
USOO7921046B2

(12) United States Patent (10) Patent No.: US 7,921,046 B2
Parsons et al. (45) Date of Patent: Apr. 5, 2011

(54) HIGH SPEED PROCESSING OF FINANCIAL 3. . 6 A E. E. St. 36%7.
W --- ISC .

INFORMATION USING FPGADEVICES 3,082,402 A 3, 1963 Scantlin

3,163,219 A 12/1964 Wyant et al. 166,283
(75) Inventors: Scott Parsons, St. Charles, MO (US); 3,301,723 A 1/1967 Chrisp 149/20

David E. Taylor, St. Louis, MO (US); 3,301,848 A 1/1967 Halleck 536,1231
3,303,896 A 2, 1967 Tillotson et al. 175/69

psy. SEER, 3,317,430 A 5/1967 Priestley et al. 510,503
(US); Mark A. Franklin, St. Louis, 3,296,597 A 1/1971 Scantlin et al.

MO (US); Roger D. Chamberlain, St. 3,565,176 A 2/1971 Wittenwyler 166,270
Louis, MO (US) 3,573,747 A 4, 1971 Adams et al.

3,581,072 A 5/1971 Nymeyer
3,601,808 A 8, 1971 Vlack (73) Assignee: Esty Incorporated, St. Louis, MO 3,611,314. A 10/1971 Pritchard, Jr. et al.

(US) 3,729,712 A 4, 1973 Glassman
3,824,375 A 7, 1974 Gross et al.

(*) Notice: Subject to any disclaimer, the term of this 3,848,235 A 1 1/1974 Lewis et al.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 405 days.

21) Appl. No.: 11/765,306 FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 9 CA 2125513 1, 1995

(22) Filed: Jun. 19, 2007 (Continued)

(65) Prior Publication Data OTHER PUBLICATIONS

US 2008/O243675 A1 Oct. 2, 2008 Office Action for U.S. Appl. No. 11/760,211 dated Nov. 2. 2009.

(Continued) Related U.S. Application Data
(60) Provisional application No. 60/814,796, filed on Jun. Primary Examiner — Jason M Borlinghaus

19, 2006. (74) Attorney, Agent, or Firm — Thompson Coburn LLP

(51) Int. Cl. (57) ABSTRACT
G06O40/00 (2006.01) Methods and systems for processing financial market data

(52) U.S. Cl. ... 705/35 using reconfigurable logic are disclosed. Various functional
(58) Field of Classification Search None operations to be performed on the financial market data can be

See application file for complete search history. implemented in firmware pipelines to accelerate the speed of
processing. Also, a combination of Software logic and firm

(56) References Cited ware logic can be used to efficiently control and manage the
high speed flow of financial market data to and from the

U.S. PATENT DOCUMENTS reconfigurable logic.
2,046,381 A 7, 1936 Hicks et al.
2,196,042 A 4, 1940 Timpson 23.11 34 Claims, 20 Drawing Sheets

200
Reconfigurable Logic (202)

m W w w w w w

Firmware Application Module Chain (230)

(230b) 234

Firmware SocketModule (220)

(212)

Disk Controller Processor Network interface
(206) (208) (240)

232

Network Data
Sourcef)estination

242)
Data Store

(204)

mrush
Text Box
ACTIV Exhibit 1008
ACTIV v. IP Reservoir

US 7,921,046 B2
Page 2

U.S. PATENT DOCUMENTS 5,140,692 A 8, 1992 Morita

3,856,921. A 12/1974 Shrier et al. 423,228 3.18: A 2: sal.
3,888,312. A 6/1975 Tiner et al. 166,308.5 J. W - 3,906.455 A 9, 1975 Houston etal 5,169,411 A 12, 1992 Weers 44/421

3,933305 A 1/1976 Kiel. 166,308.1 33. A YE SR 166,300
3,937.283 A 2, 1976 Blauer et al. 166/307 5.226.165 A 7/1993 Martin "
3,960,736 A 6/1976 Free et al. ... 507,216 4- 4 W
3.965.982 A 6, 1976 Medlin 166,249 5,228,510 A 7, 1993 Jennings, Jr. et al. 166,263

- W - 5,243,655 A 9/1993 Wang
2.92. A 1875 Site 3:63 5,246,073 A 9/1993 Sandiford et al. 166/295

4,052,159 A 10/1977 Fuerset al. 3.EA 88 VEReal
4,067,389 A 1/1978 Savins 166,246 4- - -
4081607 A 3, 1978 Vitol 1 5,258,908 A 11/1993 Hartheimer et al.
4.108,782. A 8/1978 ANN 507,205 5,259,455. A 1 1/1993 Nimericket al. 166,308.5
4.ii.2050 A 9, 1978 Sartorietal.". 423.223 s: A 2. Ria etal
4,112,051 A 9/1978 Sartori et al. .. 423,223 5,270,932 A 12/1993 Higgins
4,112,052 A 9/1978 Sartori et al. 423,223 $56,655 A 56 SE, a
4,113,631 A 9/1978 Thompson 507/2O2 4-1
4,298.898. A 1 1/1981 Cardot 5,313,560 A 5/1994 Maruoka et al.
4,314,356 A 2, 1982 Scarbrough 3.59: A 28. East al.
4,378,845. A 4, 1983 Medlin et al. 166,297 - K-1 v . .
4.385.393. A 5, 1983 Ch 1 5,327,521 A 7, 1994 Savic et al.
4.412.287. A 10/1983 Eil 5.330,005 A 7, 1994 Card et al. 166,280.2
4,461716 A 7/1984 Barbarinet al. ... 252/307 5,339,411 A 8/1994 Heaton, Jr.
4,464,718 A 8, 1984 Dixon etal 5,342,530 A 8, 1994 Aften et al. 252/8551
4,479,041. A 10/1984 Fenwicket al. ... 200/81 R 5,347,004 A 9/1994 Rivers et al. 544, 180
4,506.734. A 3, 1985 Nolte 166,308.1 5.363.919 A 1 1/1994 Jennings, Jr. 166,308.1
4,514,309 A 4/1985 Wadhwa. ... 507,211 3.36. A 33 RE
4,541,935 A 9/1985 Constien et al. 507,225 33s,356 A 365. She al
4,549,608 A 10/1985 Stowe et al. 166,280.1 5396.253 A 3/1995 Chia
:::: A 1918 y et al. 507/108 5,402,846 A 4/1995 Jennings, Jr. et al. 166,259
4,623.02. A 1/1986 S aSS, JT. 166,250i 5,404,488 A 4/1995 Kerrigan et al. 711/133
4,654,266 A 3, 1987 Riik 428,403 5,411,091 A 5/1995 Jennings, Jr. 166,280.1

465.70s. A 4, 1987 Hodge. 166,380.5 5,418,951 A 5/1995 Damashek
4,660.643 A 4, 1987 Perkins 166,283 5,424,284 A 6/1995 Patel et al. 507/129
4.674.044 A 6/1987 Kalmus et al. 5.432,822 A 7/1995 Kaewell, Jr.
4,683,068 A 7, 1987 Kucera 507/2O1 5.439,055 A 8/1995 Card et al............... 166,280.2
4,686.052 A 8, 1987 Baranet et al. 507,244 5,461,712 A 10, 1995 Chelstowski et al.
4,695.389. A 9, 1987 Kubala 507,244 5,462,721. A 10/1995 Pounds et al. 423,226
4705.13 A 11/1987 Perkins. 166,302 5,465,353 A 1 1/1995 Hull et al.
4,714,115. A 12, 1987 Uhri 166,308.1 5,465,792 A 1 1/1995 Dawson et al. 166/29
4,718,490 A 1, 1988 E. ... 1662s 5,472,049 A 12/1995 Chaffee et al. 166,250.1
4724.905 A 2, 1988 E. 166,250. 5,481,735 A 1/1996 Mortensen et al.
4725.372 A 2, 1988 T. t it al. ...s07/39 5,482,116 A 1/1996 El-Rabaa et al. 166,250.1
4.739834 A. 4, 1988 Firal 166/3084 5.488,083. A 1/1996 Kinsey, III et al. 507,211

4741401. A 5/1988 Wales et al. ... 166,300 3.35 A SE ES al
4,748,011 A 5/1988 Baize 423,228 5497.488 A 3/1996 Akizawa et al.
4,779,680 A 10/1988 Sydansk 166,300 5497.8s. A 3/1996 Hai 166,308.1
4,795,574. A 1/1989 Syrinek et al. 507,238 $666. A 6. E. e et al."
4,817.717. A 4, 1989 Jennings, Jr. et al. 166,278 - WW g, Jr. et al.
4,823.306 A 4, 1989 Barbic etal 5,501,275 A 3/1996 Card et al. 166,280.2
4,830.06 A 5/1989 Uhri. 166,250.1 3: A 3. E.
4,846,277 A 7/1989 Khalil et al. 166,280.1 5.55516 A 9/1996 Norman etal 166,308.2
4,848,468 A 7/1989 Hazlett et al. 166,300 5,596.569 A 1/1997 Madonna et al."
4,852,650 A 8/1989 Jennings, Jr. et al. 166/250.1 5,624,886 A 4/1997 Dawsoneral 507/21
4,869,322 A 9/1989 Vogt, Jr. et al. 166/280.1 5,635.45s A 6/1997 Leeet al. 507/240
4,892,147 A 1/1990 Jennings, Jr. et al. 166,280.2 w - - .

4.903.201. A 2/1990 Wagner 5,649,596 A 7/1997 Jones et al. 166,300
4926940. A 51990 Stromswold. 166,247 3. A 08, WI, a 166,300
is A 2.92. sing Jr. 166,280.1 5,674,377 A 10/1997 Sullivan, III et al. ... 208/208 R
4978.512. A 12/1990 As 423,226 5,688.478 A 1 1/1997 Pounds et al. ... 423,228
5.005645 A 4/1991 Jennings, Jr. et al.. 166/2801 9. A 32. Sh l 556,148
5.023.910 A 6, 1991 Thomson W. J. UCS
5.024.276 A 6, 1991 Borchardt 166,308.6 5,711,396 A 1/1998 Joerg et al................... 180,444
5.038,284 A 8/1991 Kramer " 5,712,942 A 1/1998 Jennings et al.
5.050.075 A 9, 1991 R tal 5,721,898 A 2/1998 Beardsley et al.
5063.507 A 11/1991 EY. 5,722,490 A 3/1998 Ebinger 166,281
5,067,556 A 1/1991 Fudono et al... 62/1964 3. A t E. et al al
5,074,359 A 12/1991 Schmidt 166,280.1 I W eldman et al.
5,074,991. A 12/1991 Weers 208,236 5,744.024. A 4, 1998 Sullivan, III et al. ... 208,236
5,077,665 A 12/1991 Silverman et al. 5,755.286 A 5/1998 Ebinger 166,281
5,082.579 A 1/1992 Dawson 507,211 5,774,835 A 6/1998 Ozawa et al.
5,101,353 A 3/1992 Lupien et al. 5,774,839 A 6/1998 Shlomot
5,101,424 A 3/1992 Clayton et al. 5,775.425 A 7, 1998 Weaver et al.............. 166,276
5,106,518 A 4/1992 Cooney et al. 507/21 5,781,772 A 7/1998 Wilkinson, III et al.
5, 110,486 A 5/1992 Manalastas et al. 507,260 5,781,921. A 7/1998 Nichols
5,126,936 A 6/1992 Champion et al. 5,787,986 A 8/1998 Weaver et al. 166,280.2

US 7,921,046 B2
Page 3

5,805,832 A 9, 1998 Brown et al. 6,321,258 B1 1 1/2001 Stollfus et al.
5,806,597 A 9/1998 Tjon-Joe-Pinet al. 166,300 6,330,916 B1 12/2001 Rickards et al. 166,280.2
5,807,812 A 9, 1998 Smith et al. 504.238 6,336,150 B1 1/2002 Ellis et al.
5,809,483. A 9, 1998 Broka et al. 6,339,819 B1 1/2002 Huppenthal et al.
5,813,000 A 9, 1998 Furlani 6,370,592 B1 4/2002 Kumpf
5,819,273 A 10, 1998 Vora et al. 6,370,645 B1 4/2002 Lee et al.
5,819,290 A 10/1998 Fujita 6,377,942 B1 4/2002 Hinsley et al.
5,826,075 A 10, 1998 Bealkowski et al. 6,397.259 B1 5, 2002 Lincke et al.
5,833,000 A 11, 1998 Weaver et al. 166,276 6,397,335 B1 5, 2002 Franczek et al.
5,845,266 A 12/1998 Lupien et al. 6,412,000 B1 6/2002 Riddle et al.
5,853,048 A 12, 1998 Weaver et al. 166,279 6,415,269 B1 7/2002 Dinwoodie
5,857,176 A 1/1999 Ginsberg 6,418.419 B1 7/2002 Nieboer et al.
5,864,738 A 1/1999 Kessler et al. 6,430,272 B1 8/2002 Maruyama et al.
5,870,730 A 2/1999 Furuya et al. 6,456,982 B1 9/2002 Pilipovic
5,871,049 A 2, 1999 Weaver et al. 166/27 6,463,474 B1 10/2002 Fuh et al.
5,873,071 A 2/1999 Ferstenberg et al. 6,499,107 B1 12/2002 Gleichaufetal.
5,877,127 A 3, 1999 Card et al. 507/273 6,535,868 B1 3/2003 Galeazzi et al.
5,884,286 A 3/1999 Daughtery, III 6,546,375 B1 4/2003 Pang et al.
5,905,974 A 5, 1999 Fraser et al. 6,578,147 B1 6/2003 Shanklin et al.
5,908,073. A 6/1999 Nguyen et al. 166/27 6,581,098 B1 6/2003 Kumpf
5,908,814 A 6, 1999 Patel et al. 507/13 6,594,643 B1 7/2003 Freeny, Jr.
5,913,211 A 6, 1999 Nitta 6,601,094 B1 7/2003 Mentze et al.
5,930,753 A 7, 1999 Potamianos et al. 6,625,150 B1 9, 2003 Yu
5,943,421 A 8, 1999 Grabon 6,704,816 B1 3/2004 Burke
5,943,429 A 8, 1999 Handel 6,711,558 B1 3/2004 Indecket al.
5,963,923 A 10, 1999 Garber 6,725,931 B2 4/2004 Nguyen et al. 166,280.2
5,964,295 A 10, 1999 Brown et al. 166,308.2 6,756,345 B2 6/2004 Pakulski et al. 507,246
5,978,801 A 11/1999 Yuasa 6,765,918 B1 7/2004 Dixon et al.
5,979,557 A 11/1999 Card et al. 166,300 6,766,304 B2 7/2004 Kemp, II et al.
5,980,845. A 11/1999 Cherry 423,229 6,772,132 B1 8/2004 Kemp, II et al.
5,987,432 A 11/1999 Zusman et al. 6,772,136 B2 8, 2004 Kant et al.
5.991,881 A 11/1999 Conklin et al. 6,772,345 B1 8/2004 Shetty
5,995,963 A 11/1999 Nanba et al. 6,778,968 B1 8, 2004 Gulati
6,006,264 A 12/1999 Colby et al. 6,785,677 B1 8, 2004 Fritchman
6,016,483 A 1/2000 Rickard et al. 6,793,018 B2 9/2004 Dawson et al. 166,300
6,016,871 A 1/2000 Burts, Jr. 166,300 6,804,667 B1 10/2004 Martin
6,023,760 A 2/2000 Karttunen 6,807,156 B1 10/2004 Veres et al.
6,028,939 A 2, 2000 Yin 6.820,129 B1 1 1/2004 Courey, Jr.
6,035,936 A 3/2000 Whalen 16,308.5 6,832,650 B2 12/2004 Nguyen et al. 166,279
6,044,407 A 3, 2000 Jones et al. 6,839,686 B1 1/2005 Galant
6,047,772 A 4/2000 Weaver et al. 16.276 6,847,645 B1 1/2005 Potter et al.
6,054,417 A 4/2000 Graham et al. 507,238 6,850,906 B1 2/2005 Chadha et al.
6,058,391 A 5, 2000 Gardner 6,875,728 B2 4/2005 Gupta et al. 507/240
6,059,034 A 5/2000 Rickards et al. 166,280.2 6,877,044 B2 4/2005 Lo et al.
6,060,436 A 5/2000 Snyder et al. 507,266 6,886,103 B1 4/2005 Brustoloni et al.
6,061,662 A 5, 2000 Makivic 6,901.461 B2 5/2005 Bennett
6,064,739 A 5, 2000 Davis 6,931,408 B2 8, 2005 Adams et al.
6,067,569 A 5, 2000 Khaki et al. 6,944,168 B2 9, 2005 Paatela et al.
6,069,118 A 5/2000 Hinkel et al. 507/277 6,978,223 B2 12/2005 Milliken
6,070,172 A 5, 2000 Lowe 6,981,054 B1 12/2005 Krishna
6,073,160 A 6/2000 Grantham et al. 7,024,384 B2 4/2006 Daughtery, III
6,084,584. A 7/2000 Nahi et al. 7,046,848 B1 5, 2006 Olcott
6,105,067 A 8, 2000 Batra 7,065.475 B1 6/2006 Brundobler
6,123,394 A 9/2000 Jeffrey 299/16 7,093,023 B2 8/2006 Lockwood et al.
6,133,205 A 10/2000 Jones 507 276 7,099,838 B1 8/2006 Gastineau et al.
6,134,551 A 10, 2000 AucSmith 7,103,569 B1 9/2006 Groveman et al.
6,138,176 A 10, 2000 McDonald et al. 7,117,280 B2 10/2006 Vasudevan
RE36,946 E 11/2000 Diffie et al. 7,127,424 B2 10/2006 Kemp, II et al.
6,147,034 A 1 1/2000 Jones et al. 507,238 7,139,743 B2 11/2006 Indeck et al.
6,147,976 A 11/2000 Shand et al. 7,140,433 B2 11/2006 Gatlin et al. 166,250.01
6, 162449 A 12/2000 Maier et al. 424/401 7,149,715 B2 12/2006 Browne et al.
6,162,766 A 12/2000 Muir et al. .. 507,267 7,167,980 B2 1, 2007 Chiu
6,169,058 B1 1/2001 Le et al. 507,222 7, 177,833 B1 2/2007 Marynowski et al.
6,169,969 B1 1/2001 Cohen 7,181,437 B2 2/2007 Indecket al.
6,173,270 B1 1/2001 Cristofich et al. 7,181,608 B2 2/2007 Fallon et al.
6,173,276 B1 1/2001 Kant et al. 7,222,114 B1 5, 2007 Chan
6,226,676 B1 5/2001 Crump et al. 7,224,185 B2 5/2007 Campbell et al.
6,228,812 B1 5/2001 Dawson et al. 507,221 7,225, 188 B1 5/2007 Gaiet al.
6,236,980 B1 5, 2001 Reese 7,228,289 B2 6/2007 Brumfield et al.
6,247,543 B1 6/2001 Patel et al. 175,64 7,251,629 B1 7/2007 Marynowski et al.
6,263.321 B1 7/2001 Daughtery, III 7,257,842 B2 8, 2007 Barton et al.
6,267,938 B1 7/2001 Warrender et al. 423,226 7,268,100 B2 9/2007 Kippie et al. 507,244
6.279,113 B1 8/2001 Vaidya 7,287,037 B2 10/2007 An et al.
6.279,140 B1 8, 2001 Slane 7.305,383 B1 12/2007 Kubesh et al.
6,283,212 B1 9/2001 Hinkel et al. 166,279 7.305.391 B2 12/2007 Wyschogrodet al.
6,291,405 B1 9/2001 Lee et al. 507 136 7,350,579 B2 4/2008 Gatlin et al. 166,308.3
6,304,858 B1 10/2001 Mosler et al. 7,356,498 B2 4/2008 Kaminsky et al.
6,317,728 B1 1 1/2001 Kane 7,363,277 B1 4/2008 Dutta et al.
6,317,795 B1 1 1/2001 Malkin et al. 7.406,444 B2 7/2008 Eng et al.

