One-Way

Hash Functions

Using cryptographic algorithms for hashing

attern matching is usually a prob-
lem more suited for elementary
programming classes than Dr.
Dobb’s Journal. But what if the
strings are 100 Kbytes large? What
if you have to search through a million
of them looking for matches? And what
if you have to try and match 1000 of
these strings each day? With a simple
string comparison algorithm, you will
have to compare one billion strings, each
requiring from 1 to 100,000 individual
byte comparisons. And don't forget the
hellacious storage and retrieval require-
ments. There has to be a better way.
Probabilistic algorithms are useful for
jobs like this. They work — most of the
time — and they have been applied to
finding large random prime numbers,
solutions to particularly convoluted
graph theory problems, and pattern
matching. The algorithm I am going to
present only fails in one out of 2!%
(that's about 3 x10%) tries. There isn't
a piece of commercial software on the
market that fails less often. You're much
more likely to get a disk error reading
the program, or a power surge that fries
your whole system, than you are to have
this algorithm fail. By the time this al-
gorithm fails, our species will most like-
ly have long killed itself off, or at least
mutated into some different species that
has better things to do with its time than

Bruce bhas an MS in Computer
Science and has worked in computer

and data security for a number of

public and private concerns. He can
be reached at 730 Fair Oaks Ave.,
Oak Park, IL 60302.

148

Bruce Schneier

- o
sit around comparing a million 100-
Kbyte strings.

We're going to take the computer ana-
log of fingerprints; something small that
uniquely identifies something much larg-
er. Hash functions, which are functions
that take a large input string and pro-
duce a smaller output string, perform
the task nicely.

Hash Functions

One of the simplest hash functions is
to take the XOR of every 128-bit block
in the file, as in Example 1. This works
well with random data; each 128-bit
hash value is equally likely. However,
with more rigidly formatted data, such
as ASCII, the results are less than ide-
al. In most normal text files, the high-

order bit of each byte is always 0.
Therefore, 8 bits in the hash will always
be 0. This means that the effective num-
ber of possible hashes is far less than
2128 (or at least that each possible hash
value is not equally likely), and differ-
ent files are more likely to produce
identical hashes.

An easy way to get around this is to
roll the hash value 1 bit after each XOR.
This way each bit is more likely to be
throughly randomized by the time the
entire file has been hashed, regardless
of how the data looks beforehand. The
program in Example 2 rolls each long-
word 1 bit to the right.

If the hash function is only going to
deal with ASCII data, a further im-
provement might be to ignore spaces.
This way, “HELLO WORLD” hashes to
the same value as “HELLOWORLD.” Of
course, it also means that “The house
holds one at seven bells” hashes to the
same value as “The household son eats
even bells,” but nothing is perfect.
Maybe the program should count the
first space, but ignore any additional
ones. Additional modifications that ig-
nore punctuation and case might also
be useful, or they might be detrimen-
tal. It all depends on the type of data
involved.

These hash functions work great as
long as there isn’t a malicious user try-
ing to gum up the works. Creating a file
that hashes to a particular value is very
easy with any of these functions. It's on-
ly slightly harder with more complicat-
ed functions. Usually, all that is required
is to calculate the hash of any particu-
lar file, and then append a 128-bit string

Dr. Dobb’s Journal, September 1991

Dolby Exhibit 1017
IPR2020-00660
Page 00001

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

at the end of it to force the new file to
hash to whatever value you'd like.

In certain applications this problem
is very serious, but it can be solved by
using a “one-way hash function.” By
“one-way,” I mean that given an input
file, it is very easy to calculate the hash
value. However, given a particular hash
value, it is, for all practical purposes,
impossible to produce an input file that
hashes to that value. The function has
a trap door: It’s easy to go one way, but
hard to go back the other unless you
know the “secret.”

