that instance of software are installed on a user device 104

35

40

45

50

55

60

65

In other words, the invention ensures that use by means of
a device of the instance(s) of software is linked to the
presence of valid associated tags which are periodically
validated and checked for usage characteristics by having
the user device communicate with the guardian center. An
example of an enforced usage supervision policy is that a tag
is present on only one device. The determination of whether
or not a user device 104 through 107 can use an instance of
software is based on a tag processing procedure called a
call-up (explained in detail later) that is performed between
the user device and the guardian center 103.

Before further description of detailed embodiments of the
invention are provided and explained, Table 1 below pro
vides a glossary of terms to aid in understanding the various
elements associated with the invention:

TERM

ACTIONS

CALL-UP POLICY_SW

CM

DEVICE IDENTIFIER

FP(X)

GC
HASH_ INST_SW

HASH_SW

ID(X), ID(SP)

TABLE 1

Definition of Terms

DEFINITION

Action commands included in a
continuation message CM that describe
which software on the device may be
used, and specify punitive actions for
detected improper use of vendor
software.
An optionally specified call-up policy
associated with specific software SW or
with a specific instance of software
INST_SW, said policy dictating when a
Device must perform a call-up procedure
with the guardian center.
A Continuation Message sent from a
guardian center to a user device
indicating the current state of usage
permissions for instances of software in
the user device.
A method to identify a device either
through a hardware identifier or by using
the supervisor identifier ID(SP). This
identifier is used in an embodiment in
which each software instance
incorporates a device identifier in a test.
A fingerprint computed by a fingerprint
function (e.g., a hash function) on an
input string X.
Guardian Center
A hash function value computed on
HASH_SW, NAME, NUM_INST_SW
and possibly other fields.
A hash function value computed on the
contents of software SW. Every instance
of SW has the same value of HASH_SW.
HASH_SW is another notation for
HASH(SW). Sometimes HASH_SW is
the result of a hash function value only
on portions of the software.
A unique identifying number optionally
associated with an object X. For
example, ID(Supervising Program) is the
identification number of the supervising
program computed when a device is first

IPR2020-00660 Page 00033

US 6,697,948 Bl
29

TABLE 1-continued

TERM

INF_SW

INST_SW

NAME SW
NUM INST_SW

POLICY(TAG_INST_SW)
or USAGE
SUPERVISION POLICY

SP, SUPERVISING
PROGRAM

PRIVATE KEY_X

PUBLIC_KEY_X

SIGN_TS
SIGN_X(M)

SPARSE SET

SPARSE SET_SW

SW

Definition of Terms

DEFINITION

turned on by combining the time when
the turn-on event occurred and possibly
other information, including information
provided by the Guardian Center and the
values of one or more memory locations.
An unauthorized copy or derivative of a
vendor's software SW that is infringing
on intellectual property or other rights as
established by a vendor. It is assumed
that the vendor detects the distribution of
the infringing software and has a legal
right to prevent infringing uses of that
software. Infringing software includes
software whose tag has been
inappropriately removed, whose tag has
been altered, or whose device identifier
test, if any, has been altered.
A specific instance (copy) of specific
software selected from the entire set of
instances of the software SW. All
instances of SW are identical.
A name for the specific software SW.
A unique number associated with a
specific instance of software INST _SW.
The number can be any mixed sequence
of digits, characters, letters or symbols or
any other pattern. The same generality
applies to the above identifiers ID(X).
Policies and rules prescribed by a
software vendor or other organization
with respect to the protection of
intellectual property and access rights or
pay-per-view use limitations associated
with software. The policies and rules
may depend on the particular instance of
software. The
POLICY(TAG_INST_SW) is enforced
by the guardian center GC and the
supervising program SP.
Supervising Program. A program
integrated into a user device that provides
the mechanisms described herein which
provide usage supervision for instances
of software on the user device.
A private secret key used by X for
producing digital signatures.
A public key used by a recipient of data
purported to be digitally signed by X, to
check and authenticate the signature.
The digital signature of the tag server.
A digital signature by X on a message M,
having the following properties: (1) only
X can have produced SIGN_X(M); (2)
the recipient of the digital signature can
verify that X has signed M.
A sparse, secret set of numbers from
which, in one embodiment, unique
instance numbers are chosen for
instances of all software. The instance
numbers may be produced by a physical
process.
A sparse, secret set of numbers from
which, in one embodiment, unique
instance numbers NUM INST_SW are
chosen for instances of one specific
software SW. So, an instance of software
X could have the same instance number
as an instance of software Y. The
numbers may be produced by a physical
process.
Specific vendor software protected by the
invention, e.g. the code of software
named Spread.

30

TABLE 1-continued

Definition of Terms

5 TERM DEFINITION

10

15

20

TAG_INST_SW

TAG TABLE

UNTAGGED SW

VRP

A unique unforgeable signed or unsigned
tag associated with a specific instance of
software INST_SW.
A table or file stored in a device
containing information related to tags
associated with instances of software as
well as information relating to the use or
usage supervision of software instances
on that device.
Software which does not have an
associated tag TAG_SW and which a
user attempts to install or use on a user
device. E.g., shareware or freeware or
user created software.
Verification Program in the Guardian
Center GC.

Detailed Definitions for Technical Terms
Certain embodiments of the invention are complex in

nature. As such, other supporting definitions are provided
below for some of the technical terms used by certain

25 embodiments of the invention:

30

35

40

1. A fingerprinting or hash function F: a mathematical
function for mapping data X to smaller data F(X) such
that if X and Y are unequal, then it is highly likely that
F(X) and F(Y) are unequal. As an example of a hash
function, X may be a sequence of bytes. In addition,
there is a number p which is a preferably randomly
chosen, but henceforth kept fixed, 64 bit prime number.
The sequence X of bytes is viewed as a number (written
to the base 256, where the bytes are the digits of that
number) and F(X)=X mod p. Thus the value F(X) is a
64 bit string, no matter how large X is.

2. An unaliasable hash function H: a fingerprinting func
tion having the further property that given X, it is easy
to compute H(X), but it is intractable to produce an X'
such that H(X)=H(X') and X and X'are different. The
term "intractable" means that the computational time
required is generally understood to be exponential or
practically unfeasible in the size of X, according to the
present state of the art. An example of an unaliasable
hash function is MDS.

45 3. Use of an instance of software: installing, using,
executing, running, connecting with, reading, other
wise retrieving from a storage medium or modifying a
storage medium, displaying, playing, viewing,
printing,, copying, transmitting, or accessing to an

50 instance of software by use of or on a device.
4. A portion of an instance of software includes all of the

text or data of that instance or a sequence of parts of the
text or data of that instance of software. The parts need
not be contiguous and may overlap with one another.

55 5. Fingerprinting process: given a sequence of locations in
an array of data, a computation of some function value
on the values of those locations. For example, if
locations 16, 32, and 64 have values 3, 4, and 17
respectively, then a fingerprinting process computes a

60 function of 3, 4, and 17. This function may simply be
the list of those values (the three numbers in this
example) or may be a hash function of the list of those
values. In another example, the locations may be i_l to
j_l, i_2 to j_2, up to i_k to j_k. A fingerprinting

65 process may compute a hash function value of each of
these k subsequences of the array and list the k com
puted values.

IPR2020-00660 Page 00034

US 6,697,948 Bl
31 32

2 will be used as an outline for the overall description of the
entire operation of the invention. Throughout this
description, reference will be made to other figures describ-
ing in more detail each aspect of this invention.

In operation of the system 109, instances of software
(INST_SW) 111 through 114 (labeled as SWl, SW2, SW3,
SW4) are created by the software vendor 101 and stored in
vendor storage 110. There may be more than one software
vendor 101. Examples of software vendors 101 are publish-

6. Fingerprint checking: a method for comparing two
sequences of fingerprints. This invention uses two
kinds of fingerprint checking: same-location fingerprint
checking and general-location fingerprint checking. In
both forms of fingerprint checking, a list of fingerprints 5

is computed based on the values in a list of lists of
locations. For example, suppose there are three finger
prints in the list fl, f2, and f3 and fl is computed from
the values in locations 10, 20, 30, and 40, f2 is
computed from the values in locations 30 and 60, and 10 ing houses (creating reproducible performance recordings or

electronically readable books), computer software develop
ers (creating computer software application programs), data
collection companies (creating databases of information),
individual programmers, and so on. The software (SW)

f3 is computed from the values in locations 100 and
200. Let us call this list the Send List. In both forms of
fingerprint checking, the receiver of the Send List
computes the fingerprint list based on the values at the
same location lists as the sender. This fingerprint list is
called the Receive List.

In same-location fingerprint checking, a match is declared
if each element of Send List is equal to the corresponding
element of Receive List. That is the first element of Send
List equals the first element of Receive List, the second
element of Send List equals the second element of Receive
List, and so on.

15 produced by software vendor 101 represents actual software
content (SW), which may include information, data or code.
The software (SW) may have an associated name (NAME_
SW) which is typically assigned by the software vendor 101.
Each instance of software (INST_SW) 111-114 can be

20 thought of as a separate physical copy of the named software
(SW). That is, each instance of software (INST_SW) for
particular software (SW) is merely a copy of that software
(SW) having the same name (NAME_SW) and the same In general-location fingerprint checking, a match is

declared if there is a sufficiently large number of common
elements in Send List and Receive List regardless of loca- 25
tion. How many is sufficient may depend on policy consid
erations and on the length of the data text from which the
fingerprints are taken, defined by a parameter k. If k is 50
bytes, for example, then as few as one or a small number of
matches may be sufficient to establish that a Device List is
likely to represent the same software as a list in the Guardian
Center's Fingerprint Data Structure (FIG. 9, 137).
Furthermore, certain matches may be given more weight
than others, so fewer matches of higher weight may be
sufficient.

code, data or other informational content.
By way of example, if a word processing application

program is created by the software vendor 101 and is given
the name (NAME_SW) "Write", the binary or executable
code, data or other information that comprises the Write
program is termed software (SW). Each individual copy of

30 the Write software (SW) (e.g., each disk containing a copy
of the program) is a distinct instance of that software
(INST_SW) but has the same software content (SW). Thus
in FIG. 2, each instance 111-114 may contain the same
software content (SW), in which case each instance 111-114

35 would have the same name (NAME_SW), or, each instance
111-114 may be representative of a copy of different soft
ware (SW) (i.e., different data, code or other information)
and the name of each instance (NAME_SW) 111-114 that
has different software content (SW) would typically be

In addition to sending the Send List of fingerprints, the
sender may send the list of location lists whose values
produced Send List. This permits the fingerprints to be
calculated to depend on an unpredictable random process.

7. Unforgeability: a tag is unforgeable if it is computa
tionally infeasible for an adversary to produce a valid
tag without knowledge of the secret information used
by the Tag Server (FIG. 1, 102) to produce tags upon
a vendor's request. This invention uses digital signa
tures (FIG. 3A) and sparse sets (FIGS. 3B and 3C) as
two preferred ways to achieve unforgeability of tags.

40 different.
The tag server (TS) 102 creates, upon the vendor's 101

request, a unique unforgeable tag (TAG_INST_SW) 120
for each instance of software 111-114. In a preferred
embodiment of the invention, a single unique tag is prepared

45 for an instance of software and is associated with that
instance. In other embodiments, multiple unique tags may be
associated with one instance of software, but preferably, two
different instances of software do not share a common

8. Secure transmission: a way of sending a value X such
that only the intended recipient can see X, though other
agents may observe the network protocol or see the
package by which X is transported. A sealed envelope 50

delivered by a reliable courier is one way to securely
transmit the contents of an envelope. Sending a mes
sage by use of the TETS IPSEC or the NETSCAPE
SSL protocols for secure communication, is another
way to ensure secure transmission over the communi
cation network (FIG. 1, 100).

associated tag.
In order to create the requested tags, the TS 102 (FIG. 1)

obtains (FIGS. 3A, 3B, & 3C, step 150) one copy of each
specific software for instances of which it will create tags.
For example, it may have one copy of "Write 7.2" where
Write 7.2 is a release or version of the program family Write.

55 Generally, a tag 120 is a unique, unforgeable sequence of
data bits that is associated with a particular instance of
software (INST_SW) (i.e. one of 111-114). As will be
explained, according to embodiments of the invention, a
user device 104 is unable to use an instance of software

9. Event history: is a timed record of all attempted uses,
successful uses, duration of uses, and/or other events
such as power-ups associated with a tag table. It is
unlikely for two devices to have the same event history,
even if they have the same software instances and the
same identifiers. An event history may be based upon
a record of use of a particular device by one or more
users over time.

Returning now to a discussion of the figures, FIG. 2
provides a more detailed illustration of the architecture of
the system 109 configured according to the invention. FIG.

60 111-114 without first examining a valid tag 120 associated
with that instance of software 111-114.

Tags 120 for instances of software 111-114 are preferably
stored in a tag table 210 on a storage device 200 that is
coupled to or that is integrally part of the user device 104.

65 An instance of software 111-114 can be used on a user
device 104 only by reference to a tag 120 associated with
that instance of software (one of 111-114) which is stored in

IPR2020-00660 Page 00035

US 6,697,948 Bl
33

the tag table 210, and only if the associated tag 120 for that
instance 111-114 has a usage status (Example Tag Table
shown in FIG. 6, with Usage Status indicated in column 2)
allowing use of the software instance on or by the user
device 104. That is, certain specific software includes the 5

indication that it can run only if a tag for an instance of that
software is present. (A pirate may remove this indication in
which case the protection mechanisms for untagged
software, detailed below, will apply.) In this manner, aspects
of the invention allow and provide control over the use of 10

software in certain embodiments by requiring a valid tag
specifically associated with that instance of software to be
present on the user device 104.

As will be explained further, the ability of components in

34
to be tagged, then the hash function value HASH_SW is
computed only once for the software (SW), since each
instance 111-114 contains the same code, information, and/
or data (i.e., has the same SW content). Further, only the
value HASH_SW needs to be retrieved or generated by the
tag server 102 once, rather than for each copy of the full
software. This aspect of the invention saves tag creation time
when many instances of the same software (SW) are to be
tagged. In such cases, the hash function value HASH_SW
needs to be computed only once. In alternative
embodiments, computing the hash function value on only a
portion of the software content may be a further
optimization, since this may reduce the time required for
building the hash function value on both the tag server 102
and on the user device(s) 104-107.

