

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

ACTIV FINANCIAL SYSTEMS, INC.,
Petitioner,

v.

IP RESERVOIR, LLC,
Patent Owner.

Case No. TDB
Patent No. 10,062,115

DECLARATION OF BERNARD S. DONEFER

ACTIV Exhibit 1004
ACTIV v IP Reservoir

i

TABLE OF CONTENTS

I. PERSONAL AND PROFESSIONAL BACKGROUND ... 1

II. MATERIALS REVIEWED AND CONSIDERED .. 6

III. MY UNDERSTANDING OF PATENT LAW ... 8

A. Claim Construction .. 8

B. Prior Art & Priority ... 9

C. Obviousness ... 10

IV. OVERVIEW OF RELEVANT TECHNOLOGY ... 13

A. Financial Markets and Financial Data ... 13

1. Order Books .. 16

2. Electronic Exchanges Electronic Data Feeds 21

B. Coprocessor Technology ... 26

1. Field Programmable Gate Arrays (FPGAs) .. 29

V. SUMMARY OF THE ’115 PATENT ... 31

A. Level of Ordinary Skill in the Art ... 38

B. Overview of the Challenged Claims ... 39

VI. DISCLOSURE OF PARSONS ... 39

A. Parsons Described the Same Reconfigurable FPGA’s for
Performing the Same Processing of Financial Market Data Prior to
the ’115 Patent ... 39

B. Parsons’s Caching Modules (OBC, LVC, GVC) 48

C. Parsons’s Order Book Server .. 49

1. The OBS FAM Pipeline .. 54

D. Parsons’s Example LVC Memory Manager and Message/Record
Updater .. 57

VII. CLAIMS 43 AND 44 ARE OBVIOUS IN VIEW OF PARSONS 59

A. The Challenged Claims Are Obvious Over Parsons’s FPGA-
Implemented Order Book Server .. 62

1. Discussion of Claim 43 ... 62

2. A POSA Would Have Been Motivated to Implement the OBC
with LVC Memory Manager and Record/Message Updater 66

ii

3. Claim 43 .. 72

a. [43PRE] “An apparatus for applying specific computer
technology to reduce latency and increase throughput with
respect to streaming data enrichment” .. 72

b. [43A] “a coprocessor that includes an order engine and a
price engine” ... 73

i. “a coprocessor…” ... 74

ii. “an order engine and a price engine” 75

c. [43B] “wherein the coprocessor is configured to receive
streaming data representative of a plurality of limit order
events pertaining to a plurality of financial instruments” 80

d. [43C] “wherein the order engine is configured to [43C.1]
(1) access a plurality of limit order records based on the
streaming limit order event data, [43C.2] (2) compute
updated limit order data based on the accessed limit order
records and the streaming limit order event data” 83

e. [43D] “wherein the price engine is configured to [43D.1]
(1) access a plurality of price point records based on the
streaming limit order event data, and [43D.2] (2) compute
updated price point based on the accessed price point
records and the streaming limit order event data” 92

f. [43E] “wherein the coprocessor is further configured to
enrich the streaming limit order events with financial
market depth data based on the computed updated limit
order data and price point data” .. 99

g. [43F] “wherein the order engine and the price engine are
configured to perform their respective operations in
parallel with each other as the limit order event data
streams through the coprocessor” ... 108

4. Claim 44 ..112

a. [44A] “comprises a member of the group consisting of a
reconfigurable logic device, a chip-multi-processor
(CMP), and a graphics processing unit (GPU)” 113

b. [44B] “wherein the order engine and the price engine are
deployed on the member.” .. 113

iii

B. The Challenged Claims Are Rendered Obvious By a
Reconfigurable Logic Device Implementing Both Parsons’s OBC
and price Summary LVC FAMs in the Same FAM Pipeline113

1. Parsons’s Market Platform ..114

2. A POSA Would Have Motivated to Implement Parsons’s OBS
and Price Summary LVC on a Single “Ticker Plant” FPGA117

3. Implementing the OBS on the Ticker Plant FAM Pipeline122

4. Claim 43 ..125

a. [43PRE] “An apparatus for applying specific computer
technology to reduce latency and increase throughput with
respect to streaming data enrichment” 126

b. [43A] “a coprocessor that includes an order engine and a
price engine” ... 126

c. [43B] “wherein the coprocessor is configured to receive
streaming data representative of a plurality of limit order
events pertaining to a plurality of financial instruments” 127

d. [43C] “wherein the order engine is configured to [43C.1]
(1) access a plurality of limit order records based on the
streaming limit order event data, [43C.2] (2) compute
updated limit order data based on the accessed limit order
records and the streaming limit order event data” 128

e. [43D] “wherein the price engine is configured to [43D.1]
(1) access a plurality of price point records based on the
streaming limit order event data, and [43D.2] (2) compute
updated price point based on the accessed price point
records and the streaming limit order event data” 130

f. [43E] “wherein the coprocessor is further configured to
enrich the streaming limit order events with financial
market depth data based on the computed updated limit
order data and price point data” .. 134

g. [43F] “wherein the order engine and the price engine are
configured to perform their respective operations in
parallel with each other as the limit order event data
streams through the coprocessor” ... 137

5. Claim 44 .. 140

1

I, Bernard S. Donefer, declare:

1. My name is Bernard S. Donefer. I have been retained by Wolf,

Greenfield & Sacks, P.C., counsel for ACTIV Financial Systems, Inc. (“ACTIV”),

to submit this declaration in connection with a Petition for Inter Partes Review of

claims 43 and 44 (the “challenged claims”) of U.S. Patent No. 10,062,115 (“the

’115 patent”).

2. I am being compensated for my time at a rate of $700.00 per hour,

plus actual expenses. My compensation is not dependent in any way upon the

outcome of this matter and I do not have any financial interest in the outcome of

this matter.

I. PERSONAL AND PROFESSIONAL BACKGROUND

3. I am an Adjunct Associate Professor at New York University’s Stern

School of Business where I teach various courses related to financial information

systems. I am a retired Distinguished Lecturer in the graduate Department of

Information Systems and Statistics and Associate Director of the Wasserman

Trading Floor - Subotnick Financial Services Center, at Baruch College of the City

University of New York. I also previously taught at Fordham University, Graduate

School of Business as Adjunct Assistant Professor in both the Finance and

Information Systems Departments.

2

4. At all three institutions, I have taught graduate courses related to the

use of technology in the financial services industry, including trading, market data,

market structure and risk management. These include “IT in Financial Markets”,

“Financial Information Systems” and “Risk Management Systems.”

5. I hold a BA in Economics from Long Island University and an MBA

in Finance from NYU’s Stern Business School.

6. I am Principal of Conatum Consulting LLC. I teach both public and

in-house corporate courses including, “Capital Markets Bootcamp”, “New U.S.

Equity Markets” and “Risk Management for Non-Quants”. Clients included the

Securities and Exchange Commission (SEC) and Federal Reserve Bank (FRB) in

Washington, D.C., the Investment Industry Regulatory Organization of Canada

(IIROC) in Montreal and Toronto, and corporate clients such as the Harvard

Management Company, (university endowment), Depository Trust and Clearing

Corp. (DTCC), ITG, BMO, JPMC, SEI, KPMG, et al.

7. I have published essays in the Journal of Trading, Tabb Forum, and

Bloomberg View. I have been quoted in, among others, the NY Times, Wall Street

Journal, MIT Technology Review, The Atlantic Magazine, Reuters, American

Banker, Businessweek, Wired, and publications in Europe and Asia. I have been

interviewed on CCTV (Chinese TV), NPR, BBC and Australian radio.

3

8. I have been an invited speaker at the Council of Foreign Relations in

Washington D.C., The Conference Board in New York, committees of the NY Bar

Association, and numerous industry events, including chairing duties at

TradeTech’s annual conference from 2010-2014.

9. I have more than 50 years of experience in the fields of software,

technology and financial services. Prior to beginning my teaching career in 2003, I

was Senior Vice President of Fidelity Investments in Boston, where I headed

Capital Markets Systems. Previous positions include Executive Vice President and

CIO of Dai Ichi Kangyo Bank in the U.S., then the world’s largest bank by assets,

President of BT Financial Services Information Systems, a subsidiary of Bankers

Trust Co., where I was responsible for clients and staff in 14 cities in the U.S.,

Europe and Asia. As a consultant, my clients included the New York Stock

Exchange and Milan Stock Exchange and over my career worked with asset

classes including equities, fixed income, foreign currencies and derivatives. I have

also been an expert witness for SIFMA, (broker/dealer, asset manager trade

organization) in their SEC suit against the NYSE and NASDAQ for excessive

pricing of depth of book data.

10. My technological experience extends back to the mid 1960’s where I

programmed early (2nd generation) IBM computers such as the 1620, 1401,

7040/90 in Fortran, machine and symbolic (SPS) languages.

4

11. I was hired by IBM in 1969 to work as an assembler language

programmer for IBM’s System Development Division, developing operating

system components for the then new IBM 360 line of mainframes. Notably, I

began as an experienced programmer given my prior programming experience, not

going through their trainee program.

12. Over the next decade I worked as the lead systems programmer for

Loeb, Rhoades & Co. a major brokerage house, then Senior Systems Officer and

Head of Analytical Support to Management in the Treasurer’s Division at

Citibank. I managed programming tasks on IBM, DEC and Tektronix computers.

13. I next worked as a consultant at Coopers & Lybrand rising to manager

in the financial industry technology practice. Client projects included the New

York Stock Exchange, Milan (Italy) Stock Exchange, Lehman Bros. and numerous

banks and brokers.

14. I next became President and CEO of CAP Information Systems, the

US subsidiary of the UK based CAP Group Ltd. We specialized in systems

development for banks and securities firms. At my direction, CAP became an

early adopter of the UNIX operating system and C programming language in the

financial services industry.

5

15. Later, as Director at IMNET, the IBM Merrill Lynch joint venture that

sought to build a new market data system, I worked in product design and

represented the organization in Europe.

16. As president of Bankers Trust Financial Information Systems, I was

responsible for trading system development, on the DEC VAX platform, marketing

and support for front office trading products at 40 client sites in the US, Europe

and Asia.

17. I later became Executive Vice-President (EVP) and Chief Information

Officer (CIO) of US technology operations at Dai Ichi Kangyo, then the world’s

largest bank by assets. After the 1993 World Trade Center bombing, I was

responsible for Dai Ichi Kangyo’s operational recovery, building a new trading

room from scratch in three days.

18. I then became a Senior Vice President (SVP) and head of Capital

Markets Systems at Fidelity Investments in Boston, where I lead the design and

implementation of what we believe to be the first paperless, straight through

processing sell side equity trading system. The system that I led the design of

eliminated paper tickets, phone, fax orders and moved as early adopter of the FIX

communications protocol. This project required maintaining management level

expertise in C++ and object-oriented programming, bus technology alternatives, in

a UNIX SUN server environment. The project even won the Fidelity President’s

6

Award. Other key projects included managing the real time risk management

system development and leading firm wide initiative to provide access to retail and

institutional clients to the Redi electronic exchange (ECN).

19. Over my career I programmed, developed or managed systems on

computers by IBM, DEC, Sun, Stratus and in languages that included Basic,

Cobol, PL/1, APL, C, C++, Python, etc. and communications protocols as esoteric

as the vertical blanking interval (VBI) in broadcast televisions signals.

20. My experience has earned me life membership in the Association of

Computing Machinery, the world's largest educational and scientific computing

society.

21. My curriculum vitae is provided as Ex. 1005.

II. MATERIALS REVIEWED AND CONSIDERED

22. My findings, as explained below, are based on my years of education,

research, experience, and background in the field of financial information systems,

software, technology, trading, exchanges, electronic trading and business practices

in the financial markets, as well as my investigation and study of relevant materials

for this declaration. In forming my opinions, I have studied and considered the

materials identified in the list below.

Exhibit Description

1001 U.S. Patent No. 10,062,115

7

Exhibit Description

1002 File History for U.S. Patent No. 10,062,115 (“the ’115 FH”)

1003 U.S. Provisional Patent Application No. 61/122,673
(“the ’673 provisional”)

10061 U.S. Patent Publication No. 2008/0243675 (“Parsons”), now
U.S. Patent No. 7,921,046

1007 U.S. Provisional Patent Application No. 60/814796
(“the ’796 provisional”)

1008 U.S. Patent No. 7,921,046 (“the ‘046 patent”)

1009 U.S. Patent No. 6,278,982 (“Korhammer”)

1010 Newton’s Telecom Dictionary (21st Ed. 2005)
(“Newton’s Telecom ’05”)

1011 Newton’s Telecom Dictionary (21st Ed. 2009)
(“Newton’s Telecom ’09”)

1012 Revised Case Management Schedule; Exegy Inc. v. ACTIV Financial
Systems, Inc., Case No. 1:19-cv-02858, Dkt. No. 110 (N.D.IL).

1013 “XDP Integrated Feed Client Specification,” Version 2.3a, October 25,
2019 (“NYSE Spec”)

1014 Complaint; Exegy Inc. v. ACTIV Financial Systems, Inc., Case No.
1:19-cv-02858, Dkt. No. 1 (N.D.IL).

1015 Foundry Networks Press Release, April 7, 2004

1016 Altera White Paper, October 2007

1 Ex. 1004 is this declaration and Ex. 1005 is my CV.

8

III. MY UNDERSTANDING OF PATENT LAW

23. In developing my opinions, I discussed various relevant legal

principles with ACTIV’s attorneys. Though I do not purport to have prior

knowledge of such principles, I understood them when they were explained to me

and have relied upon such legal principles, as explained to me, in the course of

forming the opinions set forth in this declaration. My understanding in this respect

is as follows:

24. I understand that “inter partes review” (IPR) is a proceeding before

the United States Patent & Trademark Office (“Patent Office”) for evaluating the

patentability of an issued patent claim based on prior art patents and printed

publications.

25. I understand that in this proceeding Petitioner has the burden of

proving that the challenged claims of the ’115 patent are unpatentable by a

preponderance of the evidence. I understand that “preponderance of the evidence”

means that a fact or conclusion is more likely true than not true.

A. Claim Construction

26. I understand that in a patent, the “claims” define in technical terms the

extent (i.e. the scope) of the protection conferred by a patent. I further understand

that the first step in evaluating the validity of a claim is understanding each and

9

every term or phrase used in the claims, a process that is called “claim

construction.”

27. I understand that in IPR proceedings claim language in a patent are

given its plain and ordinary meaning consistent with the patent specification and

prosecution history. If the specification provides a special definition for a claim

term, that definition controls—even if it may be different from the meaning the

term generally has in the field of the invention.

28. I have thus used the plain and ordinary meaning of the claim language

found in the ’115 patent, consistent with how a person of ordinary skill in the art

(“POSA”) at the time the invention was made would have understood the claim

language unless I specifically explain that a term has a different meaning.

B. Prior Art & Priority

29. I understand the information that is used to evaluate whether a

claimed invention is patentable is generally referred to as “prior art” and includes

patents and printed publications (e.g., books and journal publications).

30. I understand that for an invention claimed in a patent to be patentable,

it must be, among other things, new (novel) and not obvious from the prior art to a

POSA at the time the invention was made.

31. I understand that determining whether or not a particular patent or

printed publication constitutes prior art to a challenged patent can require

10

determining the priority date (also known as the effective filing date) of the

challenged patent. In particular, I understand that for a challenged patent claim to

be entitled to the benefit of the filing date of an earlier application (such as a

provisional application) referenced in the challenged patent, the earlier application

must adequately describe the invention that the applicant seeks to patent. In other

words, I understand that the relevant question is whether the earlier application

describes the claimed invention in sufficient detail for a POSA to reasonably

conclude that the inventor had possession of the invention claimed in the issued

patent as of the filing date of the earlier application. I also understand that a

disclosure by an inventor that renders obvious a claimed invention is not sufficient

to entitle the inventor to the benefit of the disclosure.

C. Obviousness

32. I understand that there are multiple ways in which prior art may

render a patent claim unpatentable. I understand that one of those ways is that the

prior art may have made the claim “obvious” to a POSA at the time the invention

was made in view of a single prior art reference or a combination of prior art

references.

33. I understand that a patent claim is obvious if the differences between

the subject matter of the claim and the prior art are such that the subject matter as a

whole would have been obvious to a person of ordinary skill in the relevant field at

11

the time the invention was made. Specifically, I understand that the obviousness

question involves a consideration of:

 the scope and content of the prior art;

 the differences between the prior art and the claims at issue;

 the knowledge of a person of ordinary skill in the pertinent art;

and

 whatever objective factors indicating obviousness or non-

obviousness may be present in any particular case – referred to

as “secondary considerations.”

34. I understand that in order for a claimed invention to be considered

obvious, a person of ordinary skill in the art must have had a reason for combining

teachings from multiple prior art references (or for altering a single prior art

reference, in the case of single-reference obviousness) in the fashion proposed.

35. I further understand that in determining whether a prior art reference

would have been modified in the case single-reference obviousness, combined with

other prior art, or with other information within the knowledge of POSA, the

following are examples of approaches and rationales that may be considered:

 combining prior art elements according to known methods to yield

predictable results;

12

 simple substitution of one known element for another to obtain

predictable results;

 use of a known technique to improve similar devices in the same way;

 applying a known technique to a known device ready for

improvement to yield predictable results;

 applying a technique or approach that would have been “obvious to

try,” i.e., choosing from a finite number of identified, predictable

solutions, with a reasonable expectation of success.

 known work in one field of endeavor may prompt variations of it for

use in either the same field or a different one based on design

incentives or other market forces if the variations would have been

predictable to one of ordinary skill in the art;

 some teaching, suggestion, or motivation in the prior art that would

have led one of ordinary skill to modify the prior art reference or to

combine prior art reference teachings to arrive at the claimed

invention. I understand that this teaching, suggestion or motivation

may come from prior art reference or from the knowledge or common

sense of one of ordinary skill in the art.

13

36. I understand that for a single reference or a combination of references

to render the claimed invention obvious, a POSA must have been able to arrive at

the claims by altering or combining the applied references.

IV. OVERVIEW OF RELEVANT TECHNOLOGY

A. Financial Markets and Financial Data

37. Financial markets and exchanges serve three fundamental purposes:

(1) listing securities, offering access to liquidity; (2) receiving orders for, and

trading in, securities, providing price discovery; and (3) providing information

about those orders and trades to the public.