US 7,921,046 B2
Page 4

7,411,957 B2 8/2008 Stacy et al. 2005, 01371.14 A1 6/2005 Gatlin et al. 510,424
7,454,418 B1 1 1/2008 Wang 2005. O153846 A1 7/2005 Gatlin 208,236
7,457,834 B2 11/2008 Jung et al. 2005. O187844 A1 8, 2005 Chalermkraivuth et al.
7.461,064 B2 12/2008 Fontoura et al. 2005/O187845 A1 8, 2005 Eklund et al.
7,478,431 B1 1/2009 Nachenberg 2005. O187846 A1 8, 2005 Subbu et al.
7.487,327 B1 2/2009 Chang et al. 2005/O187847 A1 8/2005 Bonissone et al.
7,496,108 B2 2/2009 Biran et al. 2005. O187848 A1 8/2005 Bonissone et al.
7,558,925 B2 7/2009 Bouchard et al. 2005/O187849 A1 8/2005 Bollapragada et al.
7,565,525 B2 7/2009 Vorbach et al. 2005/O195832 A1 9/2005 Dharmapurikar et al.
7,587.476 B2 9, 2009 Sato 2005/O197938 A1 9, 2005 Davie et al.
7,617,291 B2 11/2009 Fan et al. 2005/O197939 A1 9, 2005 Davie et al.
7,636,703 B2 12/2009 Taylor 2005/O197948 A1 9, 2005 Davie et al.
7,685,121 B2 3/2010 Brown et al. 2005/0216384 A1 9, 2005 Partlow et al.
7,701,945 B2 4/2010 Roesch et al. 2005/0229254 A1 10/2005 Singh et al.
7,840,482 B2 11/2010 Singla et al. 2005/0250.666 A1 11/2005 Gatlin et al. 510/492

2001 OO 13048 A1 8, 2001 Imbert de Tremioles et al. 2005/0267836 A1 12/2005 Crosthwaite et al.
2001.0056547 A1 12, 2001 Dixon 2005/0283423 A1 12/2005 Moser et al.
2002.0049256 A1 4/2002 Bergeron, Jr. 514f674 2006.0020536 A1 1/2006 Renton et al.
2002fOO82967 A1 6/2002 Kaminsky et al. 2006/0031154 A1 2/2006 Noviello et al.
2002/010.5911 A1 8, 2002 Pruthi et al. 2006/0031156 A1 2/2006 Noviello et al.
2002/0129.140 A1 9, 2002 Peled et al. 2006,004.7636 A1 3/2006 Mohania et al.
2002/0138376 A1 9, 2002 Hinkle 2006.0053295 A1 3/2006 Madhusudan et al.
2002/0150248 A1 10, 2002 Kovacevic 2006, OO59064 A1 3/2006 Glinberg et al.
2002/0162025 A1 10, 2002 Sutton et al. 2006/0059065 A1 3/2006 Glinberg et al.
2002fO165308 A1 11/2002 Kinniard et al. 524/492 2006, OO59066 A1 3/2006 Glinberg et al.
2002/0166063 A1 11/2002 Lachman et al. 2006/0059067 A1 3/2006 Glinberg et al.
2002fO169873 A1 11, 2002 Zodnik 2006, OO59068 A1 3/2006 Glinberg et al.
2003, OOO9693 A1 1/2003 Brock et al. 2006, OO59069 A1 3/2006 Glinberg et al.
2003, OO14521 A1 1/2003 Elson et al. 2006, OO59083 A1 3/2006 Friesen et al.
2003, OO14662 A1 1/2003 Gupta et al. 2006/01297.45 A1 6/2006 Thiel et al.
2003, OO1863.0 A1 1/2003 Indeck et al. 2006.0143099 A1 6/2006 Partlow et al.
2003, OO23876 A1 1/2003 Bardsley et al. 2006, O194700 A1 8/2006 Gatlin et al. 507/2O3
2003/0033240 A1 2/2003 Balson et al. 2006/0242 123 A1 10/2006 Williams, Jr.
2003/0037037 A1 2/2003 Adams et al. 2006/0259417 A1 1 1/2006 Marynowski et al.
2003.0043805 A1 3/2003 Graham et al. 2006/0269148 A1* 11/2006 Farber et al. 382,232
2003/0051043 A1 3/2003 Wyschogrodet al. 2006/0294059 A1 12/2006 Chamberlain et al.
2003,0055658 A1 3/2003 RuDusky 2007.OO 11183 A1 1/2007 Langseth et al.
2003/005577O A1 3/2003 RuDusky 2007, OO11687 A1 1/2007 Ilik et al. T19, 313
2003/0055771 A1 3/2003 RuDusky 2007/0O32693 A1 2/2007 Gatlin et al. 507,239
2OO3,OO55777 A1 3/2003 Ginsberg 2007/0061241 A1 3/2007 Jovanovic et al.
2003/00656O7 A1 4/2003 Satchwell 2007, OO67108 A1 3/2007 Buhler et al.
2003, OO65943 A1 4/2003 Geiset al. 2007/OO78837 A1 4/2007 Indeck et al.
2003/0074582 A1 4/2003 Patel et al. 2007/O112837 A1 5/2007 Houh et al.
2003/OO78865 A1 4/2003 Lee 2007/0118500 A1 5/2007 Indeck et al.
2003/0093347 A1 5/2003 Gray 2007/0129257 A1 6/2007 Kippie et al. 507/102
2003/0097481 A1 5, 2003 Richter 2007. O130140 A1 6/2007 Cytron et al.
2003/00992.54 A1 5, 2003 Richter 2007, 0131425 A1 6/2007 Gatlin et al. 166,280.2
2003.01.10229 A1 6/2003 Kulig et al. 2007/0156574 A1 7/2007 Marynowski et al.
2003.01.15485 A1 6, 2003 Milliken 2007/0173413 A1 7/2007 Lukocs et al. 507,238
2003/O126065 A1 7/2003 Eng et al. 2007/0173414 A1 7/2007 Wilson, Jr. 507 131
2003/O163715 A1 8/2003 Wong 2007/0174841 A1 7/2007 Chamberlain et al.
2003/0177.253 A1 9, 2003 Schuehler et al. 2007/0179935 A1 8, 2007 Lee et al.
2003/020843.0 A1 11/2003 Gershon 2007/0209068 A1 9, 2007 Ansari et al.
2003/0220204 Al 1 1/2003 Baran, Jr. et al. 507/2OO 2007/0237327 A1 10/2007 Taylor et al.
2003/0221013 A1 11/2003 Lockwood et al. 2007/0244859 A1 10/2007 Trippe et al.
2003/0233302 A1 12, 2003 Weber et al. 2007/0260602 A1 1 1/2007 Taylor
2004.0015633 A1 1/2004 Smith 2007/0277036 A1 11/2007 Chamberlain et al.
2004, OO19703 A1 1/2004 Burton 2007/0294157 A1 12/2007 Singla et al.
2004/0028047 A1 2/2004 Hou et al. 2008, OO39345 A1 2/2008 Kippie et al. 507,213
2004.0034587 A1 2, 2004 Amberson et al. 2008, OO84573 A1 4/2008 Horowitz et al.
2004.0049596 A1 3, 2004 Schuehler et al. 2008, OO86274 A1 4/2008 Chamberlain et al.
2004, OO64737 A1 4/2004 Milliken et al. 2008. O104542 A1 5/2008 Cohen et al.
2004/011 1632 A1 6/2004 Halperin 2008.0109413 A1 5/2008 Indeck et al.
2004O162826 A1 8/2004 Wyschogrodet al. 2008.0114724 A1 5/2008 Indeck et al.
2004/017734.0 A1 9, 2004 Hsu et al. 2008.0114725 A1 5/2008 Indeck et al.
2004/O186804 A1 9/2004 Chakraborty et al. 2008.0114760 A1 5/2008 Indeck et al.
2004/O186814 A1 9/2004 Chalermkraivuth et al. 2008/O126320 A1 5/2008 Indeck et al.
2004/0199448 A1 10, 2004 Chalermkraivuth et al. 2008. O133453 A1 6/2008 Indecket al.
2004/0205149 A1 10, 2004 Dillon et al. 2008/O133519 A1 6/2008 Indeck et al.
2005.00051.45 A1 1/2005 Teixeira 2008/0275805 A1 11/2008 Hecht
2005/0033672 A1 2/2005 Lasry et al. 2009/0182683 A1 7/2009 Taylor et al.
2005/0044344 A1 2/2005 Stevens 2009/0262741 A1 10/2009 Jungcket al.
2005/0045330 A1 3/2005 Nguyen et al. 166,281
2005/0086520 A1 4/2005 Dharmapurikar et al. FOREIGN PATENT DOCUMENTS
2005/009 1142 A1 4/2005 Renton et al. CA 2007965 2, 1996
2005/0092489 A1 5, 2005 Welton et al. 166,280.2 DE 40273OO 5, 1992
2005/009 7027 A1 5/2005 Kavanaugh EP O57399.1 12/1993
2005/O131790 A1 6, 2005 BenZSchawel et al. EP O730018 A1 9, 1996
2005. O135608 A1 6/2005 Zheng EP O880O88 11, 1996

US 7,921,046 B2
Page 5

EP O851358 A 7, 1998
EP O887723 12/1998
EP O911738 A 4f1999
GB 775376 10, 1954
GB 816337 A 7, 1959
GE 1073338 A 6, 1967
JP 10001461 6, 1988
JP O8151422 11, 1996
JP O914.5544. A 6, 1997
JP 101101.15 A 4f1998
JP 1131.6765 A 11, 1999
JP 200O286715 A 10, 2000
JP 2001.268071 A 9, 2001
JP 200210.1089 A 4/2002
JP 2005194148 A 7/2005
WO 90.10910 9, 1990
WO 9737735 10, 1997
WO WO98, 19774 5, 1998
WO WO 98.56497 12/1998
WO OO41 136 A1 T 2000
WO O122425 A 3, 2001
WO 0180082 A2 10, 2001
WO O180558 10, 2001
WO O2O61525 8, 2002
WO O31OO650 4/2003
WO O3O36845 5, 2003
WO O31OO662 12/2003
WO 2004O17604 2, 2004
WO 2004O42560 5, 2004
WO 2004O42561 5, 2004
WO 2004O42562 5, 2004
WO 2004O42574 5, 2004
WO 2005O17708 2, 2005
WO 2005O26925 3, 2005
WO 2005048134 A 5, 2005
WO 2006O23948 3, 2006
WO 2006096324 9, 2006
WO 2007O64685 6, 2007
WO 2007O875O7 8, 2007
WO 2008022036 2, 2008
WO 2009089467 A2 T 2009

OTHER PUBLICATIONS

Exegy Inc., “Exegy and HyperFeed to Unveil Exelerate TP at SIA
Conference”. Release Date: Jun. 20, 2006, downloaded from http://
news.thomasnet.com/companystory/488004 on Jun. 19, 2007, 4
pageS.
Exegy Inc., “First ExegyTicker Plant Deployed”. Release Date: Oct.
17, 2006, downloaded from http://news.thomasnet.com/companys
tory/496530 on Jun. 19, 2007, 5 pages.
Feldman, “High Frequency Traders Get Boost From FPGA Accel
eration”. Jun. 8, 2007, downloaded from http://www.hpcwire.com/
hpc.1600113.html on Jun. 19, 2007, 4 pages.
Forgy, "Rete: A fast algorithm for the many pattern/many object
pattern matching problem”, Artificial Intelligence, 19, pp. 17-37.
1982.
Franklin et al., “An Architecture for Fast Processing of Large
Unstructured Data Sets.” Proc. of 22nd Int’l Conf. on Computer
Design, Oct. 2004, pp. 280-287.
Franklin et al., “Assisting Network Intrusion Detection with
Reconfigurable Hardware”. Symposium on Field-Programmable
Custom Computing Machines (FCCM2002), Apr. 2002, Napa, Cali
fornia.
Fuet al., “The FPXKCPSM Module: An Embedded, Reconfigurable
Active Processing Module for the Field Programmable Port Extender
(FPX)", Washington University, Department of Computer Science,
Technical Report WUCS-01-14, Jul. 2001.
Gavrila et al., “Multi-feature Hierarchical Template Matching Using
Distance Transforms”, IEEE, Aug. 16-20, 1998, vol. 1, pp. 439-444.
Gunther et al., “Assessing Document Relevance with Run-Time
Reconfigurable Machines”. FPGAs for Custom Computing
Machines, 1996, Proceedings, IEEE Symposium on, pp. 10-17. Napa
Valley, CA, Apr. 17, 1996.
Gyang, “NCBI BLASTN Stage 1 in Reconfigurable Hardware.”
Technical Report WUCSE-2005-30, Aug. 2004, Department of
Computer Science and Engineering, Washington University, St.
Louis, MO.

Halaas et al., “A Recursive MISD Architecture for Pattern Match
ing”, IEEE Transactions on Very Large Scale Integration, vol. 12, No.
7, pp. 727-734, Jul. 2004.
Harris, “Pete's Blog: Can FPGAs. Overcome the FUD?”, Low-La
tency.com, May 14, 2007, URL: http://www.a-teamgroup.com/ar
ticle/pete-blog-can-fpgas-overcome-the-fud/.
Haucket al., “Software Technologies for Reconfigurable Systems”.
Northwestern University, Dept. of ECE. Technical Report, 1996.
Hayes, “Computer Architecture and Organization'. Second Edition,
1988, pp. 448-459, McGraw-Hill, Inc.
Hezel et al., “FPGA-Based Template Matching Using Distance
Transforms'. Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, Apr. 22, 2002,
pp. 89-97, IEEE Computer Society, USA.
“A Reconfigurable Computing Model for Biological Research Appli
cation of Smith-Waterman Analysis to Bacterial Genomes” A White
Paper Prepared by Star Bridge Systems, Inc. retrieved Dec. 12,
2006. Retrieved from the Internet: <URL: http://www.
Starbridgesystems.com/resources/whitepapers/Smith',620
Waterman%20Whitepaper.pdf.
“ACTIV Financial Announces Hardware Based Market Data Feed
Processing Strategy”. For Release on Apr. 2, 2007, 2 pages.
"ACTIV Financial Delivers Accelerated Market Data Feed”, Apr. 6.
2007, byline of Apr. 2, 2007, downloaded from http://hpcwire.com/
hpc. 1346816.html on Jun. 19, 2007, 3 pages.
“DRC, Exegy Announce Joint Development Agreement”. Jun. 8,
2007, byline of Jun. 4, 2007; downloaded from http://www.hpcwire.
com/hpc/1595.644.html on Jun. 19, 2007, 3 pages.
“Lucent Technologies Delivers “PayloadPlus' Network Processors
for Programmable, MultiProtocol, OC-48c Processing'. Lucent
Technologies Press Release, downloaded from http://www.lucent.
com/press/1000/0010320.meb.html on Mar. 21, 2002.
“Overview, Field Programmable Port Extender'. Jan. 2002 Gigabit
Workshop Tutorial, Washington University, St. Louis, MO, Jan. 3-4,
2002, pp. 1-4.
“Payload PlusO Agere System Interface'. Agere Systems Product
Brief, Jun. 2001, downloaded from Internet, Jan. 2002, pp. 1-6.
“Technology Overview”, downloaded from the http://www.
datasearchsystems.com/tech.htm on Apr. 19, 2004.
“The Field-Programmable Port Extender (FPX)', downloaded from
http://www.arl.wustl.edu/arl in Mar. 2002.
Aldwairiet al., "Configurable String Matching Hardware for Speed
ing up Intrusion Detection'. SIRARCH Comput. Archit. News, vol.
33, No. 1, pp. 99-107, Mar. 2005.
Anonymous, "Method for Allocating Computer Disk Space to a File
of Known Size', IBM Technical Disclosure Bulletin, vol. 27, No.
10B, Mar. 1, 1985, New York.
Arnold et al., “The Splash 2 Processor and Applications'. Proceed
ings 1993 IEEE International Conference on Computer Design:
VLSI in Computers and Processors (ICCD 93), Oct. 3, 1993, pp.
482-485, IEEE Computer Society, Cambridge, MA USA.
Baer, "Computer Systems Architecture', 1980, pp. 262-265; Com
puter Science Press, Potomac, Maryland.
Baeza-Yates et al., “New and Faster Filters for Multiple Approximate
String Matching”. Random Structures and Algorithms (RSA), Jan.
2002, pp. 23-49, vol. 20, No. 1.
Baker et al., “High-throughput Linked-Pattern Matching for Intru
sion Detection Systems”. ANCS 2005: Proceedings of the 2005
Symposium on Architecture for Networking and Communications
Systems, pp. 193-202, ACM Press, 2005.
Barone-Adesi et al., “Efficient Analytic Approximation of American
Option Values”, Journal of Finance, vol. 42, No. 2 (Jun. 1987), pp.
301-320.
Behrens et al., “BLASTN Redundancy Filter in Reprogrammable
Hardware.” Final Project Submission, Fall 2003, Department of
Computer Science and Engineering, Washington University.
Berk, "JLex: A lexical analyzer generator for JavaO', downloaded
from http://www.cs.princeton.edu/~appel/modernjava/Jlex, in Jan.
2002, pp. 1-18.
Braun et al., “Layered Protocol Wrappers for Internet Packet Pro
cessing in Reconfigurable Hardware'. Proceedings of Hot Intercon
nects 9 (1Hotl-9) Stanford, CA, Aug. 22-24, 2001, pp. 93-98.

US 7,921,046 B2
Page 6

Cavnar et al., “N-Gram-Based Text Categorization”. Proceedings of
SDAIR-94, 3rd Annual Symposium on Document Analysis and
Information Retrieval, Las Vegas, pp. 161-175, 1994.
Chamberlain et al., “Achieving Real Data Throughput for an FPGA
Co-Processor on Commodity Server Platforms'. Proc. of 1st Work
shop on Building Block Engine Architectures for Computers and
Networks, Oct. 2004, Boston, MA.
Chamberlain et al., “The Mercury System: Embedding Computation
Into Disk Drives', 7th High Performance Embedded Computing
Workshop, Sep. 2003, Boston, MA.
Chamberlain et al., “The Mercury System: Exploiting Truly Fast
Hardware for Data Search'. Proc. of Workshop on Storage Network
Architecture and Parallel I/Os, Sep. 2003, New Orleans, LA.
Cho et al., “Deep Packet Filter with Dedicated Logic and Read Only
Memories', 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, Apr. 2004.
Choi et al., “Design of a Flexible Open Platform for High Perfor
mance Active Networks'. Allerton Conference, 1999, Champaign,
IL.
Cholleti, "Storage Allocation in Bounded Time'. MS Thesis, Dept. of
Computer Science and Engineering, Washington Univeristy, St.
Louis, MO (Dec. 2002). Available as Washington University Tech
nical Report WUCSE-2003-2.
Clarket al., “Scalable Pattern Matching for High Speed Networks',
Proceedings of the 12th Annual IEEE Symposium on Field-Program
mable Custom Computing Machines, 2004: FCCM2004, Apr. 20-23,
2004; pp. 249-257; IEEE Computer Society; Cambridge, MA USA.
Cloutier et al., “VIP: An FPGA-Based Processor for Image Process
ing and Neural Networks'. Proceedings of Fifth International Con
ference on Microelectronics for Neural Networks, Feb. 12, 1996, pp.
330-336, Los Alamitos, California.
Compton et al., "Configurable Computing: A Survey of Systems and
Software'. Technical Report, Northwestern University, Dept. of
ECE, 1999.
Compton et al., “Reconfigurable Computing: A Survey of Systems
and Software'. Technical Report, Northwestern University, Dept. of
ECE, 1999, presented by Yi-Gang Tai.
Cong et al., “An Optional Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs", IEEE, 1992,
pp. 48-53.
Crossman, “Who Will CureYour DataLatency?”. Storage & Servers,
Jan. 20, 2007, URL: http://www.networkcomputing.com/article?
printFULLArticleSrc.jhtml?article ID=199905630.
Denoyer et al., “HMM-based Passage Models for Document Classi
fication and Ranking'. Proceedings of ECIR-01, 23rd European Col
loquim Information Retrieval Research, Darmstatd, DE, pp. 126
135, 2001.
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom
Filters.” IEEE Micro, Jan.-Feb. 2004, vol. 24. Issue: 1. pp. 52-61.
Ebeling et al., “RaPiD Reconfigurable Pipelined Datapath'. Uni
versity of Washington, Dept. of Computer Science and Engineering,
Sep. 23, 1996, Seattle, WA.
Dharmapurikar, “Fast and Scalable Pattern Matching for Content
Filtering”, ACM, ANCS 05, 2005, pp. 183-192.
Office Action for U.S. Appl. No. 11/561,615 issued Sep. 28, 2009.
Sourdis and Pnevmatikatos, “Fast, Large-Scale String Match for a
10Gbps FPGA-based Network Intrusion Detection System”, 13th
International Conference on Field Programmable Logic and Appli
cations, 2003.
Steinbach et al., “A Comparison of Document Clustering Tech
niques”, KDD Workshop on Text Mining, 2000.
Tan et al., “A High Throughput String Matching Architecture for
Intrusion Detection and Prevention', ISCA 2005: 32nd Annual Inter
national Symposium on Computer Architecture, pp. 112-122, 2005.
Taylor et al., “Generalized RAD Module Interface Specification of
the Field Programmable Port Extender (FPX) Version 2'. Washing
ton University, Department of Computer Science, Technical Report,
Jul. 5, 2001, pp. 1-10.
Taylor et al., “Modular Design Techniques for the FPX'. Field Pro
grammable Port Extender: Jan. 2002 Gigabit Workshop Tutorial,
Washington University, St. Louis, MO, Jan. 3-4, 2002.

