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On the Security of Public Key Protocols 
DANNY DOLEV AND ANDREW C. YAO, MEMBER, IEEE 

Abstract-Recently the use of public key encryption to provide secure 
network communication has received considerable attention. Such public 
key systems are usually effective against passive eavesdroppers, who merely 
tap the lines and try to decipher the message. It has been pointed out, 
however, that an improperly designed protocol could be vulnerable to an 
active saboteur, one who may impersonate another user or alter the 
message being transmitted. Several models are formulated in which the 
security of protocols can be discussed precisely. Algorithms and characteri
zations that can be used to determine protocol security in these models are 
given. 

I. INTRODUCTION 

THE USE of public key encryption [l], [11] to provide 
secure network communication has received consider

able attention [2], [7], [8], [10]. Such public key systems are 
usually very effective against a "passive" eavesdropper, 
namely, one who merely taps the communication line and 
tries to decipher the intercepted message. However, as 
pointed out in Needham and Schroeder [8], an improperly 
designed protocol could be vulnerable to an "active" 
saboteur, one who may impersonate another user and may 
alter or replay the message. As a protocol might be com
promised in a complex way, informal arguments that assert 
the security for a protocol are prone to errors. It is thus 
desirable to have a formal model in which the security 
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issues can be discussed precisely. The models we introduce 
will enable us to study the security problem for families of 
protocols, with very few assumptions on the behavior of 
the saboteur. 

We briefly recall the essence of public key encryption 
(see [l], [11] for more information): In a public key system, 
every user X has an encryption function Ex and a decryption 
function Dx, both are mappings from {0, l}* (the set of all 
finite binary sequences) into {0, l}*. A secure public direc
tory contains all the (X, Ex) pairs, while the decryption 
function Dx is known only to user X. The main require
ments on Ex, Dx are: 

1) ExDx = DxEx = l, and 
2) knowing Ex(M) and the public directory does not 

reveal anything about the value M. 

Thus everyone can send X a message EA M), X will be 
able to decode it by forming Dx(EAM)) = M, but nobody 
other than X will be able to find M even if Ex(M) is 
available to them. 

We will be interested mainly in protocols for transmit
ting a secret plaintext M between two users. To give an 
idea of the way a saboteur may break a system, we 
consider a few examples. A message sent between parties in 
the network consists of three fields: the sender's name, the 
receiver's name, and the text. The text is the encrypted part 
of the message. We will write a message in the format: 
sender's name, text, receiver's name. 

Example 1: Consider the following protocol for sending 
a plaintext M between A and B: 

a) A sends B the message (A, Es(M), B), 
b) B answers A with the message (B, EA(M), A). 
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This protocol is easy to break by a saboteur Z in the 
following way: 

1) Z intercepts the message sent from A to Bin step a). 
2) Z sends to B the message (Z, Es(M), B). 
3) B answers Z according to the protocol (step b)) by 

(B, E2 (M), Z). 
4) Z decodes E2 (M) to find the plaintext M. 

One way to overcome the weakness in the above proto
col is to encode the name of the sender together with the 
plaintext in the encrypted text. Consider the following 
variation of a protocol suggested in Needham and 
Schroeder [8]. 

Example 2: Consider the following protocol (MA de
notes concatenation of Mand A): 

a) A sends B the message (A, Es(MA), B), 
b) B answers A by sending (B, EA(MB), A). 

We will prove later in this paper that this protocol is secure 
against arbitrary behavior of the saboteur. What will hap
pen if one tries to improve the above protocol by adding 
another layer of encryption? 

Example 3: Consider the following protocol: 

a) A sends B the message (A, Es(Es(M)A), B), 
b) B answers by sending (B, EA(EA(M)B), A). 

Surprisingly, this protocol is breakable in the following 
way: 

1) Z takes the message sent back from B to A in step b ), 
i.e., (B, EA(EA(M)B), A). 
Denote EA(M)B by M, then Z can extract EA(M) 
from the above message. 

2) Z initiates a conversation with A, sending 

( z, EA( EA(M)Z), A), 

according to the protocol (step a)). 
3) A, as a receiver, answers Z by 

( A, Ez( Ez(M)A), z). 
4) Z decodes M from the message he received in step 3). 

As M = EA(M)B, Z now possesses EA(M). 
5) Z establishes a new connection and sends to A the 

message 

(z, EiEA(M)Z), A). 

6) Now A should answer by (A, E,(E2 (M)A), Z). 
7) At this step Z is able to find the plaintext M. 

The precise mathematical models will be defined in the 
ensuing sections. Below we list the basic assumptions on 
ihe system that we wish to model. 

l) In a perfect public key system, 
a) the one-way functions used are unbreakable; 
b) the public directory is secure and cannot be 

tampered with; 
c) everyone has access to all Ex; 
d) only X knows Dx. 

199 

2) In a two-party protocol, only the two users who wish 
to communicate are involved in the transmission pro
cess; the assistance of a third party in decryption or 
encryption is not needed. 

3) In a uniform protocol, the same format is used by 
every pair of users that wish to communicate. In the 
three examples given previously, the user's names 
A, B are symbolic parameters and can be any two 
names. 

4) With respect to the behavior of the saboteur, we will 
focus attention on saboteurs who are "active" 
eavesdroppers. That means someone who first taps 
the communication line to obtain messages and then 
tries everything he can in order to discover the plain
text. More precisely, we will assume the following 
about a saboteur: 

a)- He can obtain any message passing through the 
network. 

b) He is a legitimate user of the network, and thus 
in particular can initiate a conversation with 
any other user. 

c) He will have the opportunity to be a receiver to 
any user A. (More generally, we allow the possi
bility that any user B may become a receiver to 
any other user A.) 

We give a summary of the results obtained in this paper. 
Two models will be developed. 

I) The Cascade Protocols: These are protocols in which 
the users can apply the public key encryption-decryption 
operations to form messages; several layers of such opera
tors may be applied, however. A simple example of cascade 
protocol is given in Example I. 

2) The Name-Stamp Protocols: These are protocols in 
which the users are allowed to append, delete, and check 
names encrypted together with the plaintext. A name-stamp 
protocol can also contain layers of encryptions (as in 
Examples 2 and 3). 

In Section II we prove that a cascade protocol is secure 
if and only if both the following conditions are satisfied: 

1) the messages transmitted between X and Y always 
contains some layers of encryption functions Ex or 
Ey; 

2) in generating a reply message, each participant A 
( A = X, Y) never applies DA without also applying 
EA. 

This gives a simple characterization of security and also an 
efficient algorithm for deciding whether a given cascade 
protocol is secure. 

In Section III we give a polynomial-time algorithm for 
deciding if a given name-stamp protocol is secure. In 
Section IV we consider the question whether a saboteur 
can break the protocol without waiting for others to ini
tiate a conversation. This corresponds to the use of items a) 
and b) only in the previous discussion of the behavior of 
the saboteur. We give extensions of the results in Sections 
II and III to this case. 
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To end this introduction, we remark that other types of 
sabotage activities exist that may defeat the purpose of a 
public-key protocol (or any protocol). We refer the readers 
to Needham and Schroeder [8] for further discussions. The 
problem of sabotage in network communications also arises 
in other context (see Dolev [3], Pease et al. [9]). 