In step 153 (FIGS. 3A, 3B and 3C), a second hash
function value HASH_INST_SW is computed, to be incor
porated into the tag to be associated with the software
instance (INST_SW). Step 153 differs from step 152 in that

a system configured with the invention to track and manage 15

tag creation, validation, and enforcement provides unique
advantages over prior art systems for software usage control.
Before further discussions of the remaining components of
the system 109 in FIG. 2 are provided, details of tag creation
will be discussed. 20 the hash value HASH_SW computed in step 152 is the same

for all instances INST_SW of the same software SW,
whereas in step 153, the hash value HASH_INST_SW is
unique for each NUM_INST_SW of the same software
SW. In one embodiment, the second hash function value

FIGS. 3A, 3B, and 3C are flow charts showing preferred
embodiments of the processing steps performed during the
tag creation process within the tag server 102 configured
according to the invention. Since the figures are similar,
many of their step numbers are the same and the two figures
will be explained simultaneously.

25 HASH_INST_SW combines together the name of the
software (NAME_SW), the unique number of the instance
of the software (NUM_INST_SW), and the previously
computed (Step 152) hash function value HASH_SW.
Other hash value combinations such as name and software

In step 150, the tag server 102 obtains from its local
storage a copy 111-114 of named software (NAME_SW,
SW) to be tagged. In addition, the tag server 102 obtains a
request for a tag (FIG. 2) from the vendor 101. In step 151A 30

(FIG. 3A) and 151B (FIG. 3B) and 151C (FIG. 3C), the tag
server 102 generates a unique number (NUM_INST_SW).
In step 151A in FIG. 3A, the number is simply unique.
However, in step 151B in FIG. 3B and 151C in FIG. 3C, the
unique number (NUM_INST_SW) is selected from sparse 35

sets 118 (FIG. 2).
Sparse sets 118 (FIG. 2) are sets of secret numbers from

which instance numbers (NUM_INST_SW) are chosen for
instances of named software (NAME_SW, SW). Preferably
there are relatively few such numbers compared with the 40

available range of numbers (e.g. if there are 100 million
instances of a particular software, and more than 10 billion
billion possible numbers in the range defined by 64 bits). As
such, the sets 118 are referred to as sparse.

Sparseness makes it difficult for an adversary or software 45

pirate to generate a valid instance number. There may be one
sparse set for all software, or a different sparse set for each
specific software defined by a set of related instances. In the
preferred embodiment one sparse set 118 is used as a source
of instance numbers for all software. However, having a 50

separate sparse set 118 for each specific software may permit
simpler distributed management of instance number genera
tion.

For example, there may be a sparse set of numbers 118
(SPARSE_SET_SW) associated with the "Write" applica- 55

tion software noted earlier, from which instance numbers
(NUM_INST_SW) are selected for each instance (INST_
SW) of the Write software. For security reasons, new
members of sparse sets may be materialized or generated on
demand, by access to a physical process such as an photo- 60

electric counting device (not shown in the invention) for
example.

In step 152 (FIGS. 3A and 3B), the tag server 102
computes a hash function value on the software (SW)
content or on a portion of the SW content. In the preferred 65

embodiment, if more than one instance of software (INST_
SW) 111-114 that contains the same software content SW is

only, or software and number only, or others, may now be
recognized as providing a similar functionality as under
stood by those skilled in the art. Such combinations of data
encoded via a hash function are meant to be within the scope
of this invention.

After the hash value HASH_INST_SW is computed for
each instance of software 111-114, either a signed (FIG. 3A)
or unsigned (FIGS. 3B and 3C) tag may be created for those
instances 111-114 by steps 154A and 154B. In step 154A in
FIG. 3A, a signed tag is created for an instance of software
111-114, whereas in step 154B in FIGS. 3B&3C an
unsigned tag is created for instances of software 111-114. A
signed tag ensures that the tag will be unforgeable by
digitally signing portions of the tag prepared, even if the
instance numbers are predictable (e.g., even if they are
consecutive numbers). An unsigned tag may not offer this
protection, but since the unsigned tag created in step 154B
preferably includes an instance number NUM_INST_SW
taken from the sparse set 151B, this alternative still assures
unforgeability of the tag. The signed tag TAG_INST_SW
is computed in step 154A as follows:

TAG_INST_SW-(NAME_SW,NUM_INST_SW, HASH_
INST_SW, SIGN_TS(HASH_INST_SW))

where the term SIGN_TS is a digital signature function
performed on the HASH_INST_SW hash function value.
The digital signature SIGN_TS is produced by the tag
server 102 using the private key PRIVATE_KEY_TS 117,
which is a digital key that is kept secret from all potential
adversaries and all entities in FIG. 2, except the tag server
102 itself.

The unsigned tag TAG_INST_SW is computed in step
154B (FIG. 3B) as follows:

TAG_INST_SW-(NAME_SW,NUM_INST_SW, HASH_
INST_SW).

After creation of a tag TAG_INST_SW by the tag server
102, the tag is preferably securely transmitted (as shown by

IPR2020-00660 Page 00036

US 6,697,948 Bl
35

TAGS 120 in FIG. 2, and as will be explained in more detail
with respect to FIGS. 13A&l3B, in step 156) to the request
ing software vendor 101 and to the guardian center 103
where the tag(s) 120 are stored in various tag data bases (as
will be explained with respect to FIG. 9, 129, 138).

A tag 120 associated with an instance of software (e.g.
111) and the manner in which the tag 120 is prepared by the
tag server 102 serve a number of important purposes in the
invention:

36
SW, HASH_SW, SIGN_TS(NAME_SW, NUM_INST_
SW, HASH_SW). In this type of tag 120, the digital
signature SIGN_TS prevents tag forgery, since preferably
only the tag server 102 possesses the secret key SECRET_

5 KEY _TS required for computation of the signature function
SIGN_TS.

Another tag field that may be removed is the field

(1) A device (e.g. 104) cannot use an instance 111 of a 10
vendor's 101 software 111 unless the device 104 stores

NAME_SW. An advantage of this embodiment is to reduce
the amount of data sent between system components. The
name may be unnecessary if the software instance INST_
SW indicates by some means other than the name which tag

or has access to the associated valid tag 120, preferably
maintained in the device's 104 tag table 210 (shown in
detail in FIG. 6) and unless that associated tag 120 has
a usage status (column 2 in FIG. 6) in the tag table 210
that allows or indicates proper usage for the associated
instance 111.

must be present for INST _SW to run or be used. A nameless
tag may work, for example, if there is only one kind of
software being distributed from a given software vendor

15 101, in which case a software vendor 101 identifier can serve
as a name for the software produced by that vendor.
Alternatively, the NUM_INST_SW may be globally
unique across all kinds of software in which case the (2) Through mandated call-up procedures (FIGS. 12,

13A&B), to be detailed later, between a device (e.g.
104) and the guardian center 103, the guardian center 20

103 can supervise, authenticate, track, validate and
generally control tag properties and ensure that the
instance of software 111 associated with a tag 120 is
used in accordance with the vendor's 101 usage super
vision policy (maintained preferably at guardian center 25

103) for that instance of software 111.

NAME_SW is unnecessary.
Another field that may be removed from a tag 120 is

NUM_INST _SW. An advantage to this tag composition is
a reduction in the amount of data that must be sent over
network 100 and a more simplistic tag generation scheme
can be used without a need for a unique number selection
process (e.g. step 151 as will be explained in FIGS. 3A, 3B,
and 3C). A possible disadvantage is that different tags having
the same NAME_SW (if that field is kept) may become
indistinguishable, so duplicate instances 111-114 might be
allowed.

Another alternative embodiment of tags is to include
additional fields. A unique identifier of a user device's (e.g.
104) supervising program (discussed later in detail as 209 in
FIG. 4), denoted ID(SP) (209-A in FIG. 4), may be
computed, for example, from a combination of a hardware

(3) The unforgeability of a tag 120 and the fact that tags
120 are preferably transmitted in a secure manner
ensure that only a user or user device 104 who or that
has rightfully obtained a tag 120 from a vendor 101 (or 30

tag server 102) and has used the associated instance of
software 111-114 in accordance with the vendor's 101
specified usage supervision policy (not shown in this
figure) for this instance of software 111, has this tag
120. This aspect of the invention prevents an adversary 35 identifier, if available, the time when the device's 104

supervising program 209 was first invoked and, if available,
a unique number securely obtained by the device's super
vising program 209 from the guardian center 103 and the
values of at least one memory location within the device.

or pirate from trying to create and/or attempt to use a
copy of a valid tag 120 which in turn would result,
according to the mechanisms of the invention, in puni
tive actions against the copying adversary /pirate as well
as against the rightful user or user device using the
instance of software 111 and the associated tag 120.

It is to be understood that there may be several alternative
compositions of a tag 120. One alternative is to have a subset
of the fields described herein. Specifically, the hash value
HASH_INST_SW may not be included in a tag 120, thus
leaving NAME_SW and NUM_INST_SW in a tag 120.
An advantage of such an embodiment is that less data needs
to be sent between system components (e.g. 101, 102, 103,
104) and computed for each tag 120. A disadvantage may be
that the owner of a tag 120 might then attempt to associate
the tag 120 with a different specific software instance 111.
This is prevented when HASH_INST_SW is available in a
tag 120 since the value HASH_INST_SW depends on
HASH_SW and HASH_SW can be used to verify that the
software SW within an instance 111 is correct or unaltered.

An alternative tag composition may be as follows:
NAME_SW, NUM_INST_SW, HASH_SW. Using this
composition, every tag 120 will be associated with software
whose content (i.e. SW) matches with a hash function to
HASH_SW. A possible disadvantage of this scheme is that
it may allow the possibility that a pirate might generate
illegitimate tags 120 that appear correct. Depending upon
the complexity of the embodiments of the invention selected
to protect the use of software, the systems described herein
are designed to alleviate the various noted problems.

As another example, a third alternative composition of a
tag 120 may be as follows: NAME_SW, NUM_INST_

40 This will be discussed in more detail later, but is mentioned
now to provide the reader with a more comprehensive
understanding of various tag creation processes. Including
the identifier ID(SP) 209-A of the user device's 104--107
supervising program 209 in a tag 120 associated with an

45 instance of software 111 used on that device, may support
less expensive Guardian Center 103 call-ups as described in
more detail below.

An additional field that may be included in an alternative
tag and tag creation embodiment of the invention is a list of

50 fingerprints for specified locations of data within an instance
of software INST_SW. Fingerprints will be explained in
more detail, but as their name suggests, a fingerprint is a
unique encoding of one or more portions or data areas
selected from an instance of software. The usage of finger-

55 prints is illustrated in steps 151D and 151E of FIG. 3 in
which locations are selected and then a fingerprint is com
puted on those locations and the a hash is computed on that
result. Including a fingerprint of an instance of software 111
within a tag 120 associated with that instance permits a

60 supervising program (FIG. 4, 209, used to access the
software) in a user device 104-107 to verify that the
association between INST_SW and the tag is correct by
performing a same location fingerprint check (Detailed
Definitions, following Table 1, FIG. 6) on INST_SW and

65 comparing with the list of fingerprints in the associated tag.
While the use of fingerprints may overlap the functionality
of HASH_SW, they permits greater efficiency for the vali-

IPR2020-00660 Page 00037

US 6,697,948 Bl
37

dation of the correctness of the association of a tag with an
instance of software.

For large instances of software INST_SW, such as for
example, an encyclopedia or a video, the computation of
HASH_SW, which requires the supervising program to scan
the whole of INST_SW, will require considerable time. If
the tag associated with INST_SW contains the above fixed
location fingerprint values computed by the tag server, the
supervising program (209 in FIG. 4) only needs to access
those locations in INST_SW and compute the correspond
ing fingerprint values. Using the above fingerprints provides
additional protection benefits, since the locations on which
the fingerprints are computed by the tag server can be
changed over time in response to piracy attacks.

Similar efficiency and security benefits are obtained if the
hash function value HASH_SW is computed (FIGS. 3A&B,
step 152) by the tag server 102 only on specified portions of
SW, instead of the whole of SW. The specified locations in
an instance of software INST_SW 111-14 for which fin
gerprints are computed by the tag server 102, may explicitly
accompany the fingerprints in the tag 120 or may be
included in the instance INST_SW or in the device's
104--107 supervising program (FIG. 4,209). The advantage
of incorporating these fingerprint locations in a tag 120 is
that the fingerprints can vary for each instance INST_SW
being sent, with the fingerprints serving as a kind of unique
NUM_INST_SW and permitting random checks of soft
ware code alterations.

38
alternative embodiments of the system 109 of the invention.
Distribution of the instances of software 111-114 can take
place in a number of ways. The instances 111-114 may be
downloaded from the software vendor(s) 101 via download-

s ing mechanisms supported over the communication network
100 (FIG. 1). Examples of downloading mechanisms are the
File Transfer Protocol (FTP), PUSH protocols that send
information to a receiver, TCP/IP and World Wide Web
related protocols, and other protocols used to transfer data

10
over busses between computer processors, or over other
types of computer networks such as communication network
100, which may be the Internet, for example.

