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2 

Review Of Underlying 
Network Technologies 

2.1 Introduction 

It is important to understand that the Internet is not a new kind of physical net­
work. It is, instead, a method of interconnecting physical networks and a set of conven­
tions for using networks that allow the computers they reach to interact. While network 
hardware plays only a minor role in the overall design, understanding the internet tech­
nology requires one to distinguish between the low-level mechanisms provided by the 
hardware itself and the higher-level facilities that the TCP/IP protocol software pro­
vides. It is also important to understand how the facilities supplied by packet-switched 
technology affect our choice of high-level abstractions. 

This chapter introduces basic packet-switching concepts and terminology, and then 
reviews some of the underlying network hardware technologies that have been used in 
TCP/IP internets. Later chapters describe how these networks are interconnected and 
how the TCP/IP protocols accommodate vast differences in the hardware. While the list 
presented here is certainly not comprehensive, it clearly demonstrates the variety among 
physical networks over which TCP/IP operates. The reader can safely skip many of the 
technical details, but should try to grasp the idea of packet switching and try to imagine 
building a homogeneous communication system using such heterogeneous hardware. 
Most important, the reader should look closely at the details of the physical address 
schemes the various technologies use; later chapters will discuss in detail how high­
level protocols use physical addresses. 

17 
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18 Review Of Underlying Network Technologies Chap. 2 

2.2 Two Approaches To Network Communication 

Whether they provide connections between one computer and another or between 

terminals and computers, communication networks can be divided into two basic types: 

circuit-switched (sometimes called connection oriented) and packet-switchedt (some­

times called connectionless). Circuit-switched networks operate by forming a dedicated 

connection (circuit) between two points. The U.S. telephone system uses circuit switch­

ing technology - a telephone call establishes a circuit from the originating phone 

through the local switching office, across trunk lines, to a remote switching office, and 

finally to the destination telephone. While a circuit is in place, the phone equipment 

samples the microphone repeatedly, encodes the samples digitally, and transmits them 

across the circuit to the receiver. The sender is guaranteed that the samples can be 

delivered and reproduced because the circuit provides a guaranteed data path of 64 

Kbps (thousand bits per second), the rate needed to send digitized voice. The advantage 

of circuit switching lies in its guaranteed capacity: once a circuit is established, no other 

network activity will decrease the capacity of the circuit. One disadvantage of circuit 

switching is cost: circuit costs are fixed, independent of traffic. For example, one pays 

a fixed rate for a phone call, even when the two parties do not talk. 

Packet-switched networks, the type usually used to connect computers, take an en­

tirely different approach. In a packet-switched network, data to be transferred across a 

network is divided into small pieces called packets that are multiplexed onto high capa­

city intermachine connections. A packet, which usually contains only a few hundred 

bytes of data, carries identification that enables the network hardware to know how to 

send it to the specified destination. For example, a large file to be transmitted between 

two machines must be broken into many packets that are sent across the network one at 

a time. The network hardware delivers the packets to the specified destination, where 

software reassembles them into a single file again. The chief advantage of packet­

switching is that multiple communications among computers can proceed concurrently, 

with intermachine connections shared by all pairs of machines that are communicating. 

The disadvantage, of course, is that as activity increases, a given pair of communicating 

computers receives less of the network capacity. That is, whenever a packet switched 

network becomes overloaded, computers using the network must wait before they can 

send additional packets. 
Despite the potential drawback of not being able to guarantee network capacity, 

packet-switched networks have become extremely popular. The motivations for adopt­

ing packet switching are cost and performance. Because multiple machines can share 

the network hardware, fewer connections are required and cost is kept low. Because en­

gineers have been able to build high speed network hardware, capacity is not usually a 

problem. So many computer interconnections use packet-switching that, throughout the 

remainder of this text, the term network will refer only to packet-switched networks. 

tin fact, it is possible to build hybrid hardware technologies; for our purposes, only the difference in 

functionality is important. 
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Sec. 2.3 Wide Area And Local Area Networks 19 

2.3 Wide Area And Local Area Networks 

Packet~switched networks that span large geographical distances (e.g., the con­
tinental U.S.) are fundamentally different from those that span short distances (e.g., a 
single room). To help characterize the differences in capacity and intended use, packet 
switched technologies are often divided into two broad categories: wide area networks 
(WANs) and Local Area Networks (LANs). The two categories do not have formal de­
finitions. Instead, vendors appl_y the terms loosely to help customers distinguish among 
technologies. 

WAN technologies, sometimes called long haul networks, provide communication 
over large distances. Most WAN technologies do not limit the distance spanned; a 
WAN can allow the endpoints of a communication to be arbitrarily far apart. For ex­
ample, a WAN can span a continent or can join computers across an ocean. Usually, 
W ANs operate at slower speeds than LANs, and have much greater delay between con­
nections. Typical speeds for a WAN range from 56 Kbps to 155 Mbps (million bits per 
second). Delays across a WAN can vary from a few milliseconds to several tenths of a 
secondt 

LAN technologies provide the highest speed connections among computers, but sa­
crifice the ability to span large distances. For example, a typical LAN spans a small 
area like a single building or a small campus and operates between 10 Mbps and 2 
Gbps (billion bits per second). Because LAN technologies cover short distances, they 
offer lower delays than W ANs. The delay across a LAN can be as short as a few tenths 
of a millisecond, or as long as 10 milliseconds. 

We have already mentioned the general tradeoff between speed and distance: tech­
nologies that provide higher speed communication operate over shorter distances. There 
are other differences among technologies in the categories as well. In LAN technolo­
gies, each computer usually contains a network interface device that connects the 
machine directly to the network medium (e.g., a copper wire or coaxial cable). Often, 
the network itself is passive, depending on electronic devices in the attached computers 
to generate and receive the necessary electrical signals. In WAN technologies, a net­
work usually consists of a series of complex computers called packet switches intercon­
nected by communication lines and modems. The size of the network can be extended 
by adding a new switch and another communication line. Attaching a user's computer 
to a WAN means connecting it to one of the packet switches. Each switch along a path 
in the WAN introduces a delay when it receives a packet and forwards it to the next 
switch. Thus, the larger the WAN becomes the longer it takes to route traffic across it. 

This book discusses software that hides the technological differences between net­
works and makes interconnection independent of the underlying hardware. To appreci­
ate design choices in the software, it is necessary to understand how it relates to net­
work hardware. The next sections present examples of network technologies that have 
been used in the Internet, showing some of the differences among them. Later chapters 
show how the TCP/IP software isolates such differences and makes the communication 
system independent of the underlying hardware technology. 

tSuch long delays result from W ANs that communicate by sending signals to a satellite orbiting the 
earth. 
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2.3.1 Network Hardware Addresses 

Each network hardware technology defines an addressing mechanism that comput­

ers use to specify the destination for each packet. Every computer attached to a net­

work is assigned a unique address, usually an integer. A packet sent across a network 

includes a destination address field that contains the address of the intended recipient. 

The destination address appears in the same location in all packets, making it possible 

for the network hardware to examine the destination address easily. A sender must 

know the address of the intended recipient, and must place the recipient's address in the 

destination address field of a packet before transmitting the packet. 

Each hardware technology specifies how computers are assigned addresses. The 

hardware specifies, for example, the number of bits in the address as well as the loca­

tion of the destination address field in a packet. Although some technologies use com­

patible addressing schemes, many do not. This chapter contains a few examples of 

hardware addressing schemes; later chapters explain how TCP/IP accommodates diverse 

hardware addressing schemes. 

2.4 Ethernet Technology 

Ethernet is the name given to a popular packet-switched LAN technology invented 

at Xerox PARC in the early 1970s. Xerox Corporation, Intel Corporation, and Digital 

Equipment Corporation standardized Ethernet in 1978; IEEE released a compatible ver­

sion of the standard using the number 802.3. Ethernet has become a popular LAN tech­

nology; most medium or large corporations use Ethernets. Because Ethernet is so popu­

lar, many variants exist; we will discuss the original design first and then .cover variants. 

1/2 INCH 

OUTER INSULATING JACKET 

BRAIDED METAL SHIELD 

POLYETHYLENE FILLER 

CENTER WIRE 

Figure 2.1 A cross-section of the coaxial cable used in the original Ethernet. 

Each Ethernet cable is about 1/2 inch in diameter and up to 500 meters long. A resistor 

is added between the center wire and shield at each end to prevent reflection of electri­

cal signals. 
The original Ethernet design used a coaxial cable as Figure 2.1 illustrates. Called 

the ether, the cable itself is completely passive; all the active electronic components that 

make the network function are associated with computers that are attached to the net­

work. 
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The connection between a computer and a coaxial Ethernet cable requires a 
hardware device called a transceiver. Physically, the connection between a transceiver 
and the Ethernet requires a small hole in the outer layers of the cable as Figure 2.2 il­
lustrates. Technicians often use the term tap to describe the connection between an Eth­
ernet transceiver and the cable. Usually, small metal pins mounted in the transceiver go 
through the hole and provide electrical contacts to the center wire and the braided 
shield. Some manufacturers' connectors require that the cable be cut and a "T" insert­
ed. 

CENTER WIRE ---------.. 

MET AL SHIELD _______.. 

(A) 

(B) 
TRANSCEIVER 

TO HOST 
INTERFAC 

' 

Figure 2.2 (a) A cutaway view of an Ethernet cable showing the details of 
electrical connections between a transceiver and the cable, and (b) 
the schematic diagram of an Ethernet with many computers con­
nected. 

E 

Each connection to an Ethernet has two major electronic components. A tran­
sceiver connects to the center wire and braided shield on the cable, sensing and sending 
signals on the ether. A host inte1face or host adapter plugs into the computer's bus 
(e.g., on a motherboard) and connects to the transceiver. 

A transceiver is a , small piece of hardware usually found physically adjacent to the 
ether. In addition to the analog hardware that senses and controls electrical signals on 
the ether, a transceiver contains digital circuitry that allows it to communicate with a di­
gital computer. The transceiver can sense when the ether is in use and can translate 
analog electrical signals on the ether to (and from) digital form. A cable called the At­
tachment Unit Interface (AUi) cable connects the transceiver to an adapter board in a 
host computer. Informally called a transceiver cable, the AUi cable contains many 
wires. The wires carry the electrical power needed to operate the transceiver, the sig-



23

22 Review Of Underlying Network Technologies Chap. 2 

nals that control the transceiver operation, and the contents of the packets being sent or 
received. Figure 2 .. 3 illustrates how the components form a connection between a bus 
in a computer system and an Ethernet cable. 

ETHERNET 

.,_ __ TRANSCEIVER 

AUi CABLE 

BUS IN A COMPUTER 

Figure 2.3 The two main electronic components that form a connection 
between a computer' s bus and an Ethernet. The AUI cable that 
connects the host interface to the transceiver carries power and 
signals to control transceiver operation . as well as packets being 
transmitted or received. 

Each host interface controls the operation of one transceiver according to instruc­
tions it receives from the computer software. To the operating system software, the in­
terface appears to be an input/output device that accepts basic data transfer instructions 
from the computer, controls the transceiver to carry them out, interrupts when the task 
has been completed, and reports status information. Although the transceiver is a sim­
ple hardware device, the host interface can be complex (e.g., it may contain a micropro­
cessor used to control transfers between the computer memory and the ether). 

In practice, organizations that use the original Ethernet in a conventional office en­
vironment run the Ethernet cable along the ceiling in each hall, and arrange for a con­
nection from each office to attach to the cable. Figure 2.4 illustrates the resulting physi­
cal wiring scheme. 
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ETHERNET CABLE (USUALL V IN CEILING) 

i TRANSCEIVERS 

AUi CABLE 

COMPUTER A COMPUTER B 

Figure 2.4 The physical connection of two computers to an Ethernet using the 
original wiring scheme. In an office environment, the Ethernet 
cable is usually placed in the hallway ceiling; each office has an 
AUi cable that connects a computer in the office to a transceiver 
attached to the Ethernet cable. 

