
1 Comcast, Ex. 1033

lnternetworking With TCP/IP
Vol I:

Principles, Protocols, and Architecture

Third Edition

DOUGLAS E. COMER

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

PRENTICE HALL
Upper Saddle River, New Jersey 07458

2

Library of Congress Cataloging-in-Publication Data

Comer, Douglas
Intemctworlang with TCP/IP/ Douglas E. Comer. -- 3rd ed.

p. cm.
Includes bibliographical references and index.
Contents: v. 1. Principles, protocols, and architecture
ISBN 0-13-216987-8 (v. 1)
1. TCP/IP (Computer network protocol) 2. Client/server computing.

3. lntcmctworltlng (felecommunication) I. Title.
TK5105.585.C66 1995
005.2--dc20 95-1830

Acquisitions editor: ALAN APT
Production editor: IRWIN ZUCKER
Cover designer: WENDY ALLING JUDY
Buyer: LORI BULWIN
Editorial assistant: SHIRLEY MCGUIRE

© 1995 by Prentice-Hall, lnc.
Upper Saddle River, New Jersey 07458

CIP

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

UNIX is a registered trademark of UNIX System Laboratories, Incorporated proNET-10 is n trademark of Proteon Corporation
LSI 11 is a trademark of Digital Equipment Corporation
Microsoft Windows is a trademark of Microsoft Corporation

Printed in the United States of America

20 19 18 17 16 15 14 13 12 11

ISBN 0-13-216987-8

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Pearson Education Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

3

To Chris

4

Additional Enthusiastic Comments About
lnternetworking With TCP/IP Volume 1

"Unquestionably THE reference for TCP/IP; both informative and easy to read, this book is liked by both novice and experienced. "

- Raj Yavatkar
University of Kentucky
US Editor, Computer Communications

"The third edition maintains Comer's lnternetworking with TCP/IP as the acknowledged leader in TCP/IP books by adding up-to-the-minute ma­terial on A TM, CIDR, firewalls, DHCP and the next version of IP, /Png."

- Ralph Drams
Bucknell University
IFTF Working Group Chair

"Doug Comer remains the first and best voice of Internet technology. Despite the legion of 'Internet carpetbaggers' (the current crop of 'au­thors' who can barely spell F-T-P) which contributes noise - but no knowledge - on the Internet and its infrastructure, Dr. Comer shines through as the premiere source for lucid explanations and accurate infor­mation. He sets a standard for which many strive, but precious few at­tain. "

- Marshall Rose
Dover Beach Consulting
IETF Area Director

"Comer's Volume 1 drastically changed the course of networking history."

- Dan Lynch
lnterop Company
JAB Member

"When you need to teach the details of TCP/IP, you need the latest in­formation. Once again, Comer separates the chaff from the wheat with his latest edition of the TCP/IP book that a generation of networkers grew up with."
- Shawn Ostermann

Ohio University

5

Contents

Foreword xxi

Preface xxiii

Chapter 1 Introduction And Overview 1

I .I The Motivation For Internetworking 1
1.2 The TCP/IP Internet 2
1.3 Internet Services 3
1.4 History And Scope Of The Internet 6
1.5 The Internet Architecture Board 8
1.6 The JAB Reorganization 9
1.7 The Internet Society 11
1.8 Internet Request For Comments 11
1.9 Internet Protocols And Standardization 12
1.10 Future Growth And Technology 12
I .II Organization Of The Text 13
1.12 Summary 14

Chapter 2 Review Of Underlying Network Technologies 17

2.1 Introduction 17
2.2 Two Approaches To Network Communication 18
2.3 Wide Area And Local Area Networks 19
2.4 Ethernet Technology 20
2.5 Fiber Distributed Data Interconnect (FDDI) 32
2.6 Asynchronous Transfer Mode 36
2.7 ARPANET Technology 37
2.8 National Science Foundation Networking 39
2 .9 ANSNET 44

VII

6

viii

2.10 A Planned Wide Area Backbone 44
2.11 Other Technologies Over Which TCP/JP Has Been Used 44
2.12 Summary And Conclusion 47

Chapter 3 lnternetworking Concept And Architectural Model

3.1 Introduction 49

3 .2 Application-level Interconnection 49
3.3 Network-level Interconnection 50
3.4 Properties Of The Internet SI
3.5 Internet Architecture 52
3.6 Interconnection Through IP Routers 52
3.7 The User's View 54
3.8 All Networks Are Equal 54
3.9 The Unanswered Questions 55
3 .10 Summary 56

Chapter 4 Internet Addresses

4.1 Introduction 59
4.2 Universal Identifiers 59
4.3 Three Primary Classes Of IP Addresses 60
4.4 Addresses Specify Network Connections 61
4.5 Network And Broadcast Addresses 61
4.6 limited Broadcast 62
4.7 Interpreting Zero To Mean "This" 62
4.8 Weaknesses In Internet Addressing 63
4.9 Dotted Decimal Notation 65
4.10 loopback Address 65
4.11 Summary Of Special Address Conventions 66
4 .12 Internet Addressing Authority 66
4.13 An Example 67
4 .14 Network Byte Order 69
4.15 Summary 70

Contents

49

59

Chapter 5 Mapping Internet Addresses To Physical Addresses (ARP) 73

5.1 Introduction 73

5.2 The Address Resolution Problem 73
5.3 Two Types Of Physical Addresses 74
5.4 Resolution Through Direct Mapping 74

7

Contents

5.5 Resolution Through Dynamic Binding 75
5.6 The Address Resolution Cache 76
5.7 ARP Refinements 77
5.8 Relationship Of ARP To Other Protocols 77
5.9 ARP Implementation 77
5.10 ARP Encapsulation And Identification 79
5.11 ARP Protocol Format 79
5.12 Summary 81

Chapter 6 Determining An Internet Address At Startup (RARP)

6.1 Introduction 83
6.2 Reverse Address Resolution Protocol (RARP) 84
6.3 Timing RARP Transactions 86
6.4 Primary And Backup RARP Servers 86
6.5 Summary 87

ix

83

Chapter 7 Internet Protocol: Connectionless Datagram Delivery 89

7.1 Introduction 89
7.2 A Virtual Network 89
7.3 Internet Architecture And Philosophy 90
7.4 The Concept Of Unreliable Delivery 90
7.5 Connectionless Delivery System 91
7.6 Purpose Of The Internet Protocol 91
7.7 The Internet Datagram 91
7.8 Internet Datagram Options 100
7.9 Summary 106

Chapter 8 Internet Protocol: Routing IP Datagrams 109

8.1 Introduction 109
8.2 Routing In An Internet 109
8.3 Direct And Indirect Delivery 111
8.4 Table-Driven IP Routing 113
8.5 Next-Hop Routing 113
8.6 Default Routes 115
8.7 Host-Specific Routes 115
8.8 The IP Routing Algorithm 116
8.9 Routing With IP Addresses 116
8.10 Handling Incoming Datagrams 118

8

X

8.11 Establishing Routing Tables 119
8.12 Summary 119 ·

Contents

Chapter 9 Internet Protocol: Error And Control Messages (ICMP) 123

9.1 Introduction 123
9.2 The Internet Control Message Protocol 123
9.3 Error Reporting vs. Error Correction 124
9.4 /CMP Message Delivery 125
9.5 /CMP Message Format 126
9.6 Testing Destination Reachability And Status (Ping) 127
9.7 Echo Request And Reply Message Format 128
9.8 Reports Of Unreachable Destinations 128
9.9 Congestion And Datagram Flow Control 130
9.10 Source Quench Format 130
9.11 Route Change Requests From Routers 131
9.12 Detecting Circular Or Excessively Long Routes 133
9.13 Reporting Other Problems 134
9.14 Clock Synchronization And Transit Time Estimation 134
9.15 Information Request And Reply Messages 136
9.16 Obtaining A Subnet Mask 136
9.17 Summary 137

Chapter 10 Subnet And Supernet Address Extensions

JO.I Introduction 139
10.2 Review Of Relevant Facts 139
10.3 Minimizing Network Numbers 140
10.4 Transparent Routers 141
10.5 Proxy ARP 142
10.6 Subnet Addressing 143
10.7 Flexibility In Subnet Address Assignment 146
10.8 Implementation Of Subnets With Masks 147
10.9 Subnet Mask Representation 148
JO.JO Routing In The Presence Of Subnets 149
10.11 The Subnet Routing Algorithm 150
10.12 A Unified Routing Algorithm 151
10.13 Maintenance Of Subnet Masks 152
10.14 Broadcasting To Subnets 152
10.15 Supernet Addressing 153
10.16 The Effect Of Supernetting On Routing 154
10.17 Summary 155

139

9

Contents

Chapter 11 Protocol Layering

11.1
11 .2
11.3
11.4
11.5
11.6
11.7
11 .8
11.9
11.10
11.11
11 .12

Introduction 159
The Need For Multiple Protocols 159
The Conceptual Layers Of Protocol Software 160
Functionality Of The Layers 163
X.25 And Its Relation To The ISO Model 164
Differences Between X.25 And Internet Layering 167
The Protocol Layering Principle 169
Layering In The Presence Of Network Substructure 171
Two Important Boundaries In The TCP/IP Model 173
The Disadvantage Of Layering 174
The Basic Idea Behind Multiplexing And Demultiplexing
Summary 176

Chapter 12 User Datagram Protocol (UDP)

12 .1 Introduction 179
12 .2 Identifying The Ultimate Destination 179
12.3 The User Datagram Protocol 180
12.4 Format Of UDP Messages 181
12.5 UDP Pseudo-Header 182
12.6 UDP Encapsulation And Protocol Layering 183
12.7 Layering And The UDP Checksum Computation 185
12.8 UDP Multiplexing, Demultiplexing, And Ports 185
12.9 Reserved And Available UDP Port Numbers 186
12.10 Summary 188

Chapter 13 Reliable Stream Transport Service (TCP)

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13./0
13.11

Introduction 191
The Need For Stream Delivery 191
Properties Of The Reliable Delivery Service
Providing Reliability 193
The Idea Behind Sliding Windows
The Transmission Control Protocol
Ports, Connections, And Endpoints
Passive And Active Opens 201

195
198
199

192

Segments, Streams, And Sequence Numbers 201
Variable Window Size And Flow Control 202
TCP Segment Format 203

xi

159

174

179

191

10

XII

13.12 Out Of Band Data 205
13.13 Maximum Segment Size Option 206
13.14 TCP Checksum Computation 207
13.15 Acknowledgements And Retransmission 208
13.16 Timeout And Retransmission 209
13 .I 7 Accurate Measurement Of Round Trip Samples 21 1
13.18 Karn' s Algorithm And Timer Backoff 212
13.19 Responding To High Variance In Delay 213
13.20 Response To Congestion 214
13.21 Establishing A TCP Connection 216
13.22 Initial Sequence Numbers 217
13.23 Closing a TCP Connection 217
13.24 TCP Connection Reset 219
13.25 TCP State Machine 219
13.26 Forcing Data Delivery 221
13.27 Reserved TCP Port Numbers 221
13.28 TCP Performance 221
13.29 Silly Window Syndrome And Small Packets 223
13 .30 Avoiding Silly Window Syndrome 224
13.31 Summary 227

Chapter 14 Routing: Cores, Peers, And Algorithms (GGP)

14 .1 Introduction 231
14.2 The Origin Of Routing Tables 232
14.3 Routing With Partial Information 233
14.4 Original Internet Architecture And Cores 234
14.5 Core Routers 235
14.6 Beyond The Core Architecture To Peer Backbones 238
14.7 Automatic Route Propagation 240
14.8 Vector Distance (Bellman-Ford) Routing 240
14.9 Gateway-To-Gateway Protocol (GGP) 242
14.10 GGP Message Formats 243
14.J 1 Link-State (SPF) Routing 245
14.12 SPF Protocols 246
14.13 Summary 246

Contents

231

Chapter 15 Routing: Autonomous Systems (EGP) 249

15.1 Introduction 249
15.2 Adding Complexity To The Architectural Model 249
15.3 A Fundamental Idea: Extra Hops 250

11

Contents

15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13

Autonomous System Concept 252
Exterior Gateway Protocol (EGP) 254
EGP Message Header 255
EGP Neighbor Acquisition Messages 256
EGP Neighbor Reachability Messages 257
EGP Poll Request Messages 258
EGP Routing Update Messages 259
Measuring From The Receiver's Perspective
The Key Restriction Of EGP 262
Technical Problems 264

261

15.14 Decentralization Of Internet Architecture 264
15.15 Beyond Autonomous Systems 264
15 .16 Summary 265

xiii

Chapter 16 Routing: In An Autonomous System (RIP, OSPF, HELLO) 267

16.1 Introduction 267
16.2 Static Vs. Dynamic Interior Routes 267
16.3 Routing Information Protocol (RIP) 270
16.4 The Hello Protocol 276
16.5 Combining RIP, Hello, And EGP 278
16.6 The Open SPF Protocol (OSPF) 279
16.7 Routing With Partial Information 286
16.8 Summary 286

Chapter 17 Internet Multicasting (IGMP)

17.1 Introduction 289
17.2 Hardware Broadcast 289
17.3 Hardware Multicast 290
17.4 IP Multicast 291
17.5 IP Multicast Addresses 291
17.6 Mapping IP Multicast To Ethernet Multicast
17.7 Extending IP To Handle Multicasting 293
17.8 Internet Group Management Protocol 294
17.9 IGMP Implementation 294
17.10 Group Membership State Transitions 295
17.11 IGMP Message Format 296
17.12 Multicast Address Assignment 297
17.13 Propagating Routing Information 297
17.14 The Mrouted Program 298
17.15 Summary 300

289

292

12

xiv

Chapter 18 TCP/IP Over ATM Networks

18.1 Introduction 303
18.2 ATM Hardware 304
18.3 Large ATM Networks 304
18.4 The Logical View Of An ATM Network 305
18.5 The Two ATM Connection Paradigms 306
18.6 Paths, Circuits, And Identifiers 307
18.7 ATM Cell Transport 308
18.8 ATM Adaptation Layers 308
18.9 AAL5 Convergence, Segmentation, And Reassembly 311
18.10 Datagram Encapsulation And IP MTU Size 311
18.11 Packet Type And Multiplexing 312
18.12 IP Address Binding In An ATM Network 313
18.13 Logical IP Subnet Concept 314
18.14 Connection Management 315
18.15 Address Binding Within An LIS 316
18.16 ATMARP Packet Format 316
18.17 Using ATMARP Packets To Determine An Address 318
18.18 Obtaining Entries For A Server Database 320
18.19 Timing Out ATMARP Information In A Server 320
18.20 Timing Out ATMARP Information In A Host Or Router 320
18.21 Summary 321

Chapter 19 Client-Server Model Of Interaction

19.1 Introduction 325
19.2 The Client-Server Model 325
19.3 A Simple Example: UDP Echo Server 326
19.4 Time And Date Service 328
19.5 The Complexity of Servers 329
19.6 RARP Server 330
19.7 Alternatives To The Client-Server Model 331
19.8 Summary 332