Alternatively, the user device(s) 104 may be pre-equipped
with the instances of software 111-114 that are pre-installed
by a user device manufacturer (not shown) which may or

15 may not be the same entity as the software vendor(s) 104. An
example would be an instance of software 111-114 embed
ded in firmware within a user device 104. As another
alternative, users (not shown in this figure) of the user
device(s) 104 may purchase the instances of software

20 111-114 on a user device readable medium, such as a
magnetically encoded hard or floppy disk or an optical
medium such as a CD-ROM, DVD disc, video or audio tape,
holographic storage device, or another medium that can
carry information. In each of the above alternative ways for

25 the user devices 104-107 to obtain an instance of software
111-114, the associated tag 120 which according to the
invention is required for using that instance of software can
directly accompany the instance of software or can be Accordingly, tags 120 consisting of the following field

combinations all fall within the scope of this invention: the
tags produced as a result of processing in FIGS. 3A, 3B, and 30

3C; any of the above combinations of fields plus a form of
supervising program identifier 209-A (FIG. 4) for a user
device (e.g.: 104) such as ID(SP), where the value ID(SP)
may be combined in computing the hash function value
HASH_INST_SW; any of the above combinations of fields
plus a list of fingerprints associated with the contents of SW,
where the values of these fingerprints may be combined in
the computation of the hash function value HASH_INST_
SW; and any superset of any of the above combination of
fields. Though the above tag and processing descriptions
describe specific implementations of embodiments of the
invention, those skilled in the art should understand that tags
are generally provided by the invention to uniquely identify
and control use of one of more specific instances of soft
ware.

separately and preferably securely transmitted to the device.
The user device 104, as shown in FIG. 2, includes a

coupling to a user device storage mechanism 200. The user
device storage 200 is able to maintain each instance of
software 111-114, a tag table 210 and a fingerprint table 126.
The purpose and details of fingerprint and tag tables 126,

35 210 will be explained in more detail shortly.
FIG. 4 illustrates a preferred architecture of a user device

104 configured according to the invention. The user device
104 includes an internal bus 206 which couples the user
device storage 200, a processor 201, a memory 202, an

40 interconnection mechanism 203, and a user input/output
mechanism 204. A user 213 interacts with the user device
104. The user 213 is preferably a human being, though the
invention can be applied to systems in which usage super
vision as explained herein is implemented on electronic

45 components within larger non-human interaction environ
ments. In this illustration, the user 213 is shown to be
interacting directly with the instances of software 111-114 to
highlight the purposes of the invention. In practice, the user
213 may actually interface with the user input/output mecha-

Once the tags 120 are created for the instances of software
111 through 114, the tags 120 are securely transmitted by the
tag server 102, in step 156, to the guardian center's database
(s) (to be explained with respect to FIG. 9, 129, 138) or to
the user device 104, or to the software vendor or to any
combination of the above entities.

so nisms 204 which indirectly supplies input and output to and
from the instances of software 111-114 under the control of
the processor 201.

The user input/output mechanism 204 may be one or more
of a keyboard, mouse, microphone, speaker, monitor, heads
up or virtual reality display, or other input/output device
used to communicate information to and/or from the user
213 or other mechanism (i.e., non human) that interacts with
the user device 104. The input/output mechanism 204 may
also serve as a means by which the user device 104 is
provided with the instance of software 111-114. In this case,
the input/output mechanism 204 may include such mecha-
nisms as a CD-ROM or DVD drive, scanner, floppy disk
drive, or another mechanism that can be used to load
information onto the user storage device 200 or into the

Turning attention now back to FIG. 2, the tags 120 can be
securely distributed by the tag server 102 to one or more of
the software vendor(s) 101, the guardian center(s) 103, and
the user device(s) 104. If the tags 120 are securely trans- ss
mitted by the tag server 102 back to the software vendor 101
but not to user devices 104--107, then the tags 120 will be
securely distributed by the software vendor 101, along with
the instances of software 111-114, to the user devices
104--107. Alternatively, the instances of software 111-114 60

are obtained by the user device(s) 104-107 separately from
the tags 120, which can be obtained directly by the user
device(s) 104-107 from the tag server 102. Alternatively, the
tags 120 can be obtained from one or more guardian
center(s) 103. 65 memory 202 or into buffers (not shown in FIG. 4) which

may be included in or associated with the user device (e.g.:
104).

The instances of software 111-114 themselves are not
required to be securely distributed, though they may be in

IPR2020-00660 Page 00038

US 6,697,948 Bl
39

The interconnection mechanism 203 is used to interface to
the communication network 100 and may be a device such
as a modem, network interface card, wireless transceiver, or
other device used for communications.

The user storage device 200, which may be a hard, floppy
or optical disk drive, RAID array, file server, or other
read/write storage mechanism is used to maintain various
components and data used by the invention. Specifically, as
illustrated in this embodiment, the user storage device 200
maintains the instances of software 111-114, the tag table
210, the fingerprint table 126, a supervising program 209
(FIG. 4) and an operating system 207 including a kernel 208.
The operating system 207, as understood in the art, is
typically loaded into memory 202 upon startup of the user
device 104 and executes in conjunction with the processor
201 to control the overall operation of the various compo
nents of the user device 104. Alternatively, the operating
system and components of this invention may be embedded
in the architecture of the processor or system embodying the
invention.

An example of a user device 104 is a personal computer
or workstation. Examples of the processor 201 are an
Intel-based processor such as a Celeron, Pentium, Pentium
II, Pentium III, or 80x86 family or a SPARC-based proces
sor using RISC technology or a MIPS processor. These
processor names may be trademarks of respective micro
processor manufacturing companies. Examples of the oper
ating system 207 are any of the Windows-based operating
systems such as Windows NT, Windows98, Windows95,
WindowsCE or Windows 3.1 manufactured by the Microsoft
Corporation of Redmond, Wash., or the operating system
207 may be, for example, a UNIX-based system such as
Solaris from Sun Microsystems, Inc. of Mountain View,
Calif. Other embodiments of the user device 104 may be
dedicated devices that use specialized processors 201 which
have custom or embedded operating systems 207. Those
skilled in the art should understand that the user device 104,
as stated previously, can be any type of device that is
microprocessor controlled. The invention is not meant to be
limited by the architecture of the user device 104 shown in
FIG. 4. Rather, any device that can access software for a user
is meant to be within the scope of this invention.

In order to provide the usage supervision aspects of the
system of the invention, the supervising program (SP) 209
is provided and executes in conjunction with the operating
system 207, the tag table 210, the instances of software
111-114, and optionally, the fingerprint table 126 (FIG. 4).
The supervising program (SP) 209 is preferably a separate
entity from the operating system 207, though it may be an
extension thereof. The supervising program (SP) 209 is also
preferably a software program written in any programming
language (e.g., C, C++, Java, Assembler, or any other
language) and preferably uses an application programming
interface (API) provided by the operating system 207 to
interface with and control certain functions of the operating
system 207. Alternatively, in an embedded system user
device 104, the operating system 207, supervising program
(SP) 209, and other data and or components within user
device 104 may all be embedded or completely represented
via electronic circuitry or stored in a memory.

In a preferred embodiment of the invention, upon each
startup (i.e., power-up) of the user device 104, the operating
system 207, supervising program (SP) 209 and tag table 210
are read into memory 202 from the user storage device 200.
On the first startup of the user device 104, preferably, an
identifier ID(SP) 209-A for the device's supervising pro
gram 209 (FIG. 4) is computed and stored in a secure

40
location. This identifier 209-A, as discussed in the glossary
above (Table 1, ID(SP)), is computed based on some com
bination of the following: a hardware identifier, if available;
a number provided by a guardian center 103 (FIG. 2), if

5 available; and the value of a high precision timer (e.g.,
microsecond) within the device 104. In the system of this
invention, the supervising program (SP) 209 serves as a
usage supervision interface between the instances of soft
ware 111-114 and the operating system 207. Before the

10 operational aspects of usage supervision provided by the
supervising program (SP) 209 are explained in detail, the
installation of instances of software 111-114 and the asso
ciated tags 120 onto user device 104 will be discussed.

FIG. 5 illustrates the steps involved to install an instance
15 of software INST_SW and the associated tag TAG_INST_

SW onto a user device 104 according to a preferred embodi
ment of the invention. Both the tags 120 and the instances
of software 111-114 may be installed by being loaded onto
the user device 104 through a user input/output mechanism

20 204, or may be electronically installed via reception from the
communication network 100 through the interconnection
mechanism 203. The steps in FIG. 5 are preferably per
formed by the processor 201 executing the supervising
program (SP) 209 code provided as part of the invention.

25 The supervising program 209 can reside in the operating
system 207, as an extension to the kernel 208, for example,
or may reside and execute as a separate process above the
kernel 208 and operating system 207.

In either case, the user device 104 (in this example a
30 personal computer, but the provisions of the invention apply

to any other device in the sense of the invention) obtains an
instance INST_SW of a specific named software (NAME_
SW, SW) in step 250 in FIG. 5. In step 251, the user device
104 securely obtains the tag TAG_INST_SW associated

35 with the instance of the named software obtained in step
250. In step 252, the system of the invention determines if
the tag TAG_INST_SW is a signed or unsigned tag. Step
252 may be performed by examining the tag information
received to determine if the SIGN_TS function value is

40 present or not within the tag TAG_INST_SW. Next, the
supervising program proceeds to validate the tag and its
proper association with the instance of software as follows.

In a preferred embodiment of the invention the tag is
created by the tag server 102 according to the steps in FIGS.

45 3A, 3B or 3C and has the contents produced by step 154A
(FIG. 3A) for a signed tag and 154B (FIGS. 3B and 3C) for
an unsigned tag. If the tag TAG_INST_SW is a signed tag,
step (FIG. 5,253) invokes a part of the supervising program
(SP) 209 to compute the hash function value V=HASH

50 (INST_SW) and a hash function value U=HASH(NAME_
SW, NUM_INST_SW, V). The supervising program 209
then compares the value U with the value HASH_INST_
SW found in the tag TAG_INST_SW. If the two compared
values do not agree then the tag is invalid. If the values U

55 and V agree then the supervising 209 program further
verifies, by use of the tag server's 102 public key PUBLIC_
KEY_TS (FIG. 2, 116), the digital signature on SIGN_TS
(HASH_INST_SW) that exists within the tag TAG_
INST_SW. If the tag server's signature in SIGN_TS

60 (HASH_INST_SW) is not validated, then the tag TAG_
INST_SW is not valid. When the instance of named
software (NAME_SW, SW) obtained in step 250 is found in
step 253 to be associated with an invalid tag TAG_INST_
SW obtained in step 251, the instance of software is rejected

65 in step 254.
If the tag TAG_INST_SW is an unsigned tag, step 257

invokes a part of the supervising program (SP) 209 to verify

IPR2020-00660 Page 00039

US 6,697,948 Bl
41

the hash values for the hash function value HASH_INST_
SW that exists within the tag TAG_INST_SW by the same
steps that were used above for the case of a signed tag. If the
HASH_INST_SW value does not properly evaluate, then
there is an error in the tag TAG_INST_SW and the instance 5

of named software (NAME_SW, SW) obtained in step 250
that is associated with the invalid tag TAG_INST_SW is
rejected in step 254.

Rejection in step 254 can simply mean that the user device
104 discards or removes or does not allow use of the 10

instance of software INST_SW and its associated tag
TAG_INST_SW that were obtained in steps 250 and 251.
Step 256 can also be executed which activates a user device

42
first column labeled "TAGS" in the tag table 210. The tags
in the TAGS column in tag table 210 are labeled TAG_
INST _SWl, TAG_INST _SW2, TAG_INST _SW3,
TAG_INST_SW4 and UNTAGGED_SW. Other informa
tion in the tag table 210, which will be described in more
detail, includes, for each tag, a USAGE STATUS list
(Column 2), an ACTION TIME (Column 3), a RUN
COUNT (Column 4), and a USE TIME (Column 5). The
supervising program (SP) 209 uses the tag table information
for each tag entry (i.e. each tag table row) to determine how
to process a request for use of each instance of software
111-114 associated with a respective tag TAG_INST_SW.

Briefly, the USAGE STATUS column in tag table 210
generally indicates to the supervising program 209 whether (e.g., 104) punitive action. Punitive action for a user device

104 may include shutting down or disabling the device for
future use. Punitive actions will be discussed in more detail
with respect to usage supervision features of this invention.

15 an instance of software 111-114 is usable or not for a user
213 or a device 104--107. If use of software is to be allowed,
the status column will indicate "CONTINUED" or
"INSTALLED", while if use is to be denied, this condition If the hash function values and the signature SIGN_TS

(HASH_INST_SW) are verified in step 253 for a signed
tag, or if the hash function value HASH_INST_SW is 20

verified in step 257 for an unsigned tag, then step 255 stores
the instance of software INST_SW (111-114 in FIG. 2)
associated with the tag onto the user storage device 200, and
also stores the associated tag TAG_INST_SW for the
instance of software (e.g., 111) into the tag table 210 with the 25

status "INSTALLED" attached to the tag (in column one of
the table 210 illustrated in detail in FIG. 6, as will explained
more completely later).

In an alternative embodiment in which a tag contains a
supervising program identifier ID(SP) 209-A, the supervis- 30

ing program 209 verifies that the supervising program
identifier 209-Ain the tag 120 is the same as the supervising
program identifier 209-A stored on the user device 104. In
an alternative embodiment in which a tag 120 contains a
fingerprint list based on specified locations on the software 35

content SW, the supervising program 209 verifies that the
fingerprint list matches the fingerprints computed at the
same specified locations in the software SW, where match
ing is based on the same-location fingerprinting, as
described in the definitions above and as explained in detail 40

herein.
FIG. 6 illustrates the contents of an example tag table 210.

Generally, the tag table 210 includes information required by
the supervising program (SP) 209 to make a determination
of whether or not a user 213 of the user device 104 or the 45

device 104 itself is allowed usage of an instance of software
111-114. Through a process which will be explained shortly,
the supervising program 209 can detect the attempted use of

is indicated by the term "GC_DISABLED".
"INSTALLED" followed by "REMOVED" status terms
indicate that a tag TAG_INST_SWn for an instance of
software 111-114 was formerly installed on the user device
104 but is no longer installed and consequently is not usable.
The ACTION TIME column indicates a time stamp (e.g.,
Day and Time) of the last status determination (e.g., the time
of the last call-up and tag verification procedure-to be
explained) performed by the supervising program (SP) 209
(FIG. 2). The RUN COUNT column in tag table 210
indicates the number of times an instance of software
111-114 associated with a tag TAG_INST_SWn (where n
is a number 1 through 4 in this example) has been used on
a user device 104-107. Finally, the USE TIME column in
tag table 210 indicates the total elapsed time during which
the instance of software 111-114 associated with TAG
INST_SWn has been used since the last call-up procedure
between the device and the guardian center or, in another
embodiment, since being installed.

The various fields (i.e., rows) associated with each tag
(Column 1) are used by the system of this invention for
various purposes explained herein. Tags serve to identify the
row of the tag table 210 that the supervising program (SP)
209 must examine to determine whether a given software
instance 111-114 can be properly or validly used, based on
the content of that associated row. The current USAGE
STATUS field of the chosen row determines whether use of
the software instance (i.e., one of 111-114 in this example)
is allowed.

