
CHAPTER 2 

Methods for Removing the Fmoc Group 

Gregg B. Fields 

1. Introduction 
The electron withdrawing fluorene ring system of the 9-fluorenyl- 

methyloxycarbonyl (Fmoc) group renders the lone hydrogen on the 
P-carbon very acidic and, therefore, susceptible to removal by weak 
bases (I,2). Following the abstraction of this acidic proton at the 9-posi- 
tion of the fluorene ring system, p-elimination proceeds to give a highly 
reactive dibenzofulvene intermediate (I-5). Dibenzofulvene can be 
trapped by excess amine cleavage agents to form stable adducts (1,2). 
The stability of the Fmoc group to a variety of bases (6-10) is reported in 
Table 1. The Fmoc group is, in general, rapidly removed by primary (i.e., 
cyclohexylamine, ethanolamine) and some secondary (i.e., piperidine, 
piperazine) amines, and slowly removed by tertiary (i.e., triethylamine 
[EtsN], N,iV-diisopropylethylamine [DIEA]) amines. Removal also 
occurs more rapidly in a relatively polar medium (ZV,iV-dimethyl- 
formamide [DMF] or N-methylpyrrolidone [NMP]) compared to a rela- 
tively nonpolar one (dichloromethane [DCM]). During solid-phase 
peptide synthesis (SPPS), the Fmoc group is removed typically with pip- 
eridine, which in turn scavenges the liberated dibenzofulvene to form a 
fulvene-piperidine adduct. Standard conditions for removal include 30% 
piperidine-DMF for 10 min (II), 20% piperidine-DMF for 10 min 
(12,13), 55% piperidine-DMF for 20 min (I4), 30% piperidine in tolu- 
ene-DMF (1: 1) for 11 min (ll,15-17), 23% piperidine-NMP for 10 min 
(9), and 20% piperidine-NMP for 18 min (18). Piperidine-DCM should 
not be utilized, since an amine salt precipitates after relatively brief stand- 
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Table 1 
Removal of the Fmoc Group 

