
Dolby Exhibit 1017
IPR2020-00660

Page 00001

One-Way
Hash Functions

Using cryptographic algorithms for hashing

P
attern matching is u ually a prob
lem more uited for element.ary
programming cla ·e than Dr.
Dobbs Jou.mat. I3ut what if the
·trings are 100 Kbyres large? What

if you have to earch through a million
of them looking for matches? And what
if you have to try and match 1000 of
the e string each day? With a imple
string compari on algorithm, you will
have to compare one billion strings, each
requiring from 1 to 100,000 individual
byte comparisons. And don't forget the
hellacious storage and r trieval require
ments. There ha to be a better way.

Probabilistic algorithms are useful for
job like this. They work - most of the
time - and they have heen applied to
finding large random prime numbers,
solutions to particularly onvoluted
graph theory problem , and pattern
matching. TI1e algorithm I am going to
pre ent only fails in one out of 2118

(that' about 3 x 1038) tries. There isn 't
a piece of commercial software on the
market that fails less often. You're much
more likely to get a disk error reading
th program, or a power surge that fries
your~ hole system, than you are to have
this alg rithm fail. By the time this al
gorithm fails, our species will most like
ly have I ng killed itself off, or at least
mutated into some different species that
has better things to do with its time than

Bruce bas an M ill Computer
Science and bas worked in computer
and data security for a number of
public and private concerns. He can
be reached at 730 Fair Oaks Ave.,
Oak Park, IL 60302.

148

Bruce Schneier
order bit of each byte is always 0.
Therefore, 8 bits in the hash will always
be 0. This means that the effective num
ber f possible hashes is far les than
2128 (or at lea t that each possible hash
value is not equally likely), and differ
ent files are more like ly to produce
identica l hashe .

An easy way to get around chi is to
roll the hash value 1 bit after each XOR.
This way each bit i more likely to he
throughly randomized by d1e time the
entire file has been ha hed, regardless
of how the data look beforehand. The
program in Exampl 2 rolls each Jong
word l bit to the right.

If the hash fun tion is only going to
deal " ith ASCII data , a further im
provement might be to ignore space .
Tiii · way, "HELLO WORLD'' ha he to
d1e ·ame value as "llELLOWORLD." Of

_ ___. ___ course, it also mean that "The hou e

it around comparing a million 100- holds one at se n bells" hashe to the
Kbyce string . ame value as "'The hou hold son ea

We're going to take the computer ana- even bells ," but n thing i perfe t.

log of fingerprints; something small that Maybe the program should count the
uniquely identifies something much larg- first space, but ignore any additional
er. Hash functions, which are functions one . Additional m difications d1at ig
that take a large input string and pro- nore punctuation and ca ·e might al o
duce a smaller output string, perform be u eful , or d1ey might be detrimen
the task nicely. tal. It all depend on the type of data

involved.
Hash Functions These hash functions work great as
One of the simplest hash funct ions is long as there isn't a malicious user uy
to take the XOR of every 128-bit block ing to gum up die works. Creating a file
in the file , a in Example 1. TI1i works that ha hes to a particular value i very
well with random data ; each 128-bit easy widi any of these functions. It's on
ha h value is qually likely. I lowever, ly lightly harder with more complicat
wid1 more rigidly formatted data, such ed functions. sually, all that is required
as ASCII, the results are less dian ide- is to calculate die hash of any particu
al. In most normal te:,,._-t files , the high- Jar fiJe , and d1en append a 128-bit string

Dr. Dobb'sjo11mal. eptember 1991

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

IPR2020-00660 Page 00002

at the end of it to force the new file to
hash to whatever value you'd like.

In certain applications this problem
is very eriou , but it can be olved by
using a ''one-way ha h function. " By
"one-way," I mean that given an input
file, it i very easy to calculate th ha h
value. However, given a particular ha h
value, it i , for all practical purpo e ,
impossible to produce an input file that
hashes to that value. The function has
a trap door: It" easy to go one way, but
hard to go back the other unle s you
know the .. ·ecret."