2.4.1 Thin-Wire Ethernet 

23 

Several components of the original Ethernet technology have undesirable proper­
ties. For example because a transceiver contains electronic components, it has a non­
trivial cost. Furthermore, because transceivers are located with the cable and not with 
computers, they can be difficult to access or replace. The coaxial cable that forms the 
ether can also be difficult to install. In particular, to provide maximum protection 
against electrical interference from devices like electric motors, the cable contains heavy 
shielding that makes it difficult to bend. Finally, an AUi cable is also thick and diffi­
cult to bend. 
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To reduce costs for environments like offices that do not contain much electrical 
interference, engineers developed an alternative Ethernet wiring scheme. Called thin­
wire Ethernet or thinnett, the alternative coaxial cable is thinner, less expensive, and 
more flexible. However, a thin-wire Ethernet has some disadvantages. Because it does 
not provide as much protection from electrical interference, thin-wire Ethernet cannot be 
placed adjacent to powerful electrical equipment like that found in a factory. Further­
more, thin-wire Ethernet covers somewhat shorter distances and supports fewer comput­
er connections per network than thick Ethernet. 

To further reduce costs with thin-wire Ethernet, engineers replaced the costly tran­
sceiver with special high-speed digital circuits, and provided a direct connection from a 
computer to the ether. Thus, in a thin-wire scheme, a computer contains both the host 
interface and the circuitry that connects to the cable. Manufacturers of small computers 
and workstations find thin-wire Ethernet an especially attractive scheme because they 
can integrate Ethernet hardware into single board computers and mount connectors 
directly on the back of the computer. 

Because a thin-wire Ethernet connects directly from one computer to another, the 
wiring scheme works well when many computers occupy a single room. The thin-wire 
cable runs directly from one computer to the next. To add a new computer, one only 
needs to link it into the chain. Figure 2.5 illustrates the connections used with thin-wire 
Ethernet. 

THINNET CABLE 

COMPUTER A COMPUTER B 

Figure 2.5 The physical connection of two computers using the thinnet wiring 
scheme. The ether passes directly from one computer to another; 
no external transceiver hardware is required. 

Thin-wire Ethernets are designed to be easy to connect and disconnect. Thin-wire 
uses BNC connectors, which do not require tools to attach a computer to the cable. 
Thus, a user can connect a computer to a thin-wire Ethernet without the aid of a techni­
cian. Of course, allowing users to manipulate the ether has disadvantages: if a user 
disconnects the ether, it prevents all machines on the ether from communicating. In 
many situations, however, the advantages outweigh the disadvantages. 

t To contrast it with thin-wire, the original Ethernet cable is sometimes called thick Ethernet, or thicknet. 
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2.4.2 Twisted Pair Ethernet 

Advances in technology have made it possible to build Ethernets that do not need 
the electrical shielding of a coaxial cable. Called twisted pair Ethernet, the technology 
allows a computer to access an Ethernet using a pair of conventional unshielded copper 
wires similar to the wires used to connect telephones. The advantages of using twisted 
pair wiring are that it further reduces costs and protects other computers on the network 
from a user who disconnects a single computer. In some cases, a twisted pair technolo­
gy can make it possible for an organization to use Ethernet over existing telephone wir­
ing without adding new cables. 

Known by the technical name 1 OBase-T, the twisted pair wiring scheme connects 
each computer to an Ethernet hub as Figure 2.6 shows. 

HUB 

TWISTED PAIR CONNECTIONS TO HUB 

COMPUTER A COMPUTER B 

Figure 2.6 An illustration of Ethernet using twisted pair wiring. Each com­
puter connects to a hub over a conventional pair of wires. 

The hub is an electronic device that simulates the signals on an Ethernet cable. 
Physically, a hub consists of a small box that usually resides in a wiring closet; a con­
nection between a hub and a computer must be less than 100 meters long. A hub re­
quires power, and can allow authorized personnel to monitor and control its operation 
over the network. To the host interface in a computer, a connection to a hub appears to 
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operate the same way as a connection to a transceiver. That is, an Ethernet hub pro­

vides the same communication capability as a thick or thin Ethernet; hubs merely offer 

an alternative wiring scheme. 

2.4.3 Adapters And Multiple Wiring Schemes 

A connection to thick Ethernet requires an AUi connector, a connection to thin­

wire Ethernet requires a BNC connector, and a connection to lOBase-T requires an 

RJ45 connector that resembles the modular connectors used with telephones. Many 

Ethernet products allow each customer to choose a wiring scheme. For example, 

adapter boards for personal computers often come with three connectors as Figure 2.7 

illustrates. Although only one connector can be used at any time, a computer that has 

such an adapter can be moved from one wiring scheme to another easily. 

• RJ45 connector 
~ 

for 1 OBase-T 

AUi connector 
~ 

for Thicknet 

BNC connector 
~ 

for Thinnet 

Figure 2. 7 A typical Ethernet adapter card with three connectors for the three 

Ethernet wiring schemes. Although the adapter contains three 

connectors, it can only use one wiring scheme at any time. 

2.4.4 Properties of an Ethernet 

The Ethernet is a 10 Mbps broadcast bus technology with best-effort delivery se­

mantics and distributed access control. It is a bus because all stations share a single 

communication channel; it is broadcast because all transceivers receive every transmis­

sion. The method used to direct packets from one station to just one other station or a 

subset of all stations will be discussed later. For now, it is enough to understand that 
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transceivers do not distinguish among transmissions - a transceiver passes all packets 
from the cable to the ho.st interface, which chooses packets the computer should receive 
and filters out all others. Ethernet is called a best-effort delivery mechanism because 
the hardware provides no information to the sender about whether the packet was 
delivered. For example, if the destination machine happens to be powered down, pack­
ets sent to it will be lost, and the sender will not be notified. We will see later how the 
TCP/IP protocols accommodate best-effort delivery hardware. 

Ethernet access control is distributed because, unlike some network technologies, 
Ethernet has no central authority to grant access. The Ethernet access scheme is called 
Carrier Sense Multiple Access with Collision Detect (CSMA/CD). It is CSMA because 
multiple machines can access the Ethernet simultaneously and each machine determines 
whether the ether is idle by sensing whether a carrier wave is present. When a host in­
terface has a packet to transmit, it listens to the ether to see if a message is being 
transmitted (i.e., performs carrier sensing). When no transmission is sensed, the host in­
terface starts transmitting. Each transmission is limited in duration (because there is a 
maximum packet size). Furthermore, the hardware must observe a minimum idle time 
between transmissions, which means that no single pair of communicating machines can 
use the network without giving other machines an opportunity for access. 

2.4.5 Collision Detection And Recovery 

When a transceiver begins transmission, the signal does not reach all parts of the 
network simultaneously. Instead it travels along the cable at approximately 80% of the 
speed of light. Thus, it is possible for two transceivers to both sense that the network is 
idle and begin transmission simultaneously. When the two electrical signals cross they 
become scrambled, such that neither is meaningful. Such incidents are called collisions. 

The Ethernet handles collisions in an ingenious fashion. Each transceiver monitors 
the cable while it is transmitting to see if a foreign signal interferes with its transmis­
sion. Technically, the monitoring is called collision detect (CD), making the Ethernet a 
CSMA/CD network. When a collision is detected, the host interface aborts transmis­
sion, waits for activity to subside, and tries again. Care must be taken or the network 
could wind up with all transceivers busily attempting to transmit and every transmission 
producing a collision. To help avoid such situations, Ethernet uses a binary exponential 
backoff policy where a sender delays a random time after the first collision, twice as 
long if a second attempt to transmit also produces a collision, four times as long if a 
third attempt results in a collision, and so on. The motivation for exponential backoff is 
that in the unlikely event many stations attempt to transmit simultaneously, a severe 
traffic jam could occur. In such a jam, there is a high probability two stations will 
choose random backoffs that are close together. Thus, the probability of another colli­
sion is high. By doubling the random delay, the exponential backoff strategy quickly 
spreads the stations' attempts to retransmit over a reasonably long period of time, mak­
ing the probability of further collisions extremely small. 
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2.4.6 Ethernet Capacity 

The standard Ethernet is rated at 10 Mbps, which means that data can be transmit­
ted onto the cable at 10 million bits per second. Although a computer can generate data 
at Ethernet speed, raw network speed should not be thought of as the rate at which two 
computers can exchange data. Instead, network speed should be thought of as a meas­
ure of network total traffic capacity. Think of a network as a highway connecting mul­
tiple cities, and think of packets as cars on the highway. High bandwidth makes it pos­
sible to carry heavy traffic loads, while low bandwidth means the highway cannot carry 
as much traffic. A 10 Mbps Ethernet, for example, can handle a few computers that 
generate heavy loads, or many computers that generate light loads. 

2.4.7 Ethernet Hardware Addresses 

Ethernet defines a 48-bit addressing scheme. Each computer attached to an Ether­
net network is assigned a unique 48-bit number known as its Ethernet address. To as­
sign an address, Ethernet hardware manufacturers purchase blocks of Ethernet ad­
dressest and assign them in sequence as they manufacture Ethernet interface hardware. 
Thus, no two hardware interfaces have the same Ethernet address. 

Usually, the Ethernet address is fixed in machine readable form on the host inter­
face hardware. Because Ethernet addresses belong to hardware devices, they are some­
times called hardware addresses or physical addresses. Note the following important 
property of Ethernet physical addresses: 

Physical addresses are associated with the Ethernet interface 
hardware; moving the hardware interface to a new machine or re­
placing a hardware interface that has failed changes the machine's 
physical address. 

Knowing that Ethernet physical addresses can change will make it clear why higher lev­
els of the network software are designed to accommodate such changes. 

The host interface hardware examines packets and determines the packets that 
should be sent to the host. Recall that each interface receives a copy of every packet -
even those addressed to other machines. The host interface uses the destination address 
field in a packet as a filter. The interface ignores those packets that are addressed to 
other machines, and passes to the host only those packets addressed to it. The address­
ing mechanism and hardware filter are needed to prevent a computer from being 
overwhelmed with incoming data. Although the computer's central processor could 
perform the check, doing so in the host interface keeps traffic on the Ethernet from 
slowing down processing on all computers. 

A 48-bit Ethernet address can do more than specify a single destination computer. 
An address can be one of three types: 

tThe Institute for Electrical and Electronic Engineers (IEEE) manages the Ethernet address space and as­
signs addresses as needed. 



30

Sec. 2.4 Ethernet Technology 29 

• The physical address of one network interface (a unicast address) 
• The network broadcast address 
• A multicast address 

By convention, the broadcast address (all ls) is reserved for sending to all stations 
simultaneously. Multicast addresses provide a limited form of broadcast in which a 
subset of the computers on a network agree to listen to a given multicast address. The 
set of participating computers is called a multicast group. To join a multicast group, a 
computer must instruct its host interface to accept the group's multicast address. The 
advantage of multicasting lies in the ability to limit broadcasts: every computer in a 
multicast group can be reached with a single packet transmission, but computers that 
choose not to participate in. a particular multicast group do not receive packets sent to 
the group. 

To accommodate broadcast and multicast addressing, Ethernet interface hardware 
must recognize more than its physical address. A host interface usually accepts at least 
two kinds of packets: those addressed to the interface's physical (i.e., unicast) address 
and those addressed to the network broadcast address. Some interfaces can be pro­
grammed to recognize multicast addresses or even alternate physical addresses. When 
the operating system starts, it initializes the Ethernet interface, giving it a set of ad­
dresses to recognize. The interface then examines the destination address field in each 
packet, passing on to the host only those transmissions designated for one of the speci­
fied addresses. 

2.4.8 Ethernet Frame Format 

The Ethernet should be thought of as a link-level connection among machines. 
Thus, it makes sense to view the data transmitted as a framet. Ethernet frames are of 
variable length, with no frame smaller than 64 octets:j: or larger than 1518 octets 
(header, data, and CRC). As in all packet-switched networks, each Ethernet frame con­
tains a field that contains the address of its destination. Figure 2.8 shows that the Ether­
net frame format contains the physical source address as well as the destination address. 

Destination Source Frame 
Preamble Address Address Type Frame Data CRC 
8 octets 6 octets 6 octets 2 octets 64-1500 octets 4 octets 

Figure 2.8 The format of a frame (packet) as it travels across an Ethernet pre­
ceded by a preamble. Fields are not drawn to scale. 

In addition to identifying the source and destination, each frame transmitted across 
the Ethernet contains a preamble, type field, data field, and Cyclic Redundancy Check 
(CRC). The preamble consists of 64 bits of alternating Os and Is to help receiving 

t The term frame derives from communication over serial lines in which the sender "frames" the data by 
adding special characters before and after the transmitted data. 

tTechnically, the term byte refers to a hardware-dependent character size; networking professionals use 
the term octet, because it refers to an 8-bit quantity on all computers. 