II. CASCADE PROTOCOLS 

In this section we consider a simple class of protocols in 
which the only operations the users employ to generate 
messages are the encryption-decryption operators. Our 
goal is to analyze the security of such protocols against 
saboteurs. To achieve that, we have to develop a formal 
model. We have to specify 1) the syntax of the protocol, 
i.e., what operations the users apply at each step to gener
ate a message, and 2) the inference rules that the traitor 
can use to discover the plaintext. 

A. Notation 

Let L be a finite set of distinct symbols. We use L* to 
denote the set of all finite sequences composed of the 
symbols in L; the set L* also contains the empty string A.. 
We define L+= L* - {\}, i.e., the set of all nonempty 
words over L. The concatenation of the words a and /3 is 
denoted by a/3. Let y = a/3 be a word, then a is called a 
prefix of y, and /3 is a suffix of y. 

The basic properties of the public-key operators are 
ExDx = DxEx = l, the identity function. As a result, any 
string of operators of the form aExDp' will be equivalent 
to aa', in the sense that ( aExDxa')P = ( aa')P for all 
P E {O, l}*. We will say that aExDxa' (or aDxExa') can be 
reduced to aa'. For any stringy of operators, let Ylx denote 
the complete reduced string obtained from y by deleting all 
ExDx and DxEx pairs iteratively, until no further reduction 
is possible. Denote by y the string obtained from y by 
complete reduction with respect to all users X in the 
system, y is the reduced form of y. Notice that Ylx and y are 
all unique. 

For convenience we sometimes write Dx as E:, the 
complement of Ex. Similarly, Ex is also written as D:. Let 
y = a1 • • • an be a word of n symbols, each of which is an 
E or a D. Define 

The word ye is complement of y, and it satisfies yyc = ycy 
= 1 when y and ye are considered as operators. For any 
stringy, let lt(y) be the set of symbols in y. 

B. The Model 

Definition 1: A two-party cascade protocol T is specified 
by a series of finite strings 

/3; E {zi, Z2, Z4}*, 1 ~ i ~ t', 

where t' = tort - l. For each pair of distinct users X and 
Y, let a;(X, Y), f3;(X, Y) denote the strings ii;, /3; with the 

symbols z 1, z 2 , z 3 , z 4 , respectively, replaced by 
Ex, Ey, Dx, Dy. 

Clearly, a;(X, Y) E {Ex, Ey, Dx}* and /3;(X, Y) E 

{Ex, Ey, Dy}*. When user X wants to transmit a secret 
plaintext M to user Y, they exchange message according to 
Tin the following way: 

X sends Y the message a 1(X, Y)M; 
Y applies /3 1 ( X, Y) to the received message and sends it 
to X; 
X applies a 2(X, Y) to the received message and sends it 
to Y; 
Y applies /32(X, Y) to the received message and sends it 
to X; 

Note that the protocol is uniform in that a;(A, B) and 
/3;(A, B), for any users A, B, can be obtained from 
a;( X, Y), /3;( X, Y) by substituting X by A and Y by B. For 
convenience, we assume that ii; and /3; are such that 
a;(X, Y), /3;(X, Y) are in reduced form. 

Definition 2: Let T be a two-party cascade protocol 
specified by { ii;, ,B1 jl ~ i ~ t, 1 ~ j ~ t'}, and let X, Y be 
two distinct users. Define 

N1(X, Y) = a 1(X, Y), 

N2/X, Y) = /3/X, Y)N21 _ 1(X, Y), 

N2;+ 1(X, Y) = a;+ 1(X, Y)N2;(X, Y), l~i~t-1. 

When X wishes to send a plaintext M to Y, the message 
exchanged are then N;(X, Y)M, where i = l, 2, · • •, t + t'. 
_ Example: Consider the protocol T given by (ii 1 = z 2 z3 , 

/31 = z 1z4 z 1z 1z4 }. One has a 1(X, Y) = EyDx and f3 1(X, Y) 
= ExDyExExDy. For a plaintext M, the messages trans
mitted are N 1(X, Y)M = EyDxM and Nz(X, Y)M = 

ExDyExM. 
So far we have discussed the syntax of the cascade 

protocol. We will now define the notion of security for a 
cascade protocol, i.e., when will a saboteur be able to 
deduce the plaintext M being transmitted between two 
users. We first give a formal definition. Let Ebe the set of 
all EA and D the set of all DA- Let X, Y, Z denote distinct 
user names. 

Definition 3: Let T be a two-party cascade protocol 
specified by { ii;, /3). Define 

L 1(Z) =Eu {D2 }, 

~ 2 = {a;(A, B)I for all A* Band i > 2}, 

~ 3 = {/3;(A, B)I for all A* Band i > l}. 

We will say that Tis insecure if some y E (L 1(Z) U ~ 2 U 

L 3)* exists such that 

yN;(X,Y) =\ 

for some N;( X, Y); Tis secure otherwise. 
Remark: Clearly, the definition of security for Tis inde

pendent of the choice of X, Y, Z. 
We now give the motivation behind the definition. Sup

pose Xis trying to send a plaintext M to Y (using protocol 
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T). The actual messages transmitted between them are 
then N;(X, Y)M (i = 1, 2, · · · ) and may fall into the 
hands of the saboteur Z. Taking any N;(X, Y)M, the 
saboteur Z has the chance to transform it by repeatedly 
applying any of the following three types of operators: 

a) any a E Li{Z); 
b) any a E L 3: Z can initiate a plaintext transmission 

with a user B, claiming himself to be A, and send any 
string P to B in the (2i - l)st message; Z then gets 
back /3;(A, B)P, effectively putting the operator 
/3;(A, B) on any chosen P; 

c) any a E L2: let a = a;(A, B); there is a chance that 
A may wish to transmit a plaintext to B some time in 
the future; Z may intercept the (i - l)st reply from B 
to A, prevent it from reaching A, and replace it with 
any chosen string P and receive from A the string 
a;(A, B)P. 

As a result, Z has the opportunity to obtain the string 
yN;(X, Y)M for any y E (~ 1(Z) U L 2 U L 3 )*. This 
means Z may deduce M, if yN;(X, Y) = ;\ for some 
y E (L 1(Z) U L 2 U L 3 )*. 

We wish to point out that, in order to obtain a;(A, B)P 
from P, Z has to wait for A to initiate a conversation with 
B. It may or may not happen. Thus our definition of 
security is a conservative one, in the sense that we are 
concerned with the worst-case possibility. 

C. A Characterization of Secure Protocols 

Definition 4: Let 'TT E {E, D}* be a string and A be a 
user name. We say that 'TT has the balancing property with 
respect to A if 

DA E It( 'TT) implies EA E It( 'TT). 

As will be seen, the balancing property is inherent in secure 
cascade protocols. 