As will be explained, when use is allowed, the supervising
program (SP) 209 can track use times and run counts for the an instance of software 111-114 and can check information

maintained in the tag table 210 to determine usage super
vision characteristics for a tag TAG_INST_SW associated
with the requested instance 111-114.

50 instance 111-114 being used. This information can be used
to construct the event history of a user device 104-107, and
can also serve other purposes such as tracking use on
pay-per-use or pay-per-view instance of software 111-114.
The event history is a timed record of all attempted uses,

Periodically, the supervising program (SP) 209 will per
form a call-up procedure which interfaces the user device
104 with the guardian center 103 (FIG. 2). During the
call-up procedure, tag information in the tag table 210 for
each instance of software 111-114 installed on a user device
104 which is performing the call-up is verified by the
guardian center's 103 (FIG. 2) verification program (FIG. 9,
315) so as to instruct the supervising program 209 on the 60

user device 104 to make usage supervision determinations
with respect to the instance of software 111 for which the
user 213 is requesting use.

55 successful uses, duration of uses, and other events such as
power-ups at a device. It is unlikely for two devices to have
the same event history, even if they have the same software
instances and the same identifiers.

FIG. 6 shows a device's (i.e., 104) tag table 210 in a
preferred embodiment of the invention. Each valid tag 65

TAG_INST_SW 120 obtained via Step 251 in FIG. 5 for
each installed instance of software 111-114 is stored in the

In one embodiment, no two devices have the same soft
ware instances and the same tag or supervising program or
device identifiers However, knowledgeable software pirates
may attempt to exactly copy the disk image of one device to
another, in which case tag, device, and supervising program
identifiers might be exactly duplicated. The invention con-
templates avoidance of such piracy in certain embodiments
by allowing at least one of the unique identifiers (i.e., one of
either a software tag 120 or a supervising program identifier

IPR2020-00660 Page 00040

US 6,697,948 Bl
43

209-A) to contain information such as a hardware processor
identification number (i.e., processor serial number for
example) which associates that identifier (e.g., tag 120
(Column 1 in FIG. 6), SP ID209-A, of device ID) with a
particular processor or hardware chassis. That is, if a pirate
attempts to circumvent the usage supervision protection of
the invention by duplicating the entire disk information and
transferring the duplicated disk to another device, the inven
tion can allow hardware device identification mechanisms to
be incorporated into tag information and during tag valida
tion (i.e. during call-up processing-to be explained), the
hardware identification information can be checked accord
ingly.

It should be understood that this embodiment supple
ments the invention mechanisms which uses device usage
statistics maintained at the guardian center 103 (FIG. 2) to
track two devices trying to use the same tag information.
That is, if a pirate copies a disk from a legitimate device 104
into another device (i.e. 107), it is almost impossible,
according to the aspects of this invention, for the illegitimate
user 213 of the pirated device 107 to use the device 107 in
such a manner that exactly duplicates the use of the legiti
mate device 104. As such, when each device 104, 107
performs a call-up to the guardian center 103 (FIG. 2) to
perform tag validation, the guardian center 103 (FIG. 2) will
detect one of either device 104, 107 as having inconsistent
usage or call-up statistics, with respect to the other device
(i.e. the other of 104, 107). Thus, once each device 104, 107
has made a call-up, one of the devices 104, 107 will appear
as fraudulently attempting software use. At that point, the
system of the invention can perform punitive action con
tained in a continuation message (to be explained shortly) to
disable one or both devices, the software on the devices, use
of the devices, or any combination thereof. Reporting illegal
or illegitimate use to the proper authorities (e.g., law
enforcement, software vendors) can also be performed by
the invention.

As an example of pay-per-use or pay-per-view, each time
an instance of pay-per-use software 111-114 is used, the
supervising program (SP) 209 can record this in the RUN
COUNT field (Column 4) in the tag table 210 for the tag
TAG_INST_SW associated with that instance 111-114.
RUN COUNT information can later be used for billing
purposes.

44
An example of the user identification ID(USER) may be

a usemame and/or password combination. An example of
the identification of the user device ID(DEVICE) may
include the hostname, host id, IP address, serial number or

5 other hardware or device specific information that can
uniquely distinguish this user device 104 from other user
devices (e.g., 104-107 in FIG. 1).

ID(SP) 209-A may be, for example, comprised of infor
mation having to do with the time when a device 104-107

10 is first powered on based on a high precision clock (205 in
FIG. 4). Two ID(SP)'s 209-A from different devices (i.e.,
104, 105) will rarely be equal if the high precision clocks
205 are at microsecond accuracy. To reduce the risk of equal
ID(SP)'s the ID(SP) 209-A may also include a hardware

15 serial number if available and a number from a guardian
center 103 (FIG. 2) if available. It is possible for a would-be
pirate to copy the disk image in which case two devices
might have the same ID(SP). As briefly noted above and as
will be discussed further, this can be caught by the guardian

20 center 103 (FIG. 2) during call-up. The operating system 207
may also have unique identification information such as
serial numbers or the like which can be used for identifica
tion in the ID_TAG_TABLE field.

The header field HEADER_TAG_TABLE (top row of
25 tag table 210 in FIG. 6) also includes a "last guardian center

continuation message" field LAST_GC_CM, a "last call
up time" field LAST_CALLUP _TIME, and a "number of
device power-ups" field NUMBER_DEVICE_
POWERUPS. In addition, the header includes two fields

30 having to do with the event history: the current event history:
HASH (EVENT_HISTORY) and the hash of the event
history as of the most recent call-up HASH(EVENT_
HISTORY_AS_OF_MOST_RECENT_CALLUP)).

The LAST_GC_CM field in the header (row 1 of table
35 210) contains a continuation message value which is an

unforgeable message from the guardian center (GC) 103
(FIG. 2) that contains an encoding of tag table 210 update
information as well as actions and punitive actions specified
by the GC 103 (FIG. 2) for the user device's supervising

40 program SP. The LAST_CALLUP _TIME in the tag table
210 header is used, in combination with other tag table data,
by the supervising program 209 to determine when a next
call-up to the GC 103 (FIG. 2) may be required according to
a CALL-UP POLICY. The NUM DEVICE Also included in the tag table 210 is a header field

HEADER_TAG_TABLE which uniquely identifies this 45

particular tag table 210 for this particular user device 104.
The header HEADER_TAG_TABLE may be unique on
either a per user 213 or per user device 104 basis. If tag
tables 210 are unique on a per user 213 basis, each user
account (i.e., login account) on a user device 104 can have 50

its own tag table 210 for that user 213. The per user tag table
210 can maintain the tags TAG_INST_SW for instances of
software 111-114 to be used that may, for example, have
been purchased by that user 213 only. In other words, while
only one tag table 210 is illustrated, the invention may track 55

tag use and usage supervision for many users 213, or each
user may have a separate tag table 210.

POWERUPS is used locally as part of the method to
determine when a call-up is needed.

The event history may include information such as when
each software instance 111-114 on a device 104-107 is
invoked and possibly when external inputs to the user device
104-107 (i.e., user 213 interaction) occur. The purpose of
the event history is to characterize a device 104-107 based
on its past behavior or use of the device. This may be useful
because static information such as supervising program
identifiers 209-A and tags 120 may be copied from one
device 104-107 to another, but dynamic information as
embodied in the event history is likely to diverge even for
devices 104-107 having the same static information. Since
the event history can be large, a hash function value of the
event history is maintained instead of the event history itself.
Preferably, two event history hash function values are
retained in order to allow processing to continue during a

The HEADER_TAG_TABLE preferably includes an
ID_TAG_TABLE field which indicates a unique identifi
cation for this tag table 210. The ID_TAG_TABLE field 60

preferably includes an identification of the supervising pro
gram's 209 ID(SP) 209-A. In addition, it may include the
identification of the user 213 ID(USER) with which this tag
table 210 is associated, as well as an identification of the user
device 104 ID(DEVICE) (e.g., serial number or host-id as 65

noted above), and an identification of the operating system
207 ID(OS).

call-up procedure.
As will be explained, a continuation message CM (FIG. 2,

212; FIG. 13B, 423) is preferably also stored in the LAST_
GC_CM field of the tag table header (top row of table 210
in FIG. 6). The CM 212 is a message prepared by the
guardian center 103 (FIG. 2) during a call-up procedure with

IPR2020-00660 Page 00041

US 6,697,948 Bl
45

the user device 104 and is preferably securely transmitted by
the guardian center 103 (FIG. 2) to the device 104--107
performing the call-up. A continuation message CM 212
includes information so that the supervising program (SP)
209 on the user device 104 can determine which instances of
software 111-114 are allowed to continue to be used or
should be disabled because of improper use, and can also
define other actions or punitive actions to be executed by the
device's supervising program 209.

The LAST_CALLUP _TIME field contains a time stamp
of the last call-up process (to be explained) that occurred,
and the NUM_DEVICE_POWERUPS field contains the
number of times that the user device 104 has been powered
up. As will be explained, the supervising program (SP) 209
in each user device 104 is responsible for maintaining

46
pirated software by taking a legitimate specific software
instance 111-114, such as a book or an application program
on a CD-ROM and, and removing from the included instal
lation program for that software all references to any

5 required tag 120. The pirating vendor might then sells copies
of the changed software (i.e., that no longer requires refer
ence to an associated tag) under a different name as untagged
software. Another example of taggless software is infringing
software created by a pirate as a modified or derived version

10 of a legitimate vendor's software SW, such as for example,
an unauthorized translation of a vendor's book into another
language or a recompiled version of an application program.
The system of the invention prevents, tracks, and protects
against the used of such unauthorized software on user

15 devices 104-107.
(though not necessarily generating) accurate information in
the tag table 210, including header information such as
NUM_DEVICE_POWERUPS, LAST_CALLUP _TIME,
and the LAST_GC_CM continuation message. That is, a
continuation message (CM) 212 (FIG. 2) is generated by the 20

guardian center 103 (FIG. 2) and securely passed to the
supervising program (SP) 209 on a user device 104. Upon
receipt, the supervising program (SP) 209 is preferably
responsible for parsing the continuation message (CM) 212
(FIG. 2) and updating the tag table 210 with the most recent 25

usage supervision information (i.e., updating tag table
fields).

To do so, the invention introduces a concept called
fingerprinting. Essentially, fingerprinting produces values
associated with an instance of software which are unique to
the content of the software (SW) for that instance. If
fingerprints of an illegally made copy of an instance of
software can be obtained, the invention provides a way to
detect other attempts by other user devices 104-107 to use
similar illegally made copies. According to the invention,
fingerprints associated with a particular piece of software are
preferably when a user 213 attempts to install or use
untagged software on the user device 104.

FIG. 7 illustrates the process of installing untagged soft
ware on a user device (in this example, user device 104 will
be used in the discussion). In step 330, the user 213 installs

The information in the header field HEADER_TAG
TABLE can uniquely identify the tag table 210 and can be
used by the supervising program (SP) 209 to update usage
supervision information for each instance of software
111-114 installed on the user device 104. The idea is that the
tag table 210 for each user or each user and/or user device
104 combination is uniquely identifiable via HEADER_
TAG_TABLE from other tag tables 210 for other users 213
or other user devices 104 or user/user device combinations.

When a new instance of software 111-114 and its asso
ciated tag 120 are obtained and installed or used via the steps
in FIG. 5, the tag table 210 entry (i.e., the row in tag table
210) for that tag TAG_INST_SWn has the ACTION col
umn value set to INSTALLED to indicate the instance of
software 111-114 associated with that tag is newly added or
installed on that user device 104. The ACTION TIME value

30 (or creates) an instance of untagged software (i.e., an
untagged instance of 111-114) on the user device 104. The
untagged software UNTAGGED_SW may, for example,
appear simply as a string of binary data (STRING[0 ... N])
and initially has no associated tag. Upon an attempt to use

35 the untagged instance 111-114, in step 331, the supervising
program (SP) 209 detects that no tag TAG_INST_SW
exists in the tag table 210 for this instance of software and
thus the supervising program (SP) 209 fingerprints the
untagged software instance 111-114 using a fingerprint

40 function FP. The fingerprint function may, for example, be a
hash function.

In step 331, each fingerprint Xi is equal to the value

is either left blank or indicates the time of installation. The
RUN COUNT and USE TIME column values are set to zero 45

produced by the fingerprint function FP which preferably
operates on a portion of the untagged software STRING[i,
i+k-1], where 0<=i<=m-k+l for a fixed standard k. There
can be m chosen indexes. In other words, a fingerprint or "0" or are left blank.

According to another aspect of the invention, usage
supervision can be provided for software instances 111-114
which do not have an associated tag TAG_INST_SW
(Column 1) created for insertion in the tag table 210. Any
such instance 111-114 is referred to as an untagged instance
of software or simply as untagged software. An example of
untagged software would be user 213 created software. User
created software may be legitimately created, as in the case
of a user 213 writing or creating a software program or a
song. User created software may also be illegitimately
created, in which case it is referred to as infringing software
INF _SW. It is desirable to allow a user device 104-107 to
use legitimate untagged software and the invention's usage
supervision enables such use. However, at the same time,
according to the mechanisms of the invention, the present
invention can detect and prevent use, as well as, if so
desired, enact punitive actions on a user device 104-107, if
that device attempts to use infringing software that is either
tagged or untagged.

Infringing software INF _SW might, for example, be
created as follows. A pirating vendor may create instances of

function FP is performed on selected segments of the
untagged software data STRING[0 ... N], where N is the
total length of the untagged software in bits. Preferably, the

50 fingerprint function FP produces a number of fingerprints
(m), each offset from the next. In step 332, the supervising
program (SP) 209 stores the fingerprints Xil through Xim in
the fingerprint table 210 of the user device 104.

In an alternative embodiment, fingerprints are created
55 based on non-consecutive portions of the untagged software.

In another alternative embodiment, fingerprints are com
puted when software is used, based on the behavior of the
software. An example of behavior may be the sequence of
system calls the software makes. Game software for

60 example may have specific patterns for writing to the screen.
These patterns may be incorporated into the fingerprint of
the instance of software.

