US006458924B2 # (12) United States Patent # Knudsen et al. (10) Patent No.: US 6,458,924 B2 (45) **Date of Patent:** *Oct. 1, 2002 #### (54) DERIVATIVES OF GLP-1 ANALOGS (75) Inventors: Liselotte Bjerre Knudsen, Valby (DK); Per Olaf Huusfeldt, København K (DK); Per Franklin Nielsen, Værløse (DK) (73) Assignee: Novo Nordisk A/S, Bagsvaerd (DK) (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal disclaimer. (21) Appl. No.: **09/398,111** (22) Filed: Sep. 16, 1999 #### Related U.S. Application Data - (63) Continuation-in-part of application No. 09/265,141, filed on Mar. 8, 1999, now Pat. No. 6,384,016, and a continuation-in-part of application No. 09/258,750, filed on Feb. 26, 1999, now Pat. No. 6,268,343, which is a continuation-in-part of application No. 09/038,432, filed on Mar. 11, 1998, now abandoned, which is a continuation-in-part of application No. 08/918,810, filed as application No. PCT/DK97/00340 on Aug. 22, 1997, now abandoned. - 00340 on Aug. 22, 1997, now abandoned. (60) Provisional application No. 60/035,904, filed on Jan. 24, 1997, provisional application No. 60/036,226, filed on Jan. 25, 1997, provisional application No. 60/036,255, filed on Jan. 24, 1997, provisional application No. 60/078,422, filed on Mar. 18, 1998, provisional application No. 60/082,478, filed on Apr. 21, 1998, provisional application No. 60/082, 479, filed on Apr. 21, 1998, provisional application No. 60/082,480, filed on Apr. 21, 1998, provisional application No. 60/082,802, filed on Apr. 23, 1998, and provisional application No. 60/084,357, filed on May 5, 1998. # (30) Foreign Application Priority Data | | Aug. 30, 1996 | |------------|---------------| | | Nov. 8, 1996 | | | Dec. 20, 1996 | | | Feb. 27, 1998 | | 0264/98 | Feb. 27, 1998 | | 0268/98 | Feb. 27, 1998 | | 0272/98 | Feb. 27, 1998 | | 0274/98 | Feb. 27, 1998 | | 98610006 | Mar. 13, 1998 | | 0508/98 | Apr. 8, 1998 | | 0509/98 | Apr. 8, 1998 | | 1998 00507 | Apr. 8, 1998 | | | • 1 | | | | | (51) | Int. Cl. ⁷ | A61K 38/16 ; A61K 38/26 | |------|-----------------------|----------------------------------| | (52) | U.S. Cl. | 530/324 ; 530/345; 514/2; | | | | 514/12 | (58) **Field of Search** 514/2, 12; 530/324, 530/345 # (56) References Cited ## U.S. PATENT DOCUMENTS | 5,118,666 A 6/1992 Habener | 514/12 | |----------------------------------|---------| | 5,120,712 A 6/1992 Habener | 514/12 | | 5,380,872 A 1/1995 Sugg et al | 548/498 | | 5,512,549 A 4/1996 Chen et al | 514/12 | | 5,545,618 A 8/1996 Buckley et al | 514/12 | | 5,614,492 A | | 3/1997 | Habener 514/12 | |-------------|---|--------|-------------------| | 5,869,602 A | * | 2/1999 | Jonassen 530/308 | | 5,912,229 A | | 6/1999 | Thim et al 514/12 | #### FOREIGN PATENT DOCUMENTS | EP | 0 619 322 A2 | 10/1994 | |----|--------------|----------| | EP | 0 658 568 | 6/1995 | | EP | 0 708 179 | 4/1996 | | GB | 1 202 607 | 8/1970 | | WO | WO 87/06941 | 11/1987 | | WO | WO 90/11296 | 10/1990 | | WO | WO 91/11457 | 8/1991 | | WO | WO 95/07931 | 3/1995 | | WO | WO 95/31214 | 11/1995 | | WO | WO 95/32730 | 12/1995 | | WO | 96/29342 | * 9/1996 | | WO | WO 96/29342 | 9/1996 | | WO | WO 96/29344 | 9/1996 | | WO | WO 97/31943 | 9/1997 | | WO | WO 98/08871 | 3/1998 | | WO | 98/08871 | * 3/1998 | | WO | WO 98/08873 | 3/1998 | | WO | WO 98/08531 | 5/1998 | | WO | WO 98/19698 | 5/1998 | ### OTHER PUBLICATIONS Broderick, Diabetologia (1995) vol. 38, No. Suppl. 1, pp. A171. Meeting Info.: 31st Annual Meeting of the European Association for the Study of Diabetes Stockholm, Sweden Sep. 12–16, 1995.* M. Gutniak et al., Antidiabetogenic Effect of Glucagon–Like Peptide (7–36) Amide in Normal Subjects and Patients with Diabetes with Diabetes Mellitus. - M. Navarro et al., Changes in Food Intake Induced by GLP–1(7–36) Amide In the Rat, Abstracts of the 15th International Diabetes Federation Congress, Nov. 6–11, 1194 Kobe, poster presentation 11A 5PP1295 Issued 1994. - R. Schick et al., "Glucagon-like peptide 1-a novel brain peptide Involved in feeding regulation "Obesity in Europe 1993, Chapter 53, pp. 363-367. - P.D. Lambert et al., "A Role for GLP-1(7-36)NH₂ in the Central Control Of Feeding Behavior" Digestion 1994; vol. 54. pp. 360-361. - B. Willms et al., "Gastric Emptying, Glucose Responses, and Insulin Secretion after a Liquid Test Meal:Effects of Exogenous Glucagon–Like Peptide–1 (GLP–1) (7–36) Amide in Type 2 (Noninsulin–Dependent) Diabetic Patients" Journal of Clinical Endocrinology and Metabolism vol. 8 No. 1 (1996) pp. 327–332. (List continued on next page.) Primary Examiner—Christopher S. F. Low Assistant Examiner—David Lukton (74) Attorney, Agent, or Firm—Reza Green, Esq.; Richard Bork, Esq. ## (57) ABSTRACT The present invention relates to a pharmaceutical composition comprising a GLP-1 derivative having a lipophilic substituent; and a surfactant. 20 Claims, 1 Drawing Sheet #### OTHER PUBLICATIONS M. Tang-Christensen et al., "Central Administration of GLP-1 (7-36) Amide Inhibits Food and Water Intake in Rats", The American Physiological Society (1996) 271:R848-R856. Zhili Wang et al., "Glucagon-like Peptide-1 Is a Physiological Incretin in Rat" J. Clin. Invest. The American Society for Clin vol. 95. pp. 417–421, Jan. (1995). C. Ørskov, "Glucagon–like peptide–1, a new hormone of the entero–insular Axis" Diabetologia vol. 35:pp. 701–711 (1992). Gutzwiller et al., Abstract "Glucagon-like peptide—1 is a physiologic regulator of food intake in human" Gastroenterology (1997) vol. 12 (4, Supp.S):PA1153. Ranganath et al., "Attenuated GLP-1 secretion in obesity:cause or con-Sequence" Gur vol. 38: pp. 916-919 (1996). Marx J. "Obesity gene discover may help solve weighty problem" [news]. Science, (Dec. 2, 1994) 266 (5190) pp. 1477–1478. Zhang et al. "Positional cloning of the mouse obese gene and its human Homologue". Nature, (Dec. 1, 1994) 372 (6505) pp. 425–432. Rink T.J., "In search of a satiety factor". Nature, (Dec. 1, 1994) 372 (6505) pp. 406–407. Woods et al., "Signals that regulate food intake and energy Homeostasis". Science, 280:1378–1383, May 29, 1998. Thorens T. "Glucagon–like peptide–1 and control of insulin secretion". Diabete & Metabolisme (Paris). 1995, 21, pp. 311–318. Henriksen et al. Peptide amidation by chemical protein engineering A combination of encymic and photochemical synthesis. J. AM Chem. Soc. (1992), 114 (5), pp. 1876–1877. Wang et al. "Glucagon-like peptide-1 is a physiological incretin in rat". J. Clin. Invest., (Jan 1995) (1) 417-21. Bell et al. "Exon duplication and divergence in the human Preproglucagon gene". Nature, (Jul. 28-Aug. 3, 1983). Wettergren et al. "Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man". Digest. Dis. Sci., (Apr. 1993) 38 (4) 665-73. Suzuki et al. "Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagons-like peptide-1 on insulin and glucagons release from the isolatedex perfused rat pancreas". Endocrinology, (Dec. 1989) 125(6) 3109–14. Navarro et al., Journal of Neurochemistry, vol. 67, No. 5, pp. 1982–1991 (Nov. 1996). Turton et al., Nature, vol. 379, pp. 69-72 (Jan. 4, 1996). Kim et al., (1994) J. of Pharma. Sciences 83(8):1175–1180. Clodfelter et al., (1998) Pharmaceutical Res. 15(2):254–262. W.B. Gratzer et al., "Relation Between Conformation and Association State" The Journal of Biological Chemistry, 244, No. 24, Dec. 25, 1969, pp. 6675–6679. Sasaki et al., "X-Ray Analysis of Glucagon and Its Relationship to Receptor Binding", Nature Vo. 257, Oct. 30, 1975, pp. 751–757. Wagman et al., "Proton NMR Studies Of The Association And Folding of Glucagon In Solution", Elsevier/North-Holland Biomedical Press, vol. 119, No. 2, Oct. 1980, pp. 265–270. Epand et al., "Molecular Interactions In The Model Lipoprotein Complex Formed Between Glucagon and Dimyristoylglycerophosphocholine", Biochemistry vol. 16, No. 20, 1977. Schneider et al., "Polypeptide Hormone Interaction" (Glucagon Binding To Lysolecithin), The Journal of Biological Chemistry, Vo. 247, No. 16, Aug. 25, 1972, pp. 4986–4991. Schneider et al., "Polypeptide Hormone Interaction" (Conformational Changes of Glucagon Bound To Lysolecithin), The Journal of Biological Chemistry, Vo. 247, No. 16, Aug. 25, 1972, pp. 4992–4995. Robinson et al., "Lipid-Induced Conformational Changes in Glucagon, Secretin, and Vasoactive Intestinal Peptide", Biopolymers, vol. 21, 1982, pp. 1217–1228. Hamed et al., "Bahavior of Amphipathic Helices on Analysis Via Matrix Methods, With Application to Glucagon, Secretin, and Vasoactive Intestinal Peptide", Biopolymers, vol. 22, 1983, pp. 1003–1021. Wu et al., "Helical Conformation of Glucagon in Surfactant Solutions", Americal Chemical Society, 1980, pp. 2117–2122. Bösch et al., "Physicochemical Characterization of Glucagon-Containing Lipid Micelles" Biochimic et Biophysica Acta, 603 (1980) pp. 298–312. Thornton et al., Structure of Glucagon–Like Peptide(7–36) Amide in a Dodecylphosphocholine Micelle as Determined by 2D NMR, Biochemistry 1994, 33, pp. 3532–3539. * cited by examiner FIG. 1 ## **DERIVATIVES OF GLP-1 ANALOGS** ## CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of Ser. No. 09/265,141 filed Mar. 8, 1999 now U.S. Pat. No. 6,384,016 and of Ser. No. 09/258,750 filed Feb. 26, 1999 now U.S. Pat. No. 6,268,343 which is a continuation-in-part of Ser. No. 09/038,432 filed Mar. 11, 1998 now abandoned which is a continuation-in-part of Ser. No. 08/918,810 filed Aug. 26, 1997 now abandoned, which is a 371 and of PCT application Ser. No. PCT/DK97/00340 filed Aug. 22, 1997, and claims priority of U.S. provisional application Ser. Nos. 60/035, 904, 60/036,226, 60/036,255, 60/078,422, 60/082,478, 60/082,479, 60/082,480, 60/082,802, and 60/084,357 filed Jan. 24, 1997, Jan. 25, 1997, Jan. 24, 1997, Mar. 18, 1998, Apr. 21, 1998, Apr. 21, 1998, Apr. 21, 1998, Apr. 23,
1998, and May 5, 1998, respectively, and of Danish application serial nos. 0931/96, 1259/96, 1470/96, 0263/98, 0264/98, 0268/98, 0272/98, 0274/98, 0507/98, 0508/98, and 0509/98 filed Aug. 30, 1996, Nov. 8, 1996, Dec. 20, 1996, Feb. 27, 1998, Apr. 8, 1998, Apr. 8, 1998 and Apr. 8, 1998, respectively, and of European application no. 98610006.3 filed Mar. 13, 1998, the contents of each of which is fully 25 incorporated herein by reference. #### FIELD OF THE INVENTION human glucagon-like peptide-1 (GLP-1) and fragments and/ or analogues thereof which have a protracted profile of action and to methods of making and using them. ## BACKGROUND OF THE INVENTION Peptides are widely used in medical practice, and since they can be produced by recombinant DNA technology it can be expected that their importance will increase also in the years to come. When native peptides or analogues have a high clearance. A high clearance of a therapeutic agent is inconvenient in cases where it is desired to maintain a high blood level thereof over a prolonged period of time since repeated administrations will then be necessary. ACTH, corticotropin-releasing factor, angiotensin, calcitonin, insulin, glucagon, glucagon-like peptide-1, glucagon-like peptide-2, insulin-like growth factor-1, insulin-like growth factor-2, gastric inhibitory peptide, cyclase activating peptide, secretin, enterogastrin, somatostatin, somatotropin, somatomedin, parathyroid hormone, thrombopoietin, erythropoietin, hypothalamic releasing factors, prolactin, thyroid stimulating hormones, endorphins, enkephalins, vasopressin, oxytocin, opiods and 55 analogues thereof, superoxide dismutase, interferon, asparaginase, arginase, arginine deaminase, adenosine deaminase and ribonuclease. In some cases it is possible to influence the release profile of peptides by applying suitable pharmaceutical compositions, but this approach has various 60 shortcomings and is not generally applicable. The hormones regulating insulin secretion belong to the so-called enteroinsular axis, designating a group of hormones, released from the gastrointestinal mucosa in response to the presence and absorption of nutrients in the 65 gut, which promote an early and potentiated release of insulin. The enhancing effect on insulin secretion, the so-called incretin effect, is probably essential for a normal glucose tolerance. Many of the gastrointestinal hormones, including gastrin and secretin (cholecystokinin is not insulinotropic in man), are insulinotropic, but the only physiologically important ones, those that are responsible for the incretin effect, are the glucose-dependent insulinotropic polypeptide, GIP, and glucagon-like peptide-1(GLP-1). Because of its insulinotropic effect, GIP, isolated in 1973 (1) immediately attracted considerable interest among diabetologists. However, numerous investigations carried out during the following years clearly indicated that a defective secretion of GIP was not involved in the pathogenesis of insulin dependent diabetes mellitus (IDDM) or non insulindependent diabetes mellitus (NIDDM) (2). Furthermore, as an insulinotropic hormone, GIP was found to be almost ineffective in NIDDM (2). The other incretin hormone, GLP-1 is the most potent insulinotropic substance known (3). Unlike GIP, it is surprisingly effective in stimulating insulin secretion in NIDDM patients. In addition, and in contrast to the other insulinotropic hormones (perhaps with the exception of secretin) it also potently inhibits glucagon secretion. Because of these actions it has pronounced blood glucose lowering effects particularly in patients with NIDDM. GLP-1, a product of the proglucagon (4), is one of the youngest members of the secretin-VIP family of peptides, but is already established as an important gut hormone with regulatory function in glucose metabolism and gastrointestinal secretion and metabolism (5). The glucagon gene is The present invention relates to novel derivatives of 30 processed differently in the pancreas and in the intestine. In the pancreas (9), the processing leads to the formation and parallel secretion of 1) glucagon itself, occupying positions 33-61 of proglucagon (PG); 2) an N-terminal peptide of 30 amino acids (PG (1-30)) often called glicentin-related pan-35 creatic peptide, GRPP (10, 11); 3) a hexapeptide corresponding to PG (64-69); 4) and, finally, the so-called major proglucagon fragment (PG (72-158)), in which the two glucagon-like sequences are buried (9). Glucagon seems to be the only biologically active product. In contrast, in the thereof are used in therapy it is generally found that they 40 intestinal mucosa, it is glucagon that is buried in a larger molecule, while the two glucagon-like peptides are formed separately (8). The following products are formed and secreted in parallel: 1) glicentin, corresponding to PG (1-69), with the glucagon sequence occupying residues Nos. Examples of peptides which have a high clearance are: 45 33-61 (12); 2) GLP-1(7-36)amide (PG (78-107))amide (13), not as originally believed PG (72-107) amide or 108, which is inactive). Small amounts of C-terminally glycineextended but equally bioactive GLP-1(7-37), (PG (78-108)) are also formed (14); 3) intervening peptide-2 (PG growth hormone-releasing factor, pituitary adenylate 50 (111-122)amide) (15); and 4) GLP-2 (PG (126-158)) (15, 16). A fraction of glicentin is cleaved further into GRPP (PG (1-30)) and oxyntomodulin (PG (33-69)) (17, 18). Of these peptides, GLP-1, has the most conspicuous biological activi- > Being secreted in parallel with glicentin/enteroglucagon, it follows that the many studies of enteroglucagon secretion (6, 7) to some extent also apply to GLP-1 secretion, but GLP-1 is metabolised more quickly with a plasma half-life in humans of 2 min (19). Carbohydrate or fat-rich meals stimulate secretion (20), presumably as a result of direct interaction of yet unabsorbed nutrients with the microvilli of the open-type L-cells of the gut mucosa. Endocrine or neural mechanisms promoting GLP-1 secretion may exist but have not yet been demonstrated in humans. The incretin function of GLP-1(29–31) has been clearly illustrated in experiments with the GLP-1 receptor antagonist, exendin 9-39, which dramatically reduces the incretin effect elicited by oral glucose in rats (21, 22). The hormone interacts directly with the βcells via the GLP-1 receptor (23) which belongs to the glucagon/VIP/calcitonin family of G-protein-coupled 7-transmembrane spanning receptors. The importance of the GLP-1 receptor in regulating insulin secretion was illustrated in recent experiments in which a targeted disruption of the GLP-1 receptor gene was carried out in mice. Animals homozygous for the disruption had greatly deteriorated glucose tolerance and fasting hyperglycaemia, and even heterozygous animals were glucose intolerant (24). The signal transduction mechanism (25) primarily involves activation of adenylate cyclase, but elevations of intracellular Ca²⁺ are also essential (25, 26). The action of the hormone is best described as a potentiation of glucose stimulated insulin release (25), but 15 the mechanism that couples glucose and GLP-1 stimulation is not known. It may involve a calcium-induced calcium release (26, 27). As already mentioned, the insulinotropic action of GLP-1 is preserved in diabetic β -cells. The relation of the latter to its ability to convey "glucose competence" to isolated insulin-secreting cells (26, 28), which respond poorly to glucose or GLP-1 alone, but fully to a combination of the two, is also not known. Equally importantly, however, the hormone also potently inhibits glucagon secretion (29). The mechanism is not known, but seems to be paracrine, via 25 neighbouring insulin or somatostatin cells (25). Also the glucagonostatic action is glucose-dependent, so that the inhibitory effect decreases as blood glucose decreases. Because of this dual effect, if the plasma GLP-1 concentrations increase either by increased secretion or by exogenous 30 infusion the molar ratio of insulin to glucagon in the blood that reaches the liver via the portal circulation is greatly increased, whereby hepatic glucose production decreases (30). As a result blood glucose concentrations decrease. Because of the glucose dependency of the insulinotropic and 35 glucagonostatic actions, the glucose lowering effect is selflimiting, and the hormone, therefore, does not cause hypoglycaemia regardless of dose (31). The effects are preserved in patients with diabetes mellitus (32), in whom infusions of slightly supraphysiological doses of GLP-1 may 40 completely normalise blood glucose values in spite of poor metabolic control and secondary failure to sulphonylurea (33). The importance of the glucagonostatic effect is illustrated by the finding that GLP-1 also lowers blood glucose capacity (34). In addition to its effects on the pancreatic islets, GLP-1 has powerful actions on the gastrointestinal tract. Infused in physiological amounts, GLP-1 potently inhibits pentagastrin-induced as well as meal-induced gastric acid 50 secretion (35, 36). It also inhibits gastric emptying rate and pancreatic enzyme secretion (36). Similar inhibitory effects on gastric and pancreatic secretion and motility may be elicited in humans upon perfusion of the ileum with carbohydrate- or lipid-containing solutions (37, 38). 55 Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-Concomitantly, GLP-1 secretion is greatly stimulated, and it has been speculated that GLP-1 may be at least partly responsible for this so-called "ileal-brake" effect (38). In fact, recent studies suggest that, physiologically, the ilealbrake effects of GLP-1 may be more important than its 60 GLP-1(7-37). effects on the pancreatic islets. Thus, in dose response studies GLP-1 influences gastric emptying rate at infusion rates at least as low as those required to influence islet secretion (39). GLP-1 seems to have an effect on food intake.
