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Abstract 

This paper describes a technology for the construction of tamper resistant software. It 
presents a threat model and design principles for countering a defined subset of the 
threat. The paper then presents an architecture and implementation of tamper 
resistant software based on the principles described. 

The architecture consists of segment of code, called an Integrity Verification Kernel, 
which is self-modifying, self-decrypting, and installation unique. This code segment 
communicates with other such code segments to create an Interlocking Trust model. 

The paper concludes with speculation of additional uses of the developed technology 
and an evaluation of the technology's effectiveness. 

Introduction 

One of the principal characteristics of the PC is that it is an open, accessible 
architecture. Both hardware and software can be accessed for observation and 
modification. Arguably, this openness has lead to the PC's market success. This 
same openness means that the PC is a fundamentally insecure platform. Observation 
or modification can be performed by either a malevolent user or a malicious program. 
Yet there are classes of operations that must be performed securely on the 
fundamentally insecure PC platform. These are applications where the basic integrity 
of the operation must be assumed, or at least verified, to be reliable such as financial 
transactions, unattended authorization and content management. What is required is a 
method which will allow the fundamentally insecure, open PC to execute software 
which cannot be observed or modified. 

This paper presents the notion of tamper resistant software. Tamper resistant 
software is software which is resistant to observation and modification. It can be 
trusted, within certain bounds, to operate as intended even in the presence of a 
malicious attack. 

Our approach has been to classify attacks into three categories and then to develop a 
series of software design principles that allow a scaled response to those threats. This 
approach has been implemented as a set of tools that produce tamper resistant 
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Integrity Verification Kernels (IVKs) which can be inserted into software to verify the 
integrity of critical operations. 

This paper describes the threat model, design principles, architecture and 
implementation of the IVK technology. 

Threat Model 

Malicious observation and manipulation of the PC can be classified into three 
categories, based on the origin of the threat. The origin of the threat is expressed in 
terms of the security perimeter that has been breached in order to effect the malicious 
act. This translates generally to who the perpetrator is, outsider or insider. 

• Category I - In this category, the malicious threat originates outside of the PC. 
The perpetrator must breach communications access controls but must still 
operate under the constraints of the communications protocols. This is the 
standard "hacker attack." The perpetrator is an outsider trying to get in. 

• Category II - The Category II malicious attack originates as software running on 
the platform. The perpetrator has been able to introduce malicious code into the 
platform and the operating system has executed it. The attack has moved inside 
the communications perimeter but is still bounded by the operating system and 
BIOS. That is, it must still utilize the operating system and BIOS interfaces. 
This is the common virus or Trojan horse attack. The perpetrator is an outsider 
who had access at one time to a system. 

• Category III - In Category III attacks, the perpetrator has complete control of the 
platform and may substitute hardware or system software and may observe any 
communications channel (such as using a bus analyzer) that they wish. This 
attack faces no security perimeter and is limited only by technical expertise and 
financial resources. The owner of the system is the perpetrator. 

Category I attacks do not require the use of tamper resistant software, rather, require 
correctly designed and implemented protocols and proper administration. As, by 
definition, the perpetrator has no direct access to the platform's hardware or software, 
Category I attacks are better defended by robust access control mechanisms. 
Frequently, the goal of a Category I attack is to mount a Category II attack. 

Category II attacks are caused by the introduction of malicious software into the 
platform. The malicious software may have been introduced with or without the 
user's consent and may be explicitly or implicitly malicious. Examples of such 
software include viruses and Trojan horses as well as software used to discover 
secrets stored in other software on behalf of other parties (such as another user's 
access control information). 
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Figure 1: Threat Model and Tamper Resistance 

An important characterization of Category II attacks is that they tend to attack classes 
of software. Viruses are a good example of a class attack. Viruses must assume 
certain coding characteristics to be constant among its target population such as the 
format of the execution image. Other examples would include a Trojan horse 
program that searches a particular financial application in order to purloin credit card 
numbers because it knows where within that application such numbers are stored. It 
is the consistency of software across platforms that enables Category II attacks. 

