
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2410018

Discouraging Software Piracy Using Software Aging

Conference Paper · February 2002

DOI: 10.1007/3-540-47870-1_1 · Source: CiteSeer

CITATIONS

29
READS

54

2 authors:

Some of the authors of this publication are also working on these related projects:

Social Engineering on 2FA schemes View project

Adversarial machine learning View project

Markus Jakobsson

ByteDance

245 PUBLICATIONS 11,031 CITATIONS

SEE PROFILE

Michael K. Reiter

Duke University

353 PUBLICATIONS 21,897 CITATIONS

SEE PROFILE

All content following this page was uploaded by Markus Jakobsson on 23 February 2015.

The user has requested enhancement of the downloaded file.

Intertrust Exhibit No. 2030

https://www.researchgate.net/publication/2410018_Discouraging_Software_Piracy_Using_Software_Aging?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2410018_Discouraging_Software_Piracy_Using_Software_Aging?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-Engineering-on-2FA-schemes?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Adversarial-machine-learning?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markus_Jakobsson?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markus_Jakobsson?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markus_Jakobsson?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Reiter3?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Reiter3?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Duke-University?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Reiter3?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Markus_Jakobsson?enrichId=rgreq-b9e672860510ce19e7e651fc26bd6fd0-XXX&enrichSource=Y292ZXJQYWdlOzI0MTAwMTg7QVM6MjAwMTMyNzc2NzMwNjI3QDE0MjQ3MjY3ODAxNTA%3D&el=1_x_10&_esc=publicationCoverPdf

Discouraging Software Piracy

Using Software Aging

Markus Jakobsson
∗

Michael Reiter
†

Abstract

Most people consider frequent software updates a nuisance. However,

we show how this common phenomenon can be turned into a feature

that protects against software piracy. We define a protocol for “drop-in”

upgrades of software that renders a large class of software piracy more

traceable. A novel feature of our approach is a software aging technique

by which we force the updates to occur, or else the software becomes

decreasingly useful over time.

Keywords: piracy, prevention

1 Introduction

According to a recent study [2], the computer industry loses $11 billion annually
to piracy, with 40 percent of all software programs pirated. Software piracy is
a crime that traditional legal and technical methods to a large extent fail to
prevent, much due to the low cost of the crime and the inherent impossibility of
preventing data copying. Still, and as we show in this paper, there are practical
methods that can be employed to discourage software piracy by making it less
economically viable. The threat that we address here is that in which a pirate
obtains, potentially alters, and then distributes copies of a piece of software in
order to make a profit. We do not consider the situation in which several mutu-
ally trusting and coordinating users buy a piece of software together, although
this is also a major concern to the software industry. We also do not consider
piracy that is performed “for the fame of it”, but focus on the problem in which
pirated software is distributed for a profit.

Our protection method relies on periodic updates of software. Tradition-
ally, and independently of our proposal, users want to have their software up-
dated, typically in order to fix known bugs, to add security patches, to add
new functionality, and to keep their software compatible with other programs.

∗RSA Labs, 20 Crosby Drive, Bedford, MA 01730; mjakobsson@rsasecurity.com.
†Carnegie Mellon University, Pittsburgh, PA 15213; reiter@cmu.edu

1

Intertrust Exhibit No. 2030

We consider how these two seemingly independent issues, i.e., piracy protec-
tion and software updates, can be addressed at the same time, giving us an
improved system as a result. We also introduce a novel method, software aging,
for increasing the dependence on updates.

Our software updating methods discourage piracy by benefiting legitimate
users while inflicting damage on illegitimate users. This differentiation of ser-
vice creates a situation in which illegitimate users—in order to avoid that their
software becomes incompatible to that of their surroundings—are forced to rely
on the pirate for updates. This increases the operating costs for the pirate, and
forces the pirate to keep in touch with its customers (which in turn increases
the risk of discovery by authorities). At the same time, it increases the amount
of trust the buyer of pirated software needs to place on the pirate (namely that
he will provide updates). This decreases the value of the pirated software to its
buyer, due to the risk that it may become incompatible if the updating service
is not kept running. It is interesting to note that the customers of the pirate
do not necessarily benefit from the pirate being successful; namely, the risks of
the pirate’s discovery increase with the number of customers the pirate needs
to update. (This is in contrast to the typical economy of large operations.)

