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Abstract—Off-state leakage currents have been investigated for
sub-100 nm CMOS technology. The two leakage mechanisms in-
vestigated in this work include conventional off-state leakage due
to short channel effects and gate leakage through ultrathin gate ox-
ides. The conventional off-state leakage due to short channel effects
exhibited the similar characteristics as previously published; how-
ever, gate leakage introduces two significant consequences with re-
spect to off-state power consumption: 1) an increase in the number
of transistors contributing to the total off-state power consumption
of the chip and 2) an increase in the conventional off-state current
due to gate leakage near the drain region of the device. Using ex-
perimentally measured data, it is estimated that gate leakage does
not exceed the off-state specifications of the National Technology
Roadmap for Semiconductors for gate oxides as thin as 1.4 to 1.5
nm for high performance CMOS. Low power and memory appli-
cations may be limited to an oxide thickness of 1.8 to 2.0 nm in
order to minimize the off-state power consumption and maintain
an acceptable level of charge retention. The analysis in this work
suggests that reliability will probably limit silicon oxide scaling for
high performance applications whereas gate leakage will limit gate
oxide scaling for low power and memory applications.

Index Terms—MOS devices, off-state leakage, power consump-
tion, ultrathin gate oxide.

I. INTRODUCTION

ONE of the most challenging CMOS device design criteria
is maintaining a required off-state leakage specification

while maximizing the device drive current. For conventional
CMOS devices, the dominant leakage mechanism is due to
short channel effects (SCE) where the drain potential lowers
the source junction barrier to minority carriers. This barrier
lowering is typically referred to as drain induced barrier
lowering (DIBL) and has been investigated extensively [1]–[5].
As CMOS gate lengths approach the 100 nm regime other
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leakage mechanisms will contribute to the off-state power
consumption. The physical gate oxide thickness for the 100-nm
technology regime is projected to be less than 2.5 nm [6], which
introduces a nonnegligible gate current due to direct tunneling
[7]–[16]. The direct tunneling current increases exponentially
with decreasing oxide thickness, which introduces a potential
limitation in aggressively scaling the gate oxide for advanced
CMOS technology. Although several reports have demonstrated
the advantages of using direct tunnel oxides [7]–[9] and the
corresponding consequences on power consumption [10], the
scaling limitations due to off-state leakage for advanced CMOS
devices have not been critically addressed.

The analysis presented in this paper combines experimental
data from two different device experiments to address leakage
current limitations of CMOS scaling. One set of experimental
data was collected on devices fabricated at North Carolina
State University (NCSU) and a second set was collected on
devices fabricated at the Interuniversity Micro-Electronics
Center (IMEC). The NCSU device experiment consists of
NMOS devices with gate oxides ranging in thickness from
1.4 to 2.0 nm; however the minimum gate length was only
0.32 m. The IMEC device experiment consists of CMOS
devices with various halo implant doses, source/drain extension
doses, thermal budgets and has gate lengths down to 100 nm;
however, the gate oxide thickness is fixed at 2.5 nm. Using the
experimental data from both device lots, the impact of gate
leakage and conventional channel leakage on off-state power
consumption can be analyzed.

The device fabrication details are described in Section II. The
gate leakage current and channel leakage current are individu-
ally analyzed in Section III and then used in Section IV to es-
timate the off-state leakage levels for sub-100 nm CMOS tech-
nology. The results are summarized in Section V.

II. EXPERIMENT

The NCSU devices were fabricated on p-type wafers with a
nominal uniform doping of cm . -channel tran-
sistors were fabricated with a four mask process (active, poly,
contact, and metal). The pre-gate oxidation clean consisted of
a standard RCA clean followed by a 25-nm sacrificial oxide
grown via wet oxidation. The sacrificial oxide was removed
one wafer at a time with a 2% HF solution then immediately
loaded into the rapid thermal processor (RTP). The gate oxides
were grown by rapid thermal oxidation (RTO) at 800C where
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oxidation pressure and cycle time were used to control thick-
ness. A 150-nmin-situphosphorous doped polysilicon gate was
deposited before removing the wafer from the RTP. The gate
was patterned by reactive ion etching, a single arsenic implant
formed the source/drain junctions and titanium/aluminum was
evaporated for front side metal.