In an absolute sense, Category III attacks are impossible to prevent on the PC. Any 
defense against a Category III attack must, at best, merely raise a technological bar to 
a height sufficient to deter a perpetrator by providing a poor return on their 
investment. That investment might be measured in terms of the tools necessary, and 
skills required, to observe and subsequently modify the software's behavior. The 
technological bar, from low to high, would be: 

a) No special analysis tools required. These include standard debuggers and system 
diagnostic tools. 

b) Specialized software analysis tools. Tools here include specialized debuggers 
such as Softlce and software breakpoint-based analysis tools 

c) Specialized hardware analysis tools. These tools include processor emulators 
and bus logic analyzers. 

Our goal for tamper resistant software is to defend against Category II attacks and 
Category III attacks up to the level of specialized hardware analysis tools. We 
believe that this provides a reasonable compromise. It is axiomatic that threat follows 
value, thus this level of tamper resistance is adequate for low to medium value 
applications, and for high value applications where the user is unlikely to be a willing 
perpetrator (such as applications involving the user's personal property). 
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Principles 

It is our premise that for software to be tamper resistant it must be immune from 
observation and modification (within the bounds stated earlier). This requirement 
implies that the software contains a secret component. Preventing operation on the 
secret component is the basis for the trust that the application has not been tampered 
with. Were it not for the secret component, a perpetrator could substitute any 
software of their choosing for the correct software. 

It is the existence of this secret component that compels the user to use that specific 
software for that specific function rather that some other software. For example, the 
secret may be a cryptographic key used to encrypt a random challenge in an 
authentication protocol. Possession of the cryptographic key creates the trust that the 
software is legitimate. 

As another example, consider the need to guarantee that the software has completed a 
predetermined set of steps. If each step contributed some information to the 
formation of a shared secret then the presentation of that secret would provide proof 
that the steps have been executed correctly. 

The design principles that we have developed are based on the need to hide a secret in 
software and ensure that the recovery or alteration of that secret is difficult. Four 
principles were developed: 

• Disperse secrets in both time and space The secret should never exist in a single 
memory structure, where it could be retrieved by scanning active memory. 
Additionally, the secret should never be processed in any single operation, where 
anyone monitoring code execution could easily deduce it. 

• Obfuscation of interleaved operations The complete task to be performed by the 
software should be interleaved so that a little bit of each part of a task is 
performed in successive iterations or rounds of the executing code. The goal is 
to achieve software atomicity, i.e., an "all or none" execution of the software. 
Such interleaving could be done in a multi-processing environment with 
cooperating threads. Additionally, the actual execution should be obfuscated to 
prevent easy discovery of the interleaved component results. Such obfuscation 
could be accomplished by self-decrypting and self-modifying code. 

• Installation unique code In order to prevent class attacks, each instance of the 
software should contain unique elements. This uniqueness could be added at 
program installation in the form of different code sequences or encryption keys. 

• Interlocking trust The correct performance of a code sequence should be 
mutually dependent on the correct performance of many other code sequences. 

None of these principles alone will guarantee tamper resistance. Tamper resistance is 
built from many applications of these ideas aggregated into a single software entity. 
We have applied these principles in the construction of Integrity Verification Kernels 
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(JVKs) which are small, tamper resistant sections of code that perform critical 
functions. 

Architecture 

The tamper resistant software architecture consists of two parts: 

1. Integrity Verification Kernels These kernels are small code segments that have 
been "armored" using the previously mentioned principles so that they are not 
easily tampered with. They can be used alone, to ensure that their tasks are 
executed correctly, or they can be used in conjunction with other software, where 
they provide the assurance that the other software has executed correctly. That 
is, they can be used as verification engines. 

2. Interlocking Trust Mechanism This mechanism uses the inherent strength of the 
IVK in a robust protocol so that IVKs may check other IVKs. This mutual 
checking greatly increases the tamper resistance of the system as a whole. 

Both of these parts are described in more detail in the following sections. 

Integrity Verification Kernel 

The IVK is a small, armored segment of code which is designed to be included in a 
larger program and performs the following two functions: 

• Verifies the integrity of code segments or programs 

• Communicates with other IVKs To accomplish these functions securely, an IVK 
utilizes five defenses: 

1. Interleaved tasks An IVK may also perform other functions as required but 
all functions will be interleaved so that no function is complete until they are 
all complete. Thus, for tasks A, B, and C where a, b, and c are small parts of 
tasks A, B, and C respectively, the IVK executes abcabcabcabc rather than 
aaaabbbbcccc. This is done to prevent a perpetrator from having the IVK 
complete one of its functions, such as performing the integrity verification of 
the program, without performing another function, such as verifying the 
correct functioning of another IVK. 