Intraven- 65 tricular administration of GLP-1 profoundly inhibits food intake in rats (40, 42). This effect seems to be highly specific. Thus, N-terminally extended GLP-1(PG 72-107) amide is inactive and appropriate doses of the GLP-1 antagonist, exendin 9-39, abolish the effects of GLP-1(41). Acute, peripheral administration of GLP-1 does not inhibit food intake acutely in rats (41, 42). However, it remains possible that GLP-1 secreted from the intestinal L-cells may also act as a satiety signal. Not only the insulinotropic effects but also the effects of GLP-1 on the gastrointestinal tract are preserved in diabetic patients (43), and may help curtailing meal-induced glucose excursions, but, more importantly, may also influence food intake. Administered intravenously, continuously for one week, GLP-1 at 4 ng/kg/min has been demonstrated to dramatically improve glycaemic control in NIDDM patients without significant side effects (44). The peptide is fully active after subcutaneous administration (45), but is rapidly degraded mainly due to degradation by dipeptidyl peptidase IV-like enzymes (46, 47). The amino acid sequence of GLP-1 is given i.a. by Schmidt et al. (Diabetologia 28 704-707 (1985). Human GLP-1 is a 37 amino acid residue peptide originating from preproglucagon which is synthesised, i.a. in the L-cells in the distal ileum, in the pancreas and in the brain. Processing of preproglucagon to GLP-1(7-36)amide, GLP-1(7-37) and GLP-2 occurs mainly in the L-cells. Although the interesting pharmacological properties of GLP-1(7-37) and analogues thereof have attracted much attention in recent years only little is known about the structure of these molecules. The secondary structure of GLP-1 in micelles has been described by Thorton et al. (Biochemistry 33 3532-3539 (1994)), but in normal solution, GLP-1 is considered a very flexible molecule. Surprisingly, we found that derivatisation of this relatively small and very flexible molecule resulted in compounds whose plasma profile were highly protracted and still had retained activity. GLP-1 and analogues of GLP-1 and fragments thereof are useful i.a. in the treatment of Type 1 and Type 2 diabetes and obesity. WO 87/06941 discloses GLP-1 fragments, including GLP-1(7–37), and functional derivatives thereof and to their use as an insulinotropic agent. WO 90/11296 discloses GLP-1 fragments, including GLP-1(7-36), and functional derivatives thereof which have in type-i diabetic patients without residual β-cell secretory 45 an insulinotropic activity which exceeds the insulinotropic activity of GLP-1(1-36) or GLP-1(1-37) and to their use as insulinotropic agents. The amino acid sequence of GLP-1(7-36) and GLP-1 (7-37) is (SEQ ID NO: 1): ``` 8 9 10 11 12 13 14 15 16 17 (I) His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser- ``` 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Ile-Ala-Trp-Leu-Val-Lys-Gly-Arg-X wherein X is NH₂ for GLP-1(7-36) and X is Gly for WO 91/11457 discloses analogues of the active GLP-1 peptides 7-34, 7-35, 7-36, and 7-37 which can also be useful as GLP-1 moieties. EP 0708179-A2 (Eli Lilly & Co.) discloses GLP-1 analogues and derivatives that include an N-terminal imidazole group and optionally an unbranched C₆-C₁₀ acyl group in attached to the lysine residue in position 34. EP 0699686-A2 (Eli Lilly & Co.) discloses certain N-terminal truncated fragments of GLP-1 that are reported to be biologically active. Unfortunately, the high clearance limits the usefulness of these compounds. Thus there still is a need for improvements in this field. Accordingly, it is an object of the present invention to provide derivatives of GLP-1 and analogues thereof which have a protracted profile of action relative to GLP-1(7-37). It is a further object of the invention to provide derivatives of GLP-1 and analogues thereof which have a lower clearance than GLP-1(7-37). It is a further object of the invention to provide a pharmaceutical composition with improved solubility and stability. #### References - 1. Pederson RA. Gastric Inhibitory Polypeptide. In Walsh JH, Dockray GJ (eds) Gut peptides: Biochemistry and Physiology. Raven Press, New York 1994, pp. 217259. - 2. Krarup T. Immunoreactive gastric inhibitory polypeptide. 20 21. Kolligs F, Fehmann HC, Göke R, Göke B. Reduction of Endocr Rev 1988; 9: 122-134. - 3. Ørskov C. Glucagon-like peptide-1, a new hormone of the enteroinsular axis. Diabetologia 1992; 35:701-711. - 4. Bell GI, Sanchez-Pescador R, Laybourn PJ, Najarian RC. Exon duplication and divergence in the human prepro- 25 glucagon gene. Nature 1983; 304: 368-371. - 5. Holst JJ. Glucagon-like peptide-1 (GLP-1)—a newly discovered GI hormone. Gastroenterology 1994; 107: 1848-1855. - glicentin—current status. Gastroenterology 1983; 84:1602-1613. - 7. Hoist JJ, Ørskov C. Glucagon and other proglucagonderived peptides. In Walsh JH, Dockray GJ, eds. Gut peptides: Biochemistry and Physiology. Raven Press, 35 New York, pp. 305-340, 1993. - 8. Ørskov C, Hoist JJ, Knuhtsen S, Baldissera FGA, Poulsen SS, Nielsen OV. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from the pig small intestine, but not pancreas. 40 Endocrinology 1986; 119:1467-1475. - 9. Hoist JJ, Bersani M, Johnsen AH, Kofod H, Hartmann B, Ørskov C. Proglucagon processing in porcine and human pancreas. J Biol Chem, 1994; 269: 18827-1883. - 10. Moody AJ, Hoist JJ, Thim L, Jensen SL. Relationship of 45 glicentin to proglucagon and glucagon in the porcine pancreas. Nature 1981; 289: 514-516. - 11. Thim L, Moody AJ, Purification and chemical characterisation of a glicentin-related pancreatic peptide (proglucagon fragment) from porcine pancreas. Biochim 50 Biophys Acta 1982; 703:134-141. - 12. Thim L, Moody AJ. The primary structure of glicentin (proglucagon). Regul Pept 1981; 2:139-151. - 13. Ørskov C, Bersani M, Johnsen AH, Højrup P, Holst JJ. from human and pig small intestine. J. Biol. Chem. 1989; 264:12826-12829 - 14. Ørskov C, Rabenhøj L, Kofod H, Wettergren A, Holst JJ. Production and secretion of amidated and glycineextended glucagon-like peptide-I (GLP-1) in man. Dia- 60 betes 1991; 43: 535-539. - 15. Buhl T, Thim L, Kofod H, Ørskov C, Harling H, & Holst JJ: Naturally occurring products of proglucagon 111–160 in the porcine and human small intestine. J. Biol. Chem. 1988; 263:8621-8624. - 16. Ørskov C, Buhl T, Rabenhøj L, Kofod H, Holst JJ: Carboxypeptidase-B-like processing of the C-terminus of - glucagon-like peptide-2 in pig and human small intestine. FEBS letters, 1989; 247:193-106. - 17. Holst JJ. Evidence that enteroglucagon (II) is identical with the C-terminal sequence (residues 33-69) of glicentin. Biochem J. 1980; 187:337-343. - 18. Bataille D, Tatemoto K, Gespach C, Jörnvall H, Rosselin G, Mutt V. Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejunoileum. Characterisation of the peptide. FEBS Lett 1982; 146:79-86. - 19. Ørskov C, Wettergren A, Holst JJ. The metabolic rate and the biological effects of GLP-1 7-36amide and GLP-1 7–37 in healthy volunteers are identical. Diabetes 1993; 42:658-661. - 20. Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159-166. - the incretin effect in rats by the glucagon-like peptide-1 receptor antagonist exendin (9–39) amide. Diabetes 1995; 44: 16-19. - 22. Wang Z, Wang RM, Owji AA, Smith DM, Ghatei M, Bloom SR. Glucagon-like peptide-1 is a physiological incretin in rat. J. Clin. Invest. 1995; 95: 417-421. - 23. Thorens B. Expression cloning of the pancreatic b cell receptor for the gluco-incretin Is hormone glucagon-like peptide 1. Proc Natl Acad Sci 1992; 89:8641-4645. - 6. Holst JJ. Gut glucagon, enteroglucagon, gut GLI, 30 24. Scrocchi L, Auerbach AB, Joyner AL, Drucker DJ. Diabetes in mice with targeted disruption of the GLP-1 receptor gene. Diabetes 1996; 45: 21A. - 25. Fehmann HC, Göke R, Göke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I (GLP-1) and glucose-dependent insulin releasing polypeptide (GIP). Endocrine Reviews, 1995; 16: 390-410. - 26. Gromada J, Dissing S, Bokvist K, Renström E, Frøjaer-Jensen J, Wulff BS, Rorsman P. Glucagon-like peptide I increases cytoplasmic calcium in insulin-secreting bTC3cells by enhancement of intracellular calcium mobilisation. Diabetes 1995; 44: 767-774. - 27. Holz GG, Leech CA, Habener JF. Activation of a cAMP-regulated Ca²⁺-signaling pathway in pancreatic β-cells by the insulinotropic hormone glucagon-like peptide-1. J Biol Chem, 1996; 270: 17749-17759. - 28. Holz GG, Kühltreiber WM, Habener JF. Pancreatic beta-cells are rendered glucose competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993; 361:362–365. - 29. Ørskov C, Holst JJ, Nielsen OV: Effect of truncated glucagon-like peptide-1 (proglucagon 78-107 amide) on endocrine secretion from pig pancreas, antrum and stomach. Endocrinology 1988; 123:2009-2013. - Complete sequences of glucagon-like peptide-1 (GLP-1) 55 30. Hvidberg A, Toft Nielsen M, Hilsted J, Ørskov C, Hoist JJ. Effect of glucagon-like peptide-1 (proglucagon 78–107 amide) on hepatic glucose production in healthy man. Metabolism 1994; 43:104-108. - 31. Qualmann C, Nauck M, Hoist JJ, Ørskov C, Creutzfeldt W. Insulinotropic actions of intravenous glucagon-like peptide-1 [7-36 amide] in the fasting state in healthy subjects. Acta Diabetologica, 1995; 32: 13-16. - 32. Nauck MA, Heimesaat MM, Ørskov C, Hoist JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of GLP-1 (7-36 amide) but not of synthetic human GIP in patients with type 2-diabetes mellitus. J Clin Invest 1993; 91:301-307. 33. Nauck MA, Kleine N, Ørskov C, Hoist JJ, Willms B, Creutzfeldt W. Normalisation of fasting hyperglycaemia by exogenous GLP-1(7-36
amide) in type 2-diabetic patients. Diabetologia 1993; 36:741-744. 34. Creutzfeldt W, Kleine N, Willms B, Ørskov C, Hoist JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycaemia by exogenous glucagon-liem, peptide-1 (7-36 amide) in type I diabetic patients. Diabetes Care 1996; 19: 580-586. - 35. Schjoldager BTG, Mortensen PE, Christiansen J, Ørskov C, Hoist JJ. GLP-1 (glucagon-like peptide-1) and truncated GLP-1, fragments of human proglucagon, inhibit gastric acid secretion in man. Dig. Dis. Sci. 1989; 35:703-708. - 36. Wettergren A, Schjoldager B, Mortensen PE, Myhre J, Christiansen J, Holst JJ. Truncated GLP-1(proglucagon 15 72–107 amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38:665-673. - 37. Layer P, Hoist JJ, Grandt D, Goebell H: Ileal release of glucagon-like peptide-1 (GLP-1): association with inhibition of gastric acid in humans. Dig Dis Sci 1995; 40: 20 1074-1082. - 38. Layer P, Holst JJ. GLP-1: A humoral mediator of the ileal brake in humans? Digestion 1993; 54: 385-386. - 39. Nauck M, Ettler R, Niedereichholz U, Ørskov C, Hoist JJ, Schmiegel W. Inhibition of gastric emptying by GLP- ²⁵ 1(7–36 amide) or (7–37): effects on postprandial glycaemia and insulin secretion. Abstract. Gut 1995; 37 (suppl. 2): A124. - 40. Schick RR, vorm Walde T, Zimmermann JP, Schusdziarra V, Classen M. Glucagon-like peptide 1—a novel 30 brain peptide involved in feeding regulation. in Ditschuneit H, Gries FA, Hauner H, Schusdziarra V, Wechsler JG (eds.) Obesity in Europe. John Libbey & Company 1td, 1994; pp. 363-367. - 41. Tang-Christensen M, Larsen PJ, Göke R, Fink-Jensen A, ³⁵ Jessop DS, Møller M, Sheikh S. Brain GLP-1(7-36) amide receptors play a major role in regulation of food and water intake. Am. J. Physiol., 1996, in press. - 42. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards in the regulation of feeding. Nature 1996; 379: 69-72. - 43. Willms B, Werner J, Creutzfeldt W, Ørskov C, Holst JJ, Nauck M. Inhibition of gastric emptying by glucagon-like peptide-1 (7-36 amide) in patients with type-2-diabetes mellitus. Diabetologia 1994; 37, suppl.1: A118. - 44. Larsen J, Jallad N, Damsbo P. One-week continuous infusion of GLP-1(7-37) improves glycaemic control in NIDDM. Diabetes 1996; 45, suppl. 2: 233A. - 45. Ritzel R, Ørskov C, Hoist JJ, Nauck MA. Pharmacokinetic, insulinotropic, and glucagonostatic properties of GLP-1 [7-36 amide] after subcutaneous injection in healthy volunteers. Dose-response relationships. Diabetologia 1995; 38: 720-725. - 46. Deacon CF, Johnsen AH, Hoist JJ. Degradation of an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; - 47. Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. 1995. Both subcutaneous and intravenously administered glucagon-like peptide-1 are rapidly degraded from the amino terminus in type II diabetic patients and in healthy subjects. Diabetes 44: 1126–1131. ## SUMMARY OF THE INVENTION The present invention relates to a pharmaceutical composition with improved solubility and stability comprising derivatives of GLP-1(1-45) and analogs and/or fragments thereof. The GLP-1 derivatives of the present invention have interesting pharmacological properites, in particular they have a more protracted profile of action than the parent peptides. The GLP-1 derivatives of the present invention also have insulinotropic activity, ability to decrease glucagon, ability to suppress gastric motility, ability to restore glucose competency to beta-cells, and/or ability to suppress appetite/reduce weight. ## BRIEF DESCRIPTION OF THE FIGURES FIG. 1 shows the results of Circular Dichroism (CD) at 222 nm as a function of peptide concentration for native GLP-1(7-37) and various GLP-1 derivatives of the present invention. ### DETAILED DESCRIPTION OF THE INVENTION A simple system is used to describe fragments and analogues of GLP-1. For example, Gly8GLP-1(7-37) designates a peptide which relates to GLP-1 by the deletion of the amino acid residues at positions. 1 to 6 and substituting the naturally occurring amino acid residue in position 8 (Ala) by Gly. Similarly, Lys³⁴(N⁶⁸ -tetradecanoyl) GLP-1(7-37) designates GLP-1(7-37) wherein the ϵ -amino group of the Lys residue in position 34 has been tetradecanoylated. Where reference in this text is made to C-terminally extended GLP-1 analogues, the amino acid residue in position 38 is Arg unless otherwise indicated, the amino acid residue in position 39 is also Arg unless otherwise indicated and the optional amino acid residue in position 40 is Asp unless otherwise indicated. Also, if a C-terminally extended analogue extends to position 41, 42, 43, 44 or 45, the amino acid sequence of this extension is as in the corresponding sequence in human preproglucagon unless otherwise indicated. **GLP-1** Analogs The term "an analogue" is defined herein as a peptide CMB, Meeran K, et al. A role for glucagon-like peptide-1 40 wherein one or more amino acid residues of the parent peptide have been substituted by another amino acid residue. In a preferred embodiment, the total number of different amino acids between the GLP-1 derivative and the corresponding native form of GLP-1 is up to fifteen, preferably up 45 to ten amino acid residues, and most preferably up to six amino acid residues. The total number of different amino acids between the derivative of the GLP-1 analog and the corresponding native form of GLP-1 preferably does not exceed six. Preferably, the number of different amino acids is five. More preferably, the number of different amino acids is four. Even more preferably, the number of different amino acids is three. Even more preferably, the number of different amino acids is two. Most preferably, the number of different amino acids glucagon-like peptide-1 by human plasma in vitro yields 55 is one. In order to determine the number of different amino acids, one should compare the amino acid sequence of the GLP-1 derivative of the present invention with the corresponding native GLP-1. For example, there are two different amino acids between the derivative Gly⁸Arg²⁶Lys³⁴(N⁶⁸-(7deoxycholoyl)) GLP-1(7-40) and the corresponding native GLP-1(i.e., GLP-1(7-40)). The differences are located at positions 8 and 26. Similarly, there is only one different amino acid between the derivative Lys²⁶(N⁶⁸-(7deoxycholoyl))Arg³⁴GLP-1(7-40) and the corresponding 65 native GLP-1. The difference is located at position 34. In a preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is GLP-1 (1–45) or an analogue thereof. In a further preferred embodiment, the par ent peptide is GLP-1(1–35), GLP-1 (1–36), GLP-1(1–36)amide, GLP-1(1–37), GLP-1(1–38), GLP-1(1–39), GLP-1(1–40), GLP-1(1–41) or an analogue thereof. In a preferred embodiment, the present invention relates to derivatives of GLP-1 analogues of formula I (SEQ ID NO:2): 18 19 20 21 22 23 24 25 26 27 28 Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Phe- 29 30 31 32 33 34 35 36 37 38 Ile-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa-Xaa 39 40 41 42 43 44 45 Xaa-Xaa-Xaa-Xaa-Xaa-Xaa wherein Xaa at position 7 is His, a modified amino acid or is deleted, Xaa at position 8 is Ala, Gly, Ser, Thr, Leu, Ile, Val, Glu, Asp, or Lys, or is deleted, Xaa at position 9 is Glu, Asp, or Lys, or is deleted, Xaa at position 10 is Gly or is deleted, Xaa at position 11 is Thr, Ala, Gly, Ser, Leu, Ile, Val, Glu, Asp, or Lys, or is deleted, Xaa at position 12 is Phe or is deleted, Xaa at position 13 is Thr or is deleted, Xaa at position 14 is Ser, Ala, Gly, Thr, Leu, Ile, Val, Glu, Asp, or Lys, or is deleted, Xaa at position 15 is Asp or is deleted, Xaa at position 16 is Val, Ala, Gly, Ser, Thr, Leu, Ile, Tyr, Glu, Asp, or Lys, or is deleted, Xaa at position 17 is Ser, Ala, Gly, Thr, Leu, Ile, Val, Giu, Asp, or Lys, or is deleted, Xaa at position 18 is Ser, Ala, Gly, Thr, Leu, Ile, Val, Glu, Asp, or Lys, Xaa at position 19 is Tyr, Phe, Trp, Glu, Asp, or Lys, Xaa at position 20 is Leu, Ala, Gly, Ser, Thr, Leu, Ile, Val, Glu, Asp, or Lys, Xaa at position 21 is Glu, Asp, or Lys, Xaa at position 22 is Gly, Ala, Ser, Thr, Leu, Ile, Val, Glu, Asp. or Lys. Xaa at position 23 is Gln, Asn, Arg, Glu, Asp, or Lys, Xaa at position 24 is Ala, Gly, Ser, Thr, Leu, Ile, Val, Arg, Glu, Asp, or Lys, Xaa at position 25 is Ala, Gly, Ser, Thr, Leu, Ile, Val, Glu, Asp, or Lys, Xaa at position 26 is Lys, Arg, Gln, Glu, Asp, or His, Xaa at position 27 is Glu, Asp, or Lys, Xaa at position 30 is Ala, Gly, Ser, Thr, Leu, Ile, Val, Glu, Asp, or Lys Xaa at position 31 is Trp, Phe, Tyr, Glu, Asp, or Lys, Xaa at position 32 is Leu, Gly, Ala, Ser, Thr, Ile, Val, Glu, Asp, or Lys, Xaa at position 33 is Val, Gly, Ala, Ser, Thr, Leu, Ile, Glu, Asp, or Lys, Xaa at position 34 is Lys, Arg, Glu, Asp, or His, Xaa at position 35 is Gly, Ala, Ser, Thr, Leu, Ile, Val, Glu, Asp, or Lys, Xaa at position 36 is Arg, Lys, Glu, Asp, or His, Xaa at position 37 is Gly, Ala, Ser, Thr, Leu, Ile, Val, Glu, Asp, or Lys, or is deleted, Xaa at position 38 is Arg, Lys, Glu, Asp, or His, or is deleted, Xaa at position 39 is Arg, Lys, Glu, Asp, or His, or is deleted, Xaa at position 40 is Asp, Glu, or Lys, or is deleted, Xaa at position 41 is Phe, Trp, Tyr, Glu, Asp, or Lys, or is deleted, Xaa at position 42 is Pro, Lys, Glu, or Asp, or is deleted, Xaa at position 43 is Giu, Asp, or Lys, or is deleted, Xaa at position 44 is Glu, Asp, or Lys, or is deleted, and Xaa at position 45 is Val, Glu, Asp, or Lys, or is deleted, (a) a C-1-6-ester thereof, (b) amide, C-1-6-alkylamide, or C-1-6-dialkylamide thereof and/or (c) a pharmaceutically acceptable salt thereof, provided that when the amino acid at position 37, 38, 39, 40, 41, 42, 43 or 44 is deleted, then each amino acid downstream of the amino acid is also deleted and when the amino acid at position 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 is deleted then each amino acid upstream of the amino acid is also deleted. The
term "modified amino acid" is defined herein as A is: wherein R¹, R² and R³ are independently H, lower alkyl, optionally substituted phenyl, NH₂, NH—CO-(lower alkyl), —OH, lower alkoxy, halogen, SO₂-(lower alkyl) or CF₃, wherein said phenyl is optionally substituted with at least one group selected from NH₂, —OH, lower alkyl or lower alkoxy having 1–6 carbon atoms, halogen, SO₂-(lower alkyl), NH—CO-(lower alkyl) or CF₃, or R¹ and R² may together form a bond; and Y is a five or six membered ring system selected from the group consisting of: wherein Z is N, O or S, and said ring system is optionally substituted with one or more functional groups selected from the group consisting of NH₂, NO₂, OH, lower alkyl, lower alkoxy, halogen, CF₃ and aryl (i.e., optionally substituted phenyl, as define above), provided that A is not histidine; The terms "lower alkyl" and "lower alkoxy" refer to an alkyl or alkoxy group, respectively, having 1-6 carbon atoms. In a preferred embodiment, A is: In another preferred embodiment, A is: In another preferred embodiment, A is: $$\bigvee_{N \to \infty}^{N} \bigcirc$$ In another preferred embodiment, A is: In another preferred embodiment, A is: In another preferred embodiment, A is 4-imidazopropionyl. In another preferred embodiment, A is 4-imidazoacetyl. 50 In another preferred embodiment, A is 4-imidazo- α , α -dimethyl-acetyl. The GLP-1 derivatives of the present invention preferably have only one or two Lys wherein the ϵ -amino group of one or both Lys is substituted with a lipophilic substituent. Preferably, the GLP-1 derivatives of the present invention have only one Lys. In a more preferred embodiment, there is only one Lys which is located at the carboxy terminus of the derivative of the GLP-1 analogs. In an even more preferred embodiment, the GLP-1 derivatives of the present invention have only one Lys and Glu or Asp is adjacent to Lys. In a preferred embodiment, the amino acids at positions 37–45 are absent. In another preferred embodiment, the amino acids at positions 38-45 are absent. In another preferred embodiment, the amino acids at positions 39–45 are absent. 12 In another preferred embodiment, the amino acid at position 7 is deleted. In another preferred embodiment, the amino acids at positions 7 and 8 are deleted. In another preferred embodiment, the amino acids at positions 7–9 are deleted. In another preferred embodiment, the amino acids at positions 7–10 are deleted. In another preferred embodiment, the amino acids at 10 positions 7–11 are deleted. In another preferred embodiment, the amino acids at positions 7–12 are deleted. In another preferred embodiment, the amino acids at positions 7–13 are deleted. In another preferred embodiment, the amino acids at positions 7–14 are deleted. In another preferred embodiment, the amino acids at positions 7–15 are deleted. In another preferred embodiment, the amino acids at 20 positions 7–16 are deleted. In another preferred embodiment, the amino acids at positions 7–17 are deleted. In another preferred embodiment, Xaa at position 7 is His. In another preferred embodiment, Xaa at position 8 is Ala, 25 Gly, Ser, Thr, or Val. In another preferred embodiment, Xaa at position 9 is Glu. In another preferred embodiment, Xaa at position 10 is Gly. In another preferred embodiment, Xaa at position 11 is Thr. In another preferred embodiment, Xaa at position 12 is Phe. In another preferred embodiment, Xaa at position 13 is Thr. In another preferred embodiment, Xaa at position 14 is Ser In another preferred embodiment, Xaa at position 15 is Asp. In another preferred embodiment, Xaa at position 16 is Val. In another preferred embodiment, Xaa at position 17 is Ser. In another preferred embodiment, Xaa at position 18 is 45 Ser, Lys, Glu, or Asp. In another preferred embodiment, Xaa at position 19 is Tyr, Lys, Glu, or Asp. In another preferred embodiment, Xaa at position 20 is Leu, Lys, Glu, or Asp. In another preferred embodiment, Xaa at position 21 is Glu, Lys, or Asp. In another preferred embodiment, Xaa at position 22 is Gly, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 23 is 55 Gln, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 24 is Ala, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 25 is Ala, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 26 is Lys, Glu, Asp, or Arg. In another preferred embodiment, Xaa at position 27 is Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 30 is 65 Ala, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 31 is Trp, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 32 is Leu, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 33 is Val, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 34 is 5 Lys, Arg, Glu, or Asp. In another preferred embodiment, Xaa at position 35 is Gly, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 36 is Arg, Lys, Glu, or Asp. In another preferred embodiment, Xaa at position 37 is Gly, Glu, Asp, or Lys. In another preferred embodiment, Xaa at