The MD5 Algorithm
In theory, any cryptographic algorithm
can be used as a one-way hash func-
tion. For example, the Digital Encryp-
tion Standard (DES) algorithm (see the
“C Programming” column, DD, Septem-
ber 1990), endorsed by the National Se-
curity Agency and used by countless
government agencies and business in-
terests, works quite well. Encrypt the
entire file using the DES block-chaining
mode, and the two final 64-bit e

blocks make up the hash. (ANSI X 9.9
suggests using only the last 32 bits of
the last encrypted block, but that seems
inadequate.) It is random, not reversible,
and every bit of the hash is dependent
on every bit of the input file. But in soft-
ware, DES is slow; the algorithm is not
at all optimized for this task. And even
worse, if the DES key is compromised,

then everyone knows the secret to the
trap door and the one-way property of
the hash function is lost.

An alternate algorithm, shown in List-
ing One (page 150), is called MD5. (List-
ing Two, page 151, is the header file for
MD5.) Cryptographer Ron Rivest of MIT
(he’s the “R” in the RSA public-key al-
gorithm) invented MD5 specifically as

We're going to take
the computer analog
of fingerprints;
something small that
uniquely identifies
something much
larger

a one-way hash function. His personal
needs for the algorithm revolve more
around secure digital signatures than
pattern matching, but we will come
back to that later.

MDS5 produces a 128-bit hash (or
“Message Digest,” hence the name) of
an input file. The algorithm was de-

Example 1: A simple bash function that uses the XOR of every 128-bit block in

the file

Example 2. Rollmg each Iongword 1 bn‘ to tbe ngbt

Dr. Dobb’s Journal, September 1991

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

signed for speed, simplicity, and com-
pactness on 32-bit architectures. It is
based on a simple set of primitive op-
erations (that is, LOAD, ADD, XOR) on
32-bit operands. The algorithm also
works on 8- and 16-bit microprocessors,
albeit significantly slower.

The heart of the algorithm is MD5Up-
date, which processes the input file in
512-bit chunks. performs the
basic MD5 algorithm. MD5nit kicks off
the whole process. MD5Final is pri-
marily concerned with the partial block
at the end of the input file (only the rare
input file can be divided exactly into
512-bit blocks). The final block is
padded with a single 7 and a string of
0s, with the last word reserved for a bi-
nary representation of the number of
bits in the original input file. After the
algorithm churns away, the resultant
hash is stored in mdContext.

It is straightforward to implement MD5
to solve the pattern matching problem
at the beginning of this article. First, cre-
ate and store a hash of each of the mil-
lion 100-Kbyte input strings. Each one
is only 16 bytes long, so you only need
16 Mbytes of storage space instead of
100 gigabytes. Every time you have a
new test string, compare its hashes with
those stored. Not only are the storage
requirements four orders of magnitude
smaller, you only have to make one 128-
bit comparison per string pair. You'll get
a false match every 10%” years or 50, so
you might want to add code that ex-
plicitly checks strings that hash to the
same value. I wouldn't even bother.

Putting One-Way Hash Functions to Work
One-way hash functions can be used to
detect viruses, which make their living
by surreptitiously modifying programs.
Numerous security programs take sim-
ple hashes called Cyclic Redundancy
Checks (CRCs). These programs hash
clean files, and then compare the stored
hash with a new hash of the file. If a
virus infected the file, its hash would be
different. The problem with most of
these virus-detection programs is that a
clever virus can make sure any virus-
infected file hashes to the same value
as the clean file. It would be harder to
do this with CRC fingerprinters than with
the simple hash programs listed earlier,
but it would still be possible. MD5
makes it practically impossible. Even if
the virus had complete knowledge of
the MD5 algorithm, it could not modi-
fy itself so that the infected program
would hash to the same value. All it
could do would be to randomly append
bits to the file and try to duplicate the
hash by brute force. But even if we al-
low the virus to try a million possible
hashes per second, it would take 10%

149

IPR2020-00660 Page 00002

HASH FUNCTIONS

years for it to successfully infect the file.
I'm willing to live with the possibility of
one successful virus infection on my sys-
tem between now and when the sun
goes nova.