Definition 5: Let X, Y be two distinct user names. A 
two-party cascade protocol T = { a;, 13) is a balanced 
cascade protocol if 

1) for every i > 2, a;( X, Y) has the balancing property 
with respect to X, and 

2) for every i > I, /3; ( X, Y) has the balancing property 
with respect to Y. 

Remark: We emphasize that a;(X, Y), /3;(X, Y) are in 
reduced form for i, j > l. 

Lemma I: Let Z be a user name and T be a balanced 
cascade protocol. Then for every string T/ in (L 1(Z) U L 2 

U L3)*, ff has the balancing property with respect to every 
A *Z. 

The proof is given in Appendix I. 
We are ready now to state and prove the main result of 

this section. Let X, Y be two distinct user names. 

Theorem I: A two-party cascade protocol T = {a;, 13) 
is secure if and only if 

1) lt(a,(X, Y)) n {Ex, Ey} * 0, and 
2) T is balanced. 
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Proof- Let Z be a user name distinct from X and Y. 
A) Necessity: Assume that either property 1) or 2) is not 

true. We will show that Tis insecure, i.e., y E (L 1(Z) U L 2 
U L3)* exists such that yN;(X, Y) =;\for some i. 

If 1) is not true, then yN1 ( X, Y) = ;\ where y = a1 E 

L 1(Z)*, and we are done. We can thus assume that 2) is 
false, i.e., T is not balanced. By definition, either some 
/3k(X, Y) contains Dy but not Ey or some a;(X, Y) (i > 2) 
contains Dx but not Ex. We first restrict ourselves to the 
former case (/3k contains Dy but not Ey ); the latter case 
will be treated later. We will establish under this restriction 
the following stronger result. For any 8 E ( {Ex, E y} U D )*, 
y E (L 1(Z) U {/3k(Z, X), /3k(Z, Y)})* exists such that y8 
= A. The proof will be carried out by induction on r, the 
number of Ex and Ey in the string 8. 

If r = 0 then y = 8c E (L 1(Z))* satisfies the require
ment. Now let r > 0 and assume that the result has been 
established for all smaller values of r. Let 8 be a string 
containing exactly r Ex's and Ey's. Without loss of gener
ality, we can assume that the leftmost E is an Ey. Write 
8 = a1Eya2 , where lt(a,) n {Ex, Ey} = 0; clearly, af E 

(~ 1(Z))*. By assumption, /3k(Z, Y) contains Dy but not 
Ey; hence we can write /3k(Z, Y) = -r1Dy-r2 , where -r1 E 

{Ez, Dy}* and -r2 E {E2 }*. Clearly, -r/ E (L 1(Z))* for i = 
1, 2. Now a2 contains r - I E's, and by the inductive 
hypothesis, y' E (L 1(Z) u {/3k(Z, X), /3k(Z, Y)})* exists 
such that y'a2 = A. Define y = y'-rf/3k(Z, Y)-r]·a,. Then 
y E (L 1(Z) U {/3k(Z, X), /3k(Z, Y)})* from the above dis
cussions. Furthermore, 

y8 = y'-r{/3k(Z, Y)-r2cafa1Eya2 

= y'a2 

= A. 
This completes the inductive step. 

Still to be shown is that T is insecure when some 
a;( X, Y) (i > 2) contains Dx but not Ex. One can prove the 
following stronger result: For any 8 E ({Ex, Ey} U D)*, 
y E (L 1(Z) u {a;(X, Z), a;(Y, -?')})* exists satisfying y8 
= ;\_ The proof is aimost identical to the previous proof 
and will not be repeated. 

BJ Sufficiency: Assume that both properties 1) and 2) 
are satisfied; we will prove that T is secure. 

Suppose, to the contrary, a y E (L 1(Z) U L 2 U L 3 )* 
exists such that yN; ( X, Y) = ;\ for some i. We will derive a 
contradiction. Write yN;(X, Y) = Pa 1(X, Y) such that P 
E (L 1(Z) U L 2 U L 3 )*. By definition of y, we have 

By the definition of a protocol, lt(a 1(X, Y)) c::;; 

{Ex, Dx, Ey}. We distinguish two cases. 
Case Bl, E y E It( a 1 ( X, Y)): As the string a 1 does not 

contain Dy, the only possibility for (1) to hold is that Ji 
contains some Dy but no E Y· This means that P does not 
have the balancing property with respect to Y. As Y * Z, 
this is a contradiction to Lemma 1. 

Case B2, Ey $. lt(a 1(X, Y)): In this case Dx $. 

It( ai( X, Y)), because a 1 ( X, Y) is in reduced form and the 
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protocol satisfies property 1) in the lemma. This implies 
that a 1(X, Y) = Kl. Similarly to Case Bl, the only possi
bility for (1) to hold is that Ji contains Dx and does not 
contain Ex, which again contradicts Lemma 1. D 

A cascade protocol T is called doubly verified if for some 
i, lt(N;(X, Y)) ~ {Ey, Dy, Dx} and for some j;;;, 2, 

It(~( X; Y)) ~ {Ex, Dx, Dy}, 

Theorem 2: Every doubly verified protocol is insecure. 

Proof' Let T be a doubly verified protocol such that 

(2) 

and 

(3) 

(We have used the abbreviations N; for N;(X, Y).) Write 
N 1 = a1(X, Y), Nk = yka1(X, Y) and Ni= y1a1(X, Y), 
where 'i E ( ~ 2 U ~ 3 )*. Suppose Tis secure. We will derive 
a contradiction. 

By Theorem 1, T has to be balanced. 
Case 1, Ey E lt(a1(X, Y)): Clearly, (3) demands that y1 

should contain Dy but no Ey, This contradicts Lemma 1. 
Case 2, Ex E lt(a1(X, Y)) and Ey $. lt(a1(X, Y)): In 

this case, (2) requires that Yk contains Dx but no Ex, 
contradicting Lemma 1. □ 

Theorem 2 implies that in a secure cascade protocol T, if 
the receiver Y is able to decode the encrypted message M, 
then the sender X cannot obtain M by simply decrypting 
some of the messages sent back to X. That means X should 
not be able to reconstruct M if X has thrown away M after 
the first transmission. This theorem implies that the proto
col in Example 1 is not secure ( a fact we demonstrated 
before). It also implies that the protocol suggested in Diffie 
and Hellman [2] (the message exchanges being 
Es(DA(M)), EA(Ds(M))) for obtaining public-key 
authentication is not secure. 

We wish to emphasize that our security concept is based 
on the assumption that the plaintext M is arbitrary. If the 
stfocture of M is known and a consistency check can be 
made, then the protocol is no longer considered to be a 
cascade protocol. In the next section, we consider a case in 
which the internal structure of the message can be used to 
achieve security. 

III. NAME - STAMP PROTOCOLS 

In Section I we discussed several protocols that append 
names to the message before the encryption. We will now 
introduce a model that includes such protocols. 

A. Informal Description 

Assume that the names of all users are of the same 
length, say, m bits. For any stringy E {O, 1}*, we will write 
y = head( y )tail( y ), where tail( y) is a suffix of m bits. A 
user Y can apply any of the following operations to a 

stringy: 

a) encryption Ex; 
b) decryption Dy; 
c) appending ix; with ixY = yX; 
d) name-matching d x; with d x y = head( y) if tail( y) = X 

and undefined otherwise; 
e) deletion d, with d y = head( y ). 