position 38 is Arg or Lys, or is deleted. In another preferred embodiment, Xaa at position 40 is deleted. In another preferred embodiment, Xaa at position 41 is deleted. In another preferred embodiment, Xaa at position 42 is deleted. In another preferred embodiment, Xaa at position 43 is deleted. In another preferred embodiment, Xaa at position 44 is 25 In another preferred embodiment, Xaa at position 45 is deleted. In another preferred embodiment, Xaa at position 26 is Arg, each of Xaa at positions 37-45 is deleted, and each of 30 is the amino acid in native GLP-1(7-36). the other Xaa is the amino acid in native GLP-1(7-36) In another preferred embodiment, Xaa at position 26 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-37). In another preferred embodiment, Xaa at position 26 is 35 Arg, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 34 is Arg, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-36). In another preferred embodiment, Xaa at position 34 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-37). In another preferred embodiment, Xaa at position 34 is the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at positions 26 and 34 is Arg, Xaa at position 36 is Lys, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-36). In another preferred embodiment, Xaa at positions 26 and 34 is Arg, Xaa at position 36 is Lys, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-37). In another preferred embodiment, Xaa at positions 26 and 55 34 is Arg, Xaa at position 36 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at positions 26 and 34 is Arg, Xaa at position 38 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 37 is Asp or Glu, Xaa at position 36 is Lys, each of Xaa at positions 38-45 is deleted, 65 other Xaa is the amino acid in native GLP-1(8-38). and each of the other Xaa is the amino acid in native GLP-1(7-37). 14 In another preferred embodiment, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 37 is Asp or Glu, Xaa at position 36 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 36 is Lys, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-36). In another preferred embodiment, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 36 is Lys, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-37). In another preferred embodiment, Xaa at position 8 is Thr, In another preferred embodiment, Xaa at position 39 is 15 Ser, Gly or Val, Xaa at position 36 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). > In another preferred embodiment, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 37 is Glu or Asp, Xaa at position 38 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 38 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 18, 23 or 27 is Lys, and Xaa at positions 26 and 34 is Arg, each of Xaa at positions 37-45 is deleted, and each of the other Xaa In another preferred embodiment, Xaa at position 18, 23 or 27 is Lys, and Xaa at positions 26 and 34 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-37). In another preferred embodiment, Xaa at position 18, 23 or 27 is Lys, and Xaa at positions 26 and 34 is Arg, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 8 is Thr, 40 Ser, Gly, or Val, Xaa at position 18, 23 or 27 is Lys, and Xaa at position 26 and 34 is Arg, each of Xaa at positions 37–45 is deleted, and each of the other Xaa is the amino acid in native
GLP-1(7-36). In another preferred embodiment, Xaa at position 8 is Thr, Arg, each of Xaa at positions 39–45 is deleted, and each of 45 Ser, Gly, or Val, Xaa at position 18, 23 or 27 is Lys, and Xaa at position 26 and 34 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-37). > In another preferred embodiment, Xaa at position 8 is Thr, 50 Ser, Gly, or Val, Xaa at position 18, 23 or 27 is Lys, and Xaa at position 26 and 34 is Arg, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(7-38). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 26 is Arg, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-36). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 26 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-37). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 26 is Arg, each of Xaa at positions 39-45 is deleted, and each of the In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 34 is Arg, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-36). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 34 is Arg, each of Xaa at positions 38-45 is deleted, and each of the 5 other Xaa is the amino acid in native GLP-1(8-37). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 34 is Arg, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at positions 26 and 34 is Arg, Xaa at position 36 is Lys, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-36). In another preferred embodiment, Xaa at position 7 is a 15 modified amino acid or is deleted, Xaa at positions 26 and 34 is Arg, Xaa at position 36 is Lys, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-37). In another preferred embodiment, Xaa at position 7 is a 20 modified amino acid or is deleted, Xaa at positions 26 and 34 is Arg, Xaa at position 36 is Lys, each of Xaa at positions 39–45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). In another preferred embodiment, Xaa at position 7 is a 25 modified amino acid or is deleted, Xaa at positions 26 and 34 is Arg, Xaa at position 38 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). In another preferred embodiment, Xaa at position 7 is a 30 modified amino acid or is deleted, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 37 is Glu, Xaa at position 36 is Lys, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-37). In another preferred embodiment, Xaa at position 7 is a 35 modified amino acid or is deleted, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 37 is Glu, Xaa at position 36 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). In another preferred embodiment, Xaa at position 7 is a 40 modified amino acid or is deleted, Xaa at position 8 is Thr, Ser, Gly or Val, Xaa at position 37 is Glu, Xaa at position 38 is Lys, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). In another preferred embodiment, Xaa at position 7 is a 45 modified amino acid or is deleted, Xaa at position 18, 23 or 27 is Lys, and Xaa at positions 26 and 34 is Arg, each of Xaa at positions 37–45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-36). modified amino acid or is deleted, Xaa at position 18, 23 or 27 is Lys, and Xaa at positions 26 and 34 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-37). In another preferred embodiment, Xaa at position 7 is a 55 modified amino acid or is deleted, Xaa at position 18, 23 or 27 is Lys, and Xaa at positions 26 and 34 is Arg, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). In another preferred embodiment, Xaa at position 7 is a 60 modified amino acid or is deleted, Xaa at position 8 is Thr, Ser, Gly, or Val, Xaa at position 18, 23 or 27 is Lys, and Xaa at position 26 and 34 is Arg, each of Xaa at positions 37-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-36). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 8 is Thr, 16 Ser, Gly, or Val, Xaa at position 18, 23 or 27 is Lys, and Xaa at position 26 and 34 is Arg, each of Xaa at positions 38-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-37). In another preferred embodiment, Xaa at position 7 is a modified amino acid or is deleted, Xaa at position 8 is Thr, Ser, Gly, or Val, Xaa at position 18, 23 or 27 is Lys, and Xaa at position 26 and 34 is Arg, each of Xaa at positions 39-45 is deleted, and each of the other Xaa is the amino acid in native GLP-1(8-38). Derivatives The term "derivative" is defined as a modification of one or more amino acid residues of a peptide by chemical means, either with or without an enzyme, e.g., by alkylation, acylation, ester formation, or amide formation. Lipophilic Substituents To obtain a satisfactory protracted profile of action of the GLP-1 derivative, one or more lipophilic substituents are attached to a GLP-1 moiety. The lipophilic substituents preferably comprises 4-40 carbon atoms, in particular 8-25 carbon atoms. The lipophilic substituent may be attached to an amino group of the GLP-1 moiety by means of a carboxyl group of the lipophilic substituent which forms an amide bond with an amino group of the amino acid residue to which it is attached. Preferably, the GLP-1 derivatives have three, more preferably two, and most preferably one lipophilic substituent. In a preferred embodiment, the present invention relates to a GLP-1 derivative wherein at least one amino acid residue of the parent peptide has a lipophilic substituent attached with the proviso that if only one lipophilic substituent is present and this substituent is attached to the N-terminal or to the C-terminal amino acid residue of the parent peptide then this substituent is an alkyl group or a group which has an ω-carboxylic acid group. In another preferred embodiment, the present invention relates to a GLP-1 derivative having only one lipophilic substituent which substituent is an alkyl group or a group which has an ω-carboxylic acid group and is attached to the N-terminal amino acid residue of the parent peptide. In another preferred embodiment, the present invention relates to a GLP-1 derivative having only one lipophilic substituent which substituent is an alkyl group or a group which has an ω-carboxylic acid group and is attached to the C-terminal amino acid residue of the parent peptide. In another preferred embodiment, the present invention relates to a GLP-1 derivative having only one lipophilic substituent which substituent can be attached to any one amino acid residue which is not the N-terminal or In another preferred embodiment, Xaa at position 7 is a 50 C-terminal amino acid residue of the parent peptide. > In another preferred embodiment, the present invention relates to a GLP-1 derivative wherein two lipophilic substituents are present, one being attached to the N-terminal amino acid residue while the other is attached to the C-terminal amino acid residue. > In another preferred embodiment, the present invention relates to a GLP-1 derivative wherein two lipophilic substituents are present, one being attached to the N-terminal amino acid residue while the other is attached to an amino acid residue which is not N-terminal or the C-terminal amino acid residue. > In another preferred embodiment, the present invention relates to a GLP-1 derivative wherein two lipophilic substituents are present, one being attached to the C-terminal amino acid residue while the other is attached to an amino acid residue which is not the N-terminal or the C-terminal amino acid residue. A lipophilic substituent may be attached to an amino acid residue in such a way that a carboxyl group of the lipophilic substituent forms an amide bond with an amino group of the amino acid residue. Alternatively, a lipophilic substituent may be attached to an amino acid residue in such a way that an amino group of the lipophilic substituent forms an amide bond with a carboxyl group of the amino acid residue. In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein a lipophilic substituent is attached to the parent peptide by means of a spacer. For 10 example, the lipophilic substituent may be attached to the GLP-1 moiety by means of a spacer in such a way that a carboxyl group of the spacer forms an amide bond with an amino group of the GLP-1 moiety. In a most preferred embodiment, the lipophilic substituent $\,$ 15 is attached—optionally via a spacer—to the ε -amino group of a Lys residue contained in the parent peptide. In a preferred embodiment, the spacer is an α,ω -amino acid. Examples of suitable spacers are succinic acid, Lys, Glu or Asp, or a dipeptide such as Gly-Lys. When the spacer 20 is succinic acid, one carboxyl group thereof may form an amide bond with an amino group of the amino acid