The MOS Algorithm
In theory, any cryptographic algorithm
can be u ed as a one-way ha. h func
tion . For example, the Digital Encryp
tion tandard (DES) algorithm (see the
·'C Programming" column, DD], ptem
ber 1990), endorsed by the ational e
curity Agency and used by count] ss
government agencies and business in
terest , works quite well. Encrypt the
entire fil using the DES block-chaining
mode, and the two final 64-1 it ncrypted
blocks make up d1e hash. (IX 9.9
suggest using only the last 32 bits of
the last encrypted block, but that seems
inadequate.) It is random, not reversible,
and every bit of the hash is dependent
on ev ry bit of the input file. But in soft
ware, DES is slow; the algorithm i. not
at aU optimized for this task. And even
wor , if the DES key is compr mised ,

then everyone know the secret to the
trap door and the one-way property of
the ha h function is lost.

An alternate algoriilim, shown in List
ing One (page 150), is caUed MD5. (List
ing Two, page 151, i ilie header file for
MD5.) Cryptographer Ron Rivest of MIT
(he's d1e '"R" in th RSA public-key al
gorithm) inv nted MD5 specifically a

We're going to take
the computer analog

of fingerprints;
something small that
uniquely identifies
something much

larger

a one-way ha h fun tion. His personal
need for the algorithm revolve more
around secure digital signatures than
pattern matching , but we will come
back to that later.

MOS proclu es a 128-bit hash (or
"Message Digest," hence the name) of
an input fil . The algorithm was de-

main (int argc, chaz •argv l i
\llls_gned long hash[4J - {O, 0, 0, 0), data[4 ;
FILE •fp;
i:it. l;
if ((fp-= fopen arg·;[ll, "rb')) f-N7LL)

while ((fread (data , 4, 4, fp) ! Nl'LL)
for (i-0 ; i<~ ; i++)

hash[i) •- data'il ;
fclos (fp) ;
for (i=O ; i<4; iH)

printf ("%08lx' , hash[i);
printf (" n") ;

Exa mple 1: A simple bash Junction that uses the XOR of every 128-bit block in
the file

r.iain (int argc, char •argv[J) {
unsigned long hash[4) = {O, 0, 0, 0), data{4];

FILE •fp;
inti;
if {(fp -= fopen (argv[l], 'rb')) != NULL)
-.mile ((fread (data, 4, 4, fpl != NliLt)

for (i=O ; i<4; i+~l (
hash[i] : data[i];
hash[il ~ hash[i]>>l ~ hash[i)<<31 ;

)
fclose (fp);
for (i-0; i<4; i++)

printf ('%08lx•, hash[il);
printf (' n");

)

Example 2: Rolling each longword l bit to the right

Dr. Dobb'sjournal, September 1991

signed for speed, implicity, and com
pactnes on 32-bit architectures. It is
based on a simple set of primitive op
erations (that i , LOAD, ADD, XOR) on
32-bit operand . The algorithm also
works on 8- and 16-bit microprocessors,
albeit significandy slower.

The heart of the algorithm is MD5Up
date, which proce · e the input file in
512-bit chunks. Transform performs the
basic MD5 algorithm . .MD5lnit kicks off
the whole proce . MD5Final is pri
marily concerned with the partial block
at the end of the input file (only ilie rare
input file can be divided exactly into
512-bit blocks). The final block i
padded with a ingle 1 and a string of
0 , with the last word reserved for a bi
nary repre entalion of the number of
bits in the original input ftle . After the
algorithm churns away , the resultant
hash is stored in mdContext.

It is straightforward to implement MDS
to solve d1e pattern matching problem
at d1e beginning of this article. First, cre
ate and store a ha h of each of the mil
lion 100-Kbyte input strings. Each one
is only 16 byt long, so you only need
16 Mbytes of storage space instead of
100 gigabyte . Every time you have a
new test string, compare its hashes with
tho e stored. ot only are the storage
requirements four rders of magninrde
smaller, you only have to make one 128-
bit comparison per trinf pair. You'll get
a false match very 102 years or so, so
you might want to add code that ex
plicidy checks string. that hash to the
same value. I wouldn't even bother.