The name X can be any user's name, but the only decryp
tion Y can apply is Dy, The following equations are clearly 
true. For any name X, 

ExDx = DxEx = I, 

and 

We remark that i xd x =t= 1. 

(4) 

Under a name-stamp protocol, any text transmitted by a 
user is obtained by applying a sequence of operations a)-e) 
to the most recently received text. In particular, when a d x 

is applied to a string y, the transmission will not proceed 
unless tail( y) = X. To ensure the completion of the com
munication, we will require that any text transmitted be
tween two normal users X, Y will be of a form 

y E {EA, DA, iA, dA, di all usersA}*M 

such that no d A remains after ( 4) is repeatedly applied. 
As before, a saboteur is allowed to intercept all the texts 

between X and Y, modify them with operations a)-e), and 
use them freely in any conversation, initiated either by him 
or by others. In this fashion he can obtain numerous 
strings y E {EA, DA, iA, dA, di all A}*M. If any of the 
obtained y can be reduced to M by the repeated use of (4), 
then the saboteur will have succeeded in the quest for M. 

B. Some Notation 

Consider the following set of rules: 

(5) 

For any stringy E {EA, DA, dA, iA, di all user A}*, let y 
denote a string obtained when the rules in (5) have been 
used to reduce y until no further replacement can be made. 
Clearly, yis unique, independent of the order of the reduc
tion. Cally the reduced form of y. A stringy is irreducible 
if y = y. 

C. Formal Model 

Definition 6: A two-party name-stamp protocol T is 
specified by a set of strings 

where F = {z 1, z2 , ••• , z9}, l < i < t, and 1 < j < t' (t' = t 
or t -.:: 1). Let a;( X, Y) and /31( X, Y) denote the strings iii 
and /31 when z 1, z2 ,· • ·, z9 are each replaced by Dx, Dy, 
Ex, Ey, ix, iy, dx, dy, d. Let N 1(X, Y) = a 1(X, Y), 
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N 2 (X, Y) = /3 1(X, Y)N 1(X, Y), N 3 (X, Y) 
a 2 (X, Y)N2(X, Y),· · ·, N2;(X, Y) = /3;(X, Y)N2;_ 1(X, Y), 
N2;+ I (X, Y) = a;+ I (X, Y)N2;(X, Y), ···.We require that 
N;(X, Y) do not contain any dA-

Remark: {N;(X, Y)M} is the sequence of texts trans
mitted between X and Y, when X wishes to send plaintext 
M to Y. That N;(X, Y) contains no dA means the ith 
transmission is well-defined. 

Definition 7: Let X, Y, Z be three given distinct users. A 
two-party name-stamp protocol T is insecure if a string 
y E Vt, r{N; ( X, Y)} exists such that y = >..; the set Vz, r is 
defined by 

Vz, T = { a/A, B)I all A * B allj;;,, 2} 

U {/3J(A, B)I all A * B, allJ} 

U {EA, iA, dA, di all A} U {Dz}. (6) 

Otherwise, T is secure. 
Remark: The security of T in the above definition is 

clearly independent of the choice of X, Y, Z. The motiva
tion for the definition is similar to the cascade case (see 
Section 11-B) and will not be elaborated. 

D. Examples 

1) Consider the protocol given in Example 2. In the 
present notation, a 1(X, Y) = Eyix, /3 1(X, Y) = 
ExiydxDy. We also have N 1(X, Y) = Eyix and 

N2 (X, Y) = Exiy. 
2) The protocol in Example 3 corresponds to the case 

a 1(X, Y) = Eyi xEy, /3 1(X, Y) = ExiyExDyd xDy. We 

then have Ni{ X, Y) = Eyi xEy and N2 ( X, Y) = ExiyEx. 
This protocol is insecure, as the string 

y = DzdDz/3/Z, X)ExizdDzdDz/3 1(Z, X) 

·ExizN2 (X,Y) E Vl,r{N;(X,Y)} 

satisfies y = A. (This particular y actually corresponds to 
the sequence of operations used by the saboteur in Exam
ple 3.) 

E. A Secure Protocol 

We now prove that the protocol in Example 2 is secure 
in our model. Suppose to the contrary, a y E 

Vt r{N;(X, Y)} exists with y = A. We will derive a con
tradiction. 

Take such a y = v 1v2 • • • v1N;(X, Y) with a minimum 
number of vk E Vt r· Assume i = 1 (the other case i = 2 
can be treated simil~rly). From the previous subsection, we 
have N;(X, Y) = Eyix and N2 (X, Y) = Exiy. Since y = 
A, there must be a Dy in y that cancels the EY in Ni{ X, Y). 
Let vJ be the word that contains this Dy, then vJ = 
/3 1 (W, Y) = E wi yd wDy for some W (as Dy occurs only in 
/3 1• This implies}= l, otherwise y' = v 1v2 • • • vJNi(X, Y) 
would be an instance shorter than y. There are now two 
cases. 
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1) If W* X, then v1N 1(X, Y) = Ewiydwix, and y 
= v I v 2 • • • v1_ I Ewiydwix * A. 

2)If W=X, then v 1N 1(X,Y)=Exiy=N2(X,Y), 

and hence the string y' = v 1v2 • • • v1_ 1N2(X, Y) 
satisfies y' = y' = A, contradicting the minimality of 
y. 

This completes the proof. □ 

F. An Algorithm for Checking Protocol Security 

We will give an algorithm that can decide if a given 
name-stamp protocol is secure. In particular, one can run 
this algorithm to give an alternative proof of security for 
the protocol 1) in the preceding section. 

Given a two-party name-stamp protocol T, specified by 
{ a;, /3), we will use n to denote the input length ~;la;I + 
~)/3J The rest of this subsection is devoted to a proof of 
the following theorem. 

Theorem 3: There is an algorithm that can decide in 
time O(n 8

) whether a given two-party name-stamp proto
col T is secure. 

We will prove as an intermediate step Theorem 4, which 
is of interest by itself. In principle, the saboteur Z may 
start a conversation with any user in the network. The next 
lemma shows that we can assume that Z only speaks to X 
and Y. This reduction is very useful for constructing an 
algorithm. Let us define 

S = {a;(A, B)IA, BE {X, Y, Z), A* B, i;;,, 2} 

U {/3;{A, B)IA, BE {X, Y, Z}, A * B} 

U {EA, iA, dA, dlA = X, Y, Z} U {Dz). (7) 

Lemma 2: The protocol T is insecure if and only if a 
stringy E S*{N;(X, Y)} exists such that y = A. 