38. An exchange is a formal marketplace that brings together buyers and

sellers of equities, futures and options contracts or other financial instruments,

subject to rules intended to ensure that the trading activity occurs in an organized

and fair manner. Orders are transmitted to the exchange, via its members, where

they can be executed either directly between parties or intermediated via dealers.

When exchanges were initially developed, and through much of their history, the

placement of orders and execution of trades were manual, done by dealers, market

makers and traders face-to-face or by phone. Today, most trading is done via

computers and high-speed data networks, with orders directed using smart order

routers and algorithms—automated computer programs designed to strategize and

execute trades in the most profitable way possible.

14

39. The orders and trades placed by market participants on exchanges are

a source of discovering the market price for a particular financial instrument.

Exchanges aggregate and assimilate information received from customer orders

and trades placed by broker-dealers and other members of the exchanges. Such

information both reflects and drives investor expectations as to the value of those

securities. Information regarding the value underlying a financial instrument, such

as the earnings or other news about a company with respect to stock in that

company, affects the supply and demand for the financial instrument, as reflected

in customer orders. The supply and demand for the financial instrument, in turn,

determines the price at which the financial instrument will trade.

40. Those wishing to buy or sell financial instruments provide instructions

to exchanges known as orders. Orders to buy are known as bids and orders to sell

are known as offers or asks. There are various order types, the most common

being the market and limit orders.

41. With a market order, an investor, or broker acting on an investor’s

behalf, submits an order to buy or sell a financial instrument for immediate

execution, naming the desired financial instrument and the quantity, to an

exchange. A market order does not specify a price, but requests the best available

price currently in the market. Market orders ensure timely execution, but at

possibly unexpected prices, because prices can change in the fraction of a second

15

between the time when the trader sends the order and when that order is executed

by the exchange.

42. Another type of order is a limit order. With a limit order, an investor,

or broker acting on an investor’s behalf, places either a “bid” in which she sets the

highest price she is willing to pay to purchase a given financial instrument, or an

“ask” or “offer” in which she sets the lowest price she is willing to accept in selling

a given financial instrument. These bids and offers, when displayed publicly, are

referred to as market quotes. In contrast to a market order, a limit order lets an

investor wait for her desired price, but if there are no counterparties willing to sell

or buy (as the case may be) at the limit price, the order will not be immediately

fulfilled and, if the market price moves away from the limit price, the order may

never be executed. The difference between the bid and ask prices is called the

“spread.” While waiting to be executed, these orders are held in an order book for

that security at the exchange.

43. On an electronic exchange, as all 13 major U.S. equity exchanges are

today, orders are submitted electronically via communications networks, using the

FIX, FAST or similar standard protocols and are matched automatically to orders

submitted by counterparties based on price, in order of arrival, by the exchange’s

matching engine software. When a market order is submitted, the exchange’s

computer system immediately executes the trade at the best available price. If the

16

best price is at a competing exchange, the receiving exchange must route the

market order to the exchange with the best price. When a limit order is submitted,

the exchange’s computer system will execute the trade only if it can be filled at a

price equal to or better than the price specified. In both cases, execution occurs

either at the receiving exchange or after being routed to another exchange, if that is

where the best price is available.

44. Providing market data regarding orders and executed trades on a

timely basis is critical, especially as, at least in the U.S., there are rules requiring

orders are executed at the best possible price. That is, the investor must receive the

best available price in the market, even when there are multiple competing

exchanges trading the same financial instrument.

1. Order Books

45. An order book is a data file, sorted by price and time of entry, of limit

orders for each financial instrument that have been received and entered for

execution, but not yet fulfilled. Electronic exchanges maintain an order book for

each financial instrument traded on that exchange electronically. To facilitate

trading strategies (e.g., for buying or selling shares of stock), it was conventional

for traders (e.g., trading firms), when such data became available, to construct and

maintain their own order book that mirror the order books on one or more

exchanges, providing depth of market information.

17

46. Order books were conventionally updated from feeds of data provided

by the financial exchanges which disseminate limit order “events” (e.g., addition,

modification or deletion of limit orders). Speed is important in updating a trader’s

order book as new order events are continuously received because traders (e.g.,

those engaged in electronic trading) often seek to exploit market opportunities

before they quickly dissipate. Parsons explains, for example, “speed of

information delivery can often translate into actual dollars and cents for traders,

which in large volume situations, can translate to significant sums of money.”

Parsons, [0005].

47. The term “top of book” or “inside market” refers to the highest limit

order bid to buy and lowest limit order offer to sell, with their respective quantities.

Said differently, the inside market is the best bid and offer order, sometimes called

the “BBO,” in the exchange’s order book. The best bid and offer orders across all

markets is known as the national best bid and offer or “NBBO.”

48. Figure 1, below, depicts a market quote for Microsoft stock, and the

portion outlined in red shows the top of book or inside market and is the NBBO for

Microsoft stock (“MSFT”). As seen in the red box, the current highest bid for

Microsoft stock is $57.41 for a total of “40,” which is multiplied by 100 to get the

number of shares, meaning the bid is for 4,000 shares. As also seen, the current

lowest offer (or ask) is $57.72 for a total of “26,” or 2,600 shares (Note that the

18

total number of shares may be made up of one or more individual orders at that

price.). The spread, the difference between the best bid ($57.41) and the best ask

($57.42) is one cent. The market quote for Microsoft stock in Figure 1 has been

enriched with other fields including total volume traded; high, low price for the

day; and VWAP, etc. These values are all calculated from the order book and from

historical trades as well as fundamental data such as dividend.

Figure 1: Exemplary Market Quote For Microsoft Stock

49. Figure 2, below, depicts an example of an order book for Microsoft

stock from the INET electronic exchange in approximately 2003, and shows each

order for Microsoft stock, including both the number of shares and the price. The

orders are listed in the order in which they were received. The inside price at

INET as shown in Figure 2 would be a bid of $25.84 and an offer of $25.85, with a

one cent spread. The order book in Figure 2 has also been enriched with historical

activity that had occurred already in that day, including total volume and last price

information. The INET electronic exchange would be an example of a regional

exchange, in the parlance used by the ’115 patent.

19

Figure 2: Exemplary Order Depth View For Microsoft Stock

50. Figure 2 would be a view supported by the “full order depth” order

book construction illustrated in, and comparable to, Figure 2(a) of the ’115 patent

and discussed in the background of the ’115 patent. Figure 2, above, also has a

“Aggregate by Price” check box that allows a trader to switch to a price-aggregated

view that would have been supported by the “price aggregated depth” order book

construction illustrated in Figure 2(b) of the ’115 patent, and as discussed in the

background of the ’115 patent. Figure 2, above, and Figure 2(b) of the ’115 patent

both would have been a commonly available display since the late 1990’s.

20

51. Figure 3, below, depicts a different example of an order book for

Microsoft stock, but this time depicts data from both the Arca and the INET

exchanges taken prior to the March 8, 2006, acquisition of Arca by the NYSE

(INET was acquired by the NASDAQ market). Figure 3 shows the aggregate

order interest at each price level. Figure 3 would be an example of a spliced priced

summary view, combining regional exchange order books, in the parlance used by

the ’115 patent.

Figure 3: Exemplary Price Aggregated View For Microsoft Stock

52. Figure 3 is comparable to Figure 4(b) of the ’115 patent. The Arca

exchange would be another example of a regional market, in the parlance used by

the ’115 patent, along with the INET exchange.

21

53. Figure 4, below, depicts the national best bid and offer, 210.20 –

201.35 respectively, for Tesla stock. The best bid and offer is calculated from the

order book for the stock, aggregated across all of the regional markets – five in the

example depicted by Figure 4. As can be seen, the best bid and the best offer may

be available at different regional markets.

Figure 4: Exemplary National Best Bid And Offer For Tesla Stock

54. Figure 4 is also comparable to Figure 4(b) in the ’115 patent. If

Figure 4, above, were to have depicted bid or offer depth below the best prices at

each market, it would be an example of national depth of market.

2. Electronic Exchanges Electronic Data Feeds

55. Exchanges using electronically maintained order books were common

well before 2000. Market data system vendors (e.g., Reuters, Bloomberg, etc.),

brokers, and asset managers with their own ticker plants would rely on exchanges

22

sending continuous streams of data broadcasting orders, updates and executed

trades. Ex. 1013 provides the specification for the data feed that the New York

Stock Exchange streams.

56. The 115 patent defines the term “financial market data” as “data

contained in or derived from a series of messages that individually represent a new

offer to buy or sell a financial instrument, an indication of a completed sale of a

financial instrument, notifications of corrections to previously-reported sales of a

financial instrument, administrative messages related to such transactions, and the

like.” ‘115 patent, 1:63-2:3.

57. The term “financial market depth data” often refers to financial

market data that has been derived from financial market data, such as, volume,

volume weighted prices, daily high, low, price changes, moving averages, tick

direction, option pricing model outputs such as the “greeks”, e.g., delta, gamma,

etc., or other data that, derived or not, reflects the current state of the financial

market for a particular security, or more generally. Broadly, it can be any data

reflecting the state of a financial instrument or the state of the financial market.

58. The ’115 patent uses the term “financial market depth data” broadly

to describe the information in the input stream from the market exchanges (’115

patent, 5:15-31, 9:54-63), like it uses the term “financial market data.” The ‘115

patent, other than referring to it as an input, does not otherwise define or describe

23

this term. Thus, the ‘115 patent uses the term broadly to describe any of a wide

variety of market information, including information on outstanding limit orders of

a financial instrument on the market (e.g., the number and price of open buy and

sell orders for a financial instrument), trades, etc., and is therefore not limited to

derived values since it also includes the information from the exchanges.

59. U.S. patent no. 6,278,982 (“Korhammer”) issued August 21, 2001.

Ex. 1009, 1. Korhammer explains that computerized trading networks each

maintained a central order book that “keeps track of bid/offer information

including price, volume, and execution for each open and closed transaction as

supplied to it in real time by its members.” Ex. 1009, 2:34-37. Korhammer

discloses a client-based computer system that “aggregates order book information

from each participating ECN order book computer including security, order

identification, and bid/offer price information.” Id., 4:28-31.2

60. Korhammer discloses that the “combined information is displayed to

customers for the selected security separately for bids and offers, and sorted by

price, volume and other available attributes as desired by the customer.” Id., 4:31-

36. Korhammer continues, (CCS being the consolidating computer system):

2 I have used the abbreviation “id.”, which is short for the Latin word “idem,”

meaning “the same” to refer to the same last exhibit previously cited.

24

“Once the information from a number of ECNs and electronic
exchanges are combined in the CCS [Korhammer’s system],
either the CCS, the trading terminal, or both can be used to
calculate real time metrics. The real time metrics, such as
volume trends, price trends, and various on demand
calculations, can aid the trader in making decisions. The CCS
can also determine the occurrence of market events in which its
customers may be interested, such as a new high bid for the day
or a locked market where the best bid is equal to the best offer.”

Id., 4:46-54.

61. Korhammer explains precisely how the order book and depth of

market data is reconstituted in Fig. 6, which is a flow diagram showing how the

consolidated order book is formed. Id., 9:27-49.

62. Korhammer provides exemplary ways in which the reconstituted order

book and market depth data can be displayed, such as in the ’982 patent’s Figure 4,

reproduced below, showing a “spliced” order book:

25

Korhammer explains that its Figure 4, above, represents a typical market data

screen that displays both primary and secondary, market depth, data. Id., 8:47-9:8.

63. Korhammer was the basis for the very successful Lava product, which

took order book data from multiple exchanges, created a single view of the market,

enabling asset managers and brokers to route their orders to the best prices and

sources of the greatest liquidity, in the least amount of time. It could also be used

to create added value products by incorporating proprietary data into its display. In

April 2004 Lava used communications coprocessing technologies to improve its

performance. “Lava Trading Inc., a leading developer of high-performance trading

26

solutions for the financial services industry, has deployed Foundry’s ServerIron®

400 Layer 4-7 load balancing switches to increase capacity and availability of its

high-performance financial trading system.” See Ex. 1015.

B. Coprocessor Technology

64. Since the invention of the microprocessor, processor performance has

doubled every 18 months or so, a trend known as “Moore's Law.” Each new round

of processor improvements made more complex and demanding applications

achievable, but also continued to expand user expectations for further

improvements. For some applications, the need for ever faster data processing

outstripped the available performance in existing microprocessor technology,

creating a gap between the demand for high speed processing and the existing

performance.

65. Once such example is in financial analytics, where financial trading

houses seek to gain a competitive advantage in the market by accelerating their

quantitative applications such as options valuation, statistical arbitrage models,

algorithmic trading, market making models, etc. Financial application acceleration

enables the financial trading houses to make trades faster and with more accuracy

than the competition, resulting in financial gains for the trading house. Achieving

the necessary performance, however, requires substantially increasing processing

27

power to meet or exceed competitor’s capabilities. Opportunities in the market are

taken by the first entity to identify them.

66. Fortunately, increasing processor performance is not the only way to

address rising processing demands by applications. Enhancing communications

bandwidth and disk speed are two conventional approaches. Further, augmenting a

processor with an application-specific coprocessor has long proven to be a viable

approach to solving performance shortfalls.

67. A coprocessor in the art is a computational engine designed to operate

in conjunction with other components in a computational system having a main

processor. The coprocessor is optimized to perform a specific set of tasks and is

used to offload tasks from a main processor in order to optimize system

performance. In 1984, when I configured my first IBM PC, I added a Hercules

card, which was a graphics coprocessor, enabling my machine to display higher

resolution graphics. Interestingly, the graphics chip could be re-programmed to

further enhance processing. These speed enhancing additions had a long and well

known history.

68. Use of such coprocessors began with specialized I/O processing such

as modems and Ethernet controllers, extending to the use of graphics rendering

engines as display demands rose and encryption engines for increased security.

More general-purpose coprocessors also arose, first in the form of math

28

accelerators to handle multiplication and division. For example, on a I386 chip

PC, I could purchase an Intel 8087 math co-processor for a five-fold improvement

in math problem processing speeds. Digital signal processors then arose as

coprocessors designed to handle complex mathematical algorithms by

incorporating built-in math hardware and employing new architectures that

featured pipeline and parallel structures.

69. Coprocessors can be of a number of various types. One type of

coprocessor is known as an “Application-Specific Integrated Circuit” or “ASIC.”

An ASIC is a coprocessor whose programming is determined at the time of

manufacture and can never be changed once the chip is made. These are often

used in the financial services industry by quantitative high frequency traders to

implement their proprietary trading algorithms. The ’115 patent define coprocessor

as “a computational engine designed to operate in conjunction with other

components in a computational system having a main processor (wherein the main

processor itself may comprise multiple processors such as in a multi-core processor

architecture).” ‘115 patent, 2:59-63. I have applied this definition throughout.

The ‘115 patent also states that: “Typically, a coprocessor is optimized to perform

a specific set of tasks and is used to offload tasks from a main processor (which is

typically a GPP) in order to optimize system performance. The scope of tasks

performed by a coprocessor may be fixed or variable, depending on the

29

architecture of the coprocessor. Examples of fixed coprocessor architectures

include Graphics Processor Units which perform a broad spectrum of tasks and

floating point numeric coprocessors which perform a relatively narrow set of tasks.

Examples of reconfigurable coprocessor architectures include reconfigurable logic

devices such as Field Programmable Gate Arrays (FPGAs) which may be

reconfigured to implement a wide variety of fixed or programmable computational

engines. The functionality of a coprocessor may be defined via software and/or

firmware.” ‘115 patent, 2:63-3:11.

1. Field Programmable Gate Arrays (FPGAs)

70. A “Field Programmable Gate Array” or “FPGA” is a different type of

coprocessor than an ASIC because the programming of an FPGA can be changed

after it is manufactured. The ability to reprogram FPGAs allows them to be made

without any program-specific tooling, and allows for the programming to be

updated after the chip is made.

71. FPGAs also have on-board memory. The on-board memory means

that the coprocessor logic's memory access bandwidth is not constrained by the

number of I/O pins the device has. Further, the memory is closely coupled to the

algorithm logic and reduces the need for an external high-speed memory cache.

72. Performance of computer architectures using FPGAs have shown a

ten-fold to hundred-fold improvement in the execution speed of algorithms as

30

compared to processors alone based on an October 2007 white paper by Altera

(Ex. 1016), reproduced below:

73. As of at least 2006, FPGAs had the support of many mature

development tools, such as C-to-hardware tools that converted programming in the

C language to code suitable for FPGA programming. Code analysis tools were

available to take a user's C code and identify functions that would benefit from

hardware acceleration. And compilers existed to automatically structure the object

code for these functions for parallel and pipelined execution to maximize the

effectiveness of acceleration. Ex. 1016, 4-5.

74. The availability of this full design tool chain meant that users did not

have to struggle to accelerate their existing applications, and allowed users to

program FPGAs who did not have any hardware expertise. These tools also

allowed users to use FPGAs without needing to re-write their source code for

31

coprocessing. This scenario was ideal for applications, such as financial services,

where the software application functions are tightly regulated and changes involve

costly or time-consuming re-testing.

75. FPGAs also have a significant computing power advantage over

processors because of their parallel processing capabilities and internal bus

architectures. This allows the FPGA to execute functions in only a few clock

cycles instead of the hundreds to thousands of clock cycles that the sequential

operation of a processor would require. Ex. 1016, 5.

76. FPGAs have a power advantage over processors as well. Because so

few clock cycles are required for the same processing capability, FPGAs can

operate with much slower clocks and still provide a performance boost. The lower

clock speeds result in lower power consumption, making an FPGA coprocessor

much more power-efficient than a processor. Ex. 1016, 5.

77. The cost of an FPGA coprocessor is comparable to, and often less

than, that of a processor with similar performance. As a result, the component cost

of a processor and FPGA coprocessor is no more than that of two processors in a

standard cluster design.

V. SUMMARY OF THE ’115 PATENT

78. The ’115 patent is directed to high-speed processing of financial

market data to maintain an up-to-date list of all outstanding offers to buy and sell

32

financial instruments (e.g., financial securities such as stocks, futures, etc.)—from

one or more electronic exchanges referred to as the “order book” for the

corresponding financial instrument. ’115 patent, 3:50-61.