31

30 Review Of Underlying Network Technologies Chap. 2 

nodes synchronize. The 32-bit CRC helps the interface detect transmission errors: the 
sender computes the CRC as a function of the data in the frame, and the receiver 
recomputes the CRC to verify that the packet has been received intact. 

The frame type field contains a 16-bit integer that identifies the type of the data be­
ing carried in the frame. From the Internet point of view, the frame type field is essen­
tial because it means Ethernet frames are self-identifying. When a frame arrives at a 
given machine, the operating system uses the frame type to determine which protocol 
software module should process the frame. The chief advantages of self-identifying 
frames are that they allow multiple protocols to be used together on a single machine 
and they allow multiple protocols to be intermixed on the same physical network 
without interference. For example, one could have an application program using Inter­
net protocols while another used a local experimental protocol. The operating system 
uses the type field of an arriving frame to decide how to process the contents. We will 
see that the TCP/IP protocols use self-identifying Ethernet frames to distinguish among 
several protocols. 

2.4.9 Extending An Ethernet With Repeaters 

Although an Ethernet cable has a maximum length, the network can be extended in 
two ways: using repeaters and bridges. A hardware device called a repeater can be 
used to relay electrical signals from one cable to another. However, at most two re­
peaters can be placed between any two machines, so the total length of a single Ethernet 
is still rather short (three segments of 500 meters each). Figure 2.9 shows a typical use 
of repeaters in an office building. A single cable runs vertically up the building, and a 
repeater attaches the backbone to an additional cable on each floor. Computers attach 
to the cables on each floor. 

2.4.10 Extending An Ethernet With Bridges 

Bridges are superior to repeaters because they do not replicate noise, errors, or 
malformed frames; a completely valid frame must be received before the bridge will ac­
cept and transmit it on the other segment. Furthermore, bridge interfaces follow the 
Ethernet CSMA/CD rules, so collisions and propagation delays on one wire remain iso­
lated from those on the other. As a result, an (almost) arbitrary number of Ethernets 
can be connected together with bridges. The important point is: 

Bridges hide the details of interconnection: a set of bridged segments 
acts like a single Ethernet. 

A computer uses exactly the same hardware to communicate with a computer across a 
bridge as it uses to communicate with a computer on the local segment. 
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FLOOR 3 

FLOOR 2 

FLOOR 1 

'--- REPEATER 

Figure 2.9 Repeaters used to join Ethernet cables in a building. At most two 
repeaters can be placed between a pair of communicating 
machines. 

31 

Most bridges do much more than replicate frames from one wire to another: they 
make intelligent decisions about which frames to forward. Such bridges are called 
adaptive, or learning bridges. An adaptive bridge consists of a computer with two Eth­
ernet interfaces. The software in an adaptive bridge keeps two address lists, one for 
each interface. When a frame arrives from Ethernet E" the adaptive bridge adds the 
48-bit Ethernet source address to the list associated with E 1• Similarly, when a frame 
arrives from Ethernet E2, the bridge adds the source address to the list associated with 
E2• Thus, over time the adaptive bridge will learn which machines lie on E1 and which 
lie on E2• 

After recording the source address of a frame, the adaptive bridge uses the destina­
tion address to determine whether to forward the frame. If the address list shows that 
the destination lies on the Ethernet from which the frame arrived, the bridge does not 
forward the frame. If the destination is not in the address list (i.e., the destination is a 
broadcast or multicast address or the bridge has not yet learned the location of the desti­
nation), the bridge forwards the frame to the other Ethernet. 

The advantages of adaptive bridges should be obvious. Because the bridge uses 
addresses found in normal traffic, it is completely automatic - humans need not config­
ure the bridge with specific addresses. Because it does not forward traffic unnecessari-
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ly, a bridge helps improve the performance of an overloaded network by isolating traffic 
on specific segments. Bridges work exceptionally well if a network can be divided phy­
sically into two segments that each contain a set of computers that communicate fre­
quently (e.g., each segment contains a set of workstations along with a server, and the 
workstations direct most of their traffic to the server). To summarize: 

An adaptive Ethernet bridge connects two Ethernet segments, for­
warding frames from one to the other. It uses source addresses to 
learn which machines lie on which Ethernet segment, and it combines 
information learned with destination addresses to eliminate forward­
ing when unnecessary. 

From the TCP/IP point of view, bridged Ethernets are merely another form of physical 
network connection. The important point is: 

Because the connection among physical cables provided by bridges 
and repeaters is transparent to machines using the Ethernet, we think 
of multiple Ethernet segments connected by bridges and repeaters as a 
single physical network system. 

Most commercial bridges are much more sophisticated and robust than our descrip­
tion indicates. When first powered up, they check for other bridges and learn the topol­
ogy of the network. They use a distributed spanning-tree algorithm to decide how to 
forward frames. In particular, the bridges decide how to propagate broadcast packets so 
only one copy of a broadcast frame is delivered to each wire. Without such an algo­
rithm, Ethernets and bridges connected in a cycle would produce catastrophic results be­
cause they would forward broadcast packets in both directions simultaneously. 

2.5 Fiber Distributed Data Interconnect (FDDI) 

FDDI is a popular local area networking technology that provides higher 
bandwidth than Ethernet. Unlike Ethernet and other LAN technologies that use cables 
to carry electrical signals, FDDI uses glass fibers and transfers data by encoding it in 
pulses of lightt. 

Optical fiber has two advantages over copper wire. First, because electrical noise 
does not interfere with an optical connection, the fiber can lie adjacent to powerful 
electrical devices. Second, because optical fibers use light, the amount of data that can 
be sent per unit time is much higher than cables that carry electrical signals. 

It might seem that glass fibers would be difficult to install and would break if bent. 
However, an optical cable is surprisingly flexible. The glass fiber itself has an extreme­
ly small diameter, and the cable includes a plastic jacket that protects the fiber from 
breaking. Such a cable cannot bend at a ninety degree angle, but it can bend in an arc 
with a diameter of a few inches. Thus, installation is not difficult. 

t A related technology known as Copper Distributed Data Interface (CDDI) works like FDDI, but uses 

copper cables to carry signals. 
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Internet Protocol: 
Connectionless Datagram 
Delivery 

7 .1 Introduction 

Previous chapters review pieces of network hardware and software that make inter­
net communication possible, explaining the underlying network technologies and ad­
dress resolution. This chapter explains the fundamental principle of connectionless 
delivery and discusses how it is provided by the Internet Protocol (IP), one of the two 
major protocols used in internetworking. We will study the format of IP datagrams and 
see how they form the basis for all internet communication. The next two chapters con­
tinue our examination of the Internet Protocol by discussing datagram routing and error 
handling. 

7.2 A Virtual Network 

Chapter 3 discussed an internet architecture in which routers connect multiple phy­
sical networks. Looking at the architecture may be misleading, because the focus 
should be on the interface that an internet provides to users, not on the interconnection 
technology. 

89 
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A user thinks of an internet as a single virtual network that intercon­
nects all hosts, and through which communication is possible; its 
underlying architecture is both hidden and irrelevant. 

Chap. 7 

In a sense, an internet is an abstraction of physical networks because, at the lowest lev­
el, it provides the same functionality: accepting packets and delivering them. Higher 
levels of internet software add most of the rich functionality users perceive. 

7.3 Internet Architecture And Philosophy 

Conceptually, a TCP/IP internet provides three sets of services as shown in Figure 
7 .1; their arrangement in the figure suggests dependencies among them. At the lowest 
level, a connectionless delivery service provides a foundation on which everything rests. 
At the next level, a reliable transport service provides a higher level platform on which 
applications depend. We will soon explore each of these services, understand what they 
provide, and see the protocols associated with them. 

APPLICATION SERVICES 

RELIABLE TRANSPORT SERVICE 

CONNECTIONLESS PACKET DELIVERY SERVICE 

Figure 7.1 The three conceptual layers of internet services. 

7.4 The Concept Of Unreliable Delivery 

Although we can associate protocol software with each of the services in Figure 
7.1 , the reason for identifying them as conceptual parts of the internet is that they clear­
ly point out the philosophical underpinnings of the design. The point is: 

Internet software is designed around three conceptual networking ser­
vices arranged in a hierarchy; much of its success has resulted be­
cause this architecture is surprisingly robust and adaptable. 
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One of the most significant advantages of this conceptual separation is that it becomes 

possible to replace one service without disturbing others. Thus, research and develop­

ment can proceed concurrently on all three. 

7 .5 Connectionless Delivery System 

The most fundamental internet service consists of a packet delivery system. 

Technically, the service is defined as an unreliable, best-effort, connectionless packet 

delivery system, analogous to the service provided by network hardware that operates 

on a best-effort delivery paradigm. The service is called unreliable because delivery is 

not guaranteed. The packet may be lost, duplicated, delayed, or delivered out of order, 

but the service will not detect such conditions, nor will it inform the sender or receiver. 

The service is called connectionless because each packet is treated independently from 

all others. A sequence of packets sent from one computer to another may travel over 

different paths, or some may be lost while others are delivered. Finally, the service is 

said to use best-effort delivery because the internet software makes an earnest attempt to 

deliver packets. That is, the internet does not discard packets capriciously; unreliability 

arises only when resources are exhausted or underlying networks fail. 

7.6 Purpose Of The Internet Protocol 

The protocol that defines the unreliable, connectionless delivery mechanism is 

called the Internet Protocol and is usually referred to by its initials, /Pt. IP provides 

three important definitions. First, the IP protocol defines the basic unit of data transfer 

used throughout a TCP/IP internet. Thus, it specifies the exact format of all data as it 

passes across a TCP/IP internet. Second, IP software performs the routing function, 

choosing a path over which data will be sent. Third, in addition to the precise, formal 

specification of data formats and routing, IP includes a set of rules that embody the idea 

of unreliable packet delivery. The rules characterize how hosts and routers should pro­

cess packets, how and when error messages should be generated, and the conditions 

under which packets can be discarded. IP is such a fundamental part of the design that 

a TCP/IP internet is sometimes called an IP-based technology. 

We begin our consideration of IP in this chapter by looking at the packet format it 

specifies. We leave until later chapters the topics of routing and error handling. 

7.7 The Internet Datagram 

The analogy between a physical network and a TCP/IP internet is strong. On a 

physical network, the unit of transfer is a frame that contains a header and data, where 

the header gives information such as the (physical) source and destination addresses. 

The internet calls its basic transfer unit an Internet datagram, sometimes referred to as 

t The abbreviation IP gives rise to the term " IP address." 
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an IP datagram or merely a datagram. Like a typical physical network frame, a da­

tagram is divided into header and data areas. Also like a frame, the datagram header 

contains the source and destination addresses and a type field that identifies the contents 

of the datagram. The difference, of course, is that the datagram header contains IP ad­

dresses whereas the frame header contains physical addresses. Figure 7 .2 shows the 

general form of a datagram: 

I DATAGRAM HEADER I DATAGRAM DATA AREA 

Figure 7.2 General form of an IP datagram, the TCP/IP analogy to a network 

frame. IP specifies the header format including the source and 

destination IP addresses. IP does not specify the format of the 

data area; it can be used to transport arbitrary data. 

7.7.1 Datagram Format 

Now that we have described the general layout of an IP datagram, we can look at 

the contents in more detail. Figure 7 .3 shows the arrangement of fields in a datagram: 

0 4 8 16 19 24 

VERS I HLEN I SERVICE TYPE TOTAL LENGTH 

IDENTIFICATION FLAGS! FRAGMENT OFFSET 

TIME TO LIVE I PROTOCOL HEADER CHECKSUM 

SOURCE IP ADDRESS 

DESTINATION IP ADDRESS 

IP OPTIONS (IF ANY) I PADDING 

DATA 

... 

Figure 7.3 Format of an Internet datagram, the basic unit of transfer in a 

TCP/IP internet. 

31 

Because datagram processing occurs in software, the contents and format are not 

constrained by any hardware. For example, the first 4-bit field in a datagram (VERS) 

contains the version of the IP protocol that was used to create the datagram. It is used 

to verify that the sender, receiver, and any routers in between them agree on the format 
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of the datagram. All IP software is required to check the version field before processing 
a datagram to ensure it matches the format the software expects. If standards change, 
machines will reject datagrams with protocol versions that differ from theirs, preventing 
them from misinterpreting datagram contents according to an outdated format. The 
current IP protocol version is 4. 