residue, and the other carboxyl group thereof may form an amide bond with an amino group of the lipophilic substituent. When the spacer is Lys, Glu or Asp, the carboxyl group 25 thereof may form an amide bond with an amino group of the amino acid residue, and the amino group thereof may form an amide bond with a carboxyl group of the lipophilic substituent. When Lys is used as the spacer, a further spacer may in some instances be inserted between the ϵ -amino 30 group of Lys and the lipophilic substituent. In one preferred embodiment, such a further spacer is succinic acid which forms an amide bond with the ϵ -amino group of Lys and with an amino group present in the lipophilic substituent. In another preferred embodiment such a further spacer is Glu 35 or Asp which forms an amide bond with the ϵ -amino group of Lys and another amide bond with a carboxyl group present in the lipophilic substituent, that is, the lipophilic substituent is a N^{68} -acylated lysine residue. Other preferred spacers are N^{ϵ}-(γ -L-glutamyl), N^{ϵ}-(β -L-asparagyl), 40 N^{ϵ} -glycyl, and N^{ϵ} -(α -(γ -aminobutanoyl). In another preferred embodiment of the present invention, the lipophilic substituent has a group which can be negatively charged. One preferred such group is a carboxylic acid group. In a further preferred embodiment, the lipophilic substituent comprises from 4 to 40 carbon atoms, more preferred from 8 to 25 carbon atoms. In a further preferred embodiment, the lipophilic substituent is attached to the parent peptide by means of a spacer 50 which is an unbranched alkane α, ω -dicarboxylic acid group having from 1 to 7 methylene groups, preferably two methylene groups which spacer forms a bridge between an amino group of the parent peptide and an amino group of the lipophilic substituent. In a further preferred embodiment, the lipophilic substituent is attached to the parent peptide by means of a spacer which is an amino acid residue except Cys, or a dipeptide such as Gly-Lys. The expression "a dipeptide such as Gly-Lys" is defined herein as a dipeptide wherein the 60 C-terminal amino acid residue is Lys, His or Trp, preferably Lys, and wherein the N-terminal amino acid residue is selected from the group comprising Ala, Arg, Asp, Asn, Gly, Glu, Gln, Ile, Leu, Val, Phe and Pro. In a further preferred embodiment, the lipophilic substituent is attached to the parent peptide by means of a spacer which is an amino acid residue except Cys, or is a dipeptide such as Gly-Lys and wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of a Lys residue or a dipeptide containing a Lys residue, and the other amino group of the Lys residue or a dipeptide containing a Lys residue forms an amide bond with a carboxyl group of the lipophilic substituent. In a further preferred embodiment, the lipophilic substituent is attached to the parent peptide by means of a spacer which is an amino acid residue except Cys, or is a dipeptide such as Gly-Lys and wherein an amino group of the parent peptide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer, and an amino group of the amino acid residue or dipeptide spacer forms an amide bond with a carboxyl group of the lipophilic substituent. In a further preferred embodiment, the lipophilic substituent is attached to the parent peptide by means of a spacer which is an amino acid residue except Cys, or is a dipeptide such as Gly-Lys and wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of the amino acid residue spacer or dipeptide spacer, and the carboxyl group of the amino acid residue spacer or dipeptide spacer forms an amide bond with an amino group of the lipophilic substituent. In a further preferred embodiment, the lipophilic substituent is attached to the parent peptide by means of a spacer which is an amino acid residue except Cys, or is a dipeptide such as Gly-Lys, and wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of a spacer which is Asp or Glu, or a dipeptide spacer containing an Asp or Glu residue, and a carboxyl group of the spacer forms an amide bond with an amino group of the lipophilic substituent. In a further preferred embodiment, the lipophilic substituent is a partially or completely hydrogenated cyclopentanophenathrene skeleton. In a further preferred embodiment, the lipophilic substituent is a straight-chain or branched alkyl group. In a further preferred embodiment, the lipophilic substituent is the acyl group of a straight-chain or branched fatty acid. In a further preferred embodiment, the lipophilic substituent is an acyl group of the formula CH₃(CH₂)_nCO—, wherein n is an integer from 4 to 38, preferably an integer from 4 to 24, more preferrably CH₃(CH₂)₆CO—, CH₃(CH₂)₁₀CO—, CH₃(CH₂)₁₂CO—, CH₃(CH₂)₁₄CO—, CH₃(CH₂)₁₆CO—, CH₃(CH₂)₁₈CO—, CH₃(CH₂)₂₀CO— or CH₃(CH₂)₂₂CO—. In a further preferred embodiment, the lipophilic substituent is an acyl group of a straight-chain or branched alkane α,ω -dicarboxylic acid. In a further preferred embodiment, the lipophilic substituent is an acyl group of the formula HOOC(CH₂)_mCO—, wherein m is an integer from 4 to 38, preferably an integer from 4 to 24, more preferably HOOC(CH₂)₁₄CO—, HOOC (CH₂)₁₆CO—, HOOC(CH₂)₁₈CO—, HOOC(CH₂)₂₀CO— 55 or HOOC(CH₂)₂₂CO—. In a further preferred embodiment, the lipophilic substituent is a group of the formula $CH_3(CH_2)_p((CH_2)_qCOOH)$ CHNH— $CO(CH_2)_2CO$ —, wherein p and q are integers and p+q is an integer of from 8 to 33, preferably from 12 to 28. In a further preferred embodiment, the lipophilic substituent is a group of the formula $CH_3(CH_2)_rCO$ —NHCH (COOH)(CH₂)₂CO—, wherein r is an integer of from 10 to 24. In a further preferred embodiment, the lipophilic substituent is a group of the formula CH₃(CH₂)_sCO—NHCH ((CH₂)₂ COOH)CO—, wherein s is an integer of from 8 to 24. In a further preferred embodiment, the lipophilic substituent is a group of the formula COOH(CH₂),CO— wherein t is an integer of from 8 to 24. In a further preferred embodiment, the lipophilic substituent is a group of the formula —NHCH(COOH)(CH₂)₄NH-CO(CH₂)_uCH₃, wherein u is an integer of from 8 to 18. In a further preferred embodiment, the lipophilic substituent is a group of the formula CH₃(CH₂), CO—NH- $(CH_2)_z$ —CO, wherein n is an integer of from 8 to 24 and z is an integer of from 1 to 6. In a further preferred embodiment, the lipophilic substituent is a group of the formula —NHCH(COOH)(CH₂)₄NH— COCH((CH₂)₂COOH)NH—CO(CH₂)_wCH₃, wherein w is an integer of from 10 to 16. In a further preferred embodiment, the lipophilic substituent is a group of the formula —NHCH(COOH)(CH₂)₄NH— $CO(CH_2)_2CH(COOH)NH-CO(CH_2)_xCH_3$, wherein x is an integer of from 10 to 16. In a further preferred embodiment, the lipophilic substituent is a group of the formula —NHCH(COOH)(CH₂)₄NH— 20 CO(CH₂)₂CH(COOH)NHCO(CH₂)_vCH₃, wherein y is zero #### Other Derivatives The derivatives of GLP-1 analogues of the present invention may be in the form of one or more of (a) a C-1-6-ester, (b) an amide, C-1-6-alkylamide, or C-1-6-dialkylamide, 30 and (c) a pharmaceutical salt. In a preferred embodiment, the derivatives of GLP-1 analogues are in the form of an acid addition salt or a carboxylate salt, most preferably in the form of an acid addition salt. Preferred Derivatives of GLP-1 Analogues of the Present 35 In a preferred embodiment, a parent peptide for a derivative of the invention is Arg²⁶GLP-1(7-37); Arg³⁴GLP-1(7-Arg²⁶, ³⁴ Lys³⁶GLP-1(7-37); Arg²⁶, ³⁴Lys³⁶GLP-1(7-37); Arg²⁶, ³⁴ Lys³⁸GLP-1(7-38); Arg²⁶, ³⁴ Lys³⁸GLP-1(7-38); 40 Arg²⁶, ³⁴ Lys⁴⁰GLP-1(7-40); Arg²⁶Lys³⁶GLP-1(7-37); Arg³⁴Lys⁴⁰GLP-1(7-37); Arg²⁶Lys³⁶GLP-1(7-39); Arg³⁴Lys⁴⁰GLP-1(7-40); Arg²⁶, ³⁴Lys³⁶, ³⁶GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶, ³⁴Lys³⁶, ³⁶GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶, ³ Arg^{26, 34}Lys^{36,40}GLP-1(7-40); Gly⁸Arg²⁶GLP-1(7-37); Aug Lys GLP-1(7-40); Gly⁸Arg²⁻⁶GLP-1(7-37); Gly⁸Arg³⁻⁶GLP-1(7-37); Gly⁸Brg³⁻⁶GLP-1(7-37); 45 Gly⁸Arg²⁻⁶, ³⁻⁴Lys³⁻⁶GLP-1(7-37); Gly⁸Arg²⁻⁶, ³⁻⁴Lys³⁻⁶GLP-1(7-40); Gly⁸Arg²⁻⁶Lys³⁻⁶GLP-1(7-37); Gly⁸Arg³⁻⁴Lys³⁻⁶GLP-1(7-37); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-37); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys³⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys⁴⁻⁶GLP-1(7-39); Gly⁸Arg³⁻⁶Lys⁴⁻⁶CLP-1(7-39); Gl (7-40); Gly⁸Arg^{26, 34}Lys^{36,39}GLP-1(7-39); or Gly⁸Arg^{26, 34} 50 Lys^{36,40}GLP-1(7-40). In a further preferred embodiment, the parent peptide is Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(1-38); Arg²⁶, ³⁴Lys⁴¹GLP-1(1-41); Arg²⁶, ³⁴Lys⁴²GLP-1(1-42); Arg²⁶, ³⁴Lys⁴³GLP-1(1-43); Arg²⁶, ³⁴Lys⁴³GLP-1(1-44); Arg²⁶, ³⁴Lys⁴³GLP-1(1-44); Arg²⁶, ³⁴Lys³⁸GLP-1(2-38); Arg²⁶, ³⁴Lys³⁶GLP-1(2-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(2-40); Arg²⁶, ³⁴Lys⁴¹GLP-1(2-41); Arg²⁶, ³⁴Lys⁴²GLP-1(2-42); Arg²⁶, ³⁴Lys⁴³GLP-1(2-41); Arg⁴⁶, Arg Arg^{26, 34}Lys⁴²GLP-1(2-42); Arg^{26, 34}Lys⁴³GLP-1(2-43); Arg²⁶, ³⁴Lys⁴⁶GLP-1(2-44); Arg²⁶, ³⁴Lys⁴⁵GLP-1(2-45); Arg²⁶, ³⁴Lys³⁸GLP-1(3-38); Arg²⁶, ³⁴Lys³⁹GLP-1(3-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(3-40); Arg²⁶, ³⁴Lys⁴¹GLP-1(3-41); Arg²⁶, ³⁴Lys⁴²GLP-1(3-42); Arg²⁶, ³⁴Lys⁴³GLP-1(3-43); 20 Arg²⁶, ³⁴Lys⁴⁴GLP-1(3-44); Arg²⁶, ³⁴Lys⁴⁵GLP-1(3-45); Arg²⁶, ³⁴Lys³⁸GLP-1(4-38); Arg²⁶, ³⁴Lys³⁹GLP-1(4-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(4-40); Arg²⁶, ³⁴Lys⁴¹GLP-1(4-41); Arg²⁶, ³⁴Lys⁴²GLP-1(4-42); Arg²⁶, ³⁴Lys⁴³GLP-1(4-43); Arg²⁶, ³⁴Lys⁴⁴GLP-1(4-44); Arg²⁶, ³⁴Lys⁴⁵GLP-1(4-45); Arg²⁶, ³⁴Lys³⁸GLP-1(5-38); Arg²⁶, ³⁴Lys³⁹GLP-1(5-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(5-40); Arg²⁶, ³⁴Lys⁴¹GLP-1(5-41); Arg²⁶, ³⁴Lys⁴²GLP-1(5-42); Arg²⁶, ³⁴Lys⁴³GLP-1(5-43); ^{26, 34}Lys⁴⁴GLP-1(5-44); Arg^{26, 34}Lys⁴⁵GLP-1(5-45); Arg Arg 26, 34Lys 36LP-1(5-44); Arg 26, 34Lys 36LP-1(5-45); Arg 26, 34Lys 36LP-1(6-38); Arg
26, 34Lys 40GLP-1(6-40); Arg 26, 34Lys 40GLP-1(6-40); Arg 26, 34Lys 40GLP-1(6-42); Arg 26, 34Lys 40GLP-1(6-42); Arg 26, 34Lys 40GLP-1(6-45); Arg 26Lys 36GLP-1(1-38); 36GLP-1 Arg²⁶Lys³⁶GLP-1(1-38); Arg²⁶Lys³⁶GLP-1(7-38); Arg²⁶Lys³⁶, 38 GLP-1(7-38); Arg²⁶Lys³⁸GLP-1(7-38); Arg²⁶, 34 Lys³⁶, 36 GLP-1(7-38); Arg²⁶, 34 Lys³⁶, 36 GLP-1(7-38); Arg²⁶, 36 Lys³⁶, 37 GLP-1(1-39); Arg²⁶, 37 Lys³⁶, 39 GLP-1(1-39); Arg²⁶, 38 Lys³⁶, 39 GLP-1(7-39); Arg³⁶, GLP-1(7-39) ³⁴ Lys^{36,39}GLP-1(7-39). In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is or an integer of from 1 to 22. In a further preferred embodiment, the lipophilic substituent contains a group that can be negatively charged. Such a lipophilic substituent can for example be a substituent which has a carboxyl group. Tetates to a GLF-1 derivative wherein the parent populor is Arg²⁶GLP-1(7-37), Arg³⁴GLP-1(7-37), Arg³⁴GLP-1(7-37), Arg³⁶GLP-1(7-37), Gly⁸Arg²⁶GLP-1(7-37), Gly⁸Arg³⁶GLP-1(7-37), Gly⁸A 37) or Gly⁸Arg³⁴Lys³⁶GLP-1(7-37). > In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is Arg²⁶Lys³⁸GLP-1(7-38), Arg^{26, 34}Lys³⁸GLP-1(7-38), Arg^{26, 34}Lys³⁸GLP-1(7-38), Arg^{26, 36}Lys³⁸GLP-1(7-38), Arg³⁸GLP-1(7-38), Arg³⁸GLP-1(7-3 ³⁴Lys^{36,38}GLP-1(7-38), Gly⁸Arg²⁶Lys³⁸GLP-1(7-38) or Gly⁸Arg^{26, 34}Lys^{36,38}GLP-1(7-38). > In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is Arg²⁶Lys³⁹GLP-1(7-39), Arg²⁶, ³⁴Lys³⁶, ³⁹GLP-1(7-39), Gly⁸Arg²⁶Lys³⁹GLP-1(7-39) or Gly⁸Arg^{26, 34}Lys^{36,39}GLP-1(7-39). In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is Arg³⁴Lys⁴⁰GLP-1(7-40), Arg²⁶, ³⁴Lys³⁶,⁴⁰GLP-1(7-40), Gly⁸Arg³⁴Lys⁴⁰GLP-1(7-40) or Gly⁸Arg²⁶, ³⁴Lys³⁶,⁴⁰GLP-1(7-40) 1(7-40). In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is: Arg²⁶GLP-1(7-36); Arg³⁴GLP-1(7-36); Arg^{26, 34}Lys³⁶GLP-1(7-36); Arg²⁶GLP-1(7-36)amide; Arg²⁶GLP-1(7-36) amide; Arg²⁶GLP-1(7-36)amide; Arg²⁶GLP-1(7-37); Arg²⁶GLP-1(7-37); Arg²⁶GLP-1(7-38); Arg²⁶GLP-1(7-38); Arg²⁶GLP-1(7-38); Arg²⁶GLP-1(7-38); Arg²⁶GLP-1(7-39); A Lys³⁹GLP-1(7-39); Gly⁸Arg²⁶GLP-1(7-36); Gly⁸Arg³⁴GLP-1(7-36); Gly⁸Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Gly⁸Arg²⁶GLP-1(7-36) Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(7-40); Arg²⁶, ³⁴Lys⁴¹GLP-1(7-41); Arg²⁶, ³⁴Lys⁴³GLP-1(7-42); Arg²⁶, ³⁴Lys⁴³GLP-1(7-45); Arg²⁶, ³⁴Lys⁴³GLP-1(1-48); Arg²⁶, ³⁴Lys⁴³GLP-1(1-49); Arg²⁶, ³⁴Lys⁴³GLP-1(1-49); Arg²⁶, ³⁴Lys⁴³GLP-1(1-49); Arg²⁶, ³⁴Lys⁴³GLP-1(1-49); Arg²⁶, ³⁴Lys⁴³GLP-1(1-49); Arg²⁶, ³⁴Lys⁴³GLP-1(1-41); Arg²⁶, ³⁴Lys⁴³GLP-1(1-42); Arg²⁶, ³⁴Lys⁴³GLP-1(1-43); Arg²⁶, ³⁴Lys⁴³GLP-1(1-45); Arg²⁶, ³⁴Lys⁴³GLP-1(1-45); Arg²⁶, ³⁴Lys³⁸GLP-1(1-48); Arg²⁶, ³⁴Lys³⁸GLP-1(1-49); Arg²⁶, ³⁴Lys⁴³GLP-1(1-45); Arg²⁶, ³⁴Lys⁴³GLP-1(1-45); Arg²⁶, ³⁴Lys³⁶GLP-1(2-38); Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Val⁸Arg²⁶GLP-1(7-36); Val⁸Arg²⁶GLP-1(7-36); Val⁸Arg²⁶GLP-1(7-36) amide; Gly⁸Arg²⁶GLP-1(7-37); Gly⁸Arg²⁶GLP-1(7-38); Gly⁸Arg²⁶GLP-1(7-38); Gly⁸Arg²⁶GLP-1(7-38); Gly⁸Arg²⁶GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶GLP-1(1-44); Arg²⁶, ³⁴Lys³⁶GLP-1(1-45); Arg²⁶, ³⁴Lys³⁶GLP-1(1-45); Arg²⁶, ³⁴Lys³⁶GLP-1(2-38); Arg³⁶, Arg³⁶, Arg³⁶, Arg³⁶, Arg³⁶, Arg³ Val⁸Arg³⁴GLP-1(7-36)amide; Val⁸Arg^{26, 34}Lys³⁶GLP-1(7-Val Arg GLF-1(7-30)allilue, Val Arg Lys GLP-1(7-36)amide; Val⁸Arg²⁶GLP-1(7-37); Val⁸Arg²⁶GLP-1(7-37); Val⁸Arg²⁶GLP-1(7-38); Val⁸Arg²⁶GLP-1(7-38); Val⁸Arg²⁶GLP-1(7-38); Val⁸Arg²⁶GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Ser⁸Arg²⁶GLP-1(7-36); Ser⁸Arg³⁴GLP-1(7-36); Ser⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-36); Ser⁸Arg²⁶GLP-1(7-36) amide; Ser⁸Arg³⁴GLP-1(7-36) amide; Ser⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-36) amide; Ser⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-37); Ser⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-37); Ser⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-38); Ser⁸Arg²⁶, 3⁴Lys³⁸GLP-1(7-38); Ser⁸Arg²⁶GLP-1(7-39); Ser⁸Arg²⁶, 3⁴Lys³⁸GLP-1(7-39); 3⁴Lys³⁸ Val⁸Glu³Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Val⁸Glu³Arg²⁶, ³⁴Lys³⁷GLP-1 (7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ²⁰ ³⁴Lys³⁶GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, Val³Asp³/Arg²⁶, ³⁴Lys³⁶GLP1(/-38); vai Asp Arg³⁴Lys³⁹GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷GLP-1 (7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); 35 Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36) amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, Ser⁸Glu³⁸Arg ³⁴Lys³⁹GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶GLP-1(7-38); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36) 45 amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, Ser⁸As ³⁴Lys³⁹GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁶, ³⁴Lys³⁶GLP-1(7-36); Thr 8 Glu 35 Arg 26 , 34 Lys 36 GLP-1(7-36); Thr 8 Glu 35 Arg 26 , 34 Lys 36 GLP-1(7-36)amide; Thr 8 Glu 36 Arg 26 , 34 Lys 36 GLP-1 (7-38); Thr 8 Glu 37 Arg 26 , 34 Lys 38 GLP-1 (7-38); Thr 8 Glu 38 Arg 26 , 34 Lys 39 GLP-1(7-39); Thr 8 Glu 35 Arg 26 , 34 Lys 36 GLP-1(7-36); amide; Thr 8 Glu 36 Arg 26 , 34 Lys 36 GLP-1(7-37); Thr 8 Glu 37 Arg 26 , 34 Lys 38 GLP-1(7-38); Thr 8 Glu 37 Arg 26 , 34 Lys 38 GLP-1(7-38); Thr 8 Glu 37 Arg 26 , 34 Lys 38 GLP-1(7-38); Thr 8 Glu 37 Arg 26 , 34 Lys 36 GLP-1(7-36)amide; Thr 8 Asp 35 Arg 26 , 34 Lys 36 GLP-1(7-36)amide; Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-36); 34 Lys 36 GLP-1(7-37); Thr 8 Asp 35 Arg 26 , 34 Lys 36 GLP-1(7-36) amide; Thr 8 Asp 35 Arg 26 , 34 Lys 36 GLP-1(7-36) amide; Thr 8 Asp 35 Arg 26 , 34 Lys 36 GLP-1(7-36) amide; Thr 8 Asp 35 Arg 26 , 34 Lys 36 GLP-1(7-36) amide; Thr 8 Asp 35 Arg 26 , 34 Lys 36 GLP-1(7-37); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-37); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-37); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-37); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Thr 8 Asp 36 Arg 26 , 34 Lys 36 GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Gly⁸Glu³⁵Arg^{26, 65} 38); ³⁴Lys³⁶GLP-1(7-36)amide; Gly⁸Glu³⁶Arg^{26, 34}Lys³⁷GLP-1 (7-37); Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸GLP-1(7-38); amid $\begin{array}{l} Gly^8Glu^{38}Arg^{26,\ 34}Lys^{39}GLP\text{-}1(7\text{-}39); \ Gly^8Glu^{35}Arg^{26,\ 34}Lys^{36}GLP\text{-}1(7\text{-}36); \ Gly^8Glu^{35}Arg^{26,\ 34}Lys^{36}GLP\text{-}1(7\text{-}36)\\ amide; \ Gly^8Glu^{36}Arg^{26,\ 34}Lys^{37}GLP\text{-}1(7\text{-}37); \ Gly^8Glu^{37}Arg^{26,\ 34}Lys^{38}GLP\text{-}1(7\text{-}38); \ Gly^8Glu^{38}Arg^{26,\ 34}Lys^{38}GLP\text{-}1(7\text{-}38); \ Gly^8Glu^{38}Arg^{26,\ 34}Lys^{38}GLP\text{-}1(7\text{-}38); \ Gly^8Glu^{38}Arg^{26,\ 34}Lys^{38}GLP\text{-}1(7\text{-}38); \ Gly^8Glu^{38}Arg^{26,\ 34}Lys^{38}GLP\text{-}1(7\text{-}38); \ Gly^8Glu^{38}Arg^{36,\ 34}Lys^{38}Arg^{36,\ 34}Lys^{38}Arg^{36,\ 34}Lys^{38}Arg^{36,\ 34}Lys^{38}Arg^{36,\ 34}Lys^{38}Arg^{36,\ 34}Lys^{38}Arg^{36,\ 34}Lys^{38}Ar$ Gly⁸Glu³/Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷GLP-1 (7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, Ser⁸Arg²⁶GLP-1(7-39); Ser⁸Arg GLP-1(7-36); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-36); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-36); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-36) amide; Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-37); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-37); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-38); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-37); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-39); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-39); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-39); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-39); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-39); Thr⁸Arg²⁶, 3⁴Lys³⁶GLP-1(7-36); Arg²⁶, Val8Glu³⁸Arg^{26, 34}Lys³⁹GLP-1(7-39); Val8Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); amide; Val⁸Glu³⁶Arg^{26, 34}Lys³⁶GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁶GLP-1(7-38); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-36); Arg^{26, 34}Lys³⁶GLP-1(7-37); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁶GLP-1(7-36); Arg³⁶A ³⁴Lys²⁷GLP-1(7-38); ³⁴Lys²/GLP-1(7-38); Arg^{26, 34}Lys¹⁸GLP-1(7-36); Arg^{26, 34}Lys¹⁸GLP-1(7-36); amide; Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys¹⁸GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Arg^{26, 34}Lys²³GLP-1(7-38); Arg^{26, 34}Lys²³GLP-1(7-37); Arg^{26, 34}Lys²³GLP-1(7-38); Arg^{26, 34}Lys²³GLP-1(7-36); 34</sup>Lys²⁵CLP-1(7-36); Arg^{26, 34}Lys²⁶CLP-1(7-36);
Arg^{26, 34}Lys²⁶CLP-1(7-36 38); Val⁸Asp²⁴Arg^{26, 34}Lys²³GLP-1(7-36); Val⁸Asp²²Arg^{26,} 50); val Asp Arg CLys-GLP-1(7-36); Val⁸Asp-Arg²⁶, ³⁴Lys²³GLP-1(7-36) amide; Val⁸Asp²²Arg²⁶, ³⁴Lys²³GLP-1(7-36) amide; Val⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-37); Val⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-38); Val⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷GLP-1(7-38); ³⁴Lys²⁸, Arg²⁶, ³⁴Lys²⁸, Arg²⁶, ³⁴Lys²⁸, Arg²⁶, ³⁴Lys²⁸, Arg²⁶, ³⁴Lys²⁸, Arg²⁶, Arg²⁶ 38); Val⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-36); Val⁸Asp²⁶Arg^{26,} 34Lys²⁷GLP-1(7-36); Val⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-36) amide; Val⁸Asp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(7-36)amide; Val⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-37); Val⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36) Arg^{26, 34}Lys¹⁸GLP-1(7-36); Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys¹⁸GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Ser⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Ser⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg²⁶, ³⁴Lys²³GLP-1(7-36); Arg²⁶, ³⁴Lys²³GLP-1(7-36) amide; Arg^{26, 34}Lys²³GLP-1(7-37); Arg^{26, 34}Lys²³GLP-1(738); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-36); Ser⁸Asp²²Arg²⁶, ³⁴Lys²³GLP-1(7-36); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-36) amide; Ser⁸Asp²²Arg²⁶, ³⁴Lys²³GLP-1(7-36)amide; Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-37); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-38); Ser⁸Asp²²Arg²⁶, ³⁴Lys²³GLP-1(7-58); ³⁴Lys²³GLP-1(7-58) Arg²⁶, ³⁴Lys²⁷GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²⁷GLP-1(7-37); Arg²⁷GLP-1(7-37); Arg 38); Ser⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-36); Ser⁸Asp²⁶Arg^{26,} ³⁴Lys²⁷GLP-1(7-36); Ser⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-36) 10 amide; Ser⁸Asp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(7-36)amide; Ser⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-37); Ser⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-38); Ser⁸Asp²⁶Arg²⁶, Ser⁸Asp²⁶Arg²⁶Arg²⁶, ³⁴Lys²⁷Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg²Arg Arg^{26, 34}Lys¹⁸GLP-1(7-36); Arg^{26, 34}Lys¹⁸GLP-1(7-36) 15 amide; Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys¹⁸GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Thr⁸Asp²⁷Arg^{26, 34}Lys¹⁸GLP-1(7-36); Thr⁸Asp²⁷Arg^{26, 34}Lys¹⁸GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, Thr⁸Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Asp¹⁹Arg¹⁹Asp¹⁹Arg ³⁴Lys¹⁸GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1 (7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-37); 20 Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸Asp¹⁹Arg^{26, 34}Lys¹⁸Asp¹⁹Arg^{26, 34}Lys¹⁸Asp¹⁹Arg^{26, 34}Lys¹⁸Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Arg²⁶Asp¹⁹Asp¹⁹Arg²⁶Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp¹⁹Asp ³⁴Lys¹⁸GLP-1(7-38); Arg²⁶, ³⁴Lys²³GLP-1(7-36); Arg²⁶, ³⁴Lys²³GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²³GLP-1(7-37); Arg²⁶, ³⁴Lys²³GLP-1(7-38); Thr⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(7-36); 25 Thr⁸Asp²²Arg²⁶, ³⁴Lys²³GLP-1(7-36); Thr⁸Asp²⁴Arg²⁶, ³⁴Lys²⁵GLP-1(7-36); Thr⁸Asp²⁴Arg²⁶, ³⁴Lys²⁶Asp²⁶ 34Lys²³GLP-1(7-36)amide; Thr⁸Asp²²Arg^{26, 34}Lys²³GLP-1 (7-36)amide; Thr⁸Asp²⁴Arg^{26, 34}Lys²³GLP-1(7-37); Thr⁸Asp²⁴Arg^{26, 34}Lys²³GLP-1(7-38); Thr⁸Asp²²Arg^{26, 34}Lys²³GLP-1(7-38); ³⁴Lys²³GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²⁷GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷GLP-1(7-38); Thr⁸Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(7-36); Thr⁸Asp²⁶Arg²⁶, Thr⁸Asp²⁷Asp²⁷GLP-1(7-36); Thr⁸Asp²⁷ ³⁴Lys²⁷GLP-1(7-36)amide; Thr⁸Asp²⁶Arg^{26, 34}Lys²⁷GLP-1 35 (7-36)amide; Thr⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-37); Thr⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-38); or Thr⁸Asp²⁶Arg^{26, 34}Lys²⁷GLP-1(7-38); ³⁴Lys²⁷GLP-1(7-38). In a further preferred embodiment, the present invention relates to a GLP-1 derivative wherein the parent peptide is: 40 Arg²⁶Lys³⁶GLP-1(7-36); Arg³⁴Lys³⁶GLP-1(7-36); Arg²⁶Lys³⁶GLP-1(7-37); Arg³⁴Lys³⁶GLP-1(7-37); Arg²⁶Lys³⁷GLP-1(7-37); Arg³⁴Lys³⁷GLP-1(7-37); Arg²⁶Lys³⁹GLP-1(7-39); Arg³⁴Lys³⁹GLP-1(7-39); Arg²⁶ ³⁴Lys^{36,39}GLP-1(7-39); Arg²⁶Lys¹⁸GLP-1(7-36); Arg³⁴Lys¹⁸GLP-1(7-36); Arg²⁶Lys¹⁸GLP-1(7-37); Arg³⁴Lys¹⁸GLP-1(7-37); Arg²⁶Lys¹⁸GLP-1(7-38); Arg³⁴Lys¹⁸GLP-1(7-38); Arg²⁶Lys¹⁸GLP-1(7-39); Arg³⁴Lys¹⁸GLP-1(7-39); Arg²⁶Lys²³GLP-1(7-36); Arg³⁴Lys²³GLP-1(7-36); 50 Arg²⁶Lys²³GLP-1(7-37); Arg³⁴Lys²³GLP-1(7-38); Arg²⁶Lys²³GLP-1(7-38); Arg³⁴Lys²³GLP-1(7-38); Arg²⁶Lys²³GLP-1(7-36); Arg³⁴Lys²³GLP-1(7-38); Arg²⁶Lys²³GLP-1(7-36); Arg³⁴Lys²³GLP-1(7-36); Arg³⁴Lys²³GLP-1(7-36); Arg³⁴Lys²³GLP-1(7-36); Arg³⁴Lys²⁷GLP-1(7-36); Arg²⁶Lys²⁷GLP-1(7-36); Arg³⁴Lys²⁷GLP-1(7-36); Arg^{26, 34}Lys^{18,36}GLP-1(7-36); Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys^{18,37}GLP-1(7-37); Arg^{26, 34}Lys^{18,38}GLP-1(7-37); 38); Arg^{26, 34}Lys^{18,39}GLP-1(7-39); Arg^{26, 34}Lys^{23,36}GLP-1 60 (7-36); Arg^{26, 34}Lys^{23,37}GLP-1 (7-37); Arg²⁶, ³⁴Lys^{23,38}GLP-1(7-38); Arg²⁶, ³⁴Lys²³, ³⁹GLP-1(7-39); Arg²⁶, ³⁴Lys^{27,36}GLP-1(7-36); Arg²⁶, 3³⁴Lys²⁷GLP-1(7-37); Arg^{26, 34}Lys^{27,37}GLP-1(7-37); Arg^{26, 34}Lys^{27,38}GLP-1(7-38); Arg^{26, 34}Lys^{27,39}GLP-1(7-39); 65 Gly⁸GLP-1(7-36); Gly⁸GLP-1(7-37); Gly⁸GLP-1(7-38); Gly⁸GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-36); Gly⁸Arg³⁴Lys³⁶GLP-1(7-36); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶GLP-1 (7-37); Gly⁸Arg²⁶Lys³⁷GLP-1(7-37); Gly⁸Arg²⁶Lys³⁷GLP-1 (7-39); Gly⁸Arg³⁴Lys³⁹GLP-1(7-39); Gly⁸Arg³⁴Lys³⁹GLP-1(7-39); Gly⁸Arg²⁶Lys³⁹GLP-1(7-39); Gly⁸Arg²⁶Lys³⁹GLP-1(7-39); Gly⁸Arg²⁶Lys³⁹GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶Ly (7-39); Gly⁸Arg²⁶Lys¹⁸GLP-1(7-36); Gly⁸Arg³⁴Lys¹⁸GLP-1(7-36); Gly⁸ Arg²⁶ Lys s¹⁸ GLP-1(7-37); Gly⁸Arg³⁴Lys¹⁸GLP-1(7-37); Gly⁸Arg²⁶Lys¹⁸GLP-1(7-38); Gly⁸Arg²⁶Lys¹⁸CLP-1(7-38); Gly⁸Arg²⁶Lys¹⁸CLP-1(7-38); Gly⁸Arg²⁶Lys¹⁸ 38); Gly°Arg⁻¹Lys⁻¹GLP-1(7-36); Gly⁸Arg³⁴Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-36); Gly⁸Arg³⁴Lys²³GLP-1(7-36); Gly⁸Arg²⁶Lys²³GLP-1(7-37); Gly⁸Arg³⁴Lys²³GLP-1(7-37); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-39); (7-37); Gly Aig Lys Gly Arg 26 Lys 23 GLP-1(7-39); Gly8Arg 34Lys 23 GLP-1(7-39); Gly8Arg 34Lys 23 GLP-1(7-39); Gly8Arg 26 Lys 27 GLP-1(7-36); Gly8Arg 34Lys 27 GLP-1(7-36); Gly8Arg 34Lys 27 GLP-1(7-37); Gly8Arg 34Lys 27 GLP-1(7-37); Gly8Arg 26 Lys 27 GLP-1(7-38); Gly8Arg 34Lys 27 GLP-1(7-38); Gly8Arg 34Lys 27 GLP-1(7-39); Gly8Arg 34Lys 27 GLP-1(7-39); Gly8Arg 34Lys 27 GLP-1(7-39); Gly8Arg 36 Lys 37 GLP-1(7-36); Gly Arg 26, 34Lys 18,36GLP-1(7-36); Gly Arg 26, 34Lys 18,36GLP-1(7-36); Gly Arg 26, 34Lys 18,37GLP-1(7-37); Gly Arg 26, 34Lys 18,37GLP-1(7-37); Gly Arg 26, 34Lys 18,38GLP-1(7-38); Gly Arg 26, 34Lys 18, 26, 34Lys 23,36GLP-1(7-36); 39GLP-1(7-39); Gly*Arg²⁶, 34Lys²³, GLP-1(7-36); Gly*Arg²⁶, 34Lys²³, GLP-1(7-37); Gly*Arg²⁶, 34Lys²³, 37GLP-1(7-37); Gly*Arg²⁶, 34Lys²³, 38GLP-1(7-38); Gly*Arg²⁶, 34Lys²³, 39GLP-1(7-36); Gly*Arg²⁶, 34Lys²⁷, 34GLP-1(7-36); Gly*Arg²⁶, 34Lys²⁷, GLP-1(7-37); Gly*Arg²⁶, 34Lys²⁷, 38GLP-1(7-38); Gly*Arg²⁶, 34Lys²⁷, 38GLP-1(7-38); Gly*Arg²⁶, 34Lys²⁷, 38GLP-1(7-38); Val*GLP-1(7-37); Val*GLP-1(7-38); Val*GLP-1(7-38); Val8GLP-1(7-39); Val SArg²⁶Lys³⁶GLP-1(7-36); Val SArg³⁴Lys³⁶GLP-1(7-36); Val SArg²⁶Lys³⁶GLP-1(7-37); Val SArg³⁴Lys³⁶GLP-1(7-37); Val SArg³⁴Lys³⁶GLP-1(7-37); Val SArg³⁴Lys³⁶GLP-1(7-37); Val SArg³⁴Lys³⁷GLP-1(7-37); Val⁸Arg²⁶Lys³⁹GLP-1(7-39); Val⁸Arg³⁴Lys³⁹GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys^{36,39}GLP-1(7-39); Val⁸Arg²⁶Lys¹⁸GLP-1(7-36); Val⁸Arg³⁴Lys¹⁸GLP-1(7-36); Val⁸Arg⁶Lys¹⁸GLP-1(7-37); Val⁸Arg³⁴Lys¹⁸GLP-1(7-37); Val⁸Arg²⁶Lys¹⁸GLP-1(7-38); Val⁸Arg²⁶Lys¹⁸GLP-1(7-38); Val⁸Arg²⁶Lys¹⁸GLP-1(7-39); Val⁸Arg²⁶Lys²³GLP-1(7-39); Val⁸Arg²⁶Lys²³GLP-1(7-36); Val⁸Arg²⁶Lys²³GLP-1(7-37); Val⁸Arg²⁶Lys²³GLP-1(7-37); Val⁸Arg²⁶Lys²³GLP-1(7-38); Val⁸Arg²⁶Lys²³GLP-1(7-38); Val⁸Arg²⁶Lys²³GLP-1(7-38); Val⁸Arg²⁶Lys²³GLP-1(7-39); Val⁸Arg²⁶Lys²³GLP-1(7-39); Val⁸Arg²⁶Lys²³GLP-1(7-36); Val⁸Arg²⁶Lys²³CLP-1(7-36); V 45 Val⁸Arg²⁶Lys²⁷GLP-1(7-36); Val⁸Arg³⁴Lys²⁷GLP-1(7-36); Val Arg 26 Lys 27 GLP -1 (7-30); Val Arg 24 Lys 27 GLP -1 (7-30); Val Arg 26 Lys 27 GLP -1 (7-37); Val Arg 34 Lys 27