As I mentioned, one-way hash func-
tions have uses in digital signatures. A
digital signature scheme is where one
party can “sign” a document in such a
way that no one except the signer could
sign the document, and anyone can ver-
ify that the signer actually did sign the
document. Most digital signature
schemes involve public-key cryptogra-
phy; they are computational nightmares
and often painfully slow. Speed in-
creases drastically if the digital signature
algorithm operates on a hash of the doc-
ument rather than the document itself.
Because the chances of two documents
having the same hash are only 1 in 2'*,
anyone can safely equate a signature of
the hash with a signature of the docu-
ment. If a conventional hash function
were used, it would be a trivial matter
to invent multiple documents that
hashed to the same value, so that any-
one signing a particular document
would be duped into signing a multi-
tude of documents. The protocol just
could not work without one-way hash
functions.

One-way hash functions can also be
used by an archival system to verify the
existence of documents without storing
their contents. The central database

Someone could
copyright a
document but still
keep it secret

could just store the hashes of files. It
doesn’t have to see the files at all; users
submit their hashes to the database, and
the database time stamps the submis-
sions and stores them. If there is any
disagreement in the future about who
created a document and when, the data-
base could resolve it by finding the hash
in its files. Enhancements to this scheme,
such as having the database use a dig-
ital signature protocol and sign a con-
catenation of the hash and a date/time
code, would make this protocol even
more useful. This has vast implications
with regard to privacy: Someone could

copyright a document but still keep it
secret. Only if he wished to prove his
copyright would he have to make it
public.

The source code has been success-
fully compiled and run under MS-DOS,
Unix, and Macintosh OS. Because of
space constraints, I've included with this
article only the C source that implements
the MD5 algorithm; the include files,
makefiles, and sample test routines are
available electronically as described on
page 3. RSA Data Security Inc. has put
the MD5 algorithm into the public do-
main so that anyone can use it. Their
only requirement is that any copies of
their source code or documentation (but
not different implementations of the
mathematical algorithm) retain the copy-
right notice at the beginning of Listing
One. Rivest cautions that while the al-
gorithm improves over MD4, it is still
new and has not been completely cryp-
toanalyzed. It is always possible that
some clever person will find a way to
break it, but over the years as more
clever people try and fail, confidence
in the algorithm will grow.

DDJ

Vote for your favorite feature/article.
Circle Reader Service No. 5.

e N T il e ...4..--“

Listing One

(UINT4) (ac) ; \
(@) += {b): \

/

md5.c -- the source code for MDS routines

*s RSA Data Security, Inc. MDS Message-Digest Algorithm

** Created: 2/17/90 RLR
*+ Revised: 1/91 SRD,AJ,BSK,JT Reference C Version
* Revised (for MD5): RLR 4/27/91

(a) += (b}; \

seetz

1

#define GGla, b, ¢, d, x, s, ac} \
{fa) += G ((b), (c), (d)) + (x) + (UINT4)(ac); \
(a) = ROTATE_LEFT ((a), (s)); \

(a) = ROTATE.LEFT ((a), (s)); \

}
#define HH{a, b, ¢, 4, x, s, ac} \

Copyright (C) 1990, RSA Data Security, Inc. All rights reserved.
*+ License to copy and use this software is granted provided that
« it is identified as the "RSA Data Security, Inc, MD5 Message-

* Digest Algorithm® in all material mentioning or referencing this
software or this function.

License is also granted to make and use derivative works

provided that such works are identified as *derived from the RSA
*» Data Security, Inc. MD5 Message-Digest Algorithm® in all

*+ material mentioning or referencing the derived work.

#¢ RSA Data Security, Inc. makes no representations comcerning

s+ either the merchantability of this software or the suitability
#+ of this software for any particular purpose. It is provided "as
*+ ig" without express or implied warranty of any kind.

* These notices must be retained in any copies of any part of this
#+ documentation and/or software.