Proof- It suffices to show that, if T is insecure, then 
such a y exists. In this situation, let y' E Vf r{N; ( X, Y)} 
be a string such that y' =A.Replace in y'all the EA, iA, dA 
when A $. {X, Y, Z} by Ez, iz, dz, and let y denote the 
resultin~ng. Clearly, y = A. Observe also that y E 

S*{N;(X, Y)}, as a;(A, B) and /3;(A, B) become a;(Z, Z) 
and /3;(Z, Z) ES if A, B $. {X, Y, Z}, and a;(A', B') and 
/3;(A', B') with A', B' E {X, Y, Z}, A' * B', otherwise. D 

Definition 8: Let 1/ E {EA, DA, iA, dlA = X, Y}* be an 
irreducible string. Denote by C( 1/) the set of all irreducible 
strings 8 E {EA, DA, iA, dA, di all A}* satisfying 811 = >-... 

Lemma 3: If 1/ contains any d, then C(11) = 0. Other
wise, let 1/ = bi, b2 ,- • ·, bl' then C( 1/) consists of all the 
strings bt"bt"_ 1 • • • by, where (EA)c = DA, (DAY= EA, (iAY 
= dA or d. 

Proof- It follows from the fact that d has no left 
inverse, and the fact that bf are the only irreducible strings 
satisfying bf b; = A. D 

Write Pk= Nk(X, Y), and let P;,, P;
2
,· • ·, P;, be those Pk 

that do not contain d. 
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Lemma 4: The protocol T is insecure if and only if a 
string y E S* exists such that y E C( P;) for some I ¾ j ¾ 

1 

s. 

Proof" 
Sufficiency: If y ES* and y E C(p; ), then y' == ypi E 

- 1 1 

S*{N;( X, Y)} and y' = 11.. Thus Tis insecure by Lemma 2. 
Necessity: If T is insecure, then by Lemma 2 a string 

y' = '!.!!.Js_(X, Y) exists with y ES* and y' = 11.. This im
plies YPk = 11., and thus by Lemma 3 y E C(pi) for some}. 

1 

□ 

We will show the following. 
Proposition 1: Given a set of strings S = {h 1, h2, ···,hp} 

and a string p, where 

h; E {EA, DA, iA, dA, diA = X, Y, Z}* 

and 

p E {EA, DA, iAIA = X, Y}*, 

one can decide in time 0( q 7 ) if a string y E S* exists such 
that y E C(p). (q is defined to be I:f-ilh;I + IPI-) 

Proposition I implies Theorem 3 by the following argu
ment. Given a protocol T specified by { a;, /3;}, we first 
compute N;(X, Y) and then P; =N;(X, Y) for all i in time 
O(n 2). (Observe that each N;(X, Y) is of length at most 
O(n).) Consider those P; that contain nod. For each such 
P;, use Proposition I to decide if a y E S* exists such that 
y E C(p;), where S is given by (6). By Lemma 4 the 
protocol is then insecure if and only if such a y for some P; 
exists. The total time is 

o(I:(I:la;I + Ll/3;1 + IP;r) = o(I:n1
) = o(n 8

). 

I j J I 

Proposition I remains to be proved. We will consider a 
more general setting. 

G. The Extended Word Problem 

Let L = {ai, a2,· ··,a,} be an alphabet, i.e., a set of 
distinct symbols. We call u - v a trans/ ormation rule, 
where U EL+ and VE L*. Let f = {u1 ➔ Vi, U2 ➔ 
v2 , • • ·, uq ➔ vq} be a set of transformation rules. For two 
strings y, 8 EL*, we will write y ~r8 if y can be trans
formed into 8 by repeatedly using rules in r, i.e., replacing 
substrings u; by v;. For a string of subsets G; of L, 
1/ = G1, G2,·. ·, Gq, let L(11) = {YIY = g1, g2,·. ·, gq, 
where g;·E G;}. We will use the notation y ~rL(11) if 
y ~rP for some p E L(11). The extended word problem for 
(L, f) can be stated as follows. 

Given a set of input strings 81, 82 , • • ·, 8µ( 8; E L*) and a 
string of subsets 'I/= G1, G2,· · ·, Gq(G; ~ L; G; * 0), de
termine if a concantenation ~ = 8; , 8; , · · ·, 8; exists such 

I 2 , 

that~ ~rL(11). 
Remark: The input length n is defined to be L;i8;1 + 

L;IGJ 
In general, the extended word problem is known to be 

undecidable because it includes as a special case the mem
bership problem for a type-0 language, well-known to be 

undecidable (see, e.g., Hopcroft and Ullman [5]). However, 
we will show that the problem is solvable in polynomial 
time for a special class of the inputs. 

Definition 9: A transformation rule of the form a;a1 ➔ 11. 
is called a cancellation rule. 

Theorem 4: Let L be an alphabet and r a set of cancel
lation rules. Then the extended word problem for (L, f) 
can be solved in time O(n7 ), where n is the input length. 

Theorem 4 implies Proposition l by the following argu
ment. Let 

~={DA, EA, iA, dA, djA = X, Y, Z}, 

T = {DAEA ➔ II., EADA ➔ II., dAiA ➔ II., 

diA ➔ 11.jA = X, Y, Z}. 

The problem stated in Proposition I with inputs 
h 1, h 2, · · ·, h P, p can be solved as an extended word prob
lem for(~, f). The inputs are 81, 82,· · ·, 8P and a subset 
string 'I/= G1, G2,· · ·, Gq, where 8; = h; and 'I/ is such that 
L(11) = C(p). The input lengths are linearly related. Thus 
proving Theorem 4 will complete the proof of Theorem 3. 

To prepare for the proof of Theorem 4 we define a few 
terms. Let Si, 82,· · ·, 8P be the input words in~*, and let 
1/ = G1, G2,· · ·, Gq be the input sequence of subsets (G; ~ 
L). Without loss of generality, we can assume that 8; * 11. 
for all i. Denote by I, I' the set of all proper prefixes and 
suffixes of 81, 82,· · ·, 8n (including 11., but not 8;). Let J be 
the set of all substrings of 'I/ and 11 the set of all substrings 
of 1/ of length l. For each w E J, let 

R w = { ( g, b) I g E I', b E J, e E { 8 1 , 82 ,- · · , 8n } * 

exists such that geb = rL ( w)}. 
We emphasize that each w E J is of the form 
G;, Gi+ 1, • • ·, G1, where Gk ~ ~-

Lemma 5: RA can be computed in time O(n7
). 

The proof is given in Appendix II. 

Proof of Theorem 4: We compute Rw for w E 11 induc
tively on l by "dynamic programming." Initially, we com
pute RA. Now let l > 0, and suppose Rw have been com
puted for all w E 10 U 11 u · · · u 11_ 1. For each w E ,'1, 
we will compute Rw. Let w = G1u. For each g E /', b E /, 
let us decide if (g, b) E Rw. Suppose g8;,8;

2 
• • • 8;,b =r 

L(G1u). Since cancellation rules do not create new sym
bols, g8i,8;

2 
• • • 8;,b must be of the form pakp' for some 

ak E G1 with p =rll. and p' =rL(u). To cover all the 
possible breaking points for p and p', we employ the 
following procedure: 

I) If g = akg1 with ak E G1, determine if (g1, b) E Ru-
2) For each 81 and each occurrence of a symbol ak E G1 

in 81, write 81 = saks'. Determine if both (g, s) ERA 
and (s', b) E Ru. 