The header length field (HLEN), also 4 bits, gives the datagram header length 
measured in 32-bit words. As we will see, all fields in the header have fixed length ex­
cept for the IP OPTIONS and corresponding PADDING fields. The most common 
header, which contains no options and no padding, measures 20 octets and has a header 
length field equal to 5. 

The TOT AL LENGTH field gives the length of the IP datagram measured in octets, 
including octets in the header and data. The size of the data area can be computed by 
subtracting the length of the header (HLEN) from the TOT AL LENGTH. Because the 
TOTAL LENGTH field is 16 bits long, the maximum possible size of an IP datagram is 
216 or 65,535 octets. In most applications this is not a severe limitation. It may become 
more important in the future if higher speed networks can carry data packets larger than 
65,535 octets. 

7.7.2 Datagram Type Of Service And Datagram Precedence 

Informally called Type Of Service (TOS), the 8-bit SERVICE TYPE field specifies 
how the datagram should be handled and is broken down into five subfields as shown in 
Figure 7.4: 

0 1 2 3 4 5 6 7 

PRECEDENCE D T R UNUSED 

Figure 7.4 The five subfields that comprise the 8-bit SERVICE TYPE field. 

Three PRECEDENCE bits specify datagram precedence, with values ranging from 0 
(normal precedence) through 7 (network control), allowing senders to indicate the im­
portance of each datagram. Although most host and router software ignores type of ser­
vice, it is an important concept because it provides a mechanism that can allow control 
information to have precedence over data. For example, if all hosts and routers honor 
precedence, it is possible to implement congestion control algorithms that are not affect­
ed by the congestion they are trying to control. 

Bits D, T, and R specify the type of transport the datagram desires. When set, the 
D bit requests low delay, the T bit requests high throughput, and the R bit requests high 
reliability. Of course, it may not be possible for an internet to guarantee the type of 
transport requested (i.e., it could be that no path to the destination has the requested 
property). Thus, we think of the transport request as a hint to the routing algorithms, 
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not as a demand. If a router does know more than one possible route to a given desti­
nation, it can use the type of transport field to select one with characteristics closest to 
those desired. For example, suppose a router can select between a low capacity leased 
line or a high bandwidth (but high delay) satellite connection. Datagrams carrying 
keystrokes from a user to a remote computer could have the D bit set requesting that 
they be delivered as quickly as possible, while datagrams carrying a bulk file transfer 
could have the T bit set requesting that they travel across the high capacity satellite 
path. 

It is also important to realize that routing algorithms must choose from among 
underlying physical network technologies that each have characteristics of delay, 
throughput, and reliability. Often, a given technology trades off one characteristic for 
another (e.g., higher throughput rates at the expense of longer delay). Thus, the idea is 
to give the routing algorithm a hint about what is most important; it seldom makes 
sense to specify all three types of service. To summarize: 

We regard the type of transport specification as a hint to the routing 
algorithm that helps it choose among various paths to a destination 
based on its knowledge of the hardware teGlmologies available on 
those paths. An internet does not guarantee the type of transport re­
quested. 

7.7.3 Datagram Encapsulation 

Before we can understand the next fields in a datagram, it is important to consider 
how datagrams relate to physical network frames. We start with a question: "How 
large can a datagram be?" Unlike physical network frames that must be recognized by 
hardware, datagrams are handled by software. They can be of any length the protocol 
designers choose. We have seen that the current datagram format allots only 16 bits to 
the total length field, limiting the datagram to at most 65,535 octets. However, that 
limit could be changed in later versions of the protocol. 

More fundamental limits on datagram size arise in practice. We know that as da­
tagrams move from one machine to another, they must always be transported by the 
underlying physical network. To make internet transportation efficient, we would like 
to guarantee that each datagram travels in a distinct physical frame. That is, we want 
our abstraction of a physical network packet to map directly onto a real packet if possi­
ble. 

The idea of carrying one datagram in one network frame is called encapsulation. 
To the underlying network, a datagram is like any other message sent from one machine 
to another. The hardware does not recognize the datagram format, nor does it under­
stand the IP destination address. Thus, as Figure 7 .5 shows, when one machine sends 
an IP datagram to another, the entire datagram travels in the data portion of the network 
frame. 
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DATAGRAM DATAGRAM DATA AREA HEADER 

FRAME FRAME DATA AREA HEADER 

Figure 7.5 The encapsulation of an IP datagram in a frame. The physical net­
work treats the entire datagram, including the header, as data. 

7.7.4 Datagram Size, Network MTU, and Fragmentation 

95 

In the ideal case, the entire IP datagram fits into one physical frame, making 
transmission across the physical net efficient. t To achieve such efficiency, the 
designers of IP might have selected a maximum datagram size such that a datagram 
would always fit into one frame. But which frame size should be chosen? After all, a 
datagram may travel across many types of physical networks as it moves across an in­
ternet to its final destination. 

To understand the problem, we need a fact about network hardware: each packet­
switching technology places a fixed upper bound on the amount of data that can be 
transferred in one physical frame. For example, the Ethernet limits transfers to 1500:j: 
octets of data, while FDDI permits approximately 4470 octets of data per frame. We 
refer to these limits as the network's maximum transfer unit or MTU. MTV sizes can 
be quite small: some hardware technologies limit transfers to 128 octets or less. Limit­
ing datagrams to fit the smallest possible MTV in the internet makes transfers ineffi­
cient when those datagrams pass across a network that can carry larger size frames. 
However, allowing datagrams to be larger than the minimum network MTV in an inter­
net means that a datagram may not always fit into a single network frame. 

The choice should be obvious: the point of the internet design is to hide underlying 
network technologies and make communication convenient for the user. Thus, instead 
of designing datagrams that adhere to the constraints of physical networks, TCP/IP 
software chooses a convenient initial datagram size and arranges a way to divide large 
datagrams into smaller pieces when the datagram needs to traverse a network that has a 
small MTV. The small pieces into which a datagram is divided are called fragments, 
and the process of dividing a datagram is known as fragmentation. 

As Figure 7.6 illustrates, fragmentation usually occurs at a router somewhere along 
the path between the datagram source and its ultimate destination. The router receives a 
datagram from a network with a large MTV and must send it over a network for which 
the MTV is smaller than the datagram size. 

t A field in the frame header usually identifies the data being carried; Ethernet uses the type value 0800,. 
to specify that the data area contains an encapsulated IP datagram. 

:j:The limit of 1500 comes from the Ethernet specification; when used with a SNAP header the IEEE 
802.3 standard limits data to 1492 octets. Some vendors' implementations allow slightly larger transfers. 
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Internet Protocol: Connectionless Datagram Delivery 

Host 
B 

Chap. 7 

Net 1 Net 3 

MTU:1500 
Net 2 

MTU:620 

MTU:1500 

Figure 7.6 An illustration of where fragmentation occurs. Router R1 frag­
ments large datagrams sent from A to B; R2 fragments large da­
tagrams sent from B to A. 

In the figure, both hosts attach directly to Ethernets which have an MTU of 1500 
octets. Thus, both hosts can generate and send datagrams up to 1500 octets long. The 
path between them, however, includes a network with an MTU of 620. If host A sends 
host B a datagram larger than 620 octets, router R 1 will fragment the datagram. Similar­
ly, if B sends a large datagram to A, router R2 will fragment the the datagram. 

Fragment size is chosen so each fragment can be shipped across the underlying 
network in a single frame. In addition, because IP represents the offset of the data in 
multiples of eight octets, the fragment size must be chosen to be a multiple of eight. Of 
course, choosing the multiple of eight octets nearest to the network MTU does not usu­
ally divide the datagram into equal size pieces; the last piece is often shorter than the 
others. Fragments must be reassembled to produce a complete copy of the original da­
tagram before it can be processed at the destination. 

The IP protocol does not limit datagrams to a small size, nor does it guarantee that 
large datagrams will be delivered without fragmentation. The source can choose any 
datagram size it thinks appropriate; fragmentation and reassembly occur automatically, 
without the source taking special action. The IP specification states that routers must 
accept datagrams up to the maximum of the MTUs of networks to which they attach. 
In addition, a router must always handle datagrams of up to 576 octets. (Hosts are also 
required to accept, and reassemble if necessary, datagrams of at least 576 octets.) 

Fragmenting a datagram means dividing it into several pieces. It may surprise you 
to learn that each piece has the same format as the original datagram. Figure 7.7 illus­
trates the result of fragmentation. 
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DATAGRAM data1 data2 data3 
HEADER 600 octets 600 octets 200 octets 

(a) 

I FRAGMENT 1 I 
HEADER data1 Fragment 1 (offset 0) 

I FRAGMENT ' I 
HEADER data2 Fragment 2 (offset 600) 

FRAGMENT3 
data3 Fragment 3 (offset 1200) HEADER 

(b) 

Figure 7.7 (a) An original datagram carrying 1400 octets of data and (b) the 
three fragments for network MTU of 620. Headers 1 and 2 have 
the more fragments bit set. Offsets shown are decimal octets; 
they must be divided by 8 to get the value stored in the fragment 
headers. 

Each fragment contains a datagram header that duplicates most of the original da­
tagram header (except for a bit in the FLAGS field that shows it is a fragment), fol­
lowed by as much data as can be carried in the fragment while keeping the total length 
smaller than the MTU of the network over which it must travel. 

7.7.5 Reassembly Of Fragments 

Should a datagram be reassembled after passing across one network, or should the 
fragments be carried to the final host before reassembly? In a TCP/IP internet, once a 
datagram has been fragmented, the fragments travel as separate datagrams all the way to 
the ultimate destination where they must be reassembled. Preserving fragments all the 
way to the ultimate destination has two disadvantages. First, because datagrams are not 
reassembled immediately after passing across a network with small MTU, the small 
fragments must be carried from the point of fragmentation to the ultimate de.stination. 
Reassembling datagrams at the ultimate destination can lead to inefficiency: even if 
some of the physical networks encountered after the point of fragmentation have large 
MTU capability, only small fragments traverse them. Second, if any fragments are lost, 
the datagram cannot be reassembled. The receiving machine starts a reassembly timer 
when it receives an initial fragment. If the timer expires before all fragments arrive, the 
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receiving machine discards the surviving pieces without processing the datagram. Thus, 
the probability of datagram loss increases when fragmentation occurs because the loss 
of a single fragment results in loss of the entire datagram. 

Despite the minor disadvantages, performing reassembly at the ultimate destination 
works well. It allows each fragment to be routed independently, and does not require 
intermediate routers to store or reassemble fragments. 

7.7.6 Fragmentation Control 

Three fields in the datagram header, IDENTIFICATION, FLAGS, and FRAGMENT 
OFFSET, control fragmentation and reassembly of datagrams. Field IDENTIFICATION 
contains a unique integer that identifies the datagram. Recall that when a router frag­
ments a datagram, it copies most of the fields in the datagram header into each frag­
ment. The IDENTIFICATION field must be copied. Its primary purpose is to allow the 
destination to know which arriving fragments belong to which datagrams. As a frag­
ment arrives, the destination uses the IDENTIFICATION field along with the datagram 
source address to identify the datagram. Computers sending IP datagrams must gen­
erate a unique value for the IDENTIFICATION field for each unique datagramt. One 
technique used by IP software keeps a global counter in memory, increments it each 
time a new datagram is created, and assigns the result as the datagram's IDENTIFICA­

TION field. 
Recall that each fragment has exactly the same format as a complete datagram. 

For a fragment, field FRAGMENT OFFSET specifies the offset in the original datagram 
of the data being carried in the fragment, measured in units of 8 octets+, starting at 
offset zero. To reassemble the datagram, the destination must obtain all fragments start­
ing with the fragment that has offset O through the fragment with highest offset. Frag­
ments do not necessarily arrive in order, and there is no communication between the 
router that fragmented the datagram and the destination trying to reassemble it. 

The low-order two bits of the 3-bit FLAGS field controls fragmentation. Usually, 
application software using TCP/IP does not care about fragmentation because both frag­
mentation and reassembly are automatic procedures that occur at a low level in the 
operating system, invisible to end users. However, to test internet software or debug 
operational problems, it may be important to test sizes of datagrams for which fragmen­
tation occurs. The first control bit aids in such testing by specifying whether the da­
tagram may be fragmented. It is called the do not fragment bit because setting it to 1 
specifies that the datagram should not be fragmented. An application may choose to 
disallow fragmentation when only the entire datagram is useful. For example, wnsider 
a computer bootstrap sequence in which a machine begins executing a small program in 
ROM that uses the internet to request an initial bootstrap, and another machine sends 
back a memory image. If the software has been designed so it needs the entire image or 
none of it, the datagram should have the do not fragment bit set. Whenever a router 
needs to fragment a datagram that has the do not fragment bit set, the router discards 
the datagram and sends an error message back to the source. 

tin theory, retransmissions of a datagram can carry the same IDENTIFICATION field as the original; in 
practice, higher-level protocols usually perform retransmission, resulting in a new datagram with its own 
IDENTIFICATION. 