The IMEC devices were fabricated in a full CMOS process
with a 2.5-nm NO based furnace gate oxide. The nitrogen con-
centration incorporated into the oxide is estimated to be 7 to 8
atomic % from SIMS analysis. Further analysis of the nitrogen
concentration and the impact on electrical characteristics can
be found in [17]. Advanced 248 nm deep-UV lithography with
alternating phase shift mask technique was used for the gate
patterning. Optimization of the lithography process resulted in
low across the chip linewidth variations for the 130-nm isolated
lines and the smallest poly lines printed were 100 nm. Asand
B implants were employed to form a retrograde channel pro-
file prior to gate stack formation while a second large tilt angle
or halo implant with As and BF was employed after gate
stack lithography. Low energy BFand As implants formed
the shallow extensions followed by nitride spacer formation and
deep junction formation with B and As implants. An ad-
vanced Co/Ti silicidation scheme was used and the transistor
fabrication was completed conventionally up to level 1 met-
allization. The electrical characteristics of the NCSU devices
were measured with an HP4145B parameter analyzer and an
HP4284A LCR meter. The IMEC devices were measured with
an HP4156A parameter analyzer and an HP4284A LCR meter.

III. A NALYSIS OF DIBL AND GATE LEAKAGE

A. Definition of Leakage Components with Device Bias

Fig. 1(a) illustrates the various leakage mechanisms
for CMOS technology in the 100-nm gate length
regime for an -channel device biased in the off-state

. The three possibilities for
leakage are the channel current , gate oxide tunneling
current and the junction tunneling current .
The channel current represents the conventional DIBL leakage
mechanism and is a function of channel doping, temperature,
applied bias and junction architecture [1]–[5]. The gate current
represents leakage through the oxide and is exponentially
dependent on oxide thickness and applied bias [11]–[16].
The junction current represents the band to band tunneling or
leakage mechanisms due to defects [18], [19].

Fig. 1(b) illustrates a second bias configuration that becomes
significant for devices with direct tunnel gate oxides. Consider
for example a device with and (e.g.
NMOS of an inverter). In this case the gate leakage occurs uni-
formly across the device area which represents an additional
leakage mechanism that is not present in more conventional
CMOS technology with thicker gate oxides ( nm). The
leakage in Fig. 1(b) must also be considered when analyzing the
off-state power consumption for devices with direct tunnel ox-
ides.

(a)

(b)

Fig. 1. Definition of leakage components for advanced CMOS devices. (a)
Applied bias to drain and all other terminals grounded. Note that the arrows
indicate the direction of electron flow in an NMOS device. (b) Gate leakage
component for a device with a direct tunnel gate oxide. Applied bias to gate
and all other terminals grounded. Note that the arrows indicate the direction of
electron flow in an NMOS device.

B. Gate Current Leakage Characteristics

Fig. 2 illustrates the typical gate leakage characteristics
versus gate bias with several different oxide thicknesses. The
data in Fig. 2 were measured on n-channel MOSFET’s with the
source, drain and substrate connected to ground. The values of
oxide thickness are estimates of the physical thickness using
conventional capacitance-voltage measurements and modeling
to account for the quantum confinement and poly-depletion
effects [20], [21]. The polysilicon depletion is accounted
for by modeling the polysilicon gate as a uniformly doped
semiconductor with doping . The polysilicon doping
is extracted from capacitance–voltage (C–V) measurements
on transistors with gate oxides thicker than 2.5 nm to avoid
attenuation of inversion capacitance due to leakage [22]. The
quantum mechanical confinement effects of the semiconductor
charge are modeled in a similar fashion as described in [23]. A
nonlinear least squares technique is used to fit the theoretical
model to the measured data where the oxide thickness, substrate
doping and flatband voltage are used as fitting parameters.
More details of the modeling are described in [20] while the
impact of leakage current and comparison with high resolutionSMIC Ex. 1019
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Fig. 2. Gate current density versus gate bias measured on NMOS transistors
with the drain, source and substrate grounded. Measurements for 1.4 nm, 1.8 nm
and 2.0 nm taken from NCSU devices and 2.5 nm taken from IMEC devices.

tunneling electron microscopy can be found in [21]. The data
in Fig. 2 are in good agreement with recent results published
in [16] but exhibit lower leakage at a given oxide thickness
and bias than in other published results [14]. We believe this
discrepancy is due to the modeling and not necessarily a real
improvement in oxide quality.