3) If b = b1b2 with b2 E L(w), determine if (g, b1) E 
RA. 

Set ( g, b) E R w if any of the above tests yields a "yes" 
answer; otherwise (g, b) $. Rw. To check that the above 

Intertrust Exhibit No. 2028



DOLEV AND YAO: SECURITY OF PUBLIC KEY PROTOCOLS 

procedure correctly determines if (g, b) E Rw is easy. To 
find the running time, note that each triplet ( w, g, b) takes 
time at most 

O(IRul + n(IR;,.I + IRul) + IR;,.I + IRwl + n) 

= O(nlll · 1/'I) = O(n 3
). 

Thus the time needed to compute Rw for all w E .ft is 

O(IJ1I ·Ill· 11'1) · n 3 = O(n 6
). 

The total computing time for l = I, 2, · · ·, 1111 is thus 
0( n 7 

). Since the extended word problem has a solution if 
and only if (A, A) E R

11
, the proof of Theorem 4 is com

pleted. D 

IV. THE IMPATIENT SABOTEUR 

To break a protocol that is insecure as defined in the 
previous sections, a saboteur may need to be the receiver of 
a conversation. In this section, we are interested in the 
characterizations ( or decision procedures) for protocols 
that can be compromised by an impatient saboteur, i.e., one 
who only initiates conversations (and does not rely on 
being spoken to). 

For the name-stamp protocols, this corresponds to a 
modification of the definition of security (Definition 7). 
That is, one should omit the term {a/A, B)} from the 
definition of Vz. T (see (6)). 

Theorem 5: An algorithm exists that can decide in time 
O(n 8

) whether a given two-party name-stamp protocol Tis 
secure against an impatient saboteur. 

Proof' The proof is identical to the proof of Theorem 
3 except that the {a;(A, B)} term should be omitted from 
m. □ 

For the cascade protocols, the definition of security 
(Definition 3) should be modified as follows. T is insecure 
(against an impatient saboteur) if some y E (L 1(Z) U L 3 )* 
exists such that yN;(X, Y) = A for some N;(X, Y); Tis 
secure otherwise. We can obtain a characterization similar 
to that in Theorem 1. 

Theorem 6: Let X, Y be distinct user names. A two-party 
cascade protocol T = { a\, /3) is secure against an impatient 
saboteur if and only if, for every k ~ I, 

1) lt(Nk(X,Y))n{Ex,Ey}* 0, 
2) /3k(X, Y) has the balancing property with respect to 

Y. 

Although the statement of this result is simple, the proof 
is quite involved. The rest of this section is devoted to a 
proof of Theorem 6. In the following, a string always refers 
to a string of E's and D's. Let A be any user name. 

Definition I 0: Let 1J be a string. A substring 'TT of 1J is 
called an A-substring if one of the following is true for 
some X, Y * A: 

1) 1/ = 11 1Dx'TTDy112 ; 

2) 1/ = 1J1Dx'TT; 
3) 1J = 'TTDy1J2• 
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Definition I I: A string 1J is strongly A-balanced if every 
A substring 'TT has the balancing property with respect to A. 

Lemma 6: Let 1J be strongly A-balanced string. 

1) If 1J = 11 1Dn1J2 with B * A, then 11 1 and 112 are both 
strongly A-balanced. 

2) If 1/ = 1/i½ and EA $. lt( 112), then 11 1 is strongly A
balanced. 

Proof' It is easy to see that 1/ is strongly A-balanced 
iff every A substring that does not contain any Dn for 
B * A has the balancing property with respect to A. This 
implies 1). 

The balancing property with respect to A is concerned 
with the appearance of EA in case that DA appears. There
fore, by removing a suffix or prefix which does not contain 
EA, we cannot change the balancing property or the strongly 
balanced property. This proves 2). □ 

The key idea in the proof of Theorem 6 is the property 
presented in the following lemma. 

Lemma 7: Let y, 8 be any strongly A-balanced strings 
given in a reduced form. If 

then y8 * A. 

Proof' We prove the lemma by induction on n, the 
number of DA in the word y8. 

The lemma is trivially true for n = 0. Assume now that 
one DA appears in y8. We will assume that it is in y and 
that 8 contains no DA. (The case where DA is in 8 can be 
similarly treated.) By assumption, the strings y, 8 are in 
reduced form. Therefore, y8 = A implies that y does not 
contain any EA, which contradicts the balancing property 
of y. The lemma is thus true for n = 1. 

For the inductive step, let n > 1. Assume that the lemma 
holds for every y', 8' such that y'8' contains at most n - I 
D/s. Let y, 8 be such that y8 contains nD/s, and that y, 8 
satisfy the induction hypothesis. We wish to prove y8 * A. 

We prove by contradiction. Suppose y8 =A.By assump
tion y and 8 are in reduced form; thus 8 = ye. It follows 
that y and 8 contain the same number of operators from 
the set {EA, DA}. Let us assume that y = y2 DA+y1 where 
lt(y1) n {EA, DA}= 0. (The case y = y2 EJ.y1 is similar.) 
In this case 8 = 81EJ82 where 81 = y1 and 82 = Y:f. 

The stringy is strongly A-balanced. Therefore, y2 should 
be of the form y3Ex for some X * A. (Otherwise, y = 
y3 DxDA+y1 for X * A and where EA $. lt(y1), which con
tradicts the fact that DA+y1 has the balancing property with 
respect to A.) This implies that 82 = Dx83 and 83 = y{. 

By Lemma 6 and the fact that lt(y1) n {EA, DA}= 0, 
we conclude that y3 and 83 are strongly A-balanced. More
over, the fact that y = y3 ExDA+y1 and EA $. lt(y1) implies 
that EA E lt( yJ, which implies that DA E lt( 83 ). The in
ductive assumption implies that y383 * A, which is a con
tradiction to our assumption that y8 = A. □ 

Lemma 8: Let Ly = {/3;( X, Y)I for all i and all users 
X}. If every member of Ly has the balancing property with 
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respect to Y, then for every string 

'JJ E (~yU EU {DxiX* Y})*, 

11 is strongly ¥-balanced. 

Proof- The proof is very similar to the proof of Lemma 
1 given in Appendix I. The property of being strongly 
balanced is a special case of having the linkage property 
(Appendix I). The proof can be carried along the same line, 
with attention paid to only one party Yin the present case. 

D 

We are now ready to prove Theorem 6. 
Proof of Theorem 6: The necessity part is exactly as 

that of Theorem 1. 
Sufficiency: Assume to the contrary that PE (~ 1(Z) U 

~ 3 )* exists such that for some k 

PNk = A. 

(We will use the abbreviation Nk for Nk(X, Y).) 
Case A, If Ey <1. lt(Nk): Property 2) and Lemma 8 

imply that the string Nk is strongly ¥-balanced. Therefore, 
Nk cannot contain any Dy. We thus have Nk =El, other
wise 1) would not hold. This means Ji= n;. Now, condi
tion 2) states that f3iA, X) have the balancing prop~ty 
with respect to X, for every A. Therefore, by Lemma 8 P is 
strongly X-balanced, which contradicts the fact that Ji= 
n;. 