79. As explained above in the background section, financial exchanges

(e.g., NYSE, NASDAQ, etc.) maintain their own order books for all orders that

flow into the exchange, and disseminate order events related to those orders (e.g.,

as an order add, modify or delete event) via electronic “market data feeds” to

market data systems subscribing at the exchange. These market data systems

process the order events received from the exchanges to maintain their own order

books to keep track of the current state of financial instruments on the market. Id.,

3:50-61.

80. The ’115 patent’s background describes two examples of data

structures (shown in Figs. 2(a)-(b) reproduced below) conventionally included in

an order book. Fig. 2(a) shows a “full order depth” data structure that aggregates

and lists all of the outstanding orders for a financial instrument (e.g., stock). Id.,

4:3-6. Fig. 2(b) shows a “price aggregated depth” data structure that shows the

number of outstanding orders for a financial instrument at each price, thereby

demonstrating the “distribution of liquidity (available shares) over prices for a

given financial instrument.” Id., 4:7-10. Both the full order (Fig. 2(a)) and price

aggregated (Fig. 2(b)) data structures are organized into “ask side” orders (offers to

33

sell) and “bid side” orders (offers to buy), and sorted by price on each “side” of the

order book.

81. The ’115 patent concedes that constructing and maintaining order

books was known. Id., 3:38-59, 4:63:5:1.

82. The purported advance claimed in the challenged claims (claims 43

and 44) is to accelerate order book updating by using a “coprocessor” to “offload”

processing involved in updating order books to “decrease processing latency for

those tasks relative to the main processor.” Id., 2:58-3:17, 5:11-14. This

coprocessor can be implemented using reconfigurable logic and, more specifically,

Field Programmable Gate Arrays (FPGAs) that are configured to process financial

market data at “hardware speeds” to perform order book maintenance with high

throughput; orders to buy or sell a specified number of shares of a security (e.g.,

stocks, futures, options, etc.) at a specified price—called a “limit order”—that are

traded on an electronic financial exchange (e.g., NYSE, NASDAQ, etc.). Id., 3:55-

58.

34

83. The ’115 patent describes implementing this FPGA-based coprocessor

by programming different firmware application modules (FAMs) to perform

specific tasks. Id., 10:13-11:42. Once programmed, FAM modules can be loaded

onto reconfigurable logic (e.g., an FPGA) in a pipeline to achieve desired

functionality, as illustrated by FAM chain 850 and its FPGA implementation

illustrated in Figures 8(a) and 9(a) below. Id.

84. Figure 12(a), reproduced below, illustrates one example FAM pipeline

configured to receive a stream of financial market data events pertaining limit

orders (i.e., limit order events), process the limit order events to update an order

book for each instrument, and update the limit order events based on this

processing. Id., 5:18-31.

35

(Annotated)

85. Each FAM module performs a specified operation on the stream of

input messages from the exchanges that are passed to the next module in the

pipeline. Specifically, input FAM modules highlighted in blue include a Message

Parser (MP) Module 1204 that parses the received data stream and formats the

information to provide consistent limit order event messages understandable by

downstream modules (id., 12:24-43), and Symbol Mapping (SM) Module 1206

that maps information in the limit order event messages to internal identifiers for

use in addressing records in memory (id., 12:44-60, 14:65-15:7).

86. The parsed limit order event messages and internal identifiers are

passed to Order Normalization and Price Aggregation Module (ONPA) 1208

(highlighted in yellow) to access and update the financial instrument records

representing the order books stored in memory based on the received limit order

events (id., 17:52-18:24). Specifically, the OPNA receives the stream of limit

order events and updates corresponding limit order records (an example limit order

record is illustrated in Fig. 20) and normalizes the input message based on the

36

received limit order events. Id., 17:52-18:24. The stored limit order records

correspond to the “full order depth” data structure illustrated in Fig. 2(a) in the

background.

87. The ONPA may additionally maintain price point records to support

price aggregated views the order book. Id., 18:6-20. In this data structure, a

record is maintained for each unique price and includes fields for the total number

of shares and the total number of orders at each price point. Id. These “price

aggregated data structures (id., 20:26) correspond to the “price aggregated depth”

data structure shown in Fig. 2(b) in the background.

88. The ’115 patent states that in a preferred embodiment, the order

engine that updates the order book’s full order data structure and the price engine

that updates the order book’s price aggregation data structure update their

respective data structures in parallel within the same coprocessor. Id., 20:25-32

(“parallel engines update and maintain the order and price aggregation data

structures in parallel”). The ’115 patent refers to the one or more update engines

that update and maintain the respective data structures as “order engines” and the

“price engines,” respectively. Id.

89. The ONPA may be additionally configured to update the limit order

events based on price aggregation computations by appending price attributes to

the limit order events before providing the updated message streams to

37

downstream subscribers. Id., 18:6-20, 23:41-44. As shown in Figure 12(c) below,

additional output modules (also highlighted in blue) can be added to the FAM

pipeline to filter and format the updated limit order event messages for

downstream consumers (e.g., via Interest and Entitlement Filtering (IEF) Module

1210 and Message Formatting (MF) Module 1212) in accordance with each

consumers subscription and format expectations. Id., 23:41-24:5.

(Annotated)

90. The ’115 patent states that the Message Parser, Symbol Mapping,

Interest and Entitlement Filter, and Message Formatting Modules are the same as

those described in U.S. application pub. no. US 2008/0243675 A1 (“Parsons”).

Id., 12:35-44, 23:47-24:5; see also the incorporated ‘673 provisional (Ex. 1003),

31 (“[t]he message parser, symbol mapping and message formatting stages are

described in U.S. Patent Application Publication 2008/0243675”), 34 (“[t]he

Interest Entitlement Filter [is] described in the 2008/0243675”).

91. The ONPA Module 1208 is merely an obvious implementation of the

caching modules disclosed in Parsons, one of which—the “order book cache

38

update, retrieve and normalize (OBC)” module (Parsons, [0071]) performs the

same functionality as the ’115 patent’s ONPA module on which claims 43 and 44

are drawn.

92. The ’115 patent explains that the coprocessor having the ONPA

module is employed at a “ticker plant”—a system designed to handle throughput of

high-volume financial data for traders. ’115 patent, 3:38-5:14.

A. Level of Ordinary Skill in the Art

93. I am informed that prior art references should be understood from the

perspective of a POSA to which the patent is related, based on the understanding of

that person at the time of the patent’s priority date. I understand that a POSA is

presumed to be aware of all pertinent prior art and the conventional wisdom in the

art, and is a person of ordinary creativity. I have applied this standard throughout

my declaration.

94. It is my opinion that a POSA would have had (1) a bachelor’s degree

or higher in electrical engineering, computer engineering, or a similar field; (2) at

least two years of experience working with financial computing systems; and (3)

experience with systems having high throughput data streaming and processing

requirements, for example systems for processing data feeds, such as the prior art

system shown Fig. 1 of the ’115 patent. Additional education could have

39

substituted for professional experience, and significant work experience could have

substituted for formal education.

95. I qualify as at least a person of ordinary skill in the art given my

decades of experience in the financial and information technology industries. See

section I, above. My opinions set forth herein are from the perspective of a POSA,

as defined in the previous paragraph.

B. Overview of the Challenged Claims

96. I explain the challenged claims below at ¶¶ 150-157 (claim 43) and

¶ 268 (claim 44).

VI. DISCLOSURE OF PARSONS

97. U.S. application pub. no. US 2008/0243675 A1 (“Parsons”) published

on October 2, 2008, and is the publication of application no. 11/765.306, which

was filed on June 19, 2007. I am informed and understand that based on its filing

and publication date and because it listed different inventors than the ’115 patent,

Parsons is prior art under 35 U.S.C. §§ 102(a) and 102(e). Based upon my review

of the file history for the ’115 patent, I understand that Parsons was considered

during prosecution but only for dependent claims that are not being challenged.

A. Parsons Described the Same Reconfigurable FPGA’s for
Performing the Same Processing of Financial Market Data
Prior to the ’115 Patent

98. Parsons, titled “High Speed Processing of Financial Information

Using FPGA Devices,” is directed to consolidating financial market data

40

operations conventionally performed by distributed networked computer systems

to “reconfigurable logic, such as Field Programmable Gate Arrays (FPGAs)” to

“process streaming financial information at hardware speeds.” Parsons, [0010]-

[0011]. By consolidating this functionality on FPGAs, processing latencies can be

reduced. Id.

99. Parsons discloses that conventional market data platforms distributed

a wide variety of financial market data processing over a network of individual

computers as shown by the numerous functional units 102 illustrated in Fig. 1,

reproduced below. Id., [0006].

41

100. Parsons’s explains that conventional market data platforms that

attempted to deliver financial market data to traders in “real time” were

implemented in software over a network of distributed individual computer

systems using general purpose processors. Id., [0006]-[0008]. In these systems,

latencies were introduced by software execution and as a result of the overhead in

transmitting messages to and from different machines. Id., [0006]-[0008].

42

101. Parsons discloses a hardware-accelerated platform that “offloads” the

same functionality onto a fewer number of reconfigurable logic devices. Id.,

[0056]. To implement this functionality on reconfigurable logic (e.g., an FPGA),

individual firmware application modules (FAMs) are programmed to perform

specific data processing tasks. Once programmed, each FAM provides a

“hardware template” (id., [0057], [0068], [0077], [0083]) that performs a set of

programmed tasks that can be loaded onto a reconfigurable logic device and

chained together in a pipeline to perform desired data processing functions, as

shown in Figure 2 reproduced below. Id., [0045].

102. Parsons’s reconfigurable logic devices are described as being

implemented on FPGA printed circuit boards that can be connected to “a system’s

main processor 208” (highlighted in green above) to offload computations from the

43

main processor. Id., [0039], [0052], [0056]. These are the very same devices

described in the ’115 patent.

103. Indeed, Parsons discloses the same FPGA-based coprocessor

implemented using the same FAM pipeline configured to perform the same

financial market data processing described in the ’115 patent. Compare, for

example, the FPGA coprocessor illustrated in Figures 2 and 4(a) of Parsons with

Figures 8(a) and 9(a) from the ’115 patent, both reproduced below, and both of

which are configured FAM pipelines configured to perform the same processing of

financial market data—they are almost identical.

44

Figures 2 and 4(a) of Parsons

Figures 8(a) and 9(a) of the ’115 patent

45

104. Also compare Parsons, [0013]-[0014], [0039]-[0046], [0052]-[0056]

with ’115 patent, 5:1-14, 9:54-11:42-12:11, for other examples of Parsons’s

disclosure of the same FAM pipelines.

105. Fig. 6 illustrates Parsons’s market platform 600 that consolidates

financial data processing on reconfigurable logic devices, include device 604 and

606 highlighted in orange and red below.

LVC Server

Order Book Server

106. Reconfigurable logic device 604 and 604 provide a number of

services including an “order book server” (OBS) and a Last Value Cache (LVC)

server that process in parallel a financial market data stream 106 received from the

46

various exchanges and provide their respective outputs to downstream traders at

workstations 104. Parsons, [0056]-[0062], [0071].

107. To perform their respective services, the OBS and LVC server employ

respective caching modules configured to maintain a cache of financial instrument

records in real-time as updates to those financial instruments are reported by the

exchanges. Id., [0060], [0062], [0071], [0095]-[0096], [0125]-[0132]. Each

caching module is programmed to perform the specific updates needed to keep the

data structures stored by the respective caching modules up-to-date in real-time.

Id.

108. The LVC server uses an LVC module to a database of financial

instrument records where “[e]ach record represents the current state of that

financial instrument in the market place.” Id., [0060], [0062]. Parsons explains

that the LVC server updates the records “in real-time via a stream of update

messages received from the feed handlers” and is configured to provide “real-time

snapshots of financial instrument status” where “information such as the ‘latest

price’ for a financial instrument can be determined.” Id., [0062].

109. By maintaining the database of financial instrument records that

include price point records based on the stream of update messages, the LVC

server meets the “price engine” limitation of the challenged claims.

47

110. The ticker-plant embodiment illustrated in Fig. 11 uses the same LVC

module described in the LVC server as the update FAM that maintains regional

and composite price point records storing price point information reflecting the

current state of financial instruments on individual exchanges (regional) and across

the market (composite). Id., [0062], [0126]-[0127]. The update logic that

maintains these regional and composite records also meets the claimed “price

engine” limitation of the challenged claims.

111. The ticker-plant embodiment illustrated in Figure 11 of Parsons is

almost identical to the FAM pipeline containing the ONPA module in the

’115 patent. Compare Figure 11 of Parsons (reproduced below, left) and Figure

12(c) of the ’115 patent (reproduced below, right). The FAM modules highlighted

in blue are the same, as explicitly stated in the ’115 patent. The only difference in

the pipeline is that Parsons’s Figure 11 illustrates the LVC caching module, which

in addition to performing many of the same operations as the ONPA, is only one of

the caching modules disclosed in Parsons. Parsons, [0062] (“LVCs maintain a

database of financial instrument records” that represent “the current state of that

financial instrument in the market place.”), [0095], [0126]-[0127].

48

(Annotated)

(Annotated)

112. To maintain up-to-date order books, the Parsons’s OBS employs an

“order book cache update, retrieve and normalize (OBC)” module configured to

update limit order records and price aggregation records for each financial

instrument record stored in its cache. Id., [0071], [0096]. The reconfigurable logic

of the OBC configured to perform updates to the order and price-aggregated data

structures meet the claimed “order engine” and “price engine” limitations of the

challenged claims.

B. Parsons’s Caching Modules (OBC, LVC, GVC)

113. Parsons’s “caching modules” (id., [0092]-[0094]) provide the “update

FAM” (id., [124]-[127]) in a pipeline that are configured to update a cache of

financial instrument records in real time based on financial market information

received from different trading venues. Id., [0062], [0071], [0095], [0096].

114. Parsons discloses a generic template for a caching module, referred to

as a Generic Last Value Cache (GVC), that “maintains a cache of records whose

49

fields are updated in real-time with information contained in steaming messages

received from a message parsing module.” Id., [0097].

115. To configure the GVC to perform specific operations, a

programmable data dictionary is programmed to define the record structure and the

update operations performed on the defined records. Id., [0097] (explaining that

the “structure of a record and the fields contained within it,” as well as the “type of

update performed for an individual field in a record” are “defined by a

programmable data dictionary.”).

116. As discussed in the previous section, Parsons discloses two specific

examples of caching modules that have been programmed via the data dictionary

to perform specific operations on a stream of financial market data messages to

maintain and update a cache of financial instrument records: 1) a Last Value Cache

(LVC) module (see e.g., id., [0095]); and 2) an “order book cache update, retrieve

and normalize (OBC) (see e.g., id., [0096]).

C. Parsons’s Order Book Server

117. Parsons’s discloses implementing its “order book server” (OBS) on a

reconfigurable logic device 606. Id., [0056], [0069]-[0071]. Device 606 is an

FPGA (402) on printed circuit board 400 having FAM pipeline (230) loaded

thereon, as shown in annotated Figure 4(a) below. Id., [0045], [0052]-[0053],

[0069]-[0071].

50

118. The OBS maintains “financial instrument records” in memory 404

(highlighted in blue above) that include “a sorted list of the bids and offers

associated with all outstanding orders for that instrument.” Id., [0071]. These

financial instrument records are kept up-to-date in “real-time via update messages”

received from the market feeds that include “order information for each instrument

[] received from a variety of different trading venues in stream 106.” Id. To

access and update the order books in real-time, the OBS FAM pipeline implements

the OBC as the update caching module. Id., [0006], [0071], [0096].

119. The OBC maintains financial instrument records for each financial

instrument for which the OBC maintains an order book. To support different view

of the order books, each financial instrument record stores information on

outstanding orders in two data structures: 1) limit order sub-records storing “a

51

sorted list of the bids and offers associated with all outstanding orders” for each

financial instrument; and 2) price-aggregated sub-records storing “entries that are

indicative of the total number of orders available at each price point.” Id., [0071],

[0096]. The order and price-aggregated data structures are referred to as “sub-

records” because the OBC maintains them as part of the financial instrument

record.

120. Specifically, Parsons discloses that each financial instrument record

“consists of an array of sub-records that define individual price or order entries for

that financial instrument.” Id., [0096]. That is, each sub-record in the array

defines either an order entry or a price entry. Those sub-records in the array that

define individual order entries are the order sub-records having an entry for each

outstanding limit order for that financial instrument. Those sub-records in the

array storing individual price entries are the price-aggregated sub-records storing

aggregated order information at each price point.

121. A POSA would have understood that the individual price entries refer

to the “entries that are indicative of the total number of orders available at each

price point” created to support price-aggregated views. To support this view, the

financial instrument records would include a corresponding data structure that can

be updated in real-time to keep the price-aggregated order information up-to-date

to that real-time updates can be provided. The composite view confirms that views

52

of either the limit order data structure or the price-aggregated data structure over

multiple exchanges can be provided. Id., [0096].

122. As explained in section IV.A, a limit order specifies a specific

financial instrument, price, the number of shares (or contracts) and whether the

order is a bid or an ask (i.e., what “side” of the book the order is on). A POSA

would have understood that sub-records that “define” individual order entries for

each outstanding limit order would have included at least this information (i.e.

symbol, price, number of shares and side of the book). The financial instrument to

which the order pertains is captured by the fact that the order entries are sub-

records of the corresponding financial instrument record. A POSA would have

understood that the order sub-record would have include other identifying

information like the order number, the exchange on which the order was sent, time

of creation, etc., as well.

123. Parsons discloses that the OBC supports price-aggregated views

“where orders at the same price point are aggregated together to create entries that

are indicative of the total number of orders available at each price point.” A

POSA would have understood this aggregated order information would include

both the total number of orders (referred to as the “order count”) at each price point

as well as the total number of shares (often referred to as the volume or total size)

available at each price point, the latter of which is the information most relevant to

53

traders. Order count on its own is normally of less value, but during volatile

trading, could be indicative of changing market demand dynamics.

124. The OBS is also configured to perform this functionality including

“top slice” computations (determining all orders that are the best (highest bid,

lowest offer) making up the NBBO) and price aggregation in which “orders at the

same price point are aggregated together to create entries that are indicative of the

total number of orders available at each price point,” which entries are the same as

the ’115 patent’s price point records. ’115 patent, 18:9-16, 20:25-26 (referring to

price point records as “price aggregation data structures.”).