In addition to inflicting the above disadvantage on pirates, our methods can
be used to shorten the life of pirate software below its current life span. Clearly,
necessary and frequent updates further lowers the value of pirated software and
further aggravates piracy by increasing the necessary updating frequency. (We
note that this must be done with the convenience of the legitimate user in mind,
as much as the inconvenience of his illegitimate counterpart, in order not to alter
the perception of the software for the legitimate users.)

Altogether, we believe our techniques will infringe upon the economical vi-
ability of piracy by raising the operating costs for the pirate, and lowering the
resale value of his merchandise. At the same time, the costs of maintaining
the updates are kept low for the distributor, assuming that the updates are
performed using an on-line protocol. This is a reasonable approach given that
most computer users also are modem owners.

We note that our methods work even under the pessimistic assumption that
the pirate is able to remove or alter any pieces of code and data that are used
to detect or prevent piracy, such as code-embedded watermarks, verification of
CPU identities, and similar. Also, in addition to defending against piracy, our
suggested model makes software rentals easier to administer (simply by charging
for the updates as opposed to providing these for free).

Outline: We begin by introducing our model in section 2, followed by a dis-
cussion of our general goals and methods in section 3. Then, we review related
work in section 4, followed by a more precise description of our solution. One
part of our method is the updating protocol we suggest in section 5; another
part is our suggested methods to speed up “aging” of software (section 6). We

2

Intertrust Exhibit No. 2030

conclude in section 7 by stating and arguing the properties of our solution.

2 Model and Requirements

We consider a model with the following participants:

• Distributor. The distributor sells software, keeps a list of registered
users, and maintains a service for software updates for legitimate users.
The goal of the distributor is to maximize his profit, and to discourage
pirate versions of his software from being used.

• Legitimate users. Legitimate users purchase software from the distrib-
utor, and obtain updates from the same. The legitimate users want the
piracy protection to be transparent as far as possible, in the sense that it
should cause a minimum of negative side effects (such as delays and in-
creases of file sizes). In other words, in terms of the features offered to the
users, the legitimate users want their software to be as close as possible
to the ideal of the software (where we use the word “ideal” as done by
Plato).

• Pirate. The pirate obtains the software sold by the distributor, and re-
distributes (potentially altered) copies of the software for a charge. We
make the pessimistic assumption that the pirate has access to the source
code of the software he wants to redistribute, and that he is capable of
altering (and compiling) this in order to remove any protection mecha-
nisms. The pirate wants to maximize his profit and minimize the risks of
discovery/prosecution.

• Illegitimate users. Illegitimate users obtain software from the pirate.
Just like the legitimate user, the illegitimate user wants the software he
uses to be as close as possible to the ideal of the software—again in terms of
the functionality offered to the user. Additionally, illegitimate users want
to maximize their profit (by buying software at “piracy discount”) and
minimize the risks of failure. We assume that illegitimate users generally
do not cooperate with one another, but rather interact only with the pirate
for the purposes of obtaining software.

3 Approach

Goals. We want to force the pirate to be responsible for regularly updating its
customers’ software. We consider the link between pirate and customer as the
cost (in terms of risks of discovery) to the pirate, as opposed to the bandwidth
between them once a connection is made. Requiring a link therefore requires ei-
ther that the pirate can be contacted by its customer in some manner (preferably

3

Intertrust Exhibit No. 2030

electronically in order for the illegitimate user not to be inconvenienced) or that
the pirate can contact his customers1 (again, preferably electronically). Here,
the selection of the ”meeting place” (which may be a public bulletin board) may
be fixed over time and the same for all users; unique for each user and changing
according to some pseudo-random pattern; or somewhere between these two
extremes. In either case, we have that the need for communication increases
the risks for legal action against the pirate, as it would allow “infiltrators” to
discover the pirate and take action to trace him. This threat increases the risk
of the pirated software to its users, as these will be made to rely on updates from
a pirate that may either disappear to avoid tracing or be successfully traced and
taken out of business.