GLP -1 (7-38); Val Arg 34 Lys 27 GLP -1 (7-38); Val Arg 26 Lys 27 GLP -1 (7-39); Val Arg 26 Lys 27 GLP -1 (7-39); Val Arg 26, 34 Lys 18, 36 GLP -1 (7-36); Val Arg 26, 34 Lys 18, 36 GLP -1 (7-36); Val Arg 26, 34 Lys 18 GLP -1 (7 Val Arg Lys GLP-1(7-30), Val Arg Lys GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys^{18,38}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{18,38}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys²³GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys²³, GLP-1(7-37); ³⁴Lys²⁵, ³⁴Lys²⁵ ³⁴Lys^{23,38}GLP-1(7-38); Val⁸Arg^{26, 34}Lys^{23,39}GLP-1(7-39); Arg 26 Lys 27 GLP-1(7-30), Arg 34 Lys 27 GLP-1(7-30); 55 Val 8 Arg 26, 34 Lys 27,36 GLP-1(7-36); Val 8 Arg 26, 34 Lys 27,37 GLP-1(7-37); Arg 34 Lys 27 GLP-1(7-38); Arg 36 Lys 27 GLP-1(7-38); Arg 36 Lys 27 GLP-1(7-38); 1(7-37); Val 8 Arg 26, 34 Lys 27,37 GLP-1(7-37); Val 8 Arg 26, 34 Lys 27,38 GLP-1(7-38); or Val 8 Arg 26, 34 Lys 27,39 GLP-1(7-38); 12 Lys 27,38 GLP-1(7-38); or Val 8 Arg 26, 34 Lys 27,39 GLP-1(7-38); 12 Lys 27,38 GLP-1(7-38); 13 Lys 27,38 GLP-1(7-38); 14 Lys 27,38 GLP-1(7-38); 15 Lys 27,38 GLP-1(7-38); 16 Lys 27,38 GLP-1(7-38); 17 Lys 27,38 GLP-1(7-38); 17 Lys 27,38 GLP-1(7-38); 17 Lys 27,38 GLP-1(7-38); 17 Lys 27,38 GLP-1(7-38); 18 GL > In a further preferred embodiment, the parent peptide is: Arg²⁶GLP-1(7-37); Arg³⁴GLP-1(7-37); Lys³⁶GLP-1(7-37); Arg²⁶, ³⁴Lys³⁶GLP-1(7-37); Arg²⁶, ³⁴Lys³⁶GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶GLP-1(7-37); Arg³⁶Lys³⁶GLP-1(7-37); Arg³⁶Lys³⁶GLP-1(7-37); Arg²⁶Lys³⁹GLP-1(7-39); Arg³⁴Lys⁴⁰GLP-1(7-40); Arg²⁶, ³⁴Lys^{36,39}GLP-1(7-39); Arg²⁶, ³⁴Lys^{36,40}GLP-1(7-40); Gly⁸Arg²⁶GLP-1(7-37); Gly⁸Arg²⁶GLP-1(7-37); Gly⁸Lys³⁶GLP-1(7-37); Gly⁸Arg^{26, 34}Lys³⁹GLP-1(7-39); Gly⁸Arg^{26, 34}Lys⁴⁰GLP-1 (7-40); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶GLP-1 (7-37); Gly⁸Arg²⁶ Lys³⁹ GLP-1 (7-39); Gly⁸Arg³⁴Lys⁴⁰GLP-1(7-40); Gly⁸Arg^{26, 34}Lys^{36,39}GLP-1 (7-39); or Gly⁸Arg^{26, 34}Lys^{36,40}GLP-1(7-40). In a further preferred embodiment, the parent peptide is: Arg^{26, 34}Lys³⁶GLP-1(7-38); Arg^{26, 34}Lys³⁹GLP-1(7-39); Arg^{26, 34}Lys⁴⁰GLP-1(7-40); Arg^{26, 34}Lys⁴¹GLP-1(7-41); Arg^{26, 34}Lys⁴²GLP-1(7-42); Arg^{26, 34}Lys⁴³GLP-1(7-43); Arg^{26, 34}Lys⁴⁴GLP-1(7-44); Arg^{26, 34}Lys⁴⁵GLP-1(7-45); 10 Arg²⁶Lys³⁶GLP-1(7-38); Arg³⁴Lys³⁸GLP-1(7-38); Arg^{26, 34}Lys^{36,38}GLP-1(7-38); Arg^{26, 34}Lys^{36,38}GLP-1(7-38); Arg^{26, 34}Lys^{36,39}GLP-1(7-39); or Arg²⁶Lys³⁶GLP-1(7-39); Arg³⁴Lys³⁹GLP-1(7-39); or Arg²⁶ ³⁴Lys^{36,39}GLP-1(7-39). In a further preferred embodiment, the parent peptide is 15 Arg²⁶GLP-1(7-37), Arg³⁴GLP-1(7-37), Lys³⁶GLP-1(7-37), Arg GLP-1(7-37), Arg GLP-1(7-37), Lys GLP-1(7-37), Arg 26, 34Lys 36GLP-1(7-37), Arg 26 Lys 36GLP-1(7-37), Arg 34 Lys 36GLP-1(7-37), Gly Arg 26GLP-1(7-37), Gly Arg 34GLP-1(7-37), Gly Arg 36GLP-1(7-37), A In a further preferred embodiment, the parent peptide is Arg²⁶Lys³⁸GLP-1(7-38), Arg²⁶, ³⁴Lys³⁸GLP-1(7-38), Arg²⁶, ³⁴Lys³⁶, ³⁸GLP-1(7-38), Gly⁸Arg²⁶Lys³⁸GLP-1(7-38) or Gly⁸Arg²⁶, ³⁴Lys³⁶, ³⁸GLP-1(7-38). In a further preferred embodiment, the parent peptide is Arg²⁶Lys³⁹GLP-1(7-39), Arg^{26, 34}Lys^{36,39}GLP-1(7-39), Gly⁸Arg²⁶Lys³⁹GLP-1(7-39) or Gly⁸Arg^{26, 34}Lys^{36,39}GLP- In a further preferred embodiment, the parent peptide is 30 Arg³⁴Lys⁴⁰GLP-1(7-40), Arg^{26, 34}Lys^{36,40}GLP-1(7-40), Gly⁸Arg^{26, 34}Lys^{36,40}GLP-1(7-40). In a further preferred embodiment, the parent peptide is: Arg²⁶GLP-1(7-36); Arg³⁴GLP-1(7-36); Arg^{26, 34}Lys³⁶GLP- 35 1(7-36); Arg²⁶GLP-1(7-36)amide; Arg³⁴GLP-1(7-36) Thr⁸Arg³⁴GLP-1(7-36)amide; Thr⁸Arg^{26, 34}Lys³⁶GLP-1(7-36)amide; Thr⁸Arg²⁶GLP-1(7-37); Thr⁸Arg^{26, 34}Lys³⁶GLP-1(7-37); Thr⁸Arg^{26, 34}Lys³⁶GLP-1(7-38); Thr⁸Arg^{26, 34}Lys³⁶GLP-1(7-38); Thr⁸Arg²⁶GLP-1(7-38); Thr⁸Arg²⁶GLP-1(7-39); Thr⁸Arg²⁶GLP-1(7-39); Thr⁸Arg^{26, 34}Lys³⁶GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(7-36); Val⁸Glu³⁷Arg^{26, 34}Lys³⁶GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁶GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁶GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸GLP-1(7-37); Val⁸Glu³⁸Arg²⁶ amide; Val Giu Arg Lys GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-39); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-39); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36) amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷GLP-1 (7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹ GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁹I GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36) amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-37); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Ser⁸Glu³⁵Arg³⁶GLP-1(7-36); Ser⁸ ³⁴Lys³⁶GLP-1(7-36)amide; Ser⁸Glu³⁶Arg^{26, 34}Lys³⁷GLP-1 (7-37); Ser⁸Glu³⁷Arg^{26, 34}Lys³⁸GLP-1(7-38); (7-37); Ser⁸Glu³/Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36) amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36) amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶GLP-1(7-38); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶, ³⁴Lys³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶GLP-1(7-36); Thr⁸Glu³⁵Arg³⁶Arg³⁶Arg³⁶ 27 36)amide; Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys¹⁸GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Arg^{26, 34}Lys¹⁸GLP-1(7-36); Arg^{26, 34}Lys¹⁸GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-38); Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys¹⁸GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³GLP-1(7-38); Arg^{26, 34}Lys²³GLP-1(7-36); Arg^{26, 34}Lys²³GLP-1(7-36); Arg^{26, 34}Lys²³GLP-1(7-36); Arg^{26, 34}Lys²³GLP-1(7-37); 34}Lys²³GLP-1(7-38); Arg^{26, 34}Lys²³GLP-1(7-37); Arg^{26, 34}Lys²³GLP-1(7-38); Arg^{26, 34}Lys²³GLP-1(7-36); Arg^{26, 34}Lys²³GLP-1(7-37); Arg^{26, 34}Lys²³GLP-1(7-36); Arg^{26,} (7-36)amide; Gly⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-38); Gly⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-38); Gly⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-38); Arg^{26, 34}Lys¹⁸GLP-1(7-36); 34</sup>Lys¹⁸GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36) amide; Arg^{26, 34}Lys²⁸GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁸GLP-1(7-36); Arg^{26, 34}Lys²⁸GLP-1(7-37); Arg^{26, 34}Lys²⁸GLP-1(7-38); Arg^{26, 34}Lys²⁸GLP-1(7-36); 34</sup>Lys³⁸GLP-1(7-37); Arg^{26, 34}Lys³⁸GLP-1(7-38); Arg^{26, 34}Lys³⁸GLP-1(7-36); Arg^{26, 34}Lys³⁸GLP-1(7-36); Arg^{36, 3} 38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26,} 38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁸GLP-1(7-38); Gly⁸GLP-1(7-38); Gly⁸GLP-1(7-39); Gly⁸GLP-1(7-38); Gly⁸Arg³⁴Lys³⁶GLP-1(7-38); Arg²⁶, ³⁴Lys²³GLP-1(7-37); Arg²⁶, ³⁴Lys²³GLP-1(7-36); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶GLP-1(7-39); Gly⁸Arg³⁴Lys³⁶GLP-1(7-39); Gly⁸Arg³⁴Lys³⁶GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-39); Gly⁸Arg³⁶Lys³⁶GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg²⁶Lys³⁶GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg²⁶Lys³⁶GLP-1(7-37);
Gly⁸Arg²⁶Lys³⁶GLP-1(7-37); Gly⁸Arg²⁶Lys³⁶GLP-1(7-38); Gly⁸Ar Arg^{26, 34}Lys¹⁸GLP-1(7-37); Arg^{26, 34}Lys^{18,38}GLP-1(7-37); Arg^{26, 34}Lys^{18,38}GLP-1(7-38); Arg^{26, 34}Lys^{18,38}GLP-1(7-36); Arg^{26, 34}Lys^{23,36}GLP-1(7-37); Arg^{26, 34}Lys^{23,37}GLP-1(7-37); Arg^{26, 34}Lys^{23,38}GLP-1(7-38); Arg^{26, 34}Lys^{23,39}GLP-1(7-39); Arg^{26, 34}Lys^{27, 36}GLP-1(7-36); Arg^{26, 34}Lys^{27, 36}GLP-1(7-37); Arg^{26, 34}Lys^{27, 36}GLP-1(7-37); Arg^{26, 34}Lys^{27, 36}GLP-1(7-38); Arg^{26, 34}Lys^{27, 38}GLP-1(7-38); Arg^{26, 34}Lys^{27, 39}GLP-1(7-38); Gly⁸GLP-1(7-38); Gly⁸GLP-1(7-38); (7-36); Gly⁸ Arg² ⁶ Lys¹⁸ GLP-1(7-37); Gly⁸ Arg³⁴ Lys¹⁸ GLP-1(7-37); Gly⁸ Arg²⁶ Lys¹⁸ GLP-1(7-38); Gly⁸ Arg²⁶ Lys¹⁸ GLP-1(7-38); Gly⁸ Arg²⁶ Lys¹⁸ GLP-1(7-39); Gly⁸ Arg²⁶ Lys²⁸ GLP-1(7-39); Gly⁸ Arg²⁶ Lys²³ GLP-1(7-36); Lys²⁴ Arg²⁶ Lys²⁴ Arg²⁶ Lys²⁵ GLP-1(7-36); Gly⁸ Arg²⁶ Lys²⁶ Arg²⁶ Lys²⁶ Lys²⁶ Arg²⁶ Lys²⁶ Ser⁸Asp²⁴Arg^{26, 34}Lys²³GLP-1(7-38); Ser⁸Asp²²Arg^{26, 34}Lys²⁷GLP-1(7-36); Arg^{26, 34}Lys²⁷GLP-1(7-36); Arg^{26, 34}Lys²⁷GLP-1(7-37); Arg^{26, 34}Lys²⁷GLP-1(7-38); Ser⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-36); Ser⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(7-36); Gly⁸Arg³⁴Lys¹⁸GLP-1(7-39); Gly⁸Arg²⁶Lys¹⁸GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-36); Gly⁸Arg²⁶Lys²³GLP-1(7-36); Gly⁸Arg²⁶Lys²³GLP-1(7-36); Gly⁸Arg²⁶Lys²³GLP-1(7-37); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg³⁴Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg³⁴Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-38); Gly⁸Arg²⁶Lys²³GLP-1(7-39); Gly⁸Arg³⁴Lys²³GLP-1(7-39); Gly⁸Arg³⁴Lys²³GLP-1(71(7-39); Gly⁸Arg³⁴Lys²⁷GLP-1(7-39); Gly⁸Arg^{26, 34}Lys¹⁸, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys¹⁸, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys¹⁸, GLP-1(7-39); Gly⁸Arg^{26, 34}Lys¹⁸, GLP-1(7-39); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-36); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-38); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-38); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-38); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-38); Gly⁸Arg^{26, 34}Lys²³, GLP-1(7-37); Gly⁸Arg^{26, 34}Lys²⁷, GLP-1(7-38); Gly⁸Arg^{26, 34}Lys²⁷, 34</sup>Lys³⁶, GLP-1(8-39), Arg²⁶Lys³⁹GLP-1(8-39), Arg²⁶Lys³⁶, GLP-1(8-39), Gly⁸Arg²⁶, Gly⁸ Val⁸GLP-1(7-37); Val⁸GLP-1(7-38); Val⁸GLP-1(7-39); Val⁸Arg²⁶Lys³⁶GLP-1(7-36); Val⁸Arg²⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-37); Val⁸Arg³⁶Lys³⁶GLP-1(7-39); Val⁸Arg³⁶Lys³⁶CLP-1(7-39); Val⁸Arg³⁶Lys³⁶CLP-1(7-39); Val⁸Arg³⁶Lys³⁶CLP-1(7-39); Val⁸Arg (7-36); Val⁸Arg³⁴Lys¹⁸GLP-1(7-36); Val⁸Arg²⁶Lys¹⁸GLP-1 (7-37); Va1⁸ Arg ³⁴ Lys ²³ GLP-1 1(7-37); Va1⁸ Arg ²⁶ Lys ²³ GLP-1(7-38); Va1⁸ Arg ²⁶ Lys ²³ GLP-1(7-38); Va1⁸ Arg ²⁶ Lys ²³ GLP-1(7-39); Va1⁸ Arg ³⁴ Lys ²³ GLP-1(7-39); 25 Val⁸Arg²⁶Lys²⁷GLP-1(7-36); Val⁸Arg³⁴Lys²⁷GLP-1(7-36); Val⁸Arg²⁶Lys²⁷GLP-1(7-37); Val⁸Arg³⁴Lys²⁷GLP-1(7-37); In a further preferred embodiment, the present invention 40 relates to a GLP-1 derivative wherein the parent peptide is: Arg²⁶GLP-1(8-37); Arg³⁴GLP-1(8-37); Lys³⁶GLP-1(8-37); Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); Arg²⁶, ³⁴Lys³⁶GLP-1(8-38); Arg²⁶, ³⁴Lys³⁶GLP-1(8-39); Arg²⁶, ³⁴Lys³⁶GLP-1(8-40); Arg²⁶Lys³⁶GLP-1(8-37); Arg³⁴Lys³⁶GLP-1(8-37); 45 Arg²⁶Lys³⁹GLP-1(8-39); Arg³⁴Lys⁴⁰GLP-1(8-40); Arg²⁶, ³⁴Lys^{36,39}GLP-1(8-39); Arg²⁶, ³⁴Lys^{36,40}GLP-1(8-40); Gly⁸Arg²⁶GLP-1(8-37); Gly⁸Arg³⁴GLP-1(8-37); Gly⁸Lys³⁶GLP-1(8-37); Gly⁸Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); Gly⁸Arg^{26, 34}Lys³⁹GLP-1(8-39); Gly⁸Arg^{26, 34}Lys⁴⁰GLP-1 50 (8-40); Gly⁸Arg²⁶Lys³⁶GLP-1(8-37); Gly⁸Arg³⁴Lys³⁶GLP-1(8-37); Gly⁸Arg²⁶Lys³⁹GLP-1(8-39); Gly⁸Arg³⁴Lys⁴⁰GLP-1(8-40); Gly⁸Arg^{26, 34}Lys^{36,39}GLP-1 (8-39); or Gly⁸Arg^{26, 34}Lys^{36,40}GLP-1(8-40). Gly⁸Arg²⁶Lys³⁹GLP-1(8-39); In a further preferred embodiment, the parent peptide is: 55 Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Arg²⁶, ³⁴Lys³⁸GLP-1(8-39); Arg²⁶, ³⁴Lys⁴⁰GLP-1(8-40); Arg²⁶, ³⁴Lys⁴¹GLP-1(8-41); Arg²⁶, ³⁴Lys⁴²GLP-1(8-42); Arg²⁶, ³⁴Lys⁴³GLP-1(8-43); Arg²⁶, ³⁴Lys⁴³GLP-1(8-44); Arg²⁶, ³⁴Lys⁴³GLP-1(8-45); Arg²⁶Lys³⁸GLP-1(8-38); Arg³⁴Lys³⁸GLP-1(8-38); Arg²⁶, 3⁴Lys³⁸GLP-1(8-38); Arg²⁶, 3⁴Lys³⁸GLP-1(8-38); Arg²⁶, 3⁴Lys³⁸GLP-1(8-39); or Arg²⁶, ³⁴Lys^{36,39}GLP-1(8-39). In a further preferred embodiment, the parent peptide is Arg²⁶GLP-1(8-37), Arg³⁴GLP-1(8-37) Lys³⁶GLP-1(8-37), 65 Arg^{26, 34}Lys³⁶GLP-1(8-37), Arg²⁶Lys³⁶GLP-1(8-37), Arg³⁴Lys³⁶GLP-1(8-37), Gly⁸Arg²⁶GLP-1(8-37), relates to a GLP-1 derivative wherein the parent peptide is: (7-30); Val Arg ³⁴Lys ¹⁸GLP-1(7-37); Val Arg ²⁶Lys ¹⁸GLP-1 (7-38); Val Arg ³⁴Lys ¹⁸GLP-1(7-38); Val Arg ³⁴Lys ¹⁸GLP-1(7-38); Val Arg ³⁴Lys ¹⁸GLP-1(7-39); Val Arg ³⁴Lys ¹⁸GLP-1(7-39); Val Arg ³⁴Lys ¹⁸GLP-1(7-36); Val Arg ³⁴Lys ³⁶GLP-1(8-36); Arg ³⁴GLP-1(8-36); Arg ³⁴GLP-1(8-36); Arg ³⁴GLP-1(8-36); Arg ³⁴GLP-1(8-36); Arg ³⁴GLP-1(8-37); (7-37); Val Arg ³⁴Lys ³⁶GLP-1(7-37); Val Arg ³⁴Lys ³⁶GLP-1(8-37); Arg ³⁶GLP-1(8-38); Arg ³⁴GLP-1(8-38); ³⁴GLP-1(8-38) 1(8-38); Arg²⁶GLP-1(8-39); Arg³⁴GLP-1(8-39); Arg²⁶, ³⁴Lys³⁹GLP-1(8-39); Gly⁸Arg²⁶GLP-1(8-36); Gly⁸Arg³⁴GLP-1(8-36); Gly⁸Arg³⁴GLP-1(8-36); Gly⁸Arg²⁶GLP-1(8-36) amide; Gly⁸Arg³⁴GLP-1(8-36) amide; Gly⁸Arg²⁶, ³⁴Lys³⁶GLP-1(8-36) amide; Val⁸Arg²⁶Lys²⁷GLP-1(7-37); Val⁸Arg³⁴Lys²⁷GLP-1(7-38); Val⁸Arg²⁶Lys²⁷GLP-1(7-38); Val⁸Arg²⁶Lys²⁷GLP-1(7-39); Val⁸Arg²⁶Lys²⁷GLP-1(7-39); Val⁸Arg²⁶Lys²⁷GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{18,38}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys^{23,36}GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys³, ³⁶GLP-1(8-37); Val⁸Arg²⁶, ³⁴Lys³, ³⁶GLP-1(8-38); amide; Val Arg Lys GLP-1(8-30) amide; Val Arg 26GLP-1(8-37); Val Arg 26GLP-1(8-37); Val Arg 26GLP-1(8-37); Val Arg 26GLP-1(8-38); Val Arg 26GLP-1(8-38); Val Arg 34GLP-1(8-38); Val Arg 36GLP-1(8-38); Val Arg 36GLP-1(8-39); Val Arg 36GLP-1(8-39); Val Arg 36GLP-1(8-36); Ser Ser⁸Arg²⁶GLP-1(8-36) amide; Ser⁸Arg³⁴GLP-1(8-36) Ser⁸Arg²⁶, ³⁴Lys³⁶GLP-1(8-36)amide; Ser⁸Arg²⁶GLP-1(8-37); Ser⁸Arg³⁴GLP-1(8-37); Ser⁸Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); ³⁴Lys³⁶, ³⁴Lys³⁶CLP-1(8-37); Ser⁸Arg²⁶CLP-1(8-37); Ser⁸Arg²⁶CLP-1(8-37); Ser⁸Arg²⁶ 37); Ser⁸Arg²⁶GLP-1(8-38); Ser⁸Arg³⁴GLP-1(8-38); Ser⁸Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Ser⁸Arg²⁶GLP-1(8-39); Ser⁸Arg³⁴GLP-1(8-39); Ser⁸Arg³⁴GLP-1(8-39); Ser⁸Arg²⁶, ³⁴Lys³⁹GLP-1(8-39); Thr⁸Arg²⁶GLP-1(8-36); Thr⁸Arg²⁶, ³⁴Lys³⁹GLP-1(8-36); Thr⁸Arg³⁹GLP-1(8-36); Thr⁸Arg³⁹ ³⁴Lys³⁶GLP-1(8-36); Thr⁸Arg²⁶GLP-1(8-36) amide; Thr⁸Arg³⁴GLP-1(8-36) amide; Thr⁸Arg^{26, 34}Lys³⁶GLP-1(8-36) 1hr°Arg°-GLP-1(8-36)amide; Thr°Arg²-0, 34Lys³0GLP-1(8-36)amide; Thr°Arg²-6GLP-1(8-37); Thr°Arg³-4GLP-1(8-37); Thr°Arg³-4GLP-1(8-38); Thr°Arg³-6GLP-1(8-38); Thr°Arg³-6GLP-1(8-38); Thr°Arg³-6GLP-1(8-38); Thr°Arg³-6GLP-1(8-39); Thr°Arg³-6GLP-1(8-39); Thr°Arg³-6GLP-1(8-39); Thr°Arg³-6GLP-1(8-39); Thr°Arg³-6GLP-1(8-30); Val°Glu³-5Arg³-6GLP-1(8-36); Val°Glu³-5Arg³-6GLP-1(8-36); Val°Glu³-6Arg³-6, 34Lys³-6GLP-1(8-36); Val°Glu³-6Arg³-6, 34Lys³-6GLP-1(8-37); Val°Glu³-7Arg³-6, 34Lys³-6GLP-1(8-38); Val°Glu³-6Arg³-6, 34Lys³-6GLP-1(8-36); Val°-6GLP-1(8-36); Val°-6GLP-1(8-Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(8-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(8-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁷GLP-1(8-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(8-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(8-36); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶GLP-1(8-36) a mide; Val⁸Asp³⁶Arg^{26, 34}Lys³⁷GLP-1(8-37); Val⁸Asp³⁷Arg^{26, 34}Lys³⁷GLP-1(8-37); Val⁸Asp³⁷Arg^{26, 36} ³⁴Lys³⁸GLP-1(8-38); Val⁸Asp³⁸Arg^{26, 34}Lys³⁹GLP-1(8-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(8-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); (8-37); Ser⁸ Glu³⁷ Arg^{26, 34} Lys³⁸ GLP-1(8-39); Ser⁸ Glu³⁵ Arg^{26, 34} Lys³⁶ GLP-1(8-39); Ser⁸ Glu³⁵ Arg^{26, 34} Lys³⁶ GLP-1(8-36); amide; Ser⁸ Glu³⁶ Arg^{26, 34} Lys³⁶ GLP-1(8-38); Ser⁸ Glu³⁵ Arg^{26, 34} Lys³⁶ GLP-1(8-38); Ser⁸ Glu³⁵ Arg^{26, 34} Lys³⁶ GLP-1(8-36) amide; Ser⁸ Asp³⁷ Arg^{26, 34} Lys³⁶ GLP-1(8-36) amide; Ser⁸ Asp³⁶ Arg^{26, 34} Lys³⁶ GLP-1(8-36); Ser⁸ Asp³⁵ Asp³⁶ Arg^{26, 34} Lys³⁶ GLP-1(8-36); Ser⁸ Asp³⁶ Arg^{26, 34} Lys³⁶ GLP-1(8-36); Ser⁸ Asp³⁶ Arg^{26, 34} Lys³⁶ GLP-1(8-36); Arg³⁶ A Thr Glu Arg Lys GLP-1(8-38); Thr Glu Arg ³⁴Lys³⁹GLP-1(8-39); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(8-36); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶GLP-1(8-36) amide; Thr⁸Glu³⁶Arg^{26, 34}Lys³⁷GLP-1(8-37); Thr⁸Glu³⁷Arg^{26, 25} ³⁴Lys³⁸GLP-1(8-38); Thr⁸Glu³⁸Arg^{26, 34}Lys³⁹GLP-1(8-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Thr⁸Asp³⁵Arg²⁶, Thr Asp - Arg - Stys - Cl. P-1(8-36); Thr Asp - Arg - Stys - Cl. P-1(8-36); Thr Asp - Arg - Stys Arg - Stys - Arg - Arg - Stys - Arg - Stys - Arg - Stys - Arg - Stys - Arg - Arg - Stys - Arg - Stys - Arg A 36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36) amide; 35 Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷GLP-1(8-37); Gly⁸Glu³⁷Arg²⁶,
³⁴Lys³⁸GLP-1(8-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(8-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36) amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); Gly⁸Glu³⁷Arg²⁶, ⁴⁰ (34)Lys³⁸GLP-1(8-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36) amide; Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶GLP-1(8-36) amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶GLP-1(8-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸GLP-1(8-37); Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Arg²⁶, ³⁴Lys³⁸GLP-1(8-37); Arg²⁶, ³⁴Lys³⁸GLP-1(8-38); Arg²⁶, ³⁴Lys³⁸GLP-1(8-37); Arg²⁶ 36)amide; Arg^{26, 34}Lys¹⁸GLP-1(8-37); Arg^{26, 34}Lys¹⁸GLP-1(8-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(8-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(8-36); Gly⁸Asp¹⁹Arg^{26, Gly⁸Asp¹⁹Arg²⁶, Arg²⁶Asp¹⁹Arg²⁶, Arg²⁶Asp¹⁹Arg²⁶, Arg²⁶Asp¹⁹Asp¹⁹Arg²⁶Asp¹⁹Asp 3³⁴Lys¹⁸GLP-1(8-36)amide; Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(8-37); 55 Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-38); Gly⁸Asp¹⁷Arg^{26, Gly⁸Asp¹⁷Arg²⁶CP-1(8-38); Gly⁸Asp¹⁷Arg²⁶CP-1(8-38); Gly⁸Asp¹⁷Arg²⁶CP-1(8-38); Gly⁸Asp¹⁷Arg²⁶CP-1(8-38); Gly⁸Asp¹⁷Arg²⁶CP-1(8-38); Gly⁸Asp¹⁷Arg²CP-1(8-38); Gly⁸Asp¹⁷Arg²CP-1(8-38); Gly⁸Asp¹⁷Arg²CP-1(8-38); Gly⁸Asp¹⁷Arg²CP-1(8-38); Gly⁸Asp¹⁷ Copyamnac, Gry Asp Arg Arg Sir Lys CLP-1(8-37); 55 Gly Sasp Arg Arg Arg Arg Sir Lys CLP-1(8-37); 56 Gly Sasp Arg Arg Arg Sir Lys CLP-1(8-38); Gly Sasp Arg Sir Lys CLP-1(8-38); Gly Sasp Arg Sir Lys CLP-1(8-38); Gly Sasp Arg Sir Lys CLP-1(8-36); Arg Sir Lys CLP-1(8-38); Arg Sir Lys CLP-1(8-38); Arg Sir Lys CLP-1(8-36); Ar Gly⁸Asp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Gly⁸Asp²⁸Arg²⁶, GLP-1(8-36); Gly-Asp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Gly-Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-36)amide; Gly-Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-37); Gly-Asp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-38); Gly-Asp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(8-37); ³⁴Lys³GLP-1(8-37); A ³⁴Lys¹⁸GLP-1(8-36)amide; Arg^{26, 34}Lys¹⁸GLP-1(8-37); Arg^{26, 34}Lys¹⁸GLP-1(8-38); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-36); Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(8-36); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-36)amide; Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(8-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-37); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-38); Arg^{26, 34}Lys²³GLP-1(8-38); Arg^{26, 34}Lys²³GLP-1(8-36); Arg^{26, 34}Lys²³GLP-1(8-36) amide; Arg^{26, 34}Lys²⁷GLP-1(8-37); Arg^{26, 34}Lys²⁷GLP-1(8-38); Val⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(8-36); Val⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(8-36) amide; Val⁸Asp²⁶Arg^{26, 34}Lys²⁷GLP-1(8-36) amide; Val⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(8-37); Val⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(8-38); Val⁸Asp²⁶Arg^{26, 34}Lys²⁷GLP-1(8-38); Arg^{26, 34}Lys¹⁸GLP-1(8-36); 34}Lys¹⁸GLP-1(8-36) Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36); Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36) amide; Arg²⁶, ³⁴Lys¹⁸GLP-1(8-37); Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36) amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(8-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(8-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³GLP-1(8-38); Arg²⁶, 38); Arg²⁶, ³⁴Lys²³GLP-1(8-36); Arg²⁶, ³⁴Lys²³GLP-1(8-36) amide; Arg²⁶, ³⁴Lys²³GLP-1(8-37); Arg²⁶, ³⁴Lys²³GLP-1(8-36); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-36); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-36); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-36) amide; Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-37); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-37); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-37); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-37); Ser⁸Asp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-38); Ser⁸Asp²²Arg²⁶, ³⁴Lys²³GLP-1(8-38); Arg²⁶, ³⁴Lys²³GLP-1(8-38); Arg²⁶, ³⁴Lys²³GLP-1(8-36). Ser^aAsp²⁴Arg²⁶, ³⁴Lys²³GLP-1(8-38); Ser^aAsp²²Arg²⁶, ³⁴Lys²³GLP-1(8-36); Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Arg²⁶, ³⁴Lys²⁷GLP-1(8-37); Arg²⁶, ³⁴Lys²⁷GLP-1(8-38); Ser^aAsp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Ser^aAsp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Ser^aAsp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-36) a mide; Ser^aAsp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-37); Ser^aAsp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-37); Ser^aAsp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-37); Ser^aAsp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-37); Ser^aAsp²⁸Arg²⁶, ³⁴Lys²⁷GLP-1(8-38); Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Arg²⁶, ³⁴Lys²⁷GLP-1(8-36); Arg²⁶, ³⁴Lys²⁸GLP-1(8-36); ³⁴Lys³⁸GLP-1(8-36); A 38); Arg^{26, 34}Lys¹⁸GLP-1(8-36); Arg^{26, 34}Lys¹⁸GLP-1(8-36) Arg Lys GLF-1(6-36), Arg Lys GLF-1(8-36) amide; Arg^{26, 34}Lys¹⁸GLP-1(8-37); Arg^{26, 34}Lys¹⁸GLP-1(8-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸GLP-1(8-36); Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸GLP-1(8-36); Thr⁸Asp¹⁹Arg²⁶ ³⁴Lys¹⁸GLP-1(8-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸GLP-1(8-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(8-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸GLP-1(8-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷GLP-1(8-36)amide; Thr⁸Asp²⁶Arg^{26, 34}Lys²⁷GLP-1(8-36)amide; Thr⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(8-37); Thr⁸Asp²⁸Arg^{26, 34}Lys²⁷GLP-1(8-38); or Thr⁸Asp²⁶Arg²⁶, ³⁴Lys²⁷GLP-1(8-38). relates to a GLP-1 derivative wherein the parent peptide is: In a further preferred embodiment, the present invention 5 Arg²⁶Lys³⁶GLP-1(8-36); Arg³⁴Lys³⁶GLP-1(8-36); Arg²⁶Lys³⁶GLP-1(8-37); Arg³⁴Lys³⁶GLP-1(8-37); Arg²⁶Lys³⁷GLP-1(8-37); Arg³⁴Lys³⁷GLP-1(8-37); Arg²⁶Lys³⁹GLP-1(8-39); Arg³⁴Lys³⁹GLP-1(8-39); Arg²⁶, Arg Lys GLP-1(8-39); Arg Lys GLP-1(8-39), Arg 10 34Lys S6,39 GLP-1(8-39); Arg 26Lys GLP-1(8-36); Arg Lys GLP-1(8-36); Arg 26Lys GLP-1(8-37); Arg Lys GLP-1(8-37); Arg 26Lys GLP-1(8-38); Arg Lys GLP-1(8-38); Arg 26Lys GLP-1(8-39); Arg Lys GLP-1(8-39); Arg C1Lys GLP-1(8-36); Arg Lys GLP-1(8-36); Arg C1Lys GLP-1(8-37); Arg Lys GLP-1(8-36); Arg C1Lys GLP-1(8-37); Arg Lys GLP-1(8-37); Arg C1Lys GLP-1(8-38); Arg³⁴Lys²³GLP-1(8-37); Arg²⁶Lys²³GLP-1(8-38); Arg³⁴Lys²³GLP-1(8-38); Arg²⁶Lys²³GLP-1(8-39); Arg Lys GLF-1(8-39), Arg Lys GLF-1(8-39), Arg3⁴Lys²³GLP-1(8-39); Arg²⁶Lys²⁷GLP-1(8-36); Arg³⁴Lys²⁷GLP-1(8-36); Arg²⁶Lys²⁷GLP-1(8-37); 20 Arg³⁴Lys²⁷GLP-1(8-37); Arg²⁶Lys²⁷GLP-1(8-38); Arg³⁴Lys²⁷GLP-1(8-38); Arg²⁶Lys²⁷GLP-1(8-39); Arg³⁴Lys²⁷GLP-1(8-39); Arg^{26, 34}Lys^{18,36}GLP-1(8-36); Arg^{26, 34}Lys¹⁸GLP-1(8-37); Arg²⁶, 34 Lys^{18,37}GLP-1(8-37); Arg²⁶, 34 Lys^{18,38}GLP-1(8- 25 is Lys³⁴(N^{ϵ}-tetradecanoyl) GLP