125. Parsons also describes an “order book cache update, retrieve and

normalize (OBC)” module (Parsons, [0096]) configured to perform the above

described operations for the OBS. Specifically, the OBC maintains a cache of

financial instrument records, each having an array of sub-records defining the

outstanding orders for that financial instrument sorted by price. Id., [0096]. This

sort ordered list of orders for each instrument provides real-time updates to traders

subscribing to the different views supported by the OBC (id., [0096]) of

outstanding orders for these financial instruments.

126. The OBC updates sub-records in real-time. Id., [0006], [0071],

[0096] (“sub-records are updated in real-time with information contained in

streaming messages … Sub-records associated with a record are created and

54

removed in real-time according to information extracted from the message

stream”).

1. The OBS FAM Pipeline

127. Parsons does not illustrate in the drawings a FAM pipeline

specifically for implementing the OBS, but a POSA would have understood that

Parsons’s OBS implemented on reconfigurable logic device 606 (id., [0069]-

[0071]) would have been implemented using the appropriate FAM modules

disclosed, including Parsons’s OBC caching module specifically programmed to

perform the financial instrument record and message stream update functionality

described for the OBS. Id., [0071], [0077], [0084], [0096].

128. Parsons’s OBS utilizes the OBC caching module described as

performing the OBS functionality in conjunction with the supporting FAM

modules configured to process and provide updates to a stream of financial market

data. Id., [0077] (“appropriate FAM modules and corresponding FAM pipelines to

implement these various functions for device 606 can be carried out by a person

having ordinary skill in the art.”).

129. Parsons illustrates a number of exemplary FAM pipelines, including

“an exemplary FAM pipeline for performing the functions of an exemplary ticker

plant embodiment” in Fig. 11. The pipeline in Fig. 11 includes each of the FAM

modules that Parsons explicitly discloses using in conjunction with the OBC to

55

implement an order book server (id., [0092]-[0093], [0096], [0113]), but with the

price summary LVC employed as the caching module in this example.

130. An example OBS FAM pipeline implementing Parsons’s OBS is

illustrated below in Figure 5 using the FAM modules Parsons teaches using in

connection with the OBS and OBC.

Figure 5: Exemplary OBS FAM Pipeline Implementing Parsons’s OBS

131. Specifically, Parsons discloses using the above illustrated FAM

modules in connection with the OBC to perform order book update and server

functionality. Specifically, Parsons is explicit that the OBC operates on the

message stream from the message parsing module (e.g., Message Parser 1102

illustrated in Fig. 11). Id., [0096] (the OBC updates financial instrument records

56

“in real-time with information contained in streaming message received from a

message parsing module”).

132. Additionally, Parsons discloses that symbol mapping module is used

to map the financial instrument symbol in the message stream to an internal

number that can be used by the OBC to directly access the corresponding financial

instrument record stored in the cache, citing the exemplary FAMs in Figs. 12-14 as

examples (of which Symbol ID Mapping Module 1104 is one embodiment). Id.,

[0093], [0114].

133. Similarly, Parsons discloses using an interest and entitlement filtering

module to filter the stream of message coming from the OBC according to

downstream consumers who are entitled to receive specific information based on

their subscription, for example, traders who have subscribed to the different views

or different exchanges supported by the OBC, citing to the exemplary FAM in

Fig. 16 describing Interest and Entitlement FAM1108 that passes its entitlement

mask to Message Formatter 1110 to construct an output message from the updated

fields of the message stream and the original input stream. Id., [0092], [0108],

[0137]-[0138].

134. Thus, this OBS FAM pipeline shown in Figure 5 above results from

loading the specific FAM modules Parsons teaches using to implement the OBS

57

pipeline on reconfigurable logic device 606. Id., [0068]-[0071], [0077], [0083]-

[0084], [0092]-[0093], [0096], [0108], [0113], [0137]-[0138].

D. Parsons’s Example LVC Memory Manager and
Message/Record Updater

135. Parsons discloses an LVC Memory Manager configured to retrieve

records from the LVC module based on the financial instrument identified in the

message stream and load those records into record buffers for processing by a set

of update engines. Id., [0125], [0132]. The LVC Memory Manager also retrieves

records corresponding to a financial instrument identified in the next message in

the stream and loads those records into the buffer so that multiple messages can be

processed in parallel, thus achieving higher message throughput. Id., [0128]-

[0134].

136. Parsons’s LVC server also has a message/record updater that

distributes update operations on the records loaded into the record buffers across a

set of update engines to distribute the processing load across different update

engines operating in parallel to “maintain high throughput.” Id., [0125], [0132].

137. In the embodiment of Fig. 11, the LVC Memory Manager retrieves

composite and regional records corresponding to the financial instrument identified

in a message and loads the records into corresponding record buffers, as shown in

annotated Fig. 15(a) below. Id., [0126]-[0127].

58

138. The LVC message/record updater is programmed to assign update

operations to different update engines configured to perform update operations for

a respective record type to distribute the processing load over the set of update

engines. Id., [0125], [0132].

139. In this example, the message/record update assigns one set of update

engines to update the composite record and a separate set of update engines to

update the regional records. Id., [0125], [0132], Fig. 15(a). The message/record

updater manages these two sets of engines to operate “in parallel” so that accessing

the record buffers and computing the calculations required to update the records,

59

and the writing of the updated records back to the record buffers (from where they

will be written back to cache by the Memory Manager) are performed in parallel.

140. Specifically, as shown in Fig. 15(a), a first set of composite update

engines configured to update composite records access and update records from the

composite record buffer and a second set of regional update engines configured to

update regional records access and update records from the regional record buffer

in parallel. Id., [0125], [0132], Fig. 15(a).

141. Thus, the LVC message/record updater is programmed to assign

update operations to different update engines configured to perform update

operations for a specific record type to distribute the processing load over the set of

update engines. Through such parallel operation, “high throughput is maintained.”

Id., [0132].

VII. CLAIMS 43 AND 44 ARE OBVIOUS IN VIEW OF PARSONS

142. I have been asked to provide my opinion concerning whether claims

43 and 44 (the “challenged claims”) of the ’115 patent would have been obvious to

a POSA in light of the prior art references identified in the Petition. For the

reasons explained below, it is my opinion that each of the challenged claims would

have been obvious to a POSA.

143. First, Parsons discloses an FPGA-implemented FAM pipeline

configured to operate as an order book server (OBS) to maintain and update order

60

books for financial instruments based on a stream of limit orders received from

different exchanges. Parsons, [0071], [0096]. Parsons’s OBS pipeline employs an

“order book cache update, retrieve and normalize (OBC) operation” to update limit

order records to maintain outstanding orders in the order books. Id., [0096].

Parsons’s OBC also updates price point records. Id.

144. Parsons’s OBC functionality is implemented by a FAM in a FAM

pipeline on an FPGA coprocessor. Id., [0069]-[0071], [0077]. Parsons’s OBC

functionality that updates the limit order records (id., [0071], [0096]) is an order

engine as claimed, and the OBC functionality that updates the price point records

(id.) is a price engine as claimed.

145. Parsons does not describe the OBC’s updating of order and price

records as being performed in parallel, and thus does not disclose that the two

engines perform their respective operations in parallel as claimed. However, a

POSA would have been motivated to implement such parallelism (i.e., so that

Parsons’s order and price engines perform their respective operations in parallel)

for a host of reasons.

146. It was well-known that parallel processing increases speed and

decreases latency, and Parsons teaches that it is desirable to “accelerate the speed

of processing” in its system. Id., Abstract. The obvious implementation of

Parsons’s OBC to implement the order and price engines in parallel satisfies every

61

limitation of claims 43-44 and renders those claims obvious. Parsons’s OBC

implemented using this parallel update engine optimization is one such reason that

the challenged claims are obvious.

147. Second, Parsons also discloses a Last Value Cache (LVC) module

that operates in parallel with the order book server (OBS). Id., [0056], Fig. 6.

Parsons’s LVC module maintains and updates different price point records than the

OBS does. The LVC module’s data structure includes information on “total trade

volume at bid, total trade volume at ask, traded value, traded value at bid, traded

value at ask, and volume-weighted average price.” Id., [0126]. The records

illustrating the volume traded at particular price points (e.g., the “bid” price point

and the “ask” price point) are price point records as claimed. Thus, Parsons’s LVC

module includes a price engine as claimed.

148. A POSA would have had numerous reasons to modify Parsons’s

disclosed implementation to implement the OBS and LVC on the same FPGA,

including consolidating this functionality on a single FPGA reducing hardware,

reducing redundant processing by sharing common FAMs, simplifying the process

of delivering this financial market data to downstream subscribers among others.

This obvious modification to Parsons to consolidate the OBS reason that the

challenged claims are obvious.

62

149. By the earliest possible priority date for the ’115 patent (December

2008), FPGA resources had increased from when Parsons was filed (June 2007)

and a POSA would have understood that the number of FPGAs used to implement

Parson could be reduced. A POSA would have been motivated to combine the

OBS and LVC functionality onto a single FPGA, and to have the OBS’s order

engine and the LVC’s price engine continue to perform their respective functions

in parallel.

A. The Challenged Claims Are Obvious Over Parsons’s FPGA-
Implemented Order Book Server

1. Discussion of Claim 43

150. Challenged claim 43 is broadly drawn to a coprocessor configured to

receive streaming limit order events (e.g., update messages from the exchanges

reporting new limit orders, modifications to existing orders, completed trades, etc.)

and that has two engines configured to perform operations in parallel: 1) an order

engine configured to access limit order records and compute updated limit order

data; and 2) a price engine configured to access price point records and compute

updated price point data. The coprocessor is also configured to enrich the stream

of limit order events with financial market depth data—i.e., any data that

represents the state of a financial market.

63

Claim 43

[43PRE] An apparatus for applying specific computer technology to reduce
latency and increase throughput with respect to streaming data enrichment, the
apparatus comprising:

[43A] a coprocessor that includes an order engine and a price engine;

[43B] wherein the coprocessor is configured to receive streaming data
representative of a plurality of limit order events pertaining to a plurality of
financial instruments;

[43C] wherein the order engine is configured to (1) access a plurality of limit
order records based on the streaming limit order event data, and (2) compute
updated limit order data based on the accessed limit order records and the
streaming limit order event data;

[43D] wherein the price engine is configured to (1) access a plurality of price
point records based on the streaming limit order event data, and (2) compute
updated price point data based on the accessed price point records and the
streaming limit order event data;

[43E] wherein the coprocessor is further configured to enrich the streaming limit
order events with financial market depth data based on the computed updated
limit order data and price point data; and

[43F] wherein the order engine and the price engine are configured to perform
their respective operations in parallel with each other as the limit order event
data streams through the coprocessor.

151. Limitations [43C] and [43D] recite conventional operations performed

on limit order information provided via market feeds from the various exchanges

as described in section IV. ’115 patent, 3:38-4:67

152. The ’115 patent does not purport to have invented these operations

and in fact acknowledges them to have conventionally been performed by

“downstream components of a market platform” (id., 4:67-5:1) to construct order

64

books, as described in the background of the ’115 patent in connection with Figs.

2(a) (illustrating an order book constructed to store each outstanding order sorted

by price) and 2(b) (illustrating an order book constructed to store the number of

orders and available shares available at each unique price point). Id., 4:1-11.

153. For example, limitation [43C] merely recites conventional order book

operations performed to maintain the “full order depth” data structure for the order

book construction illustrated in Fig. 2(a) and limitation [43D] merely recites

conventional order book operations performed to maintain the “price aggregated

depth” data structure for the order book construction illustrated in Fig. 2(b). The

’115 patent acknowledged in its background that both of these order book

constructions were conventional. Id., 4:1-11, Figs. 2(a), 2(b).

154. What the ’115 patent purports to have invented is moving these

conventional operations to construct and maintain order books to a “ticker plant”

employing “a coprocessor that serves as an offload engine to accelerate the

65

building of order books” (id., 5:1-14). This is, precisely the solution proposed

years before by Parsons using the same reconfigurable logic device to perform the

same functions (Parsons, [0006]-[0015], [0071], [0096]).

155. Specifically, Parsons’s order book server maintains order books

having both the data structures illustrated above to support providing real-time

updates to support different views of the order books. Id., [0071], [0096].

156. Limitation [43E] recites the enriching function for which these

reconfigurable logic devices were designed to perform (id., [0011], [0013], [0056],

[0062], [0069]-[0071], [0095]-[0096], [0126])., and limitation [43F] recites a

performance optimization technique also disclosed by Parsons (id., [0125],

[0132]).

157. Limitation [43F] recites the obvious way to implement Parsons’s

order and price engines to perform their functions in parallel to maintain high

throughput of its FPGA coprocessors that are designed perform time-sensitive

computations in real-time at hardware speeds. Id., [0010]-[0015], [0096], [0132],

[0162]. It would have been obvious to implement Parsons’s OBC to use the

parallel updates engines described in Parsons to maintain high throughput through

the pipeline, as discussed below. Id., [0125], [0132].

66

2. A POSA Would Have Been Motivated to Implement the
OBC with LVC Memory Manager and Record/Message
Updater

158. The OBC performs cache accesses based on a record key or record ID

computed from the financial instrument identified in the message stream like the

other caching modules. Id., [0093]. Parsons does not describe the details with

respect to the interface between the update logic and the memory, or describe

details of how the cache is accessed. A POSA would have been had reasons to use

the Memory Manager that Parsons teaches for the LVC, modified to retrieve

records stored according to the OBC’s record structure, so that multiple messages

could be processed in parallel to “achieve higher message throughput.” Id.,

[0134].

159. The OBC and LVC are both caching modules that maintain and

update financial instrument records stored in a cache. Also, like the LVC, the

OBC performs updates on two different record types in maintaining its order

books. Id., [0071], [0096]. A POSA would have been motivated to use the

disclosed LVC message/record updater modified to assign update operations

performed on limit order sub-records and price-aggregated sub-records to different

update engines operating in parallel to distribute the processing load so that “a

high-throughput is maintained.” Id., [0132].

67

160. A POSA implementing parallel update engines to update the OBC’s

financial instrument records to increase throughput would have modified Parsons’s

OBC (“Modified-OBC”) by assigning order sub-record updates and price-

aggregated sub-record updates to different update engines operating in parallel.

Distributing update operation across different update engines based on the type of

record being updated is the same scheme describing for the LVC maintaining

composite and regional records.

161. Specifically, like the LVC, for a single received limit order message,

the OBC often performs updates on two different data structure records that the

OBC maintains in its order books. Id., [0071], [0096]. In particular, the LVC in

the ticker plant embodiment illustrated in connection with Fig. 11 maintains

composite and regional records and the OBC maintains order and price-aggregated

records.

162. A POSA would have been motivated to implement the OBC

message/record updater in the manner the updater is implemented in the LVC so

that after retrieved order and price-aggregated records are loaded into

corresponding record buffers, different sets of update engines are assigned to

update the respective record types so that accesses to the respective record buffers

and computations to update the respective records and the message are performed

in parallel. Id., [0125], [0132].

68

163. For example, a set of update engines would be assigned to the order

and price-aggregated sub-records respectively so that the following operations are

performed in parallel with each other: (1) access the corresponding record buffer,

and (2) perform the computations to update the respective sub-records so that the

Memory Manager may write the updated up-records back to cache.

164. Performing these operations in parallel in the OBC for the order and

price-aggregated sub-records would distribute the processing load and increase

processing speed so that “a high-throughput is maintained.” Id., [0132]. A POSA

would have been motivated to do so given the “latency sensitive” nature of the

OBC’s real-time operations. Id., [0071], [0096]; see also id., [0010]-[0015],

[0071], [0096], [0162].

165. More specifically, Parsons teaches that when different record types

are to be maintained and updated (e.g., the order sub-records and the price-

aggregated sub-records), one way to distribute the processing is to assign a

separate engine (or group of engines) the task of updating a particular record, so

that records of different types are updated by different engines. Id., [0125], [0132],

Fig. 15(a).

166. Thus, Parsons discloses assigning update operations to different

update engines to perform operations appropriate for respective records. Id.,

[0132]. This distribution of operations across different update engines based on

69

record type is how Parsons describes distributing update operations in the LVC

update FAM (where different engines update the composite and regional records)

as illustrated in annotated Fig. 15(a) below.

167. The LVC message/record update distribution scheme assigns update

operations performed on composite records to “composite” update engines that

access a composite record buffer and operate in parallel with different “regional”

update engines assigned to perform update operations on regional records stored in

a corresponding regional record buffer. Id., [0132]. Distributing update operations

to the OBC’s order sub-records and price-aggregated sub-records to different

respective sets of update engines operating in parallel would have merely been the

70

use of the known technique using parallel update engines configured to update

different record types to yield the predictable result of increasing throughput.

168. Thus, for the reasons discussed above, a POSA would have been led

to implement the OBC by having a record/message updater that applies the same

type of distribution of operations by record type as used in the LVC and in other of

Parsons’s caching modules. Id., [0125]-[0132], Fig. 15(a). When implemented in

this manner, the OBC employs an order engine and a price engine that the

record/message updater manages to operate in parallel as shown below in Figure 6

to perform the update operations Parsons describes of the OBC. In modified Fig.

15(a) above, the order and price engines each is implemented via multiple update

engines that operate on different fields of the record to achieve further parallelism

and throughput as Parsons teaches for the LVC’s composite and regional engines.

Parsons, [0132]. It also would have been obvious to use a single update engine to

implement the order and/or price engine in the OBC.

71

Figure 6: Modified-OBC With Parallel Order and Price Engines

order record buffer

order
update
engine

price aggregated
record buffer

order
update
engine

price
update
engine

price
update
engine

OBC memory manager

OBC message/record update

(Modified)

order record
price aggregated record

169. The above-discussed implementation of the OBC, which distributes

order sub-record updates across corresponding “order” update engines, and

operations performed on price-aggregated sub-records are distributed across

corresponding “price” update engines so that order sub-records and price-

aggregated sub-records can be accessed from their corresponding record buffers

and updated in parallel, is referred to herein as the “Modified-OBC.” Parsons’s

Order Book Server (OBS) implemented using the Modified-OBC is referred to

herein as the Modified-OBS.

72

170. The Modified-OBC includes all of the functionality of the OBC with

the additional aspects discussed above, so that the subject matter described as

being met by the OBC is also met by the Modified-OBC. Likewise, the Modified-

OBS includes all of the functionality of the OBS and also meets any subject matter

met by the OBS. The Modified-OBS meets every limitations of claim 43 and thus

renders claim 43 obvious.