Finally, in step 337, the supervising program (SP) 209
creates an untagged tag entry UNTAGGED_SW in the tag

65 table 210 to indicate the presence of an untagged instance of
software 111-114 on the user device 104. The
UNTAGGED_SW tag in tag table 210 can use a hash

IPR2020-00660 Page 00042

US 6,697,948 Bl
47 48

the first time, then step 272 may mandate that a call-up is
needed. In another embodiment, the maximum allowed
interval between successive call-up procedures is preferably
determined by a combination of elapsed time in a user

function or other means to uniquely associate the tag
UNTAGGED_SW with the untagged instance of software
which was fingerprinted. Using the above described process,
any attempt to use or install an untagged instance of software
111-114 on a user device 104 results in that untagged
instance being fingerprinted and also results in an
UNTAGGED_SW tag being created in the tag table 210.

5 device 104, the number and duration of uses to instances of
software 111-114, the number of times the device 104 is
powered on, and/or by any other measure that is related to
time or use of the device 104. As will be explained later, the fingerprint table 126 will be

used by the guardian center 103 (FIG. 2) to detect uses of
infringing software INF _SW of which the guardian center 10

103 (FIG. 2) has been made aware. Details of the use of the
fingerprint aspect of this invention will be discussed in more
detail later.

Call-up processing will be discussed in more detail later.
Essentially however, during call-up processing, the super
vising program (SP) 209 in a user device 104 securely
transfers a copy of the tag table 210 and the fingerprint table
126 to the guardian center 103 (FIG. 2). After verification,
the guardian center 103 (FIG. 2) compares each tag TAG_ FIG. 8 shows the high level steps performed by the system

109 of this invention when a user 213 attempts to use an
instance of software (INST_SW) 111-114 on a user device
104. In step 270, the user 213 interfaces with the user
input/output mechanism 204 on the user device 104 to use

15 INST_SWn in the tag table 210 against a list of compro
mised tags. The guardian center 103 (FIG. 2) can detect tags
that are invalid or compromised in some manner.

A usage supervision policy POLICY(TAG_INST_SW)
associated with each tag can also be checked at the guardian an instance of the software 111-114. In step 271, the

supervising program (SP) 209 intercepts the call to invoke
use of the instance of software 111-114. At this point, the
supervising program (SP) 209 will ensure that the instance
of software 111-114 requested has a tag TAG_INST_SW
that indicates a "CONTINUED" status in the tag table 210.
However, before checking the individual tag TAG_INST_
SWn, in a preferred embodiment, the supervising program
(SP) 209 ensures that the tag table 210 itself is in a valid or
updated state. By valid state, what is meant is that the tag
table 210 is not outdated and in need of a call-up procedure
to update its contents. Accordingly, in step 272, the super
vising program (SP) 209 accesses the tag table 210 to
determine if a call-up to the guardian center 103 (FIG. 2) is
required at the current time.

20 center 103 (FIG. 2) to ensure that tags 120 (and therefore
instances of software associated with the tags) are being
used in compliance with the usage supervision policy
POLICY(TAG_INST_SW). The policy may be for an
entire user device 104-107 or on a per user 213 or per tag

25 120 basis. Also, for untagged software, the fingerprint table
126 can be compared against a fingerprint data structure
(explained later) in the guardian center 103 (FIG. 2) to detect
uses of infringing software INF _SW. After analysis of the
tag table 210 and fingerprint table 126 are complete, the

30 guardian center 103 (FIG. 2) prepares and sends a continu
ation message (CM) 212 (FIG. 2) back to the user device
104.

In an alternative embodiment, if a fingerprint is included
in the tag, the supervising program SP 209 may check that 35

the software instance being used is properly associated with
this tag by using a same location fingerprint.

Periodically, a call-up process is performed by the system
of the invention to effectively re-authenticate the validity
and enforce the usage supervision policy of each tag TAG_ 40

INST_SWn in the tag table 210. The call-up process takes
place between the guardian center 103 (FIG. 2) and the user
device(s) 104. There may be many triggering events that can
cause a call-up to be made to the guardian center 103 (FIG.

In an alternate embodiment, tagged software may also be
checked by fingerprinting. This embodiment prevents a
pirating vendor from distributing instances of specific soft
ware that is infringing on intellectual property or other rights
of a legitimate vendor (i.e., 101), as tagged software, i.e.
accompanied by legitimate tags obtained from a tag server
102. In this embodiment the user device's 104-107 super
vising program 209 performs a fingerprinting process on
tagged software instances 111-114 as well, and stores the
computed fingerprints in its fingerprint table 126. During a
call-up procedure, the fingerprints obtained from tagged
software instances 111-114 used on the user device 104--107

2).
For example, the call-up determination made in step 272

45 will also be sent to the guardian center 103 (FIG. 2) to detect
use of infringing software.

by the supervising program (SP) 209 can be made by
examining the LAST_CALL-UP _TIME field in the tag
table header HEADER_TAG_TABLE. If the time stamp in
LAST_CALL-UP _TIME has exceeded a certain elapsed 50

time, then a call-up to the guardian center 103 (FIG. 2) is
needed and is made by proceeding to step 273 where call-up
processing is performed. Alternatively, there may be a
call-up policy (CALL-UP _POLICY) for the tag table 210
itself which defines a set of rules or conditions that must be 55

met in order for a call-up to be required.
In other embodiments, there may be call-up policies

(CALL-UP _PO LI CY _SW) associated with individual
instances of software 111-114. In this case, step 272 can
examine the rules or tests of the call-up policy (CALL-UP_ 60

POLICY_SW) associated with the software content SW or
the instance of software (INST_SW) 111-114 that was
requested access by a user 213 in step 270. In another
embodiment, if the user 213 of a user device 104 attempts

The continuation message (CM) 212 (FIG. 2) contains
various information that can affect the operation of instances
of software 111-114 on a user device (e.g., 104), or opera
tion of the user device 104 itself. For example, if the
guardian center 103 (FIG. 2) detects an invalid tag TAG_
INST_SWn in a tag table 210 for a user device 104, the
continuation message (CM) 212 returned to that user device
104 may cause the user device 104 to become inactivated or
disabled for a specified period of time or indefinitely.
Alternatively, the continuation message (CM) 212 may
cause the user device 104 to inactivate use of the particular
instance of software (INST_SW) 111-114 associated with
an invalid tag 120.

The action(s) taken at a user device 104 are defined in an
ACTIONS portion of the continuation message (CM) 212,
and will be described in more detail later. The continuation
message 212 is also used by the supervising program (SP)
209 in the user device 104 to update information in the tag

to use an untagged instance of software, step 272 may
mandate that a call-up is needed. In another embodiment, if
the user 213 of a user device 104 uses tagged software for

65 table 210. For example, the ACTION TIME column of that
tag table 210 may be updated with a time stamp of the most
recent continuation message (CM) 212, thus providing an

IPR2020-00660 Page 00043

US 6,697,948 Bl
49

indication of when each tag TAG_INST_SWn was most
recently checked by the guardian center 103 (FIG. 2).

Continuing with the description of the processing in FIG.

50
center 103 (FIG. 2) for each instance of tagged software
(e.g., 111-114). The tag data structure 320 is initially pro
vided to the guardian center 103 (FIG. 2) from the tag server
102 upon creation of tags 120 for each instance of software 8, after call-up processing is complete in step 273, the tag

table 210 is updated on the user device 104 in step 277 (i.e.,
via the continuation message 212), and processing returns to
step 272.

5 111-114. Preferably, the manner in which the tags 120 are
provided to the guardian center 103 (FIG. 2) from the tag
server 102 is via electronic and secure distribution over the
communication network 100. Alternatively, software ven-Once the user device 104 determines that a call-up to the

guardian center 103 (FIG. 2) is not required at this time,
processing proceeds to step 274 to determine the usage

10
status of the particular instance of software 111-114 for
which use was requested by a user 213 in step 270.

In step 274, the supervising program (SP) 209 in the user
device 104 essentially examines the USAGE STATUS col
umn in the tag table 210 for the tag TAG_INST_SWn
associated with the requested instance of software 111-114. 15

If the USAGE STATUS column indicates "CONTINUED",
then the supervising program (SP) 209 signals to the kernel
208 of the operating system 207 to allow use of the
requested instance of software 111-114 in step 275. If the
USAGE STATUS column in the tag table 210 for the tag 20

(TAG_INST_SWn) associated with the requested instance
of software 111-114 indicates "GC DISABLED" or
"REMOVED", then the supervising program 209 denies use
of the instance of software 111-114 in step 276.

dors 101 can be responsible for ensuring that the guardian
center 103 (FIG. 2) is kept aware of tag information for each
instance of software 111-114 that is distributed to user
devices 104-107.

A tag data structure 320 exists in the tagged software
database 138 (FIG. 9) for each instance of software that is
used on a user device 104. As illustrated, each tag data
structure 320 includes various fields. These fields include the
tag for that instance of software TAG_INST_SW, the usage
supervision policy POLICY(TAG_INST_SW) for that
software, and a list of references to one or more call-up
records CALL-UP _RECORDn 321 for that instance of
software.

The policy POLICY(TAG_INST_SW) associated with a
tag TAG_INST_SWn for an instance of software 111-114
is prescribed by the software vendor 101 or another orga-

If use is allowed to the requested instance of software
111-114, the supervising program (SP) 209 increments by
one the value in the RUN COUNT column for the tag
TAG_INST_SWn associated with the requested instance of
software 111-114. The supervising program (SP) 209 also
tracks the amount of time that the requested instance of
software 111-114 is in use and updates the USE TIME
column for the tag accordingly.

25 nization and defines the rules and policies with respect to the
protection of usage rights or pay-per-use access limitations
for the instance of software associated with that tag. For
example, for a tag data structure 320 associated with a
specific instance of software 111-114, the POLICY(TAG_

30 INST_SW) data may include a rule stating that for each use
to the instance of software, the user device 104 must pay a
prescribed fee.

During call-up processing (to be explained shortly), when
the guardian center 103 (FIG. 2) receives the tag table 210

35 from a user device 104, the number of times a particular
instance of software 111-114 has been used by that user
device 104 can be determined from the RUN COUNT
column of the tag TAG_INST_SWn associated with the tag

FIG. 9 illustrates a preferred embodiment of the architec
ture of the guardian center 103 (FIG. 2). The guardian center
103 (FIG. 2) includes a bus 306 which couples a processor
301, a memory 302, an interconnection mechanism 303, a
clock 304 and a guardian center authorization database 300.
The guardian center 103 (FIG. 2) is preferably a high
powered computer system such as a multi-processor server
which can perform many transactions for multiple processes 40

at one time. The interconnection mechanism 303 is, for
example, a modem bank or one or more high bandwidth
network connections allowing the guardian center 103 (FIG.

TAG INST_SWn for that instance of software in the tag
table 210. The guardian center 103 (FIG. 2) can then look to
the policy POLICY(TAG_INST_SW) for the tag data
structure 320 associated with that tag TAG_INST_SWn in
the tagged software database 138 (FIG. 9). The guardian
center 103 (FIG. 2) can determine if the number of uses as 2) to communicate with many user devices 104 simulta

neously via communication network 100. 45 indicated by the RUN COUNT field in the tag table 210 is
greater than a previous number obtained from a former
call-up process. If the number is greater, the guardian center
103 (FIG. 2) can record this information for billing purposes
to be sent to the owner or user 213 of the user device 104.

The guardian center's 103 (FIG. 2) authorization database
(GCDB) 300 is preferably a large database sub-system or
disk or RAID array having the capability to store vast
amounts of information. In this embodiment, the GCDB
includes a tagged software database 138 (FIG. 9) which 50

holds data for instances of tagged software, and a fingerprint
data structure 137. The tagged software database 138 (FIG.
9) includes call-up records (FIG. 10, 320, 321) for each
tagged instance of software on each user device 104. The
content and use of each of these databases 137 and 138 (FIG. 55

9) will be explained in more detail shortly.

Other usage supervision policies POLICY(TAG_INST_
SW) may be defined to cause the guardian center 103 (FIG.
2) to allow only a certain number of uses to a particular
instance of software 111-114. When the number of uses is
exceeded, the guardian center 103 (FIG. 2) can cause the
USAGE STATUS field associated in the user device's tag
table 210 with the tag associated with the above instance of
software, to be set to the value "GC_DISABLED". The
change is effected at the user device 104 by specifying the
appropriate information in the continuation message (CM)
212 sent from the guardian center 103 (FIG. 2) to that user
device 104 after analysis of tag table 210. When the user
device 104 attempts to use the instance of software 111-114
associated with the tag TAG_INST_SWn that is disabled
(i.e., TAG_INST_SW3 in Tag Table 210 in FIG. 6), use

During operation of the guardian center 103 (FIG. 2),
memory 302 is used to store a verification program (VRP)
315 which executes in conjunction with processor 301 to
perform the guardian center functions described herein. 60

Memory 302 also stores user device tag tables 210 and
fingerprint tables 126 which get transferred to the guardian
center 103 (FIG. 2) for tag verification and usage supervi
sion determination during the call-up procedure explained
briefly above. 65 will be denied as explained above in FIG. 7.

FIG. 10 shows the data structures 320,321 maintained in
the tagged software database 138 (FIG. 9) in the guardian

Each tag data structure 320 in the tagged software data
base 138 (FIG. 9) within the guardian center 103 (FIG. 2)

IPR2020-00660 Page 00044

US 6,697,948 Bl
51

includes a number of references to call-up records CALL
UP _RECORDn 321 as shown in FIG. 10. A call-up record
CALL-UP _RECORDn 321 includes a call-up time CALL
UP _TIME, the header field HEADER TAG_TABLE from
the tag table 210 of the calling user device 104, an optional
hash function value of the tag table 210 HASH(TAG_
TABLE), and an ACTIONS field. Thus, there is one CALL
UP RECORD per call-up, regardless of the number of tags
sent.