:j:To save space in the header, offsets are specified in multiples of 8 octets. 
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The low order hit in the FLAGS field specifies whether the fragment contains data 
from the middle of the original datagram or from the end. It is called the more frag­
ments bit. To see why such a bit is needed, consider the IP software at the ultimate 
destination attempting to reassemble a datagram. It will receive fragments (possibly out 
of order) and needs to know when it has received all fragments for a datagram. When a 
fragment arrives, the TOTAL LENGTH field in the header refers to the size of the frag­
ment and not to the size of the original datagram, so the destination cannot use the TO­
T AL LENGTH field to tell whether it has collected all fragments. The more fragments 
bit solves the problem easily: once the destination receives a fragment with the more 
fragments bit turned off, it knows this fragment carries data from the tail of the original 
datagram. From the FRAGMENT OFFSET and TOTAL LENGTH fields, it can compute 
the length of the original datagram. By examining the FRAGMENT OFFSET and TO­
TAL LENGTH of all fragments that have arrived, a receiver can tell whether the frag­
ments on hand contain all the data needed to reassemble the entire original datagram. 

7.7.7 Time to Live (TTL) 

Field TIME TO LIVE specifies how long, in seconds, the datagram is allowed to 
remain in the internet system. The idea is both simple and important: whenever a 
machine injects a datagram into the internet, it sets a maximum time that the datagram 
should survive. Routers and hosts that process datagrams must decrement the TIME TO 
LIVE field as time passes and remove the datagram from the internet when its time ex­
pires. 

Estimating exact times is difficult because routers do not usually know the transit 
time for physical networks. A few rules simplify processing and make it easy to handle 
datagrams without synchronized clocks. First, each router along the path from source to 
destination is required to decrement the TIME TO LIVE field by 1 when it processes the 
datagram header. Furthermore, to handle cases of overloaded routers that introduce 
long delays, each router records the local time when the datagram arrives, and decre­
ments the TIME TO LIVE by the number of seconds the datagram remained inside the 
router waiting for service. 

Whenever a TIME TO LIVE field reaches zero, the router discards the datagram 
and sends an error message back to the source. The idea of keeping a timer for da­
tagrams is interesting because it guarantees that datagrams cannot travel around an in­
ternet forever, even if routing tables become corrupt and routers route datagrams in a 
circle. 

7.7.8 Other Datagram Header Fields 

Field PROTOCOL is analogous to the type field in an network frame. The value 
in the PROTOCOL field specifies which high-level protocol was used to create the mes­
sage being carried in the DATA area of a datagram. In essence, the value of PROTO­
COL specifies the format of the DATA area. The mapping between a high level proto-
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col and the integer value used in the PROTOCOL field must be administered by a cen­
tral authority to guarantee agreement across the entire Internet. 

Field HEADER CHECKSUM ensures integrity of header values. The IP checksum 
is formed by treating the header as a sequence of 16-bit integers (in network byte ord­
er), adding them together using one's complement arithmetic, and then taking the one's 
complement of the result. For purposes of computing the checksum, field HEADER 
CHECKSUM is assumed to contain zero. 

It is important to note that the checksum only applies to values in the IP header 
and not to the data. Separating the checksum for headers and data has advantages and 
disadvantages. Because the header usually occupies fewer octets than the data, having a 
separate checksum reduces processing time at routers which only need to compute 
header checksums. The separation also allows higher level protocols to choose their 
own checksum scheme for the data. The chief disadvantage is that higher level proto­
cols are forced to add their own checksum or risk having corrupted data go undetected. 

Fields SOURCE IP ADDRESS and DESTINATION IP ADDRESS contain the 32-bit 
JP addresses of the datagram's sender and intended recipient. Although the datagram 
may be routed through many intermediate routers, the source and destination fields nev­
er change; they specify the IP addresses of the original source and ultimate destinationt. 

The field labeled DATA in Figure 7.3 shows the beginning of the data area of the 
datagram. Its length depends, of course, on what is being sent in the datagram. The IP 
OPTIONS field, discussed below, is variable length. The field labeled PADDING, 
depends on the options selected. It represents bits containing zero that may be needed 
to ensure the datagram header extends to an exact multiple of 32 bits (recall that the 
header length field is specified in units of 32-bit words). 

7.8 Internet Datagram Options 

The IP OPTIONS field following the destination address is not required in every 
datagram; options are included primarily for network testing or debugging. Options 
processing is an integral part of the IP protocol, however, so all standard implementa­
tions must include it. 

The length of the IP OPTIONS field varies depending on which options are select­
ed. Some options are one octet long; they consist of a single octet option code. Other 
options are variable length. When options are present in a datagram, they appear con­
tiguously, with no special separators between them. Each option consists of a single oc­
tet option code, which may be followed by a single octet length and a set of data octets 
for that option. The option code octet is divided into three fields as Figure 7 .8 shows. 

t An exception is made when the datagram includes the source route options listed below. 
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0 1 2 3 4 5 6 7 

I COPY I OPTION CLASS I OPTION NUMBER 

Figure 7.8 The division of the option code octet into three fields of length 1, 
2, and 5 bits. ~ 

The fields consist of a 1-bit COPY flag, a 2-bit OPTION CLASS, and the 5-bit OPTION 
NUMBER. The COPY flag controls how routers treat options during fragmentation. 
When the COPY bit is set to I, it specifies that the option should be copied into all 
fragments. When set to 0, the COPY bit means that the option should only be copied 
into the first fragment and not into all fragments. 

The OPTION CLASS and OPTION NUMBER bits specify the general class of the 
option and give a specific option in that class. The table in Figure 7 .9 shows how 
classes are assigned. 

Option Class 

0 
1 
2 
3 

Meaning 
Datagram or network control 
Reserved for future use 
Debugging and measurement 
Reserved for future use 

Figure 7.9 Classes of IP options as encoded in the OPTION CLASS bits of an 
option code octet. 

The table in Figure 7 .10 lists the possible options that can accompany an IP da­
tagram and gives their OPTION CLASS and OPTION NUMBER values. As the list 
shows, most options are used for control purposes. 
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Option Option 
Class Number Length Description 

0 

0 

0 

0 

0 
0 

0 

2 

0 End of option list. Used if options 
do not end at end of header 
(also see header padding field). 

1 No operation (used to align octets in 
a list of options). 

2 11 Security and handling restrictions 
(for military applications). 

3 var Loose source routing. Used to route 
a datagram along a specified path. 

7 var Record route. Used to trace a route. 
8 4 Stream identifier. Used to carry a 

SATNET stream identifier (Obsolete). 
9 var Strict source routing. Used to route 

a datagram along a specified path. 
4 var Internet timestamp. Used to record 

timestamps along the route. 

Figure 7.10 The eight possible IP options with their numeric class and 
number codes. The value var in the length column stands for 
variable. 

7 .8.1 Record Route Option 

The routing and timestamp options are the most interesting because they provide a 
way to monitor or control how internet routers route datagrams. The record route op­
tion allows the source to create an empty list of IP addresses and arrange for each router 
that handles the datagram to add its IP address to the list. Figure 7 .11 shows the format 
of the record route option. 

As described above, the CODE field contains the option class and option number 
(0 and 7 for record route). The LENGTH field specifies the total length of the option as 
it appears in the IP datagram, including the first three octets. The fields starting with 
one labeled FIRST IP ADDRESS comprise the area reserved for recording internet ad­
dresses. The POINTER field specifies the offset within the option of the next available 
slot. 
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Internet Datagram Options 

8 16 24 

CODE(7) I LENGTH I POINTER I 
FIRST IP ADDRESS 

SECOND IP ADDRESS 

. .. 

Figure 7.11 The format of the record route option in an IP datagram. The 
option begins with three octets immediately followed by a list of 
addresses. Although the diagram shows addresses in 32 bit un­
its, they are not aligned on any octet boundary in a datagram. 
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Whenever a machine handles a datagram that has the record route option set, the 
machine adds its address to the record route list (enough space must be allocated in the 
option by the original source to hold all entries that will be needed). To add itself to 
the list, a machine first compares the pointer and length fields. If the pointer is greater 
than the length, the list is full, so the machine forwards the datagram without inserting 
its entry. If the list is not full, the machine inserts its 4-octet IP address at the position 
specified by the POINTER, and increments the POINTER by four. 

When the datagram arrives, the destination machine can extract and process the list 
of IP addresses. Usually, a computer that receives a datagram ignores the recorded 
route. Using the record route option requires two machines that agree to cooperate; a 
computer will not automatically receive recorded routes in incoming datagrams after it 
turns on the record route option in outgoing datagrams. The source must agree to en­
able the record route option and the destination must agree to process the resultant list. 

7 .8.2 Source Route Options 

Another idea that network builders find interesting is the source route option. The 
idea behind source routing is that it provides a way for the sender to dictate a path 
through the internet. For example, to test the throughput over a particular physical net­
work, N, system administrators can use source routing to force IP datagrams to traverse 
network N even if routers would normally choose a path that did not include it. The 
ability to make such tests is especially important in a production environment, because 
it gives the network manager freedom to route users' datagrams over networks that are 
known to operate correctly while simultaneously testing other networks. Of course, 
such routing is only useful to people who understand the network topology; the average 
user has no need to know or use it. 
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IP supports two fonns of source routing. One form, called strict source routing, 
specifies . a routing path by including a sequence of IP addresses in the option as Figure 
7.12 shows. 

0 8 16 24 

CODE(137) I LENGTH I POINTER I 
IP ADDRESS OF FIRST HOP 

IP ADDRESS OF SECOND HOP 

... 

Figure 7.12 The strict source route option specifies an exact route by giving a 
list of IP addresses the datagram must follow. 

31 

Strict source routing means that the addresses specify the exact path the datagram must 
follow to reach its destination. The path between two successive addresses in the list 
must consist of a single physical network; an error results if a router cannot follow a 
strict source route. The other form, called loose source routing, also includes a se­
quence of IP addresses. It specifies that the datagram must follow the sequence of IP 
addresses, but allows multiple network hops between successive addresses on the list. 

Both source route options require routers along the path to overwrite items in the 
address list with their local network addresses. Thus, when the datagram arrives at its 
destination, it contains a list of all addresses visited, exactly like the list produced by 
the record route option. 

The format of a source route option resembles that of the record route option 
shown above. Each router examines the POINTER and LENGTH fields to see if the list 
has been exhausted. If it has, the pointer is greater than the length, and the router routes 
the datagram to its destination as usual. If the list is not exhausted, the router follows 
the pointer, picks up the IP address, replaces it with the router's addresst, and routes 
the datagram using the address it obtained from the list. 

7.8.3 Timestamp Option 

The timestamp option works like the record route option in that the timestamp op­
tion contains an initially empty list, and each router along the path from source to desti­
nation fills in one item in the list. Each entry in the list contains two 32-bit items: the 
IP address of the router that supplied the entry, and a 32-bit integer timestamp. Figure 
7 .13 shows the format of the times tamp option. 

t A router has one address for each interface; it records the address that corresponds to the network over 
which it routes the datagram. 
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Internet Datagram Options 

8 16 24 31 

CODE(68) I LENGTH I POINTER I OFLOW I FLAGS 

FIRST IP ADDRESS 

FIRST TIMESTAMP 

... 

Figure 7.13 The format of the timestamp option. Bits in the FLAGS field 
control the exact format and rules routers use to process this op­
tion. 

105 

In the figure, the LENGTH and POINTER fields are used to specify the length of 
the space reserved for the option and the location of the next unused slot (exactly as in 
the record route option). The 4-bit OFLOW field contains an integer count of routers 
that could not supply a timestamp because the option was too small. 

The value in the 4-bit FLAGS field controls the exact format of the option and tells 
how routers should supply timestamps. The values are: 

Flags value 
0 
1 

3 

Meaning 
Record timestamps only; omit IP addresses. 
Precede each timestamp by an IP address 

(this is the format shown in Figure 7.13). 
IP addresses are specified by sender; a 
router only records a timestamp if the 
next IP address in the list matches the 
router's IP address. 