Method for forcing interaction. We achieve our goals by letting the distrib-
utor supply software updates to registered, legitimate users. If an illegitimate
user were to contact the distributor for an update, he would have to give a
registration number. In case it is invalid, the distributor may supply a “random
update”, thereby efficiently corrupting the operation of the pirate software. In
case it is valid, it allows the distributor to partially trace the criminal (from
software distribution lists). He may also supply a random update in case he has
already updated the software for the given user in this time period (i.e., another
clone of it).

Therefore, a rational pirate would have to alter the portion of the software
that requests updates in a way that it either contacts the pirate (which would
hardwire a contract address for the pirate in every piece of pirate software sold)
or that awaits an update from the pirate. If this is not done, then illegitimate
users will be refused updates, which will lower the value of the pirated software
to them, and therefore also the possible profit to the pirate.

Means for communication. The software distributor supplies updates by
either the legitimate users contacting the distributor, or vice versa. Then, after
contact has been established, some identification scheme is run, and the update
is transmitted from the distributor to the user. The pirate has the same type
of communication channel available. In addition, we assume that he may use
(potentially anonymous) bulletin boards as a communication channel.

Limitations. In this paper we consider only programs that generate files or
messages that may need to be interpreted by other instances of the same pro-
gram; hereafter, all such outputs are referred to as “files”. Numerous programs
are of this form, include word processors, spreadsheet packages, and networked
games. We do not consider software that works in perfect isolation, such as
single-player games for a PC. However, our methods can be extended to any

1We note that the latter contact method allows the pirate to move around, at the cost of

forcing illegitimate users to register their location.

4

Intertrust Exhibit No. 2030

program by a hierarchical approach in which the operating system requires
updates2, and the operating system requires all programs it runs to be updated.

Conflict resolution. In the above, we have only considered what happens in
the common case. There are two special cases of interest:

• Synchronization problems. It is not unlikely that sometimes, the con-
nection between a user and the distributor is interrupted during a transfer.
Whereas the typical approach to this in a standard setting is to execute the
same sequence of steps again (with the same input and random strings),
we note that such an approach is inadequate here. The reason is that
this would allow a pirate to clone software that “hangs up” after having
received the update, allowing another clone to claim that the connection
was interrupted right before the last step. On the other hand, legitimate
users must not be denied updates, creating an interesting new kind of
fairness/synchronization problem.

• Repentant illegitimate user. It may be of interest to allow illegitimate
users to become legitimate (by paying some fee closely corresponding to
the costs of acquiring the software to begin with). By doing this, the pirate
is used by the distributor much like an advertiser handing out samples
that work for a limited time period. This corresponds functionally to
selling the software using an on-line protocol, although it may require less
information to be transferred. We will not elaborate on this scenario.

Method for forcing frequent updates. Typically, updates to software are
currently done on roughly an annual basis, as there is not much need for more
frequent updates, and as the cost and inconvenience of more frequent updates
is substantial (using currently employed updating methods). As the success
of our protection mechanism depends on the frequency with which updates are
necessary, we wish to increase the frequency. We may, for example, want weekly
or bi-weekly updates to be (automatically) made.

Note that it is not sufficient to force legitimate users to perform these up-
dates. (In fact, it is the illegitimate users we want to force to make updates.)
It appears that the only way to force illegitimate users to perform updates is to
make these necessary for smooth operation. We consider a method in which files
output by the software contain a version-dependent number that affects how the
file should be interpreted when read or written. In order for software of illegiti-
mate users to be compatible with that of legitimate users—or more specifically,

2On the surface it may appear sufficient that the operating system requires the programs

it runs to be updated, but that it does not have to be updated itself. This, however, would

allow a pirate to circumvent the protection by disabling the portion of the operating system

that forces the programs it runs to be updated. On the other hand, in order for the attacker

to avoid this from happening in a situation where the operating system has to be updated is

to supply illegitimate users with operating system updates.

