
Document made available under
Patent Cooperation Treaty (PCT)

International application number: PCT/US2009/067935

International filing date: 14 December 2009 (14.12.2009)

Document type: Certified copy of priority document

Document details: Country/Office: US
Number: 61/122,673
Filing date: 15 December 2008 (15.12.2008)

Date of receipt at the International Bureau: 07 January 2010 (07.01.2010)

Remark: Priority document submitted or transmitted to the International Bureau in
compliance with Rule 17 .1 (a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriete Intellectuelle (OMPI) - Geneve, Suisse

the

Ex. 1003 - Page 1

mrush
Text Box
ACTIV Exhibit 1003
ACTIV v. IP Reservoir

Ex. 1003 - Page 2

PTOISBl14 (07-07)
Approved for use through 0613012010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 44826-80492
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

The application data sheet is part of the provisional or nonprovisional application for which it is being submitted. The following form contains the
bibliographic data arranged in a format specified by the United Slates Patent and Trademark Office as outlined in 37 CFR 1.76.
This document may be completed electronically and submitted to the Office in electronic format using the Electronic Filing System (EFS) or the
document may be printed and included in a paper filed application.

Secrecy Order 37 CFR 5.2
D Portions or all of the application associated with this Application Data Sheet may fall under a Secrecy Order pursuant to

37 CFR 5.2 (Paper filers only. Applications that fall under Secrecy Order may not be filed electronically.)

A r .pp 1can t I f f n orma ion:

Aoolicant 1 I Remove I
Applicant Authority 0 Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

David E. Taylor

Residence Information (Select One) 0 US Residency 0 Non US Residency Q Active US Military Service

City St. Louis State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i us

Mailing Address of Applicant:

Address 1 3448 Missouri Avenue

Address 2

City I St. Louis I State/Province I MO

Postal Code 63118 I Countryi I us

Annlicant 2 I Remove I
Applicant Authority 0 Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Scott Parsons

Residence Information (Select One) 0 US Residency 0 Non US Residency 0 Active US Military Service

City St. Charles State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i us
Mailing Address of Applicant:

Address 1 10 Beaufort Court

Address 2

City I St. Charles I State/Province I MO

Postal Code 63301 I Countryi I us

Aoolicant 3 I Remove I
Applicant Authority @Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Jeremy Walter Whatley

Residence Information (Select One) @ US Residency 0 Non US Residency 0 Active US Military Service

City Ballwin State/Province I MO I Country of Residence i I US

EFS Web 2.2.2

Ex. 1003 - Page 3

PTOISBl14 (07-07)
Approved for use through 0613012010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 44826-80492
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

Citizenship under 37 CFR 1.41(b) i us

Mailing Address of Applicant:

Address 1 1756 Stoney Terrace Drive

Address 2

City I Ballwin I State/Province I MO

Postal Code 63021 I Countryi I us

Aoolicant4 I Remove I
Applicant Authority ®Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Richard Bradley

Residence Information (Select One) ® US Residency 0 Non US Residency 0 Active US Military Service

City St. Louis State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i

Mailing Address of Applicant:

Address 1 349 Marshall Avenue, Suite 100

Address 2

City I St. Louis I State/Province I MO

Postal Code 63119 I Countryi I us

Aoolicant 5 I Remove I
Applicant Authority (!)Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Kwame Gyang

Residence Information (Select One) (!) US Residency 0 Non US Residency O Active US Military Service

City St. Louis State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i us
Mailing Address of Applicant:

Address 1 4355 Maryland Avenue, #405

Address 2

City I St. Louis I State/Province I MO

Postal Code 63108 I Countryi I us

Aoolicant 6 I Remove I
Applicant Authority @Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Michael De Wulf

Residence Information (Select One) (!) US Residency 0 Non US Residency 0 Active US Military Service

City St. Louis State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i

EFS Web 2.2.2

Ex. 1003 - Page 4

PTOISBl14 (07-07)
Approved for use through 0613012010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 44826-80492
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

Mailing Address of Applicant:

Address 1 349 Marshall Avenue, Suite 100

Address 2

City I St. Louis I State/Province I MO

Postal Code 63119 I Countryi I us

Aoolicant 7 I Remove I
Applicant Authority (!)Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Todd Alan Strader

Residence Information (Select One) 0 US Residency 0 Non US Residency 0 Active US Military Service

City St. Louis State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i us

Mailing Address of Applicant:

Address 1 610 Lee Avenue

Address 2

City I St. Louis I State/Province I MO

Postal Code 63119 I Countryi I us

Aoolicant 8 I Remove I
Applicant Authority (!)Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Brandon Parks Thurmon

Residence Information (Select One) 0 US Residency 0 Non US Residency 0 Active US Military Service

City Webster Groves State/Province I MO I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i us
Mailing Address of Applicant:

Address 1 301 Newport Avenue

Address 2

City I Webster Groves I State/Province I MO

Postal Code 63119 I Countryi I us

Aoolicant 9 I Remove I
Applicant Authority (!)Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Nathaniel Mc Vicar

Residence Information (Select One) (!) US Residency 0 Non US Residency 0 Active US Military Service

City St. Louis State/Province I MO I Country of Residence i I US

Citizenship under 37 CFR 1.41(b) i us

EFS Web 2.2.2

Ex. 1003 - Page 5

PTOISBl14 (07-07)
Approved for use through 0613012010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 44826-80492
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

Mailing Address of Applicant:

Address 1 4605 Lindell Boulevard, Apt 1403

Address 2

City I
St Louis I State/Province I MO

Postal Code 63108 I Countryi I us

Aoolicant 10 I Remove I
Applicant Authority (!)Inventor I QLegal Representative under 35 U.S.C. 117 I QParty of Interest under 35 U.S.C. 118

Prefix Given Name Middle Name Family Name Suffix

Justin Ryan Thiel

Residence Information (Select One) 0 US Residency 0 Non US Residency O Active US Military Service

City Glen Carbon State/Province I IL I Country of Residence i I us

Citizenship under 37 CFR 1.41(b) i us

Mailing Address of Applicant:

Address 1 14 Cottonwood

Address 2

City I Glen Carbon I State/Province I IL

Postal Code 62034 I Countryi I us

All Inventors Must Be Listed - Additional Inventor Information blocks may be I I generated within this form by selecting the Add button.
Add

Correspondence Information:
Enter either Customer Number or complete the Correspondence Information section below.
For further information see 37 CFR 1.33(a).

D An Address is being provided for the correspondence Information of this application.

Customer Number 21888

Email Address ipdocket@thompsoncoburn.com I Add Email I I Remove Email I
Email Address bvolk@thompsoncoburn.com I Add Email I I Remove Email I

Application Information:

Title of the Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

Attorney Docket Number 44826-80492 I Small Entity Status Claimed [8]

Application Type Provisional

Subject Matter Utility

Suggested Class (if any) I Sub Class (if any)I

Suggested Technology Center (if any)

Total Number of Drawing Sheets (if any) I Suggested Figure for Publication (if any) I

EFS Web 2.2.2

Ex. 1003 - Page 6

PTOISBl14 (07-07)
Approved for use through 0613012010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 44826-80492
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

Publication Information:
D Request Early Publication (Fee required at time of Request 37 CFR 1 .219)

Request Not to Publish. I hereby request that the attached application not be published under 35 U.S.

D C. 122(b} and certify that the invention disclosed in the attached application has not and will not be the subject of
an application filed in another country, or under a multilateral international agreement, that requires publication at
eighteen months after filing.

Representative Information:

Representative information should be provided for all practitioners having a power of attorney in the application. Providing
this information in the Application Data Sheet does not constitute a power of attorney in the application (see 37 CFR 1.32).
Enter either Customer Number or complete the Representative Name section below. If both sections
are completed the Customer Number will be used for the Representative Information during processing.

Please Select One: (!) Customer Number I 0 US Patent Practitioner 10 Limited Recognition {37 CFR 11.9)

Customer Number 21888

Domestic Benefit/National Stage Information:
This section allows for the applicant to either claim benefit under 35 U.S.C. 119(e), 120, 121, or 365(c) or indicate National Stage
entry from a PCT application. Providing this information in the application data sheet constitutes the specific reference required by
35 U.S.C. 119{e) or 120, and 37CFR1.78(a)(2) orCFR 1.78(a)(4), and need not otherwise be made part of the specification.

Prior Application Status I Remove I
Application Number Continuity Type Prior Application Number Filing Date (YYYY-MM-DD}

Additional Domestic BenefiUNational Stage Data may be generated within this form I I Add
by selecting the Add button.

Foreign Priority Information:
This section allows for the applicant to claim benefit of foreign priority and to identify any prior foreign application for which priority is
not claimed. Providing this information in the application data sheet constitutes the claim for priority as required by 35 U.S.C. 119(b)
and 37 CFR 1.55(a).

I Remove I

Application Number Country i Parent Filing Date (YYYY-MM-DD} Priority Claimed

0 Yes (!) No

Additional Foreign Priority Data may be generated within this form by selecting the I Add I Add button.

Assignee Information:
Providing this information in the application data sheet does not substitute for compliance with any requirement of part 3 of Title 37
of the CFR to have an assignment recorded in the Office.

Assiqnee 1 I Remove I

EFS Web 2.2.2

Ex. 1003 - Page 7

PTOISBl14 (07-07)
Approved for use through 0613012010. OMB 0651-0032

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Attorney Docket Number 44826-80492
Application Data Sheet 37 CFR 1.76

Application Number

Title of Invention Method and Apparatus for High-Speed Processing of Financial Market Depth Data

If the Assignee is an Organization check here. D
Prefix Given Name Middle Name Family Name Suffix

Mailing Address Information:

Address 1

Address 2

City State/Province

Country ii Postal Code

Phone Number Fax Number

Email Address

Additional Assignee Data may be generated within this form by selecting the Add I I Add
button.

Signature:
A signature of the applicant or representative is required in accordance with 37 CFR 1.33 and 10.18. Please see 37
CFR 1.4(d) for the form of the signature.

Signature /Benjamin L. Volk, Jr./ Date (YYYY-MM-DD) 2008-12-15

First Name Benjamin I Last Name I Volk Registration Number 48017

This collection of information is required by 37 CFR 1.76. The information is required to obtain or retain a benefit by the public which
is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This
collection is estimated to take 23 minutes to complete, including gathering, preparing, and submitting the completed application data
sheet form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to
complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and
Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR
COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

EFS Web 2.2.2

Ex. 1003 - Page 8

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to
a patent application or patent Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection
of this information is 35 u_s_c_ 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is
used by the U_S_ Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent If you do not
furnish the requested information, the u_s_ Patent and Trademark Office may not be able to process and/or examine your submission, which may
result in termination of proceedings or abandonment of the application or expiration of the patent

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 u_s_c_ 552)
and the Privacy Act (5 u_s_c_ 552a)_ Records from this system of records may be disclosed to the Department of Justice to determine
whether the Freedom of Information Act requires disclosure of these records_

2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or
administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations_

3_ A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an
individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of
the record_

4_ A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in
order to perform a contract Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as
amended, pursuant to 5 u_s_c_ 552a(m)_

5_ A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed,
as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty_

6_ A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security
review (35 u_s_c_ 181) and for review pursuant to the Atomic Energy Act (42 u_s_c_ 218(c))_

7_ A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee,
during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records
management practices and programs, under authority of 44 u_s_c_ 2904 and 2906_ Such disclosure shall be made in accordance with the
GSA regulations governing inspection of records for this purpose, and any other relevant (Le., GSA or Commerce) directive_ Such
disclosure shall not be used to make determinations about individuals_

8_ A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant
to 35 u_s_c_ 122(b) or issuance of a patent pursuant to 35 u_s_c_ 151 _ Further, a record may be disclosed, subject to the limitations of 37
CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were
terminated and which application is referenced by either a published application, an application open to public inspections or an issued
patent

9_ A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the
US PTO becomes aware of a violation or potential violation of law or regulation_

EFS Web 2.2.2

Ex. 1003 - Page 9

5

WHAT IS CLAIMED IS:

1. A method of processing data, the method comprising:

streaming data through a processor, the data comprising a

message, the message corresponding to a value for an element;

retrieving stored data based on the message, the retrieved data

corresponding to a basket, the basket having the element as a member;

and

computing a net value for the basket based on the retrieved data

and the message;

10 wherein the retrieving step and the computing step are performed

by the processor as the data streams through the processor.

2. The method of claim 1 wherein the processor comprises a

coprocessor.

15

3. The method of claim 2 wherein the data comprises financial market

data, and wherein the element comprises a financial instrument.

4. The method of claim 3 further comprising performing the

20 retrieving step and the computing step in a pipelined manner.

25

30

5. The method of claim 4 wherein the computed net value comprises a

net asset value (NAV) for the basket.

6. The method of claim 5 wherein the message comprises price

information about the financial instrument, and wherein the computing

step comprises computing the NAV using a delta calculation approach

that is based on a contribution of the financial instrument price

information to the NAV.

7. The method of claim 6 wherein the retrieving step further

comprises retrieving a previous value relating to the basket and

wherein the NAV computing step comprises adding the contribution to

the retrieved previous value to thereby compute the NAV.

4634276.7 - 49 -

Ex. 1003 - Page 10

5

10

15

20

25

8. The method of claim 7 wherein the previous value comprises a

previous NAV for the basket.

9. The method of claim 7 wherein the previous value comprises S,

wherein S represents a value corresponding to a previous NAV for the

basket multiplied by a divisor value for the basket, and wherein the

NAV computing step further comprises dividing the sum of the

contribution and S by the divisor value.

10. The method of claim 6 wherein the NAV computing step comprises

simultaneously computing a plurality of different NAVs for the basket,

each of the NAVs corresponding to a different NAV type.

11. The method of claim 10 wherein the plurality of different NAV

types comprise a bid NAV, an ask NAV, and a last NAV.

12. The method of claim 11 wherein the plurality of different NAV

types further comprise a bid-tick NAV and an ask+tick NAV.

13. The method of claim 6 wherein the financial instrument is a

member of a plurality of baskets, wherein the retrieved data

corresponds to the baskets, and wherein the computing step comprises

computing the NAV for each of the baskets.

14. The method of claim 13 wherein the computing step comprises

computing the contribution to the NAV for each basket based on the

financial instrument price information and a weight value assigned to

the financial instrument for that basket, and wherein the retrieving

30 step further comprises retrieving the weight values for the baskets.

15. The method of claim 14 wherein the retrieving step further

comprises retrieving a basket identifier for each of the baskets, each

4634276.7 - 50 -

Ex. 1003 - Page 11

basket identifier corresponding to a different one of the baskets and

being associated with a different one of the weight values.

16. The method of claim 15 wherein the NAV computing step comprises

5 calculating a price delta for the financial instrument, the method

further comprising generating a plurality of delta events based on the

retrieved data, each delta event comprising the calculated price

delta, a retrieved basket identifier, and a retrieved weight value,

and wherein the NAV computing step comprises computing the NAVs based

10 on each delta event, and wherein the retrieving step, the generating

step, and the NAV computing step are performed by the coprocessor in a

pipelined manner as the financial market data streams through the

coprocessor.

15 1 7. The method of claim 16 further comprising:

storing the basket identifiers and their associated weight values

in a table as plurality of pairs.

18. The method of claim 17 wherein the storing step further comprises

20 storing previous price information for the financial instrument in the

table.

25

19. The method of claim 18 further comprising updating the previous

price information in the table based on the message.

20. The method of claim 17 wherein the message comprises a financial

instrument identifier for the financial instrument corresponding

thereto, wherein the table comprises a first table, wherein the

storing step further comprises storing a plurality of pointers in a

30 second table, the pointers being indexed by a financial instrument

identifier, and wherein the pairs in the first table are indexed by

the pointers, and wherein the retrieving step further comprises (i)

retrieving a pointer from the second table based on the message's

4634276.7 - 51 -

Ex. 1003 - Page 12

financial instrument identifier, and (ii) retrieving the pairs from

the first table based on the retrieved pointer.

21. The method of claim 20 further comprising adding and deleting

5 basket definitions within the tables in response to input from a

client.

22. The method of claim 20 further comprising performing at least one

of the group consisting of (i) adding a financial instrument to, (ii)

10 modifying a weight for a financial instrument with respect to, and

(iii) deleting a financial instrument from a basket by modifying the

tables in response to input from a client.

23. The method of claim 13 wherein the message comprises a global

15 exchange identifier, and wherein the retrieving step comprises

retrieving data corresponding to a composite financial instrument and

data corresponding to at least one regional financial instrument based

on the global exchange identifier.

20 2 4. The method of claim 5 further comprising:

processing the NAV against a triggering condition to determine

whether the NAV is to be reported to a client; and

generating a message for delivery to the client in response to a

determination by the processing step that the NAV is to be reported to

25 the client, the generated message comprising the NAV.

30

25. The method of claim 24 wherein the retrieving step, the computing

step, and the processing step are performed by the coprocessor as the

financial market data streams through the coprocessor.

26. The method of claim 25 further comprising performing the

retrieving step, the computing step, and the processing step in a

pipelined manner.

4634276.7 - 52 -

Ex. 1003 - Page 13

5

27. The method of claim 26 wherein the retrieving step, the computing

step, the processing step, and the generating step are performed in a

pipelined manner by the coprocessor as the financial market data

streams through the coprocessor.

28. The method of claim 24 wherein the processing step comprises:

retrieving a reference value for the basket from a first table

based on a basket identifier associated with the computed NAV;

determining a dissimilarity between the retrieved reference value

10 and the computed NAV;

retrieving a trigger threshold value for the basket from a second

table based on the basket identifier; and

comparing the dissimilarity with the retrieved trigger threshold

value to thereby determine whether the NAV is to be reported to the

15 client.

20

25

30

29. The method of claim 28 wherein the dissimilarity determining step

comprises computing a difference between the retrieved reference value

and the computed NAV.

30. The method of claim 24 further comprising defining a plurality of

triggering conditions for a plurality of baskets in response to input

from the client.

31. The method of claim 5 wherein the financial market data comprises

a plurality of messages, the method further comprising:

filtering the messages prior to the retrieving step based on at

least one filtering criterion such that the retrieving step is

performed on the messages which pass the filtering step.

32. The method of claim 31 wherein the filtering step, the retrieving

step, and the computing step are performed by the coprocessor as the

financial market data streams through the coprocessor.

4634276.7 - 53 -

Ex. 1003 - Page 14

5

33. The method of claim 31 further comprising performing the

filtering step, the retrieving step, and the computing step in a

pipelined manner.

34. The method of claim 4 wherein the coprocessor comprises a

reconfigurable logic device, and wherein the performing step comprises

performing the retrieving step and the computing step with the

reconfigurable logic device.

10 35. A system for processing data, the system comprising:

a processor configured to (i) receive a stream of data, the data

comprising at least one message, the message corresponding to a value

for an element, (ii) retrieve stored data based on the message, the

retrieved data corresponding to a basket, the basket having the

15 element as a member, and (iii) compute a net value for the basket

based on the retrieved data and the message.

20

25

36. The system of claim 35 wherein the processor comprises a

coprocessor.

37. The system of claim 36 wherein the processor further comprises a

main processor in communication with the coprocessor, the processor

being configured to deliver the stream of data to the coprocessor.

38. The system of claim 37 wherein the data comprises financial

market data, and wherein the element comprises a financial instrument.

39. The system of claim 38 wherein the coprocessor comprises a basket

association lookup module and an basket value updating module arranged

30 in a pipelined manner, wherein the basket association lookup module is

configured to retrieve the stored data based on the message, and

wherein the basket value updating module is configured to compute the

net value for the basket based on the retrieved data and the message.

4634276.7 - 54 -

Ex. 1003 - Page 15

40. The system of claim 39 wherein the computed net value comprises a

net asset value (NAV) for the basket, wherein the message comprises

price information about the financial instrument, and wherein the

basket value updating module is further configured to compute the NAV

5 using a delta calculation approach that is based on a contribution of

the financial instrument price information to the NAV.

41. The system of claim 40 wherein the basket value updating module

is further configured to simultaneously compute a plurality of

10 different NAVs for the basket, each of the NAVs corresponding to a

different NAV type.

42. The system of claim 40 wherein the financial instrument is a

member of a plurality of baskets, wherein the retrieved data

15 corresponds to the baskets, and wherein the basket value updating

module is further configured to compute the NAV for each of the

baskets.

43. The system of claim 42 wherein the basket value updating module

20 is further configured to compute the contribution to the NAV for each

basket based on the financial instrument price information and a

weight value assigned to the financial instrument for that basket, and

wherein the basket association lookup module is further configured to

retrieve the weight values for the baskets.

25

44. The system of claim 43 wherein the basket association lookup

module is further configured to retrieve a basket identifier for each

of the baskets, each basket identifier corresponding to a different

one of the baskets and being associated with a different one of the

30 weight values.

45. The system of claim 44 wherein the message comprises a global

exchange identifier, and wherein the basket association lookup module

is further configured to retrieve data corresponding to a composite

4634276.7 - 55 -

Ex. 1003 - Page 16

financial instrument and data corresponding to at least one regional

financial instrument based on the global exchange identifier.

46. The system of claim 40 wherein the coprocessor further comprises

5 a price event trigger module in communication with the basket value

updating module, the price event trigger module being configured to

process the NAV against a triggering condition to determine whether

the NAV is to be reported to a client.

10 4 7. The system of claim 46 wherein the basket association lookup

module, the basket value updating module, and the price event trigger

module are arranged in a pipelined manner.

48. The system of claim 47 wherein the coprocessor further comprises

15 an event generator module in communication with the price event

trigger module, wherein the event generator module is configured to

generate a message for delivery to the client in response to a

determination by the price event trigger module that the NAV is to be

reported to the client, the generated message comprising the NAV.

20

49. The system of claim 48 wherein the basket association lookup

module, the basket value updating module, and the price event trigger

module are arranged in a pipelined manner.

25 50. The system of claim 46 wherein the price event trigger module is

further configured to:

retrieve a reference value for the basket from a first table

based on a basket identifier associated with the computed NAV;

determine a dissimilarity between the retrieved reference value

30 and the computed NAV;

retrieve a trigger threshold value for the basket from a second

table based on the basket identifier; and

4634276.7 - 56 -

Ex. 1003 - Page 17

5

compare the dissimilarity with the retrieved trigger threshold

value to thereby determine whether the NAV is to be reported to the

client.

51. The system of claim 40 wherein the financial market data

comprises a plurality of messages, and wherein the coprocessor further

comprises a message qualifier filter in communication with the basket

association lookup module, the message qualifier filter being

configured to filter the messages based on at least one filtering

10 criterion such that the basket association lookup module receives the

messages which pass the message qualifier filter.

52. The system of claim 51 wherein the message qualifier filter, the

basket association lookup module, and the basket value updating module

15 are arranged in pipelined manner.

53. The system of claim 39 wherein the coprocessor comprises a

reconfigurable logic device, the reconfigurable logic device

comprising the basket association lookup module and the basket value

20 updating module.

54. The system of claim 38 further comprising another processor in

communication with the processor, wherein the another processor is

configured to execute a client application, and wherein the main

25 processor is further configured to deliver data corresponding to the

computed basket value to the client application.

55. A method of processing data, the method comprising:

performing a plurality of basket calculation operations on a bit

30 stream using a processor as the bit stream streams through the

processor to thereby compute a plurality of net basket values.

4634276.7 - 57 -

Ex. 1003 - Page 18

5

10

15

56. The method of claim 55 wherein the bit stream is representative

of financial market data, and wherein the net basket values comprise a

plurality of net asset values (NAVs) for financial instrument baskets.

57. The method of claim 56 wherein the processor comprises a

coprocessor and a main processor, the main processor being configured

to deliver the bit stream to the coprocessor, and the coprocessor

being configured to perform the basket calculation operations.

58. The method of claim 57 wherein the performing step further

comprises performing the basket calculation operations via a plurality

of pipelined modules which are deployed on the coprocessor such that

each pipeline module operates on different financial market data

within the bit stream at the same time.

59. The method of claim 58 wherein the coprocessor comprises a

reconfigurable logic device.

60. The method of claim 57 wherein the performing step further

20 comprises:

processing the bit stream to determine which data should be

retrieved from a plurality of tables;

retrieving the determined data from the tables; and

computing the basket NAVs based on the retrieved data and the bit

25 stream.

61. An apparatus for computing a value pertaining to a net asset

value (NAV) for a basket, the apparatus comprising:

a firmware pipeline configured to (i) receive a message

30 comprising price information for a financial instrument and an

identifier for the financial instrument, (ii) determine a plurality of

baskets in which the financial instrument is a member based at least

in part on the financial instrument identifier, and (iii) compute a

delta contribution to a new NAV for each of the plurality of baskets.

4634276.7 - 58 -

Ex. 1003 - Page 19

5

62. The apparatus of claim 61 wherein the firmware pipeline is

further configured to compute the new NAV for each of the plurality of

baskets based on the computed delta contribution.

63. The apparatus of claim 61 wherein the firmware pipeline is

further configured to (i) compute the delta contribution to the new

NAV for each of the plurality of baskets according to the formula

. wj (new old) .
!'!:,.} = - Ti -T

1
. , wherein Wj represents a weight for the financial

d .

10 instrument in the basket, wherein d represents a divisor value for the

basket, wherein T/"w represents the price information, and wherein Ttd
represents old price information for the financial instrument, and

(ii) compute the new NAV for each of the plurality of baskets

according to the formula NAVnew =NAV01
d +/!:,.}, wherein NAV1ew is the new

15 NAV for a basket, wherein NAv.uiu is an old NAV for a basket.

64. The apparatus of claim 63 further comprising a plurality of

tables in which the Wj values, the d values, the Ttd values, and the

NAV°1
d values are stored, and wherein the firmware pipeline is further

20 configured to retrieve the Wj values, the d values, the T/1d values,

and the NAV°1
d values from the tables as the message streams through

the pipeline.

65. The apparatus of claim 63 wherein the firmware pipeline is

25 implemented on a coprocessor.

30

66. The apparatus of claim 63 wherein the coprocessor comprises a

reconfigurable logic device.

67. The apparatus of claim 66 wherein the tables are stored within

the reconfigurable logic device.

4634276.7 - 59 -

Ex. 1003 - Page 20

5

68. The apparatus of claim 61 wherein the firmware pipeline is

further configured to (i) compute the delta contribution to the new

NAV for each of the plurality of baskets according to the formula

(Tnew _ Toid)
wj j j , wherein Wj represents a weight for the financial

instrument in the basket, wherein r;iew represents the price

information, and wherein T/'d represents old price information for the

financial instrument, (ii) retrieve a value S01
d for each of the

baskets, (iii) compute a sum of S01
d and wAr

1
new -Ttd) for each of the

10 baskets, (iv) retrieve a di visor value for the baskets, and (v)

compute the new NAV for each of the plurality of baskets by dividing

each sum by the retrieved divisor value.

69. A method for processing financial market data, the method

15 comprising:

processing a stream of financial market data using a coprocessor

to compute a net asset value for a financial instrument basket as the

financial market data streams through the coprocessor; and

detecting an arbitrage condition in connection with the basket

20 based on the computed net asset value.

70. The method of claim 69 further comprising:

placing at least one trade order with at least one financial

market in response to the detecting step to thereby take advantage of

25 the detected arbitrage condition.

30

71. The method of claim 70 wherein the detecting step comprises

detecting the arbitrage condition using the coprocessor as the

financial market data streams through the coprocessor.

72. The method of claim 71 wherein the detecting step further

comprises:

4634276.7 - 60 -

Ex. 1003 - Page 21

5

computing a difference between the computed net asset value and a

reference value; and

comparing the computed difference with a trigger threshold to

detect whether the arbitrage condition exists.

73. The method of claim 70 wherein the coprocessor comprises a

reconfigurable logic device.

74. The method of claim 70 wherein the basket comprises an exchange

10 traded fund (ETF) .

75. A method for processing data, the method comprising:

receiving a stream of data, the data comprising a value for an

element;

15 determining a basket which pertains to the element; and

calculating a value applicable to the determined basket based at

least in part on the element value; and

wherein the determining step is performed by a first module in a

pipeline; and

20 wherein the calculating step is performed by a second module in

the pipeline.

76. The method of claim 75 wherein the data comprises financial

market data, wherein the element comprises a financial instrument,

25 wherein the element value comprises price information for the

financial instrument, and wherein the basket comprises a financial

instrument basket.

77. The method of claim 76 wherein the calculated value comprises a

30 net asset value for the financial instrument basket, the method

further comprising detecting an arbitrage condition in connection with

the basket based on the calculated net asset value.

78. The method of claim 77 further comprising:

4634276.7 - 61 -

Ex. 1003 - Page 22

5

placing at least one trade order with at least one financial

market in response to the detecting step to thereby take advantage of

the detected arbitrage condition.

79. The method of claim 78 wherein the detecting step is performed by

a third module in the pipeline.

80. The method of claim 79 wherein the detecting step further

comprises:

10 computing a difference between the calculated net asset value and

15

a reference value; and

comparing the computed difference with a trigger threshold to

detect whether the arbitrage condition exists.

81. The method of claim 80 further comprising defining the reference

value and the trigger threshold in response to client input.

82. The method of claim 78 wherein the calculating step comprises

computing a delta contribution of the financial instrument to the

20 determined basket's net asset value.

25

83. The method of claim 82 wherein the calculating step further

comprises computing the determined basket's net asset value based on

the computed delta contribution.

84. The method of claim 77 wherein the pipeline comprises a firmware

pipeline.

85. The method of claim 84 wherein the firmware pipeline is deployed

30 in reconfigurable logic.

86. The method of claim 77 wherein the basket comprises an exchange

traded fund (ETF) .

4634276.7 - 62 -

Ex. 1003 - Page 23

5

87. The method of claim 76 wherein the calculating step comprises

computing a delta contribution of the financial instrument to a net

asset value for the determined basket.

8 8. A method of administering a plurality of tables corresponding to

a plurality of baskets, the method comprising:

storing a plurality of pointers in a first table, each pointer

being indexed by an identifier for a financial instrument;

storing a plurality of header blocks in a second table, the

10 header blocks being indexed by the pointers, each header block being

associated with a financial instrument, each header block comprising a

plurality of basket identifiers for the baskets and a plurality of

weight values corresponding to the baskets, the basket identifiers and

weight values being stored in the table as a plurality of pairs, each

15 weight value defining a weight for a financial instrument in the

basket corresponding to the basket identifier that is paired with that

weight value.

89. The method of claim 88 wherein the header blocks further comprise

20 price information for the financial instruments.

25

90. The method of claim 89 wherein each header block further

comprises a count field which includes a count value indicative of how

many pairs are present in that header block.

91. The method of claim 89 further comprising storing a plurality of

extension blocks in the second table, wherein at least a plurality of

header blocks further comprise an extension pointer field which

includes a pointer to one of the extension blocks, the extension

30 blocks comprising overflow pairs of basket identifiers and weight

values.

92. The method of claim 89 wherein the first table further comprises

a plurality of global exchange identifier indexes, each global

4634276.7 - 63 -

Ex. 1003 - Page 24

exchange identifier index corresponding to a different header block in

the second table.

93. A method for computing a basket value, the method comprising:

5 receiving a delta event, the delta event comprising a basket

10

15

identifier for a basket, a price delta with respect to a financial

instrument, the financial instrument being a member of the basket, and

a weight value that represents a weight of the financial instrument

within the basket; and

retrieving a divisor value for the basket based on the basket

identifier;

computing a net asset value (NAV) for the basket according to a

delta calculation approach based on the delta event and the divisor

value.

94. The method of claim 93 further comprising performing the method

steps using a coprocessor.

95. An apparatus for computing a basket value, the apparatus

20 comprising:

a processor configured to (i) receive a delta event, the delta

event comprising a basket identifier for a basket, a price delta with

respect to a financial instrument, the financial instrument being a

member of the basket, and a weight value that represents a weight of

25 the financial instrument within the basket, (ii) retrieve a divisor

value for the basket based on the basket identifier, and (iii) compute

a net asset value (NAV) for the basket according to a delta

calculation approach based on the delta event and the divisor value.

30 96. A basket association method, the method comprising:

receiving a bit stream, the bit stream being representative of a

message pertaining to a financial instrument, the message comprising a

symbol identifier for the financial instrument and a global exchange

identifier (GEID) for an exchange which pertains to the message;

4634276.7 - 64 -

Ex. 1003 - Page 25

performing a lookup in a first table based on the symbol ID to

retrieve a record from the first table;

determining a pointer from the retrieved record;

determining an index value from the retrieved record based on the

5 GEID;

performing a lookup in the second table based on the pointer and

the index value to retrieve basket association data pertaining to each

basket of which the financial instrument is a member; and

outputting a bit stream that is representative of the retrieved

10 basket association data.

97. A basket association apparatus, the apparatus comprising:

a processor configured to (i) receive a message pertaining to a

financial instrument, the message comprising a symbol identifier for

15 the financial instrument and a global exchange identifier (GEID) for

an exchange which pertains to the message, (ii) perform a lookup in a

first table based on the symbol ID to retrieve a record from the first

table, (iii) determine a pointer from the retrieved record, (iv)

determine an index value from the retrieved record based on the GEID,

20 (v) perform a lookup in the second table based on the pointer and the

index value to retrieve basket association data pertaining to each

basket of which the financial instrument is a member, and (vi) output

the retrieved basket association data.

25

30

98. A method of reporting updated basket values to a client, the

method comprising:

receiving a bit stream, the bit stream being representative of a

basket event, the basket event comprising a basket identifier for a

basket and an updated net asset value (Nll"V) for the basket;

retrieving a reference value for the basket based on the basket

identifier;

determining a dissimilarity between the retrieved reference value

and the updated NAV;

4634276.7 - 65 -

Ex. 1003 - Page 26

retrieving a trigger threshold value for the basket based on the

basket identifier;

comparing the dissimilarity with the retrieved trigger threshold

value to thereby determine whether the updated NAV is to be reported

5 to the client; and

10

delivering a bit stream that is representative of the updated NAV

to the client in response to a determination by the comparing step

that the updated NAV should be reported to the client.

99. An apparatus for reporting updated basket values to a client, the

apparatus comprising:

a processor configured to (i) receive a basket event, the basket

event comprising a basket identifier for a basket and an updated net

asset value (NAV) for the basket, (ii) retrieve a reference value for

15 the basket based on the basket identifier, (iii) determine a

dissimilarity between the retrieved reference value and the updated

NAV, (iv) retrieve a trigger threshold value for the basket based on

the basket identifier, (v) compare the dissimilarity with the

retrieved trigger threshold value to thereby determine whether the

20 updated NAV is to be reported to the client, and (vi) report the

updated NAV to the client in response to a determination that the

updated NAV should be reported to the client.

4634276.7 - 66 -

Ex. 1003 - Page 27

44826-80492; Provisional Patent Application

Method and Apparatus for High-Speed Processing of Financial Market Depth Data

The process of trading financial instruments may be viewed broadly as proceeding

through a cycle as shown in Figure 1. At the top of the cycle is the exchange which is responsible

for matching up offers to buy and sell financial instruments. Exchanges disseminate market

information, such as the appearance of new buy/sell offers and trade transactions, as streams of

events known as market data feeds. Trading firms receive market data from the various

exchanges upon which they trade. Note that many traders manage diverse portfolios of

instruments requiring them to monitor the state of multiple exchanges. Utilizing the data received

from the exchange feeds, trading systems make trading decisions and issue buy/sell orders to the

financial exchanges. Orders flow into the exchange where they are inserted into a sorted "book"

of orders, triggering the publication of one or more events on the market data feeds.

Exchanges keep a sorted listing of limit orders for each financial instrument, known as an

order book. A limit order is an offer to buy or sell a specified number of shares of a given

financial instrument at a specified price. Orders are sorted based on price, size, and time

according to exchange-specific rules. Many exchanges publish market data feeds that

disseminate order book updates as order add, modify, and delete events. These feeds typically

utilize one of two standard data models: full order depth or price aggregated depth. As shown in

Figure 2, full order depth feeds contain events that allow recipients to construct order books that

mirror the order books used by the exchange matching engines. This is useful for trading

strategies that require knowledge of the state of specific orders in the market.

As shown in Figure 3, price aggregated depth feeds contain events that allow recipients to

construct order books that report the distribution of liquidity (available shares) over prices for a

given financial instrument.

Order book feeds are critical to electronic trading as they provide the fastest and deepest

insight into market dynamics. In North America, the current set of order book feeds is primarily

limited to equities, but several exchanges have announced plans to provide order book feeds for

derivative instruments such as equity options. Given its explosive growth over the past several

years, derivative instrument trading is responsible for the lion's share of market data traffic. The

Options Price Reporting Authority (OPRA) feed is the most significant source of derivatives

market data and it belongs to the class of feeds known as "level l ". This class of feeds reports

quotes, trades, trade cancels and corrections, and a variety of summary events. For a given

financial instrument, the highest buy price and lowest sell price comprise the "best bid and offer"

Ex. 1003 - Page 28

(BBO) that are advertised as a quote. As the sorted listing changes due to order executions,

modifications, or cancellations, the exchange publishes new quotes. When the best bid and offer

prices match in the exchange's order book, the exchange executes a trade and advertises the

transaction on its level 1 market data feed. Note that some amount of processing is required prior

to publishing a quote or trade event, thus level 1 data feeds possess inherent latency relative to

viewing "raw" order events on order book feeds.