Compound Base Solvent Time, min Deprotectron, % Reference 

Fmoc-Gly-PS 

Fmoc-Gly-PS 

Fmoc-Gly-PS 

Fmoc-Val 

Fmoc-Ala-OtBu 

Fmoc-Gly-PS 

Fmoc-Val 

Fmoc-Gly-HMP-PS 

Fmoc-Ala-OfBu 

Fmoc-Val 

Fmoc-Ala-OrBu 

Fmoc-PCA 

Fmoc-Val 

Fmoc-Ala-OfBu 

Fmoc-Val 

Fmoc-Ala-OrBu 

Fmoc-Val 

10% Morpholine 

10% Morpholine 

50% Morpholine 

50% Morpholine 

50% Morpholine 

10% Piperidine 

20% Pipendine 

23% Piperidine 

50% Piperidine 

5% Piperazine 

50% Piperazine 

59% 1,4-bis-(3aminopropyl)prperazine 

50% Dicyclohexylamine 

50% Dicyclohexylamine 

50% DIEA 

50% DIEA 

10% 4-Drmethylammopyridme 

DCM 

DMF 

DCM 

DMF 

DCM 

DCM 

DMF 

NMP 

DCM 

DMF 

DCM 

CDCl, 

DMF 

DCM 

DMF 

DCM 

DMF 

240 18= 6 

240 75” 6 

240 1W 6 

1 5ob 7 

120 1OOC 8 

240 loo” 6 

0.1 5ob 7 

0.25 5od 9 

<5 1W 8 

0.33 506 7 

60 1W 8 

2 1W IO 

35 5ob 7 

>1080 1W 8 

606 506 7 

>1080 100” 8 

85 506 7 



Fmoc-Ala-OtBu 

Fmoc-Ala-OtBu 

Fmoc-Ala-OtBu 

Fmoc-Ala-OfBu 

Fmoc-Ala-OtBu 

Fmoc-Ala-OtBu 

Fmoc-Ala-OtBu 

Fmoc-Ala-OfBu 

Fmoc-Ala-OfBu 

Fmoc-Ala-OtBu 

Fmoc-Ala-OfBu 

Fmoc-Ala-OtBu 

Fmoc-PCA 

Fmoc-PCA 

50% DBU DCM <5 

50% Pyrrolidme DCM <5 

50% Cyclohexylamine DCM <5 

50% Ethanolamine DCM <5 

50% Diethylamme DCM 180 

50% Triethylamine DCM >1080 

50% Ammonia DCM ~1080 

50% Tributylamine DCM >1080 

1 .O mIt4 triethylenediamine DCM >1080 

10 m&f Hydroxylamine HCI DCM >1080 

0 5 mm01 Proton sponge DCM >1080 

2 0 mmol NaOH 30% CHsOH-p-dioxane <5 

50% Tris(2aminoethyl)amme CDCl, 2 

59% 1,3-Cyclohexanebis-(methylamine) CDCl, 2 

100” 8 

100” 8 

1OOC 8 

1OOC 8 

100C 8 

100= 8 

100” 8 

1OOC 8 

100” 8 

1OOC 8 

100C 8 

100C 8 

100’ IO 

1OOe IO 

uDeprotection of Fmoc-Gly-PS was quantitated spectrophotometrrcally at 273 run (6) 
bDeprotectton of Fmoc-Val was quanhtated by amino acid analysis (7) 
CDeproteetron of Fmoc-Ala-0-tBu was quantitated by thin-layer chromatography (8) 
dDeprotectron of Fmoc-Gly-HMP-PS was quantitated by mnhydrm analysts (9). 
eDeprotectron of 9-fluorenylmethyl N-p-chlorophenyl carbamate (Fmoc-PCA) was quantitated by ‘H-NMR (10). Drbenzofulvene was scavenged m 

2 mm by trrs(2ammoethyl)amme, 15 mm by 1,3-cyclohexanebis-(methylamine), and 50 min by 1,4-bis-(3-aminopropyl)piperazine. 
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ing (II). An inexpensive alternative to piperidine for Fmoc removal is 
diethylamine, with standard conditions being 60% diethylamine-DMF 
for 180 min (19,2(I) or 10% diethylamine-ZV,N-dimethylacetamide 
(DMA) for 120 min (21,22). 

2. Monitoring 
Fmoc removal can be monitored spectrophotometrically because of 

the formation of dibenzofulvene or fulvene-piperidine adducts. Monitor- 
ing is especially valuable in “difficult” sequences, where Fmoc removal 
may be slow or incomplete (I7,23,24). Slow deprotection has been cor- 
related to a broad fulvene-piperidine peak detected at 3 12 nm (24-26). 
Monitoring of a broad fulvene-piperidine peak at 365 nm has been used 
to demonstrate slow deprotection from Fmoc-(Ala)5-Val-4-hydroxy- 
methylphenoxy (HMP)-copoly(styrene- 1 %-divinylbenzene)-resin (PS); 
in turn, detection of a narrow fulvene-piperidine peak demonstrated 
efficient deprotection of the same sequence on a different solid support 
(HMP-polyethylene glycol-PS) (27). Monitoring of fulvene-piperidine 
at 3 13 nm was utilized during the successful synthesis of the entire 76- 
residue sequence of ubiquitin (28). Dibenzofulvene formation has been 
monitored at 270 or 304 nm (29). 