2. Distributed secrets The IVK must contain at least one secret ( or the IVK 
could be bypassed by any code written to respond in a pre-determined way). 
In general, one of these secrets will be a private key used to generate digital 
signatures.[11 The public key would be used to verify the integrity of the 
program and to verify the responses to challenges in the Integrity 
Verification Protocol. In accordance with one of the previously mentioned 
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principles, secrets are broken into smaller pieces and the pieces distributed 
throughout the IVK. 

3. Obfuscated code The IVK is encrypted and is self-modifying so that it 
decrypts in place as it is executed. The cipher used ensures that, as sections 
of the code become decrypted, other sections become encrypted and memory 
locations are reused for different op-codes at different times. 

4. Installation unique modifications Each IVK is constructed at installation 
time in such a way that even for a given program, each instance of the 
program contains different IVKs. This way, a perpetrator may analyze any 
given program but will not be able to predict what the IVK on a particular 
target platform will look like, making class attacks very unlikely. The 
uniqueness is a property of installation specific code segments and 
cryptographic keys. 

5. Non-deterministic behavior Where possible, the IVK utilizes the multi­
threading capability of the platform to generate confusion (for an attacker) as 
to the correct thread to follow. 

The structure of an IVK is illustrated in figure 2. The IVK is divided into 2N equal 
size cells (or code segments) where N > 2. Each cell contains blocks of execution 
code and, with the exception of the first cell, are encrypted. Cells are not executed 
linearly but in a pseudo-random order determined by a key. The cell is thus the 
smallest level of granularity which is ever exposed unencrypted. Cells are exposed 
by decryption one at a time. 

The first cell contains the IVKs entry point. The entry point accepts parameters and 
begins execution of the IVK. Once control has been transferred to the IVK, one of 
the parameters is passed to the generator function. The generator function uses one 
of the parameters as the key seed vector, KV, to a pseudo-random number function 
and XORs the generated pseudo-random number string, KG, with all of the IVK's 
remaining cells in a pseudo-one-time-pad manner. So that for an IVK, M, which is 
composed of m bytes 

mo ~mi ~mB 

where there are a total of B bytes in Mand KG is composed of bytes kgi, then 

For i = cell size to B 

m[i] = m[i] XOR KG[i] 

This sets up the initial state of the IVK. All further states of the IVK are a function of 
all of the preceding states. Thus, the initial state defines the possible values of future 
states. 
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Figure 2: Structure Of An IVK 

Once the initial state is set up, the decrypt and jump function is executed. The 
decrypt and jump function XORs every cell in upper memory with a partner cell in 
lower memory and with a substitution key value. An upper memory cell's lower 
memory partner is chosen according to the value of a transposition key. Thus the 
value of each lower memory cell is a function of a keyed substitution-transposition 
derived from cells in upper memory. 

The results of the decrypt component of the decrypt and jump function is that at least 
one cell in lower memory consists of valid op-codes (non-encrypted), referred to as 
plaintext. The jump component then jumps to that one plaintext cell. Once the 
plaintext cell has been executed, its decrypt and jump function XORs every cell in 
lower memory with a partner cell in upper memory and with a substitution key value. 
Thus, obliterating previous plaintext cells in upper memory and exposing at least one 
new plaintext cell in upper memory and jumping to it. 

The decrypt component is as follows: Given C cells in the IVK where mi denotes a 
cell in C such that 

and 
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There are two encryption keys, KP, the permutation key, and, KS, the substitution 
key. Where KP[i] is the ith element of q total elements and KS[i] is the ith element of 
t total elements respectively. Both keys, KP and KS, are random bit strings. 

Next, we define the partner function, P, as 

P(i,j) = (KP[j modq] v 2 N-I) EB i 

where i is an index of cells such that 

and j is monotonically increasing for 

Then the decrypt function is 

For i = 0 to 2~1-1 

m [ P ( i, j) l = m [ P ( i, j) l XOR m [ i] 

XOR KS [j mod t] 

j = j+ 1 

for odd rounds, and 

For i = 0 to 2~1-1 

m[i] = m[i] XOR m[P(I,j)] 

XOR KS [j mod t] 

j = j + 1 

for even rounds. One round being one execution of a decrypt and jump function such 
that even rounds are executed by plaintext cells in upper memory and odd rounds are 
executed by plaintext cells in lower memory. 