To illustrate how dramatically the gate current increases
power consumption, the data in Fig. 2 have been converted to
a power density [W/cm] and plotted versus oxide thickness
in Fig. 3. The inverse slopes of the data in Fig. 3 are
nm/decade, nm/decade and nm/decade for a
gate bias of 1.3 V, 1.0 V and 0.7 V, respectively. The values of
these slopes are not encouraging since a 0.3 nm reduction in
oxide thickness increases the power density approximately one
order of magnitude.

The off-state bias configuration of V and
[Fig. 1(a)] also exhibits a nonnegligible gate

current but not as significant as the case when and
. This is intuitively expected since the tunneling cur-

rent is localized in the drain region for the off-state condition.
Fig. 4 shows the gate current per unit width versus drain bias
characteristics with for different oxide thicknesses
and channel lengths. The detailed physics of describing the
gate leakage current due to drain bias requires two-dimensional
analysis of tunneling which is beyond the scope of this work,
however, several features can be observed.

The first obvious trend to note is the gate current exhibits a
strong exponential dependence with oxide thickness as expected
from a tunneling process. A second trend to note is the gate
current weakly depends on channel length suggesting that the
tunneling may be concentrated at the gate to drain overlap re-
gion. Note that the magnitude of the gate current for the 1.8
nm gate oxide is less than 1 nA/m for drain biases up to 2
V. However, the magnitude of the gate current for the 1.4-nm

Fig. 3. Gate current density data converted to power density and plotted versus
oxide thickness. Measurements for 1.4 nm, 1.8 nm and 2.0 nm taken from NCSU
devices and 2.5 nm taken from IMEC devices.

Fig. 4. Gate leakage current as a function of drain bias for three different oxide
thicknesses. For each oxide thickness the gate leakage is measured for a 4.82
�m, 0.82�m and 0.32�m channel length. No trends are observed with channel
length.

gate oxide is in the range of 1 to 10 nA/m for applied drain bi-
ases between 0.6–1.7 V. Therefore, as the oxide thickness scales
below 1.8 nm, a significant fraction of the conventional off-state
leakage current will be due to gate leakage near the drain por-
tion of the device. This places more stringent requirements on
channel engineering to reduce the leakage due to short channel
effects in order to compensate for the extra leakage from the
gate current.

C. DIBL Leakage Current Characteristics

The off-state leakage current that flows between the source
and drain can be attributed to surface punchthrough and bulkSMIC Ex. 1019
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Fig. 5. Channel leakage current versus drain bias for an NMOS device with
nominalL of 130 nm and different temperatures.

punchthrough. Bulk punchthrough leakage exhibits character-
istics that are weakly dependent on temperature whereas the
surface punchthrough, or DIBL leakage, is strongly dependent
on temperature [3]–[5]. Leakage measurements were performed
as a function of temperature to determine the dominant leakage
mechanism. Fig. 5 illustrates the measured source current versus
drain bias for an NMOS transistor with nominal of 130 nm
and temperature ranging from 25C to 150 C. The drastic in-
crease in source current with temperature demonstrates that sur-
face leakage is the dominant mechanism and can be described
by the following equation [3], [5]:

(1)

The parameter is a dimensionless constant that represents the
DIBL effect and depends on device architecture.represents
the electronic charge, represents the applied drain-source
voltage, represents Boltzmann’s constant,represents tem-
perature, is the bandgap, and represents the potential at
the surface [5].

To analyze the DIBL leakage as a function of device param-
eters, the leakage data are modeled by (1) for three halo im-
plant conditions ( cm cm
cm ), four gate lengths (250 nm, 150 nm, 130 nm, and 100 nm)
and four temperatures (25C, 50 C, 100 C, and 150 C). Note
that the mask length is used instead of the effective
channel length . The reason for using is due to the
inability of extracting from devices with a strong reverse
short channel effect (RSCE) [24]. Fig. 6 illustrates the RSCE
with the linear threshold voltage versus for three different
halo implant conditions. The increase in threshold voltage is due

Fig. 6. Threshold voltage versus gate length for three different halo implant
doses with all other fabrication steps identical. Error bars represent the
maximum and minimum extracted values from four measurements.

to an increase in channel doping when the halo implants begin
to overlap. The increasing doping means the effective mobility
is also a function of channel length and currently there is not a
proven technique that can self-consistently extract for de-
vices with different effective mobility. The second detail to note
is only nMOS devices are shown in this analysis. The reason
for using nMOS devices is that the is much closer to
compared to pMOS devices due to less dopant diffusion from
the junctions.