3. Claim 43

a. [43PRE] “An apparatus for applying specific
computer technology to reduce latency and increase
throughput with respect to streaming data
enrichment”

171. To the extent the preamble of claim 43 is limiting and not merely an

intended use, Parsons discloses such an apparatus. Specifically, Parsons discloses

using “reconfigurable logic, such as Field Programmable Gate Arrays (FPGAs)”

that “can be deployed to process streaming financial information at hardware

speeds” (Parsons, [0010]) to process “vast amounts of streaming financial

information” at “hardware speeds via reconfigurable logic” (id., [0011]).

172. Parsons discloses that, in conventional systems, “latencies are

introduced” into processing of financial data “because of the processing overhead

involved in transmitting messages between different machines” (id., [0008]), so

that consolidating this functionality on FPGAs that operate at hardware speeds

reduces this latency “while providing faster data processing capabilities relative to

73

the conventional market data platform” (id., [0008]). See also, id., [0044] (“FAM

operate[s] at hardware speeds (thereby providing a high throughput of target data

through the FAM).

173. Thus, Parsons’s use of FPGAs on which parallel engines are deployed

to process and enhance a stream of financial market data meets the preamble

language because it is an application of “specific computer technology” that is

explicitly stated as being used “to reduce latency and increase throughput with

respect to streaming data enrichment.”

174. As shown in Fig. 2 of Parsons, this FPGA-implemented device (i.e.,

“coprocessor” per below) can be employed in an exemplary system 200 (i.e., “an

apparatus”) including “the computer system’s main processor,” which is an

“apparatus for applying specific computer technology to reduce latency and

increase throughput with respect to streaming data enrichment” that comprises the

claimed coprocessor, which is the only element recited for the apparatus claimed in

claim 43.

b. [43A] “a coprocessor that includes an order engine
and a price engine”

175. Limitation [43A] has three parts: 1) a coprocessor, where that

coprocessor includes; 2) an order engine; and 3) a price engine. Parsons’s OBS

74

(and thus the Modified-OBS) implemented on a reconfigurable FPGA device

meets all three.

i. “a coprocessor…”

176. Parsons’s discloses implementing an OBS on reconfigurable a logic

device 606 using the reconfigurable logic 202 of system 200 implemented on

board 400, as shown in annotated Figure 2 and 4(a) below. Parsons’s Modified-

OBS can be implemented on an FPGA in the same way.

177. As shown, this reconfigurable logic device 202 is “positioned to

receive data that streams off either or both a disk subsystem defined by disk

controller 206 and data store 204” (id., [0039]) and is connected to “the computer

system’s main processor 208” and “the computer system’s RAM 210” (id.) and is

therefore a “coprocessor” according to the definition provided by the ’115 patent.

Compare ’115 patent, 2: 58-67 with Parsons, [0056] (disclosed market platform

75

600 “offloads much of the data processing performed by the GPPs of the

functional units 102 to reconfigurable logic.” In addition, the reconfigurable logic

device is connected to other system components and therefore “operates in

conjunction with other components in a computational system have a main

processor,” as defined in the ’115 patent.

178. Reconfigurable logic device 202 is therefore a “coprocessor”

according to the definition in the ’115 patent because its “a computational engine

designed to operate in conjunction with other components in a computational

system having a main processor.” ’115 patent, 2:58-67. While Parsons does not

use the term “coprocessor” to describe the disclosed reconfigurable FPGA devices,

the ‘673 provisional incorporated by reference into the ’115 patent (’115 patent,

1:12-16) in fact does. Ex. 1003, 37 (“An exemplary platform in which the

disclosed pipelines may be deployed is the coprocessor architecture disclosed in

the 2008/0243675 publication”—i.e., Parsons).

179. Thus, Parsons’s Modified-OBS performing the disclosed functionality

and implemented on a reconfigurable FPGA device configured to communicate

with a system’s main processor meets the claimed “coprocessor.”

ii. “an order engine and a price engine”

180. The ’115 patent uses the term “engine” to describe a wide range of

computational elements, from the coprocessor to other elements of varying size,

76

complexity and function, e.g., “exchange matching engines,” “basket calculation

engines,” “compression engines,” “sorting engines,” “hash engine,” etc.

’115 patent, 2:58-594:5-6, 9:45, 13:13-14, 18:27, 35:65. Thus, “engine” in the

patent is set of computational elements that perform a particular function. Thus, a

POSA would have understood the claimed “order engine” and “price engine” to be

computational elements that perform the respective functions recited for them in

claim 43. Neither “order engine” nor “price engine” is defined in the ’115, nor a

term of art. Id. Thus, a POSA would have understood the claimed “order engine”

and “price engine” to be computational elements that perform the respective

functions recited for them in claim 43

181. In the ’115 patent, both the order engine and the price engine are

disclosed as part of the same ONPA module and are characterized by what data

structures they respectively maintain. Id., 20:25-32. (“In the preferred

embodiment, parallel engines update and maintain the order and price aggregation

data structures parallel”). Parsons’s OBC also updates and maintains order and

price aggregation data structures and therefore includes an order engine and a price

engine for the same reasons.

182. Specifically, the financial instrument records maintained by Parsons’s

OBC store the order books for each financial instrument in an array of sub-records

that include order entries for each outstanding order and price entries storing

77

aggregated order information at each price point. Parsons, [0071], [0096]. This

array of sub-records is updated in real-time based on order information in the

message stream from the different trading venue to keep the order books up-to-

date. Id.

183. To maintain the book for each financial instrument, Parsons’s OBC

employs two data structures: 1) an order data structure comprising an array of sub-

records that define individual order entries for that financial instrument sorted by

price; and 2) a price aggregated data structure comprising entries storing the total

number of available orders at each price point. Id., [0071], [0096].

184. Specifically, the order data structure comprises a price sorted “array

of sub-records that define individual price or order entries for that financial

instrument” (id., [0071]). This price-ordered data structure for each outstanding

order corresponds to the example conventional order book construction illustrated

in Fig. 2(a) (below) referenced in the background of the ’115 patent as traditionally

maintained by downstream components (’115 patent, 4:1-7, 63-67).

78

185. The reconfigurable logic of Parsons’s OBC that updates this order

data structure (Parsons ([0071], [0096])—i.e., the claimed “plurality of limit order

records”—meets each of the limitations of the claimed “order engine” recited in

limitation [43C], as discussed further below in section VII.A.3.d.

186. Similarly, Parsons’s price-aggregated data structure—i.e., “entries that

are indicative of the total number of orders at each price point” (Parsons, [0071])

corresponds to the other example conventional order book construction illustrated

in Fig. 2(b) (below) of the ’115 patent’s background storing aggregated orders

(total order count and share size) at each unique price point.

79

187. The reconfigurable logic of Parsons’s OBC that updates this price

aggregated data structure (Parsons ([0071], [0096])—i.e., the claimed “plurality of

price point records”—meets each of the limitations of the “price engine” recited in

limitation [43D], as discussed in detail in section VII.A.3.e.

188. Parsons’s reconfigurable logic device implementing Parsons’s OBS

(i.e., the claimed “coprocessor”) meets [43A] because the OBC is the caching

module in the FAM pipeline loaded thereon (see section VI.A, above) and so

includes the OBC’s “order engine” and “price engine,” which also perform their

respective operations in parallel, as discussed in section VII.A.3.g, below, in

connection with limitation [43F].

189. This mapping is consistent with the ’115 patent that maps the “order

engine” and the “price engine” to the engines that update and maintain the order

and price aggregation data structures, respectively—in parallel in the preferred

embodiment. ’115 patent, 20:25-30.

80

190. The Modified-OBC also meets limitation [43A] because it assigns

order sub-record updates and price-aggregated sub-record updates to different

update engines operating in parallel so that the operations recited in [43C] (as

discussed further below in section VII.A.3.d) and [43D] (as discussed in detail in

section VII.A.3.e) are also performed in parallel and thus meets limitation [43F], as

discussed in section VII.A.3.g, below.

c. [43B] “wherein the coprocessor is configured to
receive streaming data representative of a plurality of
limit order events pertaining to a plurality of financial
instruments”

191. Like all of the reconfigurable logic devices disclosed in Parsons, the

input source is “financial data stream 106” (also referred to as “feed source” or

“feed stream 106,” or simply “stream 106,” Parsons, [0006], [0040], [0057]-

[0060], [0071]) received from the various financial market exchanges being

tracked (also referred to as trading venues).

192. Parsons discloses that this financial data stream 106 “comprises a

series of messages that individually represent a new offer to buy or sell a financial

instrument, an indication of a completed sale of a financial instrument, …

notifications of corrections, and the like,” each of which reports on an event

regarding a limit order. Id., [0006].

81

193. These market events reported by the exchanges (e.g., “new offer[s] to

buy or sell a financial instrument,” “a completed sale of a financial instrument,”

etc.)—referred to as “order add, modify and delete events” in the ’115 patent

(’115 patent, 3:50-62)—are referred to as “quote,” “trade,” and “cancel” events in

Parsons ([0125]). Stream 106 therefore includes “streaming data representative of

a plurality of limit order events pertaining to a plurality of financial instruments.”

194. Parsons’s reconfigurable logic device implementing Parsons’s OBS

(i.e., the claimed “coprocessor”) maintains its order books in real-time by

processing “update messages” that include “order information for each instrument

[] received from a variety of different trading venues in stream 106.” Parsons,

[0070]-[0071], [0096].

195. In particular, Parsons’s OBS maintains “a sorted list of bids and offers

associated with all outstanding orders” that is updated based on the “order

information for each financial instrument” received from the different trading

venues via stream 106. Id., [0071]. These outstanding orders are limit orders (as

opposed to market orders) because a “bid” specifies the maximum price a buyer is

willing to pay for a specified number of shares, and an “offer” (also referred to as

an “ask”) specifies the minimum price at which a seller is willing to sell a specified

number of shares—i.e., the definition of a limit order. ’115 patent, 3:55-59 (“As

used herein, a ‘limit order’ refers to an offer to buy or sell a specified number of

82

shares of a given financial instrument at a specified price.”). Parsons does not use

the term “limit order” but a POSA would have understood Parsons’s bids and

offers to comprise limit orders. Parsons maintains order books with orders sorted

by price and price-aggregated records of orders for a plurality of financial

instruments at various prices. These are limit orders.

196. A POSA would have understood that this “order information” is the

same financial market data stream from the different trading venues also includes

the new offers to buy or sell financial instruments, trades of financial instruments,

etc.—i.e., the quote, trade and cancel events reported by the various exchanges.

Parsons, [0006], [0071], [0096], [0125]. Thus, the reconfigurable logic

implementing Parsons’s OBS is configured to “receive streaming data

representative of a plurality of limit order events pertaining to a plurality of

financial instruments.” Id., [0071], [0096]. Thus, the Modified-OBS meets

limitation [43B] because it receives the “order information” in stream 106 that

includes “a plurality of limit order events pertaining to a plurality of financial

instruments.”

197. Parsons’s OBC is configured to update order books based on

“streaming messages” from a parsing module. Id., [0096]. Parsons describes a

number of parsing modules that receive stream 106 and parse the stream into its

constituent messages. Id., [0103]-[0105], [0113] (Message Parser FAM 1102

83

ingests a stream of messages, parses each message into its constituent fields, and

propagates the field to downstream FAMs.”).

198. Thus, the message stream from the parsing module provided as the

“streaming messages” (id., [0096]) to Parsons’s OBC is the parsed input stream

106 that includes the order information so that the message stream process by the

OBC also includes the claimed “streaming data representative of a plurality of

limit order events pertaining to a plurality of financial instruments.” Id., [0112],

Fig. 11.

d. [43C] “wherein the order engine is configured to
[43C.1] (1) access a plurality of limit order records
based on the streaming limit order event data, [43C.2]
(2) compute updated limit order data based on the
accessed limit order records and the streaming limit
order event data”

199. The Modified-OBC meets limitation [43C] because Parsons’s OBC

updates a cache of financial instruments records having an array of sub-records

storing all outstanding orders for each financial instrument based on the limit order

events (“order information”) received from the different trading venues. Id.,

[0006], [0071], [0096].

200. Limitation [43C.1] recites “the streaming limit order event data,”

which refers to the “streaming data representative of a plurality of limit order

events” that is recited in [43B]. Parsons’s Modified-OBS pipeline processes this

84

order information using a parsing module that parses the event stream into its

constituent messages and provides them as a “message stream” to the OBC to

update the order books. Id., [0096], [0103]-[0105], [0113] (“Message Parser FAM

1102 ingests a stream of messages, parses each message into its constituent fields,

and propagates the field to downstream FAMs.”). Thus, the message stream on

which the Modified-OBC’s update operations are performed includes the “the

streaming limit order event data” (as claimed) parsed into limit order event

messages. Id., [0071], [0096].

201. As discussed above, Parsons’s Modified-OBC maintains a cache of

records for each of a plurality of financial instruments storing a “sorted list of the

bids and offers associated with all outstanding orders for that instrument,” which

are limit orders.

202. Additionally, a POSA would have understood that “outstanding

orders” refer to limit orders since shares in a market order are typically traded

immediately at the best bid or ask price on the market, and are therefore not

maintained in an order book of “outstanding orders” (the impact of market order

trades are however reflected in the order book by updating the number of shares in

the limit order against which the market order trade was transacted).

203. To store this sorted list of limit orders, Parsons’s OBC maintains a

cache of financial instrument record that each include a price-sorted array of sub-

85

records that define the individual order entry. Id., [0096]. Parsons’s OBS is

configured to update financial instrument records in real-time based on the “update

messages” (id., [0071]) received from the trading venues reporting on new limit

orders and trades (i.e., the “order information” (id.) from the exchanges reporting

on trade, quote and cancel events). Id., [0006], [0071], [0096], [0125].

204. A POSA would have understood Parsons to be describing the known

limit order data structure like the conventional “full order depth” data structure of

the conventional order book construction illustrated in Fig. 2(a) of the ’115 patent

(below) and described in its background, which likewise stores an array of records

having order entries for the bids and offers for each outstanding offer for that

financial instrument sorted by price.

86

205. Claim 43 does not require any particular field or fields to be contained

in the “plurality of limit order records,” and the ’115 patent makes clear that limit

order records can be “configured to have more or fewer and/or different data

fields” (’115 patent, 17:25-27) than the example limit order record pictured in Fig.

20 of the ’115 patent.

206. Thus, Parsons’s array of sub-records that “define” the individual order

entries for all outstanding orders (bids and offers sorted by price) meets “a plurality

of limit order records.” Parsons, [0071], [0096]. To update “the fields of the sub-

records” with “information contained in the streaming messages,” the sub-records

to be updated are first accessed. Id.

207. Parsons discloses that the OBC uses a direct record key number

mapped from the symbol for each financial instrument to directly address the

corresponding financial instrument record in the cache. Id., [0093]-[0094]. The

Modified-OBC retrieves order sub-records from the addressed financial instrument

record and loads order sub-records into corresponding record buffers. Id., [0125]-

[0132]. The Modified-OBC’s update engines assigned to perform updates to order

sub-records access the order sub-records stored in the record buffer to perform

updates according to the information in the message stream. Id., [0125]-[0131]-

[0132].

87

208. Thus, the Modified-OBC is configured to “access a plurality of limit

order records based on the streaming limit order event data,” because the order

sub-records accessed from the record buffers are those whose fields are updated

based on the order information (i.e., “limit order event data”) extracted from the

message stream. Id., [0071], [0096]. Therefore, the Modified-OBS meets

limitation [43C.1].

209. As discussed above, Parsons’s OBS updates its order books in real-

time in response to order information indicating new limit orders and trades (e.g.,

quote, trade and cancel events) received from the different trading venues via

stream 106. Id., [0006], [0071], [0096].

210. The operations involved in keeping order books up-to-date based on

update messages from the exchanges were well-known. Ex. 1009 (Korhammer),

9:27-49 (describing updates in response to new order, change order and delete

order events.). The ’115 patent acknowledges this in its background. ’115 patent,

3:50-4:67. Specifically, new limit order records are added as new limit order

events are reported (and records removed when an order is fully satisfied), and

existing limit order records are modified to reflect trades on a limit order for less

than the full order size. Korhammer, 9:27-49. This is the minimal set of

operations that would be performed to update order books.

88

211. Similarly, Parsons discloses update operations performed by the OBC

to update the cache of financial instrument records in response to each event type.

Performing any one of these operations meets the claimed “compute updated limit

order data.” Parsons, [0006], [0071], [0096] (“The fields of the sub-records are

updated in real-time with information contained in streaming messages … Sub-

records associated with a record are created and removed in real-time according to

information extracted from the message stream”).

212. The update operations performed by Parsons’s OBC (and thus the

Modified-OBC) meet [43C.2] at least because they are the same operations

performed by the ’115 patent’s ONPA module in response to add, modify and

delete events so that computing “updated limit order data based on the accessed

limit order records and the streaming limit order event data” covers Parsons’s

order book updates to the same extent it covers those same operations in the

’115 patent. ’115 patent, 17:52-18:5.

213. Specifically, the ’115 patent states that “[o]nce the record is located,

the ONPA module updates fields in the record and copies fields from the record to

the message, filling in fields as necessary to normalize the output message…the

ONPA module may modify the type of the message type. Id., 17:52-18:5. None of

these operations are described as computing “updated limit order data,” a term that

is nowhere used in the specification (the term “limit order data” is used to

89

generically describe data contained in the input stream, see e.g., id., 4:41, 6:51-

7:26, 9:62, 12:11-34). Each of these operations are performed by the Modified-

OBC. Parsons, [0096], [0100], [0125].

214. The only specific update described in the ’115 patent is in response to

a trade of shares for less than the full order. ’115 patent, 17:64-18:5. In this

“scenario, if the outstanding order was for 150 shares, the ONPA module would

update the size field 2014 of the limit order record to replace the 150 value with

50 reflect [sic] the removal of 100 shares from the order” (id.). The Modified-

OBC also updates the fields of the sub-records in real-time based on trade events in

the message stream. Parsons, [0071], [0096], [0125].