Taylor et al., “Scalable Packet Classification using Distributed
Crossproducting of Field Labels'. Proceedings of IEEE Infocom,
Mar. 2005, pp. 1-12, vol. 20, No. 1.
Taylor, “Models, Algorithms, and Architectures for Scalable Packet
Classification', doctoral thesis, Department of Computer Science
and Engineering, Washington University, St. Louis, MO. Aug. 2004,
pp. 1-201.
Thomson Reuters, "Mellanox InfiniBand Accelerates the Exegy
Ticker Plant at Major Exchanges”. Jul. 22, 2008, URL: http://www.
reuters.com/article/pressRelease/idUS125385+22-Jul
2008 BW 20080722.
Uluski et al., “Characterizing Antivirus Workload Execution'.
SIGARCH Comput. Archit. News, vol. 33, No. 1, pp. 90-98, Mar.
2005.
Villasenor et al., “Configurable Computing Solutions for Automatic
Target Recognition'. FPGAS for Custom Computing Machines,
1996, Proceedings, IEEE Symposium on Napa Valley, CA, Apr.
17-19, 1996, pp. 70-79, 1996 IEEE, Napa Valley, CA, Los Alamitos,
CA, USA.
Ward et al., “Dynamically Reconfigurable Computing: A Novel
Computation Technology with Potential to Improve National Secu
rity Capabilities”. May 15, 2003, A White Paper Prepared by Star
Bridge Systems, Inc. retrieved Dec. 12, 2006). Retrieved from the
Internet: <URL: http://www.starbridgesystems.com/resources/
whitepapers/Dynamically%20Reconfigurable%20Computing.pdf.
West et al., “An FPGA-Based Search Engine for Unstructured Data
base'. Proc. of 2nd Workshop on Application Specific Processors,
Dec. 2003, San Diego, CA.
Yamaguchi et al., “High Speed Homology Search with FPGAs'.
Proceedings Pacific Symposium on Biocomputing, Jan. 3-7, 2002,
pp. 271-282, vol.7. Online, Lihue, Hawaii, USA.
Ziv et al., “A Universal Algorithm for Sequential Data Compression'.
IEEE Trans. Inform. Theory, IT-23(3): 337-343 (1997).
“RFC793: Transmission Control Protocol, Darpa Internet Program,
Protocol Specification', Sep. 1981.
Anerousis et al., “Using the AT&T Labs PacketScope for Internet
Measurement, Design, and Performance Analysis”, Network and
Distributed Systems Research Laboratory, AT&T Labs-Research,
Florham, Park, NJ, Oct. 1997.
Artan et al., “Multi-packet Signature Detection using Prefix Bloom
Filters”, 2005, IEEE, pp. 1811-1816.
Bloom, “Space/Time Trade-offs in Hash Coding With Allowable
Errors”. Communications of the ACM, Jul. 1970, pp. 422-426, vol.
13, No. 7. Computer Usage Company, Newton Upper Falls, Massa
chusetts, USA.
Cuppu and Jacob, “Organizational Design Trade-Offs at the DRAM,
Memory Bus and Memory Controller Level: Initial Results.” Tech
nical Report UMB-SCA-1999-2, Univ. of Maryland Systems &
Computer Architecture Group, Nov. 1999, pp. 1-10.
Dharmapurikar et al., “Deep Packet Inspection Using Parallel Bloom
Filters.” Symposium on High Performance Interconnects (Hotl),
Stanford, California, 2003, pp. 44-51.
Dharmapurikar et al., “Longest Prefix Matching Using Bloom Fil
ters.” SIGCOMM, 2003, pp. 201-212.
Dharmapurikar et al., “Robust TCP Stream Reassembly in the Pres
ence of Adversaries'. Proc. of the 14th Conference on USENIX
Security Symposium vol. 14, 16 pages, Baltimore, MD, 2005;
http://www.icir.org/vern papers/TcpReassembly/TCPReassembly.
pdf.
International Search Report for PCT/US2002/033286; Jan. 22, 2003.
International Search Report for PCT/US2005/030046; Sep. 25, 2006.
Jacobson et al., “RFC 1072: TCP Extensions for Long-Delay Paths”.
Oct. 1988.
Madhusudan, “Design of a System for Real-Time Worm Detection'.
Hot Interconnects, pp. 77-83, Stanford, CA, Aug. 2004, found at
http://www.hoti.org/hoti 12/program/paperS/2004/paper4.2.pdf.
Madhusudan, “Design of a System for Real-Time Worm Detection'.
Master's Thesis, Washington Univ., Dept. of Computer Science and
Engineering, St. Louis, MO, Aug. 2004.
Madhusudan, “Design of a System for Real-Time Worm Detection'.
Power Point Presentation in Support of Master's Thesis, Washington
Univ., Dept. of Computer Science and Engineering, St. Louis, MO,
Aug. 2004.

US 7,921,046 B2
Page 7

Moscola et al., “FPSed: A Streaming Content Search-And-Replace
Module for an Internet Firewall', Proc. of Hot Interconnects, 11th
Symposium on High Performance Interconnects, pp. 122-129, Aug.
20, 2003.
Moscola, “FPGrep and FPSed: Packet Payload Processors for Man
aging the Flow of Digital Content on Local Area Networks and the
Internet”, Master's Thesis, Sever Institute of Technology, Washing
ton University, St. Louis, MO, Aug. 2003.
Schuehler et al., “Architecture for a Hardware Based, TCP/IP Con
tent Scanning System”, IEEE Micro, 24(1):62-69, Jan.-Feb. 2004,
USA.
Schuehler et al., “TCP-Splitter: A TCP/IP Flow Monitor in
Reconfigurable Hardware'. Hot Interconnects 10 (Hotl-10),
Stanford, CA, Aug. 21-23, 2002, pp. 127-131.
Singh et al., “The EarlyBird System for Real-Time Detection on
Unknown Worms”, Technical report CS2003-0761, Aug. 2003.
Taylor et al., “Dynamic Hardware Plugins (DHP): Exploiting
Reconfigurable Hardware for High-Performance Programmable
Routers”. Computer Networks, 38(3): 295-310 (16), Feb. 21, 2002,
and online at http://www.cc.gatech.edu/classes/AY2007/
cs8803hpc fall/papers/phplugins.pdf.
Weaver et al., “Very Fast Containment of Scanning Worms'. Proc.
USENIX Symposium 2004, San Diego, CA, Aug. 2004, located at
http://www.icsi.berkely.edu/~nweaver/containment.containment.
pdf.
Wooster et al., “HTTPDUMP Network HTTP Packet Snooper”, Apr.
25, 1996.
Yan et al., “Enhancing Collaborative Spam Detection with Bloom
Filters”, 2006, IEEE, pp. 414-425.
U.S. Appl. No. 12/075.461, filed Mar. 11, 2008, Gatlin et al.
U.S. Appl. No. 1 1/554,834, filed Oct. 31, 2006, Venditto et al.
U.S. Appl. No. 1 1/765,306, filed Jun. 19, 2007, Kakadian et al.
U.S. Appl. No. 1 1/748.248, filed May 14, 2007, Thompson et al.
Sartori, F. and Savage, D.W., Sterically Hindered Amines for CO2
Removal from Gases, Ind. Eng. Chem. Fundam. 1983, 22, 239-249.
Fushslueger, U. Socher, G., Grether, H-J., Grasserbauer, M., Capil
lary Supercritical Fluid Chromatography/Mass Spectroscopy of Phe
nolic Mannich Bases with Dimethyl Ether Modified Ethane as
Mobile Phase, Anal. Chem., 1999, 71,2324-2333.
Kauffman, W.I., Observations on the Synthesis and Characterization
of N.NN-Tris-(dimethylaminopropyly)hexahydro-s-triazine and
isolable intermediates, XPO09005.168.
Delepine, M. Effect of Hydrogen Sulfide on Trimethyltrimetbyl
Triamine, Bull. Soc. Chim., 1896, 14, 889-891 (English Translation).
Delepine, M., Effect of Hydrogen Sulfide and Trimethyltrimethyl
Triamine, Ann. Chim. Phys., 1896, 4, 114-133 (English Translation).
U.S. Appl. No. 1 1/736.971, filed Apr. 18, 2007, Kippie et al.
U.S. Appl. No. 1 1/767,384, filed Jun. 22, 2007, Sweeney et al.
U.S. Appl. No. 1 1/741,110, filed Apr. 27, 2007, Wilson, Jr. et al.
U.S. Appl. No. 1 1/677,434, filed Feb. 21, 2007, Wanner et al.
U.S. Appl. No. 1 1/736,992, filed Apr. 18, 2007, Zamora et al.
U.S. Appl. No. 1 1/760,581, filed Jun. 8, 2007, Schwartz.
U.S. Appl. No. 12/029,335, filed Feb. 11, 2008, Kakdjian et al.
Paquin, A.M., Reaction of Primary Amines with Aliphatic
Aldehydes, Chem. Ber, 1949, 82,316-326 (English Translation).
Castillo, M., Avila, Y.S. Rodrigues, R.E., Viloria, A., H2S Liquid
Scavengers, Their Corrosivity Properites and the Compatibility with
Other Down Stream Processes, Corrosion 2000, paper 00491.
International Preliminary Report on Patentability (Chapter I) for
PCT/US2008/066929 dated Jan. 7, 2010.
Braun et al., “Protocol Wrappers for Layered Network Packet Pro
cessing in Reconfigurable Hardware', IEEE Micro, Jan.-Feb. 2002,
pp. 66-74.
Dharmapurikar et al., “Design and Implementation of a String
Matching System for Network Intrusion Detection using FPGA
based Bloom Filters'. Proc. of 12th Annual IEEE Symposium on
Field Programmable Custom Computing Machines, 2004, pp. 1-10.
English Translation of Office Action for JP Application 2004-508044
dated Feb. 9, 2010.
Koloniariet al., “Content-Based Routing of Path Queries in Peer-to
Peer Systems”, pp. 1-19, E. Bertino et al. (Eds.): EDBT 2004, LNCS
2992, pp. 29-47, 2004, copyright by Springer-Verlag, Germany.

Lietal. “Large-Scale IPTraceback in High-Speed Internet: Practical
Techniques and Theoretical Foundation'. Proceedings of the 2004
IEEE Symposium on Security and Privacy, 2004, pp. 1-15.
Nwodoh et al., “A Processing System for Real-Time Holographic
Video Computation'. Reconfigurable Technology: FPGAs for Com
puting and Application, Proceedings for the SPIE, Sep.1999, Boston,
pp. 129-140, vol. 3844.
Office Action for U.S. Appl. No. 11/561,615 dated Jun. 17, 2010.
Office Action Response for U.S. Appl. No. 11/561,615 datedMar. 26.
2010.
Summons to Attend Oral Proceedings for EP Application
03729000.4 dated Mar. 17, 2010.
Written Submissions to EPO for EP Application 03729000.4 dated
May 10, 2010.
Amanuma et al., “A FPGA Architecture for High Speed Computa
tion'. Proceedings of 60th Convention Architecture, Software Sci
ence, Engineering, Mar. 14, 2000, pp. 1-163-1-164. Information
Processing Society, Japan.
Asami et al., “Improvement of DES Key Search on FPGA-Based
Parallel Machine "Rash”. Proceedings of Information Processing
Society, Aug. 15, 2000, pp. 50-57, vol. 41, No. SIG5 (HPS1), Japan.
Google Search Results Page for “field programmable gate array
financial calculation stock market” over dates of Jan. 1, 1990-May
21, 2002, 1 page.
Sachin Tandon, “A Programmable Architecture for Real-Time
Derivative Trading', Master's Thesis, University of Edinburgh,
2003.
Seki et al., “High Speed Computation of Shogi With FPGA'. Pro
ceedings of 58th Convention Architecture, Software Science, Engi
neering, Mar. 9, 1999, pp. 1-133-1-134.
Yoshitani et al., “Performance Evaluation of Parallel Volume Ren
dering Machine Re Volver/C40”. Study Report of Information Pro
cessing Society, Mar. 5, 1999, pp. 79-84, vol. 99, No. 21.
Hirsch, “Tech Predictions for 2008”, Reconfigurable Computing,
Jan. 16, 2008, URL: http://fpgacomputing.blogspot.com/2008 01
01 archive.html.
Hoinville, et al. "Spatial Noise Phenomena of Longitudinal Magnetic
Recording Media'. IEEE Transactions on Magnetics, vol. 28, No. 6,
Nov. 1992.
Hollaar, “Hardware Systems for Text Information Retrieval”. Pro
ceedings of the Sixth Annual International ACM Sigir Conference on
Research and Development in Information Retrieval, Jun. 6-8, 1983,
pp. 3-9, Baltimore, Maryland, USA.
Hutchings et al., “Assisting Network Intrusion Detection with
Reconfigurable Hardware”, FCCM 2002: 10th Annual IEEE Sym
posium on Field-Programmable Custom Computing Machines,
2002.
International Search Report and Written Opinion for PCT/US2009/
030623 dated May 5, 2009.
International Search Report for PCT/US2001/01 1255 dated Jul. 10,
2003.
International Search Report for PCT/US2003/015638 dated May 6,
2004.
International Search Report for PCT/US2004/016021 dated Aug. 18.
2005.
International Search Report for PCT/US2004/016398 dated Apr. 12,
2005.
International Search Report for PCT/US2006/006105 dated Oct. 31,
2006.
International Search Report for PCT/US2006/045653 dated Jul. 8,
2008.
International Search Report for PCT/US2007/060835 dated Jul. 9,
2007.
International Search Report for PCT/US2007/084466 dated Jul 23,
2008.
International Search Report for PCT/US2008/065955 dated Aug. 22,
2008.
International Search Report for PCT/US2008/066929 dated Aug. 29,
2008.
Invitation to Pay Additional Fees and Annex to Form PCT/ISA206
Communication Relating to the Results of the Partial International
Search for International Application No. PCT/US2003/015638 dated
Feb. 3, 2004.

US 7,921,046 B2
Page 8

Jones et al., “A Probabilistic Model of Information Retrieval: Devel
opment and Status'. Information Processing and Management, Aug.
1998, 76 pages.
Krishnamurthy et al., “Biosequence Similarity Search on the Mer
cury System”. Proceedings of the 15th IEEE International Confer
ence on Application-Specific Systems, Architectures, and Processors
(ASAP04), Sep. 2004, pp. 365-375.
Lancaster et al., “Acceleration of Ungapped Extension in Mercury
BLAST". Seventh (7th) Workshop on Media and Streaming Proces
sors, Nov. 12, 2005. Thirty-Eighth (38th) International Symposium
on Microarchitecture (MICRO-38), Barcelona, Spain.
Lin et al., “Real-Time Image Template Matching Based on Systolic
Array Processor'. International Journal of Electronics; Dec. 1, 1992;
pp. 1165-1176; vol. 73, No. 6; London, Great Britain.
Lockwood et al., “Field Programmable Port Extender (FPX) for
Distributed Routing and Queuing”. ACM International Symposium
on Field Programmable Gate Arrays (FPGA 2000), Monterey, CA,
Feb. 2000, pp. 137-144.
Lockwood et al., “Hello, World: A Simple Application for the Field
Programmable Port Extender (FPX)", Washington University,
Department of Computer Science, Technical Report WUCS-00-12,
Jul. 11, 2000.
Lockwood et al., “Parallel FPGA Programming over Backplane
Chassis', Washington University, Department of Computer Science,
Technical Report WUCS-00-11, Jun. 12, 2000.
Lockwood et al., “Reprogrammable Network Packet Processing on
the Field Programmable Port Extender (FPX)", ACM International
Symposium on Field Programmable Gate Arrays (FPGA 2001),
Monterey, CA, Feb. 2001, pp. 87-93.
Lockwood, “An Open Platform for Development of Network Pro
cessing Modules in Reprogrammable Hardware'. IEC DesignCon
2001, Santa Clara, CA, Jan. 2001, Paper WB-19.
Lockwood, “Building Networks with Reprogrammable Hardware'.
Field Programmable Port Extender: Jan. 2002 Gigabit Workshop
Tutorial, Washington University, St. Louis, MO, Jan. 3-4, 2002.
Lockwood, “Evolvable Internet Hardware Platforms', NASA/DoD
Workshop on Evolvable Hardware (EHW01), Long Beach, CA. Jul.
12-14, 2001, pp. 271-279.
Lockwood, “Hardware Laboratory Configuration'. Field Program
mable Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Wash
ington University, St. Louis, MO, Jan. 3-4, 2002.
Lockwood, “Introduction'. Field Programmable Port Extender: Jan.
2002 Gigabit Workshop Tutorial, Washington University, St. Louis,
MO, Jan. 3-4, 2002.
Lockwood, “Platform and Methodology for Teaching Design of
Hardware Modules in Internet Routers and Firewalls’, IEEE Com
puter Society International Conference on Microelectronic Systems
Education (MSE 2001), Las Vegas, NV, Jun. 17-18, 2001, pp. 56-57.
Lockwood, “Protocol Processing on the FPX'. Field Programmable
Port Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington
University, St. Louis, MO, Jan. 3-4, 2002.
Lockwood, “Simulation and Synthesis'. Field Programmable Port
Extender: Jan. 2002 Gigabit Workshop Tutorial, Washington Univer
sity, St. Louis, MO, Jan. 3-4, 2002.
Lockwood, “Simulation of the Hello World Application for the Field
Programmable Port Extender (FPX)", Washington University,
Applied Research Lab, Spring 2001 Gigabits Kits Workshop.

Mosanya et al., “A FPGA-Based Hardware Implementation of Gen
eralized Profile Search Using Online Arithmetic'. ACM Sigda Inter
national Symposium on Field Programmable Gate Arrays (FPGA
99), Feb. 21-23, 1999, pp. 101-111, Monterey, CA, USA.
Moscola et al., “FPGrep and FPSed: Regular Expression Search and
Substitution for Packet Streaming in Field Programmable Hard
ware”. Dept. of Computer Science, Applied Research Lab, Washing
ton University, Jan. 8, 2002, unpublished, pp. 1-19, St. Louis, MO.
Navarro, "A Guided Tour to Approximate String Matching”. ACM
Computing Surveys, vol. 33, No. 1, Mar. 2001, pp. 31-88.
Nunez et al. “The X-MatchLITE FPGA-Based Data Compressor'.
Euromicro Conference 1999, Proceedings, Italy, Sep. 8-10, 1999, pp.
126-132, Los Alamitos, CA.
Pramanik et al., “A Hardware Pattern Matching Algorithm on a
Dataflow; Computer Journal; Jul. 1, 1985; pp. 264-269; vol. 28, No.
3: Oxford University Press, Surrey, Great Britain.
Ramakrishna et al., “A Performance Study of Hashing Functions for
Hardware Applications'. Int. Conf. on Computing and Information,
May 1994, pp. 1621-1636, Vol. 1, No. 1.
Ramakrishna et al., “Efficient Hardware Hashing Functions for High
Performance Computers', IEEE Transactions on Computers, Dec.
1997, vol. 46, No. 12.
Ratha et al., “Convolution on Splash 2. Proceedings of IEEE Sym
posium on FPGAS for Custom Computing Machines, Apr. 19, 1995,
pp. 204-213, Los Alamitos, California.
Roesch, “Snort—Lightweight Intrusion Detection for Networks',
Proceedings of LISA '99: 13th Systems Administration Conference;
Nov. 7-12, 1999: pp. 229-238; USENIX Association, Seattle, WA
USA.
Schmerken, “With Hyperfeed Litigation Pending, Exegy Launches
Low-Latency Ticker Plant”, in Wall Street & Technology Blog, Mar.
20, 2007, pp. 1-2.
Schmit, “Incremental Reconfiguration for Pipelined Applications'.
FPGAs for Custom Computing Machines, Proceedings, The 5th
Annual IEEE Symposium, Dept. of ECE. Carnegie Mellon Univer
sity, Apr. 16-18, 1997, pp. 47-55, Pittsburgh, PA.
Shah, “Understanding Network Processors'. Version 1.0, University
of California-Berkeley, Sep. 4, 2001.
Shirazi et al., “Quantitative Analysis of FPGA-based Database
Searching”, Journal of VLSI Signal Processing Systems For Signal,
Image, andVideo Technology, May 2001, pp. 85-96, vol. 28, No. 1/2,
Kluwer Academic Publishers, Dordrecht, NL.
Sidhu et al., “Fast Regular Expression Matching Using FPGAs'.
IEEE Symposium on Field Programmable Custom Computing
Machines (FCCM 2001), Apr. 2001.
Sidhu et al., “String Matching on Multicontext FPGAs Using Self
Reconfiguration’, FPGA '99: Proceedings of the 1999 ACM/SIGDA
7th International Symposium on Field Programmable Gate Arrays,
Feb. 1999, pp. 217-226.
Notice of Allowance for U.S. Appl. No. 1 1/339,892 dated Jan. 20,
2011.
Notice of Allowance for U.S. Appl. No. 1 1/932,391 dated Jan. 19.
2011.
Notice of Allowance for U.S. Appl. No. 1 1/932,652 dated Jan. 19.
2011.
Office Action for U.S. Appl. No. 10/550,323 dated Jan. 3, 2011.