The results are summarized in Fig. 7(a) and (b) with the ex-
tracted and parameter, respectively. The parameter ex-
hibits an exponential dependence on which verifies the
functional relationship of (1). Increasing the channel doping via
the halo implant dose substantially reduces the DIBL leakage
as seen in Fig. 7(a); however, as a consequence the threshold
voltage is drastically increased which leads to a lower current
drive. The parameter increases significantly with decreasing
gate length due to the stronger influence of the drain potential
on the source junction. The higher channel doping only lowers
the parameter marginally as seen in Fig. 7(b).

IV. DISCUSSION

As CMOS technology approaches the 100-nm technology
node an additional component of power consumption is intro-
duced due to the gate leakage current. As described in Sec-
tion III-B, the magnitude of the gate leakage current is a strong
function of the applied bias [e.g., leakage described in Fig. 1(a)
versus (b)]. A precise analysis of power consumption is com-
plicated due to the different tunneling properties of electrons
and holes (e.g., NMOS devices versus PMOS devices). Also, the
gate leakage contributing to the conventional off-state leakage is
expected to be dependent on processing and device architecture
(poly oxidation, juntion-gate overlap, etc.). A general expres-SMIC Ex. 1019
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(a)

(b)

Fig. 7. ExtractedI and m parameters from fitting equation (1) to
experimental data in Fig. 5. (a) ExtractedI parameter in (1) forL = 100

nm NMOS devices with different halo implant doses. The error bars represent
the maximum and minimum from three measurements. (b) Extractedm

parameter in (1) with different halo implant doses.

sion for off-state power can be written as

All devices with
`` conventional'' leakage

[see Fig. 1(a)]

All devices with
uniform gate leakage

[see Fig. 1(b)]
(2a)

–

–
(2b)

where is the supply voltage, and are the tran-
sistor width and length, respectively. The term represents
the leakage illustrated in Fig. 1(a) while represents the
leakage illustrated in Fig. 1(b). The indices and
represent the number of transistors at the corresponding bias de-
fined in Fig. 1.

There are at least two important consequences to consider re-
garding the impact of gate leakage on off-state power consump-
tion. First, the number of transistors contributing to signif-
icantly increases. For conventional CMOS technology only de-
vices biased such as and contribute to . The addition of
the gate leakage term as defined byand introduces more
devices contributing to . As a consequence, the spec-
ification for a given technology or application may need to be
decreased in magnitude in order to compensate for the contribu-
tions from gate leakage. The second consequence to consider is
the impact of gate current on conventional off-state leakage. As
illustrated by Fig. 4, the magnitude of the gate current becomes a
significant fraction of the off-state drain current for gate oxides
thinner than 1.8 nm; therefore, the constraints on the leakage
due to DIBL become more severe in order to achieve the de-
sired total . This second consequence suggests that higher
demands will be placed on channel engineering if oxides thinner
than 1.8 nm are to be used.

To further examine the impact of uniform gate leakage
[Fig. 1(b)], the data in Fig. 2 has been converted to per
unit width as described in (3) and plotted in Fig. 8 for biases
of 1.3 V, 1.0 V and 0.7 V.

(3)

where is the leakage current illustrated in Fig. 1(b),
and represent the channel width and poly length, respec-
tively, and represents the measured gate leakge plotted in
Fig. 2. Equation (3) normalizes the uniform gate leakage to am-
peres per unit width, which is consistent to compare with the
conventional per unit width. Conventional DIBL leakage
data from IMEC’s sub 250 nm NMOS devices are included for
comparison only. Note that values of DIBL leakage for

nm is not available since the smallest gates from the IMEC
devices are 100 nm.

Note that the electrical data in Fig. 8 are not optimized for gate
lengths of 100 nm and sub 100-nm CMOS technology; however,
the trends of the data provide some insight into the limitations of
oxide scaling due to gate leakage. For example, assuming a high
performance specification for off-state leakage of 10 nA/m,
a 1.4–1.5 nm oxide exhibits leakage less than 10 nA/m for a
gate length of 50 nm and a supply voltage of 1.3 V. Assuming
a portable or low power application, the estimated gate leakage
for a gate oxide of 1.8 to 1.9 nm, a gate length of 50 nm and
supply voltage of 1.3 V is approximately 0.1 nA/m. Further
reduction of the applied voltage reduces the gate leakage sub-
stantially. For an applied bias of 1 V and gate lengths between 50
nm to 100 nm, the estimated gate leakage for the 1.4 nm oxide is
between 1–3 nA/m. The corresponding gate leakage for an ap-
plied bias of 0.7 V is between 0.2–0.6 nA/m. These examples
are simplistic, however, the estimates show that the gate leakageSMIC Ex. 1019
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(a)