't
#include "md5.h"

/* forward declaration */
static void Transform ();

static unsigned char PADDING[64] = {
0x80, 0x00, 0x00, O0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xCO, 0x0O

3

/# F, G, H and I are basic MD5 functions ¢/ UINT4 inl16];

#define F(x, v, z) (((%) & (¥)) | ((x) & (2))) P mt’.“ i

#define G(x, y, 2) (((x) & (2)) | ((y) & (72))) taned-int £ i

fdefine Hix, vy, 2) (() ~ (y) ~ {z)) NI heinr

fdefine I(x, v, z) (ly) * ({x) i (72))) /+ compute number of bytes mod 64 %/

/% ROTATE LEFT rotates x left n bits ¢/
#define ROTATE LEFT(x, n) (((x) << (n)) i ((x) >> (32-(n}))))

/* FF, GG, HH, and Il transformations for rounds 1, 2, 3, and 4 %/
/* Rotation is separate from addition to prevent recomputation #/
#define FF(a, b, ¢, d, x, 8, ac) \

gzt

>*

{(a) += F ((b), (), () + (x) +

{(a) += H ((b), (c), (d)) + (x) + (UVINT4)(ac); \
{a) = ROTATE LEFT ((a), (s)); \
(a) += (b); \

}
§define II(a, b, ¢, d, x, s, ac) \
{(a) += I ((b), (e}, (d)) + (x) + (UINT4)(ac); \
{a) = ROTATE LEFT ({a), (s)); \
(@) += (b}; \
}

/* The routine MD5Init initializes the message-digest context
mdContext. All fields are set to zero. ¢/

void MD5Init (mdContext)
MD5_CTX *mdContext;

{
mdContext->1[0] = mdContext->i(1] = (UINT4)0;

/* Load magic initialization ctnstants.
®/ |
mdConitext->buf [0] = (UINT4)0x67452301;
mdContext->buf (1] = (UINTY)Oxefcdab8S;
mdContext->buf (2] = (UINT4)0x98badefe;
mdContext->buf [3] = (UINT4)0x10325476;
]

/* The routine MD5Update updates the message-digest context to
account for the presence of each of the characters inBuf([0..inLen-1]
in the message whose digest is being computed. */

void MDSUpdate (mdContext, inBuf, inLen)

MD5_CTX *mdContext ;

unsigned char *inBuf;

unsigned int inLen;

{

mdi = (int) ({mdContext->i[0] >> 3) & O0x3F);

/% update number of bits */

if ((mdContext->i[0] + ((UINT4)inLen << 3)) < mdContext->i[0])
mdContext->i[1]++;

mdContext->i[0) += ((UINT4)inLen << 3);

150

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

Dr. Dobb’s Journal, September 1991

y
LLL-;MJ_ it

IPR2020-00660 Page 00003

53

mdContext->i[1] += ((UINT4)inlen >> 29);
while (inLen--) {
/* add new character to buffer,
mdContext->in[mdi++] = #inBuf++;

increment mdi #/

/* transform if necessary #/
if (mdi == 0x40) {
for (i =0, &i = 0; i < 16; i+s, ii += 4)
in(i]l = (((VINT4)mdContext->in[ii+3]) << 24)
(((UINT4)mdContext->in[1i42]) << 16)
(((UINT4)mdContext->in[ii+1]) << B) |
((VINT4)mdContext->in[ii]);
Transform (mdContext->buf, in);
mdi = 0;
}
}
}

/* The routine MD5Final terminates the message-digest computation and
ends with the desired message digest in mdContext->digest(0...15]. */

void MD5Final (mdContext)

MD5 CTX *mdContext;

{
UINT4 in{[16];
int mdi;
unsigned int i, ii;
unsigned int padlLen;

/% save number of bits #/
in{14) = mdContext~->i(0];
in{15]) = mdContext->i(1];

/* compute number of bytes mod 64 #/
mdi = (int) ((mdContext->i[0] >> 3) & 0x3F):

/* pad out to 56 mod 64 */
padlen = (mdi < 56) 2 (56 - mdi) : (120 - mdi);
MDSUpdate (mdContext, PADDING, padlen);