Case B, Ey E lt(Nk): In this case, by Lemma 8, Nk 
and Ji are strongly ¥-balanced. However, Lemma 7 implies 
that 

PNk * A 

which provides the desired contradiction. 

APPENDIX I 
PROOF OF LEMMA I 

D 

Let Z be a distinguished user name. We will explore the 
structure of strings in (}; 1 u }; 2 U }; 3)*, from which we will 
derive Lemma I. (We use }; 1 for L 1(Z) throughout this appendix.) 

Definition: Let 'IT be a string and A be a user name. We say that 
'IT is A-balanced if the following condition holds: 'IT = Dx8Dy, 
where X, y * A and lt(olA) n D 5,;:; {DA} implies that olA has the 
balancing property with respect to A. 

A string 1J is said to have the linkage property if every substring 
'IT of D2 11Dz is A-balanced for all A * Z. 

Lemma 9: Let T be a balanced cascade protocol. Let µ. be any 
string having the linkage property. For every string 1J from either 
Lt or L2 or L 3 , µ.11 and 11µ. satisfy the linkage property. 

Proof: It suffices to prove that µ.11 has the linkage property; 
the other case follows by symmetry. Let A =1=- Z be any user of the 
network. We have to show that every substring of Dzµ.1)Dz is 
A-balanced. 

Consider first the case that 1J does not contain DA. In this case 
the number of DA in (µ.11)IA cannot increase, and therefore, every 
substring of Dzµ.1)Dz is A-balanced since every substring of 
Dzµ.D 2 is A-balanced. 

Next, assume 1J contains DA- In this case 1J should be some 
ak(A, B) or /3k(B, A) for some users A and B. Thus 1J has the 

balancing property with respect to A. Moreover, 1J does not 
contain any Du with u *A.Let 'IT= Dx8Dy, where X, Y * A, be 
a substring of D2 µ.11D 2 . If Dy E It(µ.), then 'IT is A-balanced 
becauseµ. satisfies the linkage property. Otherwise, Dy should be 
the rightmost Dz, 1J cannot contain Dy (as Y * A). 

In this case 'IT= Dx8'11Dz, where o = 8'11, because Dx also 
cannot be in '11· We have to prove that if olA contains DA then it 
must contain EA- Assume to the contrary that olA contains DA 
but no EA. It can be shown that either 1J or o'IA should contain 
DA with no EA, because at most one block of DA+ or E1 can be 
cancelled in 81A (since only A-reductions can be done in it). This 
leads to a contradiction of either the assumption that 1J has the 
balancing property or the assumption that µ. has the linkage 
property. D 

Lemma 10: Let T be a balanced cascade protocol. Then every 
string 1J E (L 1 U L 2 u L 3)* has the linkage property. 

Proof: For each 1J E (L 1 U L 2 U L 3 )*, write 1J = w1 · · · · · 
wn, where each w; is either in Lt or L 2 or L 3 . One can finish the 
proof by a simple induction on n, the number of words in 1J, 
using Lemma 9. D 

Lemma 11: For any string 1J and any Z, if 1J has the linkage 
property, then rf also has the same property. 

Proof: It suffices to prove that, if a string has the property, 
then so does the new string obtained by a reduction of any pair 
DxEx or ExDx, for any X. Let 1J be any string which has the 
linkage property. Assume 

1J = 1J1ExDx1J2• 

Let A be any user other than Z. We have to show that every 
substring of D2 11 111 2 D2 is A-balanced. 

If A = X, then every substring of D2 11 111 2D7 is A-balanced 
because the corresponding substring of D7 11Dz is A-balanced. In 
the following, we assume A =1=- X. 

Let Dy be the first Dv from the right of Dz1Ji other than DA, 
and let Dw be the first such Dv(V * A) from the left of 11 2 D2 . 

Then we can write 

D2 11Dz = 11;Dy81ExDx82Dw1J2. 
The fact that 1J has the linkage property implies that Dy8 1ExDx 
and Dx82Dw are A-balanced. It is then easy to see that Dyo 182Dw 
is also A-balanced. This completes the proof. D 

Note that the lemma does not hold in the reverse direction, 
that is, if rf has the linkage property, it does not imply that 1J has 
it. 

Example: Let 1J = EwDxExEyDwDyEy, then rf has the link
age property but 1J does not have it. 

Proof of Lemma 1: We have to prove that for every string 
1J E (L 1 u L 2 U L 3)*, the reduced string rf has the balancing 
property with respect to every A =1=- Z. 

Assume to the contrary that, for some A, rj does not have the 
balancing property with respect to A. It follows that rf contains a 
DA but does not contain any EA. This implies that if does not 
have the linkage property. However, if must have the linkage 
property by Lemmas 10 and 11. This leads to a contradiction. D 

APPENDIX II 
PROOF OF LEMMA 5 

The purpose of this appendix is to show that R 1. can be 
computed in 0( n 7) time. (See Section III for notations.) For 
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I = 0, 1, 2,- · ·, let 

Q1 = {(g, b)lg EI', b EI, 3i1, i 2 ,- • ·, i1 with0 ,:;;,.j,:;;,. I 

suchthatg8;/3;
2 

••• 8;i~rA}. 

Clearly, 
00 

(8) 

Define V0 = Q0 • We will give a procedure K which generates a 
set Vi ~ I' X I once Vi- 1 is given. Consider the sequence 
V0 , Vi, V2 , • • • generated by this procedure iteratively. We will 
show that the sequence {Vi} satisfies the following properties: 

Pl) for all/::;;. 0, f'i ~ f'i+ 1 and f'i ~ RA; 
P2) for all / ;;;. 0, Q, ~ fli; 
P3) for all /;;;. ill · il'I, Vi+ 1 = f'i. 

It follows from (8) and Pl)-P3) that 

with I = Ill · il'I- (9) 

Thus, if we first compute V0 = Q0 , followed by Ill · lf'I applica
tions of procedure K, we will have obtained the desired RA. The 
time needed to compute V0 is easily seen to be O(nlll · lf'I). Let 
cost ( K) denote the maximum running time of procedure K, then 
the total time to compute RA is O((n + cost(K))ill · lf'I) = 
O(n 3 + n2 cost(K)). We will show that cost(K) = O(n 5

), thus 
giving a 0( n 7) total running time. 

We now give a description of procedure K. Assume that fii __ 1 is 
given in a matrix representation of dimension lf'I X ill, we will 
describe how Vi is generated. 

Procedure K 

We process the pairs (g, b) in I' X I one at a time in the 
increasing order of the length s = I gl + I b I- For each ( g, b ), we 
include (g, b) in Vi if it is in f'i_ 1, and otherwise we execute the 
following steps according to the cases: 

Case 1, lgl = o, ibl = O: 

Step a) For each 1 ,:;;,. k, j,:;;,. p, test if both (a;a, ..... A) Er 

and (81c, 8j) E f'i_ 1 where 8k = a;81c, 81 = 8Ja,; let 
(g, b) E V1 if the answer is "yes." 