* cited by examiner

U.S. Patent Apr. 5, 2011 Sheet 1 of 20 US 7,921,046 B2

10 - 12
100 Beang. ECN, News Feeds Exchange, ECN Access

N Feed 102 Compressor -y

102
----- - - - - 2 is 102 ------

f . * V Management Compliance s
: 102) & Monitoring? 102

2 r
Entitlements l ECN I
& Reporting O2 Gateway

v W
- - - - - - - - -a- - - -or rr r- r rw - - - - - as . . m . . m win a -s a - m - - 1 108 N - Management

f Interna w
Matching
System

- Order

Publish Order Mgmt
Server Routing System

- Tading systers

10

8 8 8 S. 8. S2, SS S2 (s
2

N ty S 2
Figure 1

PRIOR ART

U.S. Patent

232

Reconfigurable Logic (202)
r Amy m am Amy m

i

Firmware SocketModule (220)

Disk Controller
(206)

Data Store
(204)

Software High Level Module AP1 (302a)
Library - - - - - - - - - - - - - - - -------------------8-
Interface Low Level Module API (302b)
(310)

OS Level/Device Drivers (304)
Hardware/Software

Interface
(312) Firmware Socket (DMA Engine) (220)

Firmware Module
Interface
(314)

Firmware Application Module Chain (230)

FAM1 FAM2 or e o e FAM m
(230a) (230b) (230m)

FT T)

Network Data
Source? Destination

(242)

Figure 2

Application Software (300)

Firmware Application Module(s) (230)

Figure 3

Apr. 5, 2011 Sheet 2 of 20 US 7,921,046 B2

200

or a r w is a yx is a a

. 234

Bus (212)

Processor Network interface RAM
(208) (240) (210)

General Purpose
Processor

Reconfigurable Logic
(e.g., FPGA)

U.S. Patent Apr. 5, 2011 Sheet 3 of 20 US 7,921,046 B2

Printed Circuit Board (400)

FPGA (402)

FAM(s) (230)

PCI-X Connector (406)

Figure 4(a)

Printed Circuit Board (400)
Private

PCI-X Bus (408)

Network
Interface
Controller

(410)
FPGA (402)

FAM(s) (230)

4

Firmware Socket y
FIFA

PCI-X Connector (406)

Figure 4(b)

US 7,921,046 B2 Sheet 4 of 20 Apr. 5, 2011 U.S. Patent

(qZOV) Z VOAJ

(BZOË) I VÆÐAH

US 7,921,046 B2 Sheet 5 of 20 Apr. 5, 2011 U.S. Patent

(OSI)

9 9 InÃ¡H

|-ZI I

Josseuduloo ;
pºº

US 7,921,046 B2

} sen?ea ·
uolelædo :

Sheet 6 of 20 Apr. 5, 2011 U.S. Patent

US 7,921,046 B2 Sheet 7 of 20 Apr. 5, 2011 U.S. Patent

8 3_InÃ¡H |--, | .--J || San?eA | | JO?euÐdO} |?,-- - |808| |---- -),,…, i } :| 4-a (s):'')I ?pODUE?iÁu?nò ! XI-| | \6SW

- - - - - - - - - - -

U.S. Patent Apr. 5, 2011 Sheet 8 of 20 US 7,921,046 B2

Query
Filter(s)

7

Values

as is as a m a -a or an a a -a -

Figure 9

U.S. Patent Apr. 5, 2011 Sheet 9 of 20 US 7,921,046 B2

OOb ---

Top 10 Lists
Generator

7 (1008)

Minute Bar
Generator
(1010)

Symbol ID
Mapping Cache

Update
(1006)

I

I

Interest
Entitlement
Filter(s)
(1012)

Program
Calc
Engine

Message
Synch Buffer
(1018) s ... I for are

Ex Symbol Index. Record) Fieldyalue . . Interest
y Memory Memory. Entitlement

- . ." ; Memory . . 102 ry
w.k.
... :

Figure 10

U.S. Patent Apr. 5, 2011 Sheet 10 of 20 US 7,921,046 B2

YW == - a

Message Value Cache AI Interest A Message M
El Parser Update y Entitlement . Formatter
Y (1102) Mapping (1106) 'Filter(s)
- (1104) (1108) -

-
Message

. . . . Synch
: 7 Buffer

(1112)

rusu r e

Symbol index Record? Field Value Interest
Memory Memory' ... Entitlement:
(1122) ... (1124). Memory

Exegy - --- (1126)
PCI-X *** - .
Card

- -----------------

Figure 11

U.S. Patent Apr. 5, 2011 Sheet 11 of 20 US 7,921,046 B2

Symbology iD Key Code

ASC Symbol Alpha
numeric
Ticker

Compress

ISIN
Compress

Commodity
Compress

- KeyCode Compressed Alpha-numeric Ticker Symbol

KeyCode Compressed ESIN Symbol Hash Key

v Compressed Commodity Symbol

Figure 12

symbol index memory

symbol D
symbol D valid

Exchange Code

Exchange
Enum
Table

Global Exchangeldentifier (GEID)
Country Code

Figure 14

U.S. Patent Apr. 5, 2011 Sheet 12 of 20 US 7,921,046 B2

record management memory record storage memory
O walid flag composite record pointer regional list pointer 8

1. valid flag composite record pointer regional list pointer

:
-

N-1 valid flag composite record pointer regional list pointer s f-.

y
O regional list buffer

symbol ID global exchange ID, record pointer
global eachange D

message fields global exchange ID, record pointer

global exchange ID, record pointer

LVC memory manager free space pointer

composite record updated records
regional record

Composite record buffer regional record buffer

composite regional regional
update update update
engine engine engine

message fields

Composite
update
engine

WC message/record update updated message fields
interestlists

Figure 15(a)

U.S. Patent Apr. 5, 2011 Sheet 13 of 20 US 7,921,046 B2

record regional
management list

entry block current updated
records records

address cache record
symbol ID resolution ecord determination current retrieval

global exchange ID addresses record
message fields addresses

records

record?message O Edit,
field updates messag

fields

Figure 15(b)

U.S. Patent Apr. 5, 2011 Sheet 14 of 20 US 7,921,046 B2

entitlement mask table

O1OOO1O...O11

O OOO1 OOO...OOO

100100.001

exchange interest table
O1OOO1O.O11

OOO1OOO.OOO .

ooooo

entitlement D

global exchange D

output interest vector

interest lists

Figure 16

U.S. Patent Apr. 5, 2011 Sheet 16 of 20 US 7,921,046 B2

Exchange data
- 1801

Supplied

protocol

stack

s w a was as 'a as a as as a .

Figure 18

U.S. Patent Apr. 5, 2011 Sheet 17 of 20 US 7,921,046 B2

1903

U.S. Patent Apr. 5, 2011 Sheet 18 of 20 US 7,921,046 B2

Reconfigurable Logic
Firmware Application Module Chain

Data to Data from
hardware hardware

2003 Hardware
Interface Driver

kernel
up a rur an a gap a as a b a is aa

Se
is, s as " - e. , its,

v. ', As As . f 'A' A ; B C D ,
" ' ' ' -- ' ' -- ' ' --

“. . . 1 v. s---

U.S. Patent Apr. 5, 2011 Sheet 19 of 20 US 7,921,046 B2

2 1 1 O

2102 2111 Client
2104 Connections

2109

2105 N
Data from f (Z) W /
hardware 2 -1. OfS

X

- 7 7- Supplied
8

protocol
w

Hardware Stack
Interface Driver

kernel

LSe

N ..., background
2108 and

--...- maintenance
processing

Figure 21

U.S. Patent

Hardware
Interface Driver

a'a b d e o a do o so on - du -- a a

Apr. 5, 2011

', background
D. :

--...--' maintenance
processing

and

Sheet 20 of 20 US 7,921,046 B2

Client

connections 22O1

Supplied

t

protocol

Stack

uru u us up a

Figure 22

US 7,921,046 B2
1.

HIGH SPEED PROCESSING OF FINANCIAL
INFORMATION USING FPGADEVICES

CROSS-REFERENCE AND PRIORITY CLAIM
TO RELATED PATENT APPLICATIONS

This application claims priority to provisional patent appli
cation 60/814,796, filed Jun. 19, 2006, and entitled “High
Speed Processing of Financial Information Using FPGA
Devices’, the entire disclosure of which is incorporated
herein by reference.

This patent application is related to the following patent
applications: U.S. patent application Ser. No. 09/545,472
(filed Apr. 7, 2000, and entitled “Associative Database Scan
ning and Information Retrieval', now U.S. Pat. No. 6,711,
558), U.S. patent application Ser. No. 10/153,151 (filed May
21, 2002, and entitled “Associative Database Scanning and
Information Retrieval using FPGA Devices', now U.S. Pat.
No. 7,139,743), published PCT applications WO 05/048134
and WO 05/026925 (both filed May 21, 2004, and entitled
“Intelligent Data Storage and Processing. Using FPGA
Devices”), published PCT patent application WO 06/096324
(filed Feb. 22, 2006, entitled “Method and Apparatus for
Performing Biosequence Similarity Searching'), U.S. patent
application Ser. No. 11/293,619 (filed Dec. 2, 2005, entitled
“Method and Device for High Performance Regular Expres
sion Pattern Matching, and published as 2007/0130140),
U.S. patent application Ser. No. 1 1/339,892 (filed Jan. 26,
2006, and entitled “Firmware Socket Module for FPGA
Based Pipeline Processing), U.S. patent application Ser. No.
1 1/381,214 (filed May 2, 2006, and entitled “Method and
Apparatus for Approximate Pattern Matching'), U.S. patent
application Ser. No. 11/561,615 (filed Nov. 20, 2006, entitled
“Method and Apparatus for Processing Financial Information
at Hardware Speeds Using FPGA Devices', and published as
2007/0078837), and U.S. patent application Ser. No. 1 1/760,
211 (filed Jun. 8, 2007, and entitled “Method and System for
High Speed Options Pricing), the entire disclosures of each
of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to the field of data processing
platforms for financial market data.

BACKGROUND AND SUMMARY OF THE
INVENTION

Speed of information delivery is a valuable dimension to
the financial instrument trading and brokerage industry. The
ability of a trader to obtain pricing information on financial
instruments such as stocks, bonds and particularly options as
quickly as possible cannot be understated; improvements in
information delivery delay on the order of fractions of a
second can provide important value to traders.

For example, Suppose there is an outstanding “bid on
stock X that is a firm quote to buy 100 shares of Stock X for
S21.50 per share. Also suppose there are two traders, A and B,
each trying to sell 100 shares of stock X, but would prefer not
to sell at a price of S21.50. Next, suppose another party
suddenly indicates a willingness to buy 100 shares of Stock X
for a price of $21.60. A new quote for that amount is then
submitted, which sets the “best bid for Stock X to $21.60, up
10 cents from its previous value of $21.50. The first trader. A
or B, to see the new best bid price for Stock X and issue a
counter-party order to sell Stock X will “hit the bid', and sell
his/her Stock X for $21.60 per share. The other trader will

5

10

15

25

30

35

40

45

50

55

60

65

2
either have to settle for selling his/her shares of Stock X for
the lower S21.50 price or will have to decide not to sell at all
at that lower price. Thus, it can be seen that speed of infor
mation delivery can often translate into actual dollars and
cents for traders, which in large Volume situations, can trans
late to significant sums of money.

In an attempt to promptly deliver financial information to
interested parties such as traders, a variety of market data
platforms have been developed for the purpose of ostensible
“real time' delivery of streaming bid, offer, and trade infor
mation for financial instruments to traders. FIG. 1 illustrates
an exemplary platform that is currently known in the art. As
shown in FIG. 1, the market data platform 100 comprises a
plurality of functional units 102 that are configured to carry
out data processing operations such as the ones depicted in
units 102, whereby traders at workstations 104 have access to
financial data of interest and whereby trade information can
be sent to various exchanges or other outside systems via
output path 110. The purpose and details of the functions
performed by functional units 102 are well-known in the art.
A stream 106 of financial data arrives at the system 100 from
an external source Such as the exchanges themselves (e.g.,
NYSE, NASDAQ, etc.) over private data communication
lines or from extranet providers such as Savvis or BT Radi
ans. The financial data source stream 106 comprises a series
of messages that individually represent a new offer to buy or
sell a financial instrument, an indication of a completed sale
of a financial instrument, notifications of corrections to pre
viously-reported sales of a financial instrument, administra
tive messages related to Such transactions, and the like. As
used herein, a “financial instrument” refers to a contract rep
resenting equity ownership, debt or credit, typically in rela
tion to a corporate or governmental entity, wherein the con
tract is saleable. Examples of “financial instruments' include
stocks, bonds, commodities, currency traded on currency
markets, etc. but would not include cash or checks in the sense
of how those items are used outside financial trading markets
(i.e., the purchase of groceries at a grocery store using cash or
check would not be covered by the term “financial instru
ment as used herein; similarly, the withdrawal of S100 in
cash from an Automatic Teller Machine using a debit card
would not be covered by the term “financial instrument’ as
used herein). Functional units 102 of the system then operate
on stream 106 or data derived therefrom to carry out a variety
of financial processing tasks. As used herein, the term “finan
cial market data” refers to the data contained in or derived
from a series of messages that individually represent a new
offer to buy or sell a financial instrument, an indication of a
completed sale of a financial instrument, notifications of cor
rections to previously-reported sales of a financial instru
ment, administrative messages related to such transactions,
and the like. The term “financial market source data refers to
a feed of financial market data directly from a data source
Such as an exchange itself or a third party provider (e.g., a
Savvis BT Radianz provider). The term “financial market
secondary data refers to financial market data that has been
derived from financial market source data, such as data pro
duced by a feed compression operation, a feed handling
operation, an option pricing operation, etc.

Because of the massive computations required to Support
Such a platform, current implementations known to the inven
tors herein typically deploy these functions across a number
of individual computer systems that are networked together,
to thereby achieve the appropriate processing scale for infor
mation delivery to traders with an acceptable degree of
latency. This distribution process involves partitioning a
given function into multiple logical units and implementing

US 7,921,046 B2
3

each logical unit in Software on its own computer system/
server. The particular partitioning scheme that is used is
dependent on the particular function and the nature of the data
with which that function works. The inventors believe that a
number of different partitioning schemes for market data
platforms have been developed over the years. For large mar
ket data platforms, the scale of deployment across multiple
computer systems and servers can be physically massive,
often filling entire rooms with computer systems and servers,
thereby contributing to expensive and complex purchasing,
maintenance, and service issues.

This partitioning approach is shown by FIG. 1 wherein
each functional unit 102 can be thought of as its own com
puter system or server. Buses 108 and 110 can be used to
network different functional units 102 together. For many
functions, redundancy and scale can be provided by parallel
computer systems/servers such as those shown in connection
with options pricing and others. To the inventors knowledge,
these functions are deployed in software that is executed by
the conventional general purpose processors (GPPs) resident
on the computer systems/servers 102. The nature of general
purpose processors and Software systems in the current state
of the art known to the inventors herein imposes constraints
that limit the performance of these functions. Performance is
typically measured as some number of units of computational
work that can be performed per unit time on a system (com
monly called “throughput'), and the time required to perform
each individual unit of computational work from start to
finish (commonly called “latency” or delay). Also, because of
the many physical machines required by system 100, com
munication latencies are introduced into the data processing
operations because of the processing overhead involved in
transmitting messages to and from different machines.

Despite the improvements to the industry that these sys
tems have provided, the inventors herein believe that signifi
cant further improvements can be made. In doing so, the
inventors herein disclose that the underlying technology dis
closed in the related patents and patent applications listed and
incorporated herein above to fundamentally change the sys
tem architecture in which market data platforms are
deployed.

In above-referenced related patent application Ser. No.
10/153,151, it was first disclosed that reconfigurable logic,
such as Field Programmable Gate Arrays (FPGAs), can be
deployed to process streaming financial information at hard
ware speeds. As examples, the Ser. No. 10/153,151 applica
tion disclosed the use of FPGAs to perform data reduction
operations on streaming financial information, with specific
examples of such data reduction operations being a minimum
price function, a maximum price function, and a latest price
function. (See also the above-referenced and incorporated
Ser. No. 11/561,615 patent application).

Since that time, the inventors herein have greatly expanded
the scope of functionality for processing streams of financial
information with reconfigurable logic. With the invention
described herein, vast amounts of streaming financial infor
mation can be processed with varying degrees of complexity
at hardware speeds via reconfigurable logic deployed inhard
ware appliances that greatly consolidate the distributed GPP
architecture shown in FIG. 1 such that a market data platform
built in accordance with the principles of the present inven
tion can be implemented within fewer and much smaller
appliances while providing faster data processing capabilities
relative to the conventional market data platform as illustrated
by FIG. 1; for example, the inventors envision that a 5:1 or

10

15

25

30

35

40

45

50

55

60

65

4
greater reduction of appliances relative to the system archi
tecture of FIG. 1 can beachieved in the practice of the present
invention.
As used herein, the term 'general-purpose processor' (or

GPP) refers to a hardware device that fetches instructions and
executes those instructions (for example, an Intel Xeon pro
cessor or an AMD Opteron processor). The term “reconfig
urable logic' refers to any logic technology whose form and
function can be significantly altered (i.e., reconfigured) in the
field post-manufacture. This is to be contrasted with a GPP
whose function can change post-manufacture, but whose
form is fixed at manufacture. The term "software' will refer to
data processing functionality that is deployed on a GPP. The
term “firmware' will refer to data processing functionality
that is deployed on reconfigurable logic.

Thus, as embodiments of the present invention, the inven
tors herein disclose a variety of data processing pipelines
implemented in firmware deployed on reconfigurable logic,
wherein a stream of financial data can be processed through
these pipelines at hardware speeds.

Also disclosed as an embodiment of the invention is a
ticker plant that is configured to process financial market data
with a combination of Software logic and firmware logic.
Through firmware pipelines deployed on the ticker plant and
efficient Software control and management over data flows to
and from the firmware pipelines, the inventors herein believe
that the ticker plant of the preferred embodiment is capable of
greatly accelerating the speed with which financial market
data is processed. In a preferred embodiment, financial mar
ket data is first processed within the ticker plant by software
logic. The Software logic controls and manages the flow of
received financial market data into and out of the firmware
logic deployed on the reconfigurable logic device(s), prefer
ably in a manner Such that each financial market data message
travels only once from the Software logic to the firmware logic
and only once from the firmware logic back to the software
logic. As used herein, the term "ticker plant” refers to a
plurality of functional units, such as functional units 102
depicted in FIG. 1, that are arranged together to operate on a
financial market data stream 106 or data derived therefrom.

These and other features and advantages of the present
invention will be understood by those having ordinary skill in
the art upon review of the description and figures hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an exemplary system architecture for a
conventional market data platform;

FIG. 2 is a block diagram view of an exemplary system
architecture in accordance with an embodiment of the present
invention;

FIG. 3 illustrates an exemplary framework for the deploy
ment of software and firmware for an embodiment of the
present invention;

FIG. 4(a) is a block diagram view of a preferred printed
circuit board for installation into a market data platform to
carry out data processing tasks in accordance with the present
invention;

FIG. 4(b) is a block diagram view of an alternate printed
circuit board for installation into a market data platform to
carry out data processing tasks in accordance with the present
invention;

FIG. 5 illustrates an example of how the firmware applica
tion modules of a pipeline can be deployed across multiple
FPGAs:

US 7,921,046 B2
5

FIG. 6 illustrates an exemplary architecture for a market
data platform in accordance with an embodiment of the
present invention;

FIG. 7 illustrates an exemplary firmware application mod
ule pipeline for a message transformation from the Financial
Information Exchange (FIX) format to the FIX Adapted for
Streaming (FAST) format;

FIG. 8 illustrates an exemplary firmware application mod
ule pipeline for a message transformation from the FAST
format to the FIX format;

FIG. 9 illustrates an exemplary firmware application mod
ule pipeline for message format transformation, message data
processing, and message encoding; and

FIG. 10 illustrates another exemplary firmware application
module pipeline for message format transformation, message
data processing, and message encoding.

FIG. 11 depicts another exemplary firmware application
module pipeline for performing the functions including sym
bol mapping, Last Value Cache (LVC) updates, interest and
entitlement filtering:

FIG. 12 depicts an exemplary embodiment of a compres
sion function used to generate a hash key within a firmware
application module configured to perform symbol mapping;

FIG. 13 depicts an exemplary embodiment of a hash func
tion for deployment within a firmware application module
configured to perform symbol mapping;

FIG. 14 depicts a preferred embodiment for generating a
global exchange identifier (GEID) within a firmware appli
cation module configured to perform symbol mapping;

FIGS. 15(a) and (b) depict an exemplary embodiment for a
firmware application module configured to perform Last
Value Cache (LVC) updating:

FIG. 16 depicts an exemplary embodiment for a firmware
application module configured to perform interestandentitle
ment filtering;

FIG. 17 depicts an exemplary embodiment of a ticker plant
where the primary data processing functional units are
deployed in reconfigurable hardware and where the control
and management functional units are deployed in Software on
general purpose processors;

FIG. 18 depicts an exemplary data flow for inbound
exchange traffic in the ticker plant of FIG. 17:

FIG. 19 depicts an exemplary processing of multiple thread
groups within the ticker plant of FIG. 17:

FIG. 20 depicts an example of data flow between the hard
ware interface driver and reconfigurable logic within the
ticker plant of FIG. 17:

FIG. 21 depicts an example of data flows within the ticker
plant of FIG. 17 for data exiting the reconfigurable logic; and

FIG. 22 depicts an exemplary model for managing client
connections with the ticker plant of FIG. 17.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 2 depicts an exemplary system 200 in accordance
with the present invention. In this system, a reconfigurable
logic device 202 is positioned to receive data that streams off
either or both a disk subsystem defined by disk controller 206
and data store 204 (either directly or indirectly by way of
system memory such as RAM 210) and a network data
source/destination 242 (via network interface 240). Prefer
ably, data streams into the reconfigurable logic device by way
of system bus 212, although other design architectures are
possible (see FIG. 4(b)). Preferably, the reconfigurable logic
device 202 is a FPGA, although this need not be the case.
System bus 212 can also interconnect the reconfigurable logic

5

10

15

25

30

35

40

45

50

55

60

65

6
device 202 with the computer systems main processor 208 as
well as the computer systems RAM 210. The term “bus’ as
used herein refers to a logical bus which encompasses any
physical interconnect for which devices and locations are
accessed by an address. Examples of buses that could be used
in the practice of the present invention include, but are not
limited to the PCI family of buses (e.g., PCI-X and PCI
Express) and HyperTransport buses. In a preferred embodi
ment, system bus 212 may be a PCI-X bus, although this need
not be the case.
The data store can be any data storage device/system, but is

preferably some form of a mass storage medium. For
example, the data store 204 can be a magnetic storage device
Such as an array of Seagate disks. However, it should be noted
that other types of storage media are Suitable for use in the
practice of the invention. For example, the data store could
also be one or more remote data storage devices that are
accessed over a network Such as the Internet or some local
area network (LAN). Another source/destination for data
streaming to or from the reconfigurable logic device 202, is
network 242 by way of network interface 240, as described
above. In the financial industry, a network data source (e.g.,
the exchanges themselves, a third party provider, etc.) can
provide the financial data stream 106 described above in
connection with FIG. 1.
The computer system defined by main processor 208 and

RAM 210 is preferably any commodity computer system as
would be understood by those having ordinary skill in the art.
For example, the computer system may be an Intel Xeon
system or an AMD Opteron system.
The reconfigurable logic device 202 has firmware modules

deployed thereon that define its functionality. The firmware
socket module 220 handles the data movement requirements
(both command data and target data) into and out of the
reconfigurable logic device, thereby providing a consistent
application interface to the firmware application module
(FAM) chain 230 that is also deployed on the reconfigurable
logic device. The FAMs 230i of the FAM chain 230 are
configured to perform specified data processing operations on
any data that streams through the chain 230 from the firmware
socket module 220. Preferred examples of FAMs that can be
deployed on reconfigurable logic in accordance with a pre
ferred embodiment of the present invention are described
below.
The specific data processing operation that is performed by

a FAM is controlled/parameterized by the command data that
FAM receives from the firmware socket module 220. This
command data can be FAM-specific, and upon receipt of the
command, the FAM will arrange itself to carry out the data
processing operation controlled by the received command.
For example, within a FAM that is configured to compute an
index value (such as the Dow Jones Industrial Average), the
FAM’s index computation operation can be parameterized to
define which stocks will be used for the computation and to
define the appropriate weighting that will be applied to the
value of each stock to compute the index value. In this way, a
FAM that is configured to compute an index value can be
readily re-arranged to compute a different index value by
simply loading new parameters for the different index value
in that FAM.
Once a FAM has been arranged to perform the data pro

cessing operation specified by a received command, that
FAM is ready to carry out its specified data processing opera
tion on the data stream that it receives from the firmware
Socket module. Thus, a FAM can be arranged through an
appropriate command to process a specified stream of data in
a specified manner. Once the FAM has completed its data

US 7,921,046 B2
7

processing operation, another command can be sent to that
FAM that will cause the FAM to re-arrange itself to alter the
nature of the data processing operation performed thereby.
Not only will the FAM operate at hardware speeds (thereby
providing a high throughput of target data through the FAM),
but the FAMs can also be flexibly reprogrammed to change
the parameters of their data processing operations.