Chapter 20 The Socket Interface

20.1 Introduction 335
20.2 The UNIX 1/0 Paradigm And Network 110 336
20.3 Adding Network 1/0 to UNIX 336
20.4 The Socket Abstraction 337

Contents

303

325

335

13

Contents

20.5
20.6
20.7
20.8
20.9
20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21
20.22
20.23
20.24
20.25
20.26
20.27
20.28

Creating A Socket 337
Socket Inheritance And Termination 338
Specifying A Local Address 339
Connecting Sockets To Destination Addresses 340
Sending Data Through A Socket 341
Receiving Data Through A Socket 343
Obtaining Local And Remote Socket Addresses 344
Obtaining And Setting Socket Options 345
Specifying A Queue Length For A Server 346
How A Server Accepts Connections 346
Servers That Handle Multiple Services 347
Obtaining And Setting Host Names 348
Obtaining And Setting The Internal Host Domain 349
BSD UNIX Network Library Calls 349
Network Byte Order Conversion Routines 350
IP Address Manipulation Routines 351
Accessing The Domain Name System 352
Obtaining Information About Hosts 354
Obtaining Information About Networks 355
Obtaining Information About Protocols 355
Obtaining Information About Network Services 356
An Example Client 357
An Example Server 359
Summary 362

xv

Chapter 21 Bootstrap And Autoconfiguration (BOOTP, DHCP) 365

21.1 Introduction 365
21.2 The Need For An Alternative To RARP 366
21.3 Using IP To Determine An IP Address 366
21.4 The BOOTP Retransmission Policy 367
21.5 The BOOTP Message Format 368
21.6 The Two-Step Bootstrap Procedure 369
21.7 Vendor-Specific Field 370
21.8 The Need For Dynamic Configuration 370
21.9 Dynamic Host Configuration 372
21.10 Dynamic IP Address Assignment 372
21.11 Obtaining Multiple Addresses 373
21.12 Address Acquisition States 374
21.13 Early Lease Termination 374
21.14 Lease Renewal States 376
21.15 DHCP Message Format 377
21 .16 DHCP Options And Message Type 378

14

xvi Contents

21.J 7 Option Overload 379
21.J 8 DHCP And Domain Names 319
21.19 Summary 380

Chapter 22 The Domain Name System (DNS)

22.1 Introduction 383
22.2 Names For Machines 384
22.3 Flat Namespace 384
22.4 Hierarchical Names 385
22.5 Delegation Of Authority For Names 386
22.6 Subset Authority 386
22.7 TCP/IP Internet Domain Names 387
22.8 Official And Unofficial Internet Domain Names 388
22.9 Items Named And Syntax Of Names 390
22.10 Mapping Domain Names To Addresses 391
22 .I 1 Domain Name Resolution 393
22 .12 Efficient Translation 394
22.13 Caching: The Key To Efficiency 395
22.14 Domain Server Message Format 396
22.15 Compressed Name Format 399
22.16 Abbreviation Of Domain Names 399
22.17 Inverse Mappings 400
22.18 Pointer Queries 401
22.19 Object Types And Resource Record Contents 401
22.20 Obtaining Authority For A Subdomain 402
22.21 Summary 403

Chapter 23 Applications: Remote Login (TELNET, Rlogin)

23.1 Introduction 407
23.2 Remote Interactive Computing 407
23.3 TELNET Protocol 408
23 .4 Accommodating Heterogeneity 410
23.5 Passing Commands That Control The Remote Side 412
23.6 Forcing The Server To Read A Control Function 4 14
23.7 TELNET Options 414
23.8 TELNET Option Negotiation 415
23.9 Rlogin (BSD UNIX) 416
23.10 Summary 417

383

407

15

Contents xvii

Chapter 24 Applications: File Transfer And Access (FTP, TFTP, NFS) 419

24.1 Introduction 419
24.2 File Access And Transfer 419
24.3 On-line Shared Access 420
24.4 Sharing By File Transfer 421
24.5 FTP: The Major TCP/IP File Transfer Protocol 421
24.6 FTP Features 422
24.7 FTP Process Model 422
24.8
24.9
24.10
24.11
24.12
24.13
24.14
24.15

TCP Port Number Assignment 424
The User's View Of FTP 424
An Example Anonymous FTP Session
TFTP 427
NFS 429
NFS Implementation 429
Remote Procedure Call (RPC) 430
Summary 431

426

Chapter 25 Applications: Electronic Mail (822, SMTP, MIME)

25.1 Introduction 433
25.2 Electronic Mail 433
25.3 Mailbox Names And Aliases 435
25.4 Alias Expansion And Mail Forwarding 435
25.5 The Relationship Of lnternetworking And Mail 436
25.6 TCP/IP Standards For Electronic Mail Service 438
25.7 Electronic Mail Addresses 438
25.8 Pseudo Domain Addresses 440
25.9 Simple Mail Transfer Protocol (SMTP) 440
25.10 The MIME Extension For Non-ASCII Data 443
25.11 MIME Multipart Messages 444
25.12 Summary 445

433

Chapter 26 Applications: Internet Management (SNMP, SNMPv2) 447

26.1 Introduction 447
26.2 The Level Of Management Protocols 447
26.3 Architectural Model 448
26.4 Protocol Architecture 450
26.5 Examples of MIB Variables 451
26.6 The Structure Of Management Information 452

16

xviii

26.7
26.8
26.9
26.10
26.11
26.12

Formal Definitions Using ASN.l 453
Structure And Representation Of MIB Object Names
Simple Network Management Protocol 458
SNMP Message Format 460
Example Encoded SNMP Message 462
Summary 463

Chapter 27 Summary Of Protocol Dependencies

27.1 Introduction 465
27.2 Protocol Dependencies 465
27.3 Application Program Access 467
27.4 Summary 468

Chapter 28 Internet Security And Firewall Design

28.1 Introduction 471
28.2 Protecting Resources 472
28.3 The Need For An Information Policy 472

453

28.4 Communication, Cooperation, And Mutual Mistrust 474
28.5 Mechanisms For Internet Security 475
28.6 Firewalls And Internet Access 476
28.7 Multiple Connections And Weakest Links 477
28.8 Firewall Implementation And High-Speed Hardware 478
28.9 Packet-Level Filters 479
28.10 Security And Packet Filter Specification 480
28.11 The Consequence Of Restricted Access For Clients 481
28.12 Accessing Services Through A Firewall 481
28.13 The Details Of Firewall Architecture 483
28.14 Stub Network 484
28.15 An Alternative Firewall Implementation 484
28.16 Monitoring And Logging 485
28.17 Summary 486

Chapter 29 The Future Of TCP/IP (IPng, IPv6)

29.1 Introduction 489
29.2 Why Change TCP/IP And The Internet? 490
29.3 Motivation For Changing IPv4 491
29.4 The Road To A New Version Of IP 492
29.5 The Name Of The Next IP 492

Contents

465

471

489

17

Contents

29.6 Features Of !Pv6 493
29.7 General Form Of An f Pv6 Datagram 494

29.8 !Pv6 Base Header Format 494

29.9 !Pv6 Extension Headers 496

29.10 Parsing An !Pv6 Datagram 497

29.11 f Pv6 Fragmentation And Reassembly 498

29.12 The Consequence Of End-To-End Fragmentation 498

29.13 f Pv6 Source Routing 500
29.14 f Pv6 Options 500
29.15 Size Of The f Pv6 Address Space 502

29.16 f Pv6 Colon Hexadecimal Notation 502

29.17 Three Basic f Pv6 Address Types 503

29.18 The Duality Of Broadcast And Multicast 504

29.19 An Engineering Choice And Simulated Broadcast 504

29.20 Proposed f Pv6 Address Space Assignment 504

29.21 !Pv4 Address Encoding And Transition 506

29.22 Providers, Subscribers, And Address Hierarchy 506

29.23 Additional Hierarchy 507

29.24 Summary 508

xix

Appendix 1 A Guide To RFCs 511

Appendix 2 Glossary Of lnternetworking Terms And Abbreviations 557

Bibliography 591

Index 599

18

2

Review Of Underlying
Network Technologies

2.1 Introduction

It is important to understand that the Internet is not a new kind of physical net­
work. It is, instead, a method of interconnecting physical networks and a set of conven­
tions for using networks that allow the computers they reach to interact. While network
hardware plays only a minor role in the overall design, understanding the internet tech­
nology requires one to distinguish between the low-level mechanisms provided by the
hardware itself and the higher-level facilities that the TCP/IP protocol software pro­
vides. It is also important to understand how the facilities supplied by packet-switched
technology affect our choice of high-level abstractions.

This chapter introduces basic packet-switching concepts and terminology, and then
reviews some of the underlying network hardware technologies that have been used in
TCP/IP internets. Later chapters describe how these networks are interconnected and
how the TCP/IP protocols accommodate vast differences in the hardware. While the list
presented here is certainly not comprehensive, it clearly demonstrates the variety among
physical networks over which TCP/IP operates. The reader can safely skip many of the
technical details, but should try to grasp the idea of packet switching and try to imagine
building a homogeneous communication system using such heterogeneous hardware.
Most important, the reader should look closely at the details of the physical address
schemes the various technologies use; later chapters will discuss in detail how high­
level protocols use physical addresses.

17

19

18 Review Of Underlying Network Technologies Chap. 2

2.2 Two Approaches To Network Communication

Whether they provide connections between one computer and another or between

terminals and computers, communication networks can be divided into two basic types:

circuit-switched (sometimes called connection oriented) and packet-switchedt (some­

times called connectionless). Circuit-switched networks operate by forming a dedicated

connection (circuit) between two points. The U.S. telephone system uses circuit switch­

ing technology - a telephone call establishes a circuit from the originating phone

through the local switching office, across trunk lines, to a remote switching office, and

finally to the destination telephone. While a circuit is in place, the phone equipment

samples the microphone repeatedly, encodes the samples digitally, and transmits them

across the circuit to the receiver. The sender is guaranteed that the samples can be

delivered and reproduced because the circuit provides a guaranteed data path of 64

Kbps (thousand bits per second), the rate needed to send digitized voice. The advantage

of circuit switching lies in its guaranteed capacity: once a circuit is established, no other

network activity will decrease the capacity of the circuit. One disadvantage of circuit

switching is cost: circuit costs are fixed, independent of traffic. For example, one pays

a fixed rate for a phone call, even when the two parties do not talk.

Packet-switched networks, the type usually used to connect computers, take an en­

tirely different approach. In a packet-switched network, data to be transferred across a

network is divided into small pieces called packets that are multiplexed onto high capa­

city intermachine connections. A packet, which usually contains only a few hundred

bytes of data, carries identification that enables the network hardware to know how to

send it to the specified destination. For example, a large file to be transmitted between

two machines must be broken into many packets that are sent across the network one at

a time. The network hardware delivers the packets to the specified destination, where

software reassembles them into a single file again. The chief advantage of packet­

switching is that multiple communications among computers can proceed concurrently,

with intermachine connections shared by all pairs of machines that are communicating.

The disadvantage, of course, is that as activity increases, a given pair of communicating

computers receives less of the network capacity. That is, whenever a packet switched

network becomes overloaded, computers using the network must wait before they can

send additional packets.
Despite the potential drawback of not being able to guarantee network capacity,

packet-switched networks have become extremely popular. The motivations for adopt­

ing packet switching are cost and performance. Because multiple machines can share

the network hardware, fewer connections are required and cost is kept low. Because en­

gineers have been able to build high speed network hardware, capacity is not usually a

problem. So many computer interconnections use packet-switching that, throughout the

remainder of this text, the term network will refer only to packet-switched networks.

tin fact, it is possible to build hybrid hardware technologies; for our purposes, only the difference in

functionality is important.

20

Sec. 2.3 Wide Area And Local Area Networks 19

2.3 Wide Area And Local Area Networks

Packet~switched networks that span large geographical distances (e.g., the con­
tinental U.S.) are fundamentally different from those that span short distances (e.g., a
single room). To help characterize the differences in capacity and intended use, packet
switched technologies are often divided into two broad categories: wide area networks
(WANs) and Local Area Networks (LANs). The two categories do not have formal de­
finitions. Instead, vendors appl_y the terms loosely to help customers distinguish among
technologies.

WAN technologies, sometimes called long haul networks, provide communication
over large distances. Most WAN technologies do not limit the distance spanned; a
WAN can allow the endpoints of a communication to be arbitrarily far apart. For ex­
ample, a WAN can span a continent or can join computers across an ocean. Usually,
W ANs operate at slower speeds than LANs, and have much greater delay between con­
nections. Typical speeds for a WAN range from 56 Kbps to 155 Mbps (million bits per
second). Delays across a WAN can vary from a few milliseconds to several tenths of a
secondt

LAN technologies provide the highest speed connections among computers, but sa­
crifice the ability to span large distances. For example, a typical LAN spans a small
area like a single building or a small campus and operates between 10 Mbps and 2
Gbps (billion bits per second). Because LAN technologies cover short distances, they
offer lower delays than W ANs. The delay across a LAN can be as short as a few tenths
of a millisecond, or as long as 10 milliseconds.

We have already mentioned the general tradeoff between speed and distance: tech­
nologies that provide higher speed communication operate over shorter distances. There
are other differences among technologies in the categories as well. In LAN technolo­
gies, each computer usually contains a network interface device that connects the
machine directly to the network medium (e.g., a copper wire or coaxial cable). Often,
the network itself is passive, depending on electronic devices in the attached computers
to generate and receive the necessary electrical signals. In WAN technologies, a net­
work usually consists of a series of complex computers called packet switches intercon­
nected by communication lines and modems. The size of the network can be extended
by adding a new switch and another communication line. Attaching a user's computer
to a WAN means connecting it to one of the packet switches. Each switch along a path
in the WAN introduces a delay when it receives a packet and forwards it to the next
switch. Thus, the larger the WAN becomes the longer it takes to route traffic across it.

This book discusses software that hides the technological differences between net­
works and makes interconnection independent of the underlying hardware. To appreci­
ate design choices in the software, it is necessary to understand how it relates to net­
work hardware. The next sections present examples of network technologies that have
been used in the Internet, showing some of the differences among them. Later chapters
show how the TCP/IP software isolates such differences and makes the communication
system independent of the underlying hardware technology.

tSuch long delays result from W ANs that communicate by sending signals to a satellite orbiting the
earth.

21

20 Review Of Underlying Network Technologies Chap. 2

2.3.1 Network Hardware Addresses

Each network hardware technology defines an addressing mechanism that comput­

ers use to specify the destination for each packet. Every computer attached to a net­

work is assigned a unique address, usually an integer. A packet sent across a network

includes a destination address field that contains the address of the intended recipient.

The destination address appears in the same location in all packets, making it possible

for the network hardware to examine the destination address easily. A sender must

know the address of the intended recipient, and must place the recipient's address in the

destination address field of a packet before transmitting the packet.

Each hardware technology specifies how computers are assigned addresses. The

hardware specifies, for example, the number of bits in the address as well as the loca­

tion of the destination address field in a packet. Although some technologies use com­

patible addressing schemes, many do not. This chapter contains a few examples of

hardware addressing schemes; later chapters explain how TCP/IP accommodates diverse

hardware addressing schemes.