215. A POSA would have understood that to maintain order books for “all

outstanding orders” (id., [0071]) as new orders and trades are streamed from the

exchanges (id., [0006], [0071]), Parsons’s update operations (“the fields of the sub-

records are updated in real-time with information contained in streaming

messages” (id., [0096]) would have included updating these fields to accurately

reflect available shares in an outstanding order in response to a trade event for less

than all of the shares in the order’s bid or ask. Id., [0071], [0096].

216. Specifically, A POSA would have understood that Parsons’ updating

would have included computing a new quantity value for an outstanding limit

order in response to a trade on that order so that the corresponding record

90

accurately reflects the current state of the outstanding order on the market—and in

any event, doing so would have been obvious to a POSA as a conventional

approach consistent with the types of computations Parsons discloses offloading to

reconfigurable logic. Id., [0011]-[0015], [0056], [0071] (OBC is “configurable to

perform updates by “computing a new value based upon message and/or record

or sub-record fields as guided by a programmable formula” by programming its

data dictionary), [0096].

217. Otherwise, the order books for each financial instrument maintained

by Parsons’s OBS would not accurately reflect the state of “all outstanding orders

for that financial instrument (id., [0071])” for which Parsons’s OBC is configured

to update in real-time.

218. Parsons’s disclosure of the same types of operations performed on a

retrieved limit order record disclosed in the ’115 patent (all of which are the

conventional operations performed to maintain order books) reinforces that the

Modified-OBC meets limitation [43C.2].

219. As discussed above, the ’115 patent does not use the term “updated

limit order data,” (the term “limit order data” is used to generically describe data

contained in the input stream, ’115 patent, 4:41, 6:51-7:26, 9:62, 12:11-34). The

’115 patent merely describes a number of generic operations performed by its

ONPA module in connection with a located limit order record. Id., 17:52-18:5

91

(“ONPA module updates fields in the record and copies fields from the record to

the message, filling in missing fields as necessary to normalize the output

message).

220. Claim 43 is therefore not limited to any particular type of computation

nor is the claimed “updated limit order data” limited in any way, so that creating a

new sub-record with limit order data extracted from a new order event in the

message stream (Parsons, [0096]) also meets limitation [43C.2], as this operation

involves multiple computations to extract the limit order data from the “update

message” (id., [0071]) in the message stream and populate the fields of the newly

created order sub-record (i.e., “moving the data field from the message to the sub-

record,” (id.)) with the limit order data of the new limit ordered reported. Id.,

[0096].

221. This new sub-record is “updated limit order data” that is computed to

update the accessed financial instrument record based on the limit order event data

in the message stream, so that Parsons’s OBC also meets limitation [43C.1] when

it creates a new order sub-record for the accessed financial instrument record to

store the new limit order reported by the exchange. Id., [0071], [0096].

222. As discussed above, one additional example of how limitation [43C.2]

is met, a POSA would have understood the Modified-OBC computes a new

quantity value for an outstanding limit order in response to a trade that partially

92

(but not fully) fulfills that order, so the updated record accurately reflects the

current state of the outstanding order. Id., [0011]-[0015], [0056], [0071] (OBC is

“configurable to perform updates by “computing a new value based upon message

and/or record or sub-record fields as guided by a programmable formula” by

programming its data dictionary), [0096]. To the extent Parsons is not considered

to disclose this, that would have been the conventional and obvious way to update

an order book of the type Parsons describes.

223. Thus, the Modified-OBS meets [43C.2] for any of these update

operations performed by the Modified-OBC.

e. [43D] “wherein the price engine is configured to
[43D.1] (1) access a plurality of price point records
based on the streaming limit order event data, and
[43D.2] (2) compute updated price point based on the
accessed price point records and the streaming limit
order event data”

224. Parsons’s Modified-OBS performs price aggregation where “orders at

the same price point are aggregated together to created entries that are indicative of

the total number of orders available at each price point.” Parsons, [0071]. The

’115 patent describes its price aggregation functionality in almost identical terms

as Parsons. For example, compare ’115 patent, 18:6-16: “the OPNA module may

additionally perform price aggregation in order to support price aggregated views

of the order book,” with Parsons, [0071], describing that the OBS is configured to

93

present the order book in different views including: “a price aggregate view where

orders at the same price point are aggregated together to create entries that are

indicative of the total number of orders available at each price points”), and

Parsons, [0096] “The OBC includes the ability to generate various views of the

book for a financial instrument including but not limited to a price-aggregated

view.”

225. As discussed above, each financial instrument record in the cache

maintained by Parsons’s OBC stores an array of sub-records having an entry for

each outstanding order for that financial instrument. Id., [0071], [0096]. The array

of sub-records for each financial instrument record also store the price-aggregated

entries for that financial instrument. Specifically, Parsons discloses that each

financial instrument record “consists of an array of sub-records that define

individual price or order entries for that financial instrument.” Id., [0096]. That is,

each sub-record in the array stores either an order entry or a price entry. A POSA

would have understood that the price entries correspond to the aggregated price

point “entries that are indicative of the total number of orders available at each

price point.”

226. Parsons’s price-aggregated entries store the same information as the

ONPA’s example price point records (also referred to as “price aggregation data

structures,” ’115 patent, 20:25-26)—i.e., the number of outstanding orders at each

94

price point. Id., 18:6-16 (“[in] this data structure, a record is maintained for each

unique price point in an order book” and “preferably” contains “the price, volume

(sum or order sizes at that price []), and order count (total number of order at that

price).”).

227. A POSA would have understood Parsons to be describing the known

price-aggregated data structure like the conventional “price-aggregated depth” data

structure of the conventional order book construction illustrated in Figure 2(b) of

the ’115 patent (below) and described in its background, which likewise stores an

array of records having price-aggregated entries for aggregated orders at each price

point sort by price.

228. At minimum, Parsons’s “entries that are indicative of the total

number of orders available at each price point” (Parsons, [0071]) include the

“Price” and “Count” fields in the exemplary price point records in Figs. 21(a) and

21(b) of the ’115 patent. Claim 43 does not require the claimed price point records

95

to include any particular field and the ’115 patent makes clear that price point

records can “have more or fewer and/or different data fields.” ’115 patent, 20:22-

24. Thus, the price-aggregated sub-records having price entries for each price

point meet the claimed “plurality of price point records.”

229. Additionally, a POSA would have understood that entries “indicative

of the total number of orders available at each price point” would have included

the aggregated number of shares in those orders and not strictly the order count, as

the total number of shares available at each price point is the price-aggregation

information of primary interest to traders. At minimum, this would have been the

obvious way to implement Parsons’s OBC to support the disclosed price-

aggregated views. Thus, a POSA would have understood Parsons’s price-

aggregated sub-records to store at least the same information that the ’115 patent

says its price-aggregated data structures “preferably contain.” ’115 patent, 18:11-

16.

96

230. As discussed above in connection with updating order sub-records, to

update the fields of the price-aggregated sub-records, the sub-records are first

accessed by directly addressing the corresponding financial instrument record

(Parsons, [0093]-[0094]) and loading the price-aggregated sub-records to be

updated into corresponding record buffers. Id., [0125]-[0132]. The Modified-

OBC’s update engines assigned to perform updates to price aggregated sub-records

access the price-aggregated sub-records from the record buffer to perform updates

according to the information in the message stream. Id., [0125]-[0131]-[0132].

231. Thus, the Modified-OBC is configured to “access a plurality of price

point records based on the streaming limit order event data,” because the price-

aggregated sub-records accessed in the record buffers are those whose fields are

updated based on the order information (i.e., “limit order event data”) extracted

from the message stream. Id., [0071], [0096]. Therefore, the Modified-OBS meets

limitation [43D.1].

232. The Modified-OBS maintains order books (including the price-

aggregated sub-records) based on the messages reported from the exchanges, and

the Modified-OBC does so by updating, creating and removing sub-records to keep

the order books up-to-date in real-time. Id., [0006], [0071], [0096]. Parsons does

not describe the simple computations involved in computing updated price point

data to maintain price-aggregated records but those computations were known.

97

However, the operations involved in keeping order books that maintain price-

aggregated data structures up-to-date were also known to a POSA as discussed

above.

233. Specifically, to ensure that order books accurately reflect up-to-date

aggregated order information at each price point at which shares are available via

the outstanding limit orders, new price-aggregate records are added when new

limit orders at a new price point are reported, and existing price-aggregated records

are modified to reflect new total share volume in response to new limit orders and

trades of shares reported at an existing price point.

234. The Modified-OBC is configured to perform all of these types of

update operations, and performing any one of them meets the claimed “compute

updated price point data.” Id., [0006], [0071], [0096] (“The fields of the sub-

records are updated in real-time with information contained in streaming

messages … Sub-records associated with a record are created and removed in real-

time according to information extracted from the message stream”).

235. For example, a POSA would have understood that updating “the fields

of the sub-records…in real-time with information contained in streaming

messages,” (id., [0096]) would have included computing a new total share volume

and/or new total order count in response to new limit order and trade events

reported by the exchanges so that the corresponding financial instrument record

98

accurately reflects the price-aggregated order information at each available price

point.

236. To the extent that Parsons is not considered to explicitly disclose this,

that would have been the conventional and obvious way to maintain up-to-date

price-aggregated records so that the order book reflects current information. Id.,

[0071], [0096]. For example, to maintain the conventional price-aggregated depth

structure illustrated in Fig. 2(b) of the ‘115 patent, each of the values store would

have been updated to reflect changes to those records resulting from new limit

orders and trades being reported from the exchanges at new and existing price-

points, as discussed above. These computations would have been performed on

order books in which such price-aggregated data structures were maintained,

otherwise they would not reflect current financial market information.

237. Parsons’s OBC is disclosed as being configurable to perform such

computations by programming the data dictionary to compute new values based on

information extracted from the message stream and accessed sub-records. Id.,

[0096]. The obvious way to implement these computations in Parsons’s order

book server would have been to program the OBC (via its programmable data

dictionary) to compute updated price-aggregated share volume and order count

(i.e., “updated price point data”) by summing the number of shares in a new limit

order message in the message stream at an existing price point with the share

99

volume/size field and incrementing the order count field in the accessed price-

aggregation entry at that price point (i.e., “based on the accessed price point

records and the streaming limit order event data”). Id., [0096].

238. Similarly, the obvious way to implement Parsons’s OBC would have

been to also program the OBC to subtract the number of shares in a trade event at

an existing price point reported in the message stream from the share volume/size

field in the accessed entry, and if the trade is for all the shares in an order,

decrementing the order count. Id., [0096].

239. Thus, the Modified-OBC (and therefore the Modified-OBS)

computing any of these updated price-aggregated values (i.e., “updated price point

data”) based on new order and/or trade events extracted from the message stream

and the accessed price-aggregated sub-record (i.e., “based on the accessed price

point records and the streaming limit order event data”) meets limitation [43D.2].

f. [43E] “wherein the coprocessor is further configured
to enrich the streaming limit order events with
financial market depth data based on the computed
updated limit order data and price point data”

240. The ’115 patent describes that streaming limit order events are

“enriched” by modifying fields in, or appending fields to, the input message stream

with updated information pertaining to the corresponding limit order events.

100

’115 patent, 18:22-26; 18:61-63. Parsons discloses this same enriching of the

message stream.

241. The purpose of Parsons’s market platform, including the order book

server, is to enrich the financial data stream received from the different trading

venues and provide the enriched financial market data to downstream traders at

hardware speeds. Parson, [0013]-[0014], [0056], [0069]-[0071], [0096], [0162]

(explaining that using platform 600, a trader “can obtain a variety of information

on the financial markets with less latency”).

242. Specifically, Parsons’s order book server enriches the received

streaming limit order events with financial market depth data because the OBC

provides real-time updates on each financial instrument’s order book to support

composite views (i.e., “a sort order of the price or order entries for a financial

instrument across multiple exchanges”), provides real-time updates for price

aggregated views (i.e., total number of shares and orders at each price point), top-

slice views, and can also synthesize “top-of-book” quote streams, etc. Id., [0071],

[0096].

243. Parsons explains that each of its caching modules (including the OBC

and LVC) that maintains financial instrument records has the ability to provide a

user with a view of the data at a particular instance in time, and to augment limit

order event messages in the message stream with updates. Parsons describes a

101

number of ways the message stream can be updated (described below), including

adding message fields and modifying message fields such as from a

message/record updater that Parsons describes in the LVC and that a POSA also

would have been led to use in implementing the OBC. Id., [0060], [0062], [0071],

[0096], [0100], [0125].

244. Parsons’s teaches using “programmatic field generation” operations

with the OBC to “augment messages received from a message parsing module with

additional fields” based on a formula that can reference other fields in the message

or any record maintained by the caching module. Id., [0100]. See also id., [0096]

on computing new values.

245. Parsons’s also teaches using multiple parallel update engines

configured to perform specific update operation to message fields in the message

stream according to programmed business logic (id., [0125], [0132]), as discussed

in section VII.g, below. Parsons discloses using a Message Formatter FAM to

provide an output stream to downstream subscribers by applying updates to the

message stream performed by upstream FAMs (e.g., the OBC) to the original

message stream by replacing fields from the original message stream with the

updated fields and/or appending fields from the updated messages to the original

message stream. Id., [0108]. Thus, to provide real-time updates to downstream

providers, updates made by Parsons’s OBC to the messages streamed through the

102

pipeline can be applied to the original message stream by the Message Formatter

FAM by replacing fields/appending fields with the updates from the OBC so that

the enriched data stream from the OBC can be put in a format expected by

downstream subscribers. Id., [0108], [0138].

246. As an example, a trader may seek a current view of the financial

market data for a particular a particular financial instrument. Id., [0071], [0096],

[0160]. A current view can quickly become outdated as market conditions change

for that financial instrument, which is why speed is of the essence for traders. Id.,

[0004]-[0005]. A user requesting views of the order book for a particular financial

instrument receives a refresh image of the order book corresponding to the

requested view for that instrument and thereafter receives real-time updates via the

output stream provided by the OBS. Id., [0071], [0096], [0160].

247. A POSA would have understood that after a trader requests a view of

a financial instrument, when the caching module’s “message/record updater”

computes an update for the data it maintains, it updates not only the cached

records, but it also updates the message stream by modifying and/or augmenting

the message in the message stream that triggered the update with these updates in

real-time so that the trader’s view of the financial market data stays current and up-

to-date. Id., [0005] (explaining that delays can lead to missed opportunities and

103

speed of information delivery can translate into significant sums of money);

[0162], [0071], [0100], [0125].

248. Parsons does not describe the specific updates that the OBC performs

on the message stream, but discloses that the caching modules update messages in

the message stream by modifying message fields or augmenting messages to

include additional fields based on other fields in the message or records maintained

in the cache. Id., [0100], [0125], [0132]. A POSA would have understood that the

updated limit order and price-aggregated data computed by the OBC would have

been applied to update the order information in the message stream to deliver these

real-time updates to downstream subscribers with reduced latency. Id., [0013]-

[0014], [0056], [0069]-[0071], [0096], [0162] (explaining that using platform 600,

a trader “can obtain a variety of information on the financial markets with less

latency”). That is, a POSA would have understood Parsons to describe that the

updates to the message stream are the same updates the OBC makes the order

books it maintains (i.e., the cache of financial instrument records that it updates in

real-time). Id.

249. To the extent Parsons is not considered to explicitly teach that the

OBC has a message/record updater that updates messages in the message stream

with the updates it computes for the order book records maintained by the OBC,

the obvious way to implement Parsons’s OBS would have been to configure the

104

Modified-OBC to modify/augment the message stream with the order book

updates that it computes so that the output stream also reflects those updates and

the current state of the updated order books. Specifically, the obvious way to

implement Parsons’s OBS and thus the Modified-OBC to provide the disclosed

updates (e.g., real-time updates to composite and price aggregation views, top-slice

views, etc) is to use the techniques explicitly disclosed by Parsons to update the

message stream and construct an output stream in a format expected by

downstream subscribers. Id., [0108], [0132], [0136]-[0138].

250. The stated purpose of Parsons’s market platform is to replace all of

the functional units 102 of the distributed market platform in Fig. 1 with a reduced

number of hardware-accelerated appliances (e.g., FPGAs) so that this same

functionality can be offloaded from the main processor and performed at hardware

speeds. Id., [0010]-[0015], [0056], Fig. 6. This purpose would have been

frustrated were computations performed to update the order books not propagated

to downstream subscribers via the output message stream; the undesirable

alternatives would be for these computations to have been be repeated by

downstream components or additional memory accesses performed by the main

processor to obtain updates from the OBS. Thus, a POSA would have

implemented the Modified-OBC so that when the Modified-OBC computes an

update to its order and/or price-aggregated sub-records triggered by a streaming

105

limit order event message, the Modified-OBC augments that streaming limit order

event message with the computed update data using Parsons’s disclosed message

modify/augment techniques. Parsons, [0010]-[0015], [0056], [0096], [0162]. This

would have enabled a downstream trader who previously requested a view of the

order book to keep its order book up to date, by providing the trader with real-time,

reduced-latency information on the current state of the market, which Parsons’s

reconfigurable logic devices are intended to do.

251. The ’115 patent does not use the term “financial market depth data”

in connection with enriching a data stream, but instead uses this term to describe

the information in the input stream from the market exchanges (’115 patent, 5:15-

31, 9:54-63), so appears to use the term broadly to describe any of a wide variety

of market information, including information on outstanding limit orders of a

financial instrument on the market (e.g., the number and price of open buy and sell

orders for a financial instrument), and therefore not limited to derived values.

252. The ’115 defines the similar term “financial market data” (id., 1:63-

2:3), and also uses “financial market data” to describe the messages processed by

the coprocessor to update order books (id., 9:63-10:5 (“Such incoming data [from

the exchanges] preferably comprises a series of financial market data messages, the

messages representing events such as limit orders relating to financial

instruments”), 12:28-34 (the order book update module receives “raw messages

106

1202” that “comprise a stream of financial market data events, of which at least a

plurality comprise limit order events.”).

253. The ‘115 patent does not indicate that it is using the term “financial

market depth data” to mean something different than “financial market data.” To

the extent these terms mean the same thing, the above-discussed order and/or

price-aggregated sub-records the Modified-OBC enriches the stream with meet the

definition of “financial market data”; they are data derived from messages

representing new offers to buy/sell a financial instrument. Parsons, [0071], [0096].