The FAM chain 230 preferably comprises a plurality of
firmware application modules (FAMs) 230a, 230b, ... that
are arranged in a pipelined sequence. As used herein, "pipe
line”, “pipelined sequence', or “chain” refers to an arrange
ment of FAMs wherein the output of one FAM is connected to
the input of the next FAM in the sequence. This pipelining
arrangement allows each FAM to independently operate on
any data it receives during a given clock cycle and then pass
its output to the next downstream FAM in the sequence during
another clock cycle.
A communication path 232 connects the firmware socket

module 220 with the input of the first one of the pipelined
FAMs 230a. The input of the first FAM 230a serves as the
entry point into the FAM chain 230. A communication path
234 connects the output of the final one of the pipelined FAMs
230m with the firmware socket module 220. The output of the
final FAM 230m serves as the exit point from the FAM chain
230. Both communication path 232 and communication path
234 are preferably multi-bit paths.

FIG.3 depicts an exemplary framework for the deployment
of applications on the system 200 of FIG. 2. The top three
layers of FIG. 3 represent functionality that is executed in
Software on the computer systems general-purpose proces
sor 208. The bottom two layers represent functionality that is
executed in firmware on the reconfigurable logic device 202.
The application software layer 300 corresponds to high

level functionality such as the type of functionality wherein
one or more users interact with the application to define which
data processing operations are to be performed by the FAMs
and to define what data those data processing operations are to
be performed upon.

The next layer is the module application programming
interface (API) layer 302 which comprises a high level mod
ule API302a and a low level module API302b. The high level
module API 302a can provide generic services to application
level Software (for example, managing callbacks). The low
level module API 302b manages the operation of the operat
ing system (OS) level/device driver software 304. A software
library interface 310 interfaces the high level module API
302a with the low level module API 302b. Additional details
about this software library interface can be found in the
above-referenced patent application Ser. No. 1 1/339,892.
The interface between the device driver software 304 and

the firmware socket module 220 serves as the hardware/soft
ware interface 312 for the system 200. The details of this
interface 312 are described in greater detail in the above
referenced patent application Ser. No. 1 1/339,892.
The interface between the firmware socket module 220 and

the FAM chain 230 is the firmware module interface 314. The
details of this interface are described in greater detail in the
above-referenced patent application Ser. No. 1 1/339,892.

FIG. 4(a) depicts a printed circuit board or card 400 that
can be connected to the PCI-X bus 212 of a commodity
computer system for use in a market data platform. In the
example of FIG. 4(a), the printed circuit board includes an
FPGA 402 (such as a Xilinx Virtex II FPGA) that is in com
munication with a memory device 404 and a PCI-X bus
connector 406. A preferred memory device 404 comprises
SRAM and SDRAM memory. A preferred PCI-X bus con
nector 406 is a standard card edge connector.

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 4(b) depicts an alternate configuration for a printed

circuit board/card 400. In the example of FIG. 4(b), a private
bus 408 (such as a PCI-X bus), a network interface controller
410, and a network connector 412 are also installed on the
printed circuit board 400. Any commodity network interface
technology can be Supported, as is understood in the art. In
this configuration, the firmware socket 220 also serves as a
PCI-X to PCI-X bridge to provide the processor 208 with
normal access to the network(s) connected via the private
PCI-X bus 408.

It is worth noting that in either the configuration of FIG.
4(a) or 4(b), the firmware socket 220 can make memory 404
accessible to the PCI-X bus, which thereby makes memory
404 available for use by the OS kernel304 as the buffers for
transfers from the disk controller and/or network interface
controller to the FAMs. It is also worth noting that while a
single FPGA 402 is shown on the printed circuit boards of
FIGS. 4(a) and (b), it should be understood that multiple
FPGAs can be supported by either including more than one
FPGA on the printed circuit board 400 or by installing more
than one printed circuit board 400 in the computer system.
FIG.5 depicts an example where numerous FAMs in a single
pipeline are deployed across multiple FPGAs.
As shown in FIGS. 2-4, inbound data (from the kernel 304

to the card 400) is moved across the bus 212 in the computer
system to the firmware socket module 220 and then delivered
by the firmware socket module 220 to the FAM chain 230.
Outbound data (from the card 400 to the kernel 304) are
delivered from the FAM chain 230 to the firmware socket
module 220 and then delivered by the firmware socket mod
ule 220 across the PCI-X bus to the software application
executing on the computer system. As shown in FIG. 3, the
three interacting interfaces that are used are the firmware
module interface 314, the hardware/software interface 312,
and the software library interface 310.

In an effort to improve upon conventional market data
platforms, the inventors herein disclose a new market data
platform architecture, an embodiment of which is shown in
FIG. 6. The market data platform 600 shown in FIG. 6 con
solidates the functional units 102 shown in FIG. 1 into much
fewer physical devices and also offloads much of the data
processing performed by the GPPs of the functional units 102
to reconfigurable logic.

For example, with the architecture of FIG. 6, the feed
compressor 602 can be deployed in an appliance such as
system 200 shown in FIG. 2. The reconfigurable logic 202 can
be implemented on a board 400 as described in connection
with FIG. 4(a) or 4(b). Feed compressor 602 is used to com
press the content of the financial data stream 106 arriving
from various individual sources. Examples of compression
techniques that can be used include the open standard "glib'
as well as any proprietary compression technique that may be
used by a practitioner of the present invention. Appropriate
FAM modules and a corresponding FAM pipeline to imple
ment such a feed compression operation can be carried out by
a person having ordinary skill in the art using the design
techniques described in connection with the above-refer
enced patent and patent applications and basic knowledge in
the art concerning feed compression. As a result, a variety of
hardware templates available for loading on reconfigurable
logic can be designed and stored for use by the market data
platform 600 to implementa desired feed compression opera
tion.

Preferably, the feed compressor device 602 is deployed in
a physical location as close to the feed source 106 as possible,
to thereby reduce communication costs and latency. For
example, it would be advantageous to deploy the feed com

US 7,921,046 B2
9

pressor device 602 in a data center of an extranet provider
(e.g., Savvis, BT RadianZ, etc.) due to the data center's geo
graphic proximity to the Source of the financial market data
106. Because the compression reduces message sizes within
the feed stream 106, it will be advantageous to perform the
compression prior to the stream reaching wide area network
(WAN) 620a; thereby improving communication latency
through the network because of the Smaller message sizes.
WAN 620 preferably comprises an extranet infrastructure

or private communication lines for connection, on the
inbound side, to the feed handlers deployed in device 604. On
the outbound side, WAN 620 preferably connects with device
606, as explained below. It should be noted that WAN 620 can
comprise a single network or multiple networks 620a and
620b segmented by their inbound/outbound role in relation to
platform 600. It is also worth noting that a news feed with
real-time news wire reports can also be fed into WAN 620a
for delivery to device 604.

Device 604 can be deployed in an appliance Such as system
200 shown in FIG. 2. The reconfigurable logic 202 can be
implemented on a board 400 as described in connection with
FIG. 4(a) or 4(b). Whereas the conventional GPP-based sys
tem architecture shown in FIG. 1 deployed the functional
units of feed handling/ticker plant, rule-based calculation
engines, an alert generation engine, options pricing, Last
Value Cache (LVC) servers supplying snapshot and/or
streaming interfaces, historical time-series oriented data
bases with analytics, and news databases with search capa
bilities in software on separate GPPs, the architecture of FIG.
6 can consolidate these functions, either partially or in total, in
firmware resident on the reconfigurable logic (Such as one or
more FPGAs) of device 604.

Feed handlers, which can also be referred to as feed pro
ducers, receive the real-time data stream, either compressed
from the feed compressor 602 as shown in FIG. 6 or uncom
pressed from a feed source, and converts that compressed or
uncompressed stream from a source-specific format (e.g., an
NYSE format) to a format that is common throughout the
market data platform 600. This conversion process can be
referred to as “normalization'. This “normalization' can be
implemented in a FAM chain that transforms the message
structure, converts the based units of specific field values
within each message, maps key field information to the com
mon format of the platform, and fills in missing field infor
mation from cached or database records. In situations where
the received feed stream is a compressed feed stream, the feed
handler preferably also implements a feed decompression
operation.
LVCs maintain a database of financial instrument records

whose functionality can be implemented in a FAM pipeline.
Each record represents the current state of that financial
instrument in the market place. These records are updated in
real-time via a stream of update messages received from the
feed handlers. The LVC is configured to respond to requests
from other devices for an up-to-the-instant record image for a
set of financial instruments and redistribute a selective stream
of update messages pertaining to those requested records,
thereby providing real-time Snapshots of financial instrument
status. From these Snapshots, information Such as the “latest
price' for a financial instrument can be determined, as
described in the above-referenced Ser. No. 10/153,151 appli
cation.

Rule-based calculation engines are engines that allow a
user to create his/her own synthetic records whose field val
ues are derived from calculations performed against informa
tion obtained from the LVC, information extracted from a
stream of update messages generated from the LVC, or from

10

15

25

30

35

40

45

50

55

60

65

10
alternate sources. These rule-based calculation engines are
amenable to implementation in a FAM pipeline. It should also
be noted that the rule-based calculation engine can be con
figured to create new synthetic fields that are included in
existing records maintained by the LVC. The new values
computed by the engine are computed by following a set of
rules or formulas that have been specified for each synthetic
field. For example, a rule-based calculation engine can be
configured to compute a financial instrument's Volume
Weighted Average Price (VWAP) via a FAM pipeline that
computes the VWAP as the sum of PxS for every trade meet
ing criteria X, wherein P equals the trade price and wherein S
equals the trade size. Criteria X can be parameterized into a
FAM filter that filters trades based on size, types, market
conditions, etc. Additional examples of rule-based calcula
tions that can be performed by the rule-based calculation
engine include, but are not limited to, a minimum price cal
culation for a financial instrument, a maximum price calcu
lation for a financial instrument, a Top 10 list for a financial
instrument or set of financial instruments, etc.
An alert generation engine can also be deployed in a FAM

pipeline. Alert generation engines are similar to a rule-based
calculation engine in that they monitor the current state of a
financial instrument record (or set of financial instrument
records), and the alert generation engine will trigger an alert
when any of a set of specified conditions is met. An indication
is then delivered via a variety of means to consuming appli
cations or end users that wish to be notified upon the occur
rence of the alert.

Option pricing is another function that is highly amenable
to implementation via a FAM pipeline. An "option' is a
derivative financial instrument that is related to an underlying
financial instrument, and the option allows a person to buy or
sell that underlying financial instrument at a specific price at
Some specific time in the future. An option pricing engine is
configured to perform a number of computations related to
these options and their underlying instruments (e.g., the theo
retical fair market value of an option or the implied volatility
of the underlying instrument based upon the market price of
the option). A wide array of computational rules can be used
for pricing options, as is known in the art. Most if not all
industry-accepted techniques for options pricing are
extremely computation intensive which introduces signifi
cant latency when the computations are performed in Soft
ware. However, by implementing option pricing in a FAM
pipeline, the market data platform 600 can significantly speed
up the computation of option pricing, thereby providing in
important edge to traders who use the present invention. An
example of options pricing functionality that can be deployed
in firmware is described in pending U.S. patent application
Ser. No. 1 1/760,211, filed Jun. 8, 2007, the entire disclosure
of which is incorporated herein by reference.
A time series database is a database that maintains a record

for each trade or quote event that occurs for a set of financial
instruments. This information may be retrieved upon request
and returned in an event-by-event view. Alternative views are
available wherein events are “rolled up' by time intervals and
Summarized for each interval. Common intervals include
monthly, weekly, daily, and “minute bars where the interval
is specified to be some number of minutes. The time series
database also preferably compute a variety of functions
against these historic views of data, including Such statistical
measures as volume weighted average price (VWAP), money
flow, or correlations between disparate financial instruments.
A news database maintains a historical archive of news

stories that have been received from a news wire feed by way
of the feed handler. The news database is preferably config

US 7,921,046 B2
11

ured to allow end users or other applications to retrieve news
stories or headlines based upon a variety of query parameters.
These query parameters often include news category assign
ments, source identifiers, or even keywords or keyword
phrases. The inventors herein note that this searching func
tionality can also be enhanced using the search and data
matching techniques described in the above-referenced
patent and patent applications.

Appropriate FAM modules and corresponding FAM pipe
lines to implement these various functions for device 604 can
be carried out by a person having ordinary skill in the art using
the design techniques described in connection with the above
referenced patent and patent applications and basic knowl
edge in the art concerning each function. As a result, a variety
of hardware templates available for loading on reconfigurable
logic can be designed and stored in memory (such as on a disk
embodied by data store 204 in connection with FIG.2) for use
by the market data platform 600 to implement a desired data
processing function. Persistent data storage unit 630 can be
accessible to device 604 as device 604 processes the feed
stream in accordance with the functionality described above.
Storage 630 can be embodied by data store 204 or other
memory devices as desired by a practitioner of the invention.

Traders at workstations 104 (or application programs 150
running on an entity's own trading platform) can then access
the streaming financial data processed by device 604 via a
connection to local area network (LAN) 622. Through this
LAN connection, workstations 104 (and application program
15) also have access to the data produced by devices 606, 608,
610, 612, 614, and 616. Like devices 602 and 604, devices
606, 608, 610, 612, 614, and 616 can also be deployed in an
appliance such as system 200 shown in FIG. 2, wherein the
reconfigurable logic 202 of system 200 can be implemented
on a board 400 as described in connection with FIG. 4(a) or
4(b).

Device 606 preferably consolidates the following func
tionality at least partially into firmware resident on reconfig
urable logic: an order book server; an order router, direct
market access gateways to exchanges, Electronic Communi
cation Networks (ECNs), and other liquidity pools; trading
engines; an auto-quote server, and a compliance journal.
An “order book server' is similar to a LVC in that the order

book server maintains a database in memory (e.g., in memory
device 404 on board 400) of financial instrument records, and
keeps that database up to date in real-time via update mes
sages received from the feed handlers. For each record, the
order book server preferably maintains a sorted list of the bids
and offers associated with all outstanding orders for that
instrument. This list is known as the “book' for that instru
ment. The order information for each instrument is received
from a variety of different trading venues in stream 106 and is
aggregated together to form one holistic view of the market
for that particular instrument. The order book server is con
figured to respond to requests from workstation 104 users or

5

10

15

25

30

35

40

45

50

application programs 150 to present the book in a number of 55
different ways. There are a variety of different “views”,
including but not limited to: a “top slice' of the book that
returns orders whose prices are considered to be within a
specified number of price points of the best price available in
the market (the best price being considered to be the “top” of 60
the book); a price aggregate view where orders at the same
price point are aggregated together to create entries that are
indicative of the total number of orders available at each price
point; and an ordinary view with specific trading venues
(which are the source of orders) excluded.
An order router is a function that can take a buy or sell order

for a specified financial instrument, and based upon a variety

65

12
of criteria associated with the order itself or the end user or
application submitting the order, route the order (in whole or
in part) to the most appropriate trading venue, Such as an
exchange, an Alternate Trading System (ATS), or an ECN.
The direct market access gateway functionality operates to

relay orders to a trading venue (Such as an exchange, ECN.
ATS, etc.) via WAN 620b. Before sending an order out how
ever, the gateway preferably transforms the order message to
a format appropriate for the trading venue.
The trading engine functionality can also be deployed on

reconfigurable logic. An algorithmic trading engine operates
to apply a quantitative model to trade orders of a defined
quantity to thereby automatically subdivide that trade order
into Smaller orders whose timing and size are guided by the
goals of the quantitative model so as to reduce the impact that
the original trade order may have on the current market price.
Also, a black box trading engine operates to automatically
generate trades by following a mathematical model that
specifies relationships or conditional parameters for an
instrument or set of instruments. To aid this processing, the
blackbox trading engine is fed with real-time market data.
An auto-quote server is similar to a black box trading

engine. The auto-quote server operates to automatically gen
erate firm quotes to buy or sell a particular financial instru
ment at the behest of a “market maker'; wherein a “market
maker is a person or entity which quotes a buy and/or sell
price in a financial instrument hoping to make a profit on the
“turn” or the bid/offer spread.
A feed/compliance journal can also be implemented in a

FAM pipeline. The feed/compliance journal functions to
store information (in persistent storage 632) related to the
current state of the entire market with regard to a particular
financial instrument at the time a firm quote or trade order is
Submitted to a single particular marketplace. The feed/com
pliance journal can also provide a means for searching storage
632 to provide detailed audit information on the state of the
market when a particular firm quote or trade order was Sub
mitted. The inventors herein note that this searching function
ality can also be enhanced using the search and data matching
techniques described in the above-referenced patent and
patent applications.
As mentioned above in connection with device 604, appro

priate FAM modules and corresponding FAM pipelines to
implement these various functions for device 606 can be
carried out by a person having ordinary skill in the art using
the design techniques described in connection with the above
referenced patent and patent applications and basic knowl
edge in the art concerning each function. As a result, a variety
of hardware templates available for loading on reconfigurable
logic can be designed and stored for use by the market data
platform 600 to implement a desired data processing func
tion. Persistent data storage unit 632, which can be embodied
by data store 204, can be accessible to device 606 as device
606 processes the feed stream in accordance with the func
tionality described above.

Device 608 preferably implements an internal matching
system/engine in firmware resident on reconfigurable logic.
An internal matching system/engine operates to match abuy
er's bid with a seller's offer to sell for a particular financial
instrument, to thereby execute a deal or trade. An indication
of a completed trade is then submitted to the appropriate
reporting and settlement systems. The internal matching sys
tem/engine may create bids or offers as would a market maker
in order to provide an orderly market and a minimum amount
of liquidity by following a set of programmatically-defined
rules.

US 7,921,046 B2
13

Device 610 preferably implements an order management
system (OMS) in firmware resident on reconfigurable logic.
An OMS operates to facilitate the management of a group of
trading accounts, typically on behalf of a broker. The OMS
will monitor buy and sell orders to ensure that they are appro
priate for the account owner in question based upon his/her
account status, credit and risk profiles. The OMS typically
incorporates a database via persistent storage 638 (which may
be embodied by data store 204) used to hold account infor
mation as well as an archive of orders and other activity for
each account.

Device 612 preferably implements entitlements and
reporting functionality. A market data platform Such as sys
tem 600 is a mechanism for distributing data content to a
variety of end users. Many content providers charge on a per
user basis for access to their data content. Such content pro
viders thus prefer a market data platform to have a mechanism
to prohibit (or entitle) access to specific content on an indi
vidual user basis. Entitlement systems may also supply a
variety of reports that detail the usage of different content
sets. To achieve this functionality, device 612, in conjunction
with database 634, preferably operates to maintain a database
ofusers, including authentication credentials and entitlement
information which can be used by devices 604, 606, 608, 610
and 616 for entitlement filtering operations in conjunction
with the data processing operations performed thereby.