/* append length in bits and transform */
for (i =0, i1'= 0; { < 14; i+s, ii += 4)
in[i] = (((UINT4)mdContext->in[ii+3]) << 24) |
({(UINT4)mdContext->in[ii+2]) << 16) |
(((UINT4) mdContext->in{ii+1]) << 8) |
((UINT4)mdContext->in(ii));
Transform (mdContext->buf, in);

/* store buffer in digest %/
for (i =0, i1 =0; L <d; ir+, ii s= Q) (
mdContext->digest (1i) = (unsigned char) (mdContext->buf[i] & OXFF);
mdContext->digest[ii+l] =
(unsigned char) ((mdContext->buf (i) >> 8) & OXFF);
mdContext->digest [1i42] =
(unsigned char) ((mdContext->buf (i} >> 16) & OXFF);
mdContext->digest [1i+3] = (unsigned char) ((mdContext->buf[i] >> 24) &
OXFF) ;
}

}

/* Basic MD5 step. Transforms buf based on in. %/
static void Transform (buf, in)

UINT4 sbuf;

UINT4 #in;

{
UINT4 a = buf(0], b = buf(ll, c = buf(2], 4 = buf(3);

/% Round 1 #/
#define S11 7
#define 812 12
#define 513 17
#define S14 22

FF

(& b, ¢, 4, in[0], $11, Oxd76aad78); /* 1 &/
FF (4, a, b, ¢, in[1], 812, OxeBc7b756); /* 2 */
FF (. e,/d, a, b, in{ 2], 813, 0x242070db); /* 3 %/
FF (b, ¢, 4, a, in| 3], 514, Oxclidceee); /* 4 %/
FF (a. b, ¢, 4, inl 4], 811, O0xfS57cOfaf); /* 5 */
FF (id, a. b, ¢, in[5], 812, 0x4787c62a); /* 6 %/
FF (¢, d, a, b, in[6], S13, 0xa8304613); /* 7 %/
FF (b, ¢, 4, a, in{ 7], 514, 0xfd469501); /+ 8 »/
FF (a, b, ¢, d, in{ 8], S11, 0x698098d8); /* 9 %/
PP (4, a, b, ¢; In[9], 512, Gx8b4df7af); /+ 10 */
FF (¢, d; a, b, in(10]), S13, Oxff£fSbbl); /» 11 */
PF (b, ¢, 4, a, in[11], 514, 0xB9S5cdTbe); /* 12 »/
FF (a, b, c, d, in(12], S11, Ox6b901122); /* 13 %/
FF (d, &, b, ¢, in[13], S12, OxEd987193}; /* 14 %/
FF (¢, d, a, b, in[14], 813, Oxa679438e}); /% 15 #/
FF (b, ¢, &, a, in[15], 514, 0x49b40821); /* 16 %/
/% Round 2 #/

#define 821 5
#define 822 9
#define S23 14
#define 524 20
a. b, e, 4, inl 1], 521, ‘Ox£6182562); /* 17 #/
d, a, b, ¢, in[6], 522, 0xc040b340); /% 18 »/
¢, d, a, b, in[11], 823, Ox265e5a51); /* 19 #/
b, c, d, a, inl 0], 524, OxefSbéc7aa); /* 20 */

#define 833 16

#define 834 23

&0, 0,
&, @, b g,
cyidi @y by
b, ¢, 4, a,
a, b, ¢; 4,
d, a, b, c,
o, d; ‘a; b,
b, &, ‘4, a,
b, 16,
4, a, b, ¢,

in[5], 831, 0xfffa3942);
in[8], $32, 0x8771f681);
in(11], 533, 0x649d6122);
in[14], s34, 0xfde5380c);
in[1], 831, Oxadbeeadd);
in[4], 832, Ox4bdecfa9);
in[7), 833, 0xf6bb4b60);
in[10], s34, Oxbebfbe70);
in[13], 831, 0x289b7ech);
in[0], S32, Oxeaal27fa);
¢, d, a, b, in[3], 833, Oxd4ef3085);
b, c, 4, a, in[6], S34, 0x4881405);
a2, b, ¢, d, in[9], S31, 0xd9d4d039);
d, a, b, ¢, in[12], 832, Oxe6db9%e5);
¢, d, a, b, in(15], s33, 0x1fa27cf8);
b, ¢, d, a, in[2], 834, Oxcdac5665);