5

Intertrust Exhibit No. 2030

for it to be able to interpret files received from legitimate users—the illegitimate
software must be (roughly) as up-to-date as the legitimate user’s software that
created the file. To enforce this, the software contains a short secret that, to-
gether with the version number of the software, allows interpretation of files that
are older or as old as the software (where age is measured in terms of version
number). We propose a method achieving this goal, while smoothly allowing
new software versions to interpret both old and new files.

We note that the functional changes embodied in updates must not be pos-
sible for an attacker to predict, since then the pirate could implement these
updates directly and thus avoid that the illegitimate users are forced to request
updates. Similarly, it must be infeasible for an isolated program (i.e., that of the
illegitimate user) to determine the functional updates (e.g., by observing files
from properly updated pieces of software). Our solution offers these properties.

4 Related Work

Requiring registration (see, e.g., [6]) is a common method of protecting against
piracy. However, this only protects software that has not been manipulated by a
pirate, and therefore aims more toward preventing copying between friends than
“professional piracy”. Here we show that interaction allows to defend against a
stronger type of adversary.

There are two classes of commercial products that work according to similar
principles as our solution, as they use interaction to control piracy. One such
product [4] allows registered users—but only these—to access a large repository
of clipart. It is likely that it is verified that the access frequencies for each
user remain at a reasonable level, thereby discouraging massive cloning of the
accessing software. Another commercial service [3] first gives users a free virus
detecting program, with a few free updates, after which the updating service
only becomes available per subscription.

Our scheme is also to some degree related to the problem of fair exchange of
signatures (see, e.g., [1]). Recall that we aim to obtain security of our scheme via
software updates. However, for each updating period, only one update should be
sent per software identifier (each corresponding to one sold software package). It
is possible that the transmission is interrupted during an update; that one of the
parties willfully terminates before the completion of the protocol; or that one
party claims to have been disconnected, while he was not. It is impossible for the
protocol participants to distinguish between accidentally dropped connections
and intentionally dropped connections, and impossible to determine whether the
transmission was interrupted before or after a certain transcript was received.
This causes a situation resembling that in exchange of signatures (that one
entity may interrupt the transmission in order to obtain some benefit). Our
approach to address this problem, though, is significantly different from that
used for exchange of signatures, as there is a very different adversarial model,

6

Intertrust Exhibit No. 2030

and due to the inherent asymmetry of the desired exchange in our setting.
A similar situation to that described above can also occur during the with-

drawal protocol for e-cash schemes. There, the solution is to repeat transcripts
identically to avoid extraction of a higher number of valid coins by a cheater;
in our setting, however, it is better to change the format of the transcripts for
“re-connecting” updates. This is done in a way that disrupts independent clones
from getting updates, while not complicating the re-transmission for legitimate
users, whether connecting or re-connecting.

5 Updating Method

Initialization. The distributor D assigns an identifier to each piece of software
he sells. This could be done either by incorporating this identity in the software,
or as is often done, as a paper document from which the user copies the identity
at the time of installation. Identifiers are chosen by drawing (without repetition)
random elements from a sparse space.

Updating Protocol. At predetermined intervals, the user U updates his soft-
ware portfolio by sending in a list of program identifiers to the distributor D.
D verifies that these are valid identifiers, and that they have not been used for
updates during the current time period.3 Then, for each piece of software that
is determined to correspond to a valid update request (i.e., a legitimate user),
D sends out a correct update of this program. If the request is found not to be
valid (i.e., if there is no such identifier registered, or if the maximum number
of updates have already been performed for this time interval; both correspond
to an illegitimate user) then D may either refuse an update, or may send a
“random update”. What constitutes a “correct update” or “random update”
is determined by our software aging mechanism and thus will be described in
Section 6. Intuitively, however, a correct update, once applied to the user’s
software, makes this software functionally current with other updated copies of
the software (i.e., files produced by one can be read by the other) and partially
backwards compatible with out-of-date versions (i.e., it can read files produced
by out-of-date software, but out-of-date software cannot read files it produces).
A “random update”, once applied to the user’s software, renders that software
ineffective in reading any files created by other (current or out-of-date) copies
of the program.