Putting One-Way Hash Functions to Work
One-way hash function can be used to
detect viru es, which make their living
by surreptitiously modifying programs.

umerous security programs take sim
ple hashes called Cyclic Redundancy
Checks (CRCs). These programs hash
clean file , and then compare the cored
hash with a new hash of the file. If a
virus infected d1e me, its hash would be
different. The problem with most of
these virus-detection programs is that a
clever virus an make sure any virus
infected file hashes to the same value
as the clean file. IL would be harder to
do this with CRC fmgerprinters than with
th imple hash programs Ii ·ted earlier,
but it would still be possible. MD5
makes it practically impo sible. Even if
the virus had complete knowledge of
the MDS algorithm, it could not modi
fy it elf so that the infected program
would hash 10 the same value. All it
could do would be to ranclom.ly append
bitb to the file and try to duplicate the
hash by brute force. But even if we al
low the viru co try a million possible
ha, hes per second, it would take 1025

149

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

IPR2020-00660 Page 00003

years for it to successfully infect the file .
I'm willing to live with the possibility of
one successful virus infection on my sys
tem between now and when the sun
goe nova.

As I mentioned, one-way hash func
tions have uses in digital signature . A
digital signau1re scheme is where one
party can "sign" a document in uch a
way that no one ex ept the signer could
sign the document, and anyone can ver
ify that the signer actually did sign the
do ument. Most digital signature
schemes involve public-key cryptogra
phy; they are computational nightmare
and often painfully slow. peed in
creases drastically if the digital signature
algorithm operates on a hash of the doc
ument rather than the document itself.
Because the chances of two documents
having the same ha hare only 1 in 2"",
anyone can safely equate a signature of
the hash with a ignature of the docu
ment. If a conventional hash function
were used, it would be a trivial matter
to invent multiple documents that
hashed to the same value, so that any
one signing a particular document
would be duped into signing a multi
tude of documents. The protocol ju t
could not work without one-way ha h
function .

Listing One

HASH FUNCTIONS

One-way hash function can al o be
u ed by an archival system to verify the
existence of documents without storing
their contents. The central database

Someone could
copyright a

document but still
keep it secret

could just tore the hashes of file . It
doesn't have to s e the files at all; u r
submit their hash to the database, and
the databa time stamps the submi -
ions and tore them. If there i any

disagreement in the future about who
created a document and when, the data
base could resolve it by finding the hash
in its files. Enhancements to this scheme,
such as having the database use a dig
ital signature protocol and sign a con
catenation of the hash and a date/ time
code, would make thi protocol even
more useful. This has vast implications
with regard to privacy: Someone could

(UIN!'4) (ae); \

copyright a document but till keep it
secret. Only if he wished to prove hi
copyright would he have to make it
public.

The source code has been success
fully compiled and run under M -DO ,
Unix, and Macinto h OS. Becau e of
space constraints, I've included with this
article only the C source that implements
the MD5 algorithm; the include file ,
makefile , and sample test routine are
available electronically as de crib d on
page 3. RSA Data Security Inc. has put
the MD5 algorithm into the public do
main so that anyone can use it. Their
only requirement is that any opies of
their source ccx:le or documentation (bur
not different implementations of the
mathematical algorithm) retain the copy
right notice at the beginning of Li ting
One. Rivest cautions that while the al
gorithm improves over MD4, it i till
new and has not been completely cryp
toanalyzed. It i always possible that
ome clever person will find a way to

break it, but over the years a more
clever peopl try and fail, confidence
in the algorithm will grow.

DDJ

Vote for your favorite feature/article.
Circle Reader Service No. 5.