Note that KS and KP do not explicitly exist, rather; the values KS[i] and KP[i] are 
derived at IVK creation and are hard-coded. 

The decryption function has many interesting properties. By controlling specific 
values in KP and KS, arbitrary cycles can be introduced. These cycles can be used to 
process function calls or loop structures in the original code. This property is an 
artifact of XOR exchange. To exchange two values a and b with out using temporary 
storage the following sequence can be exercised: 

a=aEBb 

b=aEBb 

a=aEBb 
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Performing the sequence again will return the original values of a and b thus creating 
a cycle. 

The other property of interest is that any arbitrary end state can be produced such that 
a different KG could be needed for the IVK to run again. 

Returning back to figure 2, once a decrypt and jump function has jumped to a new 
cell, the new cell begins executing the interleaved tasks in that cell. The cell first 
process some part of a digital signature, then one part of some additional function 
such as checking to see if the process is being debugged. Any task can be performed 
as long as it can be interleaved among many cells. 

Next the cell executes the accumulator function. This function computes one round 
of a hash function where the current cell's value is added into the accumulating 
product. This accumulating product can be checked by any cell to insure that all 
previous cells were executed correctly and in the correct order. Given cell m, hash 
function H, and the value of Hat i as hi then 

After the accumulator function has run, the cell executes its decrypt and jump 
function; and a new cell is uncovered and begins execution. 

Integrity Verification Kernel Creation 

IVKs are constructed using two specialized tools. Tool 1, which is run by the creator 
of the program in which the IVK is to be embedded and tool 2, which is run at 
installation time by the install script. Figure 3 illustrates the steps in creating an IVK. 
In step 1, public keys are feed into Tool 1. Tool I computes the components of the 
private keys and generates "C" source code for performing digital signatures using 
those components. 

In step 2, the generated "C" code is interleaved with other, pre-written "C" code, 
including standard preambles and footers to produce the source code for the IVK. 
The source code for the IVK is then compiled in step 3 to generate object code for the 
IVK. 

The object code for the IVK is processed in step 4, along with other parameters, at 
installation time, to generate a vector of encrypted bytes. The encrypted bytes have a 
defined entry point which is not encrypted. The encrypted bytes are the IVK. They 
are then inserted into the target program in step 5 into a location left "empty" when 
the original program was created. 

We will now look at each of these steps in more detail. 
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(5) 

Figure 3: IVK Creation 

Step 1 In step 1, one or more public/private keypairs are fed into tool I to generate 
"C" code that produces digital signatures. The source code which is output contains 
the "unrolled", optimized code for computing a cryptographic hash followed by the 
modular exponentiation. The public keys are hard coded into the source code as part 
of the mathematical operations. 

Step 2 In step 2, the source code generated by tool 1 is combined with standard pre­
written source code. The pre-written code includes the IVK's entry code, generator 
code, accumulator code and other code for tamper detection. This step is a primarily 
manual step. The code for the decrypt and jump function is not added during this 
step. It is added by tool 2 in step 4. 

Step 3 The combined source code is compiled by a standard compiler in step 3 to 
produce relocatable object code. 

Step 4 Step 4 is performed at installation time. The relocatable object code is 
processed by tool 2. Tool 2 has the following four phases: 

I. Peephole Randomization In this phase, a peephole randomizer passes over 
the object code and replaces code patterns with random equivalent patterns 
chosen from a dictionary of such patterns. 

II. Branch Flow Analysis In this phase, a branch flow analyzer passes over the 
object code and rearranges and groups the code into small linear code 
segments. 

III. Cell Creation In this phase, tool 2 determines the number of cells to be 
used, allocates code segments to the cells, adds the accumulator and the 
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decrypt and jump functions to each cell, adds random padding where 
needed, and finally, fixes-up all the address in the code. 

IV. Obfuscation Engine This, the last phase of tool 2, generates the three 
random keys, KP, KS, and KG, computes the visibility schedule for each of 
the cells, computes the initial start state and encrypts the IVK. 

Step 5 In the last step of IVK creation the encrypted IVK generated by tool 2 is 
copied into a reserved area of the program. The IVK is then ready to be invoked. 