3. Side Reactions 
Repetitive piperidine treatments can result in a number of deleterious 

side reactions, such as diketopiperazine and aspartimide formation and 
racemization of esterified Cys derivatives. Base-catalyzed cyclization of 
resin-bound dipeptides to diketopiperazines is especially prominent in 
sequences containing Pro, Gly, b-amino acids, or N-methyl amino acids. 
For continuous-flow Fmoc SPPS, diketopiperazine formation is sup- 
pressed by deprotecting for 1.5 min with 20% piperidine-DMF at an 
increased flow rate (15 mL/min), washing for 3 min with DMF at the 
same flow rate, and coupling the third Fmoc-amino acid in situ with 
benzotriazolyl N-oxytrisdimethylaminophosphonium hexafluoro- 
phosphate (BOP), 4-methylmorpholine, and 1-hydroxybenzotriazole 
(HOBt) in DMF (30). For batch-wise SPPS, rapid (a maximum of 5 mm) 
treatments by 50% piperidine-DMF should be used, followed by DMF 
washes and then in situ acylations mediated by BOP or 2-(lH- 
benzotriazole- 1 -yl)- 1,1,3,3-tetramethyluronium hexafluorophosphate 
(HBTU) (31). Piperidine catalysis of aspartimide formation from side- 
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chain-protected Asp residues can be rapid, and is dependent on the side- 
chain-protecting group. Treatment of Asp(OBzl)-Gly, Asp(OcHex)-Gly, 
and Asp(OtBu)-Gly with 20% piperidine-DMF for 4 h resulted in 100, 
67.5, and 11% aspartimide formation, respectively (32), whereas treat- 
ment of Asp(OBzl)-Phe with 55% piperidine-DMF for 1 h resulted in 
16% aspartimide formation (33). The racemization of C-terminal-esteri- 
fied Cys derivatives by 20% piperidine-DMF is also problematic, with 
D-Cys formed to the extent of 11.8% from Cys(Trt), 9.4% from 
Cys(Acm), 5.9% from Cys(tBu), and 36.0% from Cys(StBu) after 4 h of 
treatment (34). 

Some piperidine-catalyzed side-reactions may be minimized by using 
other bases to remove the Fmoc group. Two percent 1,8-diazabi- 
cyclo[5.4.0]undec-7-ene (DBU)-DMF, at a flow rate of 3 mL/min for 10 
min, is used to minimize monodealkylation of either Tyr(POsMeJ or 
Tyr(POsBzl& (29). For example, 50% monodealkylation of Tyr(POsMe& 
occurred in 7 min with 20% piperidine-DMF, but required 5 h with 1M 
DBU in DMF, whereas 50% monodealkylation of Tyr(POsBzlz) occurred 
in 12 min with 20% piperidine-DMF and 14 h with 1M DBU in DMF 
(29). Racemization of esterified Cys(Trt) was reduced from 11.8% with 
20% piperidine-DMF to only 2.6% with 1% DBU-DMF after 4 h of treat- 
ment (29,34). Unfortunately, aspartimide formation of Asp(OtBu)-Asn 
is worse with DBU compared to piperidine (35). This reagent is recom- 
mended for continuous-flow syntheses only, since the dibenzofulvene 
intermediate does not form an adduct with DBU and thus must be washed 
rapidly from the peptide resin to avoid reattachment of dibenzoful- 
vene (29). However, a solution of DBU-piperidine-DMF (1: 1:48) is effec- 
tive for batch syntheses, since the piperidine component scavenges the 
dibenzofulvene. 

4. Glycopeptide Synthesis 

The mild conditions of Fmoc chemistry are, in general, more suited 
for glycopeptide syntheses than Boc chemistry, because repetitive acid 
treatments can be detrimental to sugar linkages (36). However, some 
researchers prefer morpholine to piperidine as an Fmoc removal agent 
during glycopeptide SPPS, because the pK, of morpholine (8.3) is lower 
than that of piperidine (11. l), and is thus less detrimental to side-chain 
glycosyls (36,37). Side-chain Ser and Thr glycosyls are stable to base 
deprotection by neat morpholine (38,39) for 30 min (40) and 50% 



22 Fields 

morpholine-DMF for 20-30 min (4143). A 4-h treatment of Cys(Trt) 
with 50% morpholine-DMF resulted in 3.8% D-Cys, which is consider- 
ably less racemization than that seen with piperidine (34). 

5. Solution Syntheses 

For rapid solution-phase synthesis, it is desirable to use an Fmoc 
removal agent that forms a dibenzofulvene adduct that can be extracted 
in phosphate buffer (pH 5.5). Such an adduct is obtained when either 
4-(aminomethyl)piperidine (44) or tris(2-aminoethyl)amine is used 
for Fmoc removal (IO). Precipitates or emulsions can form during 
4-(aminomethyl)piperidine-fulvene adduct extraction from a DCM layer, 
so tris(2-aminoethyl)amine is preferred (10). Complete deprotection and 
scavenging of 9-fluorenylmethyl N-p-chlorophenyl carbamate (Fmoc- 
PCA) (0.14 mmol) was achieved in 2 min with 2 mL of tris(2-amino- 
ethyl)amine (100 Eq) in 2 mL CDCla (10). Polymeric-bound amines, 
such as piperazine-PS (2.4 mEq/g) (45) and a copolymer of styrene, 
2,4,5-trichlorophenyl acrylate, and N,N’-dimethyl-N,N’-bisacryloylhexa- 
methylene diamine, with subsequent replacement of activated ester 
groups by l-(2aminoethyl)piperazine (3.3 mEq/g) (46), also efficiently 
remove the Fmoc group in solution-phase syntheses. The use of poly- 
meric-bound amines allows for the isolation of the free amino compo- 
nent by simple filtration of the resin, since the polymer traps the 
dibenzofulvene (45,46). 