... ,.. ...
•• nd!>.c -- the source code for MOS routines

)

(al = ROTATE_I..EFT' I la), Is)) ; \
(a) += {bl; \

ldefine OO(a, b, c, d, x., s, ac) \
.. RSA Data Security, Inc. MD, Message-Digest Algori bm
.._. Created: 2/171,0 RLR
.. Revised: 1/91 SRO,AJ,BSK,JT Reference C Version .,.
" Revised !for !IDS), RLR 4/27/91 ...
° Copyright (C) 1990, RSA De.ta Security, Inc:. All rights reserved . ._
u License to copy and use this software is granted provided that
u it is identified as the: •RSA Data Security, Inc. M05 Message- o
•• Digest Algorithm• in all material mentioning or referencing this
•• software or this function.
o License is also granted to n-ake and use derlvat.lve v.crks
•• provided that such works are identified as •derived from the RSA
•• Data Security, lnc. HOS Message-Digest A.lgoritlln• ln all ••
•• material mentioning or referencing the derived work.
._. RSA Data Security, Inc. makes no represer.tat ons concerning
.. either the rnercha.ntability of this software or the suitability ..
•• of this software for any particular purpose. It is provided •as
0 is • without express or iut)lied warranty of any kind.
•• These notices ffllSt be retained in any copies of any part of this
... documentation and/or software .
.. ••••••••••• .. • .. •••• .. • .. ••• .. •••••••••••••••••• ••••• •••••• .. !

linclude ·..is.~·

I• forward declaration •I
static void Transform t) :

static unsigned char PADOL"l:;(64] = {

);

Ox80, OxOO. OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO. OxOO. OxOO. OxOO. Oxoo. OxOO' OxOO. OxOO.
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, DxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO

1• F, C, Hand I are basic MD5 functions •
!define Ffx, y, ZI ff(xl & (y)) : ((-xi & (Z))I
ldehne Gfx, y, ZI fllx) & (Zit , ((y) & f-z)II
ldefine Hfx, y, ?) f fxl • fy) • fi) I
!define I (x, y, z) 1 IYI • f Ix) : 1-z) 11

t• ROI'ATE LEFT rotates x left n bits •/
!define RCYl'ATE.l.EFTlx, nl I I (xi « lnl I : I (xi » 132-(n) I I)

I • FF, CG, HH, and It transformations for rounds 1, 2, 3, and 4 • I
i • Rotation is sepatdte frCl'l'I addition to prevent recOlll)Utation •I
!define FF(a, b, e, d, x, a, ae) I ((a) •• f f lb), lei, Id)) + fx) +

150

{ fa) •= G I fbl, le), fdl I + (x) + 1UlN!'4)(ac); \
{a) = HOTATE_Ll!FI' (la). (S)) ; \
fa) += fbl; \

)
ldefine HH!a, b, c, d, x, s, acJ \

f fa) +< H (lb), {Cl, Id) l + (XI + fUIN!'4) fae); I
fa) = HOTATE.LF.f'T I fa)' IS))' \
fa) += lb); I

)
ldefine Illa, b, c, d, x, s, ac) \

f fa) +• I I lb), fc), (di I + (xi + IUINT41 (ae) 1 \

fa) = NOTATE.LEFT I (al, fsl); I
fal += fbl; \

I

t• 'Ihe routine MDSinit initializes the messag -digest context
ll'd:ontex.t. All fields are set to zero. •!

void MD51nit (ndContext)
H!l5 CTX omdeontext;
(.

)

rrd:ontext->i[OJ c rrdeontext->i[l] = (UINI'4)0;

I• Load magic initJalization constants . . ,
ll'dContext->buf(OJ • (UlN!'4)0x67452301;
ll'dContext->buf[lJ • IUINT'1)0xefcdab89;
ll'dContext->bufl21 • fUINr4)0x98badcfe;
ll'dContext•>bufl31 = IUIN!'4)0"10325476;

1• 'l1le routine MDSUpdate updates the message-digest context: to
account for the presence of each of the characters inBuf[O . . inLen·ll
in the message whose digest is being corTPJ,ted. •/

void MDSUpdate (rrdContext, inBuf, inLen)
MDS_CTX 'rrdeontext:
unsigned char •inBuf;
unsigned int int.en;
f