Step b) For each 1 ,:;;,. j ,:;;,. p and every partition 81 = st ( s, t 
may be A), test if both (g, s) E f'i_ 1 and (t, b) E 

f'i_ 1; let (g, b) E Vi if the answer is "yes." 

Case 2, lgl = 0, b = b 1a/ 

Step a) For each 1 ,:;;,. k,:;;,. p, test if both (a;a1 ..... A) Er 

and (81c, b 1) E fii_ 1, where 8k = a;81c; let (g, b) E Vi 
if the answer is "yes." 

Step b) For each 1 ,:;;,. k,:;;,. p and every partition 8k = st (s, t 
may be A), test if both (g, s) E fii_ 1 and (t, b) E 

f'i_ 1; let (g, b) E Vi if the answer is "yes." 

Case 3, g = akg 1, lbl = 0: 

Step a) For each 1 ,:;;,.j,:;;,. p, test if both (aka; ..... A) Er and 
(g1, 8j) E f'i_ 1, where 81 = 8j a;; let (g, b) E Vi if 
the answer is "yes." 

Step b) For each 1 ,:;;,. k,:;;,. p and every partition 8k = st, test 
if both (g, s) E f'i_ 1 and (t, b) E Vi- 1; let (g, b) E 

Vi if the answer is "yes." 
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Case 4, g = akg1, b = b1a1: 

Step a) Test if both (akaJ ..... A) Er and (g1, b1) E f'i; let 
(g, b) E Vi if the answer is "yes." 

Step b) For each 1 ,:;;,. k,:;;,. p and every partition 8k = st (s, t 
may be A), test if both (g, s) E f'i_ 1 and (t, b) E 

f'i_ 1; let (g, b) E Vi if the answer is "yes." 

Comment: If (g, b) is not included in Vi after these steps, then 
(g, b) f/:. fli. 

End Procedure K. 

It is easy to check that, for each pair ( g, b ), the needed time in 
its processing is at most O(nlll · lf'I) = O(n 3

). Thus cost(K) = 

O(n 3lll · lf'I) = O(n 5
). 

We can now complete the proof of the lemma by showing that 
the sequence {Vi} satisfies Pl)-P3). We observe that, whenever a 
(g, b) is added to Vi in procedure K, the conditions give a natural 
construction of a stringy E g{8;}*b that can be reduced to A. We 
omit a straightforward proof. This establishes Pl). 

To prove P3), observe that the construction of Vi from Vi- 1 

does not explicitly depend on /. Thus once we find Vi= f'i_ 1, 

then Vi = Vi+ 1 = f'i+z = · · · . This condition must be reached 
for some I,:;;,. Ill · lf'I, as at most ill · il'I elements exist in any V;. 
This proves P3). 

We prove P2) by induction on /. The case I= 0 is trivial, as 
Va = Q0 . Now assume that we have proved P2) for all values less 
than /, and we will prove P2) for I (I > 0). 

We need to show that, for any (g, b) E Q1, one must have 
(g, b) E f'i. We prove this by induction on the values = lgl + lb!. 
For any s ;;;. 0, let us assume that the statement is true for all 
(g, b) with lgl + ibl < s; we will prove the statement when lgl + 
ibl = s. There are four cases to be considered, depending on 
whether lgl = 0 and whether ibl = 0. We will consider the case 
lgl > 0 and ibl > 0, and leave the other three cases as an exercise. 

If (g, b) E Q,_ 1, then by induction hypothesis, (g, b) E f'i_ 1 

~ fli. We can thus assume that (g, b) E Q1 -- Q1_ 1• Write g = 
akgi, b = b 1a1, and suppose 

In a reduction process to A, either the last step is akaJ ..... A or the 
cancellation of the leftmost ak is with a symbol av in some 8; . In 
the former case (g1, b1) E Q, and, since lgd + 1h 11 < s, we have 
(g1, b1) E Vi by induction hypothesis; this means (g, b) will be 
included in Vi during the execution of procedure K (Case 4, Step 
a). In the latter case a partition 8; = st exists such that (g, s) E 

Q,_ 1 and (t, b) E Q1_ 1; this me~s (g, b) is added to V; in the 
process (Case 4, Step b). This completes the induction. 

We have proved P2), and hence Lemma 5. 
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A Modular Approach to Key Safeguarding 
CHARLES ASMUTH AND JOHN BLOOM 

Abstract-A method is proposed for a key safeguarding scheme 
(threshold scheme) in which the shadows are congruence classes of a 
number associated with the original key. A variation of this scheme 
provides efficient error detection and even exposes deliberate tampering. 
Certain underlying similarities of this scheme with Shamir's interpolation 
method make it possible to incorporate these protective features in that 
method as well. 

I. INTRODUCTION 

W E CONSIDER the following problem. Given a key 
x, one wishes to decompose it into shadowsy1, • ·, 

Yn, in such a way that the key xis recoverable from any r of 
the Y;, but essentially no information is derivable from s or 
any fewer Y;· (See [I], also [4].) We will refer to any method 
that accomplishes this as a "key safeguarding scheme." 
Such schemes are also called threshold schemes and have 
uses other than key safeguarding. 

The value of such a scheme depends on a number of 
features. Some of these are 

1) the efficiency with which keys are decomposed and 
recovered, 

2) the sensitivity of the method to random error or 
deliberate tampering, 

3) the relation between r, s, and n. 

To have r = s + l would be best. This is the sharpest 
possible arrangement. However, one might consider 
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sacrificing some of this sharpness if there were compensat
ing improvements in some other feature, e.g., speed. 

The polynomial interpolation method of Shamir [4] is 
one of maximum sharpness. A set of numbers {x0 , x 1,· • ·, 

xn} in some field is chosen. A polynomial P of degree r - 1 
is constructed so that P(x0 ) = x. The numbers Y; = P(x;) 
for i = 1 to n are the shadows. The key is recovered by 
evaluating a Lagrange interpolating polynomial at x 0 . As 
we shall see, this method is somewhat sensitive to errors. 
Also, key recovery by the usual interpolation formula 
requires 0( rlog 2 r) operations. The modular method of 
this paper requires only O(r) operations. It also is maxi
mally sharp. Furthermore, it is easily modified to include 
the option of checking the validity of the shadows before 
recovery of the key. 

II. THE BASIC METHOD 

A set of integers {p, m1 < m 2 < · · · < mn} is chosen 
subject to the following: 

1) ( m;, m) = 1 for i * j, 
2) (p, m;) = 1 for all i, 
3) n;-1m; > pTl;.:lmn-i+I· 

Here, as before, n denotes the number of shadows. Any r 
shadows will suffice for key recovery. Estimates of the 
density of primes show that one could easily find primes m; 

to satisfy 3). To find composite m; is still easier. Finally, let 
M = TI;- 1m;. 

The decomposition process begins with the key x; we 
assume that O ~ x < p. Let y = x + Ap where A is an 
arbitrary integer subject to the condition O ~ y < M. Then 
let Y; = y(mod m;) be the shadows. 
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