In order to minimize total system latency, most electronic trading firms ingest market

data feeds directly from the financial exchanges. While some loose standards are in place, most

exchanges define unique protocols for disseminating their market data. This allows the

exchanges to modify the protocols as needed to adjust to changes in market dynamics, regulatory

controls, and the introduction of new asset classes. The ticker plant resides at the head of the

platform and is responsible for the normalization, caching, filtering, and publishing of market

data messages. A ticker plant typically provides a subscribe interface to a set of downstream

trading applications. By normalizing data from disparate exchanges and asset classes, the ticker

plant provides a consistent data model for trading applications. The subscribe interface allows

each trading application to construct a custom normalized data feed containing only the

information it requires. This is accomplished by performing subscription-based filtering at the

ticker plant.

In traditional market data platforms, the ticker plant may perform some normalization

tasks on order book feeds, but the task of constructing sorted and/or price-aggregated views of

order books is typically pushed to downstream components in the market data platform. Doing so

increases processing latency and the number of discrete systems required to process order book

feeds. As an improvement over such an arrangement, an embodiment of the invention disclosed

herein enables a ticker plant to perform order feed processing (normalization, price-aggregation,

sorting) in an accelerated and integrated fashion, thereby increasing system throughput and

decreasing processing latency.

We define two classes of book views: stream views (unsorted, non-cached) and summary

views (sorted, cached). Stream views provide client applications with a normalized stream of

updates for limit orders or aggregated price-points for the specified regional symbol, composite

symbol, or feed source (exchange). Summary views provide multiple sorted views of the hook,

including composite views (a.k.a. "virtual order books") that span multiple markets.

Stream views provide client applications with a normalized stream of updates for limit

orders or aggregated price-points for the specified regional symbol, composite symbol, or feed

source (exchange). Following the creation of a stream subscription, the ticker plant provides the

Ex. 1003 - Page 29

client application with a stream of normalized events containing limit order or price point

updates. Stream subscriptions do not provide sorting and are intended to be employed by

applications that construct their own book views or journals from the normalized event stream

from one or more specified exchanges.

The order stream view provides the client application with a stream of normalized limit

order update events for one or more specified regional symbols. The normalized events contain

essential fields such as the type of update (add, modify, delete), the order price, order size,

exchange times tamp, and order identifier (if provided by the exchange). The order exchange

stream view provides the client application with a stream of normalized limit order update events

for one or more specified exchanges or clusters of instruments within an exchange. The

normalized events contain essential fields such as the type of update (add, modify, delete), the

order price, order size, exchange times tamp, and order identifier (if provided by the exchange).

The price stream view provides the client application with a stream of normalized price

level update events for one or more specified regional symbols. The normalized events contain

essential fields such as the type of update (add, modify, delete), the aggregated price, order

volume at the aggregated price, and order count at the aggregated price. The price exchange

stream view provides the client application with a stream of normalized price level update events

for one or more specified exchanges or clusters of instruments within an exchange. The

normalized events contain essential fields such as the type of update (add, modify, delete), the

aggregated price, order volume at the aggregated price, and order count at the aggregated price.

The aggregate stream view provides the client application with a stream of normalized

price level update events for one or more specified composite symbols. The normalized events

contain essential fields such as the type of update (add, modify, delete), the (virtual) aggregated

price, (virtual) order volume at the aggregated price, and (virtual) order count at the aggregated

price.

Summary views provide real-time liquidity insight. By offloading a significant amount

of data processing from client applications, the ticker plant frees up client processing resources

providing for more sophisticated trading applications that retain first mover advantage. The order

summary view represents a first-order liquidity view of the raw limit order data disseminated by a

single feed source. We define an order summary view to he a sorted listing of individual limit

orders for a given financial instrument on a given exchange. The sort order is by price and then

by time (or then by size for some exchanges). An example of an order summary view is shown in

Figure 4.

Ex. 1003 - Page 30

The price summary view represents a second-order liquidity view of the raw limit order

data disseminated by a single feed source. We define a price view to be a sorted listing of price

levels for a given financial instrument on a given exchange where each price level represents an

aggregation of same-priced orders from that exchange. The price level timestamp reports the

timestamp of the most recent event at that price level from that exchange. An example of a price

summary view is shown in Figure 5. Note that a price-aggregated view may be limited to a user­

specified number of price points starting from the top of the book.

The spliced price summary view represents a second-order, pan-market liquidity view of

the raw limit order data disseminated by multiple feed sources. We define a spliced price

summary view to be a sorted listing of price levels for a given financial instrument across all

contributing exchanges where each price level represents an aggregation of same-priced orders

from a unique contributing exchange. The price level timestamp reports the timestamp of the

most recent event at that price level for the specified exchange. An example of a spliced price

summary view is shown in Figure 6. Note that a spliced price summary view may be limited to a

user-specified number of price points starting from the top of the book.

The aggregate price summary view represents a third-order, pan-market liquidity view of

the raw limit order data disseminated by multiple feed sources. We define an aggregate price

summary view to be a sorted listing of price levels for a given financial instrument where each

price level represents an aggregation of same-priced orders from all contributing exchanges. The

price level timestamp reports the timestamp of the most recent event at that price level from any

contributing exchange. An example of an aggregate price summary view is shown in Figure 7.

Note that an aggregate price summary view may be limited to a user-specified number of price

points starting from the top of the book.

As an embodiment of the invention, we describe a multi-stage pipeline for processing

financial market depth (level 2) data that provides multiple book views to trading applications. A

logical diagram of such a pipeline is shown in Figure 8.

The message parser, symbol mapping and message formatting stages are described in

U.S. Patent Application Publication 2008/0243675, the entire disclosure of which is incorporated

herein by reference. The 2008/0243675 publication is also included herewith as Appendix A.

The symbol mapping stage resolves a unique symbol identifier for the base financial instrument

and the associated market center for the event. Input events may contain a symbol field that

uniquely identifies the base financial instrument. In this case, the symbol mapping stage

performs a one-to-one translation from the input symbol field to the symbol identifier, which is

preferably a minimally-sized binary tag that provides for efficient lookup of associated state

Ex. 1003 - Page 31

information for the financial instrument. An efficient hashing strategy for this symbol mapping

technique is disclosed in the 2008/0243675 publication.

In the case that a symbol field is not included in the input event, the symbol mapping task

is deferred to the next stage in the process: order normalization and price aggregation (OPA). In

order to conserve bandwidth on data transmission links, several market centers minimize the size

of event messages by sending "static" information regarding outstanding limit orders only once.

Typically, the first message advertising the addition of a new limit order includes all associated

information (such as the symbol, source identifier, price and size of the order, etc.) as well as a

reference number for the order. Subsequent messages reporting modification or deletion of the

order may only include a reference number that uniquely identifies the order. One of the roles of

the OPA stage is to pass complete order information to downstream consumers of the messages.

For limit order event messages, the OPA stage normalizes the messages by ensuring that all fields

are present in a regular format and the message consistently communicates the market event. For

example, a market center may choose to advertise all events using order modification events. It is

the responsibility of the OPA stage to determine if the event results in the addition of a new order,

modification of an existing order, or deletion of an existing order. In practice, market centers

have disparate data models for communicating limit order events; the OP A stage ensures that a

consistent data model is presented to downstream processing blocks and trading applications. All

output events contain a consistent set of fields where each field has a well-defined type. For

example, some exchanges may only send the order reference number in a delete event. The OPA

fills in missing fields such as the price and size of the deleted order.

In order to resolve the symbol identifier for input events lacking a symbol field, the OPA

stage must use another identifying field (such as an order reference number). In this case, the

OPA stage performs a many-to-one translation to resolve the symbol identifier, as there may be

many outstanding orders to buy or sell a given financial instrument. It is important to note that

this many-to-one mapping requires maintaining a dynamic set of items that map to a given

symbol identifier, items may be added, modified, or removed from the set at any time as orders

enter and execute at market centers.

While there are several viable approaches to solve the order normalization problem, the

preferred method is to maintain a record for every outstanding limit order advertised hy the set of

input market data feeds. An event reporting the creation of a new limit order must contain a

symbol field, thus when the event arrives at the OPA stage it will contain the symbol identifier

resolved by the symbol mapping stage. If the event is from a market center that uses order

reference numbers to minimize subsequent message sizes, the event will also contain an order

Ex. 1003 - Page 32

reference number. The OPA maintains a map to the order record, where the record may contain

the symbol identifier, order reference number, price, size, and other fields provided by the market

center.

Preferably, the mapping is performed using hashing, where the hash key may be

constructed from the order reference number, symbol identifier, or other uniquely identifying

fields. The type of hash key is determined by the type of market center data feed. Upstream feed

handlers that perform pre-normalization of the events set flags in the event that notify the OP A

stage as to what type of protocol the exchange uses and what fields are available for constructing

unique hash keys. There are a variety of hash functions that could be used by the OP A. In the

preferred embodiment, the OPA employs H3 hash functions as discussed in the 2008/0243675

publication due to their efficiency and amenability to parallel hardware implementation. Hash

collisions may be resolved in a number of ways. In the preferred embodiment, collisions are

resolved via chaining, creating a linked list of entries that map to the same hash slot. A linked list

is a simple data structure that allows memory to be dynamically allocated as the number of entries

in the set changes.

Once the record is located, the OP A updates fields in the record and copies fields from

the record to the message, filling in missing fields as necessary to normalize the output message.

It is during this step that the OP A may modify the type of the message to be consistent with the

result of the market event. For example, if the input message is a modify event that specifies that

100 shares should be subtracted from the order (due to a partial execution at the market center)

and the outstanding order is for 100 shares, then the OPA will change the type of the message to a

delete event, subject to market center rules. Note that market centers may dictate rules such as

whether or not zero size orders may remain on an order book. In general, the OP A attempts to

present the most descriptive and consistent view of the market data events.

In addition to normalizing order messages, the OPA may additionally perform price

aggregation in order to support price aggregated views of the order book. Preferably, the OPA

maintains an independent set of price point records. In this data structure, a record is maintained

for each unique price point in an order book. At minimum, the set of price point records contain

the price, volume (sum of order sizes at that price), and order count (total number of orders at that

price). Order add events increase the volume and order count fields, order delete events decrease

the volume and order count fields, etc. Price point records are created when an order event adds a

new price point to the book. Likewise, price point records are deleted when on order event

removes the only record with a given price point from the book.

Ex. 1003 - Page 33

Note that mapping an order event to a price point record is also a many-to-one mapping

problem. Preferably, the set of price point records is maintained using a hash mapping, similar to

the order records. In order to locate the price point record associated with an order event, the

hash key is constructed from fields such as the symbol identifier, global exchange identifier, and

price. Preferably, hash collisions are resolved using chaining as with the order record data

structure. Other data structures may be suitable for maintaining the sets of order and price point

records, but hash maps have the favorable property of constant time accesses (on average).

In the preferred embodiment, parallel engines update and maintain the order and price

aggregation data structures in parallel. In one embodiment, the data structures are maintained in

the same physical memory. In this case, the one or more order engines and one or more price

engines interleave their accesses to memory, masking the memory access latency of the memory

technology and maximizing throughput of the system. There are a variety of well-known

techniques for memory interleaving. In one embodiment, an engine controller block utilizes a

time-slot approach where each engine is granted access to memory at regular intervals. In

another embodiment, a memory arbitration block schedules outstanding memory requests on the

shared interface and notifies engines when their requests are fulfilled. Preferably, the memory

technology is high-speed dynamic memory such as DDR3 SDRAM. In another embodiment, the

order and price data structures are maintained in separate physical memories. As in the single

memory architecture, multiple engines may interleave their accesses to memory in order to mask

memory access latency and maximize throughput.

Figure 9 shows an example of how a single shared memory may be partitioned to support

order normalization, regional price aggregation, and composite price aggregation. In this

example, each hash table is allocated a portion of the memory space. Hash collisions are resolved

by chaining, creating a linked list of entries that map to the same hash slot. Linked list entries for

all three hash tables are dynamically allocated from a common memory space.

Figure 10 shows how the OPA data structures may be partitioned across multiple

physical memories. In this particular example, the normalization data structure is stored in one

memory, while the regional and composite price aggregation data structures are stored in a

second memory. This architecture allows memory accesses to be performed in parallel.

As shown in the logical diagram of the pipeline in Figure 8, the output of the OPA may

be transmitted directly to clients with appropriate stream view subscriptions. The Interest

Entitlement Filter stage utilizes the mapped symbol index to resolve the set of interested and

entitled clients for the given event, as described in the 2008/0243675 publication.

Ex. 1003 - Page 34

In order to support summary view subscriptions, the output of the OPA may be used to

create one or more sorted data structures. In one embodiment of the invention, the output of the

OPA is transmitted to a consuming system (client machine) where it is processed by an

Application Programming Interface (API) associated with the ticker plant, as shown in

connection with Figure 11. The API performs the sorting and presents the client application with

a summary view of the data. The sorting task may be performed using a variety of techniques

known in the art. In addition to these techniques, we disclose additional techniques below that

may be used in the API or in the ticker plant pipeline. Performing the sorting process in the API

distributes the sorting work to client machines with applications that require summary views.

In another embodiment of the invention, the ticker plant performs the sorting work in

order to generate summary view events that are transmitted to consumers. In addition to passing

stream events to appropriate subscribers, the stream events are also transmitted to the Sorted

View Update (SVU) stage in the pipeline. There are a number of methods for performing sorting

on order and price aggregated entries.

In one embodiment of the Sorted View Update stage, optimized insertion sorting engines

independently maintain each side (bid and ask) of each order book independently. Since input

order and price events only affect one side of the order book, accessing each side of the book

independently reduces the potential number entries that must be accessed and provides for

parallel access to the sides of the book. Each side of the book is maintained in sorted order in

physical memory. The book is "anchored" at the bottom of the memory allocation for the book,

i.e. the last entry is always stored at the last address in the memory allocation. As a consequence

the location of the "top" of the book (the first entry) varies as the composition of the order book

changes. In order to locate the top of the book, the SVU maintains a record that contains pointers

to the top of the bid and ask side of the book, as well as other meta-data that may describe the

book. The record may be located directly by using the symbol map index. Note that inserting an

entry into the book moves entries above the insertion location up one memory location. Deleting

an entry in the book moves entries above the insertion location down one memory location.

While these operations may result in large numbers of memory copies, performance is typically

good as the vast majority of order book transactions affect the top positions in the order book.

For regional order summary views, the SVU stage maintains a pair of hid and ask hooks

for each symbol on each exchange upon which it trades. The entries in each book are from one

exchange. For price summary views, the SVU stage maintains a pair of spliced bid and ask books

for each symbol. The entries in each book are from every exchange upon which the symbol

trades. Composite, spliced, and regional views of the price book may be synthesized from this

Ex. 1003 - Page 35

single spliced book. An order book engine in the SVU computes the desired views by

aggregating multiple regional entries to produce composite entries and positions, and filters

unwanted regional price entries to produce regional entries and positions. These computations

are performed as the content of each book is streamed from memory through the engine. In order

to minimize the memory bandwidth consumed for each update event, the engine requests chunks

of memory that are typically smaller in size than the entire order book. Typically, a default

memory chunk size is specified at system configuration time. Engines request the default chunk

size in order to fetch the top of the book. If additional book entries must be accessed, the engines

request the next memory chunk, picking up at the next address relative to the end of the previous

chunk. In order to mask the latency of reading chunks of memory, processing, and requesting the

next chunk of memory, multiple engines interleave their accesses to memory. As with the OPA

engines, interleaving is accomplished by using a memory arbitration block that schedules

memory transactions for multiple engines. Note that a time-slot memory controller may also be

used. Engines may operate on unique symbols in parallel without affecting the correctness of the

data.

In another embodiment of the Sorted View Update stage, each side of the book is

organized as a hierarchical multi-way tree. The depth of a multi-way tree is dictated by the

number of child branches leaving each node. AB+ tree is an example of a multi-way tree where

all entries in the tree are stored at the same level, i.e. the leaf level. Typically, the height of a

multi-way tree is minimized in order to minimize the number of nodes that must be visited in

order to reach a leaf node in the tree, i.e. the desired entry. An example of a B+ tree is shown in

Pigure 12. Note that the leaf nodes may be organized as a linked list such that the entire contents

of the tree may be accessed by navigating to the leftmost child and following the pointers to the

next child node. This feature is exploited in the SVU stage to quickly produce a snapshot of the

entire contents of the order book in order to initialize newly subscribed clients.

Figure 12 shows a simple example of a set of positive integers sorted using a B+ tree.

Note that all of the stored integers are stored in the leaf nodes. As is well-known in the art, 13+

tree nodes vary in size between a minimum and maximum size threshold that is dictated by the

branching factor of the tree. Note that ""next pointers" are stored in each leaf node to create a

linked list of leaf nodes that may he quickly traversed to retrieve the entire sorted order. Internal

tree nodes contain integers that dictate ranges stored the child nodes. For example, all integers

less than or equal to 7 are stored in the left sub-tree of the root node.

The SVU stage utilizes hierarchical B+ trees to minimize the number of memory accesses

required to update the various book views. As shown in Figure 13, the SVU stage maintains a

Ex. 1003 - Page 36

header record that contains pointers to the root of the composite and regional book trees. The

root tree is the price aggregated tree. Each leaf of the price aggregated tree contains a pointer to a

B+ tree that maintains a sort of the orders at the given price point. The SVU stage maintains a

hierarchical B+ tree for the composite views and each regional view of the book. Note that each

side of the book (bid and ask) corresponds to a hierarchical B+ tree. Note that hierarchical B+

trees may also be used in the embodiment where sorting is performed by the API on the client

machine. Furthermore, note that a portion of the sorting may be offloaded to the API on the

client machine. For example, construction of the spliced view of the book may be offloaded to

the API by subscribing to the summary view of all regional books.

Similar to the insertion sorting engines in the previous embodiment, a parallel set of tree

traversal engines operate in parallel and interleave their accesses to memory. Furthermore, the

SVU stage may optionally cache recently accessed tree nodes in on-chip memory in order to

further reduce memory read latency.

Another embodiment of the invention provides accelerated quote messages relative to a

Level 1 feed published by an exchange. As shown in Figure 14, the pipeline is augmented to pass

synthetic quote events from the SVU stage to the Value Cache Update stage that handles Level 1

traffic. When an order or price book update event modifies the top of the book (best bid or offer)

(e.g., new price, size, or timestamp), the SVU stage generates a synthetic quote event that

contains the new bid or ask price and aggregate order size at that price for the given regional

and/or composite view of the book for the associated symbol. The Value Cache Update stage

updates the associated Level 1 record for the symbol and transmits a Level 1 quote message to

interested and entitled subscribers.

The aforementioned embodiments of the pipeline may be implemented in a variety of

parallel processing technologies including: Field Programmable Gate Arrays (FPGAs), Chip

Multi-Processors (CMPs), Application Specific Integrated Circuits (ASICs), Graphics Processing

Units (GPUs), and multi-core superscalar processors. An exemplary platform in which the

disclosed pipelines may be deployed is the coprocessor architecture disclosed in the

2008/0243675 publication and in pending U.S. patent application 12/013,302, entitled "Method

and System for Low Latency Basket Calculation", filed January 11, 2008, the entire disclosure of

which is incorporated herein hy reference. A copy of this patent application is also attached as

Appendix B. It should also be noted that the pipelines disclosed herein can be implemented not

only in the ticker plants resident in trading firms but also in the ticker plants resident within the

exchanges themselves to accelerate the exchanges' abilities to create and maintain their own

order books.

Ex. 1003 - Page 37

Sample claims of various inventive aspects of the disclosed invention, not to be

considered as exhaustive or limiting, all of which are fully described so as to satisfy the written

description, enablement, and best mode requirement of the Patent Laws, are as follows:

1. A method for generating an order book view from financial market depth data, the

method comprising:

maintaining a data structure representative of a plurality of order books for a plurality of

financial instruments; and

hardware-accelerating a processing of a plurality of financial market depth data messages

to update the order books within the data structure.

2. A system for generating an order book view from financial market depth data, the system

comprising:

a memory for storing a data structure representative of a plurality of order books for a

plurality of financial instruments; and

a coprocessor configured to process of a plurality of financial market depth data

messages to update the order books within the data structure.

3. A computer-readable medium comprising:

a data structure for order books as disclosed herein, the data structure being resident on a

computer-readable storage medium.

4. A method comprising:

processing financial market data as disclosed herein.

5. An apparatus comprising:

a ticker plant configured to process financial market data as disclosed herein.

Ex. 1003 - Page 38

I lllll llllllll II llllll lllll lllll lllll lllll lllll lllll lllll 111111111111111111111111111111111
US 20080243675Al

c19) United States
c12) Patent Application Publication (10) Pub. No.: US 2008/0243675 Al

(43) Pub. Date: Oct. 2, 2008 Parsons et al.

(54) HIGH SPEED PROCESSING OF FINANCIAL
INFORMATION USING FPGA DEVICES

(75) Inventors: Scott Parsons, St. Charles, MO
(US); David E. Taylor, St. Louis,
MO (US); David Vincent
Schuehler, St. Louis, MO (US);
Mark A. Franklin, St. Louis, MO
(US); Roger D. Chamberlain, St.
Louis, MO (US)

(73)

(21)

Correspondence Address:
THOMPSON COBURN, LLP
ONE US BA~K PLAZA, SUITE 3500
ST LOUIS, MO 63101 (US)

Assignee:

Appl. No.:

EXEGY INCORPORATED, St.
Louis, MO (US)

11/765,306

(22) Filed: Jun.19,2007

Related U.S. Application Data

(60) Provisional application No. 60/814,796, filed on Jun.
19, 2006.

Publication Classification

(51) Int. Cl.
G06Q 40100 (2006.01)

(52) U.S. Cl. ... 705/37; 705/35

(57) ABSTRACT

Methods and systems for processing financial market data
using reconfigurable logic are disclosed. Various functional
operations to be performed on the financial market data can be
implemented in firmware pipelines to accelerate the speed of
processing. Also, a combination of software logic and firm­
ware logic can be used to efficiently control and manage the
high speed flow of financial market data to and from the
reconfigurable logic.

I-,_ - = ~O:a/:UO~ ~ -- - --- = - - - = - - - - = - - .,, = - - ~ - - - - - - - - - - - - - - - - ,

: Exegy
1 PCI-X Templates & Field Maps
I

: Card

a
I

FAST
De-
Serialize

802 _J
8(

FAST Msg
Field Query
Decode Filter(s)

li!06
808

Opelator
Values

--

APPENDIX A

Ex. 1003 - Page 39

Patent Application Publication

108

,.
I

!DO~

(1()4\

106

~~
----

l 102 /
Management

.. & Monitoring

l : ·. Entitlements
\ & Reporting 102

- "Management - - - - -

LIO

'

,,

I
l
I
I
I
I
I

Oct. 2, 2008 Sheet 1 of 20

Exchange, ECN, News Feeds

I
Feed

i:;ompressor

' 'Fi; toncse

Figure 1
PRIOR ART

US 2008/0243675 Al

112 I
Ex.change, ECN Access 6. L u

' \
f
I

~----'--~ ~~o-'rc1-er-:
Mgmt

System.

~02 _,.

I
I
I
I

I

Ex. 1003 - Page 40

Patent Application Publication Oct. 2, 2008 Sheet 2 of 20

232

Reconfigurable Logic (202)
,T--~---~

i Firmware Application Module Chain (230) :'
t I

FAM!
(230a)

FAM2
(230b)

.... e I.
I

FAMm •
(230m) 234

-- ---·-·-- -- ----- --·--··- -- ,. _____ .. _ ... - ___ .. 1

Firmware Socket Module (220)

Disk Contra II er
(206)

Data Store
(204)

Software
Library

Interface
(310)

Hardware/Softwar
Interface

(312)

Firmware Module
Interface

(314)

e

Processor
(208)

Network Interface
(240)

Application Software (300)

High Level \fodule API (302a)
..... -,_,_, .. _,,.. --- - - - - - - - - - - - - -~ -------- .. --...

Low Level Module AP! (302b)

OS Level/Device Drivers (304-)

-
Firmware Socket (DMA Engine) (220)

--
Firmware Application Module(s) (230)

Figure 3

US 2008/0243675 Al

200

Bus (212)

RAM
(210)

General Purpose
Processor

Reconfigurable Logic
(e.g., FPGA)

Ex. 1003 - Page 41

Patent Application Publication Oct. 2, 2008 Sheet 3 of 20 US 2008/0243675 Al

.
Printed Circuit Board (400)

FPGA(402)

·1 ~ FAM(s) (230)

I I

Memory

I
Firmware Socket (220) 1

I (404)

1- -
J J

((
I \

PCI-X Connector (406) I
\ •

Figure 4(a)

Printed Circuit Board (400)
Private N

PCI-X Bus (408) E
Memory ~ ~

T
(404)

~ ·r w
,. 0

Network
1, R

K
Interface

FPGA(402) ~ Controller
..._. c 4

l1
FAM(s) (230)

, I
(410) 0 I

N 2
N
E
c

I
I - T

Firmware Socket (220) 1 I - ; 0

J J I Th) (
..

(f
\ \ .

PCI-X Connector (406) I
\ ~

Figure 4(b)

Ex. 1003 - Page 42

FPGA 1 (402a)

FAMI ~ FAM2 -----._ --. FAMm

t
Firmware Socket (220)

~

h

1r

To/From Bus (212~ Figure 5

FPGA 2 (402b)

~ FAMl ~ FAM2 - ---. __., FAMm

""d
~
('O

=

~
"e -... ~
~
0

= ""d = O" -... ~
~
0 =

0
~
:-+-
~
N
0
0
QO

'J1

=­('O
('O
0
N
0

d
'J1
N
0
0
QO ..._
0
N
(.H
0\
......:i
U1

>

Ex. 1003 - Page 43

JP6 J
600\ ~

! 104 I

112 I
~h•"!I•, ECN ""°"" if

--------------. ____ 1 ________ J ____ -~-~ 620 .,.,.~. ~ ' '
·-~~;

AHl ~ k" WAN (620a)

~ <S'9 : "--·r 614 I_ __ ~::----:.--.:.--=::=-- rt :=

,,.- - ,..., ~ I~ \ 604 I -
I . ·Management ~_,.-~ _ __.. _____ ,
I 612 I. • & Monitoring I I

i " I r--

1
I
\IL

.....
LAN(622)

634

.)
- "Mana9en1entl- - - - -

---......,_
104

Figure 6

WAN(620b)

Application
Program

(150)

""d
~
('O

=

~
"e -... ~
~
0

= ""d = O" -... ~
~
0 =

0
~
:-+-
~
N
0
0
QO

'J).

=­('O
('O
Ul
0
N
0

d
'J).

N
0
0
QO ..._
0
N
(.H
0\
......:i
Ul

>

Ex. 1003 - Page 44

400o/400b ~

~----------------~------------=--------------~------~-
• Exegy . . 110 · :

: PCI-X Templates & Field Maps · _) ·
I
• Card L.... ".
I
I
J'
l
l ..

I
~
l
f
l
L
l
I
l
'i
I

FIX
Msg

"' Parse

(702

Field
Decode,
Validate

704 J

706

I FAST 1)
Field
Encode

~·Operator

.Values
~t.

712 :_J

708

FAST
Serialize

I
J
n
I.
r
I
t
I
I

L-------------==---~--------------------------=~------·

Figure 7

""d
~
('O

=

~
"e -... ~
~
0

= ""d = O" -... ~
~
0 =

0
~
:-+-
~
N
0
0
QO

'J).

=­('O
('O
O'I
0
N
0

d
'J).

N
0
0
QO ..._
0
N ...
(.H
O'I
......:i
U1

>

Ex. 1003 - Page 45

400a/400b

1-:= - - - - - -~ --- - -- = - - - '= - - - - ~ - --~ ~ - - - ---- - - - - - - - - - - - - - ~,
I Exegy 812 r . I .

I PCI-X l__._; .
J .

Templates & Field Maps
I Card lili' " mm . i ···-' .. : : .. om··":...... m • . r ... m• myl
I

!
r

FAST
De-
Serialize

802 _J s::
-;;.·

j

!
¥""

FAST
Field
Decode

Ope-ratar·
Values

Figure 8

Msg
Query
Filter(s)

(_1!06

FIX
Encode

808

""d
~
('O

=

~
"e -... ~
~
0

= ""d = O" -... ~
~
0 =

0
~
:-+-
~
N
0
0
QO

'J).

=­('O
('O
-....:i
0
N
0

d
'J).

N
0
0
QO ..._
0
N
(.H
0\
-....:i
U1

>

Ex. 1003 - Page 46

Patent Application Publication Oct. 2, 2008 Sheet 8 of 20 US 2008/0243675 Al

.. _ :?o~~o~ ~ __________ -· -· _ .. _____ ·- ___ . __________ ~ ___ _
: Exegy
1 PCI-X 922 Templates &_Fi~ld Maps L . . " . "
: Card

FAST
De­
Serialize

FAST
Field
Decode

902) 904)

I
I

924

Operator
Values

912 Field
"---- Cale

Engine

914

~

916

)

Msg
Encode

)
920

Value)
918

Cache
Update

. ' ' 926

Real-time field value cache",_)

Figure 9

I

Ex. 1003 - Page 47

Patent Application Publication Oct. 2, 2008 Sheet 9 of 20 US 2008/0243675 Al

r - - - ~~a/~O:b _·:-:\. _ - - - - - - - - - - - - - - - - --- - - - - - -·- - - - - - - -- - - -
I I

: Jeinplates & Field~Maps ci.o~6f"". I

I " "'·.- = •
I
n

• n
J
a
n
I

Message
Parser
(1002)

Exegy
PCI-X
Card

Symbol ID
Mapping
(1004)

Symbol Ini:lex ·
Memory
(1022)

.L. RecOrd /Field Value
MemorY:~. -.• ,_ .·

: . (1024) . . :~ ! ·-
.~ --· -· ~ .. r -r ~

I
__ J

Figure 10

Ex. 1003 - Page 48

Patent Application Publication Oct. 2, 2008 Sheet 10 of 20 US 2008/0243675 Al

. - - - - -- -·- - - - --- -- -- ----- --- - -- - - --- - -- ---- ------- --- -----
I
I
I
I
I
I
I
r
J
l ..
. 1
I
I

I
I
I
t
J

• I
I
I

I
I
l
I ..
r
I
l ..
I

Message
Parser 1•~11:~
(1102)

• Symbol Index­
Memory
. (1122)

Value Cache
Update
(1106)

· Record / Field Value
Memory'

-·· _(g24)'

Interest
Entitlement
Filter(s)
(1108)

Interest ·
Entitlement·'

Memory
(1126)

Message
Synch
Buffer
{1112)

: Exegy
~ PCI-X
1 Card 1

~--J

Figure U

Ex. 1003 - Page 49

Patent Application Publication Oct. 2, 2008 Sheet 11 of 20 US 2008/0243675 Al

Symbology ID
)/ .. ~

ASCII Symbol

hash key

Country Code

Key Code .Key Code
Table

Alpha-
numeric Key Code Compressed Alpha-numeric Tieker Symbol
Ticker

Compress
Key Code Compressed ISIN Symbol Hash Key

ISIN
Compress

Key Code Compressed Commodily Symbol

Commodity
Compress

Figure 12

symbol index memory

Displacement
Table

Global
Exchange

Figure 13

Enum Global Exchange Identifier (GEID)
Table

Figure 14

Q.

N-1

symbol ID

symbol ID valid

Ex. 1003 - Page 50

Patent Application Publication Oct. 2, 2008 Sheet 12 of 20 US 2008/0243675 Al

record management memory

O valid flag composite record pointer regional list pointer

t valid flag composite record pointer regional list pointer

symbol ID
global eachange ID

message fields

regional list buffer

global exchange ID. record pointer

global exchange ID. record pointer

global exchange ID. record pointer

LVC memory manager free space pointer

LVC message/record update

message fields
composite record

regional record
updated records

Figure lS(a)

record stofage memory

updated message fields
interest lists

Ex. 1003 - Page 51

Patent Application Publication Oct. 2, 2008 Sheet 13 of 20 US 2008/0243675 Al

record
management

entry

regional
list
block current

records
updated
records

address cache record record
updating symbol ID

global exchange ID
message fields

resolution record determination current retrieval
'-----------' addresses record

addresses

Figure 15(b)

records

record/message
field updates

updated
message
fields

Ex. 1003 - Page 52

Patent Application Publication Oct. 2, 2008 Sheet 14 of 20 US 2008/0243675 Al

entitlement mask table

0100010 ... 011

r 0001000 ... 000
entitlement ID

I
!
I

1001001 ... 001

exchange interest table

0100010 ... 011

global exchange ID 0001000 ... 000

L
I
I
I

1001001...001 r-- bitwise output intere -
~

st vector

~ AND -
interest lists ~

• - bitwise
I OR

-.
• --

Figure 16

Ex. 1003 - Page 53

Exchange data

O/S

supplied

protocol

stack

t"~ .. 1<:·\
\. ~ l /~

.... ,,."

.. -.:-,~

{ (2~'": ~:
\.:: .. ~~:/

Upject Driver

(" thread group 1

(" thread group 2

. . .
(;::3·;··.l (' thread group n
'--.. _ -: ··

Reconfigurable logic
r.----------------
1 Firmware Application Module Chain :

I n______n__n__r- I

·~· •----- ~- ---- --- -- J

Data to
hardware

Data from
hardware

@) @®
@@ ~-+-I - " I! 9 A '

~ .. ~ .. -.. -... \

{(A.,~1
\ • 1

...... .,/'

#' ... ~

:' ··s·-... \
~ t #. :
.......... t · .. ~ ~

/,.c.:\
\'·)) .. ._ __ ,,.,

Hardware
Interface Driver

/~-D-~:~\
~ •. J :<L
\,_.n /

.... ~.,,.w#,.

Figure 17

MDC Driver

background
and

maintenance
processing

Client
connections

hardware --software

I _,,.

O/S

supplied

protocol

stack

request
processing

kernel

"'d
~
('O

=

~
"t:i -... ~
~
0

= "'d = O" -... ~
~
0 =

0
~
:-+-
~
N
0
0
QO

'J1

=­('O
('O
Ul
0
N
0

d
'J1
N
0
0
QO ..._
0
N
(.H
0\
......:i
Ul

>

Ex. 1003 - Page 54

Patent Application Publication Oct. 2, 2008 Sheet 16 of 20 US 2008/0243675 Al

Exchange data
_______., 1801

~1803

1807
O!S

supplied

protocol

1806
~ stack Upject Driver

--~~~;-:~---- --------------- ____ j / _____ __; J_ ____ _j /.------
.... ~V ~V V ~

: •••• \ .. •••• \ : \ 1805
; ;1·:: : .~2~~: ; ;3'"::
" ~ , - t " " f .. ~ .I ~
"... '<l..._M,,_ ,,! '... ..._....... ~I ""-.,, "I-_,..,... ./

1802 '11;;. ... ~ .. it ~ 1'"f'

Figure 18

Ex. 1003 - Page 55

Patent Application Publication Oct. 2, 2008 Sheet 17 of 20 US 2008/0243675 Al

1902

~·

1905

1901
1903

~ ~ ~ ~

;' (f·: ': (' thread group 1 f (p,,.'': ':
.. " -JI .,. • 'II ># •
\ ' ... t,,. ..

·..:~=--'---~--------·_,,_·.-~,·-· _J

Q thread group 2 ..
•. ,,,.. .•

A thread group n _' __ _...,..,.

Figure 19

/''.,. ... ~ ..
~ ') . ·c· . t ~'k) : ' ,.. " ' . .. ,

1904

Ex. 1003 - Page 56

Patent Application Publication Oct. 2, 2008 Sheet 18 of 20 US 2008/0243675 Al

Reconfigurable Logic
1.---------------~

hardware --
software

2004

2002

2003

1 Firmware Application Module Chain :

,I I
I . I
I ___ ------ -- -- ___ J

-
hardware

@)@
@@

Hardware
Interface Driver

(kernel ·
···-···-----~~- '

user

2001J

<f,i< -
,.. '!i:

I • B' . r l : :
~ ,. " I
\, ~--"'" ,/

i:i. "'-.,,

._... ---."" .. , .
" """ 11 . 'c' . r t ~ :

1 .. t :t
;, 'ti,..,..., * •, .