2.4 Ethernet Technology

Ethernet is the name given to a popular packet-switched LAN technology invented

at Xerox PARC in the early 1970s. Xerox Corporation, Intel Corporation, and Digital

Equipment Corporation standardized Ethernet in 1978; IEEE released a compatible ver­

sion of the standard using the number 802.3. Ethernet has become a popular LAN tech­

nology; most medium or large corporations use Ethernets. Because Ethernet is so popu­

lar, many variants exist; we will discuss the original design first and then .cover variants.

1/2 INCH

OUTER INSULATING JACKET

BRAIDED METAL SHIELD

POLYETHYLENE FILLER

CENTER WIRE

Figure 2.1 A cross-section of the coaxial cable used in the original Ethernet.

Each Ethernet cable is about 1/2 inch in diameter and up to 500 meters long. A resistor

is added between the center wire and shield at each end to prevent reflection of electri­

cal signals.
The original Ethernet design used a coaxial cable as Figure 2.1 illustrates. Called

the ether, the cable itself is completely passive; all the active electronic components that

make the network function are associated with computers that are attached to the net­

work.

22

Sec. 2.4 Ethernet Technology 21

The connection between a computer and a coaxial Ethernet cable requires a
hardware device called a transceiver. Physically, the connection between a transceiver
and the Ethernet requires a small hole in the outer layers of the cable as Figure 2.2 il­
lustrates. Technicians often use the term tap to describe the connection between an Eth­
ernet transceiver and the cable. Usually, small metal pins mounted in the transceiver go
through the hole and provide electrical contacts to the center wire and the braided
shield. Some manufacturers' connectors require that the cable be cut and a "T" insert­
ed.

CENTER WIRE ---------..

MET AL SHIELD _______..

(A)

(B)
TRANSCEIVER

TO HOST
INTERFAC

'

Figure 2.2 (a) A cutaway view of an Ethernet cable showing the details of
electrical connections between a transceiver and the cable, and (b)
the schematic diagram of an Ethernet with many computers con­
nected.

E

Each connection to an Ethernet has two major electronic components. A tran­
sceiver connects to the center wire and braided shield on the cable, sensing and sending
signals on the ether. A host inte1face or host adapter plugs into the computer's bus
(e.g., on a motherboard) and connects to the transceiver.

A transceiver is a , small piece of hardware usually found physically adjacent to the
ether. In addition to the analog hardware that senses and controls electrical signals on
the ether, a transceiver contains digital circuitry that allows it to communicate with a di­
gital computer. The transceiver can sense when the ether is in use and can translate
analog electrical signals on the ether to (and from) digital form. A cable called the At­
tachment Unit Interface (AUi) cable connects the transceiver to an adapter board in a
host computer. Informally called a transceiver cable, the AUi cable contains many
wires. The wires carry the electrical power needed to operate the transceiver, the sig-

23

22 Review Of Underlying Network Technologies Chap. 2

nals that control the transceiver operation, and the contents of the packets being sent or
received. Figure 2 .. 3 illustrates how the components form a connection between a bus
in a computer system and an Ethernet cable.

ETHERNET

.,_ __ TRANSCEIVER

AUi CABLE

BUS IN A COMPUTER

Figure 2.3 The two main electronic components that form a connection
between a computer' s bus and an Ethernet. The AUI cable that
connects the host interface to the transceiver carries power and
signals to control transceiver operation . as well as packets being
transmitted or received.

Each host interface controls the operation of one transceiver according to instruc­
tions it receives from the computer software. To the operating system software, the in­
terface appears to be an input/output device that accepts basic data transfer instructions
from the computer, controls the transceiver to carry them out, interrupts when the task
has been completed, and reports status information. Although the transceiver is a sim­
ple hardware device, the host interface can be complex (e.g., it may contain a micropro­
cessor used to control transfers between the computer memory and the ether).

In practice, organizations that use the original Ethernet in a conventional office en­
vironment run the Ethernet cable along the ceiling in each hall, and arrange for a con­
nection from each office to attach to the cable. Figure 2.4 illustrates the resulting physi­
cal wiring scheme.

24

Sec. 2.4 Ethernet Technology

ETHERNET CABLE (USUALL V IN CEILING)

i TRANSCEIVERS

AUi CABLE

COMPUTER A COMPUTER B

Figure 2.4 The physical connection of two computers to an Ethernet using the
original wiring scheme. In an office environment, the Ethernet
cable is usually placed in the hallway ceiling; each office has an
AUi cable that connects a computer in the office to a transceiver
attached to the Ethernet cable.

2.4.1 Thin-Wire Ethernet

23

Several components of the original Ethernet technology have undesirable proper­
ties. For example because a transceiver contains electronic components, it has a non­
trivial cost. Furthermore, because transceivers are located with the cable and not with
computers, they can be difficult to access or replace. The coaxial cable that forms the
ether can also be difficult to install. In particular, to provide maximum protection
against electrical interference from devices like electric motors, the cable contains heavy
shielding that makes it difficult to bend. Finally, an AUi cable is also thick and diffi­
cult to bend.

25

24 Review Of Underlying Network Technologies Chap. 2

To reduce costs for environments like offices that do not contain much electrical
interference, engineers developed an alternative Ethernet wiring scheme. Called thin­
wire Ethernet or thinnett, the alternative coaxial cable is thinner, less expensive, and
more flexible. However, a thin-wire Ethernet has some disadvantages. Because it does
not provide as much protection from electrical interference, thin-wire Ethernet cannot be
placed adjacent to powerful electrical equipment like that found in a factory. Further­
more, thin-wire Ethernet covers somewhat shorter distances and supports fewer comput­
er connections per network than thick Ethernet.

To further reduce costs with thin-wire Ethernet, engineers replaced the costly tran­
sceiver with special high-speed digital circuits, and provided a direct connection from a
computer to the ether. Thus, in a thin-wire scheme, a computer contains both the host
interface and the circuitry that connects to the cable. Manufacturers of small computers
and workstations find thin-wire Ethernet an especially attractive scheme because they
can integrate Ethernet hardware into single board computers and mount connectors
directly on the back of the computer.

Because a thin-wire Ethernet connects directly from one computer to another, the
wiring scheme works well when many computers occupy a single room. The thin-wire
cable runs directly from one computer to the next. To add a new computer, one only
needs to link it into the chain. Figure 2.5 illustrates the connections used with thin-wire
Ethernet.

THINNET CABLE

COMPUTER A COMPUTER B

Figure 2.5 The physical connection of two computers using the thinnet wiring
scheme. The ether passes directly from one computer to another;
no external transceiver hardware is required.

Thin-wire Ethernets are designed to be easy to connect and disconnect. Thin-wire
uses BNC connectors, which do not require tools to attach a computer to the cable.
Thus, a user can connect a computer to a thin-wire Ethernet without the aid of a techni­
cian. Of course, allowing users to manipulate the ether has disadvantages: if a user
disconnects the ether, it prevents all machines on the ether from communicating. In
many situations, however, the advantages outweigh the disadvantages.

t To contrast it with thin-wire, the original Ethernet cable is sometimes called thick Ethernet, or thicknet.

26

Sec. 2.4 Ethernet Technology 25

2.4.2 Twisted Pair Ethernet

Advances in technology have made it possible to build Ethernets that do not need
the electrical shielding of a coaxial cable. Called twisted pair Ethernet, the technology
allows a computer to access an Ethernet using a pair of conventional unshielded copper
wires similar to the wires used to connect telephones. The advantages of using twisted
pair wiring are that it further reduces costs and protects other computers on the network
from a user who disconnects a single computer. In some cases, a twisted pair technolo­
gy can make it possible for an organization to use Ethernet over existing telephone wir­
ing without adding new cables.

Known by the technical name 1 OBase-T, the twisted pair wiring scheme connects
each computer to an Ethernet hub as Figure 2.6 shows.

HUB

TWISTED PAIR CONNECTIONS TO HUB

COMPUTER A COMPUTER B

Figure 2.6 An illustration of Ethernet using twisted pair wiring. Each com­
puter connects to a hub over a conventional pair of wires.

The hub is an electronic device that simulates the signals on an Ethernet cable.
Physically, a hub consists of a small box that usually resides in a wiring closet; a con­
nection between a hub and a computer must be less than 100 meters long. A hub re­
quires power, and can allow authorized personnel to monitor and control its operation
over the network. To the host interface in a computer, a connection to a hub appears to

27

26 Review Of Underlying Network Technologies Chap. 2

operate the same way as a connection to a transceiver. That is, an Ethernet hub pro­

vides the same communication capability as a thick or thin Ethernet; hubs merely offer

an alternative wiring scheme.

2.4.3 Adapters And Multiple Wiring Schemes

A connection to thick Ethernet requires an AUi connector, a connection to thin­

wire Ethernet requires a BNC connector, and a connection to lOBase-T requires an

RJ45 connector that resembles the modular connectors used with telephones. Many

Ethernet products allow each customer to choose a wiring scheme. For example,

adapter boards for personal computers often come with three connectors as Figure 2.7

illustrates. Although only one connector can be used at any time, a computer that has

such an adapter can be moved from one wiring scheme to another easily.

• RJ45 connector
~

for 1 OBase-T

AUi connector
~

for Thicknet

BNC connector
~

for Thinnet

Figure 2. 7 A typical Ethernet adapter card with three connectors for the three

Ethernet wiring schemes. Although the adapter contains three

connectors, it can only use one wiring scheme at any time.

2.4.4 Properties of an Ethernet

The Ethernet is a 10 Mbps broadcast bus technology with best-effort delivery se­

mantics and distributed access control. It is a bus because all stations share a single

communication channel; it is broadcast because all transceivers receive every transmis­

sion. The method used to direct packets from one station to just one other station or a

subset of all stations will be discussed later. For now, it is enough to understand that

28

Sec. 2.4 Ethernet Technology 27

transceivers do not distinguish among transmissions - a transceiver passes all packets
from the cable to the ho.st interface, which chooses packets the computer should receive
and filters out all others. Ethernet is called a best-effort delivery mechanism because
the hardware provides no information to the sender about whether the packet was
delivered. For example, if the destination machine happens to be powered down, pack­
ets sent to it will be lost, and the sender will not be notified. We will see later how the
TCP/IP protocols accommodate best-effort delivery hardware.

Ethernet access control is distributed because, unlike some network technologies,
Ethernet has no central authority to grant access. The Ethernet access scheme is called
Carrier Sense Multiple Access with Collision Detect (CSMA/CD). It is CSMA because
multiple machines can access the Ethernet simultaneously and each machine determines
whether the ether is idle by sensing whether a carrier wave is present. When a host in­
terface has a packet to transmit, it listens to the ether to see if a message is being
transmitted (i.e., performs carrier sensing). When no transmission is sensed, the host in­
terface starts transmitting. Each transmission is limited in duration (because there is a
maximum packet size). Furthermore, the hardware must observe a minimum idle time
between transmissions, which means that no single pair of communicating machines can
use the network without giving other machines an opportunity for access.

2.4.5 Collision Detection And Recovery

When a transceiver begins transmission, the signal does not reach all parts of the
network simultaneously. Instead it travels along the cable at approximately 80% of the
speed of light. Thus, it is possible for two transceivers to both sense that the network is
idle and begin transmission simultaneously. When the two electrical signals cross they
become scrambled, such that neither is meaningful. Such incidents are called collisions.

The Ethernet handles collisions in an ingenious fashion. Each transceiver monitors
the cable while it is transmitting to see if a foreign signal interferes with its transmis­
sion. Technically, the monitoring is called collision detect (CD), making the Ethernet a
CSMA/CD network. When a collision is detected, the host interface aborts transmis­
sion, waits for activity to subside, and tries again. Care must be taken or the network
could wind up with all transceivers busily attempting to transmit and every transmission
producing a collision. To help avoid such situations, Ethernet uses a binary exponential
backoff policy where a sender delays a random time after the first collision, twice as
long if a second attempt to transmit also produces a collision, four times as long if a
third attempt results in a collision, and so on. The motivation for exponential backoff is
that in the unlikely event many stations attempt to transmit simultaneously, a severe
traffic jam could occur. In such a jam, there is a high probability two stations will
choose random backoffs that are close together. Thus, the probability of another colli­
sion is high. By doubling the random delay, the exponential backoff strategy quickly
spreads the stations' attempts to retransmit over a reasonably long period of time, mak­
ing the probability of further collisions extremely small.

29

28 Review Of Underlying Network Technologies Chap. 2

2.4.6 Ethernet Capacity

The standard Ethernet is rated at 10 Mbps, which means that data can be transmit­
ted onto the cable at 10 million bits per second. Although a computer can generate data
at Ethernet speed, raw network speed should not be thought of as the rate at which two
computers can exchange data. Instead, network speed should be thought of as a meas­
ure of network total traffic capacity. Think of a network as a highway connecting mul­
tiple cities, and think of packets as cars on the highway. High bandwidth makes it pos­
sible to carry heavy traffic loads, while low bandwidth means the highway cannot carry
as much traffic. A 10 Mbps Ethernet, for example, can handle a few computers that
generate heavy loads, or many computers that generate light loads.

2.4.7 Ethernet Hardware Addresses

Ethernet defines a 48-bit addressing scheme. Each computer attached to an Ether­
net network is assigned a unique 48-bit number known as its Ethernet address. To as­
sign an address, Ethernet hardware manufacturers purchase blocks of Ethernet ad­
dressest and assign them in sequence as they manufacture Ethernet interface hardware.
Thus, no two hardware interfaces have the same Ethernet address.

Usually, the Ethernet address is fixed in machine readable form on the host inter­
face hardware. Because Ethernet addresses belong to hardware devices, they are some­
times called hardware addresses or physical addresses. Note the following important
property of Ethernet physical addresses:

Physical addresses are associated with the Ethernet interface
hardware; moving the hardware interface to a new machine or re­
placing a hardware interface that has failed changes the machine's
physical address.

Knowing that Ethernet physical addresses can change will make it clear why higher lev­
els of the network software are designed to accommodate such changes.

The host interface hardware examines packets and determines the packets that
should be sent to the host. Recall that each interface receives a copy of every packet -
even those addressed to other machines. The host interface uses the destination address
field in a packet as a filter. The interface ignores those packets that are addressed to
other machines, and passes to the host only those packets addressed to it. The address­
ing mechanism and hardware filter are needed to prevent a computer from being
overwhelmed with incoming data. Although the computer's central processor could
perform the check, doing so in the host interface keeps traffic on the Ethernet from
slowing down processing on all computers.

A 48-bit Ethernet address can do more than specify a single destination computer.
An address can be one of three types:

tThe Institute for Electrical and Electronic Engineers (IEEE) manages the Ethernet address space and as­
signs addresses as needed.

30

Sec. 2.4 Ethernet Technology 29

• The physical address of one network interface (a unicast address)
• The network broadcast address
• A multicast address

By convention, the broadcast address (all ls) is reserved for sending to all stations
simultaneously. Multicast addresses provide a limited form of broadcast in which a
subset of the computers on a network agree to listen to a given multicast address. The
set of participating computers is called a multicast group. To join a multicast group, a
computer must instruct its host interface to accept the group's multicast address. The
advantage of multicasting lies in the ability to limit broadcasts: every computer in a
multicast group can be reached with a single packet transmission, but computers that
choose not to participate in. a particular multicast group do not receive packets sent to
the group.