Remarks. In the above, we consider a setting with only one distributor. This
trivially generalizes to any number of distributors, who may then either operate
independently, or cooperate in updating user software. Also, we did not address

3If the distributor grants multiple licenses to one site, then the updating may either be

performed in a coordinated manner, or the distributor will allow a number of updates corre-

sponding to the number of licenses.

7

Intertrust Exhibit No. 2030

the communication protocol. Assuming a public communication channel, we
would use some form of encryption for sending the transcripts. For this, some
form of symmetric encryption method may be employed. (The user identifier
as used so far is a shared secret key for identification purposes, and may be
augmented with a portion used for encryption.)

Conflict Resolution. If the transmission is interrupted during an update,
the user has to request another update. In order for the distributor not to
mistake such a repeated request for a separate request made by a clone, we
suggest a variety of methods, potentially used in combination with each other:

• Failure counter. If both parties record in a local counter the number of
failed attempts by this user, and if the user transmits this at the beginning
of the update protocol, this allows the distributor to distinguish between a
repeated transmission and an independent transmission by a clone. (Recall
that illegitimate users are assumed to not cooperate with each other.)

• Random nonces. The distributor may send a random nonce to the user
during his first move of a multi-move interactive protocol; this nonce has to
be transmitted by the user during the next connection (or re-connection).
Here, the distributor will know that the user received a nonce if the dis-
tributor receives a (potentially implicit) acknowledgement from the user.
Otherwise, he will accept both the current and last nonce during the next
(re-)connection.

• Extra updates. The distributor may allow a low number of (say five)
repeated identifiers to get updates, thereby efficiently preventing against
large-scale piracy still, but without introducing problems related to inter-
rupted transmission (since it is unlikely that an update will fail more than
five times).

• Human involvement. The distributor may require the user to call a
toll-free number to “roll back” the state after a failed updating attempt.
Here, the distributor may verify from whom the call is made, etc., before
the roll-back is allowed. Moreover, if updates are sufficiently frequent,
the inconvenience imposed on illegitimate users by this mechanism would
already decrease the pirated software’s value.

Pirate Tracing. For each update request that is recorded as being initiated
by an illegitimate user, the distributor determines to what cluster of illegal
copies the copy belongs. This is indexed by the identifier of the user software,
and other available information. Similar methods are used for pirate software
recovered by other means. This allows the distributor to determine (with some
accuracy) the extent and source of the problem.

8

Intertrust Exhibit No. 2030

Avoiding Anonymous Pirates. In order to restrict the pirate to an ap-
proach in which he needs to be in direct contact with each customer for each
update, it is important to limit the usefulness of bulletin boards, and in par-
ticular, anonymous bulletin boards. We note that if bulletin boards are used,
the pirated software must initiate the update (as the bulletin board will not).
Therefore, the software must carry with itself a description of where to look
and for what, starting with what bulletin boards to search. If law enforcement
or a representative of the software distributor gets access to a piece of pirate
software, they can perform the same search. If an update is found on a bul-
letin board, the corresponding administrator can be pressured by legal means
to remove the entry, and if submitted anonymously, to aid a trace.

6 Software Aging

So far, we have only been concerned with how to make updates, and not how
to force the user to do these. To a certain extent, users will want to (and have
to) update software due to naturally occurring changes of the same. However,
since it is beneficial for us if frequent updates were necessary (as this makes
life more difficult for the pirate), we have an interest in making the software
age, i.e., decrease the time periods between necessary updates. Although this is
contrary to the interests of users in a traditional setting, we suggest that it does
not cause difficulties in our setting, where updates are made automatically, and
without human user involvement.

Additionally, if we allow a certain flexibility in terms of what phase a user
is in (e.g., any one out of the three most recent time periods) then we avoid
synchronization problems and potential difficulties due to failure of getting up-
dates (e.g., while traveling). If such a flexible timing is adapted (we address
how to do this below) then we may also allow updates to be performed in an
overlapping fashion (i.e., not all users need to update during the same short
interval of time).