.. "l' "

Figure 20

2006

Ex. 1003 - Page 57

Patent Application Publication Oct. 2, 2008 Sheet 19 of 20 US 2008/0243675 Al

2102

2108

~2103

Hardware
Interface Driver

2101
2104

2111

(

MDC Driver

2110~

Client
connections

I I
/

--01s

supplied

protocol

stack

... - --- - -- - - .;..t ... - -- - __ ,_ .. - - - ... - - -- - --- - -- - - -- - ----

2107

r-------.-~____...__ __ ___., ~

background
and

maintenance
processing

Figure 21

2106

Ex. 1003 - Page 58

Patent Application Publication Oct. 2, 2008 Sheet 20 of 20 US 2008/0243675 Al

Hardware
Interface Driver

2206

MDC Driver

;...· ... •+••w --- --· ---- ---- --- ------ - --- ---- --·- --- ---- ---- --·. ..,.. --~- •,

2205 (
2204

,<:::::\ background
. •. D; ! and
,. 'I "' ~

"···---" maintenance
processing

Figure 22

Client
connections

I .-""' --
O/S

supplied

protocol

stack

kernel

user

request processi~o2

Ex. 1003 - Page 59

US 2008/0243675 Al

HIGH SPEED PROCESSING OF FI~ANCIAL
INFORMATIOl'\ USING FPGA DEVICES

CROSS-REFERENCE AND PRIORITY CLAIM
TO RELAlElJ PAlbNT APPLlCAllONS

[0001] This applicalion claims priorily lo provisional
patent application 60/814,796, filed Jun. 19, 2006, and
entitled "High Speed Processing of Financial Information
Using FPGA Devices", the entire disclosure of which is
incorporated herein by reference.
[0002] This patent application is related to the following
patent applications: U.S. patent application Ser. No. 09/545,
472 (filed Apr. 7, 2000, and entitled "Associative Database
Scanning and Information Retrieval", now U.S. Pat. No.
6,711,558), U.S. patent application Ser. No. 10/153,151 (filed
May 21, 2002, and entitled "Associative Database Scanning
and Information Retrieval using FPGA Devices", now U.S.
Pat. No. 7,139,743), published PCT applications WO
05/048134 and WO 05/026925 (both filed May 21, 2004, and
entitled "Intelligent Data Storage and Processing Using
FPGA Devices"), published PCT patent application WO
06/096324 (filed Feb. 22, 2006, entitled "Method and Appa­
ratus for Performing Biosequence Similarity Searching"),
U.S. patent application Ser. No. 111293,619 (filed Dec. 2,
2005, entitled "Method and Device for High Performance
Regular Expression Pattern Matching", and published as
2007/0130140), U.S. patent application Ser. No. 11/339,892
(filed Jan. 26, 2006, and entitled "Firmware Socket Module
for FPGA-Rased Pipeline Processing"), U.S. patent applica­
tion Ser. No. 11/381,214 (filed May 2, 2006, and entitled
"Method and Apparatus for Approximate Pattern Match­
ing"), U.S. patent application Ser. No. 11/561,615 (filed Nov.
20, 2006, entitled "Method and Apparatus for Processing
Financial Information at Hardware Speeds Using FPGA
Devices", and published as 2007/0078837), and U.S. patent
application Ser. No. 11/760,211 (filed Jun. 8, 2007, and
entitled "Method and System for High Speed Options Pric­
ing"), the entire disclosures of each of which are incorporated
herein by reference.

FIELD OF THE INVENTION

[0003] The present invention relates to the field of data
processing platforms for financial market data.

RACK GROUND AND SUMMARY OF THE
INVENTION

[0004] Speed of information delivery is a valuable dimen­
sion to the financial instrument trading and brokerage indus­
try. The ability of a trader to obtain pricing information on
financial instruments such as stocks, bonds and particularly
options as quickly as possible cannot be understated;
improvements in information delivery delay on the order of
fractions of a second can provide important value to traders.
[0005] For example, suppose there is an outstanding "bid"
on stock X that is a firm quote to buy 100 shares of Stock X for
$21.50 per share. Also suppose there are two traders, A and B,
each trying to sell l 00 shares of stock X, but would prefer not
to sell at a price of $21.50. Next, suppose another party
suddenly indicates a willingness to buy 100 shares ofStockX
for a price of $21.60. A new quote for that amount is then
submitted, which sets the"bestbid" for StockX to $21.60, up
10 cents from its previous value of$21.50. The first trader, A
or B, to see the new best bid price for Stock X and issue a

Oct. 2, 2008

counter-party order to sell Stock X will "hit the bid", and sell
his/her Stock X for $21.60 per share. The other trader will
either have to settle for selling his/her shares of Stock X for
the lower $21.50 price or will have to decide not to sell at all
at that lower price. Thus, it can be seen that speed of infor­
mation delivery can often translate into actual dollars and
cents for traders, which in large volume situations, can trans­
late to significant sums of money.
[0006] In an attempt to promptly deliver financial informa­
tion to interested parties such as traders, a variety of market
data platforms have been developed for the purpose of osten­
sible "real time" delivery of streaming bid, offer, and trade
information for financial instruments to traders. FIG. 1 illus­
trates an exemplary platform that is currently known in the
art. As shown in FIG. 1, the market data platform 100 com­
prises a plurality of functional units 102 that are configured to
carry out data processing operations such as the ones depicted
in units 102, whereby traders at workstations 104 have access
to financial data of interest and whereby trade infonnation
can be sent to various exchanges or other outside systems via
output path 110. The purpose and details of the functions
performed by functional units 102 are well-known in the art.
A stream 106 of financial data arrives at the system 100 from
an external source such as the exchanges themselves (e.g.,
NYSE, NASDAQ, etc.) over private data communication
lines or from exlranel providers such as Savvis or BT Radi­
ans. The financial data source stream 106 comprises a series
of messages that individually represent a new offer to buy or
sell a financial instrument, an indication of a completed sale
of a financial instrument, notifications of corrections to pre­
viously-reported sales of a financial instrument, administra­
tive messages related to such transactions, and the like. As
used herein, a "financial instrument" refers to a contract rep­
resenting equity ownership, debt or credit, typically in rela­
tion to a corporate or governmental entity, wherein the con­
tract is saleable. Examples of"financial instruments" include
stocks, bonds, commodities, currency traded on currency
markets, etc. but would not include cash or checks in the sense
of how those items are used outside financial trading markels
(i.e., the purchase of groceries at a grocery store using cash or
check would not be covered by the term "financial instru­
ment" as used herein; similarly, the withdrawal of $100 in
cash from an Automatic Teller Machine using a debit card
would not be covered by the term "financial instrument" as
used herein). Functional units 102 of the system then operate
on stream 106 or data derived therefrom to carry out a variety
of financial processing tasks. As used herein, the term "finan­
cial market data" refers to the data contained in or derived
from a series of messages that individually represent a new
offer to buy or sell a financial instrument, an indication of a
completed sale of a financial instrument, notifications of cor­
rections to previously-reported sales of a financial instru­
ment, administrative messages related to such transactions,
and the like. The term "financial market source data" refers to
a feed of financial market data directly from a data source
such as an exchange itself or a third party provider (e.g., a
Savvis BT Radianz provider). The term "financial market
secondary data" refers to financial market data that has been
derived from financial market source data, such as data pro­
duced by a feed compression operation, a feed handling
operation, an option pricing operation, etc.

[0007] Because of the massive computations required to
support such a platfom1, current implementations known to
the inventors herein typically deploy these functions across a

Ex. 1003 - Page 60

US 2008/0243675 Al

number of individual computer systems that are networked
together, to thereby achieve the appropriate processing scale
for information delivery to traders with an acceptable degree
of latency. This distribution process involves partitioning a
given function into multiple logical units and implementing
each logical unit in software on its own computer system/
server. The particular partitioning scheme that is used is
dependent on the particular function and the nature of the data
with which that function works. The inventors believe that a
number of different partitioning schemes for market data
platforms have been developed over the years. For large mar­
ket data platforms, the scale of deployment across multiple
computer systems and servers can be physically massive,
often filling entire rooms with computer systems and servers,
thereby contributing to expensive and complex purchasing,
maintenance, and service issues.
[0008] This partitioning approach is shown by FIG. 1
wherein each functional unit 102 can be thought of as its own
computer system or server. Buses 108and110 can be used to
network different functional units 102 together. For many
functions, redundancy and scale can be provided by parallel
computer systems/servers such as those shown in connection
with options pricing and others. To the inventors' knowledge,
these functions are deployed in software that is executed by
the conventional general purpose processors (GPPs) resident
on the computer systems/servers 102. The nature of general
purpose processors and software systems in the current state
of the art known lo the inventors herein imposes conslrainLs
that limit the performance of these functions. Performance is
typically measured as some nllII1ber of units of computational
work that can be performed per unit time on a system (com­
monly called "throughput"), and the time required to perform
each individual unit of computational work from start to
finish (commonly called "latency" or delay). Also, because of
the many physical machines required by system 100, com­
munication latencies are introduced into the data processing
operations because of the processing overhead involved in
transmitting messages to and from different machines.
[0009] Despite the improvements to the industry that these
systems have provided, the inventors herein believe that sig­
nificant further improvements can be made. In doing so, the
inventors herein disclose that the underlying technology dis­
closed in the related patents and patent applications listed and
incorporated herein above to fundamentally change the sys­
tem architecture in which market data platforms are
deployed.
[0010] In above-referenced related patent application Ser.
No. 10/153,151, it was first disclosed that reconfigurable
logic, such as Field Prograllllllable Gate Arrays (FPGAs), can
be deployed to process streaming financial information at
hardware speeds.As examples, the Ser. No. 10/153,151 appli­
cation disclosed the use of FPGAs to perform data reduction
operations on streaming financial information, with specific
examples of such data reduction operations being a minimum
price function, a maxim= price function, and a latest price
function. (See also the above-referenced and incorporated
Ser. No. 11/561,615 patent application).
[0011] Since that time, the inventors herein have greatly
expanded the scope of functionality for processing streams of
financial information with reconfigurable logic. With the
invention described herein, vast amounts of streaming finan­
cial information can be processed with varying degrees of
complexity at hardware speeds via reconfigurable logic
deployed in hardware appliances that greatly consolidate the

2
Oct. 2, 2008

distributed GPP architecture shown in FIG. 1 such that a
market data platform built in accordance with the principles
of the present invention can be implemented within fewer and
much smaller appliances while providing faster data process­
ing capabilities relative to the conventional market data plat­
form as illustrated by FIG. 1; for example, the inventors
envision that a 5: 1 or greater reduction of appliances relative
to the system architecture of FIG. 1 can be achieved in the
practice of the present invention.
[0012] As used herein, the term "general-purpose proces­
sor" (or GPP) refers to a hardware device that fetches instruc­
tions and executes those instructions (for example, an Intel
Xeon processor or an AMD Opteron processor). The term
"reconfigurable logic" refers to any logic technology whose
form and function can be significantly altered (i.e., reconfig­
ured) in the field post-manufacture. This is to be contrasted
with a GPP, whose function can change post-manufacture, but
whose form is fixed at manufacture. The term "software" will
refer to data processing functionality that is deployed on a
GPP. The term "firmware" will refer to data processing func­
tionality that is deployed on reconfigurable logic.
[0013] Thus, as embodiments of the present invention, the
inventors herein disclose a variety of data processing pipe­
lines implemented in firmware deployed on reconfigurable
logic, wherein a stream of financial data can be processed
through these pipelines at hardware speeds.
[0014] Also disclosed as an embodiment of the invention is
a ticker plant that is configured to process financial market
data with a combination of software logic and firmware logic.
Through firmware pipelines deployed on the ticker plant and
efficient software control and management over data flows to
and from the firmware pipelines, the inventors herein believe
that the ticker plant of the preferred embodiment is capable of
greatly accelerating the speed with which financial market
data is processed. In a preferred embodiment, financial mar­
ket data is first processed within the ticker plant by software
logic. The software logic controls and manages the flow of
received financial market data into and out of the firmware
logic deployed on the reconfigurable logic device(s), prefer­
ably in a manner such that each financial market data message
travels only once from the software logic to the fim1ware logic
and only once from the firmware logic back lo the software
logic. As used herein, the term "ticker plant" refers to a
plurality of functional units, such as functional units 102
depicted in FIG. 1, that are arranged together to operate on a
financial market data stream 106 or data derived therefrom.
[0015] These and other features and advantages of the
present invention will be understood by those having ordinary
skill in the art upon review of the description and figures
hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] FIG. 1 depicts an exemplary system architecture for
a conventional market data platform;
[0017] FIG. 2 is a block diagram view of an exemplary
system architecture in accordance with an embodiment of the
present invention;
[0018] FIG. 3 illustrates an exemplary framework for the
deployment of software and firmware for an embodiment of
the present invention;
[0019] FIG. 4(a) is a block diagram view of a preferred
printed circuit board for installation into a market data plat­
form to carry out data processing tasks in accordance with the
present invention;

Ex. 1003 - Page 61

US 2008/0243675 Al

[0020] FIG. 4(b) is a block diagram view of an alternate
printed circuit board for installation into a market data plat­
form to carry out data processing tasks in accordance with the
present invention;

[0021] FIG. 5 illustrates an example of how the firmware
application modules of a pipeline can be deployed across
multiple FPGAs;

[0022] FIG. 6 illustrates an exemplary architecture for a
market data platform in accordance with an embodiment of
the present invention;

[0023] PIG. 7 illustrates an exemplary firmware application
module pipeline for a message transformation from the
Financial Information Exchange (FIX) format to the FIX
Adapted for Streaming (FAST) format;

[0024] FIG. 8 illustrates an exemplary firmware application
module pipeline for a message transformation from the FAST
format to the FIX format;

[0025] FIG. 9 illustrates an exemplary firmware application
module pipeline for message format transformation, message
data processing, and message encoding; and

[0026] FIG. 10 illustrates another exemplary firmware
application module pipeline for message format transfomrn­
tion, message data processing, and message encoding.

[0027] FTG. 11 depicts another exemplary firmware appli­
cation module pipeline for performing the functions includ­
ing symbol mapping, Last Value Cache (LVC) updates, inter­
est and entitlement filtering;

[0028] FIG. 12 depicts an exemplary embodiment of a
compression function used to generate a hash key within a
firn1ware application module configured to perform symbol
mapping;

[0029] FIG.13 depicts an exemplary embodiment ofa hash
function for deployment within a finnware application mod­
ule configured to perform symbol mapping;

[0030] FIG. 14 depicts a preferred embodiment for gener­
ating a global exchange identifier (GEID) within a firmware
application module configured to perform symbol mapping;

[0031] FIGS. 15(a) and (b) depict an exemplary embodi­
ment for a firmware application module configured to per­
form Last Value Cache (LVC) updating;

[0032] FIG. 16 depicts an exemplary embodiment for a
fim1ware application module configured to perform interest
and entitlement filtering;

[0033] FIG. 17 depicts an exemplary embodiment of a
ticker plant where the primary data processing fimctional
units are deployed in reconfigurable hardware and where the
control and management functional units arc deployed in
software on general purpose processors;

[0034] FIG. 18 depicts an exemplary data flow for inbound
exchange traffic in the ticker plant of FIG. 17;

[0035] FIG. 19 depicts an exemplary processing of multiple
thread groups within the ticker plant of FIG. 17;

[0036] FIG. 20 depicts an example of data flow between the
hardware interface driver and reconfigurable logic within the
ticker plant of FIG. 17;

[0037] FIG. 21 depicts an example of data flows within the
ticker plant of PIG. 17 for data exiting the reconfigurable
logic; and

3
Oct. 2, 2008

[0038] FIG. 22 depicts an exemplary model for managing
client connections with the ticker plant of FIG. 17.

DETAILED DESCRIPTION OF THE PREFERRED
EMBOlJlMENT

[0039] FIG. 2 depicts an exemplary system 200 in accor­
dance with the present invention. In this system, a reconfig­
urable logic device 202 is positioned to receive data that
streams off either or both a disk subsystem defined by disk
controller 206 and data store 204 (either directly or indirectly
by way of system memory such as RAM 210) and a network
data source/destination 242 (via network interface 240). Pref­
erably, data streams into the reconfigurable logic device by
way of system bus 212, although other design architectures
are possible (see FIG. 4(b)). Preferably, the reconfigurable
logic device 202 is a FPGA, although this need not he the
case. System bus 212 can also interconnect the reconfigurable
logic device 202 with the computer system's main processor
208 as well as the computer system's RAM 210. The term
"bus" as used herein refers to a logical bus which encom­
passes any physical intercom1ect for which devices and loca­
tions are accessed by an address. Examples of buses that
could be used in the practice of the present invention include,
but are not limited to the PCI family of buses (e.g., PCI-X and
PCI-Express) and HyperTransport buses. In a preferred
embodiment system bus 212 may be a PCI-X bus, although
this need not be the case.
[0040] The data store can be any data storage device/sys­
tem, hut is preferably some form of a mass storage medium.
For example, the data store 204 can be a magnetic storage
device such as an array of Seagate disks. Ilowever, it should
be noted that other types of storage media are suitable for use
in the practice of the invention. For example, the data store
could also be one or more remote data storage devices that are
accessed over a network such as the Internet or some local
area network (LAN). Another source/destination for data
streaming to or from the reconfigurable logic device 202, is
network 242 by way of network interface 240, as described
above. In the financial industry, a network data source (e.g.,
the exchanges themselves, a third party provider, etc.) can
provide the financial data stream 106 described above in
connection with FIG. 1.
[0041] The computer system defined by main processor
208 and RAM 210 is preferably any commodity computer
system as would be understood by those having ordinary skill
in the art. For example, the computer system may be an Intel
Xeon system or an AMD Opteron system.
[0042] The reconfigurable logic device 202 has firmware
modules deployed thereon that define its functionality. The
firmware socket module 220 handles the data movement
requirements (both command data and target data) into and
out of the reconfigurable logic device, thereby providing a
consistent application interface to the firmware application
module (FAM) chain 230 that is also deployed on the recon­
figurable logic device. The FAMs 230i of the FAM chain 230
are configured to perform specified data processing opera­
tions on any data that streams through the chain 230 from the
firmware socket module 220. Preferred examples of FAMs
that can be deployed on reconfigurable logic in accordance
with a preferred embodiment of the present invention are
described below.
[0043] The specific data processing operation that is per­
formed by a FAM is controlled/parameterized by the com­
mand data that FAM receives from the firmware socket mod-

Ex. 1003 - Page 62

US 2008/0243675 Al

ule 220. T11is command data can be FAM-specific, and upon
receipt of the command, the FAM will arrange itself to carry
out the data processing operation controlled by the received
command. For example, within a FAM that is configured to
compute an index value (such as the Dow Jones Industrial
Average), the FAM's index computation operation can be
parameterized to define which stocks will be used for the
computation and to define the appropriate weighting that will
be applied to the value of each stock to compute the index
value. In this way, a FAM that is configured to compute an
index value can be readily re-arranged to compute a different
index value by simply loading new parameters for the differ­
ent index value in that FAM.
[0044] Once a FAM has been arranged to perform the data
processing operation specified by a received connnand, that
FAM is ready to carry out its specified data processing opera­
tion on the data stream that it receives from the firmware
socket module. Thus, a FAM can be arranged through an
appropriate command to process a specified stream of data in
a specified maimer. Once the FAM has completed its data
processing operation, another command can be sent to that
FAM that will cause the FAM to re-arrange itself to alter the
nature of the data processing operation performed thereby.
Not only will the FAM operate at hardware speeds (thereby
providing a high throughput of target data through the FAM),
but the FAMs can also be flexibly reprogr=ed to change
the parameters of their data processing operations.
[0045] The FAM chain 230 preferably comprises a plural­
ity of firmware application modules (FAMs) 230a, 230b, ...
that are arranged in a pipelined sequence. As used herein,
"pipeline", "pipelined sequence", or "chain" refers to an
arrangement of FAMs wherein the output of one FAM is
connected to the input of the next FAM in the sequence. This
pipelining arrangement allows each FAM lo independently
operate on any data it receives during a given clock cycle and
then pass its output to the next downstream FAM in the
sequence during another clock cycle.
[0046] A communication path 232 connects the firmware
socket module 220 with the input of the first one of the
pipelined FAMs 230a. The input of the first FAM 230a serves
as the entry point into the FAM chain 230. A communication
path 234 connects the output of the final one of the pipelined
FAMs 230m with the firmware socket module 220. The out­
put of the final FAM 230m serves as the exit point from the
FAM chain 23 0. Both communication path 23 2 and commu­
nication path 234 are preferably multi-bit paths.
[0047] FIG. 3 depicts an exemplary framework for the
deployment of applications on the system 200 of FIG. 2. The
top three layers of FTG. 3 represent functionality that is
executed in software on the computer system's general-pur­
pose processor 208. The bottom two layers represent func­
tionality that is executed in firmware on the reconfigurable
logic device 202.
[0048] The application software layer 300 corresponds to
high level functionality such as the type of functionality
wherein one or more users interact with the application to
define which data processing operations are to be performed
by the FAMs and to define what data those data processing
operations are to be performed upon.
[0049] The next layer is the module application program­
ming interface (API) layer 302 which comprises a high level
moduleAPI 302a and a low level moduleAPI 302b. The high
level moduleAPI 302a can provide generic services to appli­
cation level software (for example, managing callbacks). The

4
Oct. 2, 2008

low level module API 302b manages the operation of the
operating system (OS) level/device driver software 304. A
software library interface 310 interfaces the high level mod­
uleAPI 302a with the low level moduleAPI 302b.Additional
details about this software library interface can be found in
the above-referenced patent application Ser. No. 11/339,892.
[0050] The interface between the device driver software
304 and the firmware socket module 220 serves as the hard­
ware/ software interface 312 for the system 200. The details of
this interface 312 are described in greater detail in the above­
referenced patent application Ser. No. 11/339,892.
[0051] The interface between the firmware socket module
220 and the FAM chain 230 is the firmware module interface
314. The details of this interface are described in greater detail
in the above-referenced patent application Ser. No. 11/339,
892.
[0052] FIG. 4(a) depicts a printed circuit board or card 400
that can be connected to the PCI-X bus 212 of a commodity
computer system for use in a market data platform. In the
cxanlplc of FIG. 4(a), the printed circuit board includes an
FPGA 402 (such as a Xilinx Virtex II FPGA) that is in com­
munication with a memory device 404 and a PCI-X bus
connector 406. A preferred memory device 404 comprises
SRAM and SDRAM memory. A preferred PCI-X bus con­
nector 406 is a standard card edge connector.
[0053] FIG. 4(b) depicts an alternate configuration for a
printed circuit board/card 400. In the example ofFIG. 4(b), a
private bus 408 (such as a PCI-X bus), a network interface
controller 410, and a network connector 412 are also installed
on the printed circuit board 400. Any commodity network
interface technology can be supported, as is understood in the
art. In this configuration, the firmware socket 220 also serves
as a PCI-X to PCI-X bridge to provide the processor208 with
normal access to the network(s) connected via the private
PCI-X bus 408.
[0054] It is worth noting that in either the configuration of
FIG. 4(a) or 4(b), the firmware socket 220 can make memory
404 accessible to the PCI-X bus, which thereby makes
memory 404 available for use by the OS kernel 304 as the
buffers for transfers from the disk controller and/or network
interface controller to the FAMs. It is also worth noting that
while a single FPGA 402 is shown on the printed circuit
boards of FIGS. 4(a) and (b), it should be understood that
multiple FPGAs can be supported by either including more
than one FPGA on the printed circuit board 400 or by install­
ing more than one printed circuit board 400 in the computer
system. FIG. 5 depicts an example where numerous FAMs in
a single pipeline are deployed across multiple FPGAs.
[0055] As shown in FIGS. 2-4, inbound data (from the
kernel 304 to the card 400) is moved across the bus 212 in the
computer system to the firmware socket module 220 and then
delivered by the firmware socket module 220 to the FAM
chain 230. Outbound data (from the card 400 to the kernel
304) are delivered from the FAM chain 230 to the firmware
socket module 220 and then delivered by the firmware socket
module 220 across the PCI-X bus to the software application
executing on the computer system. As shown in FIG. 3, the
three interacting interfaces that are used are the firmware
module interface 314, the hardware/software interface 312,
and the software library interface 310.
[0056] In an effort to improve upon conventional market
data platforms, the inventors herein disclose a new market
data platform architecture, an embodiment of which is shown
in FIG. 6. The market data platform 600 shown in FIG. 6

Ex. 1003 - Page 63

US 2008/0243675 Al

consolidates the functional units 102 shown in FIG. 1 into
much fewer physical devices and also offloads much of the
data processingperfonned by the GPPs of the functional units
102 to reconfigurable logic.
[0057] For example, with the architecture of FIG. 6, the
feed compressor 602 can he deployed in an appliance such as
system 200 shown in FIG. 2. The reconfigurable logic 202 can
be implemented on a board 400 as described in connection
with FIG. 4(a) or 4(b). Feed compressor 602 is used lo com­
press the content of the financial data stream 106 arriving
from various individual sources. Examples of compression
techniques that can be used include the open standard "glib"
as well as any proprietary compression technique that may be
used by a practitioner of the present invention. Appropriate
FAM modules and a corresponding FAM pipeline to imple­
ment such a feed compression operation can be carried out by
a person having ordinary skill in the art using the design
techniques described in connection with the above-refer­
enced patent and patent applications and basic knowledge in
the art concerning feed compression. As a result, a variety of
hardware templates available for loading on reconfigurable
logic can be designed and stored for use by the market data
platform 600 to implement a desired feed compression opera­
tion.
[0058] Preferably, the feed compressor device 602 is
deployed in a physical location as close to the feed source 106
as possible, to thereby reduce communication costs and
latency. For example, it would be advantageous to deploy the
feed compressor device 602 in a data center of an extranet
provider (e.g., Savvis, BT Radianz. etc.) due to the data
center's geographic proximity to the source of the financial
market data 106. Because the compression reduces message
sizes within the feed stream 106, it will be advantageous to
perform the compression prior lo the stream reaching wide
area network (WAN) 620a; thereby improving communica­
tion latency through the network because of the smaller mes­
sage sizes.
[0059] WAN 620 preferably comprises an extranet infra­
structure or private communication lines for connection, on
the inbound side, to the feed handlers deployed in device 604.
On the outbound side, WAN 620 preferably connects with
device 606, as explained below. It should be noted that WAN
620 can comprise a single network or multiple networks 620a
and 620b segmented by their inbound/outbound role in rela­
tion to platform 600. It is also worth noting that a news feed
with real-time news wire reports can also be fed into WAN
620a for delivery to device 604.
[0060] Device 604 can be deployed in an appliance such as
system 200 shown in FIG. 2. The reconfigurable logic 202 can
be implemented on a board 400 as described in connection
with FIG. 4(a) or 4(b). Whereas the conventional GPP-based
system architecture shown in FIG. 1 deployed the fimctional
units of feed handling/ticker plant, rule-based calculation
engines, an alert generation engine, options pricing, Last
Value Cache (LVC) servers supplying snapshot and/or
streaming interfaces, historical time-series oriented data­
bases with analytics, and news databases with search capa­
bilities in software on separate GPPs, the architecture of FIG.
6 can consolidate these functions, either partially or in total, in
firn1ware resident on the reconfigurable logic (such as one or
more FPGAs) of device 604.
[0061] Feed handlers, which can also be referred to as feed
producers, receive the real-time data stream, either com­
pressed from the feed compressor 602 as shown in FIG. 6 or

5
Oct. 2, 2008

uncompressed from a feed source, and converts that com­
pressed or uncompressed stream from a source-specific for­
mat (e.g., an NYSE format) to a format that is common
throughout the market data platform 600. This conversion
process can be referred to as "normalization". This "normal­
ization" can be implemented in a FAM chain that transforms
the message structure, converts the based units of specific
field values within each message, maps key field information
to the common format of the platform, and fills in missing
field information from cached or database records. In situa­
tions where the received feed stream is a compressed feed
stream, the feed handler preferably also implements a feed
decompression operation.
[0062] L VCs maintain a database of financial instrument
records whose functionality can be implemented in a FAM
pipeline. Each record represents the current state of that
financial instrument in the market place. These records are
updated in real-time via a stream of update messages received
from the feed handlers. The LVC is configured to respond to
requests from other devices for an up-to-the-instant record
image for a set of financial instruments and redistribute a
selective stream of update messages pertaining to those
requested records, thereby providing real-time snapshots of
financial instrument status. From these snapshots, informa­
tion such as the "latest price" for a financial instrument can he
determined, as described in the above-referenced Ser. No.
10/153,151 application.
[0063] Rule-based calculation engines are engines that
allow a user to create his/her own synthetic records whose
field values are derived from calculations performed against
information obtained from the LVC, infornrntion extracted
from a stream of update messages generated from the LVC, or
from alternate sources. These rule-based calculation engines
are amenable to implementation in a FAM pipeline. It should
also be noted that the rule-based calculation engine can be
configured to create new synthetic fields that are included in
existing records maintained by the LVC. The new values
computed by the engine are computed by following a set of
rules or formulas that have been specified for each synthetic
field. For example, a rule-based calculation engine can be
configured to compute a financial instrument's Volume
Weighted Average Price (VWAP) via a FAM pipeline that
computes the VWA.P as the sum of PxS for every trade meet­
ing criteria X, wherein P equals the trade price and wherein S
equals the trade size. Criteria X can be parameterized into a
FAM filter that filters trades based on size, types, market
conditions, etc. Additional examples of rule-based calcula­
tions that can be performed by the rule-based calculation
engine include, but are not limited to, a minimum price cal­
culation for a financial instrument, a maximum price calcu­
lation for a financial instrument, a Top 10 list for a financial
instrument or set of financial instruments, etc.
[0064 j An alert generation engine can also be deployed in a
FAM pipeline. Alert generation engines are similar to a rule­
based calculation engine in that they monitor the current state
of a financial instrument record (or set of financial instrument
records), and the alert generation engine will trigger an alert
when any of a set of specified conditions is met. An indication
is then delivered via a variety of means to consuming appli­
cations or end users that wish to be notified upon the occur­
rence of the alert.
[0065] Option pricing is another function that is highly
amenable to implementation via a FAM pipeline. An "option"
is a derivative financial instrument that is related to an under-

Ex. 1003 - Page 64

US 2008/0243675 Al

lying financial instrument, and the option allows a person to
buy or sell that underlying financial instrument at a specific
price at some specific time in the future. An option pricing
engine is configured to perform a number of computations
related to these options and theirunderlying instrwnents (e.g.,
the theoretical fair market value of an option or the implied
volatility of the underlying instrnment based upon the market
price of the option). A wide array of computational rules can
be used for pricing options, as is known in the art. Most if not
all industry-accepted techniques for options pricing are
extremely computation intensive which introduces signifi­
cant latency when the computations are performed in soft­
ware. However, by implementing option pricing in a FAM
pipeline, the market data platform 600 can significantly speed
up the computation of option pricing, thereby providing in
important edge to traders who use the present invention. An
example of options pricing functionality that can be deployed
in firmware is described in pending U.S. patent application
Ser. No. 11/760,211, filed Jun. 8, 2007, the entire disclosure
of which is incorporated herein by reference.
[0066] A time series database is a database that maintains a
record for each trade or quote event that occurs for a set of
financial instruments. This information may be retrieved
upon request and returned in an event-by-event view. Alter­
native views are available wherein events are "rolled up" by
time intervals and summarized for each interval. Common
intervals include monthly, weekly, daily, and "minute bars"
whern the interval is specified lo be some number of minutes.
The time series database also preferably compute a variety of
functions against these historic views of data, including such
statistical measures as volume weighted average price
(VWAP), money flow, or correlations between disparate
financial instruments.
[0067] A news database maintains a historical archive of
news stories that have been received from a news wire feed by
way of the feed handler. The news database is preferably
configured to allow end users or other applications to retrieve
news stories or headlines based upon a variety of query
parameters. These query parameters often include news cat­
egory assignments, source identifiers, or even keywords or
keyword phrases. The inventors herein note that this search­
ing functionality can also be enhanced using the search and
data matching techniques described in the above-referenced
patent and patent applications.
[0068] Appropriate FAM modules and corresponding FAM
pipelines to implement these various functions for device 604
can be carried out by a person having ordinary skill in the art
using the design techniques described in connection with the
above-referenced patent and patent applications and basic
knowledge in the art concerning each function. As a result, a
variety of hardware templates available for loading on recon­
figurable logic can be designed and stored in memory (such as
on a disk embodied by data store 204 in connection with FIG.
2) for use by the market data platform 600 to implement a
desired data processing function. Persistent data storage unit
630 can be accessible to device 604 as device 604 processes
the feed stream in accordance with the functionality
described above. Storage 630 can be embodied by data slore
204 or other memory devices as desired by a practitioner of
the invention.
[0069] Traders at workstations 104 (or application pro­
grams 150 rnnning on an entity's own trading platform) can
then access the streaming financial data processed by device
604 via a connection to local area network (LAN) 622.

6
Oct. 2, 2008

Through this LAN connection, workstations 104 (and appli­
cation program 15) also have access to the data produced by
devices 606, 608, 610, 612, 614, and 616. Like devices 602
and 604, devices 606, 608, 610, 612, 614, and 616 can also be
deployed in an appliance such as system 200 shown in FIG. 2,
wherein the reconfigurable logic 202 of system 200 can be
implemented on a board 400 as described in cmmection with
FIG. 4(a) or 4(b).

[0070] Device 606 preferably consolidates the following
functionality at least partially into firmware resident on
reconfigurable logic: an order book server; an order router;
direct market access gateways to exchanges, Electronic Com­
munication Networks (ECNs), and other liquidity pools; trad­
ing engines; an auto-quote server; and a compliance journal.
[0071] An "order book server" is similar to a LVC in that
the order book server maintains a database in memory (e.g., in
memory device 404 on board 400) of financial instrument
records, and keeps that database up to date in real-time via
update messages received from the feed handlers. For each
record, the order book server preferably maintains a sorted
list of the bids and offers associated with all outstanding
orders for that instrument. This list is known as the "book" for
that instrument. The order information for each instrument is
received from a variety of different trading venues in stream
106 and is aggregated together to form one holistic view of the
market forthat particular instrument. The order book server is
configured to respond to requests from workstation 104 users
or application programs 150 lo present lhe book in a number
of different ways. There are a variety of different "views",
including but not limited to: a "top slice" of the book that
returns orders whose prices are considered to be within a
specified munber of price points of the best price available in
the market (the best price being considered to be the "top" of
the book); a price aggregate view where orders at the same
price point are aggregated together to create entries that are
indicative of the total number of orders available at each price
point; and an ordinary view with specific trading venues
(which are the source of orders) excluded.
[0072] An order router is a function that can take a buy or
sell order for a specified financial instrument, and based upon
a variety of criteria associated with the order itself or the end
user or application submitting the order, route the order (in
whole or in part) to the most appropriate trading venue, such
as an exchange, an Alternate Trading System (ATS), or an
ECN.

[0073] The direct market access gateway functionality
operates to relay orders to a trading venue (such as an
exchange, FCN, ATS, etc.) via WAN 620h. Before sending an
order out however, the gateway preferably transforms the
order message to a format appropriate for the trading venue.

[0074] The trading engine functionality can also be
deployed on reconfigurable logic. An algorithmic trading
engine operates to apply a quantitative model to trade orders
of a defined quantity to thereby automatically subdivide that
trade order into smaller orders whose timing and size are
guided by the goals of the quantitative model so as to reduce
the impact that the original trade order may have on the
current market price. Also, a black box trading engine oper­
ates to automatically generate trades by following a math­
ematical model that specifies relationships or conditional
parameters for an instrument or set of instruments. To aid this
processing, the black box trading engine is fed with real-time
market data.