To accommodate broadcast and multicast addressing, Ethernet interface hardware
must recognize more than its physical address. A host interface usually accepts at least
two kinds of packets: those addressed to the interface's physical (i.e., unicast) address
and those addressed to the network broadcast address. Some interfaces can be pro­
grammed to recognize multicast addresses or even alternate physical addresses. When
the operating system starts, it initializes the Ethernet interface, giving it a set of ad­
dresses to recognize. The interface then examines the destination address field in each
packet, passing on to the host only those transmissions designated for one of the speci­
fied addresses.

2.4.8 Ethernet Frame Format

The Ethernet should be thought of as a link-level connection among machines.
Thus, it makes sense to view the data transmitted as a framet. Ethernet frames are of
variable length, with no frame smaller than 64 octets:j: or larger than 1518 octets
(header, data, and CRC). As in all packet-switched networks, each Ethernet frame con­
tains a field that contains the address of its destination. Figure 2.8 shows that the Ether­
net frame format contains the physical source address as well as the destination address.

Destination Source Frame
Preamble Address Address Type Frame Data CRC
8 octets 6 octets 6 octets 2 octets 64-1500 octets 4 octets

Figure 2.8 The format of a frame (packet) as it travels across an Ethernet pre­
ceded by a preamble. Fields are not drawn to scale.

In addition to identifying the source and destination, each frame transmitted across
the Ethernet contains a preamble, type field, data field, and Cyclic Redundancy Check
(CRC). The preamble consists of 64 bits of alternating Os and Is to help receiving

t The term frame derives from communication over serial lines in which the sender "frames" the data by
adding special characters before and after the transmitted data.

tTechnically, the term byte refers to a hardware-dependent character size; networking professionals use
the term octet, because it refers to an 8-bit quantity on all computers.

31

30 Review Of Underlying Network Technologies Chap. 2

nodes synchronize. The 32-bit CRC helps the interface detect transmission errors: the
sender computes the CRC as a function of the data in the frame, and the receiver
recomputes the CRC to verify that the packet has been received intact.

The frame type field contains a 16-bit integer that identifies the type of the data be­
ing carried in the frame. From the Internet point of view, the frame type field is essen­
tial because it means Ethernet frames are self-identifying. When a frame arrives at a
given machine, the operating system uses the frame type to determine which protocol
software module should process the frame. The chief advantages of self-identifying
frames are that they allow multiple protocols to be used together on a single machine
and they allow multiple protocols to be intermixed on the same physical network
without interference. For example, one could have an application program using Inter­
net protocols while another used a local experimental protocol. The operating system
uses the type field of an arriving frame to decide how to process the contents. We will
see that the TCP/IP protocols use self-identifying Ethernet frames to distinguish among
several protocols.

2.4.9 Extending An Ethernet With Repeaters

Although an Ethernet cable has a maximum length, the network can be extended in
two ways: using repeaters and bridges. A hardware device called a repeater can be
used to relay electrical signals from one cable to another. However, at most two re­
peaters can be placed between any two machines, so the total length of a single Ethernet
is still rather short (three segments of 500 meters each). Figure 2.9 shows a typical use
of repeaters in an office building. A single cable runs vertically up the building, and a
repeater attaches the backbone to an additional cable on each floor. Computers attach
to the cables on each floor.

2.4.10 Extending An Ethernet With Bridges

Bridges are superior to repeaters because they do not replicate noise, errors, or
malformed frames; a completely valid frame must be received before the bridge will ac­
cept and transmit it on the other segment. Furthermore, bridge interfaces follow the
Ethernet CSMA/CD rules, so collisions and propagation delays on one wire remain iso­
lated from those on the other. As a result, an (almost) arbitrary number of Ethernets
can be connected together with bridges. The important point is:

Bridges hide the details of interconnection: a set of bridged segments
acts like a single Ethernet.

A computer uses exactly the same hardware to communicate with a computer across a
bridge as it uses to communicate with a computer on the local segment.

32

Sec. 2.4 Ethernet Technology

FLOOR 3

FLOOR 2

FLOOR 1

'--- REPEATER

Figure 2.9 Repeaters used to join Ethernet cables in a building. At most two
repeaters can be placed between a pair of communicating
machines.

31

Most bridges do much more than replicate frames from one wire to another: they
make intelligent decisions about which frames to forward. Such bridges are called
adaptive, or learning bridges. An adaptive bridge consists of a computer with two Eth­
ernet interfaces. The software in an adaptive bridge keeps two address lists, one for
each interface. When a frame arrives from Ethernet E" the adaptive bridge adds the
48-bit Ethernet source address to the list associated with E 1• Similarly, when a frame
arrives from Ethernet E2, the bridge adds the source address to the list associated with
E2• Thus, over time the adaptive bridge will learn which machines lie on E1 and which
lie on E2•

After recording the source address of a frame, the adaptive bridge uses the destina­
tion address to determine whether to forward the frame. If the address list shows that
the destination lies on the Ethernet from which the frame arrived, the bridge does not
forward the frame. If the destination is not in the address list (i.e., the destination is a
broadcast or multicast address or the bridge has not yet learned the location of the desti­
nation), the bridge forwards the frame to the other Ethernet.

The advantages of adaptive bridges should be obvious. Because the bridge uses
addresses found in normal traffic, it is completely automatic - humans need not config­
ure the bridge with specific addresses. Because it does not forward traffic unnecessari-

33

32 Review Of Underlying Network Technologies Chap. 2

ly, a bridge helps improve the performance of an overloaded network by isolating traffic
on specific segments. Bridges work exceptionally well if a network can be divided phy­
sically into two segments that each contain a set of computers that communicate fre­
quently (e.g., each segment contains a set of workstations along with a server, and the
workstations direct most of their traffic to the server). To summarize:

An adaptive Ethernet bridge connects two Ethernet segments, for­
warding frames from one to the other. It uses source addresses to
learn which machines lie on which Ethernet segment, and it combines
information learned with destination addresses to eliminate forward­
ing when unnecessary.

From the TCP/IP point of view, bridged Ethernets are merely another form of physical
network connection. The important point is:

Because the connection among physical cables provided by bridges
and repeaters is transparent to machines using the Ethernet, we think
of multiple Ethernet segments connected by bridges and repeaters as a
single physical network system.

Most commercial bridges are much more sophisticated and robust than our descrip­
tion indicates. When first powered up, they check for other bridges and learn the topol­
ogy of the network. They use a distributed spanning-tree algorithm to decide how to
forward frames. In particular, the bridges decide how to propagate broadcast packets so
only one copy of a broadcast frame is delivered to each wire. Without such an algo­
rithm, Ethernets and bridges connected in a cycle would produce catastrophic results be­
cause they would forward broadcast packets in both directions simultaneously.

2.5 Fiber Distributed Data Interconnect (FDDI)

FDDI is a popular local area networking technology that provides higher
bandwidth than Ethernet. Unlike Ethernet and other LAN technologies that use cables
to carry electrical signals, FDDI uses glass fibers and transfers data by encoding it in
pulses of lightt.

Optical fiber has two advantages over copper wire. First, because electrical noise
does not interfere with an optical connection, the fiber can lie adjacent to powerful
electrical devices. Second, because optical fibers use light, the amount of data that can
be sent per unit time is much higher than cables that carry electrical signals.

It might seem that glass fibers would be difficult to install and would break if bent.
However, an optical cable is surprisingly flexible. The glass fiber itself has an extreme­
ly small diameter, and the cable includes a plastic jacket that protects the fiber from
breaking. Such a cable cannot bend at a ninety degree angle, but it can bend in an arc
with a diameter of a few inches. Thus, installation is not difficult.

t A related technology known as Copper Distributed Data Interface (CDDI) works like FDDI, but uses

copper cables to carry signals.

34

7

Internet Protocol:
Connectionless Datagram
Delivery

7 .1 Introduction

Previous chapters review pieces of network hardware and software that make inter­
net communication possible, explaining the underlying network technologies and ad­
dress resolution. This chapter explains the fundamental principle of connectionless
delivery and discusses how it is provided by the Internet Protocol (IP), one of the two
major protocols used in internetworking. We will study the format of IP datagrams and
see how they form the basis for all internet communication. The next two chapters con­
tinue our examination of the Internet Protocol by discussing datagram routing and error
handling.

7.2 A Virtual Network

Chapter 3 discussed an internet architecture in which routers connect multiple phy­
sical networks. Looking at the architecture may be misleading, because the focus
should be on the interface that an internet provides to users, not on the interconnection
technology.

89

35

90 Internet Protocol: Connectionless Datagram Delivery

A user thinks of an internet as a single virtual network that intercon­
nects all hosts, and through which communication is possible; its
underlying architecture is both hidden and irrelevant.

Chap. 7

In a sense, an internet is an abstraction of physical networks because, at the lowest lev­
el, it provides the same functionality: accepting packets and delivering them. Higher
levels of internet software add most of the rich functionality users perceive.

7.3 Internet Architecture And Philosophy

Conceptually, a TCP/IP internet provides three sets of services as shown in Figure
7 .1; their arrangement in the figure suggests dependencies among them. At the lowest
level, a connectionless delivery service provides a foundation on which everything rests.
At the next level, a reliable transport service provides a higher level platform on which
applications depend. We will soon explore each of these services, understand what they
provide, and see the protocols associated with them.

APPLICATION SERVICES

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Figure 7.1 The three conceptual layers of internet services.

7.4 The Concept Of Unreliable Delivery

Although we can associate protocol software with each of the services in Figure
7.1 , the reason for identifying them as conceptual parts of the internet is that they clear­
ly point out the philosophical underpinnings of the design. The point is:

Internet software is designed around three conceptual networking ser­
vices arranged in a hierarchy; much of its success has resulted be­
cause this architecture is surprisingly robust and adaptable.

36

Sec. 7.4 The Concept Of Unreliable Delivery 91

One of the most significant advantages of this conceptual separation is that it becomes

possible to replace one service without disturbing others. Thus, research and develop­

ment can proceed concurrently on all three.

7 .5 Connectionless Delivery System

The most fundamental internet service consists of a packet delivery system.

Technically, the service is defined as an unreliable, best-effort, connectionless packet

delivery system, analogous to the service provided by network hardware that operates

on a best-effort delivery paradigm. The service is called unreliable because delivery is

not guaranteed. The packet may be lost, duplicated, delayed, or delivered out of order,

but the service will not detect such conditions, nor will it inform the sender or receiver.

The service is called connectionless because each packet is treated independently from

all others. A sequence of packets sent from one computer to another may travel over

different paths, or some may be lost while others are delivered. Finally, the service is

said to use best-effort delivery because the internet software makes an earnest attempt to

deliver packets. That is, the internet does not discard packets capriciously; unreliability

arises only when resources are exhausted or underlying networks fail.

7.6 Purpose Of The Internet Protocol

The protocol that defines the unreliable, connectionless delivery mechanism is

called the Internet Protocol and is usually referred to by its initials, /Pt. IP provides

three important definitions. First, the IP protocol defines the basic unit of data transfer

used throughout a TCP/IP internet. Thus, it specifies the exact format of all data as it

passes across a TCP/IP internet. Second, IP software performs the routing function,

choosing a path over which data will be sent. Third, in addition to the precise, formal

specification of data formats and routing, IP includes a set of rules that embody the idea

of unreliable packet delivery. The rules characterize how hosts and routers should pro­

cess packets, how and when error messages should be generated, and the conditions

under which packets can be discarded. IP is such a fundamental part of the design that

a TCP/IP internet is sometimes called an IP-based technology.

We begin our consideration of IP in this chapter by looking at the packet format it

specifies. We leave until later chapters the topics of routing and error handling.

7.7 The Internet Datagram

The analogy between a physical network and a TCP/IP internet is strong. On a

physical network, the unit of transfer is a frame that contains a header and data, where

the header gives information such as the (physical) source and destination addresses.

The internet calls its basic transfer unit an Internet datagram, sometimes referred to as

t The abbreviation IP gives rise to the term " IP address."

37

92 Internet Protocol: Connectionless Datagram Delivery Chap. 7

an IP datagram or merely a datagram. Like a typical physical network frame, a da­

tagram is divided into header and data areas. Also like a frame, the datagram header

contains the source and destination addresses and a type field that identifies the contents

of the datagram. The difference, of course, is that the datagram header contains IP ad­

dresses whereas the frame header contains physical addresses. Figure 7 .2 shows the

general form of a datagram:

I DATAGRAM HEADER I DATAGRAM DATA AREA

Figure 7.2 General form of an IP datagram, the TCP/IP analogy to a network

frame. IP specifies the header format including the source and

destination IP addresses. IP does not specify the format of the

data area; it can be used to transport arbitrary data.

7.7.1 Datagram Format

Now that we have described the general layout of an IP datagram, we can look at

the contents in more detail. Figure 7 .3 shows the arrangement of fields in a datagram:

0 4 8 16 19 24

VERS I HLEN I SERVICE TYPE TOTAL LENGTH

IDENTIFICATION FLAGS! FRAGMENT OFFSET

TIME TO LIVE I PROTOCOL HEADER CHECKSUM

SOURCE IP ADDRESS

DESTINATION IP ADDRESS

IP OPTIONS (IF ANY) I PADDING

DATA

...

Figure 7.3 Format of an Internet datagram, the basic unit of transfer in a

TCP/IP internet.

31

Because datagram processing occurs in software, the contents and format are not

constrained by any hardware. For example, the first 4-bit field in a datagram (VERS)

contains the version of the IP protocol that was used to create the datagram. It is used

to verify that the sender, receiver, and any routers in between them agree on the format

38--

Sec. 7.7 The Internet Datagram 93

of the datagram. All IP software is required to check the version field before processing
a datagram to ensure it matches the format the software expects. If standards change,
machines will reject datagrams with protocol versions that differ from theirs, preventing
them from misinterpreting datagram contents according to an outdated format. The
current IP protocol version is 4.

The header length field (HLEN), also 4 bits, gives the datagram header length
measured in 32-bit words. As we will see, all fields in the header have fixed length ex­
cept for the IP OPTIONS and corresponding PADDING fields. The most common
header, which contains no options and no padding, measures 20 octets and has a header
length field equal to 5.

The TOT AL LENGTH field gives the length of the IP datagram measured in octets,
including octets in the header and data. The size of the data area can be computed by
subtracting the length of the header (HLEN) from the TOT AL LENGTH. Because the
TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP datagram is
216 or 65,535 octets. In most applications this is not a severe limitation. It may become
more important in the future if higher speed networks can carry data packets larger than
65,535 octets.

7.7.2 Datagram Type Of Service And Datagram Precedence

Informally called Type Of Service (TOS), the 8-bit SERVICE TYPE field specifies
how the datagram should be handled and is broken down into five subfields as shown in
Figure 7.4:

0 1 2 3 4 5 6 7

PRECEDENCE D T R UNUSED

Figure 7.4 The five subfields that comprise the 8-bit SERVICE TYPE field.