HH

EREHECEEEEEEEEES

/* Round 4 */

#define 541 6

fdefine 842 10

#define 543 15

#define s44 21
II (a, b, c, 4, inl 0], 541, 0x£4292244);
II (d, a, by ¢, inl 7], 542, 0x432aff97);
(c, 4, a, b, in[14], S43, 0xab9423a7);
(in{ 5], s44, 0xfc93a039);
(a, by c, d, in{12], S41, 0x655h59¢3);
(d, a, b, ¢, in[3], S42, 0xBf0ccc92);
(in[10], s43, Oxffeff47d);
(in{ 1], S44, 0x85845dd1);
{a b, ¢, d, in{ 8], S41, Ox6faB7edf);

II (d, a, b, ¢, in[15], 542, Oxfe2ce6el);
(
(
(
{
(
£

in{ 6], 543, 0xa3014314);
in{13], s44, Ox4e0B1lal);
in(4], 541, 0xf7537e82);
d, a, b, ¢, in[11], s42, Oxbd3af235);
i . 543, 0x2ad7d2bb);
inl 9], S44, Oxeb86d391);

buf (0] += a;

buf(1] += b;

buf (2] 4= c;

buf (3] += d;
}

/%
/%
/%
i*
/%
/*
/%
/%

/
* End of mdS.c

Listing Two

End Listing One

o

*¢ Created: 2/17/90 RLR

#% Revised: 12/27/90 SRD,AJ,BSK,JT Reference C version Lol

#* Revised (for MD5): RLR 4/27/91

“a% md5,h -- header file for implementation of MDS .-
. * RSA Data Security, Inc. MDS Message-Digest Algorithm -

"

/* typedef a 32-bit type ¢/
typedef unsigned long int UINT4;

/* Data structure for MD5 (Message-Digest) computation #/

typedef struct
UINT4 1[2];
UINT4 buf(4];
unsigned char in{64];
unsigned char digest [16];
} MD5.CTX;

void MD5Init ();
void MDSUpdate () ;
void MD5Final ();

/* number of bits handled mod 2764 */

/* actual digest after MD5Final call #/

/* scratch buffer #/
/* input buffer »/

/
s+ End of mdS.h

C Language
#27

Q: What is the “ANSI C Standard”?

a, b, c, d, in[5], 521, Oxd62£105d); /*
d, a, b, ¢, in(10], 822, 0x2441453); /*
¢, d,°a, b, in[15], S23, OxdSale6Bl); /*
a, in[4], 524, Oxe7d3fbe8); /*
a; b, ¢, d; in[9], 821, Ox2lelcde6); /*
d, a, b, ¢, in(14], S22, 0xc33707d6); /*
¢, d, a, b, inl 3], $§23, 0xf4ds0d87); /*
b, o, d, a, in[8], S24, Ox455alded); /#
a, b, c, d, inf13], 8521, Oxa%e3e905); /*
d, a, b, ¢, in{ 2], 822, OxfcefadfB); /*
in{ 7], 823, 0x676£0249); /+
. in[12], 524, 0xB8d2adcBa); /+

8883383388338 888
o

(b, c;
/* Round 3 */

#define 831 4

fidefine 832 11

A: In 1983, the American National Standards Institute
commissioned a committee, X3]11, to standardize the C
language. After a long, arduous process, the committee’s work
was finally ratified as an American National Standard, X3.159-
1989, on December 14, 1989, and published in the spring of
1990. The Standard has also been adopted as ISO/IEC
9899:1990.

Copyright © 1991 Steve Summit

Dr. Dobb’s Journal, September 1991

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

151

IPR2020-00660 Page 00004