Ex. 1003 - Page 65

US 2008/0243675 Al

[0075] An auto-quote server is similar to a black box trad­
ing engine. The auto-quote server operates to automatically
generate firm quotes to buy or sell a particular financial instrn­
ment at the behest of a "market maker"; wherein a "market
maker" is a person or entity which quotes a buy and/or sell
price in a financial instrument hoping to make a profit on the
"tum" or the bid/offer spread.
[0076] A feed/compliance journal canal so be implemented
in a FAM pipeline. The feecl/compliance journal functions lo
store information (in persistent storage 632) related to the
current state of the entire market with regard to a particular
financial instrument at the time a firm quote or trade order is
submitted to a single particular marketplace. The feed/com­
pliance journal can also provide a means for searching storage
632 to provide detailed audit infonnation on the state of the
market when a particular firm quote or trade order was sub­
mitted. The inventors herein note that this searching fi.Jnction­
ality can also be enhanced using the search and data matching
techniques described in the above-referenced patent and
patent applications.
[0077] As mentioned above in connection with device 604,
appropriate FAM modules and corresponding FAM pipelines
to implement these various functions for device 606 can be
carried out by a person having ordinary skill in the art using
the design techniques described in connection with the above­
referenced patent and patent applications and basic knowl­
edge in the art concerning each function. As a result, a variety
ofhardware templates available for loading on reconfigurable
logic can be designed and stored for use by the market data
platform 600 to implement a desired data processing func­
tion. Persistent data storage unit 632, which can be embodied
by data store 204, can be accessible to device 606 as device
606 processes the feed stream in accordance with the func­
tionality described above.
[0078] Device 608 preferably implements an internal
matching system/engine in firmware resident on reconfig­
urable logic. An internal matching system/engine operates to
match a buyer's bid with a seller's offer to sell for a particular
financial instrument, to thereby execute a deal or trade. An
indication of a completed trade is then submitted to the appro­
priate reporting and settlement systems. The internal match­
ing system/engine may create bids or offers as would a market
maker in order to provide an orderly market and a minimum
amount ofliquidity by following a set of programmatically­
defined rules.
[0079] Device 610 preferably implements an order man­
agement system (OMS) in firmware resident on reconfig­
urable logic. An OMS operates to facilitate the management
of a group of trading accounts, typically on behalf of a broker.
The 0 MS will monitor buy and sell orders to ensure that they
are appropriate for the account owner in question based upon
his1ber account status, credit and risk profiles. The OMS
typically incorporates a database via persistent storage 638
(which may be embodied by data store 204) used to hold
account information as well as an archive of orders and other
activity for each account.
[0080] Device 612 preferably implements entitlements and
reporting functionality. A market data platform such as sys­
tem 600 is a mechanism for distributing data content to a
variety of end users. Many content providers charge on a per
user basis for access to their data content. Such content pro­
viders thus prefer a market data platform to have a mechanism
to prohibit (or entitle) access to specific content on an indi­
vidual user basis. Entitlement systems may also supply a

7
Oct. 2, 2008

variety of reports that detail the usage of different content
sets. To achieve this functionality, device 612, in conjunction
with database 634, preferably operates to maintain a database
of users, including authentication credentials and entitlement
information which can be used by devices 604, 606, 608, 610
and 616 for entitlement filtering operations in conjunction
with the data processing operations performed thereby.
[0081] Device 614 preferably implements management
and monitoring for the market data platform 600. Manage­
ment and monitoring functionality provides a means for users
to operate the applications running within the platform 600
and monitor the operational state and health of individual
components thereon. Preferably, the management and moni­
toring functionality also provides facilities for reconfiguring
the components as well as means for perfonning any other
appropriate manual chores associated with running the plat­
form.
[0082] Device 616 preferably implements publishing and
contribution server functionality. Contribution servers (also
known as publishing servers) allow users to convert informa­
tion obtained from an end-user application (or some other
source within his/her enterprise) into a suitable form, and to
have it distributed by the market data platform 600.
[0083] As mentioned above in connection with devices 604
and 606, appropriate FAM modules and corresponding FAM
pipelines to implement these various fi.Jnctions for devices
608, 610, 612, 614, and 616 can be carried out by a person
having ordinary skill in the art using the design techniques
described in connection with the above-referenced patent and
patent applications and basic knowledge in the art concerning
each function. As a result, a variety of hardware templates
available for loading on reconfigurable logic can be designed
and stored for use by the market data platfonn 600 to imple­
ment a desired data processing function. Persistent data stor­
age units 634 and 636 can be accessible to devices 612 and
614 respectively as those devices process the data in accor­
dance with the functionality described above.
[0084] In deploying this functionality, at least in part, upon
reconfigurable logic, the following modules/submodules of
the functions described above are particularly amenable to
implementation on an FPGA: fixed record format message
parsing, fixed record format message generation, FIX mes­
sage parsing, FIX message generation, FIX/FAST message
parsing, FIX/FAST message generation, message compres­
sion, message decompression, interest and entitlement D.lter­
ing, financial instrument symbol mapping, record ID map­
ping, price summary LVC update/retrieve/normalize (LVC),
order book cache update/retrieve/normalize (OBC), generic
LVC (GVC), minute bar generation, programmatic field gen­
eration (with LVC, OBC, etc.), historic record search and
filter, book-based algorithmic order routing, trade order gen­
eration, basket calculation (including ETF, index, and port­
folio valuation), and autoquote generation. lt should be
understood by those having ordinary skill in the art that this
list is exemplary only and not exhaustive; additional modules
for financial data processing can also be employed in a FAM
or FAM pipeline in the practice of the present invention.
[0085] With fixed record format message parsing, a fixed
format message is decomposed into its constituent fields as
defined by a programmable "data dictionary". Entries within
the data dictionary describe the fields within each type of
message, their positions and sizes within those messages, and
other metadata about the field (such as data type, field iden­
tifiers, etc.). Preferably, the data dictionary is stored in per-

Ex. 1003 - Page 66

US 2008/0243675 Al

sistent storage such as data store 204 of the system 200. Upon
initialization of the FAM pipeline on board 400, the data
dictionary is then preferably loaded into memory 404 for
usage by the FAM pipeline during data processing operations.
[0086] With fixed record format message generation, a
fixed format message is generated by concatenating the
appropriate data representing fields into a message record.
The message structure and format is described by a program­
mable data dictionary as described above.
[0087] With FIX message parsing, a FIX-formatted mes­
sage is decomposed into its constituent fields as defined by a
programmable data dictionary as described above; FIX being
a well-known industry standard for encoding financial mes­
sage transactions.
[0088] With FIX message generation, a FIX-formatted
message is generated by concatenating the appropriate data
representing the fields into a FIX message record. Once again,
the message structure and format is described by a program­
mable data dictionary as described above.
[0089] With FIX/FAST message parsing, a FIX and/or
FAST message (FAST being a well known variation of FIX)
is decomposed into its constituent fields as defined by a pro­
grammable data dictionary as described above.
[0090] With FIX/FAST message generation, a FIX-format­
ted and/or FAST-formatted message is generated by concat­
enating the appropriate data representing fields into a FIX/
FAST message record. The message structure and format is
defined by a programmable data dictionary as described
above.
[0091] With message compression, a message record is
compressed so as to require less space when contained in a
memory device and to require less communication bandwidth
when delivered to other systems. The compression teclmique
employed is preferably sufficient to allow for reconstruction
of the original message when the compressed message is
processed by a corresponding message decompression mod­
ule.
[0092] With interest and entitlement filtering, a stream of
messages coming from a module such as one of the caching
modules described below (e.g., price summary LVC, order
book OBC, or generic GVC) is filtered based upon a set of
entitlement data and interest data that is stored for each record
in the cache. This entitlement and interest data defines a set of
users (or applications) that are both entitled to receive the
messages associated with the record and have expressed an
interest in receiving them. This data can be loaded into
memory from storage 634 during initialization of the board
400, or from Application Software 300 during normal opera­
tion of the board 400. An exemplary embodiment of a FAM
configured to perform interest and entitlement filtering is
described hereinafter with respect to FIG. 16.
[0093] With financial instrument symbol mapping, a com­
mon identifying string for a financial instrument (typically
referred to as the "symbol") is mapped into a direct record key
rn1mber that can be used by modules such as caching modules
(LVC, OBC, GVC) to directly address the cache record asso­
ciated with that financial instrument. The record key rnm1ber
may also be used by software to directly address a separate
record corresponding to that instrument that is kept in a stor­
age, preferably separate from board 400. An exemplary
embodiment of a FAM configured to perform symbol map­
ping is described hereinafter with respect to FIGS. 12-14.
[0094] With record ID mapping, a generic identifying
string for a record is mapped into a direct record key number

8
Oct. 2, 2008

that can be used by a caching module (e.g., LVC, OBC, GVC)
or software to directly address the record in a storage
medium.

[0095] The price summary Last Value Cache update/re­
trieve/normalize (LVC) operation operates to maintain a
cache of financial instrument records whose fields are
updated in real-time with information contained in streaming
messages received from a message parsing module, and to
enhance or filter the messages received from a message pars­
ing module before passing them on to subsequent processing
modules. The type ofupdate performed fur an individual field
in a record will be defined by a programmable data dictionary
as described above, and may consist of moving the data field
from the message to the record, updating the record field by
accumulating the data field over a series of messages defined
within a time-bounded window, updating the record field only
if certain conditions as defined by a set of programmable rules
are true, or computing a new value based upon message
and/or record field values as guided by a programmable for­
mula. The type of enhancement or filtering applied to an
individual message may consist ofreplacing a message field
with one created by accumulating the data over a series of
messages defined within a time-bounded window, flagging a
field whose value falls outside of a programmatically defined
range of values, or suppressing the message in its entirety if
the value of a field or set of fields fails to change with respect
to the corresponding values contained within the cache
record. An exemplary embodiment of a FAM configured to
perform LVC updating is described hereinafter with respect
to FIGS. 15(a) and (b).

[0096] The order book cache update, retrieve and normal­
ize (OBC) operation operates to maintain a cache of financial
instrument records where each record consists of an array of
sub-records that define individual price or order entries for
that financial instrument. A sort order is maintained for the
sub-records by the price associated with each sub-record. The
fields of the sub-records are updated in real-time with infor­
mation contained in streaming messages received from a
message parsing module. Sub-records associated with a
record are created and removed in real-time according to
information extracted from the message stream, and the sort
order of sub-records associated with a given record is con­
tinuously maintained in real-time. The type of update per­
formed for an individual field in a sub-record will be defined
by a programmable data dictionary, and may consist of mov­
ing the data field from the message to the sub-record, updat­
ing the sub-record field by accumulating the data field over a
series of messages defined within a time-bounded window,
updating the sub-record field only if certain conditions as
defined by a set of programmable rules are true, or computing
a new value based upon message and/or record or sub-record
fields as guided by a programmable formula. The OBC
includes the ability to generate various views of the book for
a financial instrument including but not limited to a price­
aggregated view and a composite view. A composite view is a
sort order of the price or order entries for a financial instru­
ment across multiple exchanges. The OBC also includes the
ability to synthesize a top-of-book quote stream. When an
update operation causes the best bid or offer entry in a given
record to change, the OBC may be configured to generate a
top-of-book quote reporting the current best bid and offer
information for the financial instrument. A synthesized top­
of-book quote stream has the ability to report best bid and

Ex. 1003 - Page 67

US 2008/0243675 Al

offer information with less latency than an exchange-gener­
ated quote stream. This may be used to accelerate a variety of
latency sensitive applications.
[0097] The Generic Last Value Cache (GVC) operation
operates to maintain a cache of records whose fields are
updated in real-time with information contained in streaming
messages received from a message parsing module. The
structure of a record and the fields contained within it are
ddlned by a programmable data dictionary, as described
above. The type of update perfonned for an individual field in
a record will be defined by a progrannnable data dictionary,
and may consist of moving the data field from the message to
the record, updating the record field by accumulating the data
field over a series of messages defined within a time-bounded
window, updating the record field only if certain conditions as
defined by a set of programmable mies are trne, or computing
a new value based upon message and/or record field values as
guided by a programmable formula.
[0098] A minute bar generation operation operates to moni­
tor real-time messages from a message parsing module or last
value cache module for trade events containing trade price
information, or for quote events containing quote price infor­
mation, and create "minute bar" events that summarize the
range of trade and/ or quote prices that have occurred over the
previous time interval. The time interval is a programmable
parameter, as is the list of records for which minute bars
should be generated, and the fields to include in the generated
events.
[0099] A Top I 0 list generation operation operates to moni­
tor real-time messages from a message parsing module or last
value cache module for trade events containing price infor­
mation and create lists of instruments that indicate overall
activity in the market. Such lists may include (where 'N' is
programmatically defined): top N stocks with the highest
traded volume on the day; top N stocks with the greatest
positive price change on the day; top N stocks with the largest
percentage price change on the day; top N stocks with the
greatest negative price change on the day; top N stocks with
the greatest number of trade events recorded on the day; top N
stocks with the greatest number of"large block" trades on the
day, where the threshold that indicates whether a trade is a
large block trade is defined programmatically.
[0100] A programmatic field generation (via LVC, OBY,
GVC, etc.) operation operates to augment messages received
from a message parsing module with additional fields whose
values are defined by a mathematical formula that is supplied
programmatically. The formula may reference any field
within the stream of messages received from a message pars­
ing module, any field contained within a scratchpad memory
associated with this module, or any field contained within any
record held within any the record caches described herein.
[0101] A progrannnatic record generation (with LVC,
OBC, GVC, etc.) operation operates to generate records that
represent synthetic financial instruments or other arbitrary
entities, and a series of event messages that signal a change in
state of each record when the record is updated. The structure
of the records and the event messages are programmatically
defined by a data dictionary. The field values contained with
the record and the event messages are defined by mathemati­
cal formulas that are supplied programmatically. The formu­
las may reference any field within the stream of messages
received from a message parsing module, any field contained
within a scratchpad memory associated with this module, or
any field contained within any record held within any the

9
Oct. 2, 2008

record caches described herein. Updates to field values may
be generated upon receipt of a message received from another
module, or on a time interval basis where the interval is
defined progrannnatically. A basket calculation engine is one
example of programmatic record generation. A synthetic
instrument may be defined to represent a given portfolio of
financial instmments, constituent instruments in an Exchange
Traded Fund (ETF), or market index. The record for that
synthetic instmment may include fields such as the Net Asset
Value (NAV) and total change.
[0102] A historic record search and filteroperation operates
to filter messages received from a message parsing module
that represent a time series of events to partition the events
into various sets, where each set is defined by a collection of
criteria applied lo event attributes. The event message struc­
ture, criteria and attributes are all progrannnatically defined.
Event attributes include, but are not limited to: financial
instrument symbol, class of symbol, time and date of event,
type of event, or various indicator fields contained within the
event. Multiple events within a set may be aggregated into a
single event record according to a collection of aggregation
mies that are progrannnatically defined and applied to
attributes of the individual events. Aggregation mies may
include, but are not limited to, aggregating hourly events into
a single daily event, aggregating daily events into a single
weekly event, or aggregating multiple financial instmments
into a single composite instmment.
[0103] These functions (as well as other suitable financial
data processing operations) as embodied in FAMs can then be
combined to form FAM pipelines that are configured to pro­
duce useful data for a market data platform. For example, a
feed compressor FAM pipeline can employ FAMs configured
with the following functions: fixed record format message
parsing, fixed record format message generation, FIX mes­
sage parsing, FIX message generation, FIX/FAST message
parsing, FIX/FAST message generation, message compres­
sion, and message decompression.
[0104] FIG. 7 illustrates an exemplary FAM pipeline for
performing a FIX-to-FAST message transformation. FAM
702 is configured to receive an incoming stream of FIX mes­
sages and perform FIX message parsing thereon, as described
above. Then the parsed message is passed to FAM 704, which
is configured to field decode and validate the parsed message.
To aid this process, FAM 704 preferably has access to stored
templates and field maps in memory 710 (embodied by
memory 404 on board 400). The templates identify what
fields exist in a given message type, while the field maps
uniquely identify specific fields in those message (by location
or otherwise). Next, FAM 704 provides its output to FAM
706, which is configured to perform a FAST field encode on
the received message components. Memory 710 and any
operator values stored in memory 712 aid this process
(memory 712 also being embodied by memory 404 on board
400). The operator values in memory 712 contains various
state values that are preserved form one message to the next,
as defined by the FAST encoding standard. Then, the encoded
FAST messages arc serialized by FAM 708 to form a FAST
message stream and thereby complete the FIX lo FAST trans­
formation.
[0105] FIG. 8 illustrates an exemplary FAM pipeline for
performing a FAST-to-FIX message transformation. An
incoming FAST stream is received by FAM 802, which dese­
rializes the stream ofFAST messages. The deserializedF AST
messages are then provided to FAM 804, which operates to

Ex. 1003 - Page 68

US 2008/0243675 Al

decode the various fields of the FAST messages as aided by
the templates and field maps in memory 812 and the operator
values in memory 810. Thereafter, FAM 806 is preferably
configured to perform message query filtering. Message
query filters allow for certain messages to be excluded from
the message flow. Such filters are preferably parameterized in
FAM 806 such that filtering criteria based on the field values
contained within each message can be flexibly defined and
loaded onto the PPGA. Examples of filtering criteria that can
be used to filter messages include a particular type of instru­
ment (e.g., common stock, warrant, bond, option, commod­
ity, future, etc.), membership within a prescribed set of finan­
cial instruments (e.g., an index or "exchange traded fund"
(ETF)), message type, etc. Next, FAM 808 operates to per­
form FIX message generation by appropriately encoding the
various message fields, as aided by the templates and field
maps in memory 812. Thus, the FAM pipeline shown in FIG.
8 operates to transform FAST message to FIX messages.
Memory units 810 and 812 are preferably embodied by
memory 404 of board 400.
[0106] FIG. 9 depicts an exemplary FAM pipeline for car­
rying out a variety of data processing tasks. The FAM pipeline
ofFIG. 9 takes ina FAST message stream. FAMs 902 and904
operate in the same manner as FAMs 802 and 804 in FIG. 8.
Thus, the output of FAM 904 comprises the data content of
the FAST message decomposed into its constituent fields.
This content is then passed to a variety of parallel FAMS 906,
908, and 910. FAM 906 performs an administrative record
filter on the data it receives. The administrative record filter
preferably operates to pass through message types that are not
processed by any of the other FAM modules of the pipeline.
FAM 908 serves as a Top 10 lists engine, as described above.
FAM 910 serves as a message query filter, as described above.

[0107] The output of FAM 910 is then passed to FAM 912,
which is configured as a rule-based calculation engine, as
described above. FAM 912 also receives data from a real time
field value cache 926 to obtain LVC data, as does the top 10
list FAM 908. Cache 926 is preferably embodied by memory
404 of board 400. The oulpul from the rule-based calculation
engine FAM 912 is then passed to parallel FAMs 914, 916,
and 918. FAM 914 serves as a message multiplexer, and
receives messages from the outputs of FAMs 906, 908 and
912. FAM 920 receives the messages multiplexed by FAM
914, and serves to encode those messages to a desired format.
FAM 916 serves as an alert engine, whose function is
explained above, and whose output exits the pipeline. FAM
918 serves as a value cache update engine to ensuring that
cache 926 stays current.
[0108] FIG. 10 depicts another exemplary FAM pipeline
for carrying out multiple data processing tasks. FAM 1002
takes in a stream of fixed format messages and parses those
messages into their constituent data fields. The output of FAM
1002 can be provided to FAM 1004 and FAM 1018. FAM
1018 serves as a message synchronization buffer. Thus, as the
fields of the original parsed message are passed directly from
FAM 1002 to FAM 1018, FAM 1018 will buffer those data
fields while the upper path ofFI G. 10 (defined by F AMs 1004,
1006, 1008, 1010, 1012, and 1014) process select fields of the
parsed message. Thus, upon completion of the processing
performed by the FAMs of the upper path, the message for­
matting FAM 1016, can generate a new message for output
from the pipeline using the fields as processed by the upper
path for that parsed message as well as the fields buffered in
FAM 1018. The message formatter 1016 can then append the

10
Oct. 2, 2008

fields processed by the upper path FAMs to the fields buffered
in FAM 1018 for that message, replace select fields buffered
in FAM 1018 for that message with fields processed by the
upper path FAMs, or some combination of this appending and
replacing.
[0109] FAM 1004 operates to map the known symbol for a
financial instrument (or set of financial instruments) as
defined in the parsed message to a symbology that is internal
lo the platform (e.g., mapping the symbol for IBM stock lo an
internal symbol "12345"). FAM 1006 receives the output
from FAM 1004 and serves to update the LVC cache via
memory 1024. The output of FAM 1006 is then provided in
parallel to FAMs 1008, 1010, 1012, and 1014.
[0110] PAM 1008 operates as a Top 10 list generator, as
described above. FAM 1010 operates as a Minute Bar gen­
erator, as described above. FAM 1012 operates as an interest/
entitlement filter, as described above, and FAM 1014 operates
as a programmatic calculation engine, as described above.
The outputs from FAMs 1008, 1010, 1012and1014 are then
provided to a message formatter FAM 1016, which operates
as described above to construct a fixed format message of a
desired format from the outputs ofFAMs 1008, 1010, 1012,
1014 and 1018.
[0111] Tn performing these tasks, FAM 1004 is aided by
memory 1020 that stores templates and field maps, as well as
memory 1022 that stores a symbol index. FAM 1006 is also
aided by memory 1020 as well as memory 1024 which serves
as an LVC cache. Memory 1020 is also accessed by FAM
1008, while memory 1024 is also accessed by FAM 1014.
FAM 1012 accesses interest entitlement memory 1026, as
loaded from storage 634 or provided by Application Software
300 during initialization of the board 400.
[0112] FIG. 11 depicts an exemplary FAM pipeline for
performing the functions of an exemplary ticker plant
embodiment. including message parsing, symbol mapping,
Last Value Cache (LVC) updates, and interest and entitlement
filtering.
[0113] Message Parser FAM 1102 ingests a stream of mes­
sages, parses each message into its constituent fields, and
propagates the fields to downstream FAMs. Message fields
required for processing in FAMs 1104. 1106, and 1108 are
passed to FAM 1104. Other message fields are passed to
Message Synchronization Buffer FAM 1112. Message Parser
PAM 1102 may be implemented to support a variety of mes­
sage formats, including various types of fixed-formats and
self-describing formats. A preferable message format pro­
vides sufficient flexibility to support the range of possible
input events from financial exchanges. In a preferred imple­
mentation, the Message Parser FAM 1102 may be configured
to support different message formats without altering the
firmware. This may be achieved by loading message format
templates into Template & Field Map buffer 1120. Message
Parser FAM 1102 reads the message format description from
buffer 1120 prior to processing input messages to learn how a
given message is to be parsed.
[0114] Like FAM 1004 in FIG. 10, Symbol ID Mapping
FAM 1104 operates to map the known symbol for a financial
instrument (or set of financial instruments) as defined in the
parsed message to a symbology that is internal to the platform
(e.g., mapping the symbol for IBM stock to an internal sym­
bol "12345"). Preferably, the internal platform symbol iden­
tifier (ID) is an integer in the range 0 to N-1, where N is the
number of entries in Symbol Index Memory 1122. Preferably,
the symbol ID is formatted as a binary value of size M =log2

Ex. 1003 - Page 69

US 2008/0243675 Al

(N) bits. The format of financial instrument symbols in input
exchange messages varies for different message feeds and
financial instrument types. Typically, the symbol is a vari­
able-length ASCII character string. A symbology ID is an
internal control field that uniquely identifies the format of the
symbol string in the message. As shown in FIG. 12, a sym­
bology ID is preferably assigned by the feed handler, as the
symbol string format is typically shared by all messages on a
given input feed.

[0115] A preferred embodiment of the Symbol ID Mapping
FAM maps each unique symbol character string lo a unique
binary number of size M bits. ln the preferred embodiment,
the symbol mapping FAM perforn1s a format-specific com­
pression of the symbol to generate a hash key of size K bits,
where K is the size of the entries in the Symbol Index Memory
1122. The symbology ID may be used to lookup a Key Code
that identifies the symbol compression technique that should
be used for the input symbol. Preferably, the symbol mapping
FAM compresses the symbol using format-specific compres­
sion engines and selects the correct compressed symbol out­
put using the key code. Preferably, the key code is concat­
enated with the compressed symbol to form the hash key. In
doing so, each compression technique is allocated a subset of
the range of possible hash keys. This ensures that hash keys
will be unique, regardless of the compression technique used
to compress the symbol. An example is shown in FIG. 12
wherein the ASCII symbol for a financial instrument is com­
pressed in parallel by a plurality of different compression
operations (e.g., alpha-numeric ticker compression, ISIN
compression, and commodity compression). Compression
techniques for different symbologies can be selected and/or
devised on an ad hoc basis as desired by a practitioner of the
invention. A practitioner of the present invention is free to
select a different compression operation as may be appropri­
ate for a given symbology. Based on the value of the key code,
the symbol mapping FAM will pass one of the concatenations
of the key code and compression results as the output from the
multiplexer for use as the hash key.

[0116] Alternatively, the format-specific compression
engines may be implemented in a programmable processor.
The key code may then be used to fetch a sequence of instruc­
tions that specify how the symbol should he compressed.

[0117] Once the hash key is generated, the symbol mapping
FAM maps the hash key to a unique address in the Symbol
Index Memory in the range 0 to N-1. The Symbol Index
Memory may be implemented in a memory "on-chip" (within
the reconfigurable logic device) or in "off-chip" high speed
memory devices such as SRAM and SD RAM that are acces­
sible to the reconfigurable logic device. Preferably, this map­
ping is performed by a hash function. A hash function
attempts to minimize the number of probes, or table lookups,
to find the input hash key. In many applications, additional
meta-data is associated with the hash key. In the preferred
embodiment, the location of the hash key in the Symbol Index
Memory is used as the unique internal Symbol ID for the
financial instrument.

[0118] FIG. 13 shows a preferred embodiment of a hash
function to perform this mapping that represents a novel
combination of known hashing methods. The hash function
of FIG. 13 uses near-perfect hashing to compute a primary
hash function, then uses open-addressing to resolve colli­
sions. The hash function H(x) is described as follows:

11
Oct. 2, 2008

H(x)~(hl (x)+(i*h2(x)))mod N

hl(x)~A(x)ffid(x)

h2(x)-C(x)

The operand x is the hash key generated by the previously
described compression stage. The function hl(x) is the pri­
mary hash function. The value i is the iteration count. The
iteration count i is initialized to zero and incremented for each
hash probe that results in a collision. For the first hash probe,
hash function H(x)=hl(x), thus the primary hash function
determines the first hash probe. The preferred hash function
disclosed herein attempts to maximize the probability that the
hash key is located on the first hash probe. If the hash probe
results in a collision, the hash key stored in the hash slot does
not match hash key x, the iteration count is incremented and
combined with the secondary hash function h2(x) to generate
an offset from the first hash probe location. The modulo N
operation ensures that the final result is within the range 0 to
N-1, where N is the size of the Symbol Index Memory. The
secondary hash function h2(x) is designed so that its outputs
are prime relative to N. The process of incrementing i and
recomputing H(x) continues until the input hash key is
located in the table or an empty table slot is encountered. This
technique of resolving collisions is known as open-address­
ing.
[0119] The primary hash function, hl(x), is computed as
follows. Compute hash function B(x) where the result is in the
range 0 to Q-1. Use the result of the B(x) function to lookup
a displacement vector d(x) in table T containing Q displace­
ment vectors. Preferably the size of the displacement vector
d(x) in bits is equal to M. Compute hash functionA(x) where
the result is M bits in size. Compute the bitwise exclusive OR,
EB, of A(x) and d(x). This is one example of near-perfect
hashing where the displacement vector is used to resolve
collisions among the set of hash keys that are known prior to
the beginning of the query stream. Typically, this fits well
with streaming financial data where the majority of the sym­
bols for the instruments trading in a given day is known.
Methods for computing displacement table entries are known
in the art.
[0120] The secondary hash function, h2(x), is computed by
computing a single hash function C(x) where the result is
always prime relative to N. Hash functions A(x), B(x), and
C(x) may be selected from the body of known hash functions
with favorable randomization properties. Preferably, hash
functions A(x), B(x), and C(x) are efficiently implemented in
hardware. The set ofH3 hash functions are good candidates.
(See Krishnamurthy et al., "Biosequence Similarity Search on
the Mercury System", Proc. of the IEEE 15th Int'! Conf. on
Application-Specific Systems, Architectures and Processors,
September 2004, pp. 365-3 75, the entire disclosure of which
is incorporated herein by reference).
[0121] Once the hash fi.mction H(x) produces an address
whose entry is equal to the input hash key, the address is
passed on as the new Symbol ID to be used internally by the
ticker plant to reference the financial instrument. As shown in
FIG. 13, the result of the hash key compare ±Unction may be
used as a valid signal for the symbol ID output.
[0122] Hash keys are inserted in the table when an
exchange message contains a symbol that was unknown at
system initialization. Hash keys are removed from the table

Ex. 1003 - Page 70

US 2008/0243675 Al

when a financial instrument is no longer traded. Alternatively,
the symbol for the financial instrument may be removed from
the set of known symbols and the hash table may be cleared,
recomputed, and initialized. By doing so, the displacement
table used for the near-perfect hash function of the primary
hash may be optimized. Typically, financial markets have
established trading hours that allow for after-hours or over­
night processing. The general procedures for inserting and
deleting hash keys from a hash table where open-addressing
is used to resolve collisions is well-known in the an.
[0123] In a preferred embodiment, the symbol mapping
FAM also computes a global exchange identifier (GEID) that
maps the exchange code and country code fields in the
exchange message to an integer in the range 0 to G-1, as
shown in FIG. 14. Similar lo the symbol field for financial
instruments, the exchange code and country code fields
uniquely identify the source of the exchange message. The
value of G should be selected such that it is larger than the
total number of sources (financial exchanges) that will be
generating input messages for a given instance of the system.
Hashing could be used to map the country codes and
exchange codes to the GEID. Alternatively, a "direct address­
ing" approach can be used to map country and exchange
codes to GEIDS. For example, the exchange code and country
codes can each he represented by two character codes, where
the characters are 8-bit upper-case ASCII alpha characters.
These codes can then be truncated to 5-bit characters in
embodiment where only 26 unique values of these codes are
needed. For each code, these truncated values are concat­
enated to generate a 10-bit address that is used to lookup a
compressed intermediate value in a stage 1 table. Then the
compressed intermediate values for the exchange and country
code can be concatenated to generate an address for a stage 2
lookup. The result of the stage2 lookup is the GEID. The size
of the intermediate values and the stage 2 address will depend
on the number of unique countries and the max number of
exchanges in any one country. which can be adjusted as new
exchanges open in different countries.
[0124] Symbol mapping PAM 1106 passes input message
field values, the symbol ID, and global exchange ID to Last
Value Cache (LVC) Update FAM 1106. LVC Update FAM
serves to update the LVC cache via memory 1124, as well as
message fields that may depend on record field values. One
example is the tick direction which indicates if the price in the
message is larger or smaller than the previous price captured
in the record.
[0125] As shown in FIGS. 15(a) and (b), the LVCmemory
manager retrieves one or more records associated with the
financial instrument. The LVC memory manager passes the
record and message fields to the LVC message/record
updater. The LVC message/record updater contains a set of
update engines that update the record and message fields
according to specified business logic. The business logic for
field updates may vary according to a number of parameters
including event type (trade, quote, cancel, etc.), financial
instrument type (security, option, commodity, etc.), and
record type. In a preferred embodiment, the update engines
are directed by business logic templates contained in Tem­
plates & Field Maps 1120. Techniques for template-driven
update engines are well-known in the art.
[0126] Record fields may include but are not limited to: last
trade price, last trade size, last trade time, best bid price, best
bid size, best bid time, best ask price, best ask size, best ask
time, total trade volume, daily change, tick direction, price

12
Oct. 2, 2008

direction, high trade price, high price time, low trade price,
low price time, and close price. In a preferred embodiment,
record fields also include derived fields such as: total trade
volume at bid, total trade volume at ask, traded value, traded
value at bid, traded value at ask, and volume-weighted aver­
age price (VWAP).
[0127] As reflected in FIGS. 15(a) and (b), a preferred
embodiment of the LVC Update FAM maintains a composite
record and a set ofregional records for every financial instru­
ment observed on the input feeds. A composite record reflects
the current state of the financial instrument across all
exchanges upon which it trades. A regional record reflects the
current state of the financial instrument on a given exchange.
For example, if stock ABC trades on exchanges AA, BB, and
CC, then four records will be mainLained by the LVC Upclale
FAM, one composite record and three regional records. If an
input message reports a trade of stock ABC on exchange BB,
then the LVC Update FAM updates the composite record for
ABC, the regional record for ABC on exchange BB, and the
message fields according to the business logic for stock trade
events on exchange BB.
[0128] As shown in FIG.15(a), the LVC Memory Manger
uses the symbol ID and global exchange ID to retrieve the
composite and regional record. Tn a preferred embodiment,
the symbol ID is used to retrieve an entry in the record
management memory. The entry contains a valid flag, a com­
posite record pointer, and a regional list pointer. The valid flag
indicates whether the symbol ID is known, record(s) have
been allocated, and the pointers in the entry are valid.
[0129] If the valid flag is set, the LVC Memory Manager
uses the composite record pointer to retrieve the composite
record from the record storage memory. The composite
record is passed to the LVC message/record updater where it
is stored in a composite record buffer for processing by the
update engines. The LVC Memory Manger uses the regional
list pointer to retrieve a regional list from the record storage
memory. Note that regional list blocks may also be stored in
the record management memory or in another independent
memory. The regional list block contains pointers to the
regional records for the financial instrument identified by the
symbol ID. Since each regional record reflects the state of the
instrument on a given exchange, a global exchange ID is
stored with each regional pointer. The pointer to the regional
record associated with the exchange specified in the message
is localed by matching the global exchange ID computed by
the Symbol ID Mapping FAM. The LVC Memory Manger
uses the regional pointer associated with the matching global
exchange ID to retrieve the regional record from the record
storage memory. The regional record is passed to the LVC
message/record updater where it is stored in a regional record
buffer for processing by the update engines.
[0130] If the valid flag in the record management memory
entry is not set, then the LVC Memory Manager creates a new
composite record, a new regional list block, and a new
regional record for the financial instrument. The initial values
for record fields may be drawn from Templates and Field
Maps 1120. The regional list block will be initialized with at
least one entry that contains a pointer to the new regional
record and the global exchange ID received from the Symbol
ID Mapping FAM. The LVC Memory Manger uses a free
space pointer to allocate available memory in the record stor­
age memory. After the memory is allocated, the free space
pointer is updated. Freeing unused memory space, defrag­
menting memory, and adjusting the free space pointer may be

Ex. 1003 - Page 71

US 2008/0243675 Al

performed by the LVC Memory Manager or by control soft­
ware during market down times. Techniques for freeing
memory space and defragmenting are well-known in the art.
Once the records are initialized in record storage memory, the
LVC Memory Manger writes the pointers into the manage­
ment memory entry and sets the valid flag.
[0131] The LVC Memory Manager may also encounter a
case where the valid flag in the memory management entry is
set, but a matching global exchange ID is not found in the
regional list. This will occur when a known financial instrn­
ment begins trading on a new exchange. In this case, the LVC
Memory Manager allocates a new regional record and creates
a new entry in the regional list block.
[0132] Once the record and message fields are loaded into
their respective buffers, the update engines perform the field
update tasks as specified by the business logic. Upon comple­
tion of their update tasks, the update engines signal the LVC
Memory Manager. When all processor engines complete, the
LVC Memory Manager writes updated records back to record
storage memory. Processing can be deployed across the plu­
rality of update engines in any of a number of ways. In one
embodiment, a given record and its related message fields are
passed through a sequence of update engines arranged in a
pipeline. Tn another embodiment, each record and its related
message fields are passed directly to an update engine that is
configured to perform processing appropriate for the type of
processing that the record and message fields needs. Prefer­
ably, the LVC updater is configured to balance the distribution
of records and message fields across the plurality of different
update engines so that a high throughput is maintained. In an
exemplary embodiment, each update engine is configured to
be responsible for updating a subset of the record fields (either
regional or composite), with multiple engines operating in
parallel with each other.
[0133] The L VC message/record updater passes updated
message fields and interest lists to the Interest Entitlement
Filter FAM 1108. An interest list contains a set of unique
identifiers for users/applications that registered interest in
receiving updates for the financial instrnment. In a preferred
embodiment, the set of user identifiers is specified using a bit
vector where each bit position in the vector corresponds to a
user identifier. For example, a 4-bit vector with the value 1010
represents the set of user identifiers {3,1 }. The size of the
interest list in bits is equal to the total number of user sub­
scriptions allowed by the Ticker Plant. In a preferred embodi­
ment, each record contains an interest list that is updated in
response to user subscribe and unsubscribe events. By main­
taining an interest list in the composite record, the Ticker
Plant allows a subscription to include all transactions for a
given financial instrnment on every exchange upon which it
trades. Preferably, each interest list for a given record is stored
with that record in the record storage memory. Control soft­
ware for the ticker plant, which maintains the set of interest
lists for each record in a control memory can be configured to
advise the LVC FAM of a new interest list vector for a given
record so that the record storage memory can be updated as
appropriate. Other types of subscriptions, such as cxchangc­
based subscriptions, may also be enabled by the FAM pipe­
line.
[0134] In a preferred embodiment, the record storage
memory and/or the record management memory is an exter­
nal memory to the reconfigurable logic, such as a Synchro­
nous Random Access Memory (SRAM) or Synchronous
Dynamic Random Access Memory (SD RAM) device. Read

13
Oct. 2, 2008

and write transactions to external memory devices incur pro­
cessing delays. A common technique for improving process­
ing performance is to mask these delays by performing mul­
tiple transactions in a pipelined fashion. The LVC Memory
Manger is designed as a pipelined circuit capable of perform­
ingthe various processing steps in parallel, therefore allowing
it to mask memory latencies and process multiple messages in
parallel. Doing so enables the LVC Memory Manger to pro­
cess more messages per unit time, i.e. achieve higher message
throughput. By employing a functional pipeline, the LVC
Memory Manager preferably recognizes occurrences of the
same symbol ID within the pipeline and ensure correctness of
records in update engine buffers. One method for doing so is
to stall the pipeline until the updated records associated with
the previous occurrence of the symbol ID are written back to
record storage memory. In a preferred embodiment, the LVC
Memory Manager utilizes a caching mechanism to always
feed the correct record field values to the update engine buff­
ers. Teclmiques for a memory cache are well-known in the art.
The caching mechanism can be embodied as a memory, pref­
erably a high-speed memory, located either on-chip (within
the reconfigurable logic device) or off-chip (e.g., an SRAM or
SDRAM device accessible to the reconfigurable logic
device). However, it should also be noted that the cache can
also be embodied by a full memory hierarchy with a multi­
level cache, system memory, and magnetic storage. A record
typically stays in the cache memory for the duration of a
trading day. Such recently updated records can then be
flushed out of the cache during an overnight processing
("roll") and archived. However, it should be noted that the
cache can be configured to maintain records so long as space
is available in the cache for storing new records, in which case
a FIFO scheme can be used to maintain the cache.
[0135] FIG. 15(b) presents an exemplary functional pipe­
line for masking memory and processing latencies. As dis­
cussed in relation to FIG.15(a), the address resolution block
determines the address of the regional and composite records
using the symbol ID and global exchange ID to locate the
memory management entry and regional list block. Note that
each functional block in FIG. 15(b) may also be implemented
in a pipelined fashion. For example, one sub-block in the
address resolution block may issue a stream of read com­
mands to the record management memory to retrieve record
management entries. Another sub-block may process the
stream of returned entries and issue a stream of read com­
mands to the record storage memory to retrieve regional list
blocks. Another sub-block may process the stream ofretumed
list blocks to resolve regional record addresses. The last sub­
block of the address resolution block passes the regional and
composite record addresses to the cache detennination block.
By tracking the sequence of record addresses, this block
determines the physical location of the "current" (most up-to­
date) records: in the record cache or in the record storage
memory. The cache determination block passes the physical
record pointers to the record retrieval block. The record
retrieval block fetches the records from the specified loca­
tions, loads them into the processing buffers for updating,
then signals the processors to begin processing. Note that if
the record cache and processing buffers are in the same
memory space, the record retrieval block may essentially
queue up several sets of records for the processors, allowing
the processors to complete a processing task and immediately
move on to the next set of records, even if the same set of
records must be updated sequentially. Once the processors