6. Notes 
1. Amine impurities that could possibly remove the Fmoc group include 

dimethylamine found m DMF (47) and methylamme found in NMP (48) 
Fmoc-Gly was found to be deprotected after 7 d m DMA, DMF, and NMP to 
the extent of 1,5, and 14%, respectively (49). Although these rates of decom- 
position are considered extremely low, it is recommended that these solvents 
be freshly purified before use (2647). The presence of HOBt (O.OOl-O.lM) 
greatly reduces the detrimental effect of methylamine (48,50) whereby 
Fmoc-Gly-HMP-PS was cl % deprotected after 20 h in NMP (48). 

2. The primary and secondary amine lability of the Fmoc group also prompted 
an mvestigation of Fmoc removal by esterrfied or resin-bound amino acids. 
Fmoc-Ala and Fmoc-Gly (m DMF) were labile to Pro-OtBu, where t,,* - 9 
and 7 h, respectively (51). Fmoc liberation was less rapid by Pro-Lys(4- 
NO,-Z)-Gly-OET (t,,* - 40 and 35 h for Fmoc-Ala and Fmoc-Gly, respec- 
tively, m the presence of 1 Eq DIEA), and greatly reduced by the presence 
of HOBt (1 Eq) and 2,4-dinitrophenol (2 Eq) (51). The Fmoc group was 
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less labile to primary amino acid esters, even in the presence of DIEA (51). 
Fmoc-Leu (in DCM) was deprotected very slowly by Gly-PS, with ti,, = 
300 and 1500 h in the presence of 1.8 and 1.2 Eq of DIEA, respectively (8). 
These rates of Fmoc removal by Gly-PS are msignificant in SPPS. 

3. There are several alternatives to base removal of the Fmoc group, such as 
fluoride ion or hydrogenation. Fmoc-Phe was rapidly deprotected (- 2 min) 
by 0.05-O.lM tetrabutylammonium fluoride trihydrate (TBAF) in DMF 
(52). Continuous-flow Fmoc SPPS of Leu-Ala-Gly-Val, carried out with 
20-min deprotecttons of 0.02M TBAF in DMF, resulted in a highly homo- 
geneous crude product (52). Adding 100 Eq of MeOH to TBAF-DMF 
solutions could inhibit readdition of dibenzofulvene to the peptide resin 
and diketopiperazine formation (52). Succinimide formation from Asn, 
glutarimide formation from Gln, and the mstability of benzyl ester groups 
are potential problems of TBAF deprotection (53,54). Complete 
deprotection of Fmoc-Ala (in CHsOH), Fmoc-Gly (in 95% ethanol), 
and Fmoc-Leu (in 75% aqueous ethanol) by hydrogenation with 10% 
Pd-on-charcoal catalyst in the presence of acetic acid (two drops) occurred 
m 4, 22, and 4 h, respectively (55). Deprotection was solvent-dependent, 
with generation of Gly from Fmoc-Gly occurring with tu2 - 30 h m 20% 
acetic acid-CHsOH, tllz - 17 h m DMF, and tu2 - 7 h in DMF containing 
2 Eq of DIEA by hydrogenation with 10% Pd-on-charcoal catalyst (49). 
Fairly rapid Fmoc-Gly deprotection in DMF (t,,* - 2.5 h) was found when 
Pd(OAc)z was used as the catalyst instead of Pd-on-charcoal(49). Studies 
with Fmoc-Gly-OBzl showed selective removal of the benzyl ester in the 
presence of the Fmoc group by hydrogenation in CH,OH with 10% 
Pd-BaS04 catalyst for - 1 h (56). 
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