Interlocking Trust 

Although the IVK can be made generally tamper resistant, its ability to defend itself is 
greatly enhanced by using an Interlocking Trust mechanism with other IVKs. The 
Interlocking Trust mechanism consists of three parts: Integrity Verification Kernels 
(described earlier), an Integrity Verification Protocol and a System Integrity Program. 

Program 1 Program 2 

2 
Integrity Program 

Figure 4: Interlocking Trust Overview 

These three components work together to create an Interlocking Trust mechanism. 

As illustrated in figure 4, the objective of the mechanism is to protect programs 1 and 
2 from manipulation. As with any non-trivial program, programs 1 and 2 are too 
complex to be adequately protected. In our implementation we create a small, 
verifiable, defensible Integrity Verification Kernel. An IVK is included as a part of 
both programs 1 and 2 as well as part of a system Integrity Program which is 
accessible to all programs. 

Each IVK is responsible for the integrity of the program in which it is embedded. 
Integrity is verified by calculating the digital signature of the program in which they 
are contained and comparing the calculated signature value with the correct, hard­
coded value, stored in an IVK itself. If desired, the IVK could verify the integrity of 
any other software component, in addition to the program in which it is contained. 
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A program may have more than one IVK and may execute them at any time. As long 
as the IVK is actually executed and is executed correctly, the program cannot be 
modified without detection. Thus, the vulnerability rests on IVK's correct execution. 

Each IVK is constructed according to the previously enumerated principles to make 
them tamper resistant. They are self decrypting and installation unique. All of their 
functions are interleaved and self-verifying. These mechanisms are described in 
detail in the next section of this paper. But, to eliminate a single point of attack, IVKs 
are interlocked so that a failure or by-pass of any one IVK will be detected by 
another. 

The architecture assumes that there is a System Integrity Program running on the PC 
that is available to all programs. This System Integrity Program contains a special 
IVK called the Entry Integrity Verification Kernel ( eIVK), shown with a "hatched" 
background in figure 4, and one or more other IVKs. IVKs within the System 
Integrity Program verify the integrity of the System Integrity Program and any IVKs 
embedded in the System Integrity Program. 

Upon installation of the System Integrity Program, one or more IVKs are created that 
are installation unique. The eIVK has a published, external interface that can be 
called by any other IVK using the Integrity Verification Protocol. 

Using figure 4 to illustrate, program 1 executes an embedded IVK. The IVK verifies 
the integrity of program 1 and then calls (label J a in figure 4) the eIVK. The eIVK 
then verifies the integrity of the System Integrity Program and all contained IVKs and 
calls another IVK in the System Integrity Program (label lb in figure 4). The 
additional IVK then verifies the integrity of the System Integrity Program and all 
contained IVKs and calls the original IVK in program 1 (label Jc in figure 4). 

To tamper with program 1, the perpetrator would need to tamper with both program 1 
and the System Integrity Program. However, as can be seen in figure 4, any other 
program (program 2 in figure 4) will also be using the IVKs in the System Integrity 
Program. Thus, to tamper with any program all programs would have to be 
compromised. 

Integrity Verification Protocol 

The integrity verification protocol is used to establish a distributed trust environment. 
It is the protocol by which IVKs request mutual verification as described in figure 4. 

As is shown in figure 4, the protocol is a three party communication between: 

1. An IVK embedded in an application (which could be the System Integrity 
Program) 

2. the eIVK, and 

3. an IVK embedded in the System Integrity Program. 
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The protocol provides a challenge/response authentication between the IVK elements 
and information (such as the success or failure of the verification action) passed in 
such a way as to be bound to the authentication. 

Table 1 gives the definitions of the objects used in the protocol. In the table, 
subscripts refer to the software module where the value originates. The subscript 
values may be either A, E, or S for the application module, the eIVK module or the 
Software Integrity Program respectively. 

Object Definition 

K-;/ Private key of IVK embedded in module X. 

Ki Public key ofIVK embedded in module X. 

Ax Address of the entry point of the IVK 
embedded in module X. 

H x Hash value computed over the code of module 
X. 

Rx Random value derived by module X. 

Fx Flag value (success or failure) of operation 
originating from X. The flag is 9 bits where 
each bit is the result of an operation and where 
a 0-bit is a success and a 1-bit is a failure. 

Table 1: Protocol Components 
The protocol is a simple signed message protocol with random values added to 
provide protection against replay. 