The CALL-UP _TIME field indicates the time-stamp of
the call-up for the current CALL-UP 13 RECORDn. The
HEADER_TAG_TABLE contains the tag table header of
the tag table 210 that contains the TAG_INST_SWn for
this tag data structure 320 as received from the calling user
device 104 during the call-up procedure n. The HASH
(TAG_TABLE) field contains an unaliasable hash function
value computed on all of the data in the tag table 210 which
included the tag TAG_INST_SWn associated with the tag
data structure 320. Finally, the ACTIONS field lists the
actions prescribed by the guardian center during the call-up
procedure n, to be performed for the instance of software
111-114 that is associated with a tag TAG_INST_SW for
the tag data structure 320. Using the tag data structures 320
for each instance of software 111-114, the guardian center
103 (FIG. 2) can maintain detailed information related to
usage supervision mechanisms for instances of software
111-114 used via user device(s) 104.

52
centers 103 (FIG. 2) elsewhere on this or another commu
nication network 100.

At this point, when the supervising program (SP) 209 on
a user device 104 detects a request to use an untagged (and

5 possibly infringing) instance of software UNTAGGED _SW
111-114, the supervising program (SP) 209 records finger
prints of UNTAGGED_SW. Later when the SP 209 per
forms a call-up procedure to transfer the tag table 210 and
the fingerprint table 126 to the guardian center 103 (FIG. 2),

10 the recorded fingerprints of UNTAGGED_SW will be sent.
In one embodiment, an access request on a user device
104-107 to use the untagged instance may cause the call-up
to occur. Using general-location fingerprinting, the finger
prints in the fingerprint table 126 can be compared to the

15 fingerprints in the fingerprint data structure 137 at the
guardian center 103 (FIG. 2). If the software instance
UNTAGGED_SW is a copy of an infringing software
instance INF _SW that the guardian center 103 (FIG. 2) has
been made aware of and has fingerprinted on its own, this

20 will be detected and punitive action can be carried out on the
user device 104 via return of a continuation message 212. In
another embodiment, the system-call behavior (i.e. the
sequence of system calls) of UNTAGGED_SW on user
device 104 is compared with the system call behavior

25 expected of INF _SW on the guardian center 103 (FIG. 2).
In another embodiment, the steps detailed in the last two
paragraphs are applied also in the case of a request on a user
device for use of tagged software.

Aside from the fingerprinting aspects of this invention,
30 during a call-up procedure to be explained next, the verifi

cation program 315 in the guardian center 103 (FIG. 2) also
reads and compares the information in the tag table 210 with
information in the tag software database 138 (FIG. 9) to

FIG. 11 shows the processing steps which result in the
creation of the fingerprint data structure 137 maintained
within the guardian center 103 (FIG. 2). As previously noted
and explained with respect to FIG. 7, fingerprints are created
and stored in a fingerprint table 126 within each user device
104 when untagged software, and possibly also tagged
software, is first used on the user device 104. According to
this invention, software pirates may infringe upon legitimate 35

vendor rights by either copying vendor software and remov
ing the part of the software that requests confirmation of a
tag or by creating and distributing derivatives of legitimate
software. The software thus produced is called infringing
software INF _SW. The fingerprint data structure 137 ere- 40

ated within the guardian center 103 (FIG. 2) will contain
fingerprints computed on an infringing instances of software
INF_SW.

make usage supervision decisions.
FIG. 12 illustrates the steps performed by the supervising

program (SP) 209 executing on a user device 104 to perform
a call-up procedure in a preferred embodiment of the inven
tion. The steps in FIG. 12 are performed within step 273 in
FIG. 8.

In step 370 in FIG. 12, the supervising program (SP) 209
calls up the guardian center 103 (FIG. 2). By call-up, what
is meant is that the supervising program (SP) 209 on the user
device 104 connects with or exchanges messages with the
guardian center 103 (FIG. 2) via communication network In FIG. 11, in step 340, the software vendor 101 detects

the existence of an instance of infringing software (INF_
SW). In step 341, the software vendor 101 submits a copy
of the instance of infringing software INF _SW to the
guardian center 103 (FIG. 2). The infringing software is
merely a string of binary digits (bits) appearing as
STRING_INF[0 ... N]. In step 342, the guardian center
computes a collection of fingerprints Yi on the instance of
infringing software, using the same fingerprint formula FP
as the supervising program(s) (SP) 209 on each of the user
device(s) 104 use to compute fingerprints. That is, a series
of fingerprints Yi are computed as follows:

Yi-FP(STRING_JNF[i,i+k-1])

where 0<=i<=n-k+l, with n-k being the number of finger
prints to compute. Then, in step 343, the guardian center 103
(FIG. 2) incorporates each of the computed fingerprints Yl,
... Yn-k+l into the fingerprint data structure 137 in the
GCDB 300. In an alternative embodiment, fingerprints are
computed on non-consecutive sequences of STRING_INF,
those sequences being unique or nearly unique to INF _SW.

45 100. In the preferred embodiment, the supervising program
(SP) 209 sends the HEADER_TAG_TABLE to the Guard
ian Center 103 (FIG. 2). The Guardian Center 103 (FIG. 2)
causes a call-up failure unless the previous continuation
message consisting of the ID_TAG_TABLE of the device,

50 the time as of the last call-up LAST_CALLUP _TIME is
equal to CALLUP _TIME of the most recently CALL_UP
record having this same HEADER_TAG_TABLE. An
advantage of this embodiment is that even if several devices
104-107 have the same ID_TAG_TABLE (Row 1 of tag

55 table 210 in FIG. 6) and the same tags 210 (an occurrence
that is normally due to piracy), those same devices may have
received, but will not properly accept the same continuation
message 212 for a reason to be explained below, so only one
device (i.e., one of 104-107) will send a particular

60 HEADER_TAG_TABLE.

The fingerprint process is then complete at the guardian 65

center 103 (FIG. 2) and the infringing software INF _SW
can be discarded or can be made available to other guardian

A call-up is made in accordance with the CALL-UP_
POLICY or CALL-UP _POLICY(TAG_INST SW) as
explained above in response to a user's attempt to use an
instance of software 111-114 on a user device 104--107. That
is, when the user 213 attempts to use an instance of software
111-114 for which the time allowed before the next call-up
according to the CALL-UP _POLICY of the user device 104

IPR2020-00660 Page 00045

US 6,697,948 Bl
53

or the CALL-UP _POLICY(TAG_INST_SW) of the soft
ware (SW) for that instance has expired, the supervising
program 209 on that device 104-107 initiates step 370. In
another embodiment, the SP 209 executes a call-up proce
dure at a chosen time before the expiration time, regardless
of whether a use of an instance of software 111-114 is
requested. The CALL-UP _POLICY can be maintained
within the supervising program 209 on the user device 104.
In addition, it is possible that a call-up may occur because
a portion of the supervising program 209, executing regard
less of use requests, determines that it is time to perform a
call-up. For example, it may take place as the result of a
certain number of BOOTUPS (power-ups) of a user device
104--107 having taken place or the first use of untagged
software.

If the call-up to the guardian center 103 (FIG. 2) in step
371 fails, then processing proceeds to step 376 where
punitive action may be performed by the supervising pro
gram (SP) 209 on the user device 104. In the preferred
embodiment, the supervising program (SP) 209 will perform
a new call-up, retrying several times before beginning
punitive action. In the case that punitive action is necessary
in step 376, the punitive action may merely be to inform the
user 213 that the instance of software 111-114 that was
requested is temporarily inaccessible due to a communica
tions failure.

If the call-up is successful and a connection is established
to the guardian center 103 (FIG. 2) from the user device 104,
then in 372, the supervising program (SP) 209 preferably
securely sends or transmits the tag table 210 from the user
device 104 to the guardian center 103 (FIG. 2). In an
alternative embodiment, the supervising program (SP) 209
also sends the fingerprint table 126 to the guardian center
103 (FIG. 2) as well. That is, the fingerprinting aspects of
this invention may or may not be incorporated into an
embodiment in order to detect the use of user created or user
modified infringing software.

54
(EVENT _HISTORY _AS_OF _MOST _RECENT_
CALLUP). This might arise if there are two devices
104-107 having the same configuration and ID_TAG_
TABLE, due to piracy, but only one performs a call-up.

5 Because of the event history, only one of the devices
104-107 would accept the continuation message 212. The
other device would have to do its own call-up and this would
lead to a call-up failure because the HEADER_TAG_
TABLE (Row one in Table 210 in FIG. 6) would match on

10
ID_TAG_TABLE but would fail to match on call-up time,
as explained above.

If the CALL-UP _POLICY is violated in step 373, pro
cessing proceeds to step 376 and punitive action can be
performed at the user device 104. In this case, punitive
action may include notifying the user 213 that a call-up

15 cannot proceed and that the instance of software 111-114
requested must be temporarily denied access or disabled.
Alternatively, the user device 104 can be deactivated for
some time.

If step 373 determines that a continuation message (CM)
20 212 is received and is acceptable as being within the

limitations defined in CALL-UP _POLICY, in step 374, the
continuation message (CM) 212 is passed to the supervising
program (SP) 209. Then, in step 375 the supervising pro
gram (SP) 209 verifies the continuation message (CM) 212

25 via a digital key signature technique and executes each
action in the continuation message 212 for each tag TAG_
INST _SWn in the tag table 210 of the user device 104. That
is, the supervising program (SP) 209 updates the USAGE
STATUS and ACTION TIME columns for each tag TAG_

30 INST_SWn in the tag table 210. In this manner, the system
109 of the invention allows the user device 104 to periodi
cally obtain tag table 210 updates from the guardian center
103 (FIG. 2).

Since the supervising program (SP) 209 serves as an
35 interface between the user 213 and the instances of installed

After step 372 is complete, the supervising program (SP)
209 enters a wait state until a continuation message (CM)
212 is sent and received from the guardian center 103 (FIG. 40

2). Alternatively, the supervising program SP 209 may go
into a sleep state after step 372 is complete and run again
following an interrupt from the Operating System (OS) 207.

software 111-114 on a user device 104, the supervising
program 209 implements the usage supervision mechanisms
described herein preferably on the user device 104. By
requiring the tag TAG_INST_SWn for an instance of
software 111-114 to be in a "CONTINUED" usage status
state, which can be changed only during call-up processing,
usage supervision is ultimately managed by one or more
guardian centers 103 (FIG. 2). The guardian center(s) 103
(FIG. 2) are responsible for determining whether or not a tag
in a tag table 210 for a user device 104 should be in a
"CONTINUED" or "GC DISABLED" state as per policies
defined for tags and fingerprints.

FIGS. 13Aand 13B present one continuous flow chart that
show the steps performed by the verification program (VRP)

In an alternative embodiment, the supervising program SP
could continue to process requests from the user. Guardian 45

center 103 (FIG. 2) call-up processing will be explained
shortly with respect to FIGS. 13A and 13B. When the
guardian center 103 (FIG. 2) has completed its call-up
procedure processing, a continuation message (CM) 212 is
sent to the user device 104. 50 315 in the guardian center 103 (FIG. 2) during call-up

processing according to a preferred embodiment of the
invention. The guardian center 103 (FIG. 2) is made aware
of a call-up procedure when a user device 104 (i.e., super-

In step 373, the supervising program (SP) 209 checks for
the return of a continuation message 212 as defined in the
call-up policy CALL-UP _POLICY of the user device 104.

vising program 209) makes the initial call-up processing
connection or contact with the guardian center 103 (FIG. 2)
in step 370 of FIG. 12. In response thereto, in step 410 of
FIG. 13A, the verification guardian center 103 (FIG. 2)
receives the tag table 210. The guardian center 103 (FIG. 2)
also receives the fingerprint table 126 from the user device

As an example of checking for a continuation message (CM)
212 within the call-up policy CALL-UP _POLICY, step 373 55

may ensure that no more than a certain amount of elapsed
time goes by before receiving the continuation message
(CM) 212. If too much time elapses before receipt of a
continuation message 212, the call-up policy may be vio
lated. 60 104 if there is any software on the user device 104 that is

installed but not tagged with a tag TAG_INST_SWn in the
tag table 210. Again, the fingerprint aspects of the invention
are optional but are provided in a preferred embodiment of
the invention, because they permit the detection of infring-

Other factors can be used to determine if a call-up
violation exists as well, such as the inability to validate a
digital signature in the continuation message 212. Another
factor determining a call-up violation is that the HASH
(EVENT_HISTORY) field in the continuation message 212
is not the same as the hash of the event history recorded in
the user device 104 as of the time of the last call-up, HASH

65 ing software.
In an alternative embodiment, the guardian center 103

(FIG. 2) may receive a portion of the tag table 210 only, such

IPR2020-00660 Page 00046

US 6,697,948 Bl
55

as, for example, the HEADER_TAG_TABLE and a por
tion of the tags (column 1) in the tab table 210. The tags 120
received can be those that the guardian center 103 (FIG. 2)
requests or can be chosen at random or may be only the tags
120 that the user device needs for use of instances of
software at that moment. Another possibility is that the tags
120 can correspond to those instances of software that are
pay-per-use or have a fixed number of uses. The advantage
of this alternative is that it reduces both the communication
costs and the processing costs.

In another alternative embodiment, the guardian center
103 (FIG. 2) receives the HEADER_TAG_TABLE (top
row of tag table 210 in FIG. 6) only. This embodiment makes
guardian center call-ups inexpensive and can work well
when each TAG INST_SW includes an ID TAG
TABLE field, as will be explained below. Returning now to
a description of call-up processing with respect to FIG. 13A,

56
cies to the guardian centers 103 (FIG. 2). During call-up
procedures, the guardian centers enforce or police the poli
cies CALL_POLICY(TAG_INST_SW). As an alternative
embodiment, the policy for one instance of software (i.e.

5
111) may differ from that for another instance (i.e. 112) of
that same software, assuming 111 and 112 have the same
software content SW. This enables the invention to enforce
usage supervision, for example, differently for two users of
the same program, since each instance has its own associated
tag and call-up policies can be maintained on an instance by

10 instance or user by user basis.
In any event, at the guardian center 103 (FIG. 2), after

each tag TAG_INST_SW in the tag table 210 is verified for
authenticity (Step 412), or after punitive action is prepared
for each unverified tag (Step 417), processing proceeds to

15 step 413 where each verified tag TAG_INST_SWn in the
tag table 210 is checked against the tagged software data
base 138 (FIG. 9). Essentially, step 413 checks that each tag
TAG_INST_SWn in the tag table 210 associated with an
instance of software 111-114 used on the user device 104
(i.e., the user device performing call-up processing) is being

20 used in accordance with the usage supervision policy of the
instance of software POLICY(TAG_INST_SW). After
each tag is tested in step 413, processing proceeds to step
414.

in step 411, the guardian center 103 (FIG. 2) checks to
ensure that the call-up is in accordance with the call-up
policy CALL-UP _POLICY associated with the user device
104. Call-up policies CALL-UP _POLICY(s) for user
devices 104-107 are preferably maintained at the guardian
center 103 (FIG. 2), and/or may be provided from the
software vendors 101 or user device manufacturers (not
shown) from time to time to instruct the guardian center 103
(FIG. 2) how to determine how frequently a user device 104 25

must call up to verify and update its tag table 210.