Aging. Our solution is for the software to encrypt all files4 it outputs using a
symmetric key common to all copies of that version of the software. Each file
also is labeled with the time interval in which it was last modified (in plaintext),
which indicates the key with which encryption was performed.

In order to avoid having to refresh all files when a key update is performed,
and in order to avoid storing all old keys, we propose a method in which old
keys can be computed from new keys (but not vice versa). More specifically,
let Kt = f(Kt+1), where t denotes a time interval, t + 1 denotes the next time
interval, and f is a public one-way function that is infeasible to invert for the
pirate. The distributor either has a trap-door key allowing him to invert the

4A practical alternative is to only encrypt portions of the file, such as vital formatting-

related portions or compression tables.

9

Intertrust Exhibit No. 2030

function f , or starts with a value KT from which all “earlier” values down to
an initial value K0 are computed.5 A “correct update” sent to a legitimate user
at the transition from interval t to t + 1 includes Kt+1, which the legitimate
user uses to replace his old key. The correct update may also include patches
to the software to add new features, fix newly-discovered security problems,
etc. A “random update” sent to a detected illegitimate user would contain a
random number in place of Kt+1. It may also include patches to the software
that actively corrupts the software, so that it will no longer execute. Note that
even if the illegitimate user detects the random update and prevents it from
being applied to his software, the utility of his software will continue to degrade
because it cannot read files output by later versions (and thus encrypted by
Kt+1 or some later key).

Remarks. For the software aging method we propose, any type of encryption
scheme may be employed as a building block. For maximum efficiency, we
propose using a symmetric cipher, such as DES [5]. We note that this is safe
even if DES is not considered to be safe in a general setting. The reason is
that we only need to protect against individual users from being able to decrypt
messages or establish the key from seen messages. We do not need to prevent
a more powerful adversary, such as the pirate himself, as if he determines the
decryption key, he would have to distribute it to all his customers anyway (which
is, by the cost and risk of doing this, a factor we base the security of our system
on). We use the encryption scheme in a somewhat unusual way, in that we
distribute the same encryption/decryption key to all legitimate users (allowing
these to correctly interpret each other’s files). Again, this is not a security flaw,
even though it will be very easy for the pirate to get the keys (he may even be

one of the legitimate users, and so, receive the key automatically). The reason
for this is to force the illegitimate users to receive the key via updates from
the pirate, if they cannot compute it themselves. Therefore, this unusual use of
encryption does not negatively affect the security of our solution.

We further note that f does not have to remain infeasible to invert over the
life of the software, but only require “too much” computational effort to invert
for it to be convenient to do every time period by the illegitimate users. Should,
however, an attack become known, allowing fast inversion of the function, then
a new function has to be selected and employed. All software needs then to be
updated to “refresh” all files of the old format, which can be performed by an
intermediary version with knowledge of both the old key and the new key, and
the corresponding one-way functions.

5Here, a value T exceeding the anticipated number of update periods is selected. For

example, assuming that no piece of software has a life exceeding one hundred years, and

assuming weekly updates, this corresponds to T = 5200.

10

Intertrust Exhibit No. 2030

Allowing for flexible updates. In order to make new files readable to a
software version that is not updated to the same version, the following method
may be employed: Instead of using the most recently distributed key Kt for
writing files in time interval t, the software may instead use Kt−δ, where δ

reflects the updating frequency necessary for a piece of software to be able to
read new files from legitimate users. For example, we may set δ = 2, allowing
programs to be two updates “behind”.

7 Claims

Our scheme hinders a pirate in that it forces him to frequently distribute updates
to his clients. At the same time the piracy protection scheme is transparent
to legitimate users (under reasonable assumptions) in that they will not be
inconvenienced by the protection methods. We will now state these properties
more carefully.