‘115, 1:63-2:3. For example, updates reflecting new limit orders, updates to the

number of shares in an order available in view of a trade, updates on deleted order,

updates to price-aggregated information such as total volume and order count are

all derived from the “update messages” (Parsons, [0071]) in stream 106.

254. Moreover, the updated limit order data and price-aggregated data

computed by Parsons’s OBC is “financial market depth data” at least because it

includes the same information by which the ’115 patent “enriches” limit order

events. For example, the same updated price-aggregated data (e.g., updated total

share volume/order count) computed by Parsons’s OBC is described by the

’115 patent as enriching the corresponding limit order event. Id., 18:61-63.

255. Additionally, the “financial market depth data” the ’115 patent

describes as enriching the streaming order limit events is simply the updated order

107

and price-aggregated information computed for the limit order event in the

message stream, including the same information that Parsons’s OBC computes.

Id., 18:22-26; 18:61-63; 20:61-21:8). Thus, “financial market depth data,” at least

covers the updated order and price-aggregated information computed by the OBC

discussed in connection with limitations [43C.2] and [43D.2] above.

256. Specifically, Parsons’s OBS enriches the data stream with “financial

market depth data,” at least because this information (e.g., with updates to the

number of shares in each individual order, and price-aggregated updates to total

share size/volume and total order count at each price point per sections VII.A.3.d

and VII.A.3.e, above) is the same information used to enrich the data stream in the

’115 patent. ’115 patent, 18:61-63 (“The ONPA module map append the volume,

order count, and price attributes to events when creating enriched limit order

events 1604).

257. Though not limited in this way in the ’115 patent, “depth” data for a

financial instrument is sometimes used to indicate the volume of shares available

in the market at each price level. To the extent financial market depth data is

interpreted to require an indication of volume of shares available, the price-

aggregated data the Modified-OBC enriches the stream with includes volume

information and would also meet this narrower meaning of financial market depth

data.

108

258. Therefore, the Modified-OBS (i.e., the claimed “coprocessor”) is

“configured to enrich the streaming limit order events with financial market depth

data based on the computed updated limit order data and price point data,” because

the Modified-OBC is configured to provide its real-time updates to downstream

subscribers by modifying/augmenting the message from the message stream that

triggered the update using the results of that update, including the computed

updates discussed in connection with limitations [43C.2] and [43D.2].

g. [43F] “wherein the order engine and the price engine
are configured to perform their respective operations
in parallel with each other as the limit order event
data streams through the coprocessor”

259. Limitation [43F] requires that the order engine and the price engine

perform “their respective operations” in parallel. The ’115 patent does not define

operating “in parallel,” but dependent claim 45 makes it clear that operating in

parallel can include processing performed by a pipeline of engines arranged

“downstream” from one another.

260. The Modified-OBC’s order engine and price engine perform their

operations in parallel as required by claim 43. Parsons teaches further parallelism.

The Modified-OBC distributes operations performed on order sub-records across a

corresponding set of “order” update engines (i.e., the “order engine”) and

operations performed on price-aggregated sub-records are distributed across

109

corresponding “price” update engines (i.e., the claimed “price engine,”) as

illustrated in modified Figure 15(a) below using the update engine distribution

scheme based on record type taught by Parsons. Parsons, [0125], [0132], Fig.

15(a).

order record buffer

order
update
engine

price aggregated
record buffer

order
update
engine

price
update
engine

price
update
engine

OBC memory manager

OBC message/record update

(Modified)

order record
price aggregated record

261. As shown, the order sub-records and the price-aggregated sub-records

retrieved from the cache for updating based on the information extracted from the

message stream (id., [0093]-[0094], [0096], [0128]-[0131]) are loaded into their

110

respective record buffers from which order sub-records and price-aggregated sub-

records are accessed and updated in parallel. Id.

262. Claim 43 does not limit the “access” operations recited in limitation

[43C.1] and [43D.1] to any particular storage or manner of accessing, so the

Modified-OBC’s order engine and price engine perform their respective “access”

operations in parallel because the order update engines assigned to perform

operations on order sub-records and the price update engines assigned to perform

operations on price-aggregated sub-records access their corresponding record

buffers in parallel. Specifically, the Modified-OBC’s record/message updater

implements the order update engines and the price update engines to access their

corresponding record buffers in parallel to achieve the benefits Parsons describes

by distributing update operations to different update engines configured to perform

operation on the respective record types in parallel.

263. The updates to the order and price-aggregate sub-records performed

by the OBC include computing the updated limit order and price-aggregated data

recited in [43C.2] and [43D.2]. Thus, the Modified-OBC’s order engine and price

engine perform their respective “compute” operations in parallel because the order

update engines assigned to perform operations on order sub-records and the price

update engines assigned to perform operations on price-aggregated sub-records

111

update their corresponding records accessed from respective record buffers in

parallel.

264. Thus, the Modified-OBC’s order engine and price engine perform

both their respective “access” and “compute” operations in parallel and therefore

meet limitation [43F].

265. I understand that if a claim does not recite sufficient structure, the

claim should be interpreted as a “means-plus-function” claim under the patent

statutes. The claims recite structure at least because a “coprocessor” is a known

structure in the computing arts, and an “engine” is a set of computational elements

that perform a particular function. I also understand that if a term is interpreted as

“means-plus-function,” the structure corresponding to the function needs to be

described in the disclosure to be supported and described in the prior art to meet

such a limitation.

266. The functions recited in claim 43 are all met by Parsons in the manner

detailed above, and the structure relied upon to meet those functions in Parsons is

the same (or equivalent) to the structure the ’115 patent describes. Specifically, the

coprocessor is an FPGA programmed with FAMS (id., [0039]-[0056], Figs. 2, 4(a),

4(b)) which is the same coprocessor structure in the ’115 patent. ’115 patent, 9:54-

12:11, Figs. 8(a), 8(b), 9(a), 9(b).

112

267. With respect to the order and price engines, the structure the

’115 patent specification discloses for implementing each is a firmware application

module (FAM) that programs the coprocessor (e.g., FPGA). Id., 10:26-12:34. The

order and price engines in the Modified-OBS each is implemented the same way,

i.e., on FAMs that program an FPGA. Parsons, [0069]-[0096], [0100], [0125]-

[0138], Figs. 2, 4(a), 4(b)), 11; see also section VI above. Additionally, Parsons is

incorporated by reference into the ’115 patent (’115 patent, 1:20-24 and 1:32-33)

and thus forms a part of the supporting disclosure for the order and price engines.

The ’115 patent does not describe any structure that is not also disclosed in the

same way or equivalently in Parsons.

4. Claim 44

268. Dependent claim 44 depends from claim 43 and merely requires the

coprocessor be selected from a list of three types of coprocessors, which includes a

reconfigurable logic device, of which, an FPGA is an example. Parsons’s OBS is

implemented on a reconfigurable logic device.

Claim 44

[44PRE] The apparatus of claim 43

[44A] wherein the coprocessor comprises a member of the group consisting of a
reconfigurable logic device, a chip-multi-processor (CMP), and a graphics
processing unit (GPU), and

[44B] wherein the order engine and the price engine are deployed on the
member.

113

a. [44A] “comprises a member of the group consisting of
a reconfigurable logic device, a chip-multi-processor
(CMP), and a graphics processing unit (GPU)”

269. Reconfigurable logic devices are the very type of coprocessor

disclosed in Parsons. Parsons, [0060], [0069]-[0070], [0163]-[0165], Figures 2-6.

Parsons’s OBS is implemented as a FAM pipeline loaded onto a reconfigurable

logic device (id., [0056], [0069]-[0071]) and therefore meets one of the

“reconfigurable logic device” alternative recited in the claimed list of members

(which I have been told is called a “Markush group” in legal jargon) and therefore

satisfies this element.

b. [44B] “wherein the order engine and
the price engine are deployed on the member.”

270. Parsons’s OBC is loaded as the caching module FAM in the OBS

pipeline (id., [0056], [0069]-[0071], [0084], [0096]) and includes the order engine

and the price engine and therefore both are “deployed on the member”—i.e., the

reconfigurable logic device.

B. The Challenged Claims Are Rendered Obvious By a
Reconfigurable Logic Device Implementing Both Parsons’s

114

OBC and price Summary LVC FAMs in the Same FAM
Pipeline

1. Parsons’s Market Platform

271. Parsons’s market data platform (600, Fig. 6) consolidates a range of

functionality (id., [0014]) on fewer and smaller reconfigurable logic devices,

including devices 604 and 606 on which a variety of possible Last Value Cache

(LVC) server functionality and an OBS can be implemented, respectively. Id.,

[0011]-[0015], [0056], [0060], [0070], Fig. 6.

LVC Server

Order Book Server

272. As shown in Fig. 6 of Parsons, the LVC server implemented on device

604 and the OBS server implemented on device 606 perform their operations on

115

financial market data 106 in parallel to deliver “a variety of information on the

financial markets with less latency.” Id., [0056], [0162]. Parsons explains that the

system shown in Fig. 6 is merely illustrative, and that a POSA “may choose to

deploy less than all the functionality described herein in reconfigurable logic,” and

may arrange a device to include “some … subset of the functions listed in Fig. 6.”

Id., [0165].

273. Parsons describes a number of different FAM pipelines to implement

the various functionality Parsons describes, such as the pipelines illustrated in

Figs. 7-11. Additionally, Parson discloses that different FAMs that can be used in

different combinations and chained together in different ways to achieve desired

functionality. Id., [0068], [0077], [0082]. An exemplary FAM pipeline for

providing “ticker plant” functionality on device 604 is illustrated in Parsons’s Fig.

11 below.

116

274. This “ticker plant” embodiment employs the price summary LVC

caching module (id., [0084], [0095]), illustrated as Value Cache Update (1106) and

referred to in the description of the ticker plant embodiment as the Last Value

Cache (LVC) Update FAM 1106 (hereinafter “LVC”). Like the OBC, the LVC

performs real-time updates to financial instrument records based on a message

stream from different market exchanges. Id., [0062], [0071].

275. Parsons teaches that it is desirable to minimize the number of FPGAs

to implement the desired functionality, and recognizes that “resource

improvements over time for FPGAs” could allow for “consolidation.” Id., [0011],

[0056], [0165]. Indeed, Parsons even suggests that it may be possible to one day

consolidate “all functionality shown in Fig. 6 [including the OBS and LVC] on a

single system 200” with a single FPGA 202. Id., [0165].

117

2. A POSA Would Have Motivated to Implement Parsons’s
OBS and Price Summary LVC on a Single “Ticker Plant”
FPGA

276. Parsons discloses improving financial market data processing

performance by consolidating operations conventionally distributed over a network

of individual computers on fewer and smaller reconfigurable logic devices (e.g.,

FPGAs). Id., [0006]-[0013], [0056], [0070], [0162].

277. In view of this teaching, a POSA would have been motivated to

implement Parsons’s OBS and LVC in the same FAM pipeline loaded onto

reconfigurable logic device to take advantage of the benefits of consolidation

taught by Parsons. Specifically, a POSA would have been motivated to include

Parsons’s OBC in the ticker plant pipeline of Fig. 11 to consolidate OBS and LVC

functionality on a single device.

278. A POSA would have had reasons to consolidate this functionality on a

single FPGA. For example, both the OBS and the example ticker plant process the

same data stream using the same FAM modules to provide time-sensitive financial

market depth data to assist traders in quickly understanding the current state of the

market. Id., [0062], [0071], [0095]-[0096], [0126], [0162].

279. Integrating this functionality on a single pipeline implemented on one

FPGA provides numerous efficiencies, including reduced hardware (a single

FPGA), reduced processing redundancy (shared FAM modules), reduced software

118

processing by the main processor in distributing this information to entitled

subscribers, and increased simplicity for downstream components (e.g.,

applications and APIs), etc. Id., [0092], [0136]-[0138], [0162].

280. Specifically, by providing the financial market depth data provided by

the OBC and LVC in a single output data stream, less software computation (e.g.,

less inter-process communication, less repeated handling of the same data

elements, etc.) is required by the main processor in collecting and disseminating

this information to entitled subscribers, thus further reducing the latency and

simplifying the process of delivering financial market depth data to subscribers

interested in both types of enhancement.

281. For example, this actual view for Microsoft stock traded on INET

circa 2003 combines both financial market depth information provided by

Parsons’s OBC (highlighted in red) and LVC (highlighted orange). Id., [0071],

[0096], [0126].

119

282. With the market platform 600 in Parsons where the OBC and LVC are

implemented on separate reconfigurable logic devices, the output stream from two

different devices would have to be routed to downstream consumers with

subscriptions to both types of updates. Id., [0133], [0136]-[0138]. By combining

the OBC and LVC on the same pipeline, interest lists that specify the users that are

120

entitled to receive updates for both the OBS and LVC are stored on the same

FPGA and applied to a single output stream constructed by the Message Formatter,

simplifying the processing of the interest lists and routing of appropriate updates to

entitled subscribers.

283. A POSA would have had numerous other reasons to implement

Parson OBC and price summary LVC on the same device. For example, both

caching modules are configured to update and provide time-sensitive financial

market depth data valuable to traders in quickly understanding the current state of

the market, and there are numerous efficiencies in using a single pipeline to

provide this information in an integrated data stream, including reduced hardware,

reduced software processing to distribute this information, etc. Id., [0062], [0071],

[0096], [0126].

284. Additionally, Parsons discloses that there is “tremendous value” in

providing a “variety of information on the financial markets” to traders with the

latency improvements provided. Id., [0162]. Thus, a POSA would have been

motivated to develop a single FAM pipeline to provide OBS and LVC

functionality to traders, which both provide financial market depth information

valuable to traders, from a single reconfigurable logic device that can be

customized via the IEF and Message Formatter according to different subscriber

interests and entitlements in the format expected. Id., [0136]-[0138].

121

285. By providing the financial market depth data provided by the OBC

and price summary LVC in a single output data stream, less software computation

is required by the main processor in collecting and disseminating this information

to entitled subscribers, thus further reducing the latency and simplifying the

process of delivering financial market depth data to subscribers interested in both

types of enhancement.

286. Additionally, Parsons teaches combining functionality in this very

manner, explaining that some subset of the functions listed in Fig. 6 can be

implemented on reconfigurable logic device 604 and a user can add further

functionality by reconfiguring the device “to add any desired new functionality.”

Id., [0165]; see also, id., [0063] (“it should be noted that numerous other FAM

pipelines could be readily devised and developed by persons having ordinary skill

in the art following the teachings herein”). Including the OBC in the ticker plant

pipeline to reconfigure the FPGA to perform both OBS and LVC functionality

would merely have been the known use of loading “hardware templates” onto an

FPGA to reconfigure the device to achieve the predictable result of implementing

additional functionality on the FPGA.

287. Also, Parsons contemplated consolidating OBS and LVC functionality

as it envisioned FPGA improvements would allow “consolidation of all

functionality shown in FIG. 6 on a single system 200.” Id., [0165]. Indeed,

122

Parsons even claims a consolidated device comprising a “firmware application

module pipeline” that is “configured to perform” one or more financial data

processing operations from a set that includes both “a Last Value Cache (LVC)

server operation” and an “order book server operation.” Id., claim 24.

3. Implementing the OBS on the Ticker Plant FAM Pipeline

288. Parsons’s ticker plant embodiment processes financial market data

from different exchanges and enhances the data stream with a host of price point

information including last trade price, best bid price, best ask price, price direction,

high trade price, low trade price, etc., and a number of derived fields such as tick

direction, total trade volume, total trade volume and bid and ask, volume-weighted

average price (VWAP), etc. Id., [0126].

289. A POSA seeking to consolidate this price summary functionality with

OBS functionality would have added the OBC “hardware template” (id., [0077])

onto the pipeline as expressly taught by Parsons. Id., [0165] (“to add additionally

functionality to device 604, [a user] can do so by simply re-configuring the

reconfigurable logic of system 200 to add any desired new functionality”).

290. The same Message Parser, Symbol Mapping, Entitlement and

Filtering FAMS illustrated in Fig. 11 for the LVC are also described for use with

the OBC [0093]-[0094], [0096], so that adding OBS functionality by loading the

OBC into the pipeline would have required minimal and straightforward changes

123

to the pipeline. Id., [0044] (“FAMs can also be flexibly reprogrammed to change

the parameters of their data processing operations”). The Message Formatter FAM

is disclosed as constructing an output stream by combining updated message

streams from multiple upstream FAMs with the original message stream, and

therefore would have been the obvious choice to combine the updated message

streams from the OBC and LVC. Id., [0108].

291. Thus, it would have been well within the skill of a POSA to configure

the FAM pipeline to add OBS functionality to the “ticker plant” embodiment

illustrated in Fig. 11 by including the OBC in the FAM pipeline and

reprogramming the FAM modules to the extent needed, the simplicity of which is

in fact touted by Parsons. Id., [0044], [0068], [0077], [0083], [0163], [0165].

292. As discussed above, the LVC and OBS processing is performed in

parallel on separate reconfigurable logic devices to deliver low latency market

information to traders. Parsons, [0056], [0162], Fig. 6. A POSA would have been

motivated to maintain this parallel processing when consolidating OBS and LVC

functionality on a single FPGA to maintain high throughput and low latency.

293. Parsons also teaches arranging FAMs in parallel in pipelines carrying

out a variety of data processing tasks. Id., [0106]-[0111], Figs. 9, 10). Thus, one

obvious way to implement a FAM pipeline to perform OBS and LVC functionality

to maintain parallel operation is to arrange the OBC and LVC in parallel, as shown

124

below in Figure 7, which is the ticker plant pipeline of Fig. 11, modified to include

the OBC.

Figure 7: Ticker Plant Server (“TPS”) With OBC and LVC Update Modules

Figure 11
(Modified)

294. This FAM pipeline loaded on a reconfigurable logic 202 (e.g., an

FPGA implemented printed circuit board 400, Parsons, [0060], [0069]) is referred

to herein as the Ticker Plant Server (TPS). It should be appreciated that the

resource limitations mentioned in connection with consolidating all of the

disclosed functionality onto a single FPGA (id., [0165]) would not have presented

an obstacle to implementing the TPS since it combines only a small subset of the

functionality that was distributed across seven different devices in the disclosed

125

market platform (i.e., reconfigurable logic devices 604, 606, 608, 610, 612, 614

and 616). Id., [0057], [0060], [0070], [0078]-[0082].