UIN!'4 inl 16);
int ndi;
unsigned int L, ti;

!• coai,tlte nut!ber of bytes ll'IOd 64 •/
mdi = flntl I llld:ontext->1(0] »)) • Ox3F);

I • update number of bits •t
if llll'dContext->l(Ol + (fUIN!'4)inLen « 311 < ll'dContext-,ilO))

rrdContext->i[l] u;
ndContext~>i 10) +• (IU1NT4) inLen « 3) :

Dr. Dobb'sjournal, September 1991

Supplied by the British Library 21 Feb 2020, 15:40 (GMT)

IPR2020-00660 Page 00004

mdContext->i[l) +s: t(UIITT4)inl.l.'n » 29);
while (inl.en--) I

!• add new character to OOffer, lncrement m:li •I
tTdContext->in(mdi+• = •inBuft+;

1• transform if necessary •I
1f (mdi == 0x40) •

for (i = 0, ii s. 0; < 16: l++, h += 41
in[il = l(IUINT41i!dContext•>!n[i1'3J) « 24)

11 IUINT4)i!dContext->!n I ii•2J) « 161
(((Ultfl'41rrrleontext->in[ii+l]) « 8) :
I 1Ulm'4)nrleontext->!nl ill);

Transform (rrck:ontext->buf. inl;
!!di = O;

/• The routine MDSFinal terminates the message-digest con,;:,utation and
ends with the desired l!E!ssage digest in mdContext .. >dioest{O ... 15]. •!

void MD5Final (r.dContexl)
MOS_CTX "1J:lContext;
(

UINT4 ln[l61;
int mdl;
unsigned int i, ii;
unsigned int padLen;

I• save number of bits •I
in[141 = i!dContext•>i[O);
in(!Sl = mdContext-,i(lJ;

I• carpute number of bytes m::>d 64 • /
irdi = lint) I (i!dContext->i(OJ » l) & OxlF);

/• pad out to 56 ll<ld 64 •!
padLen = !?!di < 56) ? 156 - mdll ; 1120 - mdil;
MDSUpdate (Dd'.:ontext, PllllOIID, padLeni ;

I• append length in bits and transform •I
for (i = o. ii • O; i < 14: 1••, ii •= 41

in(il = I I IUINT4)Dd'.:ontext->in(li,ll I « 24)
ll(UINT4)nrleontext->in(ii,2)) « 16)
I I IUINT4)m:lContext->in[li,l)) « 81 :
I IUINT4)?!dContext->in(il));

Transform (nd:ontext->D.lf, in);

i • store b.lffer in digest •!
for (i = 0, ii = O; i < 4; i+•, ii += 41 {

m::rontl!Xt->digest(ii) = (unsigned char) (~ntext•>OOf(i] , OxFFJ;
udC'ontext->dige.at(ii+ll =

(unsigned char) ((nrleontext->buf[il » 81 & OxFFI 1
m:lContext->dlgest I ii,21 =

(unsigned char) ((nrleontext->buf[i) » 16) & OxFF);
m:!Context•>digeot[ii+J (uMigned chart 11:rdeontext·>bu![i) » 24) &

OxFF);
)

I• Basic MD5 step. Transforms bu! based on in. •/
static void Transform (buf, inl
UINT4 •buf;
UINI'4 •in;
I

UINT4 a• bu![OJ, b • bu!(l). c • bu![2J, d = bu[());