Ex. 1003 - Page 72

US 2008/0243675 Al

complete a set of records, they signal the record updating
block to write the updated records back to record storage
memory. Depending on the implementation of the record
cache, copies of the updated records are written to cache or
simply persist in the processing buffers for a period of time. In
parallel, updated message fields are passed to the downstream
FAM.
[0136] The LVC Update FAM 1106 passes interest lists, the
global exchange ID, and updated message fields to the Inter­
est Entitlement EA.M 1108. The Interest Entitlement EA.M
computes a single interest list that is used to distribute the
output message to the set of users/applications that have reg­
istered interest and are entitled to receive the message. As
previously described, interest may be registered by subscrib­
ing lo updates for the regional or composite interest, as well as
subscribing to all updates from a given exchange. Access to
real-time financial data is typically a purchased service where
the price may vary depending on the scope of data access. In
a preferred embodiment, a ticker plant is capable of accepting
subscription requests from users/applications with varying
levels of data access privileges.
[013 7] As shown in FIG. 16, a preferred embodiment of the
Interest Entitlement FAM operates on interest lists specified
as bit vectors. The global exchange TD is used to lookup the
exchange interest list in the exchange interest table. By using
an exchange interest list, the embodiment of FIG. 16 allows
traders to request notification of everything traded on a given
exchange without individually subscribing to every instrn­
ment traded on that given exchange. Note that a global inter­
est list, specifying users interested in all events, may also be
stored in a register in the FAM. As shown in FIG. 16, all
interest list vectors applicable to a message are combined
using a bitwise OR operation. The resulting composite inter­
est list vector contains the set of users that are interested in
receiving the output message. An entitlement ID is used to
lookup an entitlement mask. The entitlement ID may be
specified by the feed handler that receives messages from the
exchange, or alternative mechanisms such as a lookup based
on message fields such as the global exchange ID, event type,
and instrnment type. Similar to the interest lists, the entitle­
ment mask specifies which users/applications are entitled to
receive the output message. The entitlement mask is applied
to the combined interest list using a bitwise AND operation.
The result is the final entitled interest vector specifying the set
of entitled and interested users/applications. If the entitled
interest bit vector is empty (e.g., all zeros), the message can be
dropped from the pipeline. This entitled interest list and the
message fields received from the LVC Update FAM are
passed to the Message Formatter FAM 1110.
[0138] As previously described, the Message Formatter
FAM 1110 serves to constrnct an output message from
updated fields received from the Interest Entitlement Filter
FAM and fields contained in the Message Synch Buffer EA.M
1112. In a preferred embodiment, the format of the output
message is specified by the Templates and Field Maps 1120.
In a preferred embodiment, the output message includes the
entitled interest list computed by the Interest Entitlement
Filter. A subsequent functional block in the Ticker Plant pro­
cesses the interest list and transmits copies of the output
message to the interested and entitled users/applications.
[0139] FIG. 17 depicts an exemplary embodiment of a
ticker plant highlighting the interaction and data flow
amongst the major subcomponents that enable this embodi­
ment of a ticker plant to maintain high performance and low

14
Oct. 2, 2008

latency while processing financial data. FIGS. 18, 19, 20, 21,
and 22 depict detailed views of the data flow and the compo­
nent interaction presented in FIG. 16. These figures provide
additional information for inbound exchange data process­
ing, data normalization, interaction with reconfigurable logic,
data routing, and client interaction respectively.
[0140] Financial market data generated by exchanges is
increasing at an exponential rate. Individual market events
(trades, quotes, etc) are typically bundled together in groups
and delivered via an exchange feed. These exchange feeds are
overwhelmingly delivered to subscribers using the Internet
Protocol over an Ethernet network. Due to constraints on
packet size dictated by the network environment, data groups
transmitted by the exchange tend to be limited to sizes less
than 1500 bytes.
[0141] As market data rates increase, the number of data
groups that must be processed by a ticker plant increases. In
typical ticker plant environments, each network packet
received by the ticker plant must be processed by the network
protocol stack contained within the Operating System and
delivered to a user buffer. This processing includes one or
more data copies and an Operating System transition from
"kernel" or "supervisor" mode to user for each exchange data
packet. An increase in data rates in tum increases the process­
ing burden on the ticker plant system to deliver individual
exchange data messages to the user level process.
[0142] The device depicted in FIG. 17 uses a novel
approach to efficiently deliver the exchange data to the user
process. FIG. 18 shows the exemplary data flow for inbound
exchange traffic in a ticker plant. Exchange data enters the
ticker plant at 1801 and is processed by the Operating System
supplied network protocol stack. Typical ticker plants use a
user-mode interface into the network protocol stack at 1802.
This method of connecting to the protocol stack incurs pro­
cessing overhead relating to buffer copies, buffer validation,
memory descriptor table modifications, and kernel to user
mode transitions for every network data packet received by
the ticker plant. As shown in FIG. 18, an Upject Driver is
employed that interfaces with the operating system supplied
network protocol stack at the kernel level at 1803. Individual
data packets are processed at the kernel level and copied
directly into a ring buffer at 1804, thus avoiding subsequent
data copies and kernel to user mode transitions incurred when
accessing the protocol stack via the user mode interface.
[0143] The ring buffers employed by the Upject Driver are
shared memory ring buffers that are mapped into both kernel
and user address spaces supported by the Operating System at
1805. The boundary between kernel mode operations and
user mode operations is shown at 1806. Data written to the
kernel address space of one of these ring buffers is instantly
accessible to the user mode code because both the user mode
and kernel mode virtual addresses refer to the same physical
memory. Utilizing the shared ring buffer concepts, the pre­
ferred embodiment of a Ticker Plant does not have to perform
user to kernel mode transitions for each network data packet
received and thus achieves a performance boost. Addition­
ally, the Upjcct Driver can utilize the shared ring buffer
library lo directly transfer inbound data lo other kernel pro­
cesses, device drivers, or user processes at 1807. This versa­
tile shared ring buffer interconnect enables fast-track routing
of network traffic directly to Reconfigurable logic via the
Hardware Interface Driver.
[0144] General purpose computers as known in the art
employ "multi-core" or "multi-processor" technology to

Ex. 1003 - Page 73

US 2008/0243675 Al

increase the available compute resources in a computer sys­
tem. Such multi-core systems allow the simultaneous execu­
tion of two or more instruction streams, commonly referred to
as "threads of execution". To fully utilize the compute power
of these multiple processor systems, software must be
designed to intelligently manage thread usage, resource con­
tention and interdependencies between processing threads.
The data normalization component of the preferred embodi­
ment of a Ticker Plant employs thread groups to efficiently
normalize raw exchange data.
[0145] Thread groups improve processing efficiency of the
preferred embodiment of a Ticker Plant by using the follow­
ing techniques:

[0146] 1. Limit the execution of the Operating System
scheduling mechanism by matching the number of
worker threads to the number of available instruction
processors.

[0147] 2. Enable multiple exchange feeds to be pro­
cessed by a single thread group.

[0148] 3. Eliminate resource contention between differ­
ent thread groups.

[0149] 4. Remove synchronization points within the
compute path of each thread group, further increasing
processing efficiency.

[0150] 5. Perform message normalization in a single
compute path, including line arbitration, gap detection,
retransmission processing, event parsing, and normal­
ized event generation.

[0151] 6. Associate exchange feeds with individual
thread groups using a configuration file.

[0152] FIG. 19 depicts the processing of several thread
groups. Each thread group contains a single thread of execu­
tion at 1901. All operations performed by a thread group are
executed on the single processing thread associated with the
thread group. A separate input ring buffer is associated with
each thread group at 1902. Inbound exchange data is depos­
ited into the appropriate ring buffer. The processing thread for
the thread group detects the presence of new data in the ring
bulfer and initiates normalization processing on the data one
event at a time at 1903. Normalization processing involves
parsing inbound messages, arbitrating amongst messages
received on multiple lines, detecting sequence gaps, initiating
retransmission requests for missed messages, eliminating
duplicate events, and generating normalized exchanged
events. This processing results in the creation of normalized
events that are deposited into an output ring buffer at 1904.
[0153] All of the processing for any single thread group is
completely independent of the processing for any other
thread group. No data locking or resource management is
required during the normalization process which eliminates
the possibility of thread blocking due to contention for a
shared resource. The preferred embodiment of a Ticker Plant
supports a variable nll1llber of thread groups at 1905. The
number of thread groups and the number of exchange feeds
processed by each thread group are configurable, enabling the
Ticker Plant to efficiently utilize additional compute
resources as they become available in future generations of
computer systems. The association of inbound data feeds
with individual thread groups is defined in a configuration file
that is read during initialization processing.
[0154] The Hardware Interface Driver in the preferred
embodiment of a Ticker Plant is optimized to facilitate the
efficient movement oflarge amounts of data between system
memory and the reconfigurable logic. FIG. 20 shows the data

15
Oct. 2, 2008

movement between the Hardware Interface Driver and the
reconfigurable logic. User mode application data destined for
the reconfigurable logic is written to one of the shared
memory ring buffers at 2001. These are the same buffers
shown at 1904 in FIG. 19. These ring buffers are mapped into
both kernel address space and into user space. Data written to
these buffers is immediately available for use by the Hard­
ware Interface Driver at 2002. The boundary between user
space and kernel space is noted at 2003.
[0155] The Hardware Interface Driver is responsible for
updating descriptor tables which facilitates the direct
memory access (DMA) data transfers to the reconfigurable
logic. Normalized market data events are transferred to the
reconfigurable logic at 2004. The reconfigurable logic and
Firmware Application Module Chain perform the operational
functions as noted above. Processed market events are trans­
ferred back to the Hardware Interface Driver at 2005 and
deposited into a ring buffer at 2006.
[0156] A novel feature of the preferred embodiment of a
Ticker Plant is the ability to route data to consumers through
a "fast track" by bypassing the time consll1lling data copies
and Operating System mode switches. An operating system
mode switch occurs whenever software transitions between
user mode processing and kernel mode processing. Mode
switches are expensive operations which can include one or
more of the following operations: software interrupt process­
ing, address validation, memory locking and unlocking, page
table modifications, data copies, and process scheduling.
FIG. 21 depicts an exemplary design of a low latency data
routing module. After processing by the reconfigurable logic,
market data events are delivered to the Hardware Interface
Driver at 2101. Each market data event as shown at 2102
contains a routing vector at 2103. This routing vector, which
is preferably embodied by the entitled interest bit vector, is
populated by the reconfigurable logic (preferably the interest
and entitlement FAM) and contains the information neces­
sary to deliver each event to the appropriate consumers. A
table maintained by the software preferably translates the bit
positions of the entitled interest bit vector to the actual entities
entitled to the subject data and who have expressed interest in
being notified of that data.
[0157] The Hardware Interface Driver calls into the MDC
Driver for each event received from the reconfigurable logic
at 2104. The MDC Driver is responsible for the fast track data
routing of individual enhanced market data events. The rout­
ing information associated with each event is interrogated at
2105. This interrogation detern1ines the set of destination
points for each event. Each event can be routed to one or more
of the following: kernel modules, protocol stacks, device
drivers, and/or user processes. Exception events, results from
maintenance commands, and events that require additional
processing are routed via a slow path to the user mode back­
ground and maintenance processing module at 2106. The
background and maintenance processing module has the abil­
ity do inject events directly into the Hardware Interface
Driver at 2107 for delivery to the reconfigurable logic or to the
MDC Driver at 2108 for delivery to a connected consumer.
[0158] Similar to the Upject Driver, the MDC Driver also
maintains a kernel level interface into the Operating System
supplied network protocol stack at 2109. This kernel level
interface between the MDC Driver and the protocol stack
provides a fast path for delivering real-time market events to
clients connects via a network at 2110. The event routing
logic contained within the MDC Driver interrogates the event

Ex. 1003 - Page 74

US 2008/0243675 Al

routing information contained in each event and passes the
appropriate events directly to the network protocol stack.

[0159] The MDC driver also has the ability to route market
events to other consumers at 2111. These other consumers of
real-time market events include, but are not limited to, net­
work drivers for clients com1ected via a variety of network
interconnect methodologies, kernel-mode modules or device
drivers, hardware devices including reconfigurable logic, and
different user mode processes. The MDC Driver is a flexible
data routing component that enables the preferred embodi­
ment of a Ticker Plant lo deliver data lo clients with the lowest
possible latency.

[0160] FIG. 22 depicts an exemplary model for managing
client connections. Remote clients connect to the over a net­
work that is driven by an Operating System supplied network
protocol stack at 2201. A request processing module inter­
faces with the Operating System supplied network protocol
stack in user mode at 2202. The request processing module
parses and validates all client requests. Client requests are
then passed to the background and maintenance processing
module at 2203. Clients typically make subscription requests
that include the name of one or more securities instrnments. A
subscription request for a valid instrument results in a suc­
cessful response senl back lo the client via 2205 and a refresh
image representing the current prices of the requested instru­
ment that is initiated at 2204. Additional control information
is sent to the Firmware Application Module Chain to enable
the routing of all subsequent events on the specified instru­
ment to the client. Additional requests can be made for an
instantaneous data snapshot, historical data, and other data or
services, including but not limited to options calculation, user
defined composites, and basket calculations.

[0161] Depending on the nature of the client request, the
background and maintenance processing module can either
issue commands to the FAMs contained in reconfigurable
logic via the Hardware Interface Driver at 2204, or it can
respond directly to client request by sending properly format­
ted responses to the MDC driver at 2205. The MDC Driver
uses spinlocks to synchronize responses to client requests
with real-time market events at 2206. Responses to client
requests and real-time market events are processed in the
same manner by the MDC Driver using common event mut­
ing logic. Events and responses destined for a remote client
are passed via a fast track path to the Operating System
supplied network protocol slack al 2207 fur delivery lo the
remote client.
[0162] Thus, as shown in FTG. 6, a platform 600 developed
in the practice of the invention can be designed to improve
data processing speeds for financial market information, all
while reducing the number of appliances needed for platform
600 (relative to conventional GPP-based systems) as well as
the space consumed by such a platfonn. With a platform 600,
a user such as a trader at a work station 104 (or even a
customer-supplied application software program 150 that
accesses the platform via an application programming inter­
face (API), can obtain a variety of infonnation on the financial
markets with less latency than would be expected from a
conventional system. This improvement in latency can trans­
late into tremendous value for practitioners of the invention.
[0163] While these figures illustrate several embodiments
of FAM pipelines that can be implemented to process real
time financial data streams, it should be noted that numerous

16
Oct. 2, 2008

other FAM pipelines could be readily devised and developed
by persons having ordinary skill in the art following the
teachings herein.
[0164] Further still it should be noted that for redundancy
purposes and/or scaling purposes, redundant appliances 604,
606, 608, 610, 612, 614 and 616 can be deployed in a given
market data platfom1 600.
[0165] Furthermore, it should also be noted that a practitio­
ner of the present invention may choose to deploy less than all
of the functionality described herein in reconfigurable logic.
For example, device 604 may be arranged to perform only
options pricing in reconfigurable logic, or some other subset
of the functions listed in FIG. 6. If a user later wanted to add
additional functionality to device 604, it can do so by simply
re-configuring the reconfigurable logic of system 200 to add
any desired new functionality. Also, the dashed boxes shown
in FIG. 6 enclose data processing functionality that can be
considered to belong to the same category of data processing
operations. That is, devices 612 and 614 can be categorized as
management operations. Device 604 can be categorized as
providing feed handling/processing for data access, value­
added services, and historic services. Devices 606, 608 and
610 can be categorized as direct market access trading sys­
tems. As improvements to reconfigurable logic continues
over time such that more resources become available thereon
(e.g., more available memory on FPGAs), the inventors envi­
sion that further consolidation of financial data processing
functionality can be achieved by combining data processing
operations of like categories, as indicated by lhe dashed
boxes, thereby further reducing the number of appliances 200
needed to implement platform 600. Further still, in the event
of such resource improvements over time for FPGAs, it can
be foreseen that even further consolidation occur, including
consolidation of all functionality shown in FIG. 6 on a single
system 200.
[0166] While the present invention has been described
above in relation to its preferred embodiments, various modi­
fications may be made thereto that still fall within the inven­
tion's scope as will be recognizable upon review of the teach­
ings herein. As such, the full scope of the present invention is
to be defined solely by the appended claims and their legal
equivalents.

What is claimed is:
1. A method for processing financial market data, the

method comprising:
streaming a financial market data feed through a reconfig­

urable logic device, the reconfigurable logic device hav­
ing a resident firmware application module pipeline; and

performing with the firmware application module pipeline
a plurality of different financial data processing opera­
tions on the streaming financial market data.

2. The method of claim 1 wherein the financial market data
feed comprises a financial market source data feed, the
method further comprising:

receiving the financial market source data feed from a data
source.

3. The method of claim 1 wherein the financial market data
feed comprises a financial market secondary data feed.

4. The method of claim 1 wherein the financial market data
feed comprises a plurality of messages, and wherein the per­
forming step further comprises:

normalizing the messages to a common format.
5. The method of claim 4 wherein the performing step

further comprises:

Ex. 1003 - Page 75

US 2008/0243675 Al

converting the financial market data to a plurality of mes­
sages having a predetermined format.

6. The method of claim 1 wherein the financial market data
feed comprises a plurality of messages, and wherein the per­
forming step further comprises:

parsing the messages into a plurality of data fields.
7. The method of claim 6 wherein the financial market data

feed comprises a plurality of messages, and wherein the per­
forming step further comprises:

performing a calculation operation on the data fields of the
parsed messages.

8. The method of claim 1 wherein the financial market data
feed comprises a plurality of messages, and wherein the per­
forming step further comprises:

transforming the messages from a first format to a second
format.

9. The method of claim 8 wherein the first format com­
prises a format as received from an external feed source.

10. The method of claim 8 wherein the first format com­
prises FIX and wherein the second format comprises FAST.

11. The method of claim 8 wherein the first fonnat com­
prises FAST and wherein the second format comprises FIX.

12. The method of claim 8 wherein the first format com­
prises a format as received from an external feed source, and
wherein the second format comprises FAST.

13. The method of claim 1 wherein the firmware applica­
tion module pipeline is configured to perform at least one
financial data processing operation selected from the group
consisting of: a feed compression operation, a feed decom­
pression operation, a feed handler operation, a rule-based
calculation operation, a feed journal operation, an alert gen­
eration engine, a Last Value Cache (LVC) server operation, a
historical time-series oriented databases with analytics opera­
tion, a news database operation with a search capability, an
order book server operation, an order router operation, a
direct market access gateway operation, a trading engine, an
auto-quote server operation, a compliance journal operation,
an internal matching system operation, an order management
system operation, an entitlements and reporting operation, a
management and monitoring operation, and a publishing and
contribution server operation.

14. The method of claim 1 further comprising:
providing data processed through the reconfigurable logic

device to a trader workstation user interface.
15. A device for processing a streaming financial market

data feed, the device comprising:
a reconfigurable logic device having a firmware applica­

tion module pipeline, the reconfigurable logic device
being configured to receive the data feed and process the
data feed through the firmware application module pipe­
line to perform a plurality of different financial data
processing operations thereon.

16. The device of claim 15 wherein the financial market
data feed comprises a plurality of messages, and wherein the
reconfigurable logic device is further configured to normalize
the messages to a col11lllon format.

17. The device of claim 15 wherein the reconfigurable logic
device is further configured to convert the financial market
data feed to a plurality of messages having a predetermined
format.

18. The device of claim 15 wherein the financial market
data feed comprises a plurality of messages, and wherein the
reconfigurable logic device is further configured to parse the
messages into a plurality of data fields.

17
Oct. 2, 2008

19. The device of claim 18 wherein the financial market
data feed comprises a plurality of messages, and wherein the
reconfigurable logic device is further configured to perform a
calculation operation on the data fields of the parsed mes­
sages.

20. The device of claim 15 wherein the financial market
data feed comprises a plurality of messages, and wherein the
reconfigurable logic device is further configured to transform
the messages from a first format to a second format.

21. The method of claim 20 wherein the first format com­
prises a format as received from an external feed source.

22. The device of claim 20 wherein the first format com­
prises FIX and wherein the second format comprises FAST.

23. The device of claim 20 wherein the first format com­
prises FAST and wherein the second format comprises FIX.

24. The device of claim 15 wherein the firmware applica­
tion module pipeline is configured to perform at least one
financial data processing operation selected from the group
consisting of: a feed compression operation, a feed decom­
pression operation, a feed handler operation, a rule-based
calculation operation, a feed journal operation, an alert gen­
eration engine, a Last Value Cache (LVC) server operation, a
historical time-series oriented databases with analytics opera­
tion, a news database operation with a search capability, an
order hook server operation, an order router operation, a
direct market access gateway operation, a trading engine, an
auto-quote server operation, a compliance journal operation,
an internal matching system operation, an order management
system operation, an entitlements and reporting operation, a
management and monitoring operation, and a publishing and
contribution server operation.

25. The device of claim 15 further comprising:
a trader workstation in col11lllunication with the reconfig­

urable logic device, and wherein a user interface on the
workstation is configured to display data processed by
the reconfigurable logic device.

26. The device of claim 15 further comprising:
an application progra=ing interface (API) and customer­

supplied application software in communication with
the reconfigurable logic device, and wherein the cus­
tomer-supplied application software is configured to
receive data from the reconfigurable logic device via the
APT and further process the received data.

27. An apparatus for processing financial market data, the
apparatus comprising:

a reconfigurable logic device with firmware logic deployed
thereon, the firmware logic being configured to perform
a specified data processing operation on the financial
market data; and

a processor in col11lllunication with the reconfigurable
logic device, the processor being programmed with soft­
ware logic, the software logic being configured to (I)
receive the financial market data as an input and (2)
manage a flow of the received financial market data into
and out of the reconfigurable logic device.

28. The apparatus of claim 27 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic is further configured to man­
age the flow of the received financial market data into and out
of the reconfigurable logic device such that each message
passes only once from the software logic to the firmware
logic.

29. The apparatus of claim 27 wherein the financial market
data comprises a plurality of financial market data messages,

Ex. 1003 - Page 76

US 2008/0243675 Al

and wherein the software logic is further configured to man­
age the flow of the received financial market data into and out
of the reconfigurable logic device such that each message
passes only once from the firmware logic back to the software
logic.

30. The apparatus of claim 27 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic is further configured to write
each received financial market data message to a buffer that is
mapped into both a kernel space and a user address space
supported by an operating system of the processor.

31. The apparatus of claim 27 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic is further configured to (1)
maintain a plurality of different thread groups simulta­
neously, and (2) assign each financial market data message to
a thread group based on a configuration file.

32. The apparatus of claim 31 wherein processor is further
configured to receive the financial market data messages from
a plurality of different financial market data feeds, and
wherein the configuration file is configured to associate each
thread group with a different financial market data feed such
that messages from a given one of the feeds will be processed
by the thread group associated with that message's feed.

33. The apparatus of claim 27 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic is further configured to write
each received financial market data message destined for the
fim1ware logic to a bufter that is mapped into both a kernel
space and a user address space supported by an operating
system of the processor.

34. The apparatus of claim 27 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic further comprises a hardware
interface driver and an MDC driver in collllllunication with
the hardware interface driver, wherein the hardware interface
driver is configured to receive financial market data messages
that have been processed by the firmware, and wherein the
MDC driver is configured to (1) receive the firmwarc-pro­
cessed financial market data messages from the hardware
interface driver, (2) provide a first path and a second path for
the firmware-processed financial market data messages, the
first path comprising a path for the firmware-processed finan­
cial market data messages to at least one client through a
network protocol stack, the second path comprising a path for
the fim1ware-processed financial market data messages to an
exceptions handling software module.

35. The apparatus of claim 34 wherein the MDC driver is
further configured to interrogate at least a portion of the
fim1ware-processed financial market data messages to deter­
mine the path over which each firmware-processed financial
market data message should travel.

36. The apparatus of claim 27 wherein the software logic is
further configured to issue a control colllllland to the firmware
logic in response to an instruction received by the processor
from a client computer in collllll1mication therewith.

37. A method for processing financial market data, the
method comprising:

controlling with software logic a flow of financial market
data from the software logic to and from firmware logic;
and

performing a specified financial data processing operation
on financial market data with finnware logic in response
to the software logic controlling step.

18
Oct. 2, 2008

38. The method of claim 37 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the controlling step further comprises control­
ling the flow of the financial market data such that each
message passes only once from the software logic to the
firmware logic.

39. The method of claim 37 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the controlling step further comprises control­
ling the flow of the financial market data such that each
message passes only once from the firmware logic to the
software logic.

40. An apparatus for processing financial market data, the
apparatus comprising:

a ticker plant configured to receive a stream of financial
market data messages, the ticker plant comprising a
processor and a reconfigurable logic device in collllllu­
nication with the processor, wherein the processor is
configured to execute software logic, the software logic
configured to manage a flow of the financial market data
messages to the reconfigurable logic device, wherein the
reconfigurable logic device is configured with firmware
logic, the firmware logic configured to (1) receive the
flow of financial market data messages directed thereto
by the software logic, and (2) perform at least one finan­
cial data processing operation on the received flow to
thereby generate a flow of firmware-processed financial
market data.

41. The apparatus of claim 40 wherein the ticker plant is
further configured with a network interface for collllllunicat­
ing with a plurality of client computers over a network, and
wherein software logic is further configured to manage the
flow of the firmware-processed financial market data from the
firmware logic to the network interface for subsequent deliv­
ery to the client computers over the network.

42. 'lbe apparatus ofclaim 41 wherein the firmware logic is
further configured with a firmware pipeline that is configured
to perform a plurality of different financial data processing
operations on the received flow to thereby generate the flow of
firmware-processed financial market data.

43. 'lbe apparatus of claim 42 wherein the ticker plant
further comprises a memory in which a plurality of financial
instrument records are stored in memory addresses associated
with a financial instrument symbology that is internal to the
ticker plant, wherein the reconfigurable logic is communica­
tion with the memory, wherein the financial market data mes­
sages relate to financial instruments, wherein the financial
market data messages reference their related financial instru­
ments using a financial instrunient symbology that is different
than the internal financial instrument symbology, and
wherein the firmware logic is further configured to (1) convert
each received financial market data message to the internal
financial instrument symbology, (2) retrieve financial instru­
ment records pertaining to the received financial market data
messages from the memory using the internal financial instru­
ment symbology for the received financial market data mes­
sages, and (3) update the financial instrument records in
response to the financial data processing operations per­
formed on the received financial market data messages.

44. A method for processing financial market data. the
method comprising:

receiving a stream of financial market data messages from
an external feed;

Ex. 1003 - Page 77

US 2008/0243675 Al

executing software logic to manage a flow of the financial
market data messages to a reconfigurable logic device,
the reconfigurable logic device having firmware logic
deployed thereon;

performing with the firmware logic at least one financial
data processing operation on the flow of financial market
data messages to thereby generate a flow of firmware­
processed financial market data.

45. The method of claim 44 further comprising:
executing software logic to manage the flow of the firm­

ware-processed financial market data to thereby deliver
the firmware-processed financial market data from the
firmware logic to a plurality of remote client computers
over a network.

46. The method of claim 45 wherein the performing step
comprises performing with the firmware logic a plurality of
different financial data processing operations on the received
flow to thereby generate the flow of firmware-processed
financial market data.

47. The method of claim 46 wherein the financial market
data messages relate to financial instruments, wherein the
financial market data messages reference their related finan­
cial instruments using a first financial instrument symbology,
the method further comprising:

storing a plurality of financial instrument records in
memory addresses associated with a second financial
instrument symbology that is different than the first
financial instrument symbology; and

using the firmware logic, (I) converting each received
financial market data message to the second financial
instrument symbology, (2) retrieving stored financial
instrument records pertaining to the received financial
market data messages using the second financial instru­
ment symbology for the received financial market data
messages, and (3) updating the financial instrument
records in response to at least one of the financial data
processing operations performed on the received finan­
cial market data messages.

48. An apparatus for processing a stream of financial mar­
ket data messages, the apparatus comprising:

a reconfigurable logic device configured with a plurality of
firmware application modules (FAMs) arranged in a
pipeline, the pipeline comprising: (1) a message parsing
FAM configured to receive and parse the financial mar­
ket data messages, (2) a symbol mapping FAM in com­
munication with the message parsing FAM, (3) a last
value cache (LVC) updating FAM in communication
with the symbol mapping FAM, (4) an interest and
entitlement filtering FAM in communication with the
LVC updating FAM, and (5) a message formatting FAM
in communication with the interest and entitlement fil­
tering FAM.

49. The apparatus of claim 48, wherein each financial
market data message comprises a plurality of date fields, each
data field having a data value, and wherein the message pars­
ing FAM is further configured to receive and parse the plu­
rality of financial market data messages into a plurality of its
constituent data fields, at least one of the data fields for each
message comprising a financial instrument symbol identifier;

wherein the symbol mapping FAM is configured to map
each financial instrument symbol identifier to a symbol
value understood within the pipeline;

wherein the LVC updating FAM is configured to perfonn at
least one field value update operation for a plurality of

19
Oct. 2, 2008

financial instrument records in response to the parsed
data fields and the symbol values;

wherein the interest and entitlement filtering FAM is con­
figured to receive data from the LVC updating FAM and
perform interest and entitlement filtering on that
received data; and

wherein the message formatting FAM is configured to
generate a plurality of financial market data messages
for output from the reconfigurable logic device in
response to the data passed by the interest and entitle­
ment filtering FAM and at least a portion of the parsed
data fields.

50. The apparatus of claim 49 wherein the symbol mapping
FAM is configured to map each financial instrument symbol
identifier to a symbol value using a hash function in combi­
nation with open addressing.

51. The apparatus of claim 49 wherein the updating FAM is
further configured to maintain a cache memory of recently
updated records.

52. The apparatus of claim 49 wherein the interest and
entitlement filtering FAM is configured to operate on a plu­
rality of bit vectors associated each financial market data
message, at least one bit vector for each message defining
whether any entities are interested in data relating to that
message, at least another of the bit vectors for each message
defining whether any entities are entitled to access data relat­
ing to that message.

53. An apparatus for processing financial market data, the
financial market data comprising a plurality of financial mar­
ket symbols, each financial market symbol identifying a
financial instrument, the apparatus comprising:

a reconfigurable logic device configured to (1) receive the
financial market data, (2) process the received financial
market data to detem1ine the financial instrument sym­
bols therein, (3) map each determined financial instru­
ment symbol to a second financial instrument symbol
that also identifies the same financial instrument.

54. The apparatus of claim 53 wherein the financial market
data comprises a plurality of financial market data messages,
each message identifying a financial market symbol, and
wherein the reconfigurable logic device is further configured
to associate each message with the second financial instru­
ment symbol that was mapped from the determined financial
instrument symbol for that message.

55. The apparatus of claim 54 further comprising a
memory configured to store the second financial instrument
symbols, and wherein the reconfigurable logic device is fur­
ther configured to map each determined financial instrument
symbol to a second financial instrument symbol by perform­
ing a lookup in the memory in response to a hash operation.

56. The apparatus of claim 55 wherein each financial mar­
ket data message further comprises a symbology identifier,
and wherein the reconfigurable logic device is further config­
ured to, for each message, (1) determine a key code therefor
based on that message's symbology identifier, (2) perform a
compression operation on that message's financial instru­
ment symbol lo generate a compressed financial instrument
symbol, and (3) generate a hash key for the hash operation
based at least in part upon the determined key code and the
compressed financial instrument symbol.

57. The apparatus of claim 56 wherein the hash key com­
prises a concatenation of the determined key code and the
compressed financial instrument symbol.

Ex. 1003 - Page 78

US 2008/0243675 Al

58. The apparatus of claim 57 wherein reconfigurable logic
device is further configured to perform the hash operation
using a near-perfect hashing function in combination with
open addressing into the memory to resolve any hash colli­
s10ns.

59. The apparatus of claim 58 wherein the memory com­
prises a plurality of memory addresses, and wherein the sec­
ond financial instrument symbols comprise the memory
addresses.

60. The apparatus of claim 56 wherein the reconfigurable
logic device is further configured to (I) perform, in parallel, a
plurality of different compression operations on each mes­
sage's financial instrument symbol to thereby generate a plu­
rality of different compressed financial instrument symbols,
(2) select which of the plurality of different compressed
financial instrument symbols are to be used for generating the
hash key in response to the determined key code.

61. The apparatus of claim 55 wherein the memory is
located on the reconfigurable logic device.

62. An apparatus for processing a plurality of financial
market data messages, each financial market data message
comprising a country identifier and an exchange identifier, the
apparatus comprising:

a reconfigurable logic device configured to (1) receive the
financial market data messages, (2) process the received
financial market data messages to determine the country
identifiers and exchange identifiers therein, (3) map each
message's determined country identifier and exchange
identifier to a global exchange identifier.

63. The apparatus of claim 62 further comprising a
memory configured lo store the global exchange identifiers,
and wherein the reconfigurable logic device is configured to
perform the mapping by using the country identifier and
exchange identifier for direct addressing lookups in the
memory.

64. The apparatus of claim 62 wherein the reconfigurable
logic device is further configured perform the mapping using
a hash table.

65. A method for processing financial market data, the
financial market data comprising a plurality of financial mar­
ket symbols, each financial market symbol identifying a
financial instrument, the method comprising:

receiving the financial market data in firmware logic
deployed on a reconfigurable logic device;

processing the received financial market data with the firm­
ware logic to determine the financial instrument sym­
bols therein, using the firmware logic, mapping each
determined financial instrument symbol to a second
financial instrument symbol that also identifies the same
financial instrnment.

66. The method of claim 65 wherein the mapping com­
prises performing a near-perfect hashing operation in combi­
nation with open addressing on data derived from the deter­
mined financial instrument symbols.

67. An apparatus for processing a plurality of financial
market data messages, each financial market data message
comprising financial market data and being associated with a
financial instrnment, the apparatus comprising:

a reconfigurable logic device configured to (1) receive the
financial market data messages, and (2) process each
received financial market data message to update a
stored record for the financial instrument associated
with that message.

20
Oct. 2, 2008

68. The apparatus of claim 67 further comprising a record
memory configured to store a plurality of records for a plu­
rality of financial instrnments, and wherein the reconfig­
urable logic device is further configured to (1) receive a
financial instrnment symbol identifier in association with
each received message, (2) retrieve from the record memory
a record for each message based at least in part upon each
message's associated financial instrument symbol identifier,
and (3) update each retrieved record in response to the pro­
cessing of each financial market data message.

69. The apparatus of claim 68 further comprising a record
management memory, the record management memory com­
prising a plurality of record management memory addresses,
the record management memory being configured to store a
plurality of pointers to records in the record memory, each
pointer being stored in a record management memory
address, and wherein the reconfigurable logic device is fur­
ther configured to perform a lookup in the record manage­
ment memory based at least in part upon each message's
associated financial instrument symbol identifier to thereby
retrieve a pointer to a location in the record memory where a
record for that message's associated financial instrnment is
stored.

70. The apparatus of claim 69 wherein the record manage­
ment memory is deployed on a memory device external to the
reconfigurable logic device.

71. The apparatus of claim 70 wherein the memory device
comprises at least one selected from the group consisting of
an SRAM device and an SDRAM device.

72. The apparatus of claim 68 wherein the record memory
is further configured to store, for each of a plurality of finan­
cial instruments, a composite record and a regional record for
each exchange on which that financial instrument trades, and
wherein the reconfigurable logic device is further configured
to (I) receive an exchange identifier in association with each
received message, and (2) retrieve from the record memory
both the composite record and each regional record for the
financial instrument associated with each message based at
least in part upon each message's associated financial instru­
ment symbol identifier and exchange identifier.

73. The apparatus of claim 72 further comprising a record
management memory, the record management memory com­
prising a plurality of record management memory addresses,
each record management memory address being associated
with a financial instrnment symbol identifier and storing a
composite pointer to the composite record in the record
memory for the financial instrnment corresponding to that
record management memory address's associated financial
instrument symbol identifier and a regional pointer to a loca­
tion in the record memory that is associated with each
regional record for the financial instrument corresponding to
that record management memory address's associated finan­
cial instrument symbol identifier, and wherein the reconfig­
urable logic device is further configured to, for each message,
(1) retrieve the pointers stored in the record management
address associated with that message's associated financial
instrument sym.bol identifier, (2) retrieve the composite
record from the record memory based at least in part on the
retrieved composite pointer, and (3) retrieve each regional
record from the record memory based at least in part on the
retrieved regional pointer and that message's associated
exchange identifier.

74. The apparatus of claim 72 wherein the reconfigurable
logic device comprises a plurality of composite record update

Ex. 1003 - Page 79

US 2008/0243675 Al

engines and a plurality of regional record update engines for
performing the processing of each received financial market
data message, and wherein the reconfigurable logic device is
further configured to (1) provide the retrieved composite
records and the financial market data to the composite record
update engines for processing thereby, and (2) provide the
retrieved regional records and the financial market data to the
regional record update engines for processing thereby.

75. The apparatus of claim 68 wherein the reconfigurable
logic device comprises a plurality of update engines for per­
forming the processing of each received financial market data
message, and wherein the reconfigurable logic device is fur­
ther configured to deliver the retrieved records and the finan­
cial market data to the update engines for processing thereby.

76. The apparatus of claim 75 further comprising a tem­
plate memory, the template memory being configured to store
business logic for use by the update engines.

77. The apparatus of claim 76 wherein the reconfigurable
logic device is further configured to select the business logic
to be used by the update engines for processing each message
in response to at least one of the group consisting of a field in
that message and a field in a retrieved record forthat message.

78. The apparatus of claim 75 wherein the reconfigurable
logic device further comprises a pipelined circuit configured
to perform the retrieval and delivery operations such that the
pipelined circuit can operate on a plurality of the messages
simultaneously.

79. The apparatus of claim 78 wherein the pipelined circuit
is configured to stall processing of a second message associ­
ated with a financial instrument in response to detecting that
the pipelined circuit is already processing a first message
associated with the same financial instrument as the second
message, and wherein the pipelined circuit is configured to
maintain the stall until processing of the first message is
complete.