The checking process performed in step 413 can be
performed in a variety of ways. According to one
embodiment, the tagged software database 138 (FIG. 9)
contains a list of associations between tags TAG_INST_
SWn and supervising program identifiers (209-As) and the
times that these associations were discovered. In this

Step 411 can be performed using, for example,
HEADER_TAG_TABLE information fields such as the
unique identification of the tag table 210 contained in the
ID_TAG_TABLE field. If the call-up is not in accordance
with the CALL-UP _POLICY, step 416 prepares specified
punitive action(s) to be carried out by the supervising
program (SP) 209 when the continuation message (CM) 212
is returned from the guardian center 103 (FIG. 2) to the user
device 104.

30 embodiment, the verification program (VRP) 315 can com
pare the tags in the tag table 210 against the list of TAG_
INST SW-HEADER TAG TABLE-CALLUP TIME
associations to determine whether the same tag 120 (Column
1 in table 210) is on two devices 104--107. If a tag 120 is

35 found associated with several HEADER_TAG_TABLEs,
punitive action can be prepared in step 418. Processing proceeds to step 412 from both steps 416 and

411, at which point the verification program 315 verifies the
signed and/or unsigned tags TAG_INST_SWn in the tag
table 210. The verification performed in step 412 may be a
digital signature verification for the signed tags TAG_
INST_SW in the tag table 210. For the unsigned tags, the 40

HASH_INST_SW value may be used to check that the
secret number NUM_INST _SW within the tag TAG_
INST_SW is consistent with HASH INST_SW for that
tag. This is possible because HASH_INST_SW is a hash
function value that is computed partly from NUM_INST
_SW. In addition, NUM_INST _SW must be found in
SPARSE_SET and must be associated with NAME_SW of
TAG_INST_SW.

In a preferred embodiment of the invention, the guardian
center's verification program VRP 315 employs the data
structure (FIG. 10, 320, 321) associated with a tag 120
TAG_INST_SW to check whether the instance of software
111-114 associated with that tag 120 was used on the calling
user device 104 in accordance with the usage supervision
policy POLICY(TAG_INST_SW) specified for that
instance of software 111-114. For example, if the usage
supervision policy specifies that the same instance of

45 software, (i.e. the same tag), must not be present on two
different user devices, (e.g. 104 and 105), in a usable status
(e.g., USAGE STATUS=CONTINUED) at the same time,
the detailed data in the call-up records 321 for the tag
enables the VRP 315 to check whether the policy was For each unverified tag TAG_INST_SWn detected in

step 412, step 417 prepares a specified punitive action based
on the usage supervision policy POLICY(TAG_INST_
SW) associated with the instance of software 111-114 for
the unverified tag TAG_INST_SWn. Punitive action in this
case may include instructions to disable the user device 104.
Note that the punitive action specified in step 417 will be
carried out after it is communicated to the user device 104.

Usage supervision policies POLICY(TAG_INST_SW)
associated with instances of software 111-114 are main
tained at the guardian center 103 (FIG. 2), and may be
provided from the software vendors 101 from time to time

50 violated.
After each tag 120 TAG_INST_SWn in the tag table 210

has been checked by step 413, the tags 120 in tag table 210
may or may not have associated punitive action that has been
specified in relation to those tags. If punitive action has been

55 specified due to an improperly copied tag or a tag that is not
used in accordance with a usage supervision policy, pro
cessing proceeds to step 420 where the verification program
VRP 315 in the guardian center 103 (FIG. 2) prepares and
sends the specified punitive action back to the user device
104 via a continuation message (CM) 212. Such a continu-

60 ation message (CM) 212 is used to impose punitive action on
a user device 104 and contains "GC_DISABLED" action
values for the USAGE STATUS fields of all tags TAG_
INST_SWn in the tag table 210 that are in violation of the

to instruct the guardian center 103 (FIG. 2) how to handle
usage supervision for the various instances of software
111-114 produced by the software vendors 101. That is, the
software vendors 101 can provide the instances of software
111-114 to 104-107 (for a fee for example). To enforce use
restrictions on those instances 111-114, the software ven- 65

dors 101 can create the policies POLICY(TAG_INST_
SW) for the instances 111-114 and can provide these poli-

policy POLICY(TAG_INST_SW).
Note that in the preferred embodiment, if at least one tag

TAG_INST_SW violates the usage supervision policy
POLICY(TAG_INST_SW) or is found to exist in the

IPR2020-00660 Page 00047

US 6,697,948 Bl
57

compromised tag list in the tagged software database 138
(FIG. 9) then punitive action is specified in step 418 and is
enacted in step 420 without further continued processing. In
an alternative embodiment, punitive action can be specified
for each compromised or policy-violating tag TAG_INST_
SW in step 418 and processing may be directed to continue
to step 414.

As an alternative treatment of tagged software, the above
tag processing can occur on only a portion of the tag table.
For example, processing may be done only on those tags for
which the user device 104-107 (i.e. the supervising program
209 on the user device) is requesting access (i.e., the
instance(s) of software attempting to be used). In this case,
the continuation message 212 would specify continued or
punitive action only for instances of software associated
with the tags that are processed at the guardian center 103
(FIG. 2).

As another alternative embodiment, no tag processing at
all need take place for software purchased for unlimited use,
thus eliminating the activities associated with step 372 (FIG.
12). Instead, only the HEADER_TAG_TABLE needs to be
verified. In this case the HEADER_TAG_TABLE (top row
in FIG. 6) includes the ID_TAG_TABLE and event history
(FIG. 6). In this embodiment, each tag 120 includes an
ID_TAG_TABLE in addition to HASH_SW, NAME_SW
and NUM_INST _SW. The ID_TAG_TABLE value may
be written into the tag 120 (Column 1) at the time of
purchase and should be an argument to the hash function in
step 153 in FIGS. 3A, 3B, and 3C resulting in HASH_
INST_SW. Since ID_TAG_TABLE includes ID(SP)
209-A and since ID(SP) 209-A is based on a rarely dupli
cated value including, for example, the microsecond value
time when the device 104 is first powered up, each
ID_TAG_TABLE value should occur on only one physical
device in the absence of piracy.

Piracy, in the form of copying the disk image, may cause
a single ID_TAG_TABLE value to occur on several physi
cal devices (creating "twins"), but the LAST_ CALLUP _
TIME field in the HEADER_TAG_TABLE of the device
104 and the CALLUP _TIME in the CALLUP _RECORD

58
USAGE STATUS column for that untagged software is set
to UNTAGGED. This UNTAGGED_SW tag entry is pref
erably created during the installation or first use of the user
created software and the fingerprinting process is preferably

5
performed by the user device 104 upon first detection of
untagged software as explained with respect to FIG. 7.

In FIG. 13A, if the verification program (VRP) 315
detects an untagged entry in the tag table 210 in step 414,
step 415 is executed. The processing of step 415 obtains
each fingerprint list from the fingerprint table 126 which was

10 transferred to the guardian center 103 in step 410. The
fingerprint table 126 consists of a list of fingerprints for each
untagged instance of software. The verification program
(VRP) 315 matches each fingerprint list Xi in the fingerprint
table 126 against every fingerprint list Yj in the fingerprint

15 data structure 137 in the GCDB 300 using general-location
fingerprint checking, as explained above. If more than a
specified number of matches are found between fingerprint
lists Xi and Yj, then the guardian center has detected the use
of infringing software and processing proceeds to step 420

20 ;g;r~~~;i~~~~r:~i~~~! p~=fl~~;~ ~~~ s:iit!a~~e i::1::;i~~
who creates the non-infringing versions of the infringing
software may also be notified.

It is computationally expensive to compare each list of
fingerprints Xi against every fingerprint list in the guardian

25 center and since this is the most expensive operation in the
call-up, one embodiment accomplishes this somewhat dif
ferently. In this embodiment, a fingerprint list called an
Inverted Guardian Fingerprint Table is constructed which
contains all of the fingerprints of all the infringing software,

30 but without duplicate fingerprints. Using this Inverted
Guardian Fingerprint Table, the guardian center 103 exam
ines each list Xi and determines how many fingerprints in
this list match fingerprints in the Inverted Guardian Finger
print Table (stored as fingerprint data structure 137). If more

35 than a specified number of matches are found, then a
detailed check is made of Xi against each Yj, to determine
if a close match in the number of fingerprints occurs. If step
415 does not detect any fingerprint lists that match, step 419
is processed to determine if any punitive action has been in the authentication database 138 (FIG. 9) in the guardian

center 103 (FIG. 2) will fail to match at call-up time, and so
the verification of HEADER_TAG_TABLE will fail. This 40

defined from either of the earlier steps 411 or 412. If so,
processing proceeds to step 420 as previously described.

will cause the guardian center 103 to take punitive action if
two call-up messages are sent from two identically config
ured devices 104-107.

Further, the two of devices 104-107 cannot try to share
the same call-up procedure, because their HEADER_
TAG_TABLEs will differ due to the HASH (EVENT_
HISTORY) field in each of their tag tables 210. Since that
hash function value is sent in the continuation message 212,
only one of the devices 104-107 will be able to properly
process that continuation message 212. In the case where
two devices are acting in duplicate, the supervising program
209 is thus able to recognize the attempted duplication and
to take punitive action. Therefore, each ID_TAG_TABLE
value can be on or associated with only one device 104--107
or a call-up failure will occur. When a tag includes
ID_TAG_TABLE, the supervising program 209 on a
device 104--107 will allow the instance of software 111-114
associated with that tag 120 to be used only if the
ID_TAG_TABLE value in the tag 120 matches that on the
proper device. As a result, each instance of software 111-114
will be used on only one device 104-107 and that device will
have an ID_TAG_TABLE value that matches the
ID_TAG_TABLE value in the tag 120.

If no punitive action is defined in step 419, step 421 is
processed. This step handles all tags TAG_INST_SWn that
are known to the guardian center 103 to be pay-per-use tags.
That is, the guardian center 103 can maintain within the

45 tagged software database 138 (FIG. 9) a list of all instances
of software 111-114 that are to be accounted for on a
pay-per-use basis. Step 421 examines the tag table 210 for
any such tags (Column 1) and upon detection of one or more
pay-per-use tags, step 421 causes the guardian center to send

50 accounting information (not shown) to the software vendor
101 concerning the usage characteristics of that pay-per
view or pay-per-use instance 111-114. The RUN COUNT or
USE TIME fields of a tag entry in the tag table 210 can be
used to determine pay-per-use statistics. If a pay-per-use tag

55
is expired, the USAGE STATUS field for the tag TAG_
INST _SWn for that instance of software in the tag table 210
is set to "GC_DISABLED". This can be done by preparing
a disable action DISABLE(TAG_INST_SW) for the tag.
This disable action can be incorporated into the continuation
message 212, as will be explained shortly.

60 After pay-per-use processing in step 421 is complete, step

In step 414, the verification program (VRP) 315 deter
mines if any entries exist in the tag table 210 for untagged
instances of software. An untagged instance of software 65

installed on a user device 104-107 is indicated in the tag
table 210 by a special tag UNTAGGED_SW and the

422 creates a continue action CONTINUE(TAG_INST_
SW) for every fully verified and unexpired tag TAG_
INST_SW in the tag table 210. This continue action will be
incorporated into the continuation message (CM) 212.

In step 423, the verification program 315 prepares a
continuation message (CM) 212 to be returned to the user
device 104. The continuation message (CM) 212 contains

IPR2020-00660 Page 00048

US 6,697,948 Bl
59

several fields. A TIME field indicates the current time from
clock 304 and a ID TAG TABLE field indicates the
unique identification of the tag table 210 originally sent to
the guardian center 103 in step 410 of the call-up processing,
as well as an encoding of the event history at the time of the
call-up HASH (EVENT_HISTORY). An ACTIONS field
contains a list of actions ACTIONS=(ACTIONSl,
ACTIONS2, ... ACTIONSN) selected from the a list of
available actions for a particular user device's 104 super
vising program (SP) 209. A hash function value is also
included and is computed on the actions HASH(ACTIONS).
Finally, a digitally signed value on the entire contents of the
continuation message 212 is included to ensure that the
continuation message 212 cannot be forged by a site or host
on network 100 posing as a guardian center 103. Preferably,
the signed value appears as follows:

SIGN_GC(TIME, ID_TAG_TABLE,HASH(ACTIONS),HA
SH(EVENT _HISTORY))

Once all of the fields of the continuation message (CM)
212 are complete, the verification program 315 securely
sends or transmits the continuation message (CM) 212 back
to the supervising program (SP) 209 within the user device
104 that initiated the call-up in step 410. In one embodiment,
this may use a public key provided by the device upon
call-up. If a pirate sets up two devices that have the same
public key, only the one device having the correct event
history will be able to process the continuation message 212
according to this embodiment of the invention.

Finally, in step 425, the guardian center 103 creates a
call-up record CALL-UP _RECORDn associated with the
call-up procedure. The guardian center 103 appends a ref
erence to this call-up record CALL-UP_RECORDn to the
tag data structure 320 (FIG. 10) associated with this TAG_
INST_SW. A reference is either a memory pointer or a
unique identifier of the CALL-UP RECORD. The contents
of the call-up record are discussed above with respect to
FIG. 10.