(b)

(c)

Fig. 8. Off-state leakage per unit width for a single transistor. Values are
calculated using experimental data. The dashed lines represent DIBL leakage
and the solid lines represent the gate leakage. (a)V = 1:3 V. (b) V = 1:0

V. (c) V = 0:7 V.

illustrated in Fig. 1(b) is within NTRS specifications for oxides
down to 1.4 nm.

A detailed analysis of the conventional off-state bias
[Fig. 1(a)] where gate leakage and DIBL leakage are present
in the same device is beyond the scope of the available data.
Although the gate leakage from Fig. 4 are also within the
NTRS specifications for off-state leakage, the addition of gate
leakage and DIBL leakage may require less aggressive scaling
of oxide thickness or more aggressive scaling of supply voltage.
The combination of the sharp increase of DIBL leakage with
decreasing channel length observed in Fig. 8 plus the gate
leakage component illustrated in Fig. 4 certainly requires
serious consideration in sub-100-nm CMOS device design.

Note that the analysis of gate leakage in this work did not
include any data from PMOS devices; however, the trends are
not expected to become worse since the magnitude of electron
tunneling is larger than hole tunneling for a given oxide thick-
ness and bias [25]. Also, the impact of high channel doping on
gate leakage was not considered. Again the trends are not ex-
pected to become worse since for a given bias and oxide thick-
ness, the gate leakage is expected to decrease with increasing
doping [15]. With respect to gate leakage, the trends of the data
in Fig. 8 are slightly pessimistic since the channel doping is ex-
pected to be significantly higher than the doping of the experi-
mental devices.

Although gate leakage does not appear to limit the oxide
scaling down to 1.4 to 1.5 nm or 1.8 to 2.0 nm for high perfor-
mance and low power applications, respectively, there are other
issues to consider. The experimental data in this work primarily
consist of pure silicon oxide, whereas the real technologies will
use some form of nitrided oxide to control boron penetration. A
more realistic analysis of gate leakage should study the oxyni-
trides [26], [27] intended for use in these advanced CMOS tech-
nologies since tunneling is very sensitive to dielectric and in-
terface properties. More important, reliability constraints have
been reported that propose a more severe limit on oxide scaling
[28]–[30] while other reports indicate that reliability constraints
are not as severe [31]–[33].

V. SUMMARY

Leakage currents for advanced CMOS technology include
conventional DIBL leakage and gate leakage. The DIBL leakage
characteristics exhibit surface punchthrough conduction mecha-
nisms that are exponentially dependent on channel length, drain
bias and temperature. The gate leakage current depends expo-
nentially on oxide thickness and gate bias. The most critical bias
for gate leakage corresponds to and V
where the leakage current occurs across the entire device area.
The conventional off-state bias of V and

will have an increasingly significant contribution from the
gate due to tunneling; however, the magnitude of gate leakage
is very small since the effective tunneling area is concentrated
at the gate to drain overlap region.

Gate leakage current is expected to have two major conse-
quences on off-state power consumption. First, the total number
of devices contributing to the off-state power consumption in-
creases. This may result in a lower off-state current specifica-
tion to compensate for the additional contribution from gate
leakage. Second, the conventional off-state bias (e.g.,SMIC Ex. 1019
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) will have an increasing contribution from
the gate current. This increases the demands on channel engi-
neering to lower DIBL leakage in order to compensate for the
gate leakage component.

Although gate leakage is expected to introduce new chal-
lenges in CMOS device design, it is estimated that the silicon
oxide can scale down to the 1.4 to 1.5 nm regime for high perfor-
mance applications and the off-state leakage will remain within
the target specifications ( nA/ m). However, reli-
ability of silicon oxide remains a controversial issue and it will
most likely be the limiting factor for scaling silicon oxide thick-
ness in high performance applications. For low power applica-
tions with lower operating voltages, reliability of the gate oxide
becomes less of an issue and gate leakage becomes the limiting
factor with respect to scaling silicon oxides. Using the NTRS
specifications, the gate oxide thickness is estimated to scale
down to the 1.8 to 2.0 nm regime for low power and memory
applications.
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