Figure 7.14 The interpretation of values in the FLAGS field of a timestamp 
option. 

Timestamps give the time and date at which a router handles the datagram, ex­
pressed as milliseconds since midnight, Universal Timet. If the standard representation 
for time is unavailable, the router can use any representation of local time provided it 
turns on the high-order bit in the timestamp field. Of course, timestamps issued by in­
dependent computers are not always consistent even if represented in universal time; 
each machine reports time according to its local clock, and clocks may differ. Thus, 
timestamp entries should always be treated as estimates, independent of the representa­
tion. 

It may seem odd that the timestamp option includes a mechanism to have routers 
record their IP addresses along with timestamps because the record route option already 

t Universal Time was formerly called Greenwich Mean Time; it is the time of day at the prime meridian. 
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provides that capability. However, recording IP addresses with timestamps eliminates 
ambiguity. Having the route recorded along with timestamps is also useful because it 
allows the receiver to know exactly which path the datagram followed. 

7.8.4 Processing Options During Fragmentation 

The idea behind the COPY bit in the option CODE field should now be clear. 
When fragmenting a datagram, a router replicates some IP options in all fragments 
while it places others in only one fragment. For example, consider the option used to 
record the datagram route. We said that each fragment will be handled as an indepen­
dent datagram, so there is no guarantee that all fragments follow the same path to the 
destination. If all fragments contained the record route option, the destination might re­
ceive a different list of routes from each fragment. It could not produce a single, mean­
ingful list of routes for the reassembled datagram. Therefore, the IP standard specifies 
that the record route option should only be copied into one of the fragments. 

Not all IP options can be restricted to one fragment. Consider the source route op­
tion, for example, that specifies how a datagram should travel through the internet. 
Source routing information must be replicated in all fragment headers, or fragments will 
not follow the specified route. Thus, the code field for source route specifies that the 
option must be copied into all fragments. 

7.9 Summary 

The fundamental service provided by TCP/IP internet software is a connectionless, 
unreliable, best-effort packet delivery system. The Internet Protocol (IP) formally speci­
fies the format of internet packets, called datagrams, and informally embodies the ideas 
of connectionless delivery. This chapter concentrated on datagram formats; later 
chapters will discuss IP routing and error handling. 

Analogous to a physical frame, the IP datagram is divided into header and data 
areas. Among other information, the datagram header contains the source and destina­
tion IP addresses, fragmentation control, precedence, and a checksum used to catch 
transmission errors. Besides fixed-length fields, each datagram header can contain an 
options field. The options field is variable length, depending on the number and type of 
options used as well as the size of the data area allocated for each option. Intended to 
help monitor and control the internet, options allow one to specify or record routing in­
formation, or to gather timestamps as the datagram traverses an internet. 
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FOR FURTHER STUDY 

Postel [1980] discusses possible ways to approach internet protocols, addressing, 
and routing. In later publications, Postel [RFC 791] gives the standard for the Internet 
Protocol. Braden [RFC 1122] further refines the standard. Hornig [RFC 894] specifies 
the standard for the transmission of IP datagrams across an Ethernet. Clark [RFC 815] 
describes efficient reassembly of fragments. In addition to the packet format, Internet 
authorities also specify many constants needed in the network protocols. These values 
can be found in Reynolds and Postel [RFC 1700]. Kent and Mogul [1987] discusses 
the disadvantages of fragmentation. 

An alternative internet protocol suite known as XNS, is given in Xerox [1981]. 
Boggs et. al. [1980] describes the PARC Universal Packet (PUP) protocol, an abstrac­
tion from XNS closely related to the IP datagram. 

EXERCISES 

7.1 What is the single greatest advantage of having the IP checksum cover only the datagram 
header and not the data? What is the disadvantage? 

7.2 Is it ever necessary to use an IP checksum when sending packets over an Ethernet? Why 
or why not? 

7.3 What is the MTU size for the ANSNET? Hyperchannel? an ATM switch? 

7.4 Do you expect a high-speed local area network to have larger or smaller MTU size than a 
wide area network? 

7.5 Argue that fragments should have small, nonstandard headers. 

7.6 Find out when the IP protocol version last changed. Is having a protocol version number 
really useful? 

7.7 Can you imagine why a one's complement checksum was chosen for IP instead of a cyclic 
redundancy check? 

7.8 What are the advantages of doing reassembly at the ultimate destination instead of doing it 
after the datagram travels across one network? 

7.9 What is the minimum network MTU required to send an IP datagram that contains at least 
one octet of data? 

7.10 Suppose you are hired to implement IP datagram processing in hardware. Is there any rear­
rangement of fields in the header that would have made your hardware more efficient? 
Easier to build? 

7.11 If you have access to an implementation of IP, revise it and test your locally available im­
plementations of IP to see if they reject IP datagrams with an out-of-date version number. 

7.12 When a minimum-size IP datagram travels across an Ethernet, how large is the frame? 
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Protocol Layering 

11.1 Introduction 

Previous chapters review the architectural foundations of internetworking, describe 
how hosts and routers forward Internet datagrams, and present mechanisms used to map 
IP addresses to physical network addresses. This chapter considers the structure of the 
software found in hosts and routers that carries out network communication. It presents 
the general principle of layering, shows how layering makes Internet Protocol software 
easier to understand and build, and traces the path of datagrams through the protocol 
software they encounter when traversing a TCP/IP internet. 

11.2 The Need For Multiple Protocols 

We have said that protocols allow one to specify or understand communication 
without knowing the details of a particular vendor's network hardware. They are to 
computer communication what programming languages are to computation. It should 
be apparent by now how closely the analogy fits. Like assembly language, some proto­
cols describe communication across a physical network. For example, the details of the 
Ethernet frame format, network access policy, and frame error handling comprise a pro­
tocol that describes communication on an Ethernet. Similarly, the details of IP ad­
dresses, the datagram format, and the concept of unreliable, connectionless delivery 
comprise the Internet Protocol. 

Complex data communication systems do not use a single protocol to handle all 
transmission tasks. Instead, they require a set of cooperative protocols, sometimes 
called a protocol family or protocol suite. To understand why, think of the problems 
that arise when machines communicate over a data network: 

159 
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• Hardware failure. A host or router may fail either because the hardware fails or 
because the. operating system crashes. A network transmission link may fail or acciden­
tally be disconnected. The protocol software needs to detect such failures and recover 
from them if possible. 

• Network congestion. Even when all hardware and software operates correctly, 
networks have finite capacity that can be exceeded. The protocol software needs to ar­
range ways that a congested machine can suppress further traffic. 

• Packet delay or loss. Sometimes, packets experience extremely long delays or 
are lost. The protocol software needs to learn about failures or adapt to long delays. 

• Data corruption. Electrical or magnetic interference or hardware failures can 
cause transmission errors that corrupt the contents of transmitted data. Protocol 
software needs to detect and recover from such errors. 

• Data duplication or sequence errors. Networks that offer multiple routes may 
deliver data out of sequence or may deliver duplicates of packets. The protocol 
software needs to reorder packets and remove any duplicates. 

Taken together, all these problems seem overwhelming. It is difficult to under­
stand how to write a single protocol that will handle them all. From the analogy with 
programming languages, we can see how to conquer the complexity. Program transla­
tion has been partitioned into four conceptual subproblems identified with the software 
that handles each subproblem: compiler, assembler, link editor, and loader. The divi­
sion makes it possible for the designer to concentrate on one subproblem at a time, and 
for the implementor to build and test each piece of software independently. We will see 
that protocol software is partitioned similarly. 

Two final observations about our programming language analogy will help clarify 
the organization of protocols. First, it should be clear that pieces of translation software 
must agree on the exact format of data passed between them. For example, the data 
passed from the compiler to the assembler consists of a program defined by the assem­
bly programming language. Thus, we see how the translation process involves multiple 
programming languages. The analogy will hold for communication software, where we 
will see that multiple protocols define the interfaces between the modules of communi­
cation software. Second, the four parts of the translator form a linear sequence in which 
output from the compiler becomes input to the assembler, and so on. Protocol software 
also uses a linear sequence. 

11.3 The Conceptual Layers Of Protocol Software 

Think of the modules of protocol software on each machine as being stacked verti­
cally into layers, as in Figure l l. l. Each layer takes responsibility for handling one 
part of the problem. 
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Sender Receiver 

Layer n Layer n 

Layer 2 Layer 2 

Layer1 Layer1 

Network 

Figure 11.1 The conceptual organization of protocol software in layers. 

Conceptually, sending a message from an application program on one machine to 
an application program on another means transferring the message down through suc­
cessive layers of protocol software on the sender's machine, transferring the message 
across the network, and transferring the message up through successive layers of proto­
col software on the receiver's machine. 

In practice, the protocol software is much more complex than the simple model of 
Figure 11.1 indicates. Each layer makes decisions about the correctness of the message 
and chooses an appropriate action based on the message type or destination address. 
For example, one layer on the receiving machine must decide whether to keep the mes­
sage or forward it to another machine. Another layer must decide which application 
program should receive the message. 

To understand the difference between the conceptual organization of protocol 
software and the implementation details, consider the comparison shown in Figure 11.2. 
The conceptual diagram in Figure 11.2a shows an Internet layer between a high level 
protocol layer and a network interface layer. The realistic diagram in Figure 11.2b 
shows that the IP software may communicate with multiple high-level protocol modules 
and with multiple network interfaces. 

Although a diagram of conceptual protocol layering does not show all details, it 
does help explain the general ideas. For example, Figure 11.3 shows the layers of pro­
tocol software used by a message that traverses three networks. The diagram shows 
only the network interface and Internet Protocol layers in routers because only those 
layers are needed to receive, route, and then send datagrams. We understand that any 
machine attached to two networks must have two network interface modules, even 
though the conceptual layering diagram shows only a single network interface layer in 
each machine. 
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Conceptual Layers Software Organization 

High Level Protocol 2 
Protocol Layer 

Internet 
Protocol Layer 

IP Module 

Network 
Interface Layer Interface 2 

(a) (b) 

Figure 11.2 A comparison of (a) conceptual protocol layering and (b) a real­
istic view of software organization showing multiple network in­
terfaces below IP and multiple protocols above it. 

Chap. 11 

As Figure 11.3 shows, a sender on the original machine transmits a message which 
the IP layer places in a datagram and sends across network I. On intermediate 
machines the datagram passes up to the IP layer which routes it back out again (on a 
different network). Only when it reaches the final destination machine does IP extract 
the message and pass it up to higher layers of protocol software. 

eceiver 

other ... other ... 

IP Layer IP Layer IP Layer IP Layer 

Interface Interface Interface Interface 

Net 1 Net 2 Net 3 

Figure 11.3 The path of a message traversing the Internet from the sender 
through two intermediate machines to the receiver. Intermediate 
machines only send the datagram to the IP software layer. 
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11.4 Functionality Of The Layers 

Once the decision has been made to partition the communication problem into sub­
problems and organize the protocol software into modules that each handle one sub­
problem, the question arises: "what functionality should reside in each module?" The 
question is not easy to answer for several reasons. First, given a set of goals and con­
straints governing a particular communication problem, it is possible to choose an or­
ganization that will optimize protocol software for that problem. Second, even when 
considering general network-level services such as reliable transport, it is possible to 
choose from among fundamentally distinct approaches to solving the problem. Third, 
the design of network ( or internet) architecture and the organization of the protocol 
software are interrelated; one cannot be designed without the other. 

11.4.1 ISO 7-Layer Reference Model 

Two ideas about protocol layering dominate the field. The first, based on work 
done by the International Organization for Standardization (ISO), is known as ISO's 
Reference Model of Open System Interconnection, often referred to as the /SO model. 
The ISO model contains 7 conceptual layers organized as Figure 11.4 shows. 

Layer Functionality 

7 Application 

6 Presentation 

5 Session 

4 Transport 

3 Network 

2 
Data Link 

(Hardware Interface) 

1 
Physical Hardware 

Connection 

Figure 11.4 The ISO 7-layer reference model for protocol software. 
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The ISO model, built to describe protocols for a single network, does not contain a 
specific level for internetwork routing in the same way TCP/IP protocols do. 