Three PRECEDENCE bits specify datagram precedence, with values ranging from 0
(normal precedence) through 7 (network control), allowing senders to indicate the im­
portance of each datagram. Although most host and router software ignores type of ser­
vice, it is an important concept because it provides a mechanism that can allow control
information to have precedence over data. For example, if all hosts and routers honor
precedence, it is possible to implement congestion control algorithms that are not affect­
ed by the congestion they are trying to control.

Bits D, T, and R specify the type of transport the datagram desires. When set, the
D bit requests low delay, the T bit requests high throughput, and the R bit requests high
reliability. Of course, it may not be possible for an internet to guarantee the type of
transport requested (i.e., it could be that no path to the destination has the requested
property). Thus, we think of the transport request as a hint to the routing algorithms,

39

94 Internet Protocol: Connectionless Datagram Delivery Chap. 7

not as a demand. If a router does know more than one possible route to a given desti­
nation, it can use the type of transport field to select one with characteristics closest to
those desired. For example, suppose a router can select between a low capacity leased
line or a high bandwidth (but high delay) satellite connection. Datagrams carrying
keystrokes from a user to a remote computer could have the D bit set requesting that
they be delivered as quickly as possible, while datagrams carrying a bulk file transfer
could have the T bit set requesting that they travel across the high capacity satellite
path.

It is also important to realize that routing algorithms must choose from among
underlying physical network technologies that each have characteristics of delay,
throughput, and reliability. Often, a given technology trades off one characteristic for
another (e.g., higher throughput rates at the expense of longer delay). Thus, the idea is
to give the routing algorithm a hint about what is most important; it seldom makes
sense to specify all three types of service. To summarize:

We regard the type of transport specification as a hint to the routing
algorithm that helps it choose among various paths to a destination
based on its knowledge of the hardware teGlmologies available on
those paths. An internet does not guarantee the type of transport re­
quested.

7.7.3 Datagram Encapsulation

Before we can understand the next fields in a datagram, it is important to consider
how datagrams relate to physical network frames. We start with a question: "How
large can a datagram be?" Unlike physical network frames that must be recognized by
hardware, datagrams are handled by software. They can be of any length the protocol
designers choose. We have seen that the current datagram format allots only 16 bits to
the total length field, limiting the datagram to at most 65,535 octets. However, that
limit could be changed in later versions of the protocol.

More fundamental limits on datagram size arise in practice. We know that as da­
tagrams move from one machine to another, they must always be transported by the
underlying physical network. To make internet transportation efficient, we would like
to guarantee that each datagram travels in a distinct physical frame. That is, we want
our abstraction of a physical network packet to map directly onto a real packet if possi­
ble.

The idea of carrying one datagram in one network frame is called encapsulation.
To the underlying network, a datagram is like any other message sent from one machine
to another. The hardware does not recognize the datagram format, nor does it under­
stand the IP destination address. Thus, as Figure 7 .5 shows, when one machine sends
an IP datagram to another, the entire datagram travels in the data portion of the network
frame.

40

Sec. 7.7 The Internet Datagram

DATAGRAM DATAGRAM DATA AREA HEADER

FRAME FRAME DATA AREA HEADER

Figure 7.5 The encapsulation of an IP datagram in a frame. The physical net­
work treats the entire datagram, including the header, as data.

7.7.4 Datagram Size, Network MTU, and Fragmentation

95

In the ideal case, the entire IP datagram fits into one physical frame, making
transmission across the physical net efficient. t To achieve such efficiency, the
designers of IP might have selected a maximum datagram size such that a datagram
would always fit into one frame. But which frame size should be chosen? After all, a
datagram may travel across many types of physical networks as it moves across an in­
ternet to its final destination.

To understand the problem, we need a fact about network hardware: each packet­
switching technology places a fixed upper bound on the amount of data that can be
transferred in one physical frame. For example, the Ethernet limits transfers to 1500:j:
octets of data, while FDDI permits approximately 4470 octets of data per frame. We
refer to these limits as the network's maximum transfer unit or MTU. MTV sizes can
be quite small: some hardware technologies limit transfers to 128 octets or less. Limit­
ing datagrams to fit the smallest possible MTV in the internet makes transfers ineffi­
cient when those datagrams pass across a network that can carry larger size frames.
However, allowing datagrams to be larger than the minimum network MTV in an inter­
net means that a datagram may not always fit into a single network frame.

The choice should be obvious: the point of the internet design is to hide underlying
network technologies and make communication convenient for the user. Thus, instead
of designing datagrams that adhere to the constraints of physical networks, TCP/IP
software chooses a convenient initial datagram size and arranges a way to divide large
datagrams into smaller pieces when the datagram needs to traverse a network that has a
small MTV. The small pieces into which a datagram is divided are called fragments,
and the process of dividing a datagram is known as fragmentation.

As Figure 7.6 illustrates, fragmentation usually occurs at a router somewhere along
the path between the datagram source and its ultimate destination. The router receives a
datagram from a network with a large MTV and must send it over a network for which
the MTV is smaller than the datagram size.

t A field in the frame header usually identifies the data being carried; Ethernet uses the type value 0800,.
to specify that the data area contains an encapsulated IP datagram.

:j:The limit of 1500 comes from the Ethernet specification; when used with a SNAP header the IEEE
802.3 standard limits data to 1492 octets. Some vendors' implementations allow slightly larger transfers.

41

96

Host ·

A

Internet Protocol: Connectionless Datagram Delivery

Host
B

Chap. 7

Net 1 Net 3

MTU:1500
Net 2

MTU:620

MTU:1500

Figure 7.6 An illustration of where fragmentation occurs. Router R1 frag­
ments large datagrams sent from A to B; R2 fragments large da­
tagrams sent from B to A.

In the figure, both hosts attach directly to Ethernets which have an MTU of 1500
octets. Thus, both hosts can generate and send datagrams up to 1500 octets long. The
path between them, however, includes a network with an MTU of 620. If host A sends
host B a datagram larger than 620 octets, router R 1 will fragment the datagram. Similar­
ly, if B sends a large datagram to A, router R2 will fragment the the datagram.

Fragment size is chosen so each fragment can be shipped across the underlying
network in a single frame. In addition, because IP represents the offset of the data in
multiples of eight octets, the fragment size must be chosen to be a multiple of eight. Of
course, choosing the multiple of eight octets nearest to the network MTU does not usu­
ally divide the datagram into equal size pieces; the last piece is often shorter than the
others. Fragments must be reassembled to produce a complete copy of the original da­
tagram before it can be processed at the destination.

The IP protocol does not limit datagrams to a small size, nor does it guarantee that
large datagrams will be delivered without fragmentation. The source can choose any
datagram size it thinks appropriate; fragmentation and reassembly occur automatically,
without the source taking special action. The IP specification states that routers must
accept datagrams up to the maximum of the MTUs of networks to which they attach.
In addition, a router must always handle datagrams of up to 576 octets. (Hosts are also
required to accept, and reassemble if necessary, datagrams of at least 576 octets.)

Fragmenting a datagram means dividing it into several pieces. It may surprise you
to learn that each piece has the same format as the original datagram. Figure 7.7 illus­
trates the result of fragmentation.

42

Sec. 7.7 The Internet Datagram 97

DATAGRAM data1 data2 data3
HEADER 600 octets 600 octets 200 octets

(a)

I FRAGMENT 1 I
HEADER data1 Fragment 1 (offset 0)

I FRAGMENT ' I
HEADER data2 Fragment 2 (offset 600)

FRAGMENT3
data3 Fragment 3 (offset 1200) HEADER

(b)

Figure 7.7 (a) An original datagram carrying 1400 octets of data and (b) the
three fragments for network MTU of 620. Headers 1 and 2 have
the more fragments bit set. Offsets shown are decimal octets;
they must be divided by 8 to get the value stored in the fragment
headers.

Each fragment contains a datagram header that duplicates most of the original da­
tagram header (except for a bit in the FLAGS field that shows it is a fragment), fol­
lowed by as much data as can be carried in the fragment while keeping the total length
smaller than the MTU of the network over which it must travel.

7.7.5 Reassembly Of Fragments

Should a datagram be reassembled after passing across one network, or should the
fragments be carried to the final host before reassembly? In a TCP/IP internet, once a
datagram has been fragmented, the fragments travel as separate datagrams all the way to
the ultimate destination where they must be reassembled. Preserving fragments all the
way to the ultimate destination has two disadvantages. First, because datagrams are not
reassembled immediately after passing across a network with small MTU, the small
fragments must be carried from the point of fragmentation to the ultimate de.stination.
Reassembling datagrams at the ultimate destination can lead to inefficiency: even if
some of the physical networks encountered after the point of fragmentation have large
MTU capability, only small fragments traverse them. Second, if any fragments are lost,
the datagram cannot be reassembled. The receiving machine starts a reassembly timer
when it receives an initial fragment. If the timer expires before all fragments arrive, the

43

98 Internet Protocol: Connectionless Datagram Delivery Chap. 7

receiving machine discards the surviving pieces without processing the datagram. Thus,
the probability of datagram loss increases when fragmentation occurs because the loss
of a single fragment results in loss of the entire datagram.

Despite the minor disadvantages, performing reassembly at the ultimate destination
works well. It allows each fragment to be routed independently, and does not require
intermediate routers to store or reassemble fragments.

7.7.6 Fragmentation Control

Three fields in the datagram header, IDENTIFICATION, FLAGS, and FRAGMENT
OFFSET, control fragmentation and reassembly of datagrams. Field IDENTIFICATION
contains a unique integer that identifies the datagram. Recall that when a router frag­
ments a datagram, it copies most of the fields in the datagram header into each frag­
ment. The IDENTIFICATION field must be copied. Its primary purpose is to allow the
destination to know which arriving fragments belong to which datagrams. As a frag­
ment arrives, the destination uses the IDENTIFICATION field along with the datagram
source address to identify the datagram. Computers sending IP datagrams must gen­
erate a unique value for the IDENTIFICATION field for each unique datagramt. One
technique used by IP software keeps a global counter in memory, increments it each
time a new datagram is created, and assigns the result as the datagram's IDENTIFICA­

TION field.
Recall that each fragment has exactly the same format as a complete datagram.

For a fragment, field FRAGMENT OFFSET specifies the offset in the original datagram
of the data being carried in the fragment, measured in units of 8 octets+, starting at
offset zero. To reassemble the datagram, the destination must obtain all fragments start­
ing with the fragment that has offset O through the fragment with highest offset. Frag­
ments do not necessarily arrive in order, and there is no communication between the
router that fragmented the datagram and the destination trying to reassemble it.

The low-order two bits of the 3-bit FLAGS field controls fragmentation. Usually,
application software using TCP/IP does not care about fragmentation because both frag­
mentation and reassembly are automatic procedures that occur at a low level in the
operating system, invisible to end users. However, to test internet software or debug
operational problems, it may be important to test sizes of datagrams for which fragmen­
tation occurs. The first control bit aids in such testing by specifying whether the da­
tagram may be fragmented. It is called the do not fragment bit because setting it to 1
specifies that the datagram should not be fragmented. An application may choose to
disallow fragmentation when only the entire datagram is useful. For example, wnsider
a computer bootstrap sequence in which a machine begins executing a small program in
ROM that uses the internet to request an initial bootstrap, and another machine sends
back a memory image. If the software has been designed so it needs the entire image or
none of it, the datagram should have the do not fragment bit set. Whenever a router
needs to fragment a datagram that has the do not fragment bit set, the router discards
the datagram and sends an error message back to the source.

tin theory, retransmissions of a datagram can carry the same IDENTIFICATION field as the original; in
practice, higher-level protocols usually perform retransmission, resulting in a new datagram with its own
IDENTIFICATION.

:j:To save space in the header, offsets are specified in multiples of 8 octets.

44

Sec. 7.7 The Internet Datagram 99

The low order hit in the FLAGS field specifies whether the fragment contains data
from the middle of the original datagram or from the end. It is called the more frag­
ments bit. To see why such a bit is needed, consider the IP software at the ultimate
destination attempting to reassemble a datagram. It will receive fragments (possibly out
of order) and needs to know when it has received all fragments for a datagram. When a
fragment arrives, the TOTAL LENGTH field in the header refers to the size of the frag­
ment and not to the size of the original datagram, so the destination cannot use the TO­
T AL LENGTH field to tell whether it has collected all fragments. The more fragments
bit solves the problem easily: once the destination receives a fragment with the more
fragments bit turned off, it knows this fragment carries data from the tail of the original
datagram. From the FRAGMENT OFFSET and TOTAL LENGTH fields, it can compute
the length of the original datagram. By examining the FRAGMENT OFFSET and TO­
TAL LENGTH of all fragments that have arrived, a receiver can tell whether the frag­
ments on hand contain all the data needed to reassemble the entire original datagram.

7.7.7 Time to Live (TTL)

Field TIME TO LIVE specifies how long, in seconds, the datagram is allowed to
remain in the internet system. The idea is both simple and important: whenever a
machine injects a datagram into the internet, it sets a maximum time that the datagram
should survive. Routers and hosts that process datagrams must decrement the TIME TO
LIVE field as time passes and remove the datagram from the internet when its time ex­
pires.

Estimating exact times is difficult because routers do not usually know the transit
time for physical networks. A few rules simplify processing and make it easy to handle
datagrams without synchronized clocks. First, each router along the path from source to
destination is required to decrement the TIME TO LIVE field by 1 when it processes the
datagram header. Furthermore, to handle cases of overloaded routers that introduce
long delays, each router records the local time when the datagram arrives, and decre­
ments the TIME TO LIVE by the number of seconds the datagram remained inside the
router waiting for service.

Whenever a TIME TO LIVE field reaches zero, the router discards the datagram
and sends an error message back to the source. The idea of keeping a timer for da­
tagrams is interesting because it guarantees that datagrams cannot travel around an in­
ternet forever, even if routing tables become corrupt and routers route datagrams in a
circle.

7.7.8 Other Datagram Header Fields

Field PROTOCOL is analogous to the type field in an network frame. The value
in the PROTOCOL field specifies which high-level protocol was used to create the mes­
sage being carried in the DATA area of a datagram. In essence, the value of PROTO­
COL specifies the format of the DATA area. The mapping between a high level proto-

45

100 Internet Protocol: Connectionless Datagram Delivery Chap. 7

col and the integer value used in the PROTOCOL field must be administered by a cen­
tral authority to guarantee agreement across the entire Internet.

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum
is formed by treating the header as a sequence of 16-bit integers (in network byte ord­
er), adding them together using one's complement arithmetic, and then taking the one's
complement of the result. For purposes of computing the checksum, field HEADER
CHECKSUM is assumed to contain zero.

It is important to note that the checksum only applies to values in the IP header
and not to the data. Separating the checksum for headers and data has advantages and
disadvantages. Because the header usually occupies fewer octets than the data, having a
separate checksum reduces processing time at routers which only need to compute
header checksums. The separation also allows higher level protocols to choose their
own checksum scheme for the data. The chief disadvantage is that higher level proto­
cols are forced to add their own checksum or risk having corrupted data go undetected.

Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit
JP addresses of the datagram's sender and intended recipient. Although the datagram
may be routed through many intermediate routers, the source and destination fields nev­
er change; they specify the IP addresses of the original source and ultimate destinationt.

The field labeled DATA in Figure 7.3 shows the beginning of the data area of the
datagram. Its length depends, of course, on what is being sent in the datagram. The IP
OPTIONS field, discussed below, is variable length. The field labeled PADDING,
depends on the options selected. It represents bits containing zero that may be needed
to ensure the datagram header extends to an exact multiple of 32 bits (recall that the
header length field is specified in units of 32-bit words).

7.8 Internet Datagram Options

The IP OPTIONS field following the destination address is not required in every
datagram; options are included primarily for network testing or debugging. Options
processing is an integral part of the IP protocol, however, so all standard implementa­
tions must include it.

The length of the IP OPTIONS field varies depending on which options are select­
ed. Some options are one octet long; they consist of a single octet option code. Other
options are variable length. When options are present in a datagram, they appear con­
tiguously, with no special separators between them. Each option consists of a single oc­
tet option code, which may be followed by a single octet length and a set of data octets
for that option. The option code octet is divided into three fields as Figure 7 .8 shows.

t An exception is made when the datagram includes the source route options listed below.

46

Sec. 7.8 Internet Datagram Options 101

0 1 2 3 4 5 6 7

I COPY I OPTION CLASS I OPTION NUMBER

Figure 7.8 The division of the option code octet into three fields of length 1,
2, and 5 bits. ~

The fields consist of a 1-bit COPY flag, a 2-bit OPTION CLASS, and the 5-bit OPTION
NUMBER. The COPY flag controls how routers treat options during fragmentation.
When the COPY bit is set to I, it specifies that the option should be copied into all
fragments. When set to 0, the COPY bit means that the option should only be copied
into the first fragment and not into all fragments.

The OPTION CLASS and OPTION NUMBER bits specify the general class of the
option and give a specific option in that class. The table in Figure 7 .9 shows how
classes are assigned.

Option Class

0
1
2
3

Meaning
Datagram or network control
Reserved for future use
Debugging and measurement
Reserved for future use

Figure 7.9 Classes of IP options as encoded in the OPTION CLASS bits of an
option code octet.

The table in Figure 7 .10 lists the possible options that can accompany an IP da­
tagram and gives their OPTION CLASS and OPTION NUMBER values. As the list
shows, most options are used for control purposes.

47

102 Internet Protocol: Connectionless Datagram Delivery Chap. 7

Option Option
Class Number Length Description

0

0

0

0

0
0

0

2

0 End of option list. Used if options
do not end at end of header
(also see header padding field).

1 No operation (used to align octets in
a list of options).

2 11 Security and handling restrictions
(for military applications).

3 var Loose source routing. Used to route
a datagram along a specified path.

7 var Record route. Used to trace a route.
8 4 Stream identifier. Used to carry a

SATNET stream identifier (Obsolete).
9 var Strict source routing. Used to route

a datagram along a specified path.
4 var Internet timestamp. Used to record

timestamps along the route.

Figure 7.10 The eight possible IP options with their numeric class and
number codes. The value var in the length column stands for
variable.

7 .8.1 Record Route Option

The routing and timestamp options are the most interesting because they provide a
way to monitor or control how internet routers route datagrams. The record route op­
tion allows the source to create an empty list of IP addresses and arrange for each router
that handles the datagram to add its IP address to the list. Figure 7 .11 shows the format
of the record route option.

As described above, the CODE field contains the option class and option number
(0 and 7 for record route). The LENGTH field specifies the total length of the option as
it appears in the IP datagram, including the first three octets. The fields starting with
one labeled FIRST IP ADDRESS comprise the area reserved for recording internet ad­
dresses. The POINTER field specifies the offset within the option of the next available
slot.

48

Sec. 7.8

0

Internet Datagram Options

8 16 24

CODE(7) I LENGTH I POINTER I
FIRST IP ADDRESS

SECOND IP ADDRESS

. ..

Figure 7.11 The format of the record route option in an IP datagram. The
option begins with three octets immediately followed by a list of
addresses. Although the diagram shows addresses in 32 bit un­
its, they are not aligned on any octet boundary in a datagram.

103

31

Whenever a machine handles a datagram that has the record route option set, the
machine adds its address to the record route list (enough space must be allocated in the
option by the original source to hold all entries that will be needed). To add itself to
the list, a machine first compares the pointer and length fields. If the pointer is greater
than the length, the list is full, so the machine forwards the datagram without inserting
its entry. If the list is not full, the machine inserts its 4-octet IP address at the position
specified by the POINTER, and increments the POINTER by four.

When the datagram arrives, the destination machine can extract and process the list
of IP addresses. Usually, a computer that receives a datagram ignores the recorded
route. Using the record route option requires two machines that agree to cooperate; a
computer will not automatically receive recorded routes in incoming datagrams after it
turns on the record route option in outgoing datagrams. The source must agree to en­
able the record route option and the destination must agree to process the resultant list.

7 .8.2 Source Route Options

Another idea that network builders find interesting is the source route option. The
idea behind source routing is that it provides a way for the sender to dictate a path
through the internet. For example, to test the throughput over a particular physical net­
work, N, system administrators can use source routing to force IP datagrams to traverse
network N even if routers would normally choose a path that did not include it. The
ability to make such tests is especially important in a production environment, because
it gives the network manager freedom to route users' datagrams over networks that are
known to operate correctly while simultaneously testing other networks. Of course,
such routing is only useful to people who understand the network topology; the average
user has no need to know or use it.

49

104 Internet Protocol: Connectionless Datagram Delivery Chap. 7

IP supports two fonns of source routing. One form, called strict source routing,
specifies . a routing path by including a sequence of IP addresses in the option as Figure
7.12 shows.

0 8 16 24

CODE(137) I LENGTH I POINTER I
IP ADDRESS OF FIRST HOP

IP ADDRESS OF SECOND HOP

...

Figure 7.12 The strict source route option specifies an exact route by giving a
list of IP addresses the datagram must follow.

31

Strict source routing means that the addresses specify the exact path the datagram must
follow to reach its destination. The path between two successive addresses in the list
must consist of a single physical network; an error results if a router cannot follow a
strict source route. The other form, called loose source routing, also includes a se­
quence of IP addresses. It specifies that the datagram must follow the sequence of IP
addresses, but allows multiple network hops between successive addresses on the list.

Both source route options require routers along the path to overwrite items in the
address list with their local network addresses. Thus, when the datagram arrives at its
destination, it contains a list of all addresses visited, exactly like the list produced by
the record route option.

The format of a source route option resembles that of the record route option
shown above. Each router examines the POINTER and LENGTH fields to see if the list
has been exhausted. If it has, the pointer is greater than the length, and the router routes
the datagram to its destination as usual. If the list is not exhausted, the router follows
the pointer, picks up the IP address, replaces it with the router's addresst, and routes
the datagram using the address it obtained from the list.

7.8.3 Timestamp Option

The timestamp option works like the record route option in that the timestamp op­
tion contains an initially empty list, and each router along the path from source to desti­
nation fills in one item in the list. Each entry in the list contains two 32-bit items: the
IP address of the router that supplied the entry, and a 32-bit integer timestamp. Figure
7 .13 shows the format of the times tamp option.

t A router has one address for each interface; it records the address that corresponds to the network over
which it routes the datagram.

50

Sec. 7.8

0

Internet Datagram Options

8 16 24 31

CODE(68) I LENGTH I POINTER I OFLOW I FLAGS

FIRST IP ADDRESS

FIRST TIMESTAMP

...

Figure 7.13 The format of the timestamp option. Bits in the FLAGS field
control the exact format and rules routers use to process this op­
tion.

105

In the figure, the LENGTH and POINTER fields are used to specify the length of
the space reserved for the option and the location of the next unused slot (exactly as in
the record route option). The 4-bit OFLOW field contains an integer count of routers
that could not supply a timestamp because the option was too small.

The value in the 4-bit FLAGS field controls the exact format of the option and tells
how routers should supply timestamps. The values are:

Flags value
0
1

3

Meaning
Record timestamps only; omit IP addresses.
Precede each timestamp by an IP address

(this is the format shown in Figure 7.13).
IP addresses are specified by sender; a
router only records a timestamp if the
next IP address in the list matches the
router's IP address.

Figure 7.14 The interpretation of values in the FLAGS field of a timestamp
option.

Timestamps give the time and date at which a router handles the datagram, ex­
pressed as milliseconds since midnight, Universal Timet. If the standard representation
for time is unavailable, the router can use any representation of local time provided it
turns on the high-order bit in the timestamp field. Of course, timestamps issued by in­
dependent computers are not always consistent even if represented in universal time;
each machine reports time according to its local clock, and clocks may differ. Thus,
timestamp entries should always be treated as estimates, independent of the representa­
tion.

It may seem odd that the timestamp option includes a mechanism to have routers
record their IP addresses along with timestamps because the record route option already

t Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian.

51

106 Internet Protocol: Connectionless Datagram Delivery Chap. 7

provides that capability. However, recording IP addresses with timestamps eliminates
ambiguity. Having the route recorded along with timestamps is also useful because it
allows the receiver to know exactly which path the datagram followed.

7.8.4 Processing Options During Fragmentation

The idea behind the COPY bit in the option CODE field should now be clear.
When fragmenting a datagram, a router replicates some IP options in all fragments
while it places others in only one fragment. For example, consider the option used to
record the datagram route. We said that each fragment will be handled as an indepen­
dent datagram, so there is no guarantee that all fragments follow the same path to the
destination. If all fragments contained the record route option, the destination might re­
ceive a different list of routes from each fragment. It could not produce a single, mean­
ingful list of routes for the reassembled datagram. Therefore, the IP standard specifies
that the record route option should only be copied into one of the fragments.

Not all IP options can be restricted to one fragment. Consider the source route op­
tion, for example, that specifies how a datagram should travel through the internet.
Source routing information must be replicated in all fragment headers, or fragments will
not follow the specified route. Thus, the code field for source route specifies that the
option must be copied into all fragments.

7.9 Summary

The fundamental service provided by TCP/IP internet software is a connectionless,
unreliable, best-effort packet delivery system. The Internet Protocol (IP) formally speci­
fies the format of internet packets, called datagrams, and informally embodies the ideas
of connectionless delivery. This chapter concentrated on datagram formats; later
chapters will discuss IP routing and error handling.

Analogous to a physical frame, the IP datagram is divided into header and data
areas. Among other information, the datagram header contains the source and destina­
tion IP addresses, fragmentation control, precedence, and a checksum used to catch
transmission errors. Besides fixed-length fields, each datagram header can contain an
options field. The options field is variable length, depending on the number and type of
options used as well as the size of the data area allocated for each option. Intended to
help monitor and control the internet, options allow one to specify or record routing in­
formation, or to gather timestamps as the datagram traverses an internet.

52

For Further Study 107

FOR FURTHER STUDY

Postel [1980] discusses possible ways to approach internet protocols, addressing,
and routing. In later publications, Postel [RFC 791] gives the standard for the Internet
Protocol. Braden [RFC 1122] further refines the standard. Hornig [RFC 894] specifies
the standard for the transmission of IP datagrams across an Ethernet. Clark [RFC 815]
describes efficient reassembly of fragments. In addition to the packet format, Internet
authorities also specify many constants needed in the network protocols. These values
can be found in Reynolds and Postel [RFC 1700]. Kent and Mogul [1987] discusses
the disadvantages of fragmentation.

An alternative internet protocol suite known as XNS, is given in Xerox [1981].
Boggs et. al. [1980] describes the PARC Universal Packet (PUP) protocol, an abstrac­
tion from XNS closely related to the IP datagram.

EXERCISES

7.1 What is the single greatest advantage of having the IP checksum cover only the datagram
header and not the data? What is the disadvantage?

7.2 Is it ever necessary to use an IP checksum when sending packets over an Ethernet? Why
or why not?

7.3 What is the MTU size for the ANSNET? Hyperchannel? an ATM switch?

7.4 Do you expect a high-speed local area network to have larger or smaller MTU size than a
wide area network?

7.5 Argue that fragments should have small, nonstandard headers.

7.6 Find out when the IP protocol version last changed. Is having a protocol version number
really useful?

7.7 Can you imagine why a one's complement checksum was chosen for IP instead of a cyclic
redundancy check?

7.8 What are the advantages of doing reassembly at the ultimate destination instead of doing it
after the datagram travels across one network?

7.9 What is the minimum network MTU required to send an IP datagram that contains at least
one octet of data?

7.10 Suppose you are hired to implement IP datagram processing in hardware. Is there any rear­
rangement of fields in the header that would have made your hardware more efficient?
Easier to build?

7.11 If you have access to an implementation of IP, revise it and test your locally available im­
plementations of IP to see if they reject IP datagrams with an out-of-date version number.

7.12 When a minimum-size IP datagram travels across an Ethernet, how large is the frame?

53

11

Protocol Layering

11.1 Introduction

Previous chapters review the architectural foundations of internetworking, describe
how hosts and routers forward Internet datagrams, and present mechanisms used to map
IP addresses to physical network addresses. This chapter considers the structure of the
software found in hosts and routers that carries out network communication. It presents
the general principle of layering, shows how layering makes Internet Protocol software
easier to understand and build, and traces the path of datagrams through the protocol
software they encounter when traversing a TCP/IP internet.

11.2 The Need For Multiple Protocols

We have said that protocols allow one to specify or understand communication
without knowing the details of a particular vendor's network hardware. They are to
computer communication what programming languages are to computation. It should
be apparent by now how closely the analogy fits. Like assembly language, some proto­
cols describe communication across a physical network. For example, the details of the
Ethernet frame format, network access policy, and frame error handling comprise a pro­
tocol that describes communication on an Ethernet. Similarly, the details of IP ad­
dresses, the datagram format, and the concept of unreliable, connectionless delivery
comprise the Internet Protocol.

Complex data communication systems do not use a single protocol to handle all
transmission tasks. Instead, they require a set of cooperative protocols, sometimes
called a protocol family or protocol suite. To understand why, think of the problems
that arise when machines communicate over a data network:

159

54

160 Protocol Layering Chap. 11

• Hardware failure. A host or router may fail either because the hardware fails or
because the. operating system crashes. A network transmission link may fail or acciden­
tally be disconnected. The protocol software needs to detect such failures and recover
from them if possible.

• Network congestion. Even when all hardware and software operates correctly,
networks have finite capacity that can be exceeded. The protocol software needs to ar­
range ways that a congested machine can suppress further traffic.

• Packet delay or loss. Sometimes, packets experience extremely long delays or
are lost. The protocol software needs to learn about failures or adapt to long delays.

• Data corruption. Electrical or magnetic interference or hardware failures can
cause transmission errors that corrupt the contents of transmitted data. Protocol
software needs to detect and recover from such errors.

• Data duplication or sequence errors. Networks that offer multiple routes may
deliver data out of sequence or may deliver duplicates of packets. The protocol
software needs to reorder packets and remove any duplicates.