Device 614 preferably implements management and moni
toring for the market data platform 600. Management and
monitoring functionality provides a means for users to oper
ate the applications running within the platform 600 and
monitor the operational state and health of individual com
ponents thereon. Preferably, the management and monitoring
functionality also provides facilities for reconfiguring the
components as well as means for performing any other appro
priate manual chores associated with running the platform.

Device 616 preferably implements publishing and contri
bution server functionality. Contribution servers (also known
as publishing servers) allow users to convert information
obtained from an end-user application (or Some other source
within his/her enterprise) into a suitable form, and to have it
distributed by the market data platform 600.
As mentioned above in connection with devices 604 and

606, appropriate FAM modules and corresponding FAM
pipelines to implement these various functions for devices
608, 610, 612, 614, and 616 can be carried out by a person
having ordinary skill in the art using the design techniques
described in connection with the above-referenced patent and
patent applications and basic knowledge in the art concerning
each function. As a result, a variety of hardware templates
available for loading on reconfigurable logic can be designed
and stored for use by the market data platform 600 to imple
ment a desired data processing function. Persistent data Stor
age units 634 and 636 can be accessible to devices 612 and
614 respectively as those devices process the data in accor
dance with the functionality described above.

In deploying this functionality, at least in part, upon recon
figurable logic, the following modules/submodules of the
functions described above are particularly amenable to
implementation on an FPGA: fixed record format message
parsing, fixed record format message generation, FIX mes
sage parsing, FIX message generation, FIX/FAST message
parsing, FIX/FAST message generation, message compres
Sion, message decompression, interest and entitlement filter
ing, financial instrument symbol mapping, record ID map
ping, price summary LVC update/retrieve/normalize (LVC),
order book cache update/retrieve/normalize (OBC), generic
LVC (GVC), minute bar generation, programmatic field gen

10

15

25

30

35

40

45

50

55

60

65

14
eration (with LVC, OBC, etc.), historic record search and
filter, book-based algorithmic order routing, trade order gen
eration, basket calculation (including ETF, index, and port
folio Valuation), and autoquote generation. It should be
understood by those having ordinary skill in the art that this
list is exemplary only and not exhaustive; additional modules
for financial data processing can also be employed in a FAM
or FAM pipeline in the practice of the present invention.

With fixed record format message parsing, a fixed format
message is decomposed into its constituent fields as defined
by a programmable “data dictionary”. Entries within the data
dictionary describe the fields within each type of message,
their positions and sizes within those messages, and other
metadata about the field (such as data type, field identifiers,
etc.). Preferably, the data dictionary is stored in persistent
storage such as data store 204 of the system 200. Upon ini
tialization of the FAM pipeline on board 400, the data dictio
nary is then preferably loaded into memory 404 for usage by
the FAM pipeline during data processing operations.

With fixed record format message generation, a fixed for
mat message is generated by concatenating the appropriate
data representing fields into a message record. The message
structure and format is described by a programmable data
dictionary as described above.

With FIX message parsing, a FIX-formatted message is
decomposed into its constituent fields as defined by a pro
grammable data dictionary as described above; FIX being a
well-known industry standard for encoding financial message
transactions.

With FIX message generation, a FIX-formatted message is
generated by concatenating the appropriate data representing
the fields into a FIX message record. Once again, the message
structure and format is described by a programmable data
dictionary as described above.

With FIX/FAST message parsing, a FIX and/or FAST mes
sage (FAST being a well known variation of FIX) is decom
posed into its constituent fields as defined by a programmable
data dictionary as described above.

With FIX/FAST message generation, a FIX-formatted and/
or FAST-formatted message is generated by concatenating
the appropriate data representing fields into a FIX/FAST mes
sage record. The message structure and format is defined by a
programmable data dictionary as described above.

With message compression, a message record is com
pressed so as to require less space when contained in a
memory device and to require less communication bandwidth
when delivered to other systems. The compression technique
employed is preferably sufficient to allow for reconstruction
of the original message when the compressed message is
processed by a corresponding message decompression mod
ule.

With interest and entitlement filtering, a stream of mes
sages coming from a module Such as one of the caching
modules described below (e.g., price summary LVC, order
book OBC, or generic GVC) is filtered based upon a set of
entitlement data and interest data that is stored for each record
in the cache. This entitlement and interest data defines a set of
users (or applications) that are both entitled to receive the
messages associated with the record and have expressed an
interest in receiving them. This data can be loaded into
memory from storage 634 during initialization of the board
400, or from Application Software 300 during normal opera
tion of the board 400. An exemplary embodiment of a FAM
configured to perform interest and entitlement filtering is
described hereinafter with respect to FIG. 16.

With financial instrument symbol mapping, a common
identifying string for a financial instrument (typically

US 7,921,046 B2
15

referred to as the “symbol’) is mapped into a direct record key
number that can be used by modules Such as caching modules
(LVC, OBC, GVC) to directly address the cache record asso
ciated with that financial instrument. The record key number
may also be used by Software to directly address a separate 5
record corresponding to that instrument that is kept in a stor
age, preferably separate from board 400. An exemplary
embodiment of a FAM configured to perform symbol map
ping is described hereinafter with respect to FIGS. 12-14.

With record ID mapping, a generic identifying string for a
record is mapped into a direct record key number that can be
used by a caching module (e.g., LVC, OBC, GVC) or soft
ware to directly address the record in a storage medium.

The price summary Last Value Cache update/retrieve/nor
malize (LVC) operation operates to maintain a cache of finan- 15
cial instrument records whose fields are updated in real-time
with information contained in streaming messages received
from a message parsing module, and to enhance or filter the
messages received from a message parsing module before
passing them on to Subsequent processing modules. The type
of update performed for an individual field in a record will be
defined by a programmable data dictionary as described
above, and may consist of moving the data field from the
message to the record, updating the record field by accumu
lating the data field over a series of messages defined within
a time-bounded window, updating the record field only if
certain conditions as defined by a set of programmable rules
are true, or computing a new value based upon message
and/or record field values as guided by a programmable for
mula. The type of enhancement or filtering applied to an 30
individual message may consist of replacing a message field
with one created by accumulating the data over a series of
messages defined within a time-bounded window, flagging a
field whose value falls outside of a programmatically defined
range of values, or Suppressing the message in its entirety if 35
the value of a field or set of fields fails to change with respect
to the corresponding values contained within the cache
record. An exemplary embodiment of a FAM configured to
perform LVC updating is described hereinafter with respect
to FIGS. 15(a) and (b).

The order book cache update, retrieve and normalize
(OBC) operation operates to maintain a cache of financial
instrument records where each record consists of an array of
sub-records that define individual price or order entries for
that financial instrument. A sort order is maintained for the
sub-records by the price associated with each sub-record. The
fields of the sub-records are updated in real-time with infor
mation contained in streaming messages received from a
message parsing module. Sub-records associated with a
record are created and removed in real-time according to
information extracted from the message stream, and the sort
order of Sub-records associated with a given record is con
tinuously maintained in real-time. The type of update per
formed for an individual field in a sub-record will be defined
by a programmable data dictionary, and may consist of mov
ing the data field from the message to the Sub-record, updat
ing the sub-record field by accumulating the data field over a
series of messages defined within a time-bounded window,
updating the Sub-record field only if certain conditions as
defined by a set of programmable rules are true, or computing
a new value based upon message and/or record or Sub-record
fields as guided by a programmable formula. The OBC
includes the ability to generate various views of the book for
a financial instrument including but not limited to a price
aggregated view and a composite view. A composite view is a
sort order of the price or order entries for a financial instru
ment across multiple exchanges. The OBC also includes the

10

25

40

45

50

55

60

65

16
ability to synthesize a top-of-book quote stream. When an
update operation causes the best bid or offer entry in a given
record to change, the OBC may be configured to generate a
top-of-book quote reporting the current best bid and offer
information for the financial instrument. A synthesized top
of-book quote stream has the ability to report best bid and
offer information with less latency than an exchange-gener
ated quote stream. This may be used to accelerate a variety of
latency sensitive applications.
The Generic Last Value Cache (GVC) operation operates

to maintain a cache of records whose fields are updated in
real-time with information contained in Streaming messages
received from a message parsing module. The structure of a
record and the fields contained within it are defined by a
programmable data dictionary, as described above. The type
of update performed for an individual field in a record will be
defined by a programmable data dictionary, and may consist
of moving the data field from the message to the record,
updating the record field by accumulating the data field over
a series of messages defined within a time-bounded window,
updating the record field only if certain conditions as defined
by a set of programmable rules are true, or computing a new
value based upon message and/or record field values as
guided by a programmable formula.
A minute bar generation operation operates to monitor

real-time messages from a message parsing module or last
value cache module for trade events containing trade price
information, or for quote events containing quote price infor
mation, and create “minute bar events that summarize the
range of trade and/or quote prices that have occurred over the
previous time interval. The time interval is a programmable
parameter, as is the list of records for which minute bars
should be generated, and the fields to include in the generated
eVentS.
A Top 10 list generation operation operates to monitor

real-time messages from a message parsing module or last
value cache module for trade events containing price infor
mation and create lists of instruments that indicate overall
activity in the market. Such lists may include (where N is
programmatically defined): top N Stocks with the highest
traded volume on the day; top N stocks with the greatest
positive price change on the day; top N Stocks with the largest
percentage price change on the day; top N Stocks with the
greatest negative price change on the day; top N Stocks with
the greatest number of trade events recorded on the day; top N
stocks with the greatest number of “large block' trades on the
day, where the threshold that indicates whether a trade is a
large block trade is defined programmatically.
A programmatic field generation (via LVC, OBV, GVC,

etc.) operation operates to augment messages received from a
message parsing module with additional fields whose values
are defined by a mathematical formula that is supplied pro
grammatically. The formula may reference any field within
the stream of messages received from a message parsing
module, any field contained within a scratchpad memory
associated with this module, or any field contained within any
record held within any the record caches described herein.
A programmatic record generation (with LVC, OBC,

GVC, etc.) operation operates to generate records that repre
sent synthetic financial instruments or other arbitrary entities,
and a series of event messages that signal a change in State of
each record when the record is updated. The structure of the
records and the event messages are programmatically defined
by a data dictionary. The field values contained with the
record and the event messages are defined by mathematical
formulas that are Supplied programmatically. The formulas
may reference any field within the stream of messages

US 7,921,046 B2
17

received from a message parsing module, any field contained
within a scratchpad memory associated with this module, or
any field contained within any record held within any the
record caches described herein. Updates to field values may
be generated upon receipt of a message received from another
module, or on a time interval basis where the interval is
defined programmatically. A basket calculation engine is one
example of programmatic record generation. A synthetic
instrument may be defined to represent a given portfolio of
financial instruments, constituent instruments in an Exchange
Traded Fund (ETF), or market index. The record for that
synthetic instrument may include fields such as the Net Asset
Value (NAV) and total change.
A historic record search and filter operation operates to

filter messages received from a message parsing module that
represent a time series of events to partition the events into
various sets, where each set is defined by a collection of
criteria applied to event attributes. The event message struc
ture, criteria and attributes are all programmatically defined.
Event attributes include, but are not limited to: financial
instrument symbol, class of symbol, time and date of event,
type of event, or various indicator fields contained within the
event. Multiple events within a set may be aggregated into a
single event record according to a collection of aggregation
rules that are programmatically defined and applied to
attributes of the individual events. Aggregation rules may
include, but are not limited to, aggregating hourly events into
a single daily event, aggregating daily events into a single
weekly event, or aggregating multiple financial instruments
into a single composite instrument.

These functions (as well as other suitable financial data
processing operations) as embodied in FAMs can then be
combined to form FAM pipelines that are configured to pro
duce useful data for a market data platform. For example, a
feed compressor FAM pipeline can employ FAMs configured
with the following functions: fixed record format message
parsing, fixed record format message generation, FIX mes
sage parsing, FIX message generation, FIX/FAST message
parsing, FIX/FAST message generation, message compres
Sion, and message decompression.

FIG. 7 illustrates an exemplary FAM pipeline for perform
ing a FIX-to-FAST message transformation. FAM 702 is
configured to receive an incoming stream of FIX messages
and perform FIX message parsing thereon, as described
above. Then the parsed message is passed to FAM 704, which
is configured to field decode and validate the parsed message.
To aid this process, FAM 704 preferably has access to stored
templates and field maps in memory 710 (embodied by
memory 404 on board 400). The templates identify what
fields exist in a given message type, while the field maps
uniquely identify specific fields in those message (by location
or otherwise). Next, FAM 704 provides its output to FAM
706, which is configured to perform a FAST field encode on
the received message components. Memory 710 and any
operator values stored in memory 712 aid this process
(memory 712 also being embodied by memory 404 on board
400). The operator values in memory 712 contains various
state values that are preserved form one message to the next,
as defined by the FAST encoding standard. Then, the encoded
FAST messages are serialized by FAM 708 to form a FAST
message stream and thereby complete the FIX to FAST trans
formation.

FIG. 8 illustrates an exemplary FAM pipeline for perform
ing a FAST-to-FIX message transformation. An incoming
FAST stream is received by FAM802, which deserializes the
stream of FAST messages. The deserialized FAST messages
are then provided to FAM804, which operates to decode the

10

15

25

30

35

40

45

50

55

60

65

18
various fields of the FAST messages as aided by the templates
and field maps in memory 812 and the operator values in
memory 810. Thereafter, FAM806 is preferably configured
to perform message query filtering. Message query filters
allow for certain messages to be excluded from the message
flow. Such filters are preferably parameterized in FAM 806
such that filtering criteria based on the field values contained
within each message can be flexibly defined and loaded onto
the FPGA. Examples of filtering criteria that can be used to
filter messages include a particular type of instrument (e.g.,
common stock, warrant, bond, option, commodity, future,
etc.), membership within a prescribed set of financial instru
ments (e.g., an index or “exchange traded fund’ (ETF)),
message type, etc. Next, FAM 808 operates to perform FIX
message generation by appropriately encoding the various
message fields, as aided by the templates and field maps in
memory 812. Thus, the FAM pipeline shown in FIG.8 oper
ates to transform FAST message to FIX messages. Memory
units 810 and 812 are preferably embodied by memory 404 of
board 400.

FIG.9 depicts an exemplary FAM pipeline for carrying out
a variety of data processing tasks. The FAM pipeline of FIG.
9takes in a FAST message stream. FAMs 902 and 904 operate
in the same manner as FAMs 802 and 804 in FIG.8. Thus, the
output of FAM 904 comprises the data content of the FAST
message decomposed into its constituent fields. This content
is then passed to a variety of parallel FAMS906,908, and 910.
FAM906 performs an administrative record filter on the data
it receives. The administrative record filter preferably oper
ates to pass through message types that are not processed by
any of the other FAM modules of the pipeline. FAM 908
serves as a Top 10 lists engine, as described above. FAM910
serves as a message query filter, as described above.
The output of FAM910 is then passed to FAM912, which

is configured as a rule-based calculation engine, as described
above. FAM912 also receives data from a real time field value
cache 926 to obtain LVC data, as does the top 10 list FAM
908. Cache 926 is preferably embodied by memory 404 of
board 400. The output from the rule-based calculation engine
FAM912 is then passed to parallel FAMs 914,916, and 918.
FAM914 serves as a message multiplexer, and receives mes
sages from the outputs of FAMs 906,908 and 912. FAM920
receives the messages multiplexed by FAM914, and serves to
encode those messages to a desired format. FAM916 serves
as an alert engine, whose function is explained above, and
whose output exits the pipeline. FAM 918 serves as a value
cache update engine to ensuring that cache 926 stays current.

FIG. 10 depicts another exemplary FAM pipeline for car
rying out multiple data processing tasks. FAM 1002 takes in
a stream offixed format messages and parses those messages
into their constituent data fields. The output of FAM 1002 can
be provided to FAM 1004 and FAM 1018. FAM 1018 serves
as a message synchronization buffer. Thus, as the fields of the
original parsed message are passed directly from FAM 1002
to FAM 1018, FAM 1018 will buffer those data fields while
the upper path of FIG. 10 (defined by FAMs 1004, 1006,
1008, 1010, 1012, and 1014) process select fields of the
parsed message. Thus, upon completion of the processing
performed by the FAMs of the upper path, the message for
matting FAM 1016, can generate a new message for output
from the pipeline using the fields as processed by the upper
path for that parsed message as well as the fields buffered in
FAM 1018. The message formatter 1016 can then append the
fields processed by the upper path FAMs to the fields buffered
in FAM 1018 for that message, replace select fields buffered

US 7,921,046 B2
19

in FAM 1018 for that message with fields processed by the
upper path FAMs, or some combination of this appending and
replacing.
FAM 1004 operates to map the known symbol for a finan

cial instrument (or set of financial instruments) as defined in
the parsed message to a symbology that is internal to the
platform (e.g., mapping the symbol for IBM Stock to an
internal symbol “12345'). FAM 1006 receives the output
from FAM 1004 and serves to update the LVC cache via
memory 1024. The output of FAM 1006 is then provided in
parallel to FAMs 1008, 1010, 1012, and 1014.
FAM 1008 operates as a Top 10 list generator, as described

above. FAM 1010 operates as a Minute Bar generator, as
described above. FAM 1012 operates as an interest/entitle
ment filter, as described above, and FAM 1014 operates as a
programmatic calculation engine, as described above. The
outputs from FAMs 1008, 1010, 1012 and 1014 are then
provided to a message formatter FAM 1016, which operates
as described above to construct a fixed format message of a
desired format from the outputs of FAMs 1008, 1010, 1012,
1014 and 1018.

In performing these tasks, FAM 1004 is aided by memory
1020 that stores templates and field maps, as well as memory
1022 that stores a symbol index. FAM 1006 is also aided by
memory 1020 as well as memory 1024 which serves as an
LVC cache. Memory 1020 is also accessed by FAM 1008,
while memory 1024 is also accessed by FAM 1014. FAM
1012 accesses interest entitlement memory 1026, as loaded
from storage 634 or provided by Application Software 300
during initialization of the board 400.

FIG. 11 depicts an exemplary FAM pipeline for perform
ing the functions of an exemplary ticker plant embodiment,
including message parsing, symbol mapping, Last Value
Cache (LVC) updates, and interest and entitlement filtering.

Message Parser FAM 1102 ingests a stream of messages,
parses each message into its constituent fields, and propagates
the fields to downstream FAMs. Message fields required for
processing in FAMs 1104,1106, and 1108 are passed to FAM
1104. Other message fields are passed to Message Synchro
nization Buffer FAM 1112. Message Parser FAM 1102 may
be implemented to Support a variety of message formats,
including various types of fixed-formats and self-describing
formats. A preferable message format provides sufficient
flexibility to support the range of possible input events from
financial exchanges. In a preferred implementation, the Mes
sage Parser FAM1102 may be configured to support different
message formats without altering the firmware. This may be
achieved by loading message formattemplates into Template
& Field Map buffer 1120. Message Parser FAM 1102 reads
the message format description from buffer 1120 prior to
processing input messages to learn how a given message is to
be parsed.

Like FAM 1004 in FIG. 10, Symbol ID Mapping FAM
1104 operates to map the known symbol for a financial instru
ment (or set of financial instruments) as defined in the parsed
message to a symbology that is internal to the platform (e.g.,
mapping the symbol for IBM stock to an internal symbol
“12345”). Preferably, the internal platform symbol identifier
(ID) is an integer in the range 0 to N-1, where N is the number
of entries in Symbol Index Memory 1122. Preferably, the
symbol ID is formatted as a binary value of size M-log(N)
bits. The format of financial instrument symbols in input
exchange messages varies for different message feeds and
financial instrument types. Typically, the symbol is a vari
able-length ASCII character string. A symbology ID is an
internal control field that uniquely identifies the format of the
symbol string in the message. As shown in FIG. 12, a sym

10

15

25

30

35

40

45

50

55

60

65

20
bology ID is preferably assigned by the feed handler, as the
symbol String format is typically shared by all messages on a
given input feed.
A preferred embodiment of the Symbol ID Mapping FAM

maps each unique symbol character string to a unique binary
number of size M bits. In the preferred embodiment, the
symbol mapping FAM performs a format-specific compres
sion of the symbol to generate a hash key of size Kbits, where
Kis the size of the entries in the Symbol Index Memory 1122.
The symbology ID may be used to lookup a Key Code that
identifies the symbol compression technique that should be
used for the input symbol. Preferably, the symbol mapping
FAM compresses the symbol using format-specific compres
sion engines and selects the correct compressed symbol out
put using the key code. Preferably, the key code is concat
enated with the compressed symbol to form the hash key. In
doing so, each compression technique is allocated a Subset of
the range of possible hash keys. This ensures that hash keys
will be unique, regardless of the compression technique used
to compress the symbol. An example is shown in FIG. 12
wherein the ASCII symbol for a financial instrument is com
pressed in parallel by a plurality of different compression
operations (e.g., alpha-numeric ticker compression, ISIN
compression, and commodity compression). Compression
techniques for different symbologies can be selected and/or
devised on an ad hoc basis as desired by a practitioner of the
invention. A practitioner of the present invention is free to
select a different compression operation as may be appropri
ate for a given symbology. Based on the value of the key code,
the symbol mapping FAM will pass one of the concatenations
of the key code and compression results as the output from the
multiplexer for use as the hash key.