We assume that the pirate does not collude with honest users. If some user
performs updates for another user, we consider the first user to be part of the
pirate organization. Recall that δ determines the frequency of updates needed
to ensure that a legitimate user’s software remains compatible. Let I1, . . . , IN

be N illegitimate users of the software in question. Let n be the number of
updates the distributor allows to one and the same software clone (where we
typically have n = 1), and finally, let c be the number of software packages the
pirate has legally purchased from the distributor.

Let us assume that it is infeasible for the adversary to compute the trap-door
of f (if there is one). We also assume that it is impractical for an illegitimate
user to invert f , or to determine the encryption key for a given time period from
transcripts in his possession.

Claim 1: In order for the software of the illegitimate users to work without
a significant degradation of functionality at any time, and given the above as-
sumptions, the pirate needs to update at least N − cnδ of the users I1 . . . IN ,
and at least every δ time intervals on average.

Correctness Argument for Claim 1:

By assumption, the pirate has distributed N copies of the (potentially altered)
software. Assume that these users are not interacting with each other or with
the pirate (after a first interaction in which they receive the software from the
pirate). It is necessary for each user to get a software update at least every
δ time intervals. For each legitimate software package sold, the distributor is
willing to perform at most δn updates in this time period. Since honest users
by assumption do not collaborate with the illegitimate users, the illegitimate
users can get a maximum of cδn updates for the c licenses the pirate purchased
(if any). This leaves N − cδn illegitimate users without updates for at least δ

consecutive time intervals, considering only updates from the distributor.

11

Intertrust Exhibit No. 2030

By assumption, it is not feasible (neither for the pirate nor the illegitimate
users) to invert f , and so, it is not possible to determine new keys from old ones
by inverting f . Note that none of the trap-door information (if any) is made
part of the transcripts (such as files communicated), and so, access to such
transcripts cannot make the inversion easier. Finally, since we have assumed
that it is impractical for the illegitimate user to determine the current key from
transcripts (using standard methods for cryptanalysis in order to extract the
key), we have now exhausted the number of ways in which a user can obtain an
updated key. The only possibilities that remain are for these users not to get
updates as often as needed, or to get updates from the pirate. 2

Remark: Note that software that was updated δ + i time periods ago only
fails to read files that were written in the last i time intervals – this allows us to
expand on this argument in terms of the “quality of service” of the illegitimate
users. Thus, a more general version of the above argument can be used to show
the minimum number of licenses for a minimum quality of service. However,
here, we have only considered “full” quality of service, corresponding to pirated
software that works identically to the corresponding legitimate software.

Claim 2: The software of a legitimate user will work without significant degra-
dation of functionality at any time as long as the user manages to connect to
the distributor at least every δ time periods.

Correctness Argument for Claim 2:

Legitimate users are eligible to receive updates each time interval. We assume
that the periodic interaction can be performed with a frequency of at least δ

time intervals (i.e., that the legitimate user can connect with this frequency,
and that the update protocol is not consistently interrupted after which no
recovery action is taken). As long as they succeed in receiving updates every δ

time intervals, they will have a key that can be used to decrypt files written by
legitimate users who have just updated their software, and therefore have the
most recent keys available. Older files can always be read since it is possible to
compute an old key from a new in polynomial time, given the chaining property
of keys. 2

Acknowledgments

Many thanks to Eran Gabber and Fabian Monrose for helpful discussions.

References

[1] N. Asokan, V. Shoup, and M. Waidner, “Optimistic protocols for fair
exchange,” In ACM Security ’96, pp. 6-17.

[2] The Business Software Alliance, www.bsa.org

12

Intertrust Exhibit No. 2030

[3] McAfee Secure Cast / Active Shield, see www.McAfee.com

[4] Microsoft Clip Art Gallery Live, cgl.microsoft.com/clipgallerylive

[5] NBS FIPS Pub 46-1, “Data Encryption Standard,” U.S. Department of
Commerce, 1988.

[6] Sheriff Software Development Kit, www.sheriff-software.com

13

View publication statsView publication stats

Intertrust Exhibit No. 2030

https://www.researchgate.net/publication/2410018