An example of the usefulness of this aspect of the
invention will highlight some of its features. Suppose, for
example, a user 213 purchases a one year license to use an
instance of software 111-114, and that after that one year
period has expired, the user 213 does not renew the license.
Since the user 213 does not renew, the software vendor 101
desires to disable the instance of software 111-114 for which
the user 213 is no longer maintaining a license. Using this
invention, the vendor 101 can simply set the policy POLICY
(TAG_INST_SW) at the guardian center 103 associated
with that instance of software 111-114 to disable the
instance upon the next call-up to the guardian center 103
from the user device 104 equipped with the instance
111-114. In this manner, dynamic usage supervision is
provided without requiring the user 213 to turn in his copy
of the instance of software 111-114. If the user 213 later
desires to renew the license, the vendor 101 merely alters the
policy POLICY(TAG_INST_SW) at the guardian center
103 and the next call-up will update the tag table 210 in the
user device 104 with a "CONTINUED" status tag TAG_
INST_SW for that instance 111-114.

The various components of the continuation message CM
212 prepared by the guardian center GC 103, and the above
mentioned digital signature incorporated into the CM 212
serve several important purposes in embodiments of the
invention. The continuation message 212 instructs the
receiving user device's 104 supervising program 209 how to
update the USAGE STATUS column in the device's tag
table 210 and which punitive actions, if any, to enact. The
identifying hash function and other values in the CM 212
(FIG. 13B, 423) make it virtually impossible for a dishonest
user 213 to use any continuation message 212 other than the

60
one actually produced by the guardian center 103 in
response to the current call-up from the user device (i.e., one
of 104--107), for successful completion of the required
call-up procedure. Also, an adversary agent or host cannot

5
cause damage such as denial of service to a user device (i.e.,
104), by sending an illegitimate CM 212 to the device 104.

As described in the above preferred embodiments, the
invention provides a mechanism to detect, control and
supervise usage of instances of software 111-114 that are
either created and distributed (i.e., sold) from software

10 vendors 101, or instances that are pirated and illegally
distributed with attempted access by user device 104. By
providing an unforgeable and authentic tag TAG_INST_
SW that uniquely identifies each instance of software
111-114, usage supervision is achieved. In the preferred
embodiment, same location fingerprinting is used to verify

15 that TAG_INST_SW is properly associated with a software
instance INST_SW.

Fingerprinting may be used for slightly different purposes
as well. One such purpose is to check the textual integrity of
the operating system 207. This can be done by having one

20 portion of a program check another portion or another
program by the aforementioned fingerprinting process. This
prevent tampering with, for example, the supervising pro
gram 209 or the operating system 207. In another
embodiment, an external hardware device such as an elec
tronically programmable read-only memory can perform

25 this check when the machine or device 104-107 is powered
on. In either case, the checking program can compute a hash
fingerprint as explained above on some portion of the
operating system program 207, for example, and will cause
the device to fail if it finds a mismatch in fingerprints.

30 Fingerprinting may also be used by the operating system 207
to check the supervising program 209 text. The supervising
program 209 in turn can use the hash of the event history for
verification or authenticity checking.

This operates, for example, as follows: the supervising
program 209 can update the hash of the data tag table 210

35 after each update using an incremental hash function method
such as MDS. Periodically, before updating the tag table 210
with a new event, the supervising program 209 can verify
that the hash function value it has is equal to the hash of the
tag table. When any of these checks fail, the supervising

40 program 209 or operating system 207 can take punitive
action. In this manner, aspects of the invention can be used
to detect device or software tampering of software which
operates as the invention itself.

A further use of fingerprinting is to verify that specific
vendor software submitted to the tag server 102 with a

45 request for tags 120 for instances of that software 111-114,
is not an illegitimate copy or derivative of another legitimate
vendor's software SW. Such an action, were it possible,
would permit a pirating vendor to distribute another legiti
mate vendor's software SW with associated tag-server pro-

so duced authentic tags 120. This aspect of the invention
prevents this form of piracy by fingerprinting the newly
created software and using general location fingerprinting to
compare the new software against existing software to see
whether the newly submitted vendor software is suspi-

55 ciously similar to legitimate vendor software SW.
An instance of software 111-114 may have its tag checked

either when it is installed or when it is first used. Tags may
also be checked (i.e. verified via either hash functions,
signatures, or call-up procedures) later. One reason for
waiting until the software is first used is that the software

60 may be large, so that checking may entail less overhead
when the software is run than when it is first installed.

Because of failures, the state of a device may have to be
restored to a previous state. In this case, a user 213 must
contact the Guardian Center 103 to warn that an old

65 HEADER_TAG_TABLE may need to be sent. Suspicious
uses of this privilege can be tracked easily at the guardian
center 103.

IPR2020-00660 Page 00049

US 6,697,948 Bl
61

FIG. 14 illustrates data structures used by an alternative
embodiment of this invention which can eliminate the need
for Guardian Center call-ups for software that produces
shared data files. An example is a word processing program.
Acquaintances often exchange word processing files and

5
may exchange the word processing software as well.
Typically, the first case is permitted whereas the second case

62
reduce the needed communication with the guardian center.
The disadvantage is that each software instance must be
different (as opposed to only the tag's being different) and
cannot be moved from device to device. In this embodiment
device identifier is constructed from a processor identifier if
available (some processors such as a Pentium III built by
Intel Corporation have a processor identifier) or preferably
from the supervising program identifier, which may incor
porate a processor identifier as described above. Each soft-
ware instance incorporates the identifier of the device that is
to use that software instance in a test inside the software
instance's code. Such a test may be expressed in the C
language for example as an "if statement." The test com
pares the incorporated identifier with the device identifier.
The software, upon executing, performs the test. If the

of exchanging software applications is not. To prevent such
piracy, an embodiment of the invention can change the
software application program to write the TAG_INST_SW
120 associated with that program, as well as, for example, 10

the ID_TAG_TABLE, and the time of last access in an
invisible location of each shared file, as shown in data
structure 600 in FIG. 14. The program also may write the
TAG_INST_SW and time of last access into the TAG
TABLE 601, also shown in this figure.

The data structure 600 stored in the invisible location
(invisible to the user, that is) in a shared software data file
(i.e. a document for example, referred to herein as an SSD)
may be placed in a comment section of the shared software
data SSD file and can be accompanied by an unaliasable

20 hash function which preferably uses the three arguments:

15 comparison succeeds, then the device may use the software
instance. If the comparison fails, the device may not use the
instance and may inform the supervising program to take
punitive action. A would-be pirate may modify the program

TAG_INST_SW, ID_TAG_TABLE and time of last
access 600.

FIG. 15 illustrates the steps of an embodiment of the
invention that provides the above noted software infringe
ment protection mechanisms. In step 700 of FIG. 15, when 25

supervising program SP 209 on a first user device (i.e. user
device 104) having an ID_TAG_TABLE X detects an
access to a shared software data SSD, the supervising
program 209 examines shared software data SSD and
records within a predetermined location within the shared 30

software data SSD that shared software data SSD was
accessed by the software instance (i.e. one of 111-114)
having a TAG_INST_SW Tat a specific time. Then, in step
701, when an instance of software (potentially on another
machine or another user device (e.g., 105) attempts to 35
execute and access the shared software data file SSD, the
supervising program 209 on the user device 105 senses the
existence of data structure 600 in the shared software data
file SSD and obtains the tag T from the SSD and checks the
tag table 210 on user device 105 (the device obtaining the
shared file, but not necessarily the creating device of the file 40

SSD) to see whether the tag Tis in the tag table 210. If the
tag T does not exist, then the instance of software being used
on the secondary device 105 (the device obtaining the shared
data) to access the shared software data SSD has not been
copied, and thus access is allowed to proceed to step 703. 45

Alternatively, if in step 701 the tag T does exist in the data
structure 600 stored within the shared software data SSD,
then processing proceeds to step 702. In step 702, the
supervising program 209 on the secondary device 105 tests
whether the instance of software (e.g. one of instance 50

111-114 on the secondary device 105) associated with the
tag T wrote the shared software data file at the time indicated
in the data structure 600 embedded in the SSD. If not, piracy
has occurred and the supervising program 209 performs
punitive action on the secondary user device in step 704. If 55
step 702 determines that the current instance of software
111-114 on the secondary device 105 did access the shared
software data SSD as indicated by the information in the
data structure 600 embedded in the SSD, then processing
proceeds to step 703 where access to the shared software
data is allowed. Note that this embodiment is advantageous 60

by requiring no Guardian Center call-ups, other than,
perhaps, one at the time of the purchase or installation of the
software instance 111-114 or for purposes of detecting
infringing software.

In another embodiment of this invention, different soft- 65

ware instances of the same software differ depending on a
device identifier. The advantage of such an embodiment is to

so that the program doesn't check the device identifier. This
is analogous to making tagged software appear as if it is
untagged and therefore infringing. Software whose device
test has been modified or removed may be detected by the
fingerprint-based mechanism described in FIG. 13A, start
ing with step 414 in FIG. 13A.

A variant on this embodiment is that the vendor sends
both the device identifier and a signed digital signature of the
hash of the software instance incorporating the device
identifier.
This can be computed as follows:

SIGN_ VENDOR(HASH_INST_SW),

where HASH_INST_SW=HASH(SW, DEVICE
IDENTIFIER)
Here, SIGN_ VENDOR is the digital signature of the ven
dor and the HASH_INST_SW is computed from the con
tents of the software (identical for all instances) plus the
incorporated DEVICE_IDENTIFIER. The software
instance incorporating the device identifier would preferably
place that identifier at the beginning or at the end of the
contents of the software in order to make the hashing process
inexpensive. A second test verifies that the digital signature
SIGN_ VENDOR is authentic and a third test verifies that
the sent HASH_INST_SW is equal to the value resulting
from hashing the software instance. Both tests are performed
by the supervising program on the user device. If either the
digital signature is not authentic or HASH_INST_SW has
a different value from the hash of the received software
instance, then punitive action is taken by the supervising
program.

In the above descriptions, the tag server 102, the guardian
center 103 and the vendor 101 have been described sepa
rately. Alternative embodiments are possible in which these
roles can be unified. For example, a single site or networked
host or server may serve as both the guardian center 103 and
the tag server 102. Or a software vendor 101 may serve all
three roles. Further still, even if each process or role is
separated, some of the functions allocated to one component
(i.e. tag server, guardian server, vendor) in the embodiments
above may be performed by other components. For example,
same-location fingerprinting may be performed at the ven
dor 101 instead of at the tag server 102.

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention as
defined by the appended claims.

IPR2020-00660 Page 00050

US 6,697,948 Bl
63

What is claimed is:
1. A system for supervising usage of software comprising:
a software vendor producing instances of software;

64
10. The system of claim 9 wherein the supervising pro

gram verifies that the software instance associated with a tag
satisfies a same location fingerprint check against the at least
one fingerprint included in the tag associated with the a tag server producing a plurality of tags, one tag per

instance of software, each tag uniquely identifying an
instance of software with which it is associated; and

5 instance of software.

a user device receiving and installing an instance of
software and securely receiving a tag, the tag being
uniquely associated with that instance of software and

10
unrelated to the user device, the user device including
a supervising program which detects attempts to use the
instance of software and which verifies the authenticity

11. The system of claim 10 wherein the same location
fingerprint check is performed by the supervising program at
least one time of before, during, and after use of the instance
of software.

12. The system of claim 9 wherein each tag further
includes at least one list of locations containing values from
which the at least one fingerprint is computed and the
supervising program verifies that the software instance asso
ciated with each tag satisfies a same location fingerprint of the tag associated with the instance of software

before allowing use of the instance of software.
2. The system of claim 1, wherein the supervising pro

gram on the user device verifies the authenticity of the tag
and maintains the tag in a tag table and maintains the
instance of software if the tag is authentic and rejects the
instance of software if the tag associated with the software

15 check against the at least one fingerprint associated with the
software at locations specified in the at least one list of
locations.

is not authentic. 20

3. The system of claim 2, wherein the supervising pro
gram verifies a hash function value in the tag to determine
if the tag is authentic and is properly associated with the
instance of software.

4. The system of claim 2 wherein the tag is digitally 25
signed and the supervising program verifies the authenticity
of the tag by verifying a digital signature of the tag.

5. The system of claim 1 wherein each of the plurality of
tags created by the tag server comprises at least one of a
name of software, a unique number of an instance of 30
software and a hash function value on portions of an instance
of software.

6. The system of claim 5 wherein the unique number of
the instance of software is selected from a sparse set of
numbers.

35
7. The system of claim 5 wherein each tag further com

prises a unique identifier of the supervising program.

13. A system for supervising usage of software compris-
ing:

a software vendor producing instances of software;

a tag server producing a plurality of tags, one tag per
instance of software, each tag uniquely identifying an
instance of software with which it is associated; and

a user device receiving and installing an instance of
software and securely receiving a tag uniquely associ
ated with that instance of software, the user device
including a supervising program which detects
attempts to use the instance of software and which
verifies the authenticity of the tag associated with the
instance of software before allowing use of the instance
of software, and whenever any data file is accessed by
the instance of software, information associated with
the instance of software performing the access i stored
in a location associated with the data file.

14. The system of claim 13 wherein the information
associated with the instance of software is the tag associated
with the instance of software. 8. The system of claim 7 wherein the supervising program

verifies that the unique identifier of the supervising program
in a tag is the same as an identifier of the supervising
program on the user device.

9. A system for supervising usage of software comprising:

15. The system of claim 13 wherein the information

40
associated with the instance of software is the time of
modification performed by the instance of software.

a software vendor producing instances of software;

a tag server producing a plurality of tags, one tag per
instance of software, each tag uniquely identifying an
instance of software with which it is associated, each
tag is associated with at least one fingerprint computed

16. The system of claim 13 wherein the information
associated with the instance of software performing the
access is written to a secure location which the supervising
program alone can access.

45 17. The system of claim 16 wherein the supervising

on portions of the instance of software associated with
the tag; and

program verifies that when an instance of the software
attempts to access a data file having associated information
stored in the location associated with that data file, the
supervising program verifies that the associated information

50 stored is information associated with the instance of soft-a user device receiving and installing an instance of
software and securely receiving a tag being uniquely
associated with that instance of software, the user
device including a supervising program which detects
attempts to use the instance of software and which
verifies the authenticity of the tag associated with the 55
instance of software before allowing use of the instance
of software.

ware currently attempting access.
18. The system of claim 16, wherein the supervising

program uses an unaliasable hash function to verify the
associated information stored in the location associated with
the data file for which access is currently being attempted.

* * * * *

IPR2020-00660 Page 00051