Alternatively, the format-specific compression engines
may be implemented in a programmable processor. The key
code may then be used to fetch a sequence of instructions that
specify how the symbol should be compressed.
Once the hash key is generated, the symbol mapping FAM

maps the hash key to a unique address in the Symbol Index
Memory in the range 0 to N-1. The Symbol Index Memory
may be implemented in a memory “on-chip” (within the
reconfigurable logic device) or in “off-chip” high speed
memory devices such as SRAM and SDRAM that are acces
sible to the reconfigurable logic device. Preferably, this map
ping is performed by a hash function. A hash function
attempts to minimize the number of probes, or table lookups,
to find the input hash key. In many applications, additional
meta-data is associated with the hash key. In the preferred
embodiment, the location of the hash key in the Symbol Index
Memory is used as the unique internal Symbol ID for the
financial instrument.

FIG. 13 shows a preferred embodiment of a hash function
to perform this mapping that represents a novel combination
of known hashing methods. The hash function of FIG. 13 uses
near-perfect hashing to compute a primary hash function,
then uses open-addressing to resolve collisions. The hash
function H(X) is described as follows:

The operand X is the hash key generated by the previously
described compression stage. The function h1(X) is the pri
mary hash function. The value i is the iteration count. The

US 7,921,046 B2
21

iteration countiis initialized to Zero and incremented for each
hash probe that results in a collision. For the first hash probe,
hash function H(x)=h1(x), thus the primary hash function
determines the first hash probe. The preferred hash function
disclosed herein attempts to maximize the probability that the
hash key is located on the first hash probe. If the hash probe
results in a collision, the hash key stored in the hash slot does
not match hash key X, the iteration count is incremented and
combined with the secondary hash function h2(X) to generate
an offset from the first hash probe location. The modulo N
operation ensures that the final result is within the range 0 to
N-1, where N is the size of the Symbol Index Memory. The
secondary hash function h2(X) is designed so that its outputs
are prime relative to N. The process of incrementing i and
recomputing H(X) continues until the input hash key is
located in the table or an empty table slot is encountered. This
technique of resolving collisions is known as open-address
1ng.
The primary hash function, h1(X), is computed as follows.

Compute hash function B(x) where the result is in the range 0
to Q-1. Use the result of the B(x) function to lookup a dis
placement vector d(x) in table T containing Q displacement
vectors. Preferably the size of the displacement vector d(x) in
bits is equal to M. Compute hash function A(x) where the
result is Mbits in size. Compute the bitwise exclusive OR, OD,
of A(X) and d(x). This is one example of near-perfect hashing
where the displacement vector is used to resolve collisions
among the set of hash keys that are known prior to the begin
ning of the query stream. Typically, this fits well with stream
ing financial data where the majority of the symbols for the
instruments trading in a given day is known. Methods for
computing displacement table entries are known in the art.
The secondary hash function, h2(X), is computed by com

puting a single hash function C(X) where the result is always
prime relative to N. Hash functions A(x), B(x), and C(x) may
be selected from the body of known hash functions with
favorable randomization properties. Preferably, hash func
tions A(x), B(x), and C(x) are efficiently implemented in
hardware. The set of H3 hash functions are good candidates.
(See Krishnamurthy et al., “Biosequence Similarity Search on
the Mercury System”. Proc. of the IEEE 15th Int’l Conf. on
Application-Specific Systems, Architectures and Processors,
September 2004, pp. 365-375, the entire disclosure of which
is incorporated herein by reference).
Once the hash function H(X) produces an address whose

entry is equal to the input hash key, the address is passed on as
the new Symbol ID to be used internally by the ticker plant to
reference the financial instrument. As shown in FIG. 13, the
result of the hash key compare function may be used as a valid
signal for the symbol ID output.

Hash keys are inserted in the table when an exchange
message contains a symbol that was unknown at System ini
tialization. Hash keys are removed from the table when a
financial instrument is no longer traded. Alternatively, the
symbol for the financial instrument may be removed from the
set of known symbols and the hash table may be cleared,
recomputed, and initialized. By doing so, the displacement
table used for the near-perfect hash function of the primary
hash may be optimized. Typically, financial markets have
established trading hours that allow for after-hours or over
night processing. The general procedures for inserting and
deleting hash keys from a hash table where open-addressing
is used to resolve collisions is well-known in the art.

In a preferred embodiment, the symbol mapping FAM also
computes a global exchange identifier (GEID) that maps the
exchange code and country code fields in the exchange mes
sage to an integer in the range 0 to G-1, as shown in FIG. 14.

5

10

15

25

30

35

40

45

50

55

60

65

22
Similar to the symbol field for financial instruments, the
exchange code and country code fields uniquely identify the
Source of the exchange message. The value of G should be
selected such that it is larger than the total number of sources
(financial exchanges) that will be generating input messages
for a given instance of the system. Hashing could be used to
map the country codes and exchange codes to the GEID.
Alternatively, a “direct addressing approach can be used to
map country and exchange codes to GEIDS. For example, the
exchange code and country codes can each be represented by
two character codes, where the characters are 8-bit upper
case ASCII alpha characters. These codes can then be trun
cated to 5-bit characters in embodiment where only 26 unique
values of these codes are needed. For each code, these trun
cated values are concatenated to generate a 10-bit address that
is used to lookup a compressed intermediate value in a stage
1 table. Then the compressed intermediate values for the
exchange and country code can be concatenated to generate
an address for a stage 2 lookup. The result of the stage 2
lookup is the GEID. The size of the intermediate values and
the stage 2 address will depend on the number of unique
countries and the max number of exchanges in any one coun
try, which can be adjusted as new exchanges open in different
countries.
Symbol mapping FAM 1106 passes input message field

values, the symbol ID, and global exchange ID to Last Value
Cache (LVC) Update FAM 1106. LVC Update FAM serves to
update the LVC cache via memory 1124, as well as message
fields that may depend on record field values. One example is
the tick direction which indicates if the price in the message is
larger or Smaller than the previous price captured in the
record.
As shown in FIGS. 15(a) and (b), the LVC memory man

ager retrieves one or more records associated with the finan
cial instrument. The LVC memory manager passes the record
and message fields to the LVC message/record updater. The
LVC message/record updater contains a set of update engines
that update the record and message fields according to speci
fied business logic. The business logic for field updates may
vary according to a number of parameters including event
type (trade, quote, cancel, etc.), financial instrument type
(security, option, commodity, etc.), and record type. In a
preferred embodiment, the update engines are directed by
business logic templates contained in Templates & Field
Maps 1120. Techniques for template-driven update engines
are well-known in the art.

Record fields may include but are not limited to: last trade
price, last trade size, last trade time, best bid price, best bid
size, best bid time, best ask price, best ask size, best ask time,
total trade Volume, daily change, tick direction, price direc
tion, high trade price, high price time, low trade price, low
price time, and close price. In a preferred embodiment, record
fields also include derived fields such as: total trade volume at
bid, total trade volume at ask, traded value, traded value at
bid, traded value at ask, and Volume-weighted average price
(VWAP).
As reflected in FIGS. 15(a) and (b), a preferred embodi

ment of the LVC Update FAM maintains a composite record
and a set of regional records for every financial instrument
observed on the input feeds. A composite record reflects the
current state of the financial instrument across all exchanges
upon which it trades. A regional record reflects the current
state of the financial instrument on a given exchange. For
example, if stock ABC trades on exchanges AA, BB, and CC,
then four records will be maintained by the LVC Update
FAM, one composite record and three regional records. If an
input message reports a trade of stock ABC on exchange BB,

US 7,921,046 B2
23

then the LVC Update FAM updates the composite record for
ABC, the regional record for ABC on exchange BB, and the
message fields according to the business logic for stock trade
events on exchange BB.
As shown in FIG.15(a), the LVC Memory Manger uses the

symbol ID and global exchange ID to retrieve the composite
and regional record. In a preferred embodiment, the symbol
ID is used to retrieve an entry in the record management
memory. The entry contains a valid flag, a composite record
pointer, and a regional list pointer. The valid flag indicates
whether the symbol ID is known, record(s) have been allo
cated, and the pointers in the entry are valid.

If the valid flag is set, the LVC Memory Manager uses the
composite record pointer to retrieve the composite record
from the record storage memory. The composite record is
passed to the LVC message/record updater where it is stored
in a composite record buffer for processing by the update
engines. The LVC Memory Manger uses the regional list
pointer to retrieve a regional list from the record storage
memory. Note that regional list blocks may also be stored in
the record management memory or in another independent
memory. The regional list block contains pointers to the
regional records for the financial instrument identified by the
symbol ID. Since each regional record reflects the state of the
instrument on a given exchange, a global exchange ID is
stored with each regional pointer. The pointer to the regional
record associated with the exchange specified in the message
is located by matching the global exchange ID computed by
the Symbol ID Mapping FAM. The LVC Memory Manger
uses the regional pointer associated with the matching global
exchange ID to retrieve the regional record from the record
storage memory. The regional record is passed to the LVC
message/record updater where it is stored in a regional record
buffer for processing by the update engines.

If the valid flag in the record management memory entry is
not set, then the LVC Memory Manager creates a new com
posite record, a new regional list block, and a new regional
record for the financial instrument. The initial values for
record fields may be drawn from Templates and Field Maps
1120. The regional list block will be initialized with at least
one entry that contains a pointer to the new regional record
and the global exchange ID received from the Symbol ID
Mapping FAM. The LVC Memory Manger uses a free space
pointer to allocate available memory in the record storage
memory. After the memory is allocated, the free space pointer
is updated. Freeing unused memory space, defragmenting
memory, and adjusting the free space pointer may be per
formed by the LVC Memory Manager or by control software
during market down times. Techniques for freeing memory
space and defragmenting are well-known in the art. Once the
records are initialized in record storage memory, the LVC
Memory Manger writes the pointers into the management
memory entry and sets the valid flag.
The LVC Memory Manager may also encounter a case

where the valid flag in the memory management entry is set,
but a matching global exchange ID is not found in the regional
list. This will occur when a known financial instrument begins
trading on a new exchange. In this case, the LVC Memory
Manager allocates a new regional record and creates a new
entry in the regional list block.
Once the record and message fields are loaded into their

respective buffers, the update engines perform the field
update tasks as specified by the business logic. Upon comple
tion of their update tasks, the update engines signal the LVC
Memory Manager. When all processor engines complete, the
LVC Memory Manager writes updated records back to record
storage memory. Processing can be deployed across the plu

10

15

25

30

35

40

45

50

55

60

65

24
rality of update engines in any of a number of ways. In one
embodiment, a given record and its related message fields are
passed through a sequence of update engines arranged in a
pipeline. In another embodiment, each record and its related
message fields are passed directly to an update engine that is
configured to perform processing appropriate for the type of
processing that the record and message fields needs. Prefer
ably, the LVCupdater is configured to balance the distribution
of records and message fields across the plurality of different
update engines so that a high throughput is maintained. In an
exemplary embodiment, each update engine is configured to
be responsible for updating a subset of the record fields (either
regional or composite), with multiple engines operating in
parallel with each other.
The LVC message/record updater passes updated message

fields and interestlists to the Interest Entitlement Filter FAM
1108. An interest list contains a set of unique identifiers for
users/applications that registered interestin receiving updates
for the financial instrument. In a preferred embodiment, the
set of user identifiers is specified using a bit vector where each
bit position in the vector corresponds to a user identifier. For
example, a 4-bit vector with the value 1010 represents the set
of user identifiers {3,1}. The size of the interest list in bits is
equal to the total number of user subscriptions allowed by the
Ticker Plant. In a preferred embodiment, each record contains
an interest list that is updated in response to user Subscribe
and unsubscribe events. By maintaining an interest list in the
composite record, the Ticker Plant allows a subscription to
include all transactions for a given financial instrument on
every exchangeupon which it trades. Preferably, each interest
list for a given record is stored with that record in the record
storage memory. Control software for the ticker plant, which
maintains the set of interest lists for each record in a control
memory can be configured to advise the LVC FAM of a new
interestlist vector for a given record so that the record storage
memory can be updated as appropriate. Other types of Sub
Scriptions, such as exchange-based subscriptions, may also
be enabled by the FAM pipeline.

In a preferred embodiment, the record storage memory
and/or the record management memory is an external
memory to the reconfigurable logic, Such as a Synchronous
Random Access Memory (SRAM) or Synchronous Dynamic
Random Access Memory (SDRAM) device. Read and write
transactions to external memory devices incur processing
delays. A common technique for improving processing per
formance is to mask these delays by performing multiple
transactions in a pipelined fashion. The LVC Memory Man
ger is designed as a pipelined circuit capable of performing
the various processing steps in parallel, therefore allowing it
to mask memory latencies and process multiple messages in
parallel. Doing so enables the LVC Memory Manger to pro
cess more messages per unit time, i.e. achieve higher message
throughput. By employing a functional pipeline, the LVC
Memory Manager preferably recognizes occurrences of the
same symbol ID within the pipeline and ensure correctness of
records in update engine buffers. One method for doing so is
to stall the pipeline until the updated records associated with
the previous occurrence of the symbol ID are written back to
record storage memory. In a preferred embodiment, the LVC
Memory Manager utilizes a caching mechanism to always
feed the correct record field values to the update engine buff
ers. Techniques for a memory cache are well-known in the art.
The caching mechanism can be embodied as a memory, pref
erably a high-speed memory, located either on-chip (within
the reconfigurable logic device) or off-chip (e.g., an SRAM or
SDRAM device accessible to the reconfigurable logic
device). However, it should also be noted that the cache can

US 7,921,046 B2
25

also be embodied by a full memory hierarchy with a multi
level cache, System memory, and magnetic storage. A record
typically stays in the cache memory for the duration of a
trading day. Such recently updated records can then be
flushed out of the cache during an overnight processing
(“roll') and archived. However, it should be noted that the
cache can be configured to maintain records so long as space
is available in the cache for storing new records, in which case
a FIFO scheme can be used to maintain the cache.

FIG. 15(b) presents an exemplary functional pipeline for
masking memory and processing latencies. As discussed in
relation to FIG. 15(a), the address resolution block deter
mines the address of the regional and composite records using
the symbol ID and global exchange ID to locate the memory
management entry and regional list block. Note that each
functional block in FIG. 15(b) may also be implemented in a
pipelined fashion. For example, one sub-block in the address
resolution block may issue a stream of read commands to the
record management memory to retrieve record management
entries. Another Sub-block may process the stream of
returned entries and issue a stream of read commands to the
record storage memory to retrieve regional list blocks.
Another sub-block may process the stream of returned list
blocks to resolve regional record addresses. The last sub
block of the address resolution block passes the regional and
composite record addresses to the cache determination block.
By tracking the sequence of record addresses, this block
determines the physical location of the "current' (most up-to
date) records: in the record cache or in the record storage
memory. The cache determination block passes the physical
record pointers to the record retrieval block. The record
retrieval block fetches the records from the specified loca
tions, loads them into the processing buffers for updating,
then signals the processors to begin processing. Note that if
the record cache and processing buffers are in the same
memory space, the record retrieval block may essentially
queue up several sets of records for the processors, allowing
the processors to complete a processing task and immediately
move on to the next set of records, even if the same set of
records must be updated sequentially. Once the processors
complete a set of records, they signal the record updating
block to write the updated records back to record storage
memory. Depending on the implementation of the record
cache, copies of the updated records are written to cache or
simply persist in the processing buffers for a period of time. In
parallel, updated message fields are passed to the downstream
FAM.
The LVC Update FAM 1106 passes interestlists, the global

exchange ID, and updated message fields to the Interest
Entitlement FAM 1108. The Interest Entitlement FAM com
putes a single interest list that is used to distribute the output
message to the set of users/applications that have registered
interest and are entitled to receive the message. As previously
described, interest may be registered by subscribing to
updates for the regional or composite interest, as well as
Subscribing to all updates from a given exchange. Access to
real-time financial data is typically a purchased service where
the price may vary depending on the scope of data access. In
a preferred embodiment, a ticker plant is capable of accepting
Subscription requests from users/applications with varying
levels of data access privileges.
As shown in FIG. 16, a preferred embodiment of the Inter

est Entitlement FAM operates on interest lists specified as bit
vectors. The global exchange ID is used to lookup the
exchange interest list in the exchange interest table. By using
an exchange interest list, the embodiment of FIG. 16 allows
traders to request notification of everything traded on a given

10

15

25

30

35

40

45

50

55

60

65

26
exchange without individually Subscribing to every instru
ment traded on that given exchange. Note that a global inter
est list, specifying users interested in all events, may also be
stored in a register in the FAM. As shown in FIG. 16, all
interest list vectors applicable to a message are combined
using a bitwise OR operation. The resulting composite inter
est list vector contains the set of users that are interested in
receiving the output message. An entitlement ID is used to
lookup an entitlement mask. The entitlement ID may be
specified by the feed handler that receives messages from the
exchange, or alternative mechanisms such as a lookup based
on message fields such as the global exchange ID, event type,
and instrument type. Similar to the interest lists, the entitle
ment mask specifies which users/applications are entitled to
receive the output message. The entitlement mask is applied
to the combined interest list using a bitwise AND operation.
The result is the final entitled interest vector specifying the set
of entitled and interested users/applications. If the entitled
interest bit vectoris empty (e.g., all Zeros), the message can be
dropped from the pipeline. This entitled interest list and the
message fields received from the LVC Update FAM are
passed to the Message Formatter FAM1110.
As previously described, the Message Formatter FAM

1110 serves to construct an output message from updated
fields received from the Interest Entitlement Filter FAM and
fields contained in the Message Synch Buffer FAM 1112. In
a preferred embodiment, the format of the output message is
specified by the Templates and Field Maps 1120. In a pre
ferred embodiment, the output message includes the entitled
interest list computed by the Interest Entitlement Filter. A
subsequent functional block in the Ticker Plant processes the
interest list and transmits copies of the output message to the
interested and entitled users/applications.

FIG. 17 depicts an exemplary embodiment of a ticker plant
highlighting the interaction and data flow amongst the major
subcomponents that enable this embodiment of a ticker plant
to maintain high performance and low latency while process
ing financial data. FIGS. 18, 19, 20, 21, and 22 depict detailed
views of the data flow and the component interaction pre
sented in FIG. 16. These figures provide additional informa
tion for inbound exchange data processing, data normaliza
tion, interaction with reconfigurable logic, data routing, and
client interaction respectively.

Financial market data generated by exchanges is increas
ing at an exponential rate. Individual market events (trades,
quotes, etc) are typically bundled together in groups and
delivered via an exchange feed. These exchange feeds are
overwhelmingly delivered to subscribers using the Internet
Protocol over an Ethernet network. Due to constraints on
packet size dictated by the network environment, data groups
transmitted by the exchange tend to be limited to sizes less
than 1500 bytes.
As market data rates increase, the number of data groups

that must be processed by a ticker plant increases. In typical
ticker plant environments, each network packet received by
the ticker plant must be processed by the network protocol
stack contained within the Operating System and delivered to
a user buffer. This processing includes one or more data
copies and an Operating System transition from "kernel” or
'Supervisor” mode to user for each exchange data packet. An
increase in data rates in turn increases the processing burden
on the ticker plant system to deliver individual exchange data
messages to the user level process.
The device depicted in FIG. 17 uses a novel approach to

efficiently deliver the exchange data to the user process. FIG.
18 shows the exemplary data flow for inbound exchange
traffic in a ticker plant. Exchange data enters the ticker plant

US 7,921,046 B2
27

at 1801 and is processed by the Operating System supplied
network protocol stack. Typical ticker plants use a user-mode
interface into the network protocol stack at 1802. This method
of connecting to the protocol stack incurs processing over
head relating to buffer copies, buffer validation, memory
descriptor table modifications, and kernel to user mode tran
sitions for every network data packet received by the ticker
plant. As shown in FIG. 18, an Upject Driver is employed that
interfaces with the operating system Supplied network proto
col stack at the kernel level at 1803. Individual data packets
are processed at the kernel level and copied directly into a ring
buffer at 1804, thus avoiding subsequent data copies and
kernel to user mode transitions incurred when accessing the
protocol stack via the user mode interface.
The ring buffers employed by the Upject Driver are shared

memory ring buffers that are mapped into both kernel and
user address spaces Supported by the Operating System at
1805. The boundary between kernel mode operations and
user mode operations is shown at 1806. Data written to the
kernel address space of one of these ring buffers is instantly
accessible to the user mode code because both the user mode
and kernel mode virtual addresses refer to the same physical
memory. Utilizing the shared ring buffer concepts, the pre
ferred embodiment of a Ticker Plant does not have to perform
user to kernel mode transitions for each network data packet
received and thus achieves a performance boost. Addition
ally, the Upject Driver can utilize the shared ring buffer
library to directly transfer inbound data to other kernel pro
cesses, device drivers, or user processes at 1807. This versa
tile shared ring buffer interconnect enables fast-track routing
of network traffic directly to Reconfigurable logic via the
Hardware Interface Driver.

General purpose computers as known in the art employ
“multi-core” or “multi-processor technology to increase the
available compute resources in a computer system. Such
multi-core systems allow the simultaneous execution of two
or more instruction streams, commonly referred to as
“threads of execution'. To fully utilize the compute power of
these multiple processor Systems, Software must be designed
to intelligently manage thread usage, resource contention and
interdependencies between processing threads. The data nor
malization component of the preferred embodiment of a
Ticker Plant employs thread groups to efficiently normalize
raw exchange data.

Thread groups improve processing efficiency of the pre
ferred embodiment of a Ticker Plant by using the following
techniques:

1. Limit the execution of the Operating System scheduling
mechanism by matching the number of worker threads
to the number of available instruction processors.