80. The apparatus of claim 78 wherein the reconfigurable
logic device is further configured to (1) maintain a cache
memory for storing recently updated records, (2) for each
message associated with a financial instrument for which a
recently-updated record is stored in the cache memory,
deliver the cached record to the update engines rather than a
record retrieved from the record memory.

81. The apparatus of claim 68 wherein the reconfigurable
logic device is further configured to (1) detect whether a
received message pertains to a financial instrument for which
no record is stored in the record memory, and (2) in response
to a detecting that a received message pertains to a financial
instrument for which no record is stored in the record
memory, writing a new record for that financial instrument
into the record memory based at least in part on that received
message.

82. The apparatus of claim 68 wherein the reconfigurable
logic device is further configured to add a new field to at least
a plurality of the records in response to the processing.

83. The apparatus of claim 68 wherein the record memory
is deployed on a memory device external to the reconfig­
urable logic device.

84. The apparatus of claim 83 wherein the memory device
comprises at least one selected from the group consisting of
an SRAM device and an SD RAM device.

85. A method for processing a plurality of financial market
data messages, each financial market data message compris­
ing financial market data and being associated with a financial
instrument, the method comprising:

21
Oct. 2, 2008

retrieving a record for a financial instrument associated
with a financial market data message;

performing at least one financial data processing operation
on at least a portion of the financial market data message
with reconfigurable logic; and

updating the retrieved record in response to the performing
step.

86. The method of claim 85 wherein the retrieving step
comprises retrieving a composite record for the financial
instrument and at least one regional record for the financial
instrument, and wherein the performing step comprises per­
forming the a plurality of financial data processing operations
on at least a portion of the message simultaneously for both
the retrieved composite record and the at least one retrieved
regional record, and wherein the updating step comprises
updating the retrieved composite record and the at least one
retrieved regional record in response to the performing step.

87. An apparatus for processing a plurality of financial
market data messages, each financial market data message
comprising financial market data and being associated with a
financial instrument, the apparatus comprising:

a record memory configured to store a plurality of records
for a plurality of financial instruments;

a reconfigurable logic device in communication with the
record memory, wherein the reconfigurable logic device
is configured to (I) receive the financial market data
messages, (2) retrieve from the record memory the
records for the messages' associated financial instru­
ments, (3) process each received financial market data
message to update the record for the financial instrument
associated with that message, and wherein each record
comprises an interest list that identifies whether any of a
plurality of entities have expressed an interest in being
notified of data relating to the updated record.

88. The apparatus of claim 87 wherein the interest list
comprises a bit vector having a plurality of bit positions,
wherein each bit position corresponds to a different entity,
and wherein a bit value at each bit position determines
whether the entity corresponding to that bit position is an
interested entity.

89. An apparatus for processing financial market data mes­
sages, each financial market data message comprising finan­
cial market data and being associated with an interest list and
entitlement list, each interest list identifying whether any of a
plurality of entities have expressed an interest in being noti­
fied of data relating to its associated message, each entitle­
ment list identifying whether any of a plurality of entities are
entitled to be notified of data relating to its associated mes­
sage, the apparatus comprising:

a reconfigurable logic device configured to (1) receive a
plurality of the messages, and (2) perform interest and
entitlement filtering on the received messages in
response to each message's associated interest list and
entitlement list.

90. The apparatus of claim 89 wherein the interest list
comprises a bit vector having a plurality of bit positions,
wherein each bit position corresponds lo a different entity,
and wherein a bit value at each bit position determines
whether the entity corresponding to that bit position is an
interested entity.

91. The apparatus of claim 90 wherein the entitlement list
comprises a bit vector having a plurality of bit positions,
wherein each bit position corresponds to a different entity,

Ex. 1003 - Page 80

US 2008/0243675 Al

and wherein a bit value at each bit position determines
whether the entity corresponding to that bit position is an
entitled entity.

92. The apparatus of claim 91 wherein the same bit posi­
tions in the interest lists and the entitlement lists for each
message correspond to the same entities.

93. The apparatus of claim 92 wherein the reconfigurable
logic device is further configured to perform the interest and
entitlement filtering by performing, for each message, a bit­
wise AND operation on the entitlement list bit vector and the
interest list bit vector associated with that message to thereby
generate an entitled interest list bit vector, wherein the bit
values at the different bit positions of the entitled interest list
bit vector identify which interested entities are entitled to be
notified of data relating to that message.

94. The apparatus of claim 92 wherein the reconfigurable
logic device is further configured to (1) operate on a plurality
of different interest list bit vectors that are associated with
each message, and (2) for each message, perform a bitwise
OR operation on the plurality of interest list bit vectors for the
same message to thereby generate a composite interest list bit
vector for each message.

95. The apparatus of claim 94 wherein the reconfigurable
logic device is further configured to perform the interest and
entitlement filtering by performing, for each message, a bit­
wise AND operation on the entitlement list bit vector and the
composite interest list bit vector associated with that message
to thereby generate an entitled interest list bit vector, wherein
the bit values at the different bit positions of the entitled
interest list bit vector identify which interested entities are
entitled to be notified of data relating to that message.

96. The apparatus of claim 95 wherein at least one of the
plurality of interest list bit vectors comprises an exchange
interest list bit vector.

97. The apparatus of claim 96 wherein the reconfigurable
logic device is further configured to, for each message, (1)
receive an exchange identifier associated therewith, and (2)
retrieve an exchange interest list bit vector from a table based
on the received exchange identifier for that message.

98. The apparatus of claim 89 wherein the reconfigurable
logic device is further configured to drop a message if the
interest and entitlement filtering results in a determination
that no entitled and interested party is to be notified of data
relating to that message.

99. A method for processing financial market data mes­
sages, each financial market data message comprising finan­
cial market data and being associated with an interest list and
entitlement list, each interest list identifying whether any of a
plurality of entities have expressed an interest in being noti­
fied of data relating to its associated message, each entitle-

22
Oct. 2, 2008

ment list identifying whether any of a plurality of entities are
entitled to be notified of data relating to its associated mes­
sage, the method comprising:

receiving a plurality of the messages; and
performing interest and entitlement filtering with reconfig­

urable logic on the received messages in response to
each message's associated interest list and entitlement
list.

100. An apparatus for processing financial market data
messages, each financial market data message comprising a
plurality of data fields, each data field having a data value, the
apparatus comprising:

a reconfigurable logic device configured to (1) receive the
financial market data messages, and (2) parse each
received financial market data message into its constitu­
ent data fields.

101. The apparatus of claim 100 wherein each message has
any of a plurality of different formats, the apparatus further
comprising a memory configured to store a data dictionary
that defines how financial market data messages in a plurality
of formats are to be parsed, and wherein the reconfigurable
logic device is further configured to (1) determine the format
exhibited by each received message, and (2) parse each
received message into its constituent data fields as defined for
the determined format in the data dictionary.

102. The apparatus of claim 101 wherein the memory
comprises a memory device that is external to the reconfig­
urable logic device.

103. The apparatus of claim 102 wherein the memory
device comprises at least one selected from the group con­
sisting of an SRAM device and an SD RAM device.

104. An apparatus for processing financial market data, the
financial market data comprising a plurality of data fields,
each data field having a data value, the apparatus comprising:

a reconfigurable logic device configured to generate a plu­
rality of financial market data messages from a plurality
of the data fields, each generated message having a
specified format.

105. The apparatus of claim 104 wherein each generated
message exhibits any of a plurality of different formats, the
apparatus further comprising a memory configured to store a
data dictionary that defines a plurality of formats for financial
market data messages, and wherein the reconfigurable logic
device is further configured to access the data dictionary to
determine how each generated message should be formatted.

106. The apparatus of claim 105 wherein the memory
comprises a memory device that is external to the reconfig­
urable logic device.

107. The apparatus of claim 106 wherein the memory
device comprises at least one selected from the group con­
sisting of an SRAM device and an SD RAM device.

* * * * *

Ex. 1003 - Page 81

5

10

Attorney Docket No. 44826-72554

Method and System for Low Latency Basket Calculation

Field of the Invention:

The present invention relates to the field of performing basket

calculation operations based on streaming data, particularly streaming

financial market data.

Terminology:

The following paragraphs provide several definitions for various

terms used herein. These paragraphs also provide background

information relating to these terms.

Financial Instrument: As used herein, a "financial instrument" refers

to a contract representing an equity ownership, debt, or credit,

typically in relation to a corporate or governmental entity, wherein

the contract is saleable. Examples of financial instruments include

15 stocks, bonds, commodities, currency traded on currency markets, etc.

but would not include cash or checks in the sense of how those items

are used outside the financial trading markets (i.e., the purchase of

groceries at a grocery store using cash or check would not be covered

by the term "financial instrument" as used herein; similarly, the

20 withdrawal of $100 in cash from an Automatic Teller Machine using a

debit card would not be covered by the term "financial instrument" as

used herein) .

Financial Market Data: As used herein, the term "financial market

25 data" refers to data contained in or derived from a series of messages

that individually represent a new offer to buy or sell a financial

instrument, an indication of a completed sale of a financial

instrument, notifications of corrections to previously-reported sales

of a financial instrument, administrative messages related to such

30 transactions, and the like.

APPENDIX B
4634276.7

Ex. 1003 - Page 82

Basket: As used herein, the term "basket" refers to a collection

comprising a plurality of elements, each element having one or more

values. The collection may be assigned one or more Net Values (NVs),

5 wherein a NV is derived from the values of the plurality of elements

in the collection. For example, a basket may be a collection of data

points from various scientific experiments. Each data point may have

associated values such as size, mass, etc. One may derive a size NV

by computing a weighted sum of the sizes, a mass NV by computing a

10 weighted sum of the masses, etc. Another example of a basket would be

a collection of financial instruments, as explained below.

15

Financial Instrument Basket: As used herein, the term "financial

instrument basket" refers to a basket whose elements comprise

financial instruments. The financial instrument basket may be

assigned one or more Net Asset Values (NAVs), wherein a NAV is derived

from the values of the elements in the basket. Examples of financial

instruments that may be included in baskets are securities (stocks),

bonds, options, mutual funds, exchange-traded funds, etc. Financial

20 instrument baskets may represent standard indexes, exchange-traded

funds (ETFs), mutual funds, personal portfolios, etc. One may derive

a last sale NAV by computing a weighted sum of the last sale prices

for each of the financial instruments in the basket, a bid NAV by

computing a weighted sum of the current best bid prices for each of

25 the financial instruments in the basket, etc.

GPP: As used herein, the term "general-purpose processor" (or GPP)

refers to a hardware device having a fixed form and whose

functionality is variable, wherein this variable functionality is

30 defined by fetching instructions and executing those instructions, of

which a conventional central processing unit (CPU) is a common

example. Exemplary embodiments of GPPs include an Intel Xeon

processor and an AMO Opteron processor.

4634276.7 - 2 -

Ex. 1003 - Page 83

Reconfigurable Logic: As used herein, the term "reconfigurable logic"

refers to any logic technology whose form and function can be

significantly altered (i.e., reconfigured) in the field post-

manufacture. This is to be contrasted with a GPP, whose function can

5 change post-manufacture, but whose form is fixed at manufacture.

Software: As used herein, the term "software" refers to data

processing functionality that is deployed on a GPP or other processing

devices, wherein software cannot be used to change or define the form

10 of the device on which it is loaded.

Firmware: As used herein, the term "firmware" refers to data

processing functionality that is deployed on reconfigurable logic or

other processing devices, wherein firmware may be used to change or

15 define the form of the device on which it is loaded.

Coprocessor: As used herein, the term "coprocessor" refers to a

computational engine designed to operate in conjunction with other

components in a computational system having a main processor (wherein

20 the main processor itself may comprise multiple processors such as in

a multi-core processor architecture). Typically, a coprocessor is

optimized to perform a specific set of tasks and is used to offload

tasks from a main processor (which is typically a GPP) in order to

optimize system performance. The scope of tasks performed by a

25 coprocessor may be fixed or variable, depending on the architecture of

the coprocessor. Examples of fixed coprocessor architectures include

Graphics Processor Units which perform a broad spectrum of tasks and

floating point numeric coprocessors which perform a relatively narrow

set of tasks. Examples of reconfigurable coprocessor architectures

30 include reconfigurable logic devices such as Field Programmable Gate

Arrays (FPGAs) which may be reconfigured to implement a wide variety

of fixed or programmable computational engines. The functionality of

a coprocessor may be defined via software and/or firmware.

4634276.7 - 3 .

Ex. 1003 - Page 84

Hardware Acceleration: As used herein, the term "hardware

acceleration" refers to the use of software and/or firmware

implemented on a coprocessor for off loading one or more processing

tasks from a main processor to decrease processing latency for those

5 tasks relative to the main processor.

Bus: As used herein, the term "bus" refers to a logical bus which

encompasses any physical interconnect for which devices and locations

are accessed by an address. Examples of buses that could be used in

10 the practice of the present invention include, but are not limited to

the PCI family of buses (e.g., PCI-X and PCI-Express) and

HyperTransport buses.

Pipelining: As used herein, the terms "pipeline", "pipelined

15 sequence", or "chain" refer to an arrangement of application modules

wherein the output of one application module is connected to the input

of the next application module in the sequence. This pipelining

arrangement allows each application module to independently operate on

any data it receives during a given clock cycle and then pass its

20 output to the next downstream application module in the sequence

during another clock cycle.

Background and Summary of the Invention:

The ability to closely track the value of financial instrument

25 baskets throughout a trading day as large volumes of events, such as

trades and quotes, are constantly occurring is a daunting task. Every

trade made on a financial instrument which is part of the portfolio of

financial instruments underlying a financial instrument basket will

potentially cause a change in that basket's value. The inventors

30 herein believe that conventional techniques used to compute basket

values have been unable to keep up with the high volume of events

affecting basket values, thereby leading to inaccuracy for financial

instrument basket values relative to the current state of the market

because, with conventional techniques, the currently computed basket

4634276.7 - 4 -

Ex. 1003 - Page 85

value will not be reflective of current market conditions, but rather

market conditions as they existed anywhere from milliseconds to

several seconds in the past.

As noted above, financial instrument baskets may represent

5 standard indexes, ETFs, mutual funds, personal portfolios, etc.

10

An index represents the performance of a group of companies,

wherein the group can be decided by various criteria such as market

capitalization (e.g., the S&P 500), industry (e.g., the Dow Jones

Industrial Average (DJIA)), etc.

A mutual fund is a professionally-managed form of collective

investment wherein the buyer pays the fund owner a certain amount of

money and in exchange receives shares of the fund.

ETFs are very similar to mutual funds with an important

difference being that ETFs can be traded continuously throughout the

15 trading day on an exchange, just like stocks. Therefore, the prices

of ETFs fluctuate not only according to the changes in their

underlying portfolios, but also due to changes in market supply and

demand for the ETFs' shares themselves. Thus, ETFs provide the

trading dynamics of stocks as well as the diversity of mutual funds.

20 Additionally, ETFs typically track a well-established market index,

trying to replicate the returns of the index.

Personal portfolios are groupings of financial instruments that

are defined by an individual for his/her personal investment goals.

A financial instrument basket is defined by its set of underlying

25 financial instruments. The basket definition also specifies a weight

for each of the financial instruments within the basket. For example,

consider a hypothetical basket denoted by B. Basket B contains M

financial instruments with symbols Ci, wherein i=l, 2, ... , M. Further,

the weights of each financial instrument i in the basket is denoted by

30 wi, wherein i=l, 2, ... , M. Associated with a basket is a measure of its

monetary value known as its net asset value (NAV) . If one assumes

that the value at the current instant of each financial instrument i

within basket B is Ti, wherein i=l, 2, ... , M, then the NAV of basket B

can be computed as:

4634276.7 - 5 -

Ex. 1003 - Page 86

1 M
NAV=-l:w.T

d i~l l l

(1)

wherein d is a divisor that is associated with the basket and

discussed in greater detail hereinafter. Thus, equation (1) specifies

that a basket's NAV is the weighted sum of the worth of the financial

5 instruments within the baskets, wherein the divisor acts as a

normalizing factor.

The value of T represents a price for the financial instrument's

shares. The price can be expressed as the last sale/trade price

(last), the best offer to buy price (bid), the best offer to sell

10 price (ask), or specific offer prices to buy or sell (limit orders)

The value of w can be defined differently for each basket. For

example, with capitalization-weighted indexes (such as the S&P 500),

the weight of the financial instrument can be defined as the number of

outstanding shares of the financial instrument multiplied by a "free-

15 float" factor, wherein the free-float factor is a number between 0 and

1 that adjusts for the fact that certain shares of the financial

instrument are not publicly available for trading. With an equal­

weighted index (such as the DJIA), the weight of a financial

instrument is set to 1. With ETFs and personal portfolios, the weight

20 of a financial instrument can be set equal to a specified number which

reflects the fact that owning many shares for each of the basket's

financial instruments amounts to owning one share of that ETF or

personal portfolio. Thus, in order to own one share of basket B, one

would have to purchase w1 shares of financial instrument C1 , w2 shares

25 of financial instrument C2 , and so on up to wM shares of financial

instrument CM.

30

The value of d can also be defined differently for each basket.

For an index, the divisor can be set to the current index divisor,

which can be either the number of financial instruments in the index

(e.g., 500 for the S&P 500) or some other specified value. For ETFs,

the divisor can change during the trading day (as the divisor can also

do with respect to indexes).

4634276.7 - 6 -

Ex. 1003 - Page 87

As indicated above, whenever there is a change in worth for one

of a basket's underlying financial instruments, then the NAV for that

basket should be calculated in accordance with formula (1). However,

financial market data messages from exchanges stream into a platform

5 such as a ticker plant at very high rates. For example, the options

price reporting authority (OPRA) expects that its message rate in

January 2008 will be approximately 800,000 messages/second. Each of

these messages may potentially trigger multiple NAV recalculations.

Moreover, because the same financial instrument may be a member of

10 several baskets, the inventors herein estimate that, in order to track

basket NAV values for all financial market data messages, the number

of NAV calculations that will need to be performed every second will

be at least on the order of 10 million NAV calculations/second. The

inventors herein believe that conventional solutions are unable to

15 keep up with such high update rates due to the serial nature of the

conventional solutions, which constrain it to perform only one update

at a time (including other tasks that a system may need to perform

unrelated to basket calculations).

This shortcoming is problematic because it is highly desirable

20 for financial traders to be able to calculate the basket NAVs

extremely fast. An example will illustrate this desirability. As

explained above, ETFs are baskets which can be traded like regular

stocks on an exchange. The portfolio for an ETF is defined at the

beginning of the trading day and remains fixed throughout the trading

25 day barring rare events. Shares of ETFs can be created throughout the

trading day by a creation process which works as follows. A buyer

gives the owner of a fund the specified portfolio of financial

instruments that make up the ETF and a cash payment in an amount equal

to the dividend payments on those financial instruments (and possibly

30 a transaction fee) . The fund then issues shares of the ETF to the

buyer. Shares of ETFs can also be redeemed for the underlying

financial instruments in a similar manner: the investor gives the

fund owner shares of the ETF (and possibly some cash as a transaction

fee), and in return the investor receives the portfolio of financial

4634276.7 - 7 .

Ex. 1003 - Page 88

instruments that make up the ETF and cash equal to the dividend

payments on those financial instruments.

During the trading day, the price of the shares of the ETF

fluctuates according to supply and demand, and the ETF's NAV changes

5 according to the supply and demand of the financial instruments in the

ETF's portfolio. It may well happen that, during the trading day, the

trading price of the ETF deviates from its NAV. If the price of the

ETF is higher than the NAV, then the ETF is said to be trading "at a

premium". If the price of the ETF is lower than the NAV, then the ETF

10 is said to be trading "at a discount". If a financial trader detects

a discrepancy between the ETF share price and the ETF NAV, then he/she

can exploit that discrepancy to make a profit by way of arbitrage.

In one scenario, assume that the ETF share price, denoted by TErFr

is higher than the ETF's NAV. In this case, a trader can execute the

15 following steps:

• Assemble a basket by purchasing the shares of the financial

instruments in the ETF's portfolio at a total cost approximately

equal to the NAV;

• Create an ETF share by exchanging the assembled basket with the

20 fund owner; and

• Sell the ETF on the exchange at a price approximately equal to

TETF•

If the difference between TErF and the NAV is large enough to offset

25 the transaction costs and other cash payments, then the trader can

realize a profit by these actions. Moreover, this profit is realized

by riskless arbitrage (assuming these steps could be performed

instantaneously)

30

In another scenario, assume that the ETF share price, denoted by

TETFr is lower than the ETF' s NAV. In this case, a trader can purchase

an ETF share, redeem it for the shares of the financial instruments in

the portfolio, and sell those financial instrument shares on the

exchange. Once again, if the difference between TErF and the NAV is

4634276.7 - 8 -

Ex. 1003 - Page 89

5

large enough to offset the transaction costs and other cash payments,

then the trader can realize a profit at virtually no risk.

The crucial element in profiting from such riskless arbitrages

for ETFs is detecting the difference between the ETF's share price and

the ETF's NAV. The first trader to detect such discrepancies will

stand to benefit the most, and the latency in NAV computation becomes

important - the computation of the NAV should be performed as quickly

as possible to beat competitors in the race toward detecting profit

opportunities.

10 Independently of the ETF scenarios discussed above, another

15

utility of basket NAV calculation is that the NAV provides a measure

of how the basket's portfolio is faring. A steadily increasing NAV

indicates that investing in more such baskets may be profitable. On

the other hand, a decreasing NAV indicates that it may be desirable to

sell the basket portfolio in order to avoid loss. This strategy is

similar to ones that would be employed when trading in the shares of

an individual financial instrument with the basket providing a benefit

by mitigating risk through diversification across a portfolio of

financial instruments (e.g., if the basket as a whole has an

20 increasing NAV, then investing in that basket will be desirable

independently of how any individual financial instrument in the basket

is performing) .

In an effort to satisfy a need in the art for high volume low

latency basket value computations, the inventors herein disclose a

25 technique for computing basket values for a set of baskets based on

the data within a high speed data stream as that data streams through

a processor.

According to one aspect of a preferred embodiment of the present

invention, the inventors disclose a technique for computing basket

30 values wherein a coprocessor is used to perform the basket

calculations. By offloading the computational burden of the basket

calculations to a coprocessor, the main processor for a system can be

freed to perform different tasks. The coprocessor preferably hardware

accelerates the basket calculations using reconfigurable logic, such

4634276.7 - 9 -

Ex. 1003 - Page 90

as Field Programmable Gate Arrays (FPGAs) . In doing so, a preferred

embodiment preferably harnesses the underlying hardware-accelerated

technology disclosed in the following patents and patent applications:

U.S. patent 6,711,558 entitled "Associated Database Scanning and

5 Information Retrieval", U.S. Patent 7,139,743 entitled "Associative

Database Scanning and Information Retrieval using FPGA Devices", U.S.

Patent Application Publication 2006/0294059 entitled "Intelligent Data

Storage and Processing Using FPGA Devices", U.S. Patent Application

Publication 2007/0067108 entitled "Method and Apparatus for Performing

10 Biosequence Similarity Searching", U.S. Patent Application Publication

entitled "Method and Apparatus for Protein Sequence Alignment

Using FPGA Devices" (published from U.S. Application Serial No.

11/836,947, filed August 10, 2007), U.S. Patent Application

Publication 2007/0130140 entitled "Method and Device for High

15 Performance Regular Expression Pattern Matching", U.S. Patent

Application Publication 2007/0260602 entitled "Method and Apparatus

for Approximate Pattern Matching", U.S. Patent Application Publication

2007/0174841 entitled "Firmware Socket Module for FPGA-Based Pipeline

Processing", U.S. Patent Application Publication 2007/0237327 entitled

20 "Method and System for High Throughput Blockwise Independent

Encryption/Decryption", U.S. Patent Application Publication

2007/0294157 entitled "Method and System for High Speed Options

Pricing", and pending U.S. Application Serial No. 11/765,306 entitled

"High Speed Processing of Financial Information Using FPGA Devices",

25 filed June 19, 2007, the entire disclosures of each of which are

incorporated herein by reference.

According to another aspect of a preferred embodiment of the

present invention, the inventors disclose that the different tasks

involved in such basket calculations can be relegated to different

30 modules within a pipeline. For example, one pipeline module can be

configured to determine which baskets are impacted by a current data

event within the stream. Another pipeline module can be configured to

receive information about the impacted baskets and compute data

indicative of a new basket value for each of those impacted baskets.

4634276.7 - 10 -

Ex. 1003 - Page 91

By pipelining these modules together, the two modules can work on

different messages and/or baskets at the same time in parallel with

each other.

In a preferred embodiment, this pipeline comprises a basket

5 association lookup module in communication with a basket value

updating module. The basket association lookup module is configured

to determine which baskets are impacted by each data message, while

the basket value updating module is configured to compute at least one

new value for each impacted basket based on the information within the

10 data messages (for example, in an embodiment operating on financial

market data, this information can be the financial instrument price

information within the financial market data messages).

The basket value updating module preferably employs a delta

calculation approach to the computation of the updated basket values,

15 as explained in greater detail below. With such an approach, the

number of arithmetic operations needed to compute each basket value

will remain the same regardless of how many elements such as financial

instruments are members of a given basket. Furthermore, the basket

value updating module may optionally be configured to compute a

20 plurality of different types of basket values for the same basket

simultaneously using parallel computation logic.

The basket association lookup module preferably accesses a basket

set table which stores at least a portion of the data needed by the

basket value updating module for the basket value calculations. In a

25 preferred embodiment pertaining to financial information, this data

can be indirectly indexed in the table by financial instrument such

that, as a new message pertaining to a financial instrument is

received, the appropriate data needed for the basket calculations can

be retrieved. To provide the indirection, a second table is employed

30 which indexes pointers into the basket set table by financial

instrument.

Furthermore, in an embodiment wherein the pipeline comprises a

firmware pipeline deployed on a coprocessor such as a reconfigurable

logic device, the design of these modules can be tailored to the

4634276.7 - 11 -

Ex. 1003 - Page 92

hardware capabilities of the coprocessor, thereby providing a level of

synergy that streamlines the basket calculations so that the data

streams can be processed at line speeds while a main processor is

still free to perform other tasks.

5 The inventors also note that the pipeline can employ a price

event trigger module downstream from the basket value updating module.

The price event trigger module can be configured to determine whether

any of the updated basket values meet a client-specified trigger

condition. Any updated basket values which meet the client-specified

10 trigger condition can then be forwarded to the attention of the

pertinent client (e.g., a particular trader, a particular application,

etc.). By doing so, clients can take advantage of the low latency

nature of the basket calculation pipeline to learn of trading

opportunities which may be available.

15 Furthermore, the pipeline can employ an event generator module

downstream from the price event trigger module, wherein the role of

the event generator module is to generate a message event for delivery

to the client in response to a trigger being set off by the price

event trigger module. This message event preferably contains the

20 updated basket value ..

25

Further still, to limit the volume of financial market data

messages processed by the basket association lookup module (and its

downstream modules in the pipeline), the pipeline can employ a message

qualifier filter module upstream from the basket association lookup

module. Preferably, the message qualifier filter module is configured

to drop messages from the financial market data message stream which

are not pertinent to the basket calculations.

A pipeline such as the one described herein can be used in an

embodiment of the invention to identify arbitrage conditions (such as

30 the ETF arbitrage scenario discussed above) as they may arise in

connection with financial instrument baskets and the current state of

the markets. By detecting these arbitrage conditions quickly via the

low latency basket calculation pipeline, a trader is enabled to make

4634276.7 - 12 -

Ex. 1003 - Page 93

trades on one or more exchanges which take advantage of the detected

arbitrage condition.

These and other features and advantages of the present invention

will be apparent to those having ordinary skill in the art upon review

5 of the following description and drawings.

10

Brief Description of the Drawings:

Figures l(a) and (b) depict exemplary embodiments for a system on

which hardware-accelerated basket calculations can be performed;

Figures 2(a) and (b) illustrate exemplary printed circuit boards

for use as coprocessor 140;

Figure 3 illustrates an example of how a firmware pipeline can be

deployed across multiple reconfigurable logic devices;

Figure 4(a) is a high level block diagram view of how a

15 coprocessor can be used to perform basket calculations;

20

Figure 4(b) illustrates an exemplary process flow for computing

an updated basket value using a delta calculation approach;

Figure 5 depicts an exemplary basket calculation engine pipeline

in accordance with an embodiment of the invention;

Figure 6 depicts an exemplary basket association lookup module;

Figure 7 depicts an exemplary basket set pointer table;

Figure 8 depicts an exemplary basket set table;

Figure 9 depicts an exemplary basket value updating module;

Figures lO(a)-(c) depict exemplary embodiments for the NAV

25 compute logic within the basket value updating module;

Figure 11 depicts an exemplary embodiment of the basket value

updating module employing a plurality of NAV update engines;

Figure 12 depicts an exemplary basket calculation engine pipeline

in accordance with another embodiment of the invention;

30 Figure 13 depicts an exemplary price event trigger module;

Figure 14 depicts an exemplary embodiment for the NAV-to-trigger

comparison logic within the price event trigger module;

4634276.7 - 13 -

Ex. 1003 - Page 94

Figure 15 depicts an exemplary embodiment for the price event

trigger module employing a plurality of client-specific price event

trigger modules;

Figure 16 depicts an exemplary basket calculation engine pipeline

5 in accordance with another embodiment of the invention;

10

Figure 17 depicts an exemplary event generator module;

Figure 18 depicts an exemplary basket calculation engine pipeline

in accordance with yet another embodiment of the invention;

Figure 19 depicts an exemplary message qualifier filter module;

Figure 20 depicts an exemplary basket calculation engine pipeline

in accordance with another embodiment of the invention; and

Figure 21 depicts an exemplary ticker plant architecture in which

a basket calculation engine pipeline can be employed.

15 Detailed Description of the Preferred Embodiment:

Figure l(a) depicts an exemplary embodiment for system 100

configured to perform high speed basket calculations. Preferably,

system 100 employs a hardware-accelerated data processing capability

through coprocessor 140 to perform basket calculations. Within system

20 100, a coprocessor 140 is positioned to receive data that streams into

the system 100 from a network 120 (via network interface 110). In a

preferred embodiment, system 100 is employed to receive financial

market data and perform basket calculations for financial instrument

baskets. Network 120 thus preferably comprises a network through

25 which system 100 can access a source for financial data such as the

exchanges themselves (e.g., NYSE, NASDAQ, etc.) or a third party

provider (e.g., extranet providers such as Savvis or BT Radians).

Such incoming data preferably comprises a series of financial market

data messages, the messages representing events such as trades and

30 quotes relating to financial instruments. These messages can exist in

any of a number of formats, as is known in the art.

The computer system defined by processor 112 and RAM 108 can be

any commodity computer system as would be understood by those having

ordinary skill in the art. For example, the computer system may be an

4634276.7 - 14 -

Ex. 1003 - Page 95

5

Intel Xeon system or an AMO Opteron system. Thus, processor 112,

which serves as the central or main processor for system 100,

preferably comprises a GPP.

In a preferred embodiment, the coprocessor 140 comprises a

reconfigurable logic device 102. Preferably, data streams into the

reconfigurable logic device 102 by way of system bus 106, although

other design architectures are possible (see Figure 2 (b)).

Preferably, the reconfigurable logic device 12 is a field programmable

gate array (FPGA), although this need not be the case. System bus 106

10 can also interconnect the reconfigurable logic device 102 with the

processor 112 as well as RAM 108. In a preferred embodiment, system

bus 106 may be a PCI-X bus or a PCI-Express bus, although this need

not be the case.

The reconfigurable logic device 102 has firmware modules deployed

15 thereon that define its functionality. The firmware socket module 104

handles the data movement requirements (both command data and target

data) into and out of the reconfigurable logic device, thereby

providing a consistent application interface to the firmware

application module (FAM) chain 150 that is also deployed on the

20 reconfigurable logic device. The FAMs 150i of the FAM chain 150 are

configured to perform specified data processing operations on any data

that streams through the chain 150 from the firmware socket module

404. Preferred examples of FAMs that can be deployed on

reconfigurable logic in accordance with a preferred embodiment of the

25 present invention are described below.

The specific data processing operation that is performed by a FAM

is controlled/parameterized by the command data that FAM receives from

the firmware socket module 104. This command data can be FAM-

specific, and upon receipt of the command, the FAM will arrange itself

30 to carry out the data processing operation controlled by the received

command. For example, within a FAM that is configured to perform an

exact match operation between data and a key, the FAM's exact match

operation can be parameterized to define the key(s) that the exact

match operation will be run against. In this way, a FAM that is

4634276.7 - 15 -

Ex. 1003 - Page 96

configured to perform an exact match operation can be readily re­

arranged to perform a different exact match operation by simply

loading new parameters for one or more different keys in that FAM. As

another example pertaining to baskets, a command can be issued to the

5 one or more FAMs that make up a basket calculation engine to

add/delete one or more financial instruments to/from the basket.

10

Once a FAM has been arranged to perform the data processing

operation specified by a received command, that FAM is ready to carry

out its specified data processing operation on the data stream that it

receives from the firmware socket module. Thus, a FAM can be arranged

through an appropriate command to process a specified stream of data

in a specified manner. Once the FAM has completed its data processing

operation, another command can be sent to that FAM that will cause the

FAM to re-arrange itself to alter the nature of the data processing

15 operation performed thereby. Not only will the FAM operate at

hardware speeds (thereby providing a high throughput of data through

the FAM) , but the FAMs can also be flexibly reprogrammed to change the

parameters of their data processing operations.

The FAM chain 150 preferably comprises a plurality of firmware

20 application modules (FAMs) 150a, 150b, ... that are arranged in a

pipelined sequence. However, it should be noted that within the

firmware pipeline, one or more parallel paths of FAMs 150i can be

employed. For example, the firmware chain may comprise three FAMs

arranged in a first pipelined path (e.g., FAMs 150a, 150b, 150c) and

25 four FAMs arranged in a second pipelined path (e.g., FAMs 150d, 150e,

150f, and 150g), wherein the first and second pipelined paths are

parallel with each other. Furthermore, the firmware pipeline can have

one or more paths branch off from an existing pipeline path. A

practitioner of the present invention can design an appropriate

30 arrangement of FAMs for FAM chain 150 based on the processing needs of

a given application.

A communication path 130 connects the firmware socket module 104

with the input of the first one of the pipelined FAMs 150a. The input

of the first FAM 150a serves as the entry point into the FAM chain

4634276.7 - 16 -

Ex. 1003 - Page 97

150. A communication path 132 connects the output of the final one of

the pipelined FAMs 150m with the firmware socket module 104. The

output of the final FAM 150m serves as the exit point from the FAM

chain 150. Both communication path 130 and communication path 132 are

5 preferably multi-bit paths.

The nature of the software and hardware/software interfaces used

by system 100, particularly in connection with data flow into and out

of the firmware socket module are described in greater detail in the

above-referenced and incorporated U.S. Patent Application Publication

10 2007/0174841.

15

Figure l(b) depicts another exemplary embodiment for system 100.

In the example of Figure l(b), system 100 includes a data store 142

that is in communication with bus 106 via disk controller 114. Thus,

the data that is streamed through the coprocessor 140 may also emanate

from data store 142. Data store 142 can be any data storage

device/system, but it is preferably some form of mass storage medium.

For example, data store 142 can be a magnetic storage device such as

an array of Seagate disks.

Figure 2(a) depicts a printed circuit board or card 200 that can

20 be connected to the PCI-X or PCI-e bus 106 of a commodity computer

system for use as a coprocessor 140 in system 100 for any of the

embodiments of Figures 1 (a)-(b). In the example of Figure 2(a), the

printed circuit board includes an FPGA 102 (such as a Xilinx Virtex II

FPGA) that is in communication with a memory device 202 and a PCI-X

25 bus connector 204. A preferred memory device 202 comprises SRAM and

DRAM memory. A preferred PCI-X or PCI-e bus connector 204 is a

standard card edge connector.

Figure 2(b) depicts an alternate configuration for a printed

circuit board/card 200. In the example of Figure 2(b), a bus 206

30 (such as a PCI-X or PCI-e bus), one or more disk controllers 208, and

a disk connector 210 are also installed on the printed circuit board

200. Any commodity disk interface technology can be supported, as is

understood in the art. In this configuration, the firmware socket 104

also serves as a PCI-X to PCI-X bridge to provide the processor 112

4634276.7 - 17 -

Ex. 1003 - Page 98

5

with normal access to any disk(s) connected via the private PCI-X bus

2 0 6. It should be noted that a network interface can be used in

addition to or in place of the disk controller and disk connector

shown in Figure 2(b).

It is worth noting that in either the configuration of Figure

2(a) or 2(b), the firmware socket 104 can make memory 202 accessible

to the bus 106, which thereby makes memory 202 available for use by an

OS kernel as the buffers for transfers to the FAMs from a data source

with access to bus. It is also worth noting that while a single FPGA

10 102 is shown on the printed circuit boards of Figures 2(a) and (b), it

should be understood that multiple FPGAs can be supported by either

including more than one FPGA on the printed circuit board 200 or by

installing more than one printed circuit board 200 in the system 100.

Figure 3 depicts an example where numerous FAMs in a single pipeline

15 are deployed across multiple FPGAs.

Figure 4(a) depicts at a high level a coprocessor 140 that

receives an incoming stream of new financial instrument prices, T .new
] ,

and computes new basket values, NAV'ew, in response to the received

stream using a basket calculation engine 400. By offloading the

20 basket calculations to coprocessor 140, the system 100 can greatly

decrease the latency of calculating new basket values in response to

new financial instrument prices.