/• Round 1 .,
ldefine S11 7
!define S12 12
!define S13 17
!define S14 22

FF I a, b, c, d, in[0). S11, Oxd76aa47B); ,. 1 .,
FF Id, a, b, c, In(lJ. Sl2, Oxe8c7b756); ,. 2 .,
FF (c, d, a, b, in[2J. Sll, ~Y.242070db); ,. 3 .,
FF I b, c, d, .. lnl JJ. S14, Oxclbdceeel; ,. 4 . ,
FF I a, b, c, d, ln[4]. Sll, Ox!57c0fafJ; ,. 5 .,
Fl' Id, .. b, C, in[SJ, S12, Ox4787c62al; /• 6 .,
FF (c, d, a, b, In! 6J. Sll, Oxa83046lll; ,. 7 .,
FF I b, c , d, .. in! 7). S14, Oxfd4695011; ,. 8 .,
FF I a, b, c, d, in[SJ, S11, Ox698098d8); !• 9 •!
Pl' I d, .. b, c, lnl 91. S12, Ox8b4 4 fl aft ; ,. 10 •/
FF I c, d, .. b, in[!OJ, Sll, Oxl!ffSbbl); ,. 11 .,
FF I b, c, d, a, in(llJ. S14, Ox895cd7bel; ,. 12 .,
FF I a, b, c, d, in[l2), S11, Ox6b90ll22); !• ll •I
FF I d, a. b, c, in[l)J, S12, Ox!d98719l); /♦ 14 •/
FF I c, d, a, b, in[14], S13, Oxa679438e) ; !• 15 •/
FF I b, c, d, a, in[lSJ, S14, Ox49b4082l); ,. 16 .,

i• Round 2 .,
ldef1ne S21 5
ldo!fine S22 9
ldefins S23 14
!define S24 20

GG I a, b, c, d, in[l). S21, Oxf61o2562); ,. 17 .,
GG Id, a, b, c, in[6J, S22, Oxc040b3401; ,. 18 •/
GG I c, d, a, b, inllll. S23, Ox265e5a51 I ; ,. 19 .,
00 I b, c, d, a, ,n[OJ. 524, Oxe•b6c7aa); ,. 20 .,
GG (a, b, c, d, In[SJ, 521, Oxd62fl05di; ,. 21 .,
GG Id, a, b, c, n(IOJ, 522, Ox244l45l>; ,. 22 .,
GG I c, d, .. b, lnllSJ. 523, Qxd8ale6811; ,. 23 •
00 < b, c, d, .. In 41, S24, Oxo7d3fbc8); ;• 24 .,
00 I a, b, c, d, inl 91, S21. Ox2lelcde6); ,. 25 .,
GG I d, a, b, c, in[l4), S22, Ox~33707d6): ,. 26 .,
00 (c, d, .. b, in[JI. S23, Osf4d50d87); ,. 27 .,
00 I b, c, d, a, in[8), S24, Ox4S5al4ed); I• 28 •I
GG I •• b, c, d, ln[ll). 521, Oxa9 Je90S); ,, 29 •/
00 (d, .. b, c, ,n(2). 522. OxfcefalfBl: l• 30 •
GG I c, d, a, b, inf 7). S23, Ox676f02d9i; ,, 31 •!
0G (b, c. d, a. in 121, 524, Ox8d.la4c8a); /• 32 •/
I• Round l •t

ldefine S31 4
lde[ine S32 11

D1'. Dobb'sjo11rna/, September 1991

lde!ine Sll 16
tdefine SJ4 23

HH I a, b, c, d, in[SJ, Sll, Ox!ffa3942) I• 33 •/
!Of I d, a, b, C, lnJ 81, Sl2, Ox877l !681 I ,. 34 • /
HH (c, d, a, b, n[llJ. Sll, Ox6d9d6122) ,. 35 .,
HH I b, c, d, .. ln[l4,, S34, Oxfde5380ci ,. 36 •/
IDf I a, b, c, d, In! 11, S31. 0xa4beea44 I • 37 .,
IDf (d, a, b, c, lnl 4 .. S32, Ox4bdecfa9) ,. 38 ♦/
HH I c, d, a, b, In[71, Sll, Oxf6bb4b60) ,. 39 •!
HJ\ (b, c, d, a, in 1101, S34, Oxbeb!bc70) I• 40 •I
HH (a, b, C, d, inJllJ, S31, Ox289b7ec6) !• 41 •I
HH (d, a, b, C, in! OJ. S32, Oxeao 127 fa) , . 42 •/
HH (C, d, a, b, in[JJ. Sll, Oxd4e!l085) , . 43 .,
HH { b, c, d, •• In[6). Sl4, Ox488ld05) ,. 44 •/
HH (a, b, c, d, In[91, S31, Oxd9d4d039) 1• 4S • /
HH (d, a, b. c, in[12]. Sl2, Oxe6db99e5) ,. 46 .,
HH (c, d, .. b, in[l5), Sll, Oxlfa27c!8) ,. 47 . ,
HH I b, c, d, .. in(2]. S34, Oxc4ac5665) I• 48 •!