11.5 X.25 And Its Relation To The ISO Model 

Although it was designed to provide a conceptual model and not an implementa­
tion guide, the ISO layering scheme has been the basis for several protocol implementa­
tions. Among the protocols commonly associated with the ISO model, the set of proto­
cols known as X.25 is probably the best known and most widely used. X.25 was esta­
blished as a recommendation of the Telecommunications Section of the International 
Telecommunications Uniont (ITU-TS), an international organization that recommends 
standards for international telephone services. X.25 has been adopted by public data 
networks, and is especially popular in Europe. Considering X.25 will help explain the 
ISO layering. 

In the X.25 view, a network operates much like a telephone system. An X.25 net­
work is assumed to consist of complex packet switches that contain the intelligence 
needed to route packets. Hosts do not attach directly to communication wires of the 
network. Instead each host attaches to one of the packet switches using a serial com­
munication line. In one sense the connection between a host and an X.25 packet switch 
is a miniature network consisting of one serial link. The host must follow a complicat­
ed procedure to transfer packets onto the network. 

• Physical Layer. X.25 specifies a standard for the physical interconnection 
between host computers and network packet switches, as well as the procedures used to 
transfer packets from one machine to another. In the reference model, level J specifies 
the physical interconnection including electrical characteristics of voltage and current. 
A corresponding protocol, X.21 , gives the details used by public data networks. 

• Data Link Layer. The level 2 portion of the X.25 protocol specifies how data 
travels between a host and the packet switch to which it connects. X.25 uses the term 
frame to refer to a unit of data as it passes between a host and a packet switch (it is im­
portant to understand that the X.25 definition of frame differs slightly from the way we 
have used it). Because raw hardware delivers only a stream of bits, the level 2 protocol 
must define the format of frames and specify how the two machines recognize frame 
boundaries. Because transmission errors can destroy data, the level 2 protocol includes 
error detection (e.g., a frame checksum). Finally, because transmission is unreliable, the 
level 2 protocol specifies an exchange of acknowledgements that allows the two 
machines to know when a frame has been transferred successfully. 

One commonly used level 2 protocol, named the High Level Data Link Communi­
cation, is best known by its acronym, HDLC. Several versions of HDLC exist, with the 
most recent known as HDLCJLAPB. It is important to remember that successful 
transfer at level 2 means a frame has been passed to the network packet switch for 
delivery; it does not guarantee that the packet switch accepted the packet or was able to 
route it. 

tThe International Telecommunications Union was formerly named the Consultative Committee on Inter­
national Telephony and Telegraphy (CCITT). 
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• Network Layer. The ISO reference model specifies that the third level contains 
functionality that completes the definition of the interaction between host and network. 
Called the network or communication subnet layer, this level defines the basic unit of 
transfer across the network and includes the concepts of destination addressing and rout­
ing. Remember that in the X.25 world, communication between host and packet switch 
is conceptually isolated from the traffic that is being passed. Thus, the network might 
allow packets defined by level 3 protocols to be larger than the size of frames that can 
be transferred at level 2. The level 3 software assembles a packet in the form the net­
work expects and uses level 2 to transfer it (possibly in pieces) to the packet switch. 
Level 3 must also respond to network congestion problems. 

• Transport Layer. Level 4 provides end-to-end reliability by having the destina­
tion host communicate with the source host. The idea here is that even though lower 
layers of protocols provide reliable checks at each transfer, the end-to-end layer double 
checks to make sure that no machine in the middle failed. 

• Session Layer. Higher levels of the ISO model describe how protocol software 
can be organized to handle all the functionality needed by application programs. The 
ISO committee considered the problem of remote terminal access so fundamental that 
they assigned layer 5 to handle it. In fact, the central service offered by early public 
data networks consisted of terminal to host interconnection. The carrier provides a spe­
cial purpose host computer called a Packet Assembler And Disassembler (PAD) on the 
network with dialup access. Subscribers, often travelers who carry their own computer 
and modem, dial up the local PAD, make a network connection to the host with which 
they wish to communicate, and log in. Many carriers choose to make using the network 
for long distance communication less expensive than direct dialup. 

• Presentation Layer. ISO layer 6 is intended to include functions that many ap­
plication programs need when using the network. Typical examples include standard 
routines that compress text or convert graphics images into bit streams for transmission 
across a network. For example an ISO standard known as Abstract Syntax Notation 1 
(ASN.l) , provides a representation of data that application programs use. One of the 
TCP/IP protocols, SNMP, also uses ASN. l to represent data. 

• Application Layer. Finally, ISO layer 7 includes application programs that use 
the network. Examples include electronic mail or file transfer programs. In particular, 
the ITU-TS has devised a protocol for electronic mail known as the X.400 standard. In 
fact, the ITU and ISO worked jointly on message handling systems; the ISO version is 
called MOTJS. 

11.5.1 The TCP/IP Internet Layering Model 

The second major layering model did not arise from a standards committee, but 
came instead from research that led to the TCP/IP protocol suite. With a little work, the 
ISO model can be stretched to describe the TCP/IP layering scheme, but the underlying 
assumptions are different enough to warrant distinguishing the two. 
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Broadly speaking, TCP/IP software is organized into four conceptual layers that 
build on a fifth layer of hardware. Figure 11.5 shows the conceptual layers as well as 
the form of data as it passes between them. 

Conceptual Layer 

Application 

Transport 

Internet 

Network Interface 

Hardware 

Objects Passed 
Between Layers 

Messages or Streams 

Transport Protocol Packets 

IP Datagrams 

Network-Specific Frames 

Figure 11.5 The 4 conceptual layers of TCP/IP software and the form of ob­
jects passed between layers. The layer labeled network interface 
is sometimes called the data link layer. 

• Application Layer. At the highest level, users invoke application programs that 
access services available across a TCP/IP internet. An application interacts with one of 
the transport level protocols to send or receive data. Each application program chooses 
the style of transport needed, which can be either a sequence of individual messages or 
a continuous stream of bytes. The application program passes data in the required form 
to the transport level for delivery. 

• Transport layer. The primary duty of the transport layer is to provide com­
munication from one application program to another. Such communication is often 
called end-to-end. The transport layer may regulate flow of information. It may also 
provide reliable transport, ensuring that data arrives without error and in sequence. To 
do so, transport protocol software arranges to have the receiving side send back ack­
nowledgements and the sending side retransmit lost packets. The transport software 
divides the stream of data being transmitted into small pieces (sometimes called pack­
ets) and passes each packet along with a destination address to the next layer for 
transmission. 

Although Figure 11.5 uses a single block to represent the application layer, a gen­
eral purpose computer can have multiple application programs accessing the internet at 
one time. The transport layer must accept data from several user programs and send it 
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to the next lower layer. To do so, it adds additional information to each packet, includ­
ing codes that i_dentify which application program sent it and which application program 
should receive it, as well as a checksum. The receiving machine uses the checksum to 
verify that the packet arrived intact, and uses the destination code to identify the appli­
cation program to which it should be delivered. 

• Internet Layer. As we have already seen, the Internet layer handles communica­
tion from one machine to another. It accepts a request to send a packet from the tran­
sport layer along with an identification of the machine to which the packet should be 
sent. It encapsulates the packet in an IP datagram, fills in the datagram header, uses the 
routing algorithm to determine whether to deliver the datagram directly or send it to a 
router, and passes the datagram to the appropriate network interface for transmission. 
The Internet layer also handles incoming datagrams, checking their validity, and uses 
the routing algorithm to decide whether the datagram should be processed locally or for­
warded. For datagrams addressed to the local machine, software in the internet layer 
deletes the datagram header, and chooses from among several transport protocols the 
one that will handle the packet. Finally, the Internet layer sends ICMP error and control 
messages as needed and handles all incoming ICMP messages. 

• Network Interface Layer. The lowest level TCP/IP software comprises a net­
work interface layer, responsible for accepting IP datagrams and transmitting them over 
a specific network. A network interface may consist of a device driver (e.g., when the 
network is a local area network to which the machine attaches directly) or a complex 
subsystem that uses its own data link protocol (e.g. , when the network consists of pack­
et switches that communicate with hosts using HDLC). 

11 .6 Differences Between X.25 And Internet Layering 

There are two subtle and important differences between the TCP/IP layering 
scheme and the X.25 scheme. The first difference revolves around the focus of atten­
tion on reliability, while the second involves the location of intelligence in the overall 
system. 

11.6.1 Link-Level vs. End-To-End Reliability 

One major difference between the TCP/IP protocols and the X.25 protocols lies in 
their approaches to providing reliable data transfer services. In the X.25 model, proto­
col software detects and handles errors at all levels. At the link level, complex proto­
cols guarantee that the transfer between a host and the packet switch to which it con­
nects will be correct. Checksums accompany each piece of data transferred, and the re­
ceiver acknowledges each piece of data received. The link level protocol includes 
timeout and retransmission algorithms that prevent data loss and provide automatic 
recovery after hardware fails and restarts. 
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Successive levels of X.25 provide reliability of their own. At level 3, X.25 also 
provides error detection and recovery for packets transferred onto the network, using 
checksums as well as timeout and retransmission techniques. Finally, level 4 must pro­
vide end-to-end reliability, having the source correspond with the ultimate destination to 
verify delivery. 

In contrast to such a scheme, TCP/IP bases its protocol layering on the idea that re­
liability is an end-to-end problem. The architectural philosophy is simple: construct the 
internet so it can handle the expected load, but allow individual links or machines to 
lose data or corrupt it without trying to repeatedly recover. In fact, there is little or no 
reliability in most TCP/IP network interface layer software. Instead, the transport layer 
handles most error detection and recovery problems. 

The resulting freedom from interface layer verification makes TCP/IP software 
much easier to understand and implement correctly. Intermediate routers can discard 
datagrams that become corrupted because of transmission errors. They can discard da­
tagrams that cannot be delivered. They can discard datagrams when the arrival rate 
exceeds machine capacity, and can reroute datagrams through paths with shorter or 
longer delay without informing the source or destination. 

Havi.ng unreliable links means that some datagrams do not arrive. Detection and 
recovery of datagram loss is carried out between the source host and the ultimate desti­
nation and is, therefore, called end-to-end verification. The end-to-end software located 
in the transport layer uses checksums, acknowledgements, and timeouts to control 
transmission. Thus, unlike the connection-oriented X.25 protocol layering, the TCP/IP 
software focuses most of its reliability control in one layer. 

11.6.2 Locus of Intelligence and Decision Making 

Another difference between the X.25 model and the TCP/IP model emerges when 
one considers the locus of authority and control. As a general rule, networks using 
X.25 adhere to the idea that a network is a utility that provides a transport service. The 
vendor that offers the service controls network access and monitors traffic to keep 
records for accounting and billing. The network vendor also handles problems like 
routing, flow control, and acknowledgements internally, making transfers reliable. This 
view leaves little that the hosts can (or need to) do. In short, the network is a complex, 
independent system to which one can attach relatively simple host computers; the hosts 
themselves participate in the network operation very little. 

By contrast, TCP/IP requires hosts to participate in almost all of the network proto­
cols. We have already mentioned that hosts actively implement end-to-end error detec­
tion and recovery. They also participate in routing because they must choose a router 
when sending datagrams, and they participate in network control because they must 
handle ICMP control messages. Thus, when compared to an X.25 network, a TCP/IP 
internet can be viewed as a relatively simple packet delivery system to which intelligent 
hosts attach. 
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11. 7 The Protocol Layering Principle 

Independent of the particular layering scheme used, or the functions of the layers, 
the operation of layered protocols is based on a fundamental idea. The idea, called the 
layering principle, can be summarized succinctly: 

Layered protocols are designed so that layer n at the destination re­
ceives exactly the same object sent by layer n at the source. 

The layering principle explains why layering is such a powerful idea. It allows the 
protocol designer to focus attention on one layer at a time, without worrying about how 
lower layers perform. For example, when building a file transfer application, the 
designer thinks only of two copies of the application program executing on two 
machines and concentrates on the messages they need to exchange for file transfer. The 
designer assumes that the application on one host receives exactly what the application 
on the other host sends. 

Figure 11.6 illustrates how the layering principle works: 
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Figure 11.6 The path of a message as it passes from an application on one 
host to an application on another. Layer n on host B receives 
exactly the same object that layer n on host A sent. 
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11.7.1 Layering in a TCP/IP Internet Environment 

Our statement of the layering principle is somewhat vague, and the illustration in 
Figure 11.6 skims over an important issue because it fails to distinguish between 
transfers from source to ultimate destination and transfers across multiple networks. 
Figure 11.7 illustrates the distinction, showing the path of a message sent from an appli­
cation program on one host to an application on another through a router. 