Taken together, all these problems seem overwhelming. It is difficult to under­
stand how to write a single protocol that will handle them all. From the analogy with
programming languages, we can see how to conquer the complexity. Program transla­
tion has been partitioned into four conceptual subproblems identified with the software
that handles each subproblem: compiler, assembler, link editor, and loader. The divi­
sion makes it possible for the designer to concentrate on one subproblem at a time, and
for the implementor to build and test each piece of software independently. We will see
that protocol software is partitioned similarly.

Two final observations about our programming language analogy will help clarify
the organization of protocols. First, it should be clear that pieces of translation software
must agree on the exact format of data passed between them. For example, the data
passed from the compiler to the assembler consists of a program defined by the assem­
bly programming language. Thus, we see how the translation process involves multiple
programming languages. The analogy will hold for communication software, where we
will see that multiple protocols define the interfaces between the modules of communi­
cation software. Second, the four parts of the translator form a linear sequence in which
output from the compiler becomes input to the assembler, and so on. Protocol software
also uses a linear sequence.

11.3 The Conceptual Layers Of Protocol Software

Think of the modules of protocol software on each machine as being stacked verti­
cally into layers, as in Figure l l. l. Each layer takes responsibility for handling one
part of the problem.

55

Sec. 11.3 The Conceptual Layers Of Protocol Software 161

Sender Receiver

Layer n Layer n

Layer 2 Layer 2

Layer1 Layer1

Network

Figure 11.1 The conceptual organization of protocol software in layers.

Conceptually, sending a message from an application program on one machine to
an application program on another means transferring the message down through suc­
cessive layers of protocol software on the sender's machine, transferring the message
across the network, and transferring the message up through successive layers of proto­
col software on the receiver's machine.

In practice, the protocol software is much more complex than the simple model of
Figure 11.1 indicates. Each layer makes decisions about the correctness of the message
and chooses an appropriate action based on the message type or destination address.
For example, one layer on the receiving machine must decide whether to keep the mes­
sage or forward it to another machine. Another layer must decide which application
program should receive the message.

To understand the difference between the conceptual organization of protocol
software and the implementation details, consider the comparison shown in Figure 11.2.
The conceptual diagram in Figure 11.2a shows an Internet layer between a high level
protocol layer and a network interface layer. The realistic diagram in Figure 11.2b
shows that the IP software may communicate with multiple high-level protocol modules
and with multiple network interfaces.

Although a diagram of conceptual protocol layering does not show all details, it
does help explain the general ideas. For example, Figure 11.3 shows the layers of pro­
tocol software used by a message that traverses three networks. The diagram shows
only the network interface and Internet Protocol layers in routers because only those
layers are needed to receive, route, and then send datagrams. We understand that any
machine attached to two networks must have two network interface modules, even
though the conceptual layering diagram shows only a single network interface layer in
each machine.

56

162 Protocol Layering

Conceptual Layers Software Organization

High Level Protocol 2
Protocol Layer

Internet
Protocol Layer

IP Module

Network
Interface Layer Interface 2

(a) (b)

Figure 11.2 A comparison of (a) conceptual protocol layering and (b) a real­
istic view of software organization showing multiple network in­
terfaces below IP and multiple protocols above it.

Chap. 11

As Figure 11.3 shows, a sender on the original machine transmits a message which
the IP layer places in a datagram and sends across network I. On intermediate
machines the datagram passes up to the IP layer which routes it back out again (on a
different network). Only when it reaches the final destination machine does IP extract
the message and pass it up to higher layers of protocol software.

eceiver

other ... other ...

IP Layer IP Layer IP Layer IP Layer

Interface Interface Interface Interface

Net 1 Net 2 Net 3

Figure 11.3 The path of a message traversing the Internet from the sender
through two intermediate machines to the receiver. Intermediate
machines only send the datagram to the IP software layer.

57

Sec. 11.4 Functionality Of The Layers 163

11.4 Functionality Of The Layers

Once the decision has been made to partition the communication problem into sub­
problems and organize the protocol software into modules that each handle one sub­
problem, the question arises: "what functionality should reside in each module?" The
question is not easy to answer for several reasons. First, given a set of goals and con­
straints governing a particular communication problem, it is possible to choose an or­
ganization that will optimize protocol software for that problem. Second, even when
considering general network-level services such as reliable transport, it is possible to
choose from among fundamentally distinct approaches to solving the problem. Third,
the design of network (or internet) architecture and the organization of the protocol
software are interrelated; one cannot be designed without the other.

11.4.1 ISO 7-Layer Reference Model

Two ideas about protocol layering dominate the field. The first, based on work
done by the International Organization for Standardization (ISO), is known as ISO's
Reference Model of Open System Interconnection, often referred to as the /SO model.
The ISO model contains 7 conceptual layers organized as Figure 11.4 shows.

Layer Functionality

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2
Data Link

(Hardware Interface)

1
Physical Hardware

Connection

Figure 11.4 The ISO 7-layer reference model for protocol software.

58

164 Protocol Layering Chap. 11

The ISO model, built to describe protocols for a single network, does not contain a
specific level for internetwork routing in the same way TCP/IP protocols do.

11.5 X.25 And Its Relation To The ISO Model

Although it was designed to provide a conceptual model and not an implementa­
tion guide, the ISO layering scheme has been the basis for several protocol implementa­
tions. Among the protocols commonly associated with the ISO model, the set of proto­
cols known as X.25 is probably the best known and most widely used. X.25 was esta­
blished as a recommendation of the Telecommunications Section of the International
Telecommunications Uniont (ITU-TS), an international organization that recommends
standards for international telephone services. X.25 has been adopted by public data
networks, and is especially popular in Europe. Considering X.25 will help explain the
ISO layering.

In the X.25 view, a network operates much like a telephone system. An X.25 net­
work is assumed to consist of complex packet switches that contain the intelligence
needed to route packets. Hosts do not attach directly to communication wires of the
network. Instead each host attaches to one of the packet switches using a serial com­
munication line. In one sense the connection between a host and an X.25 packet switch
is a miniature network consisting of one serial link. The host must follow a complicat­
ed procedure to transfer packets onto the network.

• Physical Layer. X.25 specifies a standard for the physical interconnection
between host computers and network packet switches, as well as the procedures used to
transfer packets from one machine to another. In the reference model, level J specifies
the physical interconnection including electrical characteristics of voltage and current.
A corresponding protocol, X.21 , gives the details used by public data networks.

• Data Link Layer. The level 2 portion of the X.25 protocol specifies how data
travels between a host and the packet switch to which it connects. X.25 uses the term
frame to refer to a unit of data as it passes between a host and a packet switch (it is im­
portant to understand that the X.25 definition of frame differs slightly from the way we
have used it). Because raw hardware delivers only a stream of bits, the level 2 protocol
must define the format of frames and specify how the two machines recognize frame
boundaries. Because transmission errors can destroy data, the level 2 protocol includes
error detection (e.g., a frame checksum). Finally, because transmission is unreliable, the
level 2 protocol specifies an exchange of acknowledgements that allows the two
machines to know when a frame has been transferred successfully.

One commonly used level 2 protocol, named the High Level Data Link Communi­
cation, is best known by its acronym, HDLC. Several versions of HDLC exist, with the
most recent known as HDLCJLAPB. It is important to remember that successful
transfer at level 2 means a frame has been passed to the network packet switch for
delivery; it does not guarantee that the packet switch accepted the packet or was able to
route it.

tThe International Telecommunications Union was formerly named the Consultative Committee on Inter­
national Telephony and Telegraphy (CCITT).

59
L

Sec. 11.5 X.25 And Its Relation To The ISO Model 165

• Network Layer. The ISO reference model specifies that the third level contains
functionality that completes the definition of the interaction between host and network.
Called the network or communication subnet layer, this level defines the basic unit of
transfer across the network and includes the concepts of destination addressing and rout­
ing. Remember that in the X.25 world, communication between host and packet switch
is conceptually isolated from the traffic that is being passed. Thus, the network might
allow packets defined by level 3 protocols to be larger than the size of frames that can
be transferred at level 2. The level 3 software assembles a packet in the form the net­
work expects and uses level 2 to transfer it (possibly in pieces) to the packet switch.
Level 3 must also respond to network congestion problems.

• Transport Layer. Level 4 provides end-to-end reliability by having the destina­
tion host communicate with the source host. The idea here is that even though lower
layers of protocols provide reliable checks at each transfer, the end-to-end layer double
checks to make sure that no machine in the middle failed.

• Session Layer. Higher levels of the ISO model describe how protocol software
can be organized to handle all the functionality needed by application programs. The
ISO committee considered the problem of remote terminal access so fundamental that
they assigned layer 5 to handle it. In fact, the central service offered by early public
data networks consisted of terminal to host interconnection. The carrier provides a spe­
cial purpose host computer called a Packet Assembler And Disassembler (PAD) on the
network with dialup access. Subscribers, often travelers who carry their own computer
and modem, dial up the local PAD, make a network connection to the host with which
they wish to communicate, and log in. Many carriers choose to make using the network
for long distance communication less expensive than direct dialup.

• Presentation Layer. ISO layer 6 is intended to include functions that many ap­
plication programs need when using the network. Typical examples include standard
routines that compress text or convert graphics images into bit streams for transmission
across a network. For example an ISO standard known as Abstract Syntax Notation 1
(ASN.l) , provides a representation of data that application programs use. One of the
TCP/IP protocols, SNMP, also uses ASN. l to represent data.

• Application Layer. Finally, ISO layer 7 includes application programs that use
the network. Examples include electronic mail or file transfer programs. In particular,
the ITU-TS has devised a protocol for electronic mail known as the X.400 standard. In
fact, the ITU and ISO worked jointly on message handling systems; the ISO version is
called MOTJS.

11.5.1 The TCP/IP Internet Layering Model

The second major layering model did not arise from a standards committee, but
came instead from research that led to the TCP/IP protocol suite. With a little work, the
ISO model can be stretched to describe the TCP/IP layering scheme, but the underlying
assumptions are different enough to warrant distinguishing the two.

60

166 Protocol Layering Chap. 11

Broadly speaking, TCP/IP software is organized into four conceptual layers that
build on a fifth layer of hardware. Figure 11.5 shows the conceptual layers as well as
the form of data as it passes between them.

Conceptual Layer

Application

Transport

Internet

Network Interface

Hardware

Objects Passed
Between Layers

Messages or Streams

Transport Protocol Packets

IP Datagrams

Network-Specific Frames

Figure 11.5 The 4 conceptual layers of TCP/IP software and the form of ob­
jects passed between layers. The layer labeled network interface
is sometimes called the data link layer.

• Application Layer. At the highest level, users invoke application programs that
access services available across a TCP/IP internet. An application interacts with one of
the transport level protocols to send or receive data. Each application program chooses
the style of transport needed, which can be either a sequence of individual messages or
a continuous stream of bytes. The application program passes data in the required form
to the transport level for delivery.

• Transport layer. The primary duty of the transport layer is to provide com­
munication from one application program to another. Such communication is often
called end-to-end. The transport layer may regulate flow of information. It may also
provide reliable transport, ensuring that data arrives without error and in sequence. To
do so, transport protocol software arranges to have the receiving side send back ack­
nowledgements and the sending side retransmit lost packets. The transport software
divides the stream of data being transmitted into small pieces (sometimes called pack­
ets) and passes each packet along with a destination address to the next layer for
transmission.

Although Figure 11.5 uses a single block to represent the application layer, a gen­
eral purpose computer can have multiple application programs accessing the internet at
one time. The transport layer must accept data from several user programs and send it

61

Sec. 11.5 X.25 And Its Relation To The ISO Model 167

to the next lower layer. To do so, it adds additional information to each packet, includ­
ing codes that i_dentify which application program sent it and which application program
should receive it, as well as a checksum. The receiving machine uses the checksum to
verify that the packet arrived intact, and uses the destination code to identify the appli­
cation program to which it should be delivered.

• Internet Layer. As we have already seen, the Internet layer handles communica­
tion from one machine to another. It accepts a request to send a packet from the tran­
sport layer along with an identification of the machine to which the packet should be
sent. It encapsulates the packet in an IP datagram, fills in the datagram header, uses the
routing algorithm to determine whether to deliver the datagram directly or send it to a
router, and passes the datagram to the appropriate network interface for transmission.
The Internet layer also handles incoming datagrams, checking their validity, and uses
the routing algorithm to decide whether the datagram should be processed locally or for­
warded. For datagrams addressed to the local machine, software in the internet layer
deletes the datagram header, and chooses from among several transport protocols the
one that will handle the packet. Finally, the Internet layer sends ICMP error and control
messages as needed and handles all incoming ICMP messages.

• Network Interface Layer. The lowest level TCP/IP software comprises a net­
work interface layer, responsible for accepting IP datagrams and transmitting them over
a specific network. A network interface may consist of a device driver (e.g., when the
network is a local area network to which the machine attaches directly) or a complex
subsystem that uses its own data link protocol (e.g. , when the network consists of pack­
et switches that communicate with hosts using HDLC).

11 .6 Differences Between X.25 And Internet Layering

There are two subtle and important differences between the TCP/IP layering
scheme and the X.25 scheme. The first difference revolves around the focus of atten­
tion on reliability, while the second involves the location of intelligence in the overall
system.

11.6.1 Link-Level vs. End-To-End Reliability

One major difference between the TCP/IP protocols and the X.25 protocols lies in
their approaches to providing reliable data transfer services. In the X.25 model, proto­
col software detects and handles errors at all levels. At the link level, complex proto­
cols guarantee that the transfer between a host and the packet switch to which it con­
nects will be correct. Checksums accompany each piece of data transferred, and the re­
ceiver acknowledges each piece of data received. The link level protocol includes
timeout and retransmission algorithms that prevent data loss and provide automatic
recovery after hardware fails and restarts.

62

168 Protocol Layering Chap. 11

Successive levels of X.25 provide reliability of their own. At level 3, X.25 also
provides error detection and recovery for packets transferred onto the network, using
checksums as well as timeout and retransmission techniques. Finally, level 4 must pro­
vide end-to-end reliability, having the source correspond with the ultimate destination to
verify delivery.

In contrast to such a scheme, TCP/IP bases its protocol layering on the idea that re­
liability is an end-to-end problem. The architectural philosophy is simple: construct the
internet so it can handle the expected load, but allow individual links or machines to
lose data or corrupt it without trying to repeatedly recover. In fact, there is little or no
reliability in most TCP/IP network interface layer software. Instead, the transport layer
handles most error detection and recovery problems.

The resulting freedom from interface layer verification makes TCP/IP software
much easier to understand and implement correctly. Intermediate routers can discard
datagrams that become corrupted because of transmission errors. They can discard da­
tagrams that cannot be delivered. They can discard datagrams when the arrival rate
exceeds machine capacity, and can reroute datagrams through paths with shorter or
longer delay without informing the source or destination.

Havi.ng unreliable links means that some datagrams do not arrive. Detection and
recovery of datagram loss is carried out between the source host and the ultimate desti­
nation and is, therefore, called end-to-end verification. The end-to-end software located
in the transport layer uses checksums, acknowledgements, and timeouts to control
transmission. Thus, unlike the connection-oriented X.25 protocol layering, the TCP/IP
software focuses most of its reliability control in one layer.