I• Round 4 •!
!define S41 6
Ide! ine S42 10
•define S43 15
!define S44 21

11 I a, b, c, d, in(OJ, S41, 0xf42922441; • 49 . ,
l! I d, a, b, c, in[7). S42, Ox432af!97); ,. 50 •/
II I c, d, .. b, in(14). S43, Oxab942la7); , . 51 .,
l! I b, c, d, .. in[5J. S44, Oxfc9la0l9) ; !• 52 .,
ll (a, I>, c, d, in [12]. S41, Ox655b59cl); !• 5) •!
II I d, a, b, c, in[JJ. S42, Ox8!0ccc92); ,. 54 .,
II (c, d, .. b, in(lOl, S43, Oxffeff47d); , . 55 .,
II I b, c, d, .. in(ll, 544, Ox8584 5ddl) ; ,. 56 .,
II I a, b, c, d, in(BJ. 541, Ox6fa87e4fl; ,. 57 .,
II Id, a, b, c, 1n(15J, 542, 0xfe2ce6e0); ,. 58 •/
II I c, d, .. b, in(61, S43, Oxal014314); !• 59 .,
II I b , c, d, a, in(lJJ, S44, Ox4e0Blhl); ,. 60 •!
ll I a, b, c, d, in[41, SU, Oxf7537e82); ,. 61 •/
II I d, a. b, c, in Ill), S42, Oxbdlaf235); ,. 62 .,
II I c, d, a, b, ln(21. S43, Ox2ad7d2bb) 1 !• 63 •/
II I b, c, d, .. n[9), S44, Oxeb86dl91); !• 64 •I

buf[OJ .,.= a;
buf(l) += b;
buf [2[+= c;
buflll •= d;

)

, ...
0 End of ndS.c ... ,

End Listing One

Listing Two ... -... ..,.
•• nd:5.h -- header file for iapleaentation of MD5
.. RSA Data security, tnc. MOS Message•Digesc Algorithm ..
"Created, 2/17/90 RLR
•• Revised: 12/27/90 SRD,AJ,BSK, JT Reference C version ..
,. Revised (for MDS), RLR 4/27/91 ,

!• typedef a 32-bit type •!
typedef unsigned long :nt UlNI'4;

1 • Data structure for t'.05 IMessage•Oioest) COEIPJtation • /
typed•f struct l

UIITl'4 i[2); !• nurrber of _bits handled mod 2•64 •!
UJlll'4 buf[4J; /• scratch buffer •/
unsigned char in[64): /• input buffer •I
unsigned char digest [161; /• actual digest after MD5Final call •I

) MDS_CTX;

void MD5lnlt 11;
void MDSUpdate I) ;
void MOSFinal I l;

, ...
•• End of :rrlS.h ,

End Listings

C Language
#27

Q: What is the "ANSI C tandard"?

A: In 1983, the American National Standards In titute
commi ioned a comminee. X3Jll, to tandardize the C
language. After a long, arduou proce , the committee' work
was finally ratified as an American National Standard, X3.159-
1989, on December 14, 1989, and published in the spring of
1990. The tandard has also been adopted as ISO/IEC
9899:1990.

Copyright C 1991 Steve Summil

151

Supplied by the British Library 21 Feb 2020, 15:40 (GMT}