As the figure shows, message delivery uses two separate network frames, one for 
the transmission from host A to router R, and another from router R to host B. The net­
work layering principle states that the frame delivered to R is identical to the frame sent 
by host A. By contrast, the application and transport layers deal with end-to-end issues 
and are designed so the software at the source communicates with its peer at the ulti­
mate destination. Thus, the layering principle states that the packet received by the 
transport layer at the ultimate destination is identical to the packet sent by the transport 
layer at the original source. 
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Figure 11.7 The layering principle when a router is used. The frame 
delivered to router R is exactly the frame sent from host A, but 
differs from the frame sent between Rand B. 
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It is easy to understand that in higher layers, the layering principle applies across 
end-to-end transfers, and that at the lowest layer it applies to a single machine transfer. 
It is not as easy to see how the layering principle applies to the Internet layer. On one 
hand, we have said that hosts attached to an internet should view it as a large, virtual 
network, with the IP datagram taking the place of a network frame. In this view, da­
tagrams travel from original source to ultimate destination, and the layering principle 
guarantees that the ultimate destination receives exactly the datagram that the original 
source sent. On the other hand, we know that the datagram header contains fields, like 
a time to live counter, that change each time the datagram passes through a router. 
Thus, the ultimate destination will not receive exactly the same datagram as the source 
sent. We conclude that although most of the datagram stays intact as it passes across an 
internet, the layering principle only applies to datagrams across single machine 
transfers. To be accurate, we should not view the Internet layer as providing end-to-end 
service. 

11.8 Layering In The Presence Of Network Substructure 

Recall from Chapter 2 that some wide area networks contain multiple packet 
switches. For example, a WAN can consist of routers that connect to a local network at 
each site as well as to other routers using leased serial lines. When a router receives a 
datagram, it either delivers the datagram to its destination on the local network, or 
transfers the datagram across a serial line to another router. The question arises: " How 
do the protocols used on serial lines fit into the TCP/IP layering scheme?" The answer 
depends on how the designer views the serial line interconnections. 

From the perspective of IP, the set of point-to-point connections among routers can 
either function like a set of independent physical networks, or they can function collec­
tively like a single physical network. In the first case, each physical link is treated ex­
actly like any other network in the internet. It is assigned a unique (usually class C) 
network number, and the two hosts that share the link each have a unique IP address as­
signed for their connection. Routes are added to the IP routing table as they would be 
for any other network. A new software module is added at the network interface layer 
to control the new link hardware, but no substantial changes are made to the layering 
scheme. The main disadvantage of the independent network approach is that it proli­
ferates network numbers (one for each connection between two machines), causing rout­
ing tables to be larger than necessary. Both Serial Line IP (SLIP) and the Point to 
Point Protocol (PPP) treat each serial link as a separate network. 

The second approach to accommodating point-to-point connections avoids assign­
ing multiple IP addresses to the physical wires. Instead, it treats all the connections col­
lectively as a single, independent IP network with its own frame format, hardware ad­
dressing scheme, and data link protocols. Routers that use the second approach need 
only one IP network number for all point-to-point connections. 
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Using the single network approach means extending the protocol layering scheme 

to add a new intranetwork routing layer between the network interface layer and the 

hardware devices. For machines with only one point-to-point connection, an additional 

layer seems unnecessary. To see why it is needed, consider a machine with several 

physical point-to-point connections, and recall from Figure 11.2 how the network inter­

face layer is divided into multiple software modules that each control one network. We 

need to add one new network interface for the new point-to-point network, but the new 

interface must control multiple hardware devices. Furthermore, given a datagram to 

send, the new interface must choose the correct link over which the datagram should be 

sent. Figure 11.8 shows the organization. 
The Internet layer software passes to the network interface all datagrams that 

should be sent out on any of the point-to-point connections. The interface passes them 

to the intranet routing module that must further distinguish among multiple physical 

connections and route the datagram across the correct one. 

The programmer who designs the intranet routing software determines exactly how 

the software chooses a physical link. Usually, the algorithm relies on an intranet rout­

ing table. The intranet routing table is analogous to the internet routing table in that it 

specifies a mapping of destination address to route. The table contains pairs of entries, 

(D, L), where D is a destination host address and L specifies one of the physical lines 

used to reach that destination. 
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Protocol 2 
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Interface 2 

Point-To-Point 
(Intranet) 
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Figure 11.8 (a) conceptual position of an intranet protocol for point-to-point 

connections when IP treats them as a single IP network, and (b) 

detailed diagram of corresponding software modules. Each ar­

row corresponds to one physical device. 
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The difference between an internet routing table and an intranet routing table is 
that intranet routing tables are quite small. They only contain routing information for 
hosts directly attached to the point-to-point network. The reason is simple: the Internet 
layer maps ah arbitrary destination address to a specific router address before passing 
the datagram to a network interface. Thus, the intranet layer is asked only to distin­
guish among machines on a single point-to-point network. 

11.9 Two Important Boundaries In The TCP/IP Model 

The conceptual protocol layering includes two boundaries that may not be obvious: 
a protocol address boundary that separates high-level and low-level addressing, and an 
operating system boundary that separates the system from application programs. 

11.9.1 High-Level Protocol Address Boundary 

Now that we have seen the layering of TCP/IP software, we can be precise about 
an idea introduced in Chapter 8: a conceptual boundary partitions software that uses 
low-level (physical) addresses from software that uses high-level (IP) addresses. As 
Figure 11.9 shows, the boundary occurs between the network interface layer and the In­
ternet layer. That is, 

Application programs as well as all protocol software from the Inter­
net layer upward use only IP addresses; the network interface layer 
handles physical addresses. 

Thus, protocols like ARP belong in the network interface layer. They are not part of IP. 

Conceptual Layer Boundary 

Application 
Software outside the operating system 

-----1----------------- ---------- ---------
Transport Software inside the operating system 

Internet 
Only IP addresses used 

-----------------------------------------Network 
Interface 

Hardware 

Physical addresses used 

Figure 11.9 The relationship between conceptual layering and the boundaries 
for operating system and high-level protocol addresses. 
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11.9.2 Operating System Boundary 

Figure 11.9 shows another important boundary as well, the division between 
software that is generally considered part of the operating system and software that is 
not. While each implementation of TCP/IP chooses how to make the distinction, many 
follow the scheme shown. Because they lie inside the operating system, passing data 
between lower layers of protocol software is much less expensive than passing it 
between an application program and a transport layer. Chapter 20 discusses the prob­
lem in more detail and describes an example of the interface an operating system might 
provide. 

11.1 O The Disadvantage Of Layering 

We have said that layering is a fundamental idea that provides the basis for proto­
col design. It allows the designer to divide a complicated problem into subproblems 
and solve each one independently. Unfortunately, the software that results from strict 
layering can be extremely inefficient. As an example, consider the job of the transport 
layer. It must accept a stream of bytes from an application program, divide the stream 
into packets, and send each packet across the internet. To optimize transfer, the tran­
sport layer should choose the largest possible packet size that will allow one packet to 
travel in one network frame. In particular, if the destination machine attaches directly 
to one of the same networks as the source, only one physical net will be involved in the 
transfer, so the sender can optimize packet size for that network. If the software 
preserves strict layering, however, the transport layer cannot know how the Internet 
module will route traffic or which networks attach directly. Furthermore, the transport 
layer will not understand the datagram or frame formats nor will it be able to determine 
how many octets of header will be added to a packet. Thus, strict layering will prevent 
the transport layer from optimizing transfers. 

Usually, implementors relax the strict layering scheme when building protocol 
software. They allow information like route selection and network MTU to propagate 
upward. When allocating buffers, they often leave space for headers that will be added 
by lower layer protocols and may retain headers on incoming frames when passing them 
to higher layer protocols. Such optimizations can make dramatic improvements in effi­
ciency while retaining the basic layered structure. 

11.11 The Basic Idea Behind Multiplexing And Demultiplexing 

Communication protocols uses techniques of multiplexing and demultiplexing 
throughout the layered hierarchy. When sending a message, the source computer in­
cludes extra bits that encode the message type, originating program, and protocols used. 
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Eventually, all messages are placed into network frames for transfer and combined into 
a stream of packets. At the receiving end, the destination machine uses the extra infor­
mation to guide processing. 

Consider an example of demultiplexing shown in Figure 11.10. 

IP Module ARP Module 

Demultiplexing Based 

On Frame Type 

Frame Arrives 

RARP Module 

Figure 11.10 Demultiplexing of incoming frames based on the type field­
found in the frame header. 

The figure illustrates how software in the network interface layer uses the frame type to 
choose a procedure that handles the incoming frame. We say that the network interface 
demultiplexes the frame based on its type. To make such a choice possible, software in 
the source machine must set the frame type field before transmission. Thus, each 
software module that sends frames uses the type field to specify frame contents. 

Multiplexing and demultiplexing occur at almost every protocol layer. For exam­
ple, after the network interface demultiplexes frames and passes those frames that con­
tain IP datagrams to the IP module, the IP software extracts the datagram and demulti­
plexes further based on the transport protocol. Figure 11.11 demonstrates demultiplex­
ing at the Internet layer. 
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ICMP Protocol UDP Protocol TCP Protocol EGP Protocol 

IP Module 

Datagram Arrives 

Figure 11.11 Demultiplexing at the Internet layer. IP software chooses an ap­
propriate procedure to handle a datagram based on the protocol 
type field in the datagram header. 

To decide how to handle a datagram, internet software examines the header of a da­
tagram and selects a protocol handler based on the datagram type. In the example, the 
possible datagram types are: ICMP, which we have already examined, and UDP, TCP, 
and EGP, which we will examine in later chapters. 

11.12 Summary 

Protocols are the standards that specify how data is represented when being 
transferred from one machine to another. Protocols specify how the transfer occurs, 
how errors are detected, and how acknowledgements are passed. To simplify protocol 
design and implementation, communication problems are segregated into subproblems 
that can be solved independently. Each subproblem is assigned a separate protocol. 

The idea of layering is fundamental because it provides a conceptual framework 
for protocol design. In a layered model, each layer handles one part of the communica­
tion problem and usually corresponds to one protocol. Protocols follow the layering 
principle, which states that the software implementing layer n on the destination 
machine receives exactly what the software implementing layer n on the source machine 
sends. 

We examined the 4-layer Internet reference model as well as the ISO 7-layer refer­
ence model. In both cases, the layering model provides only a conceptual framework 
for protocol software. The ITU-TS X.25 protocols follow the ISO reference model and 
provide an example of reliable communication service offered by a commercial utility, 
while the TCP/IP protocols provide an example of a different layering scheme. 
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In practice, protocol software uses multiplexing and demultiplexing to distinguish 
among multiple protocols within a given layer, making protocol software more complex 
than the layering model suggests. 

FOR FURTHER STUDY 

Postel [RFC 791] provides a sketch of the Internet Protocol layering scheme, and 
Clark [RFC 817) discusses the effect of layering on implementations. Saltzer, Reed, 
and Clark [1984] argues that end-to-end verification is important. Chesson [1987) 
makes the controversial argument that layering produces intolerably bad network 
throughput. Volume 2 of this text examines layering in detail, and shows an example 
implementation that achieves efficiency by compromising strict layering and passing 
pointers between layers. 

The ISO protocol documents [1987a] and [1987b] describe ASN.1 in detail. Sun 
[RFC 1014) describes XDR, an example of what might be called a TCP/IP presentation 
protocol. Clark discusses passing information upward through layers [Clark 1985). 

EXERCISES 

11.1 Study the ISO layering model in more detail. How well does the model describe com­
munication on a local area network like an Ethernet? 

11.2 Build a case that TCP/IP is moving toward a five-level protocol architecture that in­
cludes a presentation layer. (Hint: various programs use the XDR protocol, Courier, and 
ASN.l.) 

11.3 Do you think any single presentation protocol will eventually emerge that replaces all 
others? Why or why not? 

11.4 Compare and contrast the tagged data format used by the ASN.l presentation scheme 
with the untagged format used by XDR. Characterize situations in which one is better 
than the other. 

11.5 Find out how UNIX systems uses the mbuf structure to make layered protocol software 
efficient. 

11.6 Read about the System V UNIX streams mechanism. How does it help make protocol 
implementation easier? What is its chief disadvantage? 