11.6.2 Locus of Intelligence and Decision Making

Another difference between the X.25 model and the TCP/IP model emerges when
one considers the locus of authority and control. As a general rule, networks using
X.25 adhere to the idea that a network is a utility that provides a transport service. The
vendor that offers the service controls network access and monitors traffic to keep
records for accounting and billing. The network vendor also handles problems like
routing, flow control, and acknowledgements internally, making transfers reliable. This
view leaves little that the hosts can (or need to) do. In short, the network is a complex,
independent system to which one can attach relatively simple host computers; the hosts
themselves participate in the network operation very little.

By contrast, TCP/IP requires hosts to participate in almost all of the network proto­
cols. We have already mentioned that hosts actively implement end-to-end error detec­
tion and recovery. They also participate in routing because they must choose a router
when sending datagrams, and they participate in network control because they must
handle ICMP control messages. Thus, when compared to an X.25 network, a TCP/IP
internet can be viewed as a relatively simple packet delivery system to which intelligent
hosts attach.

63

Sec. 11.7 The Protocol Layering Principle 169

11. 7 The Protocol Layering Principle

Independent of the particular layering scheme used, or the functions of the layers,
the operation of layered protocols is based on a fundamental idea. The idea, called the
layering principle, can be summarized succinctly:

Layered protocols are designed so that layer n at the destination re­
ceives exactly the same object sent by layer n at the source.

The layering principle explains why layering is such a powerful idea. It allows the
protocol designer to focus attention on one layer at a time, without worrying about how
lower layers perform. For example, when building a file transfer application, the
designer thinks only of two copies of the application program executing on two
machines and concentrates on the messages they need to exchange for file transfer. The
designer assumes that the application on one host receives exactly what the application
on the other host sends.

Figure 11.6 illustrates how the layering principle works:

Host A

Application

Transport

Internet

Network
Interface

identical

message

identical

packet

identical

datagram

identical

frame

Physical Net

Host B

Application

Transport

Internet

Network
Interface

Figure 11.6 The path of a message as it passes from an application on one
host to an application on another. Layer n on host B receives
exactly the same object that layer n on host A sent.

64

170 Protocol Layering Chap. 11

11.7.1 Layering in a TCP/IP Internet Environment

Our statement of the layering principle is somewhat vague, and the illustration in
Figure 11.6 skims over an important issue because it fails to distinguish between
transfers from source to ultimate destination and transfers across multiple networks.
Figure 11.7 illustrates the distinction, showing the path of a message sent from an appli­
cation program on one host to an application on another through a router.

As the figure shows, message delivery uses two separate network frames, one for
the transmission from host A to router R, and another from router R to host B. The net­
work layering principle states that the frame delivered to R is identical to the frame sent
by host A. By contrast, the application and transport layers deal with end-to-end issues
and are designed so the software at the source communicates with its peer at the ulti­
mate destination. Thus, the layering principle states that the packet received by the
transport layer at the ultimate destination is identical to the packet sent by the transport
layer at the original source.

Host A

Application

--
Transport

Internet

- - -

Network
Interface

--

- -

--

-- --

identical
datagram

identical

frame

Physical Net 1

identical

message

identical

packet

Router R

Internet

Network
Interface

Host B

--- -- Application
-- -- --

-- -- Transport
-- -- -~

Internet
identical

datagram --- - -
Network

identical Interface

frame

Physical Net 2

Figure 11.7 The layering principle when a router is used. The frame
delivered to router R is exactly the frame sent from host A, but
differs from the frame sent between Rand B.

65

Sec. 11.7 The Protocol Layering Principle 171

It is easy to understand that in higher layers, the layering principle applies across
end-to-end transfers, and that at the lowest layer it applies to a single machine transfer.
It is not as easy to see how the layering principle applies to the Internet layer. On one
hand, we have said that hosts attached to an internet should view it as a large, virtual
network, with the IP datagram taking the place of a network frame. In this view, da­
tagrams travel from original source to ultimate destination, and the layering principle
guarantees that the ultimate destination receives exactly the datagram that the original
source sent. On the other hand, we know that the datagram header contains fields, like
a time to live counter, that change each time the datagram passes through a router.
Thus, the ultimate destination will not receive exactly the same datagram as the source
sent. We conclude that although most of the datagram stays intact as it passes across an
internet, the layering principle only applies to datagrams across single machine
transfers. To be accurate, we should not view the Internet layer as providing end-to-end
service.

11.8 Layering In The Presence Of Network Substructure

Recall from Chapter 2 that some wide area networks contain multiple packet
switches. For example, a WAN can consist of routers that connect to a local network at
each site as well as to other routers using leased serial lines. When a router receives a
datagram, it either delivers the datagram to its destination on the local network, or
transfers the datagram across a serial line to another router. The question arises: " How
do the protocols used on serial lines fit into the TCP/IP layering scheme?" The answer
depends on how the designer views the serial line interconnections.

From the perspective of IP, the set of point-to-point connections among routers can
either function like a set of independent physical networks, or they can function collec­
tively like a single physical network. In the first case, each physical link is treated ex­
actly like any other network in the internet. It is assigned a unique (usually class C)
network number, and the two hosts that share the link each have a unique IP address as­
signed for their connection. Routes are added to the IP routing table as they would be
for any other network. A new software module is added at the network interface layer
to control the new link hardware, but no substantial changes are made to the layering
scheme. The main disadvantage of the independent network approach is that it proli­
ferates network numbers (one for each connection between two machines), causing rout­
ing tables to be larger than necessary. Both Serial Line IP (SLIP) and the Point to
Point Protocol (PPP) treat each serial link as a separate network.

The second approach to accommodating point-to-point connections avoids assign­
ing multiple IP addresses to the physical wires. Instead, it treats all the connections col­
lectively as a single, independent IP network with its own frame format, hardware ad­
dressing scheme, and data link protocols. Routers that use the second approach need
only one IP network number for all point-to-point connections.

66

172 Protocol Layering Chap. 11

Using the single network approach means extending the protocol layering scheme

to add a new intranetwork routing layer between the network interface layer and the

hardware devices. For machines with only one point-to-point connection, an additional

layer seems unnecessary. To see why it is needed, consider a machine with several

physical point-to-point connections, and recall from Figure 11.2 how the network inter­

face layer is divided into multiple software modules that each control one network. We

need to add one new network interface for the new point-to-point network, but the new

interface must control multiple hardware devices. Furthermore, given a datagram to

send, the new interface must choose the correct link over which the datagram should be

sent. Figure 11.8 shows the organization.
The Internet layer software passes to the network interface all datagrams that

should be sent out on any of the point-to-point connections. The interface passes them

to the intranet routing module that must further distinguish among multiple physical

connections and route the datagram across the correct one.

The programmer who designs the intranet routing software determines exactly how

the software chooses a physical link. Usually, the algorithm relies on an intranet rout­

ing table. The intranet routing table is analogous to the internet routing table in that it

specifies a mapping of destination address to route. The table contains pairs of entries,

(D, L), where D is a destination host address and L specifies one of the physical lines

used to reach that destination.

Conceptual Layer

Transport

Internet

Network
Interface

Intranet

(a)

Software Organization

Protocol 2

IP Module

Interface 2

Point-To-Point
(Intranet)

(b)

Figure 11.8 (a) conceptual position of an intranet protocol for point-to-point

connections when IP treats them as a single IP network, and (b)

detailed diagram of corresponding software modules. Each ar­

row corresponds to one physical device.

67

Sec. 11.8 Layering In The Presence Of Network Substructure 173

The difference between an internet routing table and an intranet routing table is
that intranet routing tables are quite small. They only contain routing information for
hosts directly attached to the point-to-point network. The reason is simple: the Internet
layer maps ah arbitrary destination address to a specific router address before passing
the datagram to a network interface. Thus, the intranet layer is asked only to distin­
guish among machines on a single point-to-point network.

11.9 Two Important Boundaries In The TCP/IP Model

The conceptual protocol layering includes two boundaries that may not be obvious:
a protocol address boundary that separates high-level and low-level addressing, and an
operating system boundary that separates the system from application programs.

11.9.1 High-Level Protocol Address Boundary

Now that we have seen the layering of TCP/IP software, we can be precise about
an idea introduced in Chapter 8: a conceptual boundary partitions software that uses
low-level (physical) addresses from software that uses high-level (IP) addresses. As
Figure 11.9 shows, the boundary occurs between the network interface layer and the In­
ternet layer. That is,

Application programs as well as all protocol software from the Inter­
net layer upward use only IP addresses; the network interface layer
handles physical addresses.

Thus, protocols like ARP belong in the network interface layer. They are not part of IP.

Conceptual Layer Boundary

Application
Software outside the operating system

-----1----------------- ---------- ---------
Transport Software inside the operating system

Internet
Only IP addresses used

---Network
Interface

Hardware

Physical addresses used

Figure 11.9 The relationship between conceptual layering and the boundaries
for operating system and high-level protocol addresses.

68

174 Protocol Layering Chap. 11

11.9.2 Operating System Boundary

Figure 11.9 shows another important boundary as well, the division between
software that is generally considered part of the operating system and software that is
not. While each implementation of TCP/IP chooses how to make the distinction, many
follow the scheme shown. Because they lie inside the operating system, passing data
between lower layers of protocol software is much less expensive than passing it
between an application program and a transport layer. Chapter 20 discusses the prob­
lem in more detail and describes an example of the interface an operating system might
provide.

11.1 O The Disadvantage Of Layering

We have said that layering is a fundamental idea that provides the basis for proto­
col design. It allows the designer to divide a complicated problem into subproblems
and solve each one independently. Unfortunately, the software that results from strict
layering can be extremely inefficient. As an example, consider the job of the transport
layer. It must accept a stream of bytes from an application program, divide the stream
into packets, and send each packet across the internet. To optimize transfer, the tran­
sport layer should choose the largest possible packet size that will allow one packet to
travel in one network frame. In particular, if the destination machine attaches directly
to one of the same networks as the source, only one physical net will be involved in the
transfer, so the sender can optimize packet size for that network. If the software
preserves strict layering, however, the transport layer cannot know how the Internet
module will route traffic or which networks attach directly. Furthermore, the transport
layer will not understand the datagram or frame formats nor will it be able to determine
how many octets of header will be added to a packet. Thus, strict layering will prevent
the transport layer from optimizing transfers.

Usually, implementors relax the strict layering scheme when building protocol
software. They allow information like route selection and network MTU to propagate
upward. When allocating buffers, they often leave space for headers that will be added
by lower layer protocols and may retain headers on incoming frames when passing them
to higher layer protocols. Such optimizations can make dramatic improvements in effi­
ciency while retaining the basic layered structure.

11.11 The Basic Idea Behind Multiplexing And Demultiplexing

Communication protocols uses techniques of multiplexing and demultiplexing
throughout the layered hierarchy. When sending a message, the source computer in­
cludes extra bits that encode the message type, originating program, and protocols used.

69

Sec. 11.11 The Basic Idea Behind Multiplexing And Demultiplexing 175

Eventually, all messages are placed into network frames for transfer and combined into
a stream of packets. At the receiving end, the destination machine uses the extra infor­
mation to guide processing.

Consider an example of demultiplexing shown in Figure 11.10.

IP Module ARP Module

Demultiplexing Based

On Frame Type

Frame Arrives

RARP Module

Figure 11.10 Demultiplexing of incoming frames based on the type field­
found in the frame header.

The figure illustrates how software in the network interface layer uses the frame type to
choose a procedure that handles the incoming frame. We say that the network interface
demultiplexes the frame based on its type. To make such a choice possible, software in
the source machine must set the frame type field before transmission. Thus, each
software module that sends frames uses the type field to specify frame contents.

Multiplexing and demultiplexing occur at almost every protocol layer. For exam­
ple, after the network interface demultiplexes frames and passes those frames that con­
tain IP datagrams to the IP module, the IP software extracts the datagram and demulti­
plexes further based on the transport protocol. Figure 11.11 demonstrates demultiplex­
ing at the Internet layer.

70

176 Protocol Layering Chap. 11

ICMP Protocol UDP Protocol TCP Protocol EGP Protocol

IP Module

Datagram Arrives

Figure 11.11 Demultiplexing at the Internet layer. IP software chooses an ap­
propriate procedure to handle a datagram based on the protocol
type field in the datagram header.

To decide how to handle a datagram, internet software examines the header of a da­
tagram and selects a protocol handler based on the datagram type. In the example, the
possible datagram types are: ICMP, which we have already examined, and UDP, TCP,
and EGP, which we will examine in later chapters.

11.12 Summary

Protocols are the standards that specify how data is represented when being
transferred from one machine to another. Protocols specify how the transfer occurs,
how errors are detected, and how acknowledgements are passed. To simplify protocol
design and implementation, communication problems are segregated into subproblems
that can be solved independently. Each subproblem is assigned a separate protocol.

The idea of layering is fundamental because it provides a conceptual framework
for protocol design. In a layered model, each layer handles one part of the communica­
tion problem and usually corresponds to one protocol. Protocols follow the layering
principle, which states that the software implementing layer n on the destination
machine receives exactly what the software implementing layer n on the source machine
sends.

We examined the 4-layer Internet reference model as well as the ISO 7-layer refer­
ence model. In both cases, the layering model provides only a conceptual framework
for protocol software. The ITU-TS X.25 protocols follow the ISO reference model and
provide an example of reliable communication service offered by a commercial utility,
while the TCP/IP protocols provide an example of a different layering scheme.

71

Sec. I 1.12 Summary 177

In practice, protocol software uses multiplexing and demultiplexing to distinguish
among multiple protocols within a given layer, making protocol software more complex
than the layering model suggests.

FOR FURTHER STUDY

Postel [RFC 791] provides a sketch of the Internet Protocol layering scheme, and
Clark [RFC 817) discusses the effect of layering on implementations. Saltzer, Reed,
and Clark [1984] argues that end-to-end verification is important. Chesson [1987)
makes the controversial argument that layering produces intolerably bad network
throughput. Volume 2 of this text examines layering in detail, and shows an example
implementation that achieves efficiency by compromising strict layering and passing
pointers between layers.

The ISO protocol documents [1987a] and [1987b] describe ASN.1 in detail. Sun
[RFC 1014) describes XDR, an example of what might be called a TCP/IP presentation
protocol. Clark discusses passing information upward through layers [Clark 1985).

EXERCISES

11.1 Study the ISO layering model in more detail. How well does the model describe com­
munication on a local area network like an Ethernet?

11.2 Build a case that TCP/IP is moving toward a five-level protocol architecture that in­
cludes a presentation layer. (Hint: various programs use the XDR protocol, Courier, and
ASN.l.)

11.3 Do you think any single presentation protocol will eventually emerge that replaces all
others? Why or why not?

11.4 Compare and contrast the tagged data format used by the ASN.l presentation scheme
with the untagged format used by XDR. Characterize situations in which one is better
than the other.

11.5 Find out how UNIX systems uses the mbuf structure to make layered protocol software
efficient.

11.6 Read about the System V UNIX streams mechanism. How does it help make protocol
implementation easier? What is its chief disadvantage?