2. Enable multiple exchange feeds to be processed by a
single thread group.

3. Eliminate resource contention between different thread
groups.

4. Remove synchronization points within the compute path
of each thread group, further increasing processing effi
ciency.

5. Perform message normalization in a single compute
path, including line arbitration, gap detection, retrans
mission processing, event parsing, and normalized event
generation.

6. Associate exchange feeds with individual thread groups
using a configuration file.

FIG. 19 depicts the processing of several thread groups.
Each thread group contains a single thread of execution at
1901. All operations performed by a thread group are
executed on the single processing thread associated with the

10

15

25

30

35

40

45

50

55

60

65

28
thread group. A separate input ring buffer is associated with
each thread group at 1902. Inbound exchange data is depos
ited into the appropriate ring buffer. The processing thread for
the thread group detects the presence of new data in the ring
buffer and initiates normalization processing on the data one
event at a time at 1903. Normalization processing involves
parsing inbound messages, arbitrating amongst messages
received on multiple lines, detecting sequence gaps, initiating
retransmission requests for missed messages, eliminating
duplicate events, and generating normalized exchanged
events. This processing results in the creation of normalized
events that are deposited into an output ring buffer at 1904.

All of the processing for any single thread group is com
pletely independent of the processing for any other thread
group. No data locking or resource management is required
during the normalization process which eliminates the possi
bility of thread blocking due to contention for a shared
resource. The preferred embodiment of a Ticker Plant Sup
ports a variable number of thread groups at 1905. The number
of thread groups and the number of exchange feeds processed
by each thread group are configurable, enabling the Ticker
Plant to efficiently utilize additional compute resources as
they become available in future generations of computer sys
tems. The association of inbound data feeds with individual
thread groups is defined in a configuration file that is read
during initialization processing.
The Hardware Interface Driver in the preferred embodi

ment of a Ticker Plant is optimized to facilitate the efficient
movement of large amounts of data between system memory
and the reconfigurable logic. FIG. 20 shows the data move
ment between the Hardware Interface Driver and the recon
figurable logic. User mode application data destined for the
reconfigurable logic is written to one of the shared memory
ring buffers at 2001. These are the same buffers shown at 1904
in FIG. 19. These ring buffers are mapped into both kernel
address space and into user space. Data written to these buff
ers is immediately available for use by the Hardware Interface
Driver at 2002. The boundary between user space and kernel
space is noted at 2003.
The Hardware Interface Driver is responsible for updating

descriptor tables which facilitates the direct memory access
(DMA) data transfers to the reconfigurable logic. Normalized
market data events are transferred to the reconfigurable logic
at 2004. The reconfigurable logic and Firmware Application
Module Chain perform the operational functions as noted
above. Processed market events are transferred back to the
Hardware Interface Driver at 2005 and deposited into a ring
buffer at 2006.
A novel feature of the preferred embodiment of a Ticker

Plant is the ability to route data to consumers through a “fast
track' by bypassing the time consuming data copies and
Operating System mode Switches. An operating system mode
switch occurs whenever software transitions between user
mode processing and kernel mode processing. Mode
Switches are expensive operations which can include one or
more of the following operations: Software interrupt process
ing, address validation, memory locking and unlocking, page
table modifications, data copies, and process Scheduling.
FIG. 21 depicts an exemplary design of a low latency data
routing module. After processing by the reconfigurable logic,
market data events are delivered to the Hardware Interface
Driver at 2101. Each market data event as shown at 2102
contains a routing vector at 2103. This routing vector, which
is preferably embodied by the entitled interest bit vector, is
populated by the reconfigurable logic (preferably the interest
and entitlement FAM) and contains the information neces
sary to deliver each event to the appropriate consumers. A

US 7,921,046 B2
29

table maintained by the software preferably translates the bit
positions of the entitled interest bit vector to the actual entities
entitled to the subject data and who have expressed interest in
being notified of that data.

The Hardware Interface Driver calls into the MDC Driver
for each event received from the reconfigurable logic at 2104.
The MDC Driver is responsible for the fast track data routing
of individual enhanced market data events. The routing infor
mation associated with each event is interrogated at 2105.
This interrogation determines the set of destination points for
each event. Each event can be routed to one or more of the
following: kernel modules, protocol stacks, device drivers,
and/or user processes. Exception events, results from main
tenance commands, and events that require additional pro
cessing are routed via a slow path to the user mode back
ground and maintenance processing module at 2106. The
background and maintenance processing module has the abil
ity do inject events directly into the Hardware Interface
Driver at 2107 for delivery to the reconfigurable logic or to the
MDC Driver at 2108 for delivery to a connected consumer.

Similar to the Upject Driver, the MDC Driver also main
tains a kernel level interface into the Operating System Sup
plied network protocol stack at 2109. This kernel level inter
face between the MDC Driver and the protocol stack provides
a fast path for delivering real-time market events to clients
connects via a network at 2110. The event routing logic con
tained within the MDC Driver interrogates the event routing
information contained in each event and passes the appropri
ate events directly to the network protocol stack.
The MDC driver also has the ability to route market events

to other consumers at 2111. These other consumers of real
time market events include, but are not limited to, network
drivers for clients connected via a variety of network inter
connect methodologies, kernel-mode modules or device driv
ers, hardware devices including reconfigurable logic, and
different user mode processes. The MDC Driver is a flexible
data routing component that enables the preferred embodi
mentofa Ticker Plant to deliver data to clients with the lowest
possible latency.

FIG. 22 depicts an exemplary model for managing client
connections. Remote clients connect to the over a network
that is driven by an Operating System Supplied network pro
tocol stack at 2201. A request processing module interfaces
with the Operating System Supplied network protocol stackin
user mode at 2202. The request processing module parses and
validates all client requests. Client requests are then passed to
the background and maintenance processing module at 2203.
Clients typically make Subscription requests that include the
name of one or more securities instruments. A subscription
request for a valid instrument results in a successful response
sent back to the client via 2205 and a refresh image represent
ing the current prices of the requested instrument that is
initiated at 2204. Additional control information is sent to the
Firmware Application Module Chain to enable the routing of
all Subsequent events on the specified instrument to the client.
Additional requests can be made for an instantaneous data
Snapshot, historical data, and other data or services, including
but not limited to options calculation, user defined compos
ites, and basket calculations.

Depending on the nature of the client request, the back
ground and maintenance processing module can either issue
commands to the FAMs contained in reconfigurable logic via
the Hardware Interface Driver at 2204, or it can respond
directly to client request by sending properly formatted
responses to the MDC driver at 2205. The MDC Driver uses
spinlocks to synchronize responses to client requests with
real-time market events at 2206. Responses to client requests

10

15

25

30

35

40

45

50

55

60

65

30
and real-time market events are processed in the same manner
by the MDC Driver using common event routing logic.
Events and responses destined for a remote client are passed
via a fast trackpath to the Operating System supplied network
protocol stack at 2207 for delivery to the remote client.

Thus, as shown in FIG. 6, a platform 600 developed in the
practice of the invention can be designed to improve data
processing speeds for financial market information, all while
reducing the number of appliances needed for platform 600
(relative to conventional GPP-based systems) as well as the
space consumed by such a platform. With a platform 600, a
user Such as a trader at a work Station 104 (or even a customer
Supplied application Software program 150 that accesses the
platform viaan application programming interface (API), can
obtain a variety of information on the financial markets with
less latency than would be expected from a conventional
system. This improvement in latency can translate into tre
mendous value for practitioners of the invention.

While these figures illustrate several embodiments of FAM
pipelines that can be implemented to process real time finan
cial data streams, it should be noted that numerous other FAM
pipelines could be readily devised and developed by persons
having ordinary skill in the art following the teachings herein.

Further still it should be noted that for redundancy pur
poses and/or scaling purposes, redundant appliances 604,
606, 608, 610, 612, 614 and 616 can be deployed in a given
market data platform 600.

Furthermore, it should also be noted that a practitioner of
the present invention may choose to deploy less than all of the
functionality described herein in reconfigurable logic. For
example, device 604 may bearranged to perform only options
pricing in reconfigurable logic, or some other Subset of the
functions listed in FIG. 6. If a user later wanted to add addi
tional functionality to device 604, it can do so by simply
re-configuring the reconfigurable logic of system 200 to add
any desired new functionality. Also, the dashed boxes shown
in FIG. 6 enclose data processing functionality that can be
considered to belong to the same category of data processing
operations. That is, devices 612 and 614 can be categorized as
management operations. Device 604 can be categorized as
providing feed handling/processing for data access, value
added services, and historic services. Devices 606, 608 and
610 can be categorized as direct market access trading sys
tems. As improvements to reconfigurable logic continues
over time such that more resources become available thereon
(e.g., more available memory on FPGAs), the inventors envi
sion that further consolidation of financial data processing
functionality can be achieved by combining data processing
operations of like categories, as indicated by the dashed
boxes, thereby further reducing the number of appliances 200
needed to implement platform 600. Further still, in the event
of such resource improvements over time for FPGAs, it can
be foreseen that even further consolidation occur, including
consolidation of all functionality shown in FIG. 6 on a single
system 200.
While the present invention has been described above in

relation to its preferred embodiments, various modifications
may be made thereto that still fall within the inventions scope
as will be recognizable upon review of the teachings herein.
As such, the full scope of the present invention is to be defined
solely by the appended claims and their legal equivalents.

What is claimed is:
1. An apparatus for processing financial market data, the

apparatus comprising:

US 7,921,046 B2
31

a reconfigurable logic device with firmware logic deployed
thereon, the firmware logic being configured to perform
a specified data processing operation on the financial
market data; and

a processor in communication with the reconfigurable
logic device, the processor being programmed with Soft
ware logic, the Software logic being configured to (1)
receive the financial market data as an input, and (2)
manage a flow of the received financial market data into
and out of the reconfigurable logic device.

2. The apparatus of claim 1 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the Software logic is further configured to man
age the flow of the received financial market data into and out
of the reconfigurable logic device Such that each message
passes only once from the Software logic to the firmware
logic.

3. The apparatus of claim 1 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the Software logic is further configured to man
age the flow of the received financial market data into and out
of the reconfigurable logic device Such that each message
passes only once from the firmware logic back to the Software
logic.

4. The apparatus of claim 1 wherein the financial market
data comprises a plurality of financial market data messages,
wherein processor is further configured to receive the finan
cial market data messages from a plurality of different finan
cial market data feeds, and wherein the Software logic is
further configured to (1) maintain a plurality of different
thread groups simultaneously, (2) assign each financial mar
ket data message to a thread group based on a configuration
file, wherein the configuration file is configured to associate
each thread group with a different financial market data feed
Such that messages from a given one of the feeds will be
processed by the thread group associated with that message's
feed, and (3) normalize the financial market data messages
with the thread groups such that each thread group normalizes
the financial market data messages assigned thereto indepen
dently of the other thread groups.

5. The apparatus of claim 1 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic is further configured to (1)
receive the financial market data messages destined for the
firmware logic via a kernel mode process Supported an oper
ating system of the processor, and (2) transfer the financial
market data messages destined for the firmware logic from
the kernel mode process Supported by an operating system of
the processor to a user mode process Supported by the oper
ating system without a transition from a kernel space mode to
a user address space mode by writing each received financial
market data message destined for the firmware logic to a
buffer that is mapped into both a kernel space and a user
address space Supported by the operating system.

6. The apparatus of claim 1 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic further comprises a hardware
interface driver and a data routing driver in communication
with the hardware interface driver, wherein the hardware
interface driver is configured to receive financial market data
messages that have been processed by the firmware logic, and
wherein the data routing driver is configured to (1) receive the
firmware-processed financial market data messages from the
hardware interface driver, (2) provide a first path and a second
path for the firmware-processed financial market data mes
sages, the first path comprising a path for the firmware-pro
cessed financial market data messages to at least one client

10

15

25

30

35

40

45

50

55

60

65

32
through a network protocol stack, the second path comprising
a path for the firmware-processed financial market data mes
sages to an exceptions handling Software module.

7. The apparatus of claim 6 wherein the data routing driver
is further configured to interrogate at least a portion of the
firmware-processed financial market data messages to deter
mine the path over which each firmware-processed financial
market data message should travel.

8. The apparatus of claim 1 wherein the software logic is
further configured to issue a control command to the firmware
logic in response to an instruction received by the processor
from a client computer in communication therewith, the con
trol command at least partially specifying the data processing
operation to be performed by the firmware logic.

9. A method for processing financial market data, the
method comprising:

controlling with Software logic a flow of financial market
data from the Software logic to and from firmware logic;
and

performing a specified financial data processing operation
on financial market data with firmware logic on a recon
fiqurable logic device in response to the Software logic
controlling step.

10. The method of claim 9 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the controlling step further comprises control
ling the flow of the financial market data such that each
message passes only once from the Software logic to the
firmware logic.

11. The method of claim 9 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the controlling step further comprises control
ling the flow of the financial market data such that each
message passes only once from the firmware logic to the
Software logic.

12. The apparatus of claim 2 wherein the firmware logic is
further configured with a firmware pipeline that is configured
to perform a plurality of different financial data processing
operations on the received flow to thereby generate the flow of
firmware-processed financial market data.

13. The apparatus of claim 12 further comprising a
memory in which a plurality of financial instrument records
are stored in memory addresses associated with a financial
instrument symbology that is internal to the apparatus,
wherein the reconfigurable logic is communication with the
memory, wherein the financial market data messages relate to
financial instruments, wherein the financial market data mes
sages reference their related financial instruments using a
financial instrument symbology that is different than the
internal financial instrument symbology, and wherein the
firmware logic is further configured to (1) convert each
received financial market data message to the internal finan
cial instrument symbology, (2) retrieve financial instrument
records pertaining to the received financial market data mes
sages from the memory using the internal financial instru
ment symbology for the received financial market data mes
sages, and (3) update the financial instrument records in
response to the financial data processing operations per
formed on the received financial market data messages.

14. The method of claim 10 wherein the performing step
comprises performing with the firmware logic a plurality of
different financial data processing operations on the received
flow to thereby generate the flow of firmware-processed
financial market data.

15. The method of claim 14 wherein the financial market
data messages relate to financial instruments, wherein the
financial market data messages reference their related finan

US 7,921,046 B2
33

cial instruments using a first financial instrument symbology,
the method further comprising:

storing a plurality of financial instrument records in
memory addresses associated with a second financial
instrument symbology that is different than the first
financial instrument symbology; and

using the firmware logic, (1) converting each received
financial market data message to the second financial
instrument symbology, (2) retrieving stored financial
instrument records pertaining to the received financial
market data messages using the second financial instru
ment symbology for the received financial market data
messages, and (3) updating the financial instrument
records in response to at least one of the financial data
processing operations performed on the received finan
cial market data messages.

16. The apparatus of claim 4 wherein the configuration file
is further configured to associate at least one thread group
with a plurality of different financial market data feeds.

17. The apparatus of claim 6 wherein the first pathis wholly
within a kernel space Supported by the operating system of the
processor.

18. The apparatus of claim 1 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the Software logic comprises:

a protocol stack resident in a kernel space Supported by an
operating system of the processor, the protocol stack
configured to receive the financial market data mes
Sages; and

a driver configured to connect, in the kernel space, to the
protocol stack to access the financial market data mes
Sages.

19. The apparatus of claim 18 wherein the driver is further
configured to write a plurality of financial market data mes
sages destined for the firmware logic to a buffer that is
mapped into both the kernel space and a user address space
Supported by the operating system of the processor.

20. The apparatus of claim 19 wherein the buffer comprises
a plurality of input buffers that are mapped into both the
kernel space and the user address space, each buffer being
associated with a thread group, wherein the driver is further
configured to (1) assign each of the plurality of financial
market data messages destined for the firmware logic to a
thread group from among a plurality of thread groups based
on a configuration file, and (2) write each of the plurality of
financial market data messages destined for the firmware
logic to the buffer associated with its assigned thread group,
and wherein each of the thread groups is configured to pro
cess, in the user address space, the financial market data
messages presentin its associated bufferindependently of the
other thread groups.

21. The apparatus of claim 20 wherein each of the thread
groups is further configured to write its processed financial
market data messages to an output buffer that is mapped into
both the kernel space and the user address space, wherein the
software logic further comprises a hardware interface driver
resident in the kernel space, the hardware interface driver
configured to transfer the processed financial market data
messages from the output buffers to the firmware logic
deployed on the reconfigurable logic device.

22. The apparatus of claim 21 wherein the protocol stack
comprises a first protocol stack, and wherein the Software
logic further comprises:

a second protocol stack resident in the kernel space; and
a data routing driver configured to, in the kernel space, (1)

receive financial market data messages from the recon
figurable logic device, (2) connect to the second protocol

5

10

15

25

30

35

40

45

50

55

60

65

34
stack, and (3) selectively route a subset of the received
financial market data messages to the second protocol
stack for Subsequent delivery to downstream clients.

23. The method of claim 9 wherein the financial market
data comprises a plurality of financial market data messages,
wherein a processor executes the Software logic, the proces
Sor receiving the financial market data messages from a plu
rality of different financial market data feeds, and wherein the
controlling step further comprises the Software logic is (1)
maintaining a plurality of different thread groups simulta
neously, (2) assigning each financial market data message to
a thread group based on a configuration file, wherein the
configuration file associates each thread group with a differ
ent financial market data feed such that messages from a given
one of the feeds will be processed by the thread group asso
ciated with that message's feed, and (3) normalizing the
financial market data messages with the thread groups such
that each thread group normalizes the financial market data
messages assigned thereto independently of the other thread
groups.

24. The method of claim 23 wherein the configuration file
associates at least one thread group with a plurality of differ
ent financial market data feeds.

25. The method of claim 9 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein controlling step comprises the Software logic:

receiving the financial market data messages destined for
the firmware logic via a kernel mode process Supported
an operating system of the processor, and

transferring the financial market data messages destined
for the firmware logic from the kernel mode process
Supported by an operating system of the processor to a
user mode process Supported by the operating system
without a transition from a kernel space mode to a user
address space mode by writing each received financial
market data message destined for the firmware logic to a
buffer that is mapped into both a kernel space and a user
address space Supported by the operating system.

26. The method of claim 9 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the software logic further comprises a hardware
interface driver and a data routing driver in communication
with the hardware interface driver, the hardware interface
driver receiving financial market data messages that have
been processed by the firmware logic, and the data routing
driver (1) receiving the firmware-processed financial market
data messages from the hardware interface driver, (2) provid
ing a first path and a second path for the firmware-processed
financial market data messages, the first path comprising a
path for the firmware-processed financial market data mes
sages to at least one client through a network protocol stack,
the second path comprising a path for the firmware-processed
financial market data messages to an exceptions handling
software module.

27. The method of claim 26, the data routing driver inter
rogating at least a portion of the firmware-processed financial
market data messages to determine the path over which each
firmware-processed financial market data message should
travel.

28. The method of claim 26 wherein the first pathis wholly
within a kernel space Supported by the operating system of a
processor.

29. The method of claim 9 wherein the controlling step
further comprises the Software logic issuing a control com
mand to the firmware logic in response to an instruction
received by the processor from a client computer in commu

US 7,921,046 B2
35

nication therewith, the control command at least partially
specifying the data processing operation to be performed by
the firmware logic.

30. The method of claim 9 wherein the financial market
data comprises a plurality of financial market data messages,
and wherein the Software logic comprises a driver and a
protocol stack resident in a kernel space Supported by an
operating system of a processor, the protocol stack receiving
the financial market data messages, and the driver connecting,
in the kernel space, to the protocol stack and accessing the
financial market data messages.

31. The method of claim30, the driver writing a plurality of
financial market data messages destined for the firmware
logic to a buffer that is mapped into both the kernel space and
a user address space Supported by the operating system of the
processor.

32. The method of claim 31 wherein the buffer comprises a
plurality of input buffers that are mapped into both the kernel
space and the user address space, each buffer being associated
with a thread group, the driver (1) assigning each of the
plurality of financial market data messages destined for the
firmware logic to a thread group from among a plurality of
thread groups based on a configuration file, and (2) Writing
each of the plurality of financial market data messages des

10

15

36
tined for the firmware logic to the buffer associated with its
assigned thread group, and each of the thread groups process
ing, in the user address space, the financial market data mes
sages present in its associated buffer independently of the
other thread groups.

33. The method of claim 32, each of the thread groups
writing its processed financial market data messages to an
output buffer that is mapped into both the kernel space and the
user address space, wherein the software logic further com
prises a hardware interface driver, the hardware interface
driver transferring the processed financial market data mes
sages from the output buffers to the firmware logic.

34. The method of claim 33 wherein the protocol stack
comprises a first protocol stack, and wherein the Software
logic further comprises a second protocol stack resident in the
kernel space and a data routing driver, the data routing driver
performing the following steps in the kernel space: (1) receiv
ing financial market data messages from the reconfigurable
logic device, (2) connecting to the second protocol stack, and
(3) selectively routing a subset of the received financial mar
ket data messages to the second protocol stack for Subsequent
delivery to downstream clients.

k k k k k

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,921,046 B2 Page 1 of 1
APPLICATIONNO. : 1 1/765306
DATED : April 5, 2011
INVENTOR(S) : Parsons et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In claim 9, at column 32, lines 21-22, the word “reconfiqurable should read --reconfigurable--.

Signed and Sealed this
Twenty-first Day of June, 2011

David J. Kappos
Director of the United States Patent and Trademark Office