295. The TPS combines only a subset of the functionality disclosed as

being implemented each of devices 604 and 606. Id., [0060], [0070]. Thus,

reconfigurable logic technology as of 2008 was more than sufficient to support the

TPS for at least the reason it was sufficient to support the functionality disclosed as

being implemented on each individual reconfigurable logic devices 604 and 606.

Specifically, FPGA technology as of 2008 was sufficient to store the financial

instruments records maintained by the OBC and the LVC and for the supporting

FAMs in the TPS pipeline. The TPS would have needed less resources than those

to support the suite of functionality implemented on device 604, for example, or

the suite of services disclosed as implemented on device 606.

4. Claim 43

296. Several of the limitations are met by an FPGA implementing the TPS

for the same reasons an FPGA implementing the OBS meets those limitations.

Thus, for several limitations below cross reference is made back to the analysis in

above for the FPGA implementing an OBS, and the cross-referenced analysis is

expressly incorporated into the analysis below.

297. An FPGA implementing the TPS meets all of the limitations of

challenged claim 43.

126

a. [43PRE] “An apparatus for applying specific
computer technology to reduce latency and increase
throughput with respect to streaming data
enrichment”

298. If the preamble is deemed limiting it is met by a Parsons FPGA

implementing the TPS (hereafter “the TPS coprocessor” or the “TPS FPGA”) for

much the same reasons the preamble is met by an FPGA with the Modified-OBS

as discussed above in VII.A.3.a (an FPGA is “specific computer technology” that

reduces latency and increases throughput with respect to streaming data

enrichment). See also VII.A.3.f in the discussion below demonstrating how the

TPS coprocessor enriches the streaming data.

b. [43A] “a coprocessor that includes an order engine
and a price engine”

299. As discussed in section VII.B.3, the TPS is implemented on a

reconfigurable logic device using reconfigurable logic 202 implemented on board

400 (Parsons, [0060], [0069]) and therefore is a “coprocessor” for the same

reasons discussed in section VII.A.3.b above.

300. The TPS coprocessor includes the computational elements of

Parsons’s OBC that update the order sub-records, and those computational

elements meet the claimed “order engine” because they meet each of the

limitations in [43C], as discussed VII.B.4.d below, and are implemented (by a

FAM on the FPGA) in the same manner as the “order engine” described in the

127

’115 patent. Thus, the OBC includes an order engine for the same reasons the

Modified-OBC does (as discussed above in VII.A.3.d), because the modifications

made to the OBC (e.g., to have the OBC’s order and price engines operate in

parallel) do not impact whether the OBC’s computational elements that update the

order sub-records are an order engine. Specifically, the elements of the OBC that

update the order sub-records meet the claimed “order engine” independent of

whether they operate in parallel with the elements of the OBC that update the

price-aggregated sub-records.

301. The TPS coprocessor also includes the LVC that accesses and updates

a cache of financial instrument records storing price point information. The

computational elements of the LVC that update the price point records meet the

claimed “price engine” because they meet each of the limitations in [43D], as

discussed in detail below, and are implemented (by an FAM on the FPGA) in the

same manner as the “price engine” in the ‘115 patent.

c. [43B] “wherein the coprocessor is configured to
receive streaming data representative of a plurality of
limit order events pertaining to a plurality of financial
instruments”

302. Both Parsons’s OBS pipeline and the ticker plant embodiment

illustrated in Fig. 11 (using an LVC as the caching module) process the same

financial data stream 106 from the exchanges reporting on limit order events

128

(Parsons, [0006], [0057], [0062], [0071], [0112]), and therefore the TPS

coprocessor is configured to receive this same financial market data stream. Thus,

the TPS coprocessor meets [43B] for the same reasons the Modified-OBS

coprocessor does, as discussed in section VII.A.3.c above.

d. [43C] “wherein the order engine is configured to
[43C.1] (1) access a plurality of limit order records
based on the streaming limit order event data, [43C.2]
(2) compute updated limit order data based on the
accessed limit order records and the streaming limit
order event data”

303. The TPS implements Parsons’s OBC and therefore meets limitation

[43C] for at least the same reasons the Modified-OBC does, as discussed above in

VII.A3.d. The manner in which the Modified-OBC meets [43C] is not dependent

on the modifications made to the OBC to have its order and price engines operate

in parallelParsons’s OBC meets limitation [43C] for the same reasons discussed in

section.

304. In order for the OBC to update “the fields of the sub-records” with

“information contained in the streaming messages” (Parsons, [0096]) the sub-

records to be updated are first accessed from cache. The OBC performs cache

accesses based on a record key computed from the financial instrument (Parsons,

[0093]), but Parsons provides no further detail on how the OBC interfaces with its

129

cache. Additionally, to create and remove order sub-records the financial

instrument record would be accessed in the same manner.

305. One obvious cache interface implementation for the OBC would be to

use the interface Parsons describes for other caching modules, including a Memory

Manager to retrieve order sub-records from cache and load them into record

buffers from which the update engine (here the OBC order engine) accesses the

records. Parsons, [0125]-[0132]. Since the LVC includes the computational

elements that access and update price point records, as discussed below, the TPS

coprocessor does not rely on the OBC to meet the price engine and thus does not

rely on modifying the OBC to have its order and price engines operate in parallel.

306. Even if it were found that using a Memory Manager and record

buffers were not an obvious way to implement the OBC, the OBC in the TPS

coprocessor stills meets [43C.1] because irrespective of the details of how the

OBC’s cache interface is implemented, Parsons is clear that the OBC accesses the

sub-records it updates. Parsons, [0071], [0093], [0096]. The TPS processor meets

[43C.2] for the same reasons the Modified-OBC meets [43C.2] does, as discussed

above in VII.A.3.d.

307. Additionally, Parsons’s OBC also meets the “compute” limitation in

[43.C] for the further reason that the updated price aggregation information is also

“updated limit order data.” As also discussed above, the ’115 patent uses the term

130

“limit order data” to generically describe data contained in the input stream. ’115

patent, 4:41, 6:51-7:26, 9:62, 12:11-34.

308. Thus, Parsons’s OBC computing updated price aggregation

information (e.g., updated total share volume/size, updated order count, etc.,) also

meets “comput[ing] updated limit order data” at least because it computes multiple

updated data pertaining to limit orders.

309. This updated price aggregated information is computed based on the

message stream and at least the corresponding financial instrument record accessed

and so limitation [43C] is met for this additional reason.

e. [43D] “wherein the price engine is configured to
[43D.1] (1) access a plurality of price point records
based on the streaming limit order event data, and
[43D.2] (2) compute updated price point based on the
accessed price point records and the streaming limit
order event data”

310. The ’115 patent does not define a “price point record,” but merely

provides an example, explaining that price point records can “have more or fewer

and/or different data fields.” ’115 patent, 20:22-24. Claim 43 does not recite any

fields that are required so that the claimed “plurality of price point records” are not

limited to having any specific field or type of field.

311. The OBC price engine discussed for the OBS coprocessor maintains

price-aggregated records for outstanding orders, whereas the LVC maintains

131

records that include price-aggregated fields for consummated trades. Parsons,

[0096], [0126]. Specifically, Parsons’s LVC maintains a cache of records that store

price-aggregated trade information for individual exchanges (regional records) and

across the market (composite records). Parsons, [0062], [0126]-[0127]. These

composite and regional records include price point data, including raw data on

price points and other data derived therefrom. Parsons, [0126]-[0127].

312. The LVC maintains composite and regional records having fields for

“total trade volume at bid, total trade volume at ask, traded value, traded value at

bid, traded value at ask, and volume-weighted average price.” Parsons, [0126].

Fields storing volume traded at particular price points (e.g., “bid” and “ask” price

points) are price-aggregated values so that these records meet the claimed price

point records for at least this reason. Fields reflecting last trade price, best bid

price, best ask price, high trade price, low trade price, and close price, etc. also

reflect price points so that the records maintained by the LVC are price point

records for this additional reason. Parsons, [0126]-[0127]. Thus, the LVC

maintains a “plurality of price point records” as claimed. Parsons, [0126]-[0127].

Thus, the LVC maintains a “plurality of price point records” as claimed.

313. Like the OBC, the LVC receives messages in financial data stream

106 (which meets “streaming data representative of a plurality of limit order

events pertaining to a plurality of financial instruments,” as discussed in §

132

VII.A.3.c) via the “streaming messages received from the message parsing

module” (Parsons, [0095], [0113], Fig. 11), and those messages include the same

“streaming limit order event data” that the OBC receives (as discussed in

VII.A.3.c and VII.A.3.d) and as shown in the TPS pipeline above. Id.; § VII.B.3.

314. Parsons’s LVC updates fields of the composite and regional records

with information extracted from the message stream (i.e., the streaming limit order

data). Parsons, [0062], [0125]-[0127]. To update its records, the LVC accesses

the composite and regional records (i.e., “the plurality of price points records”) for

the financial instrument to which a message in the message stream pertains using

the financial instrument symbol and exchange identifier (i.e., the identifier of the

exchange that issued the limit order event) extracted from the message stream (i.e.,

based on the streaming limit order events) using its Memory Manager, record

buffers and record/message updater, as discussed above in VI.D. Parsons, [0125]-

[0138]. The price engine in the LVC (i.e., the “computational elements of the LVC

that update the price point records”) accesses the plurality of price point records

from the record buffers and meets limitation [43D.1].

315. Parsons’s LVC computes numerous updated price point values to

update the composite and regional records that meet limitation [43D.2].

Specifically, the regional and composite records “include derived fields” including

total trade volume at various bid/ask price points, traded value at bid/ask, VWAP,

133

etc. for which updated values are computed when an input message in the message

stream reports a trade of a financial instrument. Parsons, [0126]-[0127].

“[U]pdated price point data” as claimed covers at least any data that the LVC

computes based on the accessed price point records and the streaming limit order

event data (e.g., trade events) and uses to update the value of the LVC’s price point

data. Parsons, [0062], [0095], [0124]-[0127].

316. Specifically, in response to a reported trade event for a financial

instrument, the LVC updates the accessed composite records and regional records

and the message fields according to the specific logic programmed to update

records based on the event type and financial instrument type. Id., [0125]-[0127].

317. Numerous of the exemplary fields disclosed in Parsons (id., [0126])

involve computing updated values that are based on the information in the message

stream and the information stored in the fields of the accessed records, including

each of the derived fields mentioned above. See also the example in Parsons

describing computing a new tick direction by determining “if the prices in the

message is larger or smaller than the previous price captured in the record.”

Parsons, [0124].

318. Each of these computed values meets the claimed “updated price

point data.” Thus, updated price point data covers at least updated values to any of

the price point data stored in the composite and regional price point records that

134

are computed based on reported limit order events (e.g., trade events) in the

message stream processed by the LVC. Parsons, [0062], [0095], [0124]-[0127].

319. Thus, the TPS’s LVC meets [43D.2] because updated price point

values are computed to update the record fields based on the accessed composite

and regional records and the streaming limit order event data, and because the

above-referenced computed values (e.g., total volume at bid/ask, traded value at

bid/ask, VWAP, etc.) meet the claimed “updated price point data.”

f. [43E] “wherein the coprocessor is further configured
to enrich the streaming limit order events with
financial market depth data based on the computed
updated limit order data and price point data”

320. The TPS meets limitation [43E] because the OBC updates the

message stream with updated order and price-aggregation information and the

LVC updates the message stream with price summary information, which includes

(among numerous other derived price point values) updated price-aggregated trade

information as discussed above. Parsons, [0060], [0062], [0095], [0127]-[0133].

321. The TPS coprocessor includes the OBC which updates the streaming

order events in the message stream with financial market depth data in the same

way, and for the reasons, as the Modified-OBS coprocessor described above

because the modifications to Parsons’s OBC for the OBS coprocessor do not

135

impact the manner in which Parsons’s OBC enriches the streaming limit order

events.

322. The TPS coprocessor includes the LVC which also updates the

streaming order events in the message stream with updated price summary

information, which includes (among numerous other derived price point values)

updated price-aggregated trade information as discussed above. Parsons, [0060],

[0062], [0095], [0127]-[0133].

323. Parsons does not disclose that every update the LVC computes is used

to “enhance” (Parsons, [0095]) the message stream. However, Parsons discloses

updating the message fields in the message stream that depend on record values the

LVC updates, and gives “tick direction” as an example of a value that is

maintained in the financial instrument records (Parsons, [0126]) and with which

the message stream is updated. Parsons, [0124].

324. A POSA would have understood from this disclosure that updated

values that the LVC computes that depend on the composite and/or regional record

values that are accessed are used to modify the messages in the message stream to

propagate the updates to downstream consumers. Thus, a POSA would have

understood that the LVC updates limit order event messages in the message stream

with at least the updated values it computes based on the limit order event message

that depend on values stored in the accessed financial instrument records (e.g.,

136

derived values stored in the composite and regional price point records, like total

trade volume at bid/ask, etc.), which are “updated price point data” computed by

the LVC as discussed in VII.C.4.d. The volume values computed by the LVC such

as total trade volume and volume-weighted average price (VWAP), and/or the

price-aggregated trade values such total trade volume at bid/ask meet “financial

market depth data” under any reasonable interpretation. In addition, these values

also meet the ‘115 patent’s definition of “financial market data” at least because

they are data derived from messages reporting a trade (i.e., “a completed sale of a

financial instrument,” ‘115 patent, 1:66-67).

325. Each of the various price point, volume and other derived and price-

aggregated trade information on trades on the exchanges disclosed as stored in the

composite and regional records and updated in real-time are financial market depth

data as each represents some aspect of state of the market for the corresponding

financial instrument. Parsons, [0062] (“Each record represents the current state of

that financial instrument in the market place”). Thus, the LVC updating the

message fields of the corresponding limit order event message with the updated

values it computed enriches “the streaming limit order events with financial market

depth data based on the computed updated [] price point data,” as recited in

limitation [43E].

137

326. The Message Formatter of the TPS pipeline receives the updated

message streams from the OBC and LVC and constructs an output message by

applying the updates from the OBC and LVC to the original message stream by

appending message fields from the OBC and LVC to the original message stream,

replacing fields with those from the OBC and LVC, or a combination of both.

Parsons, [0108], [0138].

327. The TPS coprocessor is therefore configured to “enrich the streaming

limit order events with financial market depth data based on the computed updated

limit order data and price point data,” as recited in [43E].

g. [43F] “wherein the order engine and the price engine
are configured to perform their respective operations
in parallel with each other as the limit order event
data streams through the coprocessor”

328. The OBC and LVC (i.e., the claimed “order engine” and “price

engine,” respectively) perform their respective operations in parallel because they

are arranged as parallel FAMs in the TPS pipeline.

329. As discussed in section VII.B.3, the TPS processor consolidates OBS

and price summary functionality onto a single reconfigurable logic device that

delivers both types of functionality, and arranges the OBC and the price LVC

FAMS in parallel, as shown in Modified Figure 11 (below) to maintain the same

parallel operation disclosed for market platform 600. Id., [0056], Fig. 6.

138

Figure 11
(Modified)

330. The update operations performed by the OBC and LVC do not depend

on each other and so are particularly amenable to this parallel arrangement. In

fact, arranging the OBC and LVC in series would reduce throughput and increase

latency, contrary to the teaching of Parsons. In the parallel arrangement use, the

Message Parser parses limit order events reported in stream 106 from the

exchanges common to both caching modules and delivers them to the OBC and

LVC for parallel processing.

331. There are a number of ways in which memory for the caches can be

allocated, as discussed below. Independent of the way in which memory could be

allocated, the claimed “respective operations” of the order and price engines

139

recited in claim 43 are those in [43C] and [43D] that relate to accessing the

engine’s respective records and computing updates to them. In the TPS

coprocessor the computing operations performed by the OBC’s order engine and

the TPC’s price engine are done in parallel. Similarly, in one obvious

implementation where the OBC uses a Memory Manager and record buffers, the

OBC’s order engine and the LVC’s price engine access their respective records

from different record buffers and do so in parallel. Thus, the claimed accessing

and computing operations of the order and price engines are performed in parallel

as required by [43F].

332. Claim 43 does not limit the order and price engines to accessing their

respective records directly from cache, let alone in parallel directly from cache, and

thus [43F] reads on the engines accessing their respective records from record

buffers in parallel in the manner discussed above. With respect to how the records

are accessed from cache in the TPS coprocessor, one way a POSA would have

implemented the OBC and LVC caches by partitioning Record/Field Value

Memory 1124 (e.g., on-board memory 404 in FIGS. 4(a), Parsons, [0060], [0071])

into separate memory spaces for the two caches, and by programming Symbol ID

Mapping 1104 to map the financial instrument and exchange information extracted

from the message stream to respective address pointers for the records maintained

by each caching module. Parsons [0114]-[0124]. In this way, memory accesses to

140

the records maintained by the order and price engines are also performed in

parallel. Thus, even if [43F] required that accesses to cache occur in parallel (it

does not) the TPS coprocessor would meet [43F].

5. Claim 44

333. Claim 44 depends from claim 44 and further recites that the

“coprocessor comprises a member of the group consisting of a reconfigurable

logic device, a chip-multi-processor (CMP), and a graphics processing unit

(GPU), and wherein the order engine and the price engine are deployed on the

member.”

334. Like all of the devices disclosed by Parsons (id., [0060], [0069]-

[0070], [0163]-[0165], Figs. 2-6), the TPS is implemented on reconfigurable logic

and a POSA would have been motivated to implement Parsons’s OBC and LVC in

a single FAM pipeline loaded on a single reconfigurable logic device (e.g., a single

FPGA).

335. Thus, the TPS coprocessor meets claim 44 because it is implemented

on an FPGA, which is a “reconfigurable logic device” that meets one of claim 44’s

recited alternative members, and the TPS’s order and price engines are both

“deployed” on the FPGA, and so meets “the order engine and the price engine are

deployed meets claim 44.

* * *

336. I understand and have been warned that willful false statements and

the like are punishable by fine or imprisonment, or both (18 U.S.C. g 1001). I

declare that all statements made herein of my own knowledge are true and that all

statements made on information and belief are believed to Qe.true, and fuither,that

these statements were made with the knowledge that willful false statements and

the like so made are punishable by fine or imprisonment, or both, under $ 1001 of

title 18 of the United States Code.

I declare under penalty of perjury that the foregoing is true and correct.

Dated: May 29,2020

,rr*---il'
Bernard S. Donefer

t4l