The basket calculation engine (BCE) 400 preferably derives its

computation of NAV'ew from formula (1) . A direct implementation of

25 formula (1) by BCE 400 would comprise M multiplications, M-1

additions, and 1 division. While a practitioner of the invention may

choose to implement such a direct use of formula (1) within BCE 400, a

preferred embodiment for BCE 400 reduces the number of arithmetic

operations that need to be performed to realize the function of

30 formula (1) . Given that the basis upon which the NAV for a basket is

to be updated is a new price for one of the basket's underlying

financial instruments, it suffices to calculate the contribution to

the basket's NAV of the difference between the new financial

instrument price and the old financial instrument price. This

4634276.7 - 18 -

Ex. 1003 - Page 99

5

10

15

calculated contribution can then be added to the old NAV value for the

basket to find the updated NAV value. This process is referred to

herein as a "delta calculation" for the NAV. This basis for this

delta calculation approach is shown below, starting with formula (1).

NAVnew = _.!._ f w.T
d i=l l l

NAVnPW = l_!_ f Wi~
d i=l

ii:-}

(
.!. T"PW) + w . . d J J

NA V new = [_.!._ ~ w.T. J + (_.!._ W .Tnew) + _.!._ (W .Told _ W .Told)
d f:r l l d 1 1 d J 1 1 1

i""i

NAVnew = dI [l:t wi~J+w1 T/1d~+ dI (w1T/ew -w1Ttd)
z=l

i"")

NAVm:w =_!_[l:t w.TJ+w.Told]+ wi (rnew -T°'d) d i=l l l J J d J J

itcj

NAVnew = NAVazd + f'o:..j (2)

Thus, it can be seen that NAVncw can be computed as the sum of the old

NAV price, NAV°10
, and Aj, wherein Aj represents the delta contribution

to the NAV of the new financial instrument price, and wherein Aj is

computed as:

(3)

Accordingly, it can be seen that the delta calculation approach can

reduce the number of computations needed to calculate the new basket

value from M multiplications, M-1 additions, and 1 division to only 1

subtraction, 1 multiplication, 1 division, and 1 addition. This

20 reduction can lead to powerful improvements in computational

efficiency because a single basket may contain an arbitrary number of

4634276.7 - 19 -

Ex. 1003 - Page 100

financial instruments. It should be noted that, for some baskets, the

value of M may be quite large. For example, a basket may be used to

compute the Wilshire 5000 stock index, which is an index that includes

approximately 6,300 securities. However, the presence of such a large

5 number of securities within the Wilshire 5000 stock index would not

add to the computational latency of a BCE 400 which employs the delta

calculation approach because the NAV computation for such a basket

will be based on formula (2) above.

Figure 4(b) depicts a high level process flow for the computation

10 of the updated basket value by the BCE 400. At step 402, the BCE

computes the delta contribution ~j of the new financial instrument

price T/ew to the basket value (see formula (3)). At step 404, the BCE

computes the updated basket value NAV1ew from the computed delta

contribution (see formula (2)).

15 Figure 5 depicts a preferred pipeline 500 for realizing the BCE

400. Preferably, pipeline 500 is deployed as a firmware pipeline 150

on a reconfigurable logic device 102. The pipeline 500 preferably

comprises a basket association lookup module 502 and a downstream

basket value updating module 504. The basket association lookup

20 module 502 receives a stream of financial market data messages,

wherein each message represents a change in the bid, ask, and/or last

price of a single financial instrument. Each message preferably

comprises at least a symbol identifier, a global exchange identifier,

and one or more of a last price, a bid price, and an ask price for the

25 financial instrument corresponding to the symbol identifier. The

symbol identifier (or symbol ID) preferably comprises a binary tag

that uniquely identifies a particular financial instrument. The

global exchange identifier (GEID) preferably comprises a binary tag

that uniquely identifies a particular exchange for which the message

30 is relevant. Data tags within the messages preferably identify

whether the price information within the message pertains to a

bid/ask/last price for the financial instrument. Also, the message

fields are preferably normalized as between the different message

4634276.7 - 20 -

Ex. 1003 - Page 101

sources such prior to the time the messages reach the basket

association lookup module 502.

The basket association lookup (BAL) module 502 is configured to

determine, for each incoming message, a set of baskets which include

5 the financial instrument that is the subject of that message. This

basket set may comprise a plurality Q of baskets (although it should

be noted that only one basket may potentially be present within the

basket set). Thus, the volume heavy nature of tracking basket values

for each financial market data message can be understood as each

10 message causing a need for at least Q basket value calculations (a l:Q

expansion) . In an exemplary embodiment, the maximum value for Q can

be 1,024 baskets. However, other values could readily be used.

Figure 6 depicts an exemplary BAL module 502. System 100

preferably maintains a record for every known financial instrument,

15 wherein each record preferably contains the list of baskets which

contain that financial instrument, the relative weight of the

financial instrument within each basket on the list, and the most

recent bid, ask, and last sale price for the financial instrument.

These records are preferably stored in a basket set table 608. System

20 100 also preferably maintains a basket set pointer table 604. Table

604 preferably comprises a set of pointers and other information that

point to appropriate records in the basket set table 608. The use of

the basket set pointer table 604 in combination with the basket set

table 608 allows for more flexibility in managing the content of the

25 basket set table 608. In an embodiment wherein the coprocessor

employs a memory 202 such as that shown in Figures 2(a) and (b), this

memory 202 may comprise an SRAM memory device and an SDRAM memory

device. Preferably, the basket set pointer table 604 can be stored in

the SRAM memory device while the basket set table 608 can be stored in

30 the SDRAM memory device. However, it should also be noted that, for

an embodiment of the coprocessor wherein one or more FPGA chips are

used, either or both of tables 604 and 608 can be stored in available

on-chip memory should sufficient memory be available. Furthermore,

4634276.7 - 21 -

Ex. 1003 - Page 102

tables 604 and 608 could be stored in other memory devices within or

in communication with system 100.

In operation, the BAL module 502 performs a lookup in the basket

set pointer table 604 using the symbol ID and GEID 600 for each

5 message. Based on the symbol ID and GEID 600, a basket set pointer

606 is retrieved from table 604, and the BAL module 502 uses this

basket set pointer 606 to perform a lookup in the basket set table

608. The lookup in the basket set table 608 preferably operates to

identify the basket set 610 for the financial instrument identified by

10 the symbol ID and identify the stored last/bid/ask prices 612 for that

financial instrument. Each basket set comprises identifiers for one

or more baskets of which that financial instrument is a member.

A subtractor 616 preferably operates to subtract the retrieved

last/bid/ask prices 612 from the new last/bid/ask prices 602 contained

15 in the current message to thereby compute the changes in the

last/bid/ask prices 614, as shown in Figure 6. It should be noted

that each message may comprise one or more price fields for the

subject financial instrument. For any price fields not contained

within the message, the resultant price change is preferably treated

20 as zero. Thus, if a message does not contain the last sale price for

the financial instrument, then the ALast price will be zero.

Figure 7 depicts an exemplary embodiment for the basket set

pointer table 604 in greater detail. Table 604 comprises a plurality

of records 700, wherein each record comprises a bit string

25 corresponding to a set of flags 702, a bit string corresponding to a

header block pointer 704, and a plurality of bit strings corresponding

to different GEIDs 706. Each record 700 is keyed by a symbol ID such

that the BAL module 502 is able to retrieve the record 700 from table

604 which corresponds to the symbol ID of the current message. The

30 flags 702 denote whether the record 700 is valid (i.e., whether the

subject financial instrument is contained within at least one basket)

The header block pointer 704 serves as a pointer to a basket

association record in table 608 for the financial instrument

corresponding to the symbol ID.

4634276.7 - 22 -

Ex. 1003 - Page 103

Also, a given financial instrument may be fungible on multiple

financial exchanges. The state of a financial instrument on a given

exchange (e.g., the NYSE) is referred to as the regional view for that

financial instrument. The aggregate state of that financial

5 instrument across all exchanges is referred to as the composite view

for that financial instrument. The composite value for the last price

is preferably the most recent sales price for the financial instrument

on any exchange. The composite value for the bid price is preferably

the best of the bid prices for the financial instrument across all of

10 exchanges on which that financial instrument is traded. The composite

view for the ask price is preferably the best of the ask prices for

the financial instrument across all of exchanges on which that

financial instrument is traded. Thus, the bid price and ask price in

the composite view are commonly referred to as the Best Bid and Offer

15 (BBO) prices. Tables 604 and 608 allow for baskets to be defined with

regional and/or composite views of financial instruments. For

example, basket A may contain the composite view of the 10 technology

stocks with the largest market capitalization. Basket B may contain

the NYSE regional view of the 10 technology stocks with the largest

20 market capitalization. Basket C may contain the composite view for 10

technology stocks and the NYSE regional view for 10 industrial stocks.

To accommodate such flexible basket definitions, table 604

preferably employs a plurality of GEID fields 706 within each record

700. Each GEID field 706 serves as a further index into table 608 to

25 retrieve the appropriate composite basket association record and/or

regional basket association record for the pertinent financial

instrument. Thus, BAL module 502 uses the GEID of the current message

to identify a matching GEID field 706 in record 700. Field 706 0 , which

corresponds to GEID 0 , is preferably used to identify any basket

30 association records in table 608 which correspond to the composite

view for the financial instrument. The other fields 706 are used to

identify any basket association records in table 608 which correspond

to the region-specific view for the financial instrument. For

example, GEID 1 may correspond to the NYSE view for the financial

4634276.7 - 23 -

Ex. 1003 - Page 104

instrument while GEID~ may correspond to the NASDAQ view for the

financial instrument. The matching GEID field 706 is then used as an

additional index into table 608 to retrieve a set of basket

association records for the financial instrument that are applicable

5 to both composite views and regional views of the financial

instrument.

Preferably, BAL module 502 will always retrieve the composite

GEID0 field applicable to a given financial instrument. Furthermore,

for a message with regional price information about a financial

10 instrument, the BAL module 502 also operates to match the GEID field

in the message with a GEID field 706 in record 700 for that financial

instrument. Thus, the basket set pointer 606 used by the BAL module

502 preferably comprises the header block pointer 704, the composite

GEID index 706 0 , and the regional GEID index 706i for the subject

15 message.

Figure 8 depicts an exemplary embodiment for the basket set table

608 in greater detail. Table 608 comprises a plurality of basket

association records, wherein each record contains basket information

for a different financial instrument. Each record preferably

20 comprises a plurality of header blocks 800 and possibly one or more

extension blocks 822. Each header block 800, which preferably has a

fixed size, corresponds to the subject financial instrument and a

particular GEID. Furthermore, each header block 800 preferably

comprises a bit string corresponding to the GEID field 802 for that

25 block, a bit string corresponding to an extension pointer 804, a bit

string corresponding to a count field 806, a set of reserved bits 808,

a bit string that corresponds to the most recently stored bid price

810 for the subject financial instrument, a bit string that

corresponds to the most recently stored ask price 812 for the subject

30 financial instrument, a bit string that corresponds to the most

recently stored last price for the subject financial instrument 814,

and a plurality of bit strings corresponding to a plurality of sets of

basket information 816.

4634276.7 - 24 -

Ex. 1003 - Page 105

Preferably, each block 800 preferably comprises either composite

basket association information or regional basket association

information for the subject financial instrument. Also, the blocks

800 are preferably located in memory such that the composite and

5 regional blocks for a given financial instrument are stored in

contiguous memory addresses. In this way, the header block pointer

704 can be used to locate the financial instrument's composite block

800, while the GEID index 706 can be used to locate the applicable

regional block 800 for the financial instrument by serving as an

10 increment to the address found in the header block pointer 704.

Each basket information field 816 in table 608 preferably

comprises a basket identifier and weight pair (Basket ID, Weight)

The Basket ID serves to identify a particular basket while the weight

serves to identify the weight to be used when computing the delta

15 contribution for subject financial instrument to the identified

basket.

Given that a single financial instrument may be present in a

number of different baskets, it is possible that the number of (Basket

ID, Weight) pairs needed for a given financial instrument will not fit

20 within a single block 800. To accommodate such overflow situations,

table 608 also preferably comprises a plurality of extension block

records 822. Each extension block record 822 preferably has a fixed

size and comprises a bit string corresponding to an extension pointer

818, a bit string corresponding to a count field 820, any one or more

25 (Basket ID, Weight) pairs 816 as needed for the financial instrument.

If the number of (Basket ID, Weight) pairs 816 for the financial

instrument are unable to fit within a single extension block 822, then

the extension pointer 818 will serve to identify the address of an

additional extension block 822 in which the additional (Basket ID,

30 Weight) pairs 816 are found. It should thus be noted that a plurality

of extension blocks 822 may be needed to encompass all of a financial

instrument's relevant (Basket ID, Weight) pairs 816. The count field

820 identifies how many (Basket ID, Weight) pairs 816 are present

within the subject extension block 822.

4634276.7 - 25 -

Ex. 1003 - Page 106

The count field 806 within a block 800 serves to identify how

many (Basket ID, Weight) pairs 816 are present within that block 800.

Fields 810, 812, and 814 contain the most recently stored

bid/ask/last prices for the subject financial instrument on the

5 pertinent exchange. As shown by Figure 6, this price information is

used for computing the price change values 614 (or delta prices) that

are relevant to the delta contribution calculation.

Thus, using the pointer 704 and GEID index reference 706

retrieved from table 604, the BAL module 502 is configured to access a

10 block 800 in table 608 corresponding to the composite information

relevant to the subject message (e.g., the block 800 shown in Figure 8

labeled with "GEIDc") and a block 800 in table 608 corresponding to the

regional information relevant to the subject message (e.g., the record

800 shown in Figure 8 labeled with "GEID1 ") • To find the appropriate

15 regional block, the BAL module uses the matching GEID field 706 to

count down from the pertinent composite block to the appropriate

regional block. Thus, if the pertinent regional block for a

particular financial instrument is the NYSE block, wherein the NYSE

has a GEID value of that matches the second GEID field 706, GEID 2 , in

20 record 700, then the BAL module will find the appropiate NYSE block

800 in table 608 two blocks down from the composite block.

In the example of Figure 8, the regional information has an

overflow condition, and the extension pointer 804 points to an

extension block 822, as shown. Based on these lookups, the BAL module

25 502 retrieves the bid/ask/last prices and (Basket ID, Weight) pairs

for the composite view of the financial instrument as well as the

bid/ask/last prices and (Basket ID, Weight) pairs for the appropriate

regional view of the financial instrument. It should be noted that

the retrieved bid/ask/last prices 612 for the composite view will need

30 to be associated with the retrieved list of (Basket ID, Weight) pairs

610 for the composite view and the retrieved bid/ask/last prices 612

for the regional view will need to be associated with the retrieved

list of (Basket ID, Weight) pairs 610 for the regional view to ensure

that downstream computations are based on the appropriate values. To

4634276.7 - 26 -

Ex. 1003 - Page 107

maintain this association, delta events as described below are

preferably employed.

BAL module 502 is also preferably configured to update the

records in table 608 with the new prices 602 in each message. This is

5 shown by arrow 618 in Figure 6, which represents a write operation

into the appropriate fields of table 608. However, it should be noted

that if the message does not include a particular price field such as

the last price field, then the BAL module 502 preferably maintains the

last price field 814 in the pertinent block 800 in its existing state.

10 It should be noted that the array of GEID fields 706 for each

record 700 in table 604 may be of fixed size for simplicity.

Depending upon how much size a practitioner allocates to the GEID

fields 706 in each record 700, it may be the case that a financial

instrument trades on a sufficiently large number of exchanges that

15 there are not a sufficient number of fields 706 for storing the

financial instrument's relevant GEIDs. Thus, if this situation arises

and the GEID 600 of the message does not find a match to any GEID

fields 706 in the pertinent record 700 of table 604, then the BAL

module 502, to retrieve an appropriate regional block from table 608,

20 preferably indexes to the last header block 800 in the record for that

financial instrument and conducts a linear search through the header

blocks' GEID fields 802 to find a match to the GEID 600 associated

with the message.

It should also be noted that if the GEID 600 is not found in any

25 of the GEID fields 802 for the financial instrument record in table

608, this means that the regional view of that financial instrument

corresponding to GEID 600 is not included in any baskets.

It should also be noted that baskets may be dynamically changed

throughout the day by adding and/or removing (Basket ID, Weight) pairs

30 from the basket association records in table 608 for financial

instruments.

To add a financial instrument to a basket, the system adds the

appropriate (Basket ID, Weight) pair to that financial instrument's

record in table 608. A control process, preferably performed in

4634276. 7 - 2 7 -

Ex. 1003 - Page 108

software executing on a GPP such as processor 112, preferably

maintains a copy of tables 604 and 608 and computes where entries need

to be added to the table 608 (and possibly table 604 if the GEID for

that financial instrument is not present in the GEID fields 706 of

5 record 700 for that financial instrument) to reflect the addition of

the financial instrument to the basket. These determinations can be

made using the symbol ID and GEID for the financial instrument to be

added. The control process then preferably sends memory write

commands to the pipeline for consumption by the BAL module 502 that

10 are effective to write update tables 604 and 608 to reflect the

addition of the subject financial instrument to a basket. The control

process may also be configured to immediately send a synthetic event

to the pipeline for consumption by the BAL module 502 wherein this

event contains the current prices for the relevant financial

15 instrument. This action will cause delta updates to the NAV values

for the subject basket wherein these delta updates are relative to a

zero (so the entirety of the price contribution is determined).

However, it should also be noted that the control process may be

configured to simply wait for subsequent market events to arrive at

20 the pipeline and allow the delta updates to be applied at that time.

Removing a financial instrument from a basket generally involves

removing the (basket ID, weight) pair for the subject basket from the

record in table 608 for the subject financial instrument.

Furthermore, to appropriately update the NAV values to reflect the

25 deletion of the financial instrument from the basket, the control

process preferably generates a synthetic event for delivery to the

pipeline wherein the price information for the subject financial

instrument is zero. This causes the delta price values 614 for the

financial instrument to be the negative value of the price information

30 for that financial instrument stored in table 608, thus removing the

entirety of the price contribution for that financial instrument to

the subject basket.

To add an entire basket to the system, it follows that the

control process can issue appropriate memory write commands to the

4634276.7 - 28 -

Ex. 1003 - Page 109

pipeline that adds (Basket ID, Weight) pairs to table 608 for all of

the new basket's constituent financial instruments. The control

process can also generate synthetic events for delivery to the

pipeline which reflects the current price information for these

5 constituent financial instruments, as explained above. Moreover, as

can be understood in connection with Figures 9 and 13 below, the

control process can initiate the addition of appropriate entries to

the divisor table, NAV tables, client NAV tables, and client trigger

threshold tables to reflect the addition of the new basket to the

10 system.

To delete an entire basket from the system, it also follows that

the control process can be configured to initiate a removal of the

(Basket ID, Weight) pairs from table 608 for all of the subject

basket's constituent financial instruments. Similarly, the records in

15 the tables shown in Figures 9 and 13 can also be updated to remove

those records associated with the Basket ID of the removed basket.

The output from the BAL module 502 will be a stream of delta

events. Each delta event preferably comprises a retrieved (Basket ID,

Weight) pair 610 and at least one computed price change 614 for a

20 financial instrument corresponding to that retrieved (Basket ID,

Weight) pair 610. In an embodiment of the invention, each delta event

includes all of the price deltas, even if one or more of the price

deltas (e.g., the ~Bid price) is zero. However, this need not be the

case, as noted below.

25 It should also be understood that, for each message event that is

received at the input to the BAL module 502, a plurality of delta

events may be produced at the output of the BAL module 502 due to the

fact that the financial instrument which is the subject of the

received message may be a member of a plurality of baskets. Partly

30 because of this expansion, the low latency nature of pipeline 500 is

particularly advantageous in allowing the task of updating basket

values to keep up with the inflow of events from the different

exchanges.

4634276.7 - 29 -

Ex. 1003 - Page 110

Returning to Figure 5, the basket value updating module 504 is

configured to compute the new basket value for each delta event

produced by the BAL module 502. Figure 8 depicts an exemplary basket

value updating (BVU) module 504.

5 A delta event buffer 900 buffers the delta events produced by the

BAL module 502. For each delta event read out of buffer 900, the BVU

module 504 performs a lookup in a divisor table 902 to determine the

appropriate value for the divisor d from formula (3) for the basket

corresponding to the Basket ID within the current delta event. Thus,

10 it can be seen that table 902 preferably indexes each divisor value by

the Basket ID for the divisor's corresponding basket. The delta event

buffer 900 and the divisor table 902 are preferably located within

available on-chip memory for the reconfigurable logic device 102.

However, it should be noted that buffer 900 and table 902 could

15 alternatively be stored on any memory resource within or accessible to

coprocessor 140.

20

A NAV update engine 950 then receives as an input the delta event

information (the (Basket ID, Weight) pair 610 and the delta

bid/ask/last prices 614) plus the divisor value d for that delta event

to compute at least one updated basket value NAV"ew. Preferably, the

NAV update engine 950 is configured to compute a plurality of

different types of basket NAV's for each basket. For example, the NAV

update engine 950 can be configured to compute, in parallel, new NAVs

based on bid prices, ask prices, last prices, bid-tick prices, and

25 ask+tick prices (Bid NAV1ew, Ask NAV1ew, Last NAV1ew, Bid-Tick NAV"ew, and

Ask+Tick NA\/"1ew respectively), as shown in Figure 9. In these

examples, the tick value is defined as the minimum increment used by

the pertinent exchange to measure a change in financial instrument

price.

30 A demultipexer 904 operates to route portions of the delta event

information and the divisor value to the appropriate NAV compute logic

916. The NAV update engine preferably employs a plurality of parallel

computing paths to compute each type of basket NAV.

4634276.7 - 30 -

Ex. 1003 - Page 111

The computing path for computing Bid NAVncw preferably operates on

the Basket ID, Weight, Divisor, and ABid price. The BVU module 504

performs a lookup in a Bid NAV table 906 based on the Basket ID to

retrieve a stored Bid NAV value (Bid NAV°1
d) for the subject basket.

5 This Bid NAV01
d value serves as the NAV°1

d value in formula (2) during

computation of Bid NAV'ew. NAV compute logic 916 then (i) computes the

delta contribution ~j for the financial instrument according to

formula (3) using the divisor value as the d term in formula (3), the

Weight value as the Wj term in formula (3), and the ABid value as the

10 (T/ew -Ttd) term in formula (3), and (ii) thereafter computes Bid NAV'ew

according to formula (2) based on the computed ~j value and the Bid

NAV°1
d value.

The computing path for computing Ask NAV'ew preferably operates in

the same manner as the computing path for Bid NlFl'ew albeit performing

15 a lookup in an Ask NAV table 908 based on the Basket ID and using the

AAsk price rather than the ABid price.

The computing path for computing Last NAV'ew also preferably

operates in the same manner as the computing path for Bid NAV'ew albeit

performing a lookup in an Last NAV table 910 based on the Basket ID

20 and using the ALast price rather than the ABid price.

Likewise, the computing paths for computing the Bid-Tick NAV'eN

and Ask+Tick NAV'ew value preferably operate in the same manner as the

computing path for Bid NAV'ew albeit performing lookups in,

respectively, a Bid-Tick NAV table 912 and an Ask+Tick NAV table 914

25 based on the Basket ID and using, respectively, the ABid price and the

AAsk price.

Table 912 can store previously computed NAVs for each basket that

are based on a price for the financial instrument that is the previous

bid price for the financial instrument minus a tick value. Table 914

30 can store previously computed NAVs for each basket that are based on a

price for the financial instrument that is the previous ask price for

the financial instrument plus a tick value.

4634276.7 - 31 -

Ex. 1003 - Page 112

5

10

15

Preferably, tables 906, 908, 910, 912, and 914 are stored in

available on-chip memory for the reconfigurable logic device 102.

However, it should be noted that these tables could alternatively be

stored on any memory resource within or accessible to coprocessor 140.

Thus, it can be seen that the NAV update engine 950 is preferably

configured to output, each clock cycle, an updated basket event,

wherein each updated basket event comprises a plurality of different

updated NAVs for a particular basket together with a Basket ID for

that basket.

The BVU module is also preferably configured to update tables

906, 908, 910, 912, and 914 with the newly computed NAV values. Thus,

the newly computed Bid NAV1ew for a given Basket ID can be fed back

into an entry for that Basket ID in table 906 so that the next delta

event pertaining to the same Basket ID will retrieve the most current

NAV°1
d value. The memory for tables 906, 908, 910, 912, and 914 is

preferably dual-ported, thus allowing for two read/write operations to

occur on each clock cycle. If updating logic for the BVU module is

pipelined, it can be expected that contention for the same Basket ID

entry in a given table during a read and write operation on the same

20 clock cycle will be rare and can be identified and avoided using

techniques known in the art.

25

Also, a control process can issue a memory write command to the

pipeline for consumption by the BVU module to update an entry in the

divisor table 902 in the event of a change in value for a basket's

divisor. Such a control process is preferably performed in software

executing on a GPP such as processor 112.

Figure lO(a) depicts an exemplary embodiment for the NAV compute

logic 916. A multiplier 1000 operates to compute the W. (rnew -Told)
.1 .1 .I

portion of formula (3) using the Weight value and delta price

30 information from each delta event. A divider 1002 operates to divide

the w1 (rtw -Ttd) value by d to thereby compute Llj according to formula

(3). Thereafter, an adder 1004 is used to add L1j to the NAV°1
d value,

thereby computing NAV1ew according to formula (2) .

4634276.7 - 32 -

Ex. 1003 - Page 113

Figure lO(b) depicts another exemplary embodiment for the NAV

compute logic 916. In the embodiment of Figure lO(b), the division

operation is performed last, thereby improving the precision of the

NAV computation relative to the embodiment of Figure lO(a). To re-

5 order the arithmetic operations such that the division operation

inherent in formula (2) by way of formula (3) is performed last, the

embodiment of Figure lO(b) preferably adds a multiplication operation

using multiplier 1006. This multiplication operation can be performed

in parallel with the multiplication operation performed by multiplier

10 1000. Multiplier 1006 operates to multiply the NAV01
d value by d,

thereby resulting in the value S 01
d. In this embodiment, the delta

contribution of the financial instrument can be expressed as

as shown at 1012 in Figure lO(b). Adder 1004 then

olci (Tnew Told) computes the sum of S · and w1 1 - 1 • Given that 5cld equals

15 dNAV 01
d, it can readily be seen that the act of dividing

S 01d + w1(T1ncw -T/'d) by d will result in NAVew in accordance with formulas

(2) and (3).

Figure lO(c) depicts yet another exemplary embodiment for the NAV

compute logic 916. In the embodiment of Figure lO(c), the precision

20 improvement of the Figure 10 (b) embodiment is preserved while also

eliminating the need for multiplier 1006. To do so, in a BVU module

which employs the NAV compute logic 916 of Figure lO(c), the NAV

tables 906, 908, 910, 912, and 914 preferably store S 01
d values rather

than NAV01
d values, thereby eliminating the need for multiplier 1006.

25 Furthermore, to update tables 906, 908, 910, 912, and 914, the value

new . . sold (Tnew Told) of S (which is the same as + w1 1 - 1) is fed back into the

relevant tables via communication link 1010 such that Sn'"" serves as Suu

when the next delta event is processed.

It should be noted that the BVU module 504 can employ a plurality

30 of NAV update engines 950 in parallel to thereby simultaneously

compute a plurality of basket NAV types for a plurality of baskets.

An example of this is shown in Figure 11, wherein the BVU module 504

4634276.7 - 33 -

Ex. 1003 - Page 114

comprises two parallel NAV update engines 950. In such an embodiment,

the BVU module 504 reads two delta events out of buffer 900 each clock

cycle. After lookups are performed in the divisor table 902 to

identify the appropriate divisor value for each delta event, routing

5 logic 1100 routes the delta event information and its associated

divisor value to an appropriate NAV updated engine 950. Such routing

logic 1100 can be configured to assign different segments of the

Basket ID range to each set of parallel engines 950.

If desired, it should be noted that a single set of NAV tables

10 906, 908, 910, 912, and 914 can be shared by a plurality of NAV update

engines 950. If the number of NAV update engines exceeds the number

of available ports for reading from the NAV tables, then the BVU

module 504 can be configured to interleave the accesses to these

tables from the different NAV update engines. These tables could also

15 be replicated if desired to avoid such interleaving. The same can be

said with respect to divisor table 902 (while Figure 11 depicts an

embodiment wherein two divisor tables are utilized, it should be noted

that a single divisor table 902 may be shared by the different paths

in Figure 11) .

20 Figure 12 depicts an embodiment wherein pipeline 500 includes a

price event trigger module 1200 in communication with the output from

the BVU module 504. The price event trigger (PET) module 1200 is

configured to determine which updated basket values produced by the

BVU module 504 are to be reported to an interested client. These

25 determinations can be made on the basis of any of a number of

criteria. The client may be a particular trader who has requested

that he/she be notified when the value of a basket changes by a

30

certain amount,

trading system.

coprocessor 140

pipeline) .

or the client may be another application within a

The client may also be another module deployed on the

(such as another FP1.M 150 if pipeline 500 is a FAM

Figure 13 depicts an exemplary embodiment for a PET module 1200.

Preferably, PET module 1200 is configured to operate in parallel on

each basket value type for a basket generated by the BVU module 504.

4634276.7 - 34 -

Ex. 1003 - Page 115

5

Also, to determine which of the updated basket values should be

reported to interested clients, the PET module 1200 preferably

compares each updated basket value with a client-defined trigger

threshold.

PET module 1200 preferably accesses a plurality of tables

corresponding to different NAV types, wherein these tables store

client reference values for each basket. These reference values are

used by the PET module 1200 to judge whether new basket values should

be reported to interested clients. In an exemplary embodiment, the

10 reference values are NAV values for the subject baskets which were

previously reported to the client. Thus, a client NAV table

preferably exists for each basket value type generated by the BVU

module 504. Thus, reference value table 1302 stores a plurality of

client Bid NAVs for the different baskets, wherein each client Bid NAV

15 is indexed by a basket identifier. Reference value table 1304 stores

a plurality of client Ask NAVs for the different baskets (each client

Ask NAV being indexed by a basket identifier) . Reference value table

1306 stores a plurality of client Last NAVs for the different baskets

(each client Last NAV being indexed by a basket identifier) .

20 Reference value table 1308 stores a plurality of client Bid-Tick NAVs

for the different baskets (each client Bid-Tick NAV being indexed by a

basket identifier) . Reference value table 1310 stores a plurality of

client Ask+Tick NAVs for the different baskets (each client Ask+Tick

NAV being indexed by a basket identifier) . Each of these tables

25 preferably stores the most recent of their respective NAV types to be

reported to the client. Thus, in the event of one of the triggers

being set off by a new basket value, the PET module is preferably

configured to update the NAV values in the client tables with the new

basket values. Such updating logic can be configured to update the

30 tables only for those NAV values which set off the trigger or can be

configured to update all of the tables when any NAV value sets off a

trigger.

Also, a client NAV trigger threshold table preferably exists for

each basket value type generated by the BVU module 504. Thus, table

4634276.7 - 35 -

Ex. 1003 - Page 116

1314 stores a plurality of client Bid NAV trigger threshold values for

the different baskets, wherein each client Bid NAV trigger threshold

value is indexed by a basket identifier. Table 1316 stores a

plurality of client Ask NAV trigger threshold values for the different

5 baskets (each client Ask NAV trigger threshold value being indexed by

a basket identifier). Table 1318 stores a plurality of client Last

NAV trigger threshold values for the different baskets (each client

Last NAV trigger threshold value being indexed by a basket

identifier). Table 1320 stores a plurality of client Bid-Tick NAV

10 trigger threshold values for the different baskets (each client Bid­

Tick NAV trigger threshold value being indexed by a basket

identifier). Table 1322 stores a plurality of client Ask+Tick NAV

trigger threshold values for the different baskets (each client

Ask+Tick NAV trigger threshold value being indexed by a basket

15 identifier) .

Preferably, tables 1302, 1304, 1306, 1308, 1310, 1314, 1316,

1318, 1320, and 1322 are stored in available on-chip memory for the

reconfigurable logic device 102. However, it should be noted that

these tables could alternatively be stored on any memory resource

20 within or accessible to coprocessor 140.

Also, it should be noted that the client NAV tables and the

client NAV trigger threshold tables can be optionally consolidated if

desired by a practitioner of this embodiment of the invention. In

doing so, the records in the client Bid NAV table 1302 would be merged

25 with the records in the client Bid NAV trigger threshold table 1314

such that each record comprises the client Bid NAV and the client Bid

NAV trigger threshold value. Similarly, table 1304 could be merged

with table 1316, table 1306 with table 1318, table 1308 with table

1320, and table 1310 with table 1322.

30 PET module 1200 preferably employs a plurality of parallel

computing paths to determine whether any of the NAV types within each

basket event set off a client trigger.

A first computing path is configured to perform a lookup in the

client Bid NAV table 1302 and a lookup in the client Bid NAV trigger

4634276.7 - 36 -

Ex. 1003 - Page 117

threshold table 1314 based on the current updated basket event's

Basket ID to thereby retrieve a client Bid NAV and a client Bid NAV

trigger threshold value. The client Bid NAV serves as a trigger

against which the Bid NlW within the updated basket event is compared.

5 The client Bid NAV trigger threshold value is then used as the

criteria to judge whether the trigger has been set off. NAV-to­

trigger comparison logic 1312 then operates perform this comparison

and determine whether the trigger has been set off, wherein a Bid NAV

trigger flag indicates the result of this determination.

10 Additional computing paths perform these operations for the

updated basket event's Ask NAV, Last NAV, Bid-Tick NAV, and Ask+Tick

NAV to produce Ask NAV, Last NAV, Bid-Tick NAV, and Ask+Tick NAV

trigger flags, respectively, as shown in Figure 13.

Trigger detection logic 1324 receives the different NAV trigger

15 flags produced by the computing paths. This logic 1324 is configured

to determine whether any of the trigger flags for a given updated

basket event are high. Preferably, the trigger detection logic 1324

is configured pass an updated basket event as an output if any of the

flags for that updated basket event are high. As such, it can be seen

20 that the PET module 1200 serves as a filter which passes updated

basket events that are deemed noteworthy according to client-defined

criteria.

Figure 14 illustrates an exemplary embodiment for the comparison

logic 1312. A subtractor 1400 operates to subtract the retrieved

25 client NAV from the updated basket event's NAV (NAV18
"'). A comparator

1404 then compares the difference between NAV'e"' and the client NAV

with the retrieved client trigger threshold to determine whether the

NAV trigger flag should be set. If the difference exceeds the

threshold value, then comparator preferably sets the NAV trigger flag

30 to high.

Thus, a client may want to be notified whenever the Bid NAV of

Basket 145 changes by $0.05, whenever the Ask NAV for Basket 145

changes by $0.03, or whenever the Last NAV for Basket 145 changes by

$0.02. In such an instance, the client Bid NAV trigger threshold

4634276.7 - 37 -

Ex. 1003 - Page 118

value in table 1314 for Basket 145 can be set equal to $0.05, the

client Ask NAV trigger threshold value in table 1316 for Basket 145

can be set equal to $0.03, and the client Last NAV trigger threshold

value in table 1318 for Basket 145 can be set equal to $0.02. If the

5 new bid NAV, Ask NAV, and Last NAV values within the updated basket

event for Basket 145 are $20.50, $20.40, and $20.20 respectively,

while the stored values for the client NAVs of Basket 145 are $20,

$20.42, and $20.19 respectively, then the comparison logic will

operate to set the Bid NAV trigger flag high, the Ask NAV trigger flag

10 low, and the Last NAV trigger flag high.

However, it should be noted that the comparison logic 1312 could

be configured to determine whether a client trigger has been set off

in any of a number of ways. For example, the client threshold values

can be expressed in terms of percentages if desired (with

15 corresponding adjustments in the comparison logic to compute the

percentage difference between the new NAV and the client NAV) . Also,

the trigger condition could be based on a tracking instrument that is

different than the subject NAV. For example, the trigger condition

for a given basket can be defined in relation to a stored price for

20 the DJIA. The client NlW tables would then store a DJIA price for

that basket, and that basket's NAV prices would be compared against

the retrieved DJIA price to determine whether the trigger threshold

has been reached.

It should be noted that the PET module 1200 can be configured to

25 detect arbitrage conditions by appropriately populating the client NAV

tables and the client trigger threshold tables. For example, with

ETFs, a client NAV table can be populated with the current share price

of the ETF itself (TETF) • Thus, the client bid NAV table could be

populated with the current bid price for a share of the ETF, the

30 client ask NAV table could be populated with the current ask price for

a share of the ETF, the client last NAV table could be populated with

the current last price for a share of the ETF, etc. By populating the

client NAV tables in this manner, the PET module can detect when there

is a discrepancy between the share price of the ETF and the net asset

4634276.7 - 38 -

Ex. 1003 - Page 119

value of the ETF's constituent financial instruments. Such a

discrepancy can be taken advantage of by a trader, as explained above.

Thus, a client application that is informed by the pipeline of a

discrepancy between TErF and the ETF' s NAV can place one or more trades

5 on one or more financial markets to realize a profit from the detected

arbitrage condition. For example, if the ETF's NAV is less than the

ETF's share price, a client application can execute the following

steps:

• Assemble a basket by purchasing the shares of the financial

10 instruments in the ETF's portfolio at a total cost approximately

equal to the NAV;

• Create an ETF share by exchanging the assembled basket with the

fund owner; and

• Sell the ETF on the exchange at a price approximately equal to

15 TETF•

Furthermore, if the ETF's NAV is greater than the ETF's share price, a

client application can execute the above steps in reverse. That is, a

trader can buy one or more shares of the subject ETF from the market,

exchange the ETF for shares of its constituent financial instruments,

20 and then sell those shares of the constituent financial instruments on

the market.