Table 2 lists the information known by, and present in each of the parties a priori. 
Table 2 uses the following notation: 

• M encrypted with public key of X . K~[M] 

• M concatenated with N. MIN 

• X sendsMto Y X➔ Y:M 

• Bit O of F is equal to the result of a test of M = N. F'o=(M=N) 
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Party Information 

Application (A) K~ public key of A 

K;, public key ofE 

K~1 [HA] signature of A under A 

Kl [HA] signature of A under E 

A E address of E 

A A address of A 

elVK (E) K-;.,1 private key ofE 

Kl [HE] signature of E under E 

As address of S 

System Integrity K! public key of S 
Program (S) K;, public key ofE 

K;1 
[ Hs] signature of Sunder S 

K; 1 [HE] signature of E under S 

Kl [ Hs] signature of Sunder E 

AE address ofE 

Table 2: Initial state knowledge of participates 

The protocol can be described in the following steps: 

1. A verifies signature of A and reports any failure 

F0 =(HA= K~[K~1[HA]]) 

2. A sends signature, flag, and random number to E 

A ➔ E:K1[K1[HA]IFIAAIRA] 

3. E verifies signature of E and reports any failure 

p; =(HE= K;1[K1[HE]]) 
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4. E verifies signature of A and reports any failure 

F2 =(HA= K~1[K1[HA]]) 

5. E sends signature and address of A, flag and random number to S 

E ➔ S:K;;/[HAIAAIFIRE] 

6. S verifies signature of S and reports any failure 

F; = (Hs = Kl[K;'[H8 ]]) 

7. S verifies signature of E and reports any failure 

~=(HE = Kl[K;-1[HE]]) 

8. S verifies signature of A and reports any failure 

F's = (HA = Ki[HA]) 

9. S sends E signature, flag and random number 

S ➔ E:Ki[K1[H8 ]IFIRE] 

10. E verifies that received random number is the same 

F6 =(RE =K~1[Kl[RE]]) 

11. E verifies signature of S and reports any failure 

F7 = (Hs = K~1[Ki[H8 ]]) 

12. E sends flag and random number to A 

E ➔ A:K~1[FIRA] 

13. A verifies that received random number is the same 

F's= (RA= Ki[RA]) 

14. A verifies that flag equal O and reports any failure (F = 0) 

The above protocol is not particularly efficient but is reasonably robust. It requires 
no prior knowledge of the application from the other parties is the case given the 
installation specific uniqueness. 

System Integrity Program 

The System Integrity Program is a program module that constantly monitors the 
integrity of the security components of the computer system. While the System 
Integrity Program monitors the integrity of the security components, it depends on the 
eIVK to monitor its own integrity. 
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The System Integrity Program is created at installation time so that both the elVK and 
the embedded IVK can be made unique. The System Integrity Program insures that 
the eIVK has a known entry point an a known public key. 

Technology Extensions 

The current design of the IVK could be expanded in numerous ways to make it more 
effective. These technology extensions fall into two broad categories: active defense 
and hardware assisted protection. 

Active defense is code, added to the IVK, that detects attempts to observe or modify 
the execution of the IVK and then fights back. Detection possibilities include 
scanning running code for "signatures," much the way viruses are detected. 
Signatures of debuggers or emulators can be scanned. Additionally, one may look for 
specific interrupt vectors which are used by particular programs. Once detected, the 
IVK may disconnect interrupts used by the debugger or modify the target's code so 
that it fails. 

Hardware assisted protection uses some characteristic of the hardware to assist the 
software tamper resistance. Several techniques are currently under investigation. 
The first utilizes the processor's execution counter to measure the time used by the 
process. Once this is done then the secret, a private key, is not actually stored in the 
IVK using tool 1, as described earlier, but, rather, the statistical timing characteristics 
of operating on the secret are stored instead. The IVK then guesses at the correct key 
and utilizes the timing characteristics in an auto-correlation process to derive the 
secret. Any attempt to manipulate the code while the auto-correlation is executing 
would keep the IVK from deriving the correct secret. This method is a use of 
Kocher's cryptanalysis of fixed exponent systems.l21 

Additional hardware assistance can be derived by locking the execution of the IVK in 
the processors on-chip cache. 

Conclusion 

This paper presented an implementation of tamper resistant software, the true 
resistance of which can only be judged empirically. As such, only time will confirm 
whether the principles described herein are valid and the implementation sufficient. 
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