It should also be noted that the trigger thresholds in the client

trigger threshold tables can be populated with values that take into

account any expected transactional costs involved in the process of

25 making such trades to take advantage of the price discrepancy, as

explained below. Thus, if the sales price for the assembled ETF

exceeds the aggregate prices of the financial instrument shares

purchased to assemble the basket and the related transactional costs

in doing so (or the sales prices for the constituent financial

30 instruments exceeds the purchase price of the ETF and the related

transactional costs), a trader who uses the client application can

yield a profit by way of arbitrage. For such actions to work, the

inventors note that time is of the essence, and it is believed that

the low latency nature of the disclosed pipeline greatly increases a

4634276.7 - 39 -

Ex. 1003 - Page 120

trader's ability to recognize and profit from such arbitrage

conditions as they arise in a constantly fluctuating market.

Moreover, it should be noted that the PET module 1200 can filter

updated basket events for a plurality of different clients. In this

5 manner, each subscribing client can define its own set of reference

values and trigger thresholds. To accomplish such a feature, each

updated basket event can be compared in parallel with a plurality of

criteria for different clients via a plurality of client-specific PET

modules 1500, as shown in Figure 15. It should also be noted that the

10 client-specific PET modules 1500 (each of which would be a client­

specific replicant of PET module 1200 of Figure 13) can be arranged in

series (wherein each client-specific PET module would optionally add a

client-specific flag to each updated basket event to thereby indicate

whether that client's triggering criteria were met). Furthermore, the

15 client-specific PET modules 1500 could also be arranged in a hybrid

parallel/series arrangement if desired.

Figure 16 depicts an embodiment wherein pipeline 500 includes an

event generator module 1600 in communication with the output from the

PET module 1200. The event generator module 1600 is configured to

20 process each incoming triggered basket event to construct a normalized

output message event which contains the computed new NAVs within the

triggered basket event.

Figure 17 depicts an exemplary embodiment for the event generator

module 1600. Preferably, the event generator module 1600 is

25 configured to insert a bit string into each output event 1704 which

defines an interest list for that event, wherein the interest list

identifies each client that is to be notified of the event.

Preferably, this interest list takes the form of a bit vector, wherein

each bit position corresponds to a different client. For any bit

30 positions that are high, this means that the client corresponding to

that bit position should be notified.

An interest list table 1700 preferably stores such a bit vector

for each basket. As the event generator module 1600 receives a

triggered basket event from the PET module 1200, the event generator

4634276.7 - 40 -

Ex. 1003 - Page 121

module 1600 performs a lookup in the interest list table 1700 based on

the Basket ID within the triggered basket event. As a result of this

lookup, the interest list vector for that Basket ID is retrieved. A

formatter 1702 thereafter builds an output message event 1704 from the

5 retrieved interest list vector 1706 and the information within the

received triggered basket event, as shown in Figure 17. Formatter

1702 is preferably configured to add a header 1708 and trailer 1710 to

the output event 1704 such that the output event 1704 can be properly

interpreted by a client recipient (or recipients) of the output event

10 1704. The format for such output events can comply with any of a

number of messaging protocols, both well-known (e.g., FAST and FIX)

and proprietary. As indicated, the value of the bit positions in the

interest list vector 1706 of the output event 1704 will define which

clients are to be recipients of the event 1704.

15 The interest list table 1700 is preferably located within

available on-chip memory for the reconfigurable logic device 102.

However, it should be noted that table 1700 could alternatively be

stored on any memory resource within or accessible to coprocessor 140.

Also, it should be noted that formatter 1702 may optionally be

20 configured to access one or more data tables (not shown; either on­

chip or off-chip) to define the appropriate fields for the output

event 1704.

It should also be noted that the event generator module 1600 may

be configured to store statistics such as the number of triggered

25 basket events it receives, the number of output events it produces,

and the average inter-event time for each triggered basket event.

Figure 18 depicts an embodiment wherein pipeline 500 includes a

message qualifier filter module 1800 in communication with the input

to the BAL module 502. The message qualifier filter module 1800 is

30 configured to process incoming message events and filter out any

message events that are not of interest to the BCE. Messages of

interest will generally include messages which may affect NAV prices.

Examples of messages that a practitioner of this embodiment of the

invention may want to filter are messages that do not contain a bid,

4634276.7 - 41 -

Ex. 1003 - Page 122

ask, or last price for a financial instrument. For example, a

practitioner may desire to filter out messages which merely correct

the previous day's closing prices and messages relating to trades that

do not contribute to the daily volume.

5 Figure 19 depicts an exemplary message qualifier filter module

10

1800 that can be employed in the pipeline 500 of Figure 18. A table

1900 stores a plurality of qualifiers. Module 1800 is preferably

configured to compare one or more fields of each incoming message

(such as the quote and trade qualifier fields of the incoming

messages) against the different qualifiers stored by table 1900. Each

message qualifier is typically a small binary code which signals a

condition. Each qualifier in table 1900 preferably maps to an entry

in table 1902 which contains a pass/drop flag in each address. Thus,

if a match is found any of the message fields with respect to

15 qualifier [1] from table 1900, then this match would map to the entry

in position n-2 of table 1902, and the bit value in position n-2 of

table 1902 would be retrieved and provided as an input to AND logic

1904. Message qualifiers from table 1900 can be directly addressed to

entries in table 1902. However, if the size of table 1900 were to

20 greatly increase, it should be noted that hashing could be used to map

qualifiers to pass/drop flags.

If any of the inputs to AND logic 1904 are high, then this will

cause the pass/drop signal 1906 to follow as high. Logic 1908 is

configured to be controlled by signal 1906 when deciding whether to

25 pass incoming messages to the output. Thus, if any of the matching

qualifiers from table 1900 maps to a high bit in table 1902, this will

result in the subject message being passed on to the output of the

message qualifier filter module 1800.

In this manner, each qualifier in the qualifier table may define

30 a message criteria which, if found in an incoming message, will result

in that incoming message being passed along or blocked from

propagating downstream in pipeline 500. Examples of message

qualifiers which can be stored by table 1900 to indicate that a

message should be blocked would be indicators in messages that

4634276.7 - 42 -

Ex. 1003 - Page 123

identify the message as any of a non-firm quote, penalty bid,

withdrawn quote, held trade, and out of sequence trade.

Tables 1900 and 1902 are preferably located within available on­

chip memory for the reconfigurable logic device 102. However, it

5 should be noted that these tables could alternatively be stored on any

memory resource within or accessible to coprocessor 140.

It should also be noted that the incoming messages to pipeline

500 are preferably normalized messages in that the message fields are

formatted in a manner expected by the pipeline 500. Such

10 normalization may optionally have been already been performed prior to

the time that the messages reach pipeline 500. However, optionally,

pipeline 500 may include a message normalization module 2000 as shown

in Figure 20 to provide the normalization functions. Such

normalization preferably includes functions such as symbol ID mapping

15 (wherein each message is assigned with a symbol ID (preferably a

fixed-size binary tag) that uniquely identifies the financial

instrument which is the subject of the message) and GEID mapping

(wherein each message is assigned with a GEID (preferably also a

fixed-size binary tag) that uniquely identifies the exchange

20

25

corresponding to the message) . FAM modules to perform such

normalization functions are described in the above-referenced and

incorporated U.S. patent application 11/765,306.

With respect to administering the BCE 400, it should be noted

that baskets and trigger conditions can be created, modified, and/or

deleted in any of a number of ways. For example, a system

administrator and/or client application can be given the ability to

define baskets and/or trigger conditions

To create and/or modify a basket, appropriate entries and

allocations will be needed for the new/modified basket in the various

30 tables described herein in connection with pipeline 500. A system

administrator may use a control interface to add/modify basket

configurations. Client applications may submit basket definitions via

an application programming interface (API) that runs on their local

machine(s).

4634276.7 - 43 -

Ex. 1003 - Page 124

The BCE pipeline may be deployed on coprocessor 140 of a ticker

plant platform 2100 as shown in Figure 21. Additional details

regarding such a ticker plant platform 2100 can be found in the above­

referenced and incorporated 11/765,306 patent application. In

5 summary, the financial market data from the exchanges is received at

the O/S supplied protocol stack 2102 executing in the kernel space on

processor 112 (see Figures 1 (a)-(b)). An upject driver 2104 delivers

this exchange data to multi-threaded feed pre-processing software 2112

executing in the user-space on processor 112. These threads may then

10 communicate data destined for the coprocessor 140 to the hardware

interface driver software 2106 running in the kernel space.

Instructions from client applications may also be communicated to

the hardware interface driver 2106 for ultimate delivery to

coprocessor 140 to appropriately configure a BCE pipeline that is

15 instantiated on coprocessor 140. Such instructions arrive at an O/S

supplied protocol stack 2110 from which they are delivered to a

request processing software module 2116. A background and maintenance

processing software module 2114 thereafter determines whether the

client application has the appropriate entitlement to add/

20 change/modify a basket. If so entitled, the background and

maintenance processing block 2114 communicates a command instruction

to the hardware interface driver 2106 for delivery to the coprocessor

to appropriately update the table entries in the BCE pipeline to

reflect the added/changed/modified basket, as previously explained

25 above. Deletions of baskets as well as additions/modifications/

deletions of trigger conditions from the BCE pipeline can be performed

via a like process, as indicated above.

The hardware interface driver 2106 then can deliver an

interleaved stream of financial market data and commands to the

30 coprocessor 140 for consumption thereby. Outgoing data from the

coprocessor 140 returns to the hardware interface driver 2106, from

which it can be supplied to MDC driver 2108 for delivery to the client

connections (via protocol stack 2110) and/or delivery to the

background and maintenance processing block 2114.

4634276.7 - 44 -

Ex. 1003 - Page 125

5

As discussed above, some financial instrument baskets such as

ETFs may have some form of cash component to them. These cash

components can be taken into account by the system in any of a number

of ways.

For example, to insert a cash component into a basket's NAV, a

control process can be configured to generate a synthetic event for

delivery to the pipeline. A symbol ID would be assigned to a given

cash account, and the price for that synthetic symbol ID would be $1

and the weight value w for that cash account would be set equal to the

10 cash value of the cash account. The tables used by the BAL module

would be updated to reflect this synthetic symbol ID and cause the

cash account to impact the NAV for the basket. In a more complex

scenario, events could be delivered to the pipeline so that the value

of the cash account can fluctuate with the value of the pertinent

15 currency on the foreign exchange market.

Another way of injecting a cash component of a basket into the

system is to define the trigger threshold values in tables 1314, 1316,

1318, 1320, and 1322 such that the cash component amounts are built

into those trigger threshold values.

20 Also, it should be noted that the BAL module (or the BVU module)

can be configured to drop events where all of the delta prices for

that event are zero.

Similarly, it should be noted that in the embodiment of Figure 9,

the NAV update engine 950 is configured to compute updated NAVs even

25 for NAV types whose corresponding delta prices are zero. That is, a

current delta event being processed by the BVU module may contain a

$0.03 value for the ~Bid price but zero values for the ~Ask and ~Last

prices. With the embodiment of Figure 9, some of the different NAV

compute logic engines 916 of the parallel paths would thus be used to

30 compute a new NAV where there will not be a change relative to the old

NAV (e.g., for the example given, the Ask NAVnew, Last NP1.Vnew, and

Ask+Tick NAVnew values would be unchanged relative to their old

values). It is believed that this configuration will still yield

effective efficiency given that most of the events processed by the

4634276.7 - 45 -

Ex. 1003 - Page 126

pipeline are expected to comprise quote activity. However, a

practitioner is free to choose to increase the efficiency of the BVU

module by not including any zero delta prices in the delta events and

including a dynamic scheduler and memory controller which directs

5 delta events to the appropriate computing path(s) within the NAV

update engine 950 to more fully utilize all available computing paths

within the NAV update engine 950.

It should also be noted that logic could be added to the BVU

modules such that the NAV computations are also based on derived

10 statistics such as the Volume Weighted Average Price (VWAP) and use

other fields which may be available in a message, such as the

difference in traded volume.

15

It should also be noted that the coprocessor 140 can be

configured to perform computations in addition to those of the BCE if

desired by a practitioner of an embodiment of the invention. For

example, the coprocessor 140 can also employ a last value caching

(LVC) module, as described in the above-referenced and incorporated

11/765,306 patent application.

It should be noted that a practitioner of an embodiment of the

20 invention may choose to compute the value for Aj but not the value for

NAV1ew, in which case the BVU module need not produce any NAV1ew values.

In such instances, the trigger conditions used by the PET module 1200

can be built around variation in Aj rather than NAV1ew. In such a

situation, the client could optionally determine the NAV values itself

25 from the Aj value, although a practitioner may find value in the Aj

values themselves apart from their actual combination with an old NAV

value to find a new NAV value.

Also, while the preferred embodiment for the BAL module 502 is

configured to compute the delta values for the last/bid/ask prices in

30 the incoming messages, it should be noted that the computation of such

delta values can optionally be performed by one or more modules

upstream from the BAL module 502 or the BCE pipeline 500 altogether.

As such, the input messages to the BCE pipeline 500 may already

4634276.7 - 46 -

Ex. 1003 - Page 127

contain the ~Bid, ~Ask, and/or ~Last prices for the subject financial

instruments. In such instances, table 608 would not need to store the

previous bid/ask/last prices for each financial instrument, and BAL

module 502 need not employ the logic necessary to compute those delta

5 prices.

10

Furthermore, while in the preferred embodiment disclosed herein

the coprocessor 140 comprises a reconfigurable logic device 102 such

as an FPGA, it should be noted that the coprocessor 140 can be

realized using other processing devices.

140 may comprise graphics processor units

graphics processors, chip multi-processors

For example, the coprocessor

(GPUs), general purpose

(CMPs), dedicated memory

devices, complex programmable logic devices, application specific

integrated circuits (ASICs), and other I/O processing components.

Moreover, it should be noted that system 100 may employ a plurality of

15 coprocessors 140 in either or both of a sequential and a parallel

multi-coprocessor architecture.

Further still, while the inventors believe that special

advantages exist in connection with using the pipeline disclosed

herein to process financial information and compute updated values for

20 financial instrument baskets, the inventors further note that the

disclosed pipeline also provides latency advantages when processing

non-financial data which pertains to baskets. For example, the basket

calculation engine may be configured to compute the net asset value of

the inventory held by a multi-national retail organization. Incoming

25 events to the pipeline that correspond to product sales and/or product

deliveries could thus be used to update stored values for each

product, wherein these stored values correspond to inventory count

values. A weight assigned to each product would correspond to a price

value assigned to the product. Thus, a pipeline such as the one

30 disclosed herein could be used to closely track the net inventory

values of the organization's products. Triggers may then be used to

notify management when inventory values swell or shrink by a given

threshold.

4634276.7 - 47 -

Ex. 1003 - Page 128

Another example would be for a basket which is a collection of

data points from some type of scientific experiment. Each data point

may have associated values such as size, mass, etc., and these data

points may arrive over time as streaming data from one or more

5 monitoring stations. The pipeline can readily be configured to derive

a size NV by computing a weighted sum of the sizes from the incoming

data stream and/or a mass NV by computing a weighted sum of the masses

from the incoming data stream.

While the present invention has been described above in relation

10 to its preferred embodiments, various modifications may be made

thereto that still fall within the invention's scope. Such

modifications to the invention will be recognizable upon review of the

teachings herein. Accordingly, the full scope of the present

invention is to be defined solely by the appended claims and their

15 legal equivalents.

4634276.7 - 48 -

Ex. 1003 - Page 129

Method and System for Low Latency Basket Calculation

Abstract of the Disclosure:

5 A basket calculation engine is deployed to receive a stream of

data and accelerate the computation of basket values based on that

data. In a preferred embodiment, the basket calculation engine is

used to process financial market data to compute the net asset values

(NAVs) of financial instrument baskets. The basket calculation engine

10 can be deployed on a coprocessor and can also be realized via a

pipeline, the pipeline preferably comprising a basket association

lookup module and a basket value updating module. The coprocessor is

preferably a reconfigurable logic device such as a field programmable

gate array (FPGA) .

15

4634276.7 - 67 -

Ex. 1003 - Page 130

100

r--~------,

130

Reconfigurable Logic (102)
·---,
: Firmware Application Module Chain (150) '
I
I

I
I

FAM 1
(150a)

·- - ---

FAM2
(150b)

....

Firmware Socket Module (104)

FAMm
(150m) I

I
I

---- -·

140

__/

132

RAM
(108)

Network Interface
(110)

Processor
(112) Bus (106)

L---

Network (120)

Figure 1 (a)

Ex. 1003 - Page 131

100

~--~-------,

130

140
Reconfigurable Logic (102)
,---,
: Firmware Application Module Chain (150) '

RAM
(108)

FAM 1
(150a)

FAM2
(150b)

•••• FAMm
(150m)

Firmware Socket Module (104)

Network Interface
(110)

Processor
(112)

132

Disk Controller
(114)

~---,

Data Store
(142)

Bus (106)

------------------------------------~

Figure 1 (b)

Ex. 1003 - Page 132

Printed Circuit Board (200)

FPGA (102)

I~ FAM(s) (150)

l I
I

Firmware socket (104j
I. .
r -

(
I

PCl-X Connector (204)

\

Printed Circuit Board (200)

FPGA (102)

Memory
(202)

FAM(s) (150)

PCl-X Connector (204)

(
\

~
J

Figure 2(a)

Private
PCl-X Bus (206)

Figure 2(b)

Memory
(202)

Disk
Controller

(208)

(SCSI, SATA,
FC, etc.)

D
I
s
K

c 2
0 1
N 0
N
E
c
T
0
R
(S)

140

__/

140

Ex. 1003 - Page 133

FPGA 1 (102a)

FAM 1 FAM2 ••••

Firmware Socket (104)

To/From Bus (106)

Coprocessor (140)

New Financial Basket Calculation
Instrument Price rt•w Engine

~

(400) -

Figure 4(a)

140 "1
FPGA 2 (102b)

FAMm FAM 1

Figure 3

Updated Basket Value
NAV"ew

~

FAM2 • ••• FAMm

402: Compute delta contribution of new
financial instrument price to basket value

i
404: Compute updated basket value from

computed delta contribution

Figure 4(b)

Ex. 1003 - Page 134

r500

Trade/Quote Basket Basket
Messages Association Lookup

~
Value Updating

~

~

Basket Set
Pointer Table

(604)

Symbol ID & GEID (600)

New LasUBid/Ask Price(s) (602)

604

700

l Flags
(702)

~ Flags

I
(702)

700

L Flags
(702)

Symbol ID
and

GEID
(600)

Module
(502)

Figure 5
502

Basket Set Pointer (606)

Module
(504)

Basket Set
Table
(608)

Retrieved
Last/Bid/Ask
Prices (612)

I
I
I

f"-- 616
I

I

--- ----·
Figure 6

Header Block Pointer GEID0

(704) (7060).

Header Block Pointer GEID0
(704) (7060)

.
:
:

Header Block Pointer GEi Do
(704) (7060)

Fi g ure 7

Updated Basket
Value(s)

~

~

618

List of (Basket ID, Weight) Pairs (610)

ti Last/Bid/Ask Prices (614)

GEID1 GEIDm
(706,) (706m)

GEID1 GEIDm
(7061) (706m)

GEID1 GEIDm
(706,) (706m)

Ex. 1003 - Page 135

GE I Do

800 -<

GEID1

800

GEID;

800

GEIDm

800 -<

Ext
Block
(822)

inter Po
(7 04)

&
GEJD

(7
Refs

06)

Ext
Block
(822)

I

l

GEID Ext Pointer
(802) (804)

Last Price
(814)

GEID Ext Pointer
(802)

/
(804)

/astPrice
(814)

GEID Ext Pointer
(802) (804)

Last Price
(814)

GEID Ext Pointer
(802) (804)

Last Price
(814)

Ext Pointer I Count
(818) (820)

(Basket ID, Weight)
(816)

(Basket ID, Weight)
(816)

(Basket ID, Weight)
(816)

Ext Pointer I Count
(818) (820)

(Basket ID, Weight)
(816)

(Basket JD, Weight)
(816)

(Basket ID, Weight)
(816)

Count I Res'd
(806) (808)

(Basket ID, Weight)
(816)

Count I Res'd
(806) (808)

(Basket JD, Weight)
(816)

: . .
Count I Res'd
(806) (808)

(Basket ID, Weight)
(816)

.

.
Count I Res'd
(806) (808)

(Basket ID, Weight)
(816)

(Basket JD, Weight)
(816)

(Basket ID, Weight)
(816)

(Basket JD, Weight)
(816)

:
: .

(Basket ID, Weight)
(816)

(Basket ID, Weight)
(816)

(Basket ID, Weight)
(816)

(Basket ID, Weight)
(816)

: .
(Basket ID, Weight)

(816)

608

Bid Price Ask Price
(810) (812)

>--
(Basket ID, Weight) (Basket ID, Weight)

(816) (816)

Bid Price Ask Price
(810) (812)

H•
(Basket JD, Weight) (Basket JD, Weight)

(816) (816) J

Bid Price Ask Price
(810) (812)

(Basket ID, Weight) (Basket ID, Weight)
(816) (816)

Bid Price Ask Price
(810) (812)

(Basket JD, Weight) (Basket ID, Weight) Last/Bid/Ask
(816) (816) Prices and Lis

of (Basket ID,

(Basket ID, Weight) (Basket ID, Weight) Weight) Pairs

(816) (816) for Composite
Record

(Basket JD, Weight) (Basket ID, Weight)
And

Last/Bid/Ask
(816) (816) Prices and Lis

(Basket JD, Weight) (Basket ID, Weight)
of (Basket ID,
Weight) Pairs

(816) (816) H• for Regional
Record

(610 and 612)
~

~

(Basket ID, Weight) (Basket ID, Weight)
(816) (816)

(Basket ID, Weight) (Basket ID, Weight)
(816) (816)

(Basket ID, Weight) (Basket ID, Weight)
(816) (816)

(Basket ID, Weight) (Basket ID, Weight)
(816) (816)

(Basket ID, Weight) (Basket ID, Weight)

I (816) (816)

Figure 8

Ex. 1003 - Page 136

---~
NAV Update Engine

(950) Bid NAVTable (906)

... Bid

504 \
Basket ID NAV°1d NAV . . Compute

Logic
(916) . .

Divisor
j.

... Weight
ti Bid

Ask NAV Table (908)

... Ask
Basket ID NAV°ld NAV . . Compute

Divisor Table (902) Logic . (916) . .
Divisor

..
... Weight

ti Ask

Basket ID Divisor /- Last NAVTable (910)

---+ ... ii ;
~~~~ ~~~~ Lf.. - ... Last 

Basket ID NAV°ld NAV 

Delta 
Event 
Buffer 
(900) 

Basket ID 
Weight 
ti Bid 
A Ask 
A Last 

Figure 9 

904 . - Compute . ... . 
Logic 

- . (916) 

~-
: 

Divisor 
j 

... Weight 
ti Last 

Bid-Tick NAV Table (912) 

... Bid-Tick 
Basket ID NAV°1d NAV . . Compute . ... . 

Logic 
(916) . . 

Divisor 
H 

... Weight 
ti Bid 

Ask+ Tick NAV Table (914) 

... Ask+ Tick 
Basket ID NAV°1d NAV . Compute . ... . 

Logic . (916) . 
Divisor 

H 

... Weight 
A Ask 

---------------------------------------------------~ 

Bid 
NAV"ew . 

~ 

Ask 
NAV"ew 

. 

Last 
NAV"ew . . 

Bid-Tick 
NAV"ew . 

Ask+ Tick 
NAV"0 w . . 

Basket 
ID . . 

Ex. 1003 - Page 137



NAV°10 

d 

NAV°10 

d 

1000 

d 

1000 

Divide 
(1002) 

r- 916 

NAVnew 

"'--- 1004 

Figure 1 O(a) 

r- 916 

Figure 10(b) 

r- 916 

"'--- 1004 

1010 

Figure 1 O(c) 

Divide 
(1002) 

Divide 
(1002) 

NAVnew 

Ex. 1003 - Page 138



r-500 

Trade/Quote Basket Basket Price Triggered 
Messages Association Lookup Value Updating Event Trigger Basket Events 

... Module ____. Module ______.. Module . 
~ ~ 

(502) (504) (1200) 

Figure 12 

Ex. 1003 - Page 139



Client Bid NAVTable 
(1302} 

... 
Basket ID . r------. -.. ... 

. ,.... 
... 

Bid NAV"ew 

Client Ask NAV Table 
(1304) 

... 
Basket ID 

. r------. ... 

: . ,.... 
... 

Ask NAV"ew 

Client Last NAV Table 
(1306) 

... 
Basket ID . ------. ... ... 

. . ,.... 
... 

Last NAV"ew 

Client Bid-Tick NAVTable 
(1308) 

... 
Basket ID 

. ------. .. ... 

__..., 

... 
Bid-Tick NAV"0

w . 
Client Ask+ Tick NAV Table 

(1310) 

... 
Basket ID . ------. . ... 

: . __..., 

... 
A sk+Tick NAV"ew 

NAV-to-Trigger 
Comparison 

Logic 
(1312) 

I 
I 

NAV-to-Trigger 
Comparison 

Logic 
(1312} 

I 
I 

NAV-to-Trigger 
Comparison 

Logic 
(1312) 

I 
I 

NAV-to-Trigger 
Comparison 

Logic 
(1312) 

I 
I 

NAV-to-Trigger 
Comparison 

Logic 
(1312) 

I 
I 

Client Bid NAV Trigger Threshold 
Table (1314} 

. .. 
Basket ID 

µ ~ . .. -
. 

Bid NAV 
. .. Trigger 

Flag 

Client Ask NA V Trigger 
Threshold Table (1316) 

. .. 
Basket ID 

µ ~ . .. ~ 

. . 
Ask NAV 

. .. Trigger 
Flag 

Client Last NAVTrigger 
Threshold Table (1318) 

. .. 
Basket ID 

~ 
. .. -. . 

Last NAV 
... Trigger 

Flag 

Client Bid-Tick NAV Trigger 
Threshold Table (1320) 

. .. 
Basket ID 

µ ... -
. 

. . . 

. . . 

. ... 

Bid-Tick NAV 
. .. Trigger 

Flag . 
~ . 

Client Ask+ Tick NAV Trigger 
Threshold Table (1322) 

... 
Basket ID 

µ ~ .. . ~ 

. . . 
Ask+ Tick NAV 

... Trigger 
Flag . ... . 

Fi g ure 13 

/1200 

,, 

Trigger 
Detection 

Logic 
~ 

Basket ID 
(1324) Bid NAV"ew 

Ask NAV"ew 
Last NAV"ew 

Bid-Tick NAV""" 
Ask+ Tick NAV"0

w 

Ex. 1003 - Page 140



Updated 
Basket 
Events 

ClientNAV 

NAV"ew 

~1312 

Comparator 
(1404) 

Client Trigger Threshold 

Figure 14 

PET Module (1200) 
Triggered 

Basket 
Client-Specific Events 

- PET Module 
~ 

(1500) 
Triggered 

Basket 
Events ~ - Client-Specific . 

~ ~ 

PET Module . 
(1500) . . . . . . ..... . . 
. Triggered 

Basket 
Client-Specific Events - PET Module . 

(1500) 

Figure 15 

NAVTrigger 
Flag 

~ Triggered 
Basket 
Events 

v 
. 
-,. 

Ex. 1003 - Page 141



r--500 

Trade/Quote Basket Basket Price Event 
Messages Association Value Event Generator Events 

Lookup r----+ Updating --+ Trigger --+ Module ~ - -Module Module Module (1600) 
(502) (504) (1200) 

Figure 16 

Interest List Table (1700) 

10010 ... 01 r Basket ID Interest List Vector 

1600 

~ 00110 ... 00 

. . . 
01000 ... 11 Interest List Vector (1706) 

~· Header (1708) 
Formatter 

~ (1702) ~ Basket ID ~ -
Bid NAV"ew 
Ask NAvn•w 
Last NAV"ew 

Bid-Tick NAV"0 w 
Ask+ Tick NA vn•w 

g ure 17 Trailer (1710) 

Ex. 1003 - Page 142



Trade/Quote Message 

Incoming 
Messages 

Trade/Quote 
Messages 

Messages Qualifier 
~ Filter r 

Module 
(1800) 

1900 

Qualifier [OJ 

Qualifier [1) 

Qualifier [n-1] 

Message 
Normalization . Module f--4-

(2000) 

____. 

Message 
Qualifier 

Filter 
Module 
(1800) 

r-500 

Basket Basket 
Association Value 

Lookup f--4- Updating 
Module Module 
(502) (504) 

Figure 18 
1902 

3 I O 

n-2 

n-1 I O 

Figure 19 
r-500 

Basket 
Association 

f--4- Lookup f---+ 
Module 
(502) 

Figure 20 

f--4-

Basket 
Value 

Updating 
Module 
(504) 

Price Event 
Event Generator Events 

Trigger f--4- Module 
Module (1600) 
(1200) 

~1800 

f---+ 

1904 

Pass/Drop 
Signal 
(1906) 

Price 
Event 

Logic 
(1908) 

Trigger f---+ 
Module 
(1200) 

. 

Outgoing Messages 

Event 
Generator 

Module 
(1600) 

Events 

Ex. 1003 - Page 143



Exchange Data 

Kernel 

User 

O/S 
Supplied 
Protocol 

Stack 
(2102) 

Upject 
Driver 
(2104) 

2100 

Coprocessor 
(140) 

Hardware 

Software 

Hardware 
Interface 

Driver 
(2106) 

r-------------------------, 
' Feed Pre-Processing (2112) 

MDC Driver 
(2108) 

n I ) ""- I Background 0 Thread 1 
and 

Maintenance 
Processing 

I (2114) I /1 I 

0 Thread 2 

0 Thread n 

• 
--------------------------· 

Figure 21 

Client Connections 

~ 

I 

-~-r-;---------

O/S 
Supplied 
Protocol 

Stack 
(2110) 

Request 
Processing 

(2116) 

Ex. 1003 - Page 144



Electronic Acknowledgement Receipt 

EFS ID: 4459804 

Application Number: 61122673 

International Application Number: 

Confirmation Number: 1019 

Title of Invention: 
Method and Apparatus for High-Speed Processing of Financial Market Depth 
Data 

First Named Inventor/Applicant Name: David E. Taylor 

Customer Number: 21888 

Filer: Benjamin Lowell Volk/Laurie Poss 

Filer Authorized By: Benjamin Lowell Volk 

Attorney Docket Number: 44826-80492 

Receipt Date: 15-DEC-2008 

Filing Date: 

Time Stamp: 19:37:58 

Application Type: Provisional 

Payment information: 

Submitted with Payment yes 

Payment Type Deposit Account 

Payment was successfully received in RAM $245 

RAM confirmation Number 4874 

Deposit Account 200823 

Authorized User 

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: 

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees) 

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges) 

Ex. 1003 - Page 145



File Listing: 

Document 
Document Description File Name 

File Size( Bytes)/ Multi Pages 
Number Message Digest Part /.zip (if appl.) 

1546563 

1 Application Data Sheet ADS.pdf no 7 
UU43:lfd3c0aecl :ial :i9aaacl d6:i99363d/a 

8c937 

Warnings: 

Information: 

6208074 

2 Specification Combine.pdf no 135 
1 f70897a21 c9a447f7783ceb66424eb0e9b 

d7f6b 

Warnings: 

Information: 

143465 

3 
Drawings-only black and white line 

Drawings.PDF no 5 
drawings 

5285ff93be3468d389837ee2d273f9d 1 ee04 
c48f 

Warnings: 

Information: 

31451 

4 Fee Worksheet (PT0-06) fee-info.pdf no 2 
Of4d648b265a443f24d771 a40195da50e85 

9749e 

Warnings: 

Information: 

Total Files Size (in bytes) 7929553 

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, 
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a 
Post Card, as described in MPEP 503. 

New AQQlications Under 35 U.S.C. 111 
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this 
Acknowledgement Receipt will establish the filing date of the application. 

National Stage of an International AQQlication under 35 U.S.C. 371 
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 
U.S.C. 371 and other applicable requirements a Form PCT/DO/E0/903 indicating acceptance of the application as a 
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course. 

New International AQQlication Filed with the USPTO as a Receiving Office 
If a new international application is being filed and the international application includes the necessary components for 
an international filing date (see PCT Article 11 and MPEP 181 O), a Notification of the International Application Number 
and of the International Filing Date (Form PCT/R0/105) will be issued in due course, subject to prescriptions concerning 
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of 
the application. 

Ex. 1003 - Page 146



Financial Exchanges 

strategic analysis 

Figure 1 

order# price time size 

329091 $25.43 09:47:23 50 

328432 $25.43 09:46:31 25 

329881 $25.42 09:51:03 100 
Sell order - 329880 $25.41 09:51:02 5 

I 3399731 $25.42109:51 :o3 I 250 

328128 $25.40 09.45.31 20 

329127 $25.40 09:45:31 10 

329192 $25.40 09:48:20 500 

330921 $25.39 09:59:23 200 

329012 $25.38 09:47:01 50 

Figure 2 

order 
count price time size 

5 $25.45 09:47:23 540 

2 $25.43 09:46:31 75 

~.J 
1 $25.42 09:51:03 100 

Sell order 
1 $25.41 09:51:02 5 

1 3399731 $25.42109:51 :o31 

3 $25.40 09.45.31 530 

$25.39 09:59:23 200 

$25.38 09:47:01 50 

10 $25.36 09:45:31 1500 

9 $25.35 09:48:20 1240 

Figure 3 

_) 

Top Of 
Book 

Bid side 

Top of 
Book 

Bid side 

Ex. 1003 - Page 147



BID ASK 
Price Time Size Exch Order ID Price 

~~~~~~~~~~~~~ 

$25.43 9:47:23 25 NASD
$25.42 9:51:03 100 NASD
$25.42 9:59:49 75 NASD

BID
Price Time Size Exch

$ 25.43 9:47:23
$ 25.42 9:59:49 175 NASD

BID
Price Time Size Exch

$ 25.43 9:46:31 50 ARCA
$ 25.43 9:47:23 25 NASD

N-B $25.44
N-C
N-E

Figure 4

Count Price Time
$ 25.44 9:50:57

2 $ 25.45 9:59:23

·~
·9 ...

····.:~t::l7;

ASK
Size

100
200

• •0?.!Jl)

Ex ch
NASD
NASD

':f'l~so:

Figure 5

ASK
Count Price Time Size Exch

$ 25.44 9:47:01 50 BATS
$ 25.44 9:50:57 100 NASD

$ 25.42 9:59:49 175 NASD 2 $ 25.45 9:49:43 125 ARCA

$
$
$

Price
25.43
25.42
25.41

Message
Parser

Time
9:47:23
9:59:49

·9:42:12

BID
Size

75
175

..•. 4$

Symbol
Mapper

Exch
-

-

$ 25.45 9:59:23 200 NASD

Figure 6

ASK
Count Price Time Size

2 $ 25.44 9:50:57 150
2 $ 25.45 9:59:23 325

; I : 2.

Figure 7

Order
normalization &

price aggregation

stream events

Sorted View
Update

Figure 8

Interest
Entitlement

Filter(s)

summary
events

Ex ch

Count
1
1

.t

Count

2

2

Count
2
3
4

Message
Formatter

Ex. 1003 - Page 148

Normali7.lltion Key

Reg Price Aggr Key

Comp Price Aggr Key

Normalization Key

Reg Price Aggr Key

Comp Price Aggr Key

HYBRID APPROACH

Hash
Function

Hash
Function

Hash
Function

Hash
Function

r----------··-----

Nonnalization

Hash Table/Static Address

Regional Price Aggregation

Hash Table/Static Address

Composite Price Aggregation

Hash Table/Static Address

:Linked List Structure

Dynamic Memory/Collision Resolution

Figure 9

Normali7Jltion

Hash Table/Static Address

:Linked List Structure

Dynamic Memory/Collision Resolution

Regional Price Aggregation

Hash Table/Static Address

Composite Price Aggregation

Hash Table/Static Address

:Linked List Structure

Dynamic Memory/Collision Resolution

Figure 10

llision
solution
ing linked list

collision
resolution
using linked list

collision
resolution
using linked list

Ex. 1003 - Page 149

market
data

feeds
1J '

Ticker plant

:
Interconnect network I : :

I API I I API I
·------·-----

application application

-

Figure 11

7

2 11 13

3 4 5 7 16

Figure 12

Ex. 1003 - Page 150

Symbol ID

Message
Parser

SRAM

BidPtr AskPtr

OPISDRAM

Composite price level

Regional Price level
OrderPtr

Order

Symbol
Mapper

level 2 events

level 1 events

mposite Price Header

Regional Header Ptr

Composite Root Ptr

'

SD RAM

Composite Root

Regional Root

Regional Price Leaf
OrderPtr

- ---- -- - ----- - - - - - ------- - - - - - ------ - - - - ··------ - - - - - - --- - - - -

Figure 13

Order
normalization &

price aggregation

stream events

summary events
,------~

Sorted View
Update

Interest
Entitlement

Filter(s)

syntheticquote ,__.'.:====::::'._J
events level 1 events

Value Cache
Update

Figure 14

Message
Formatter

Ex. 1003 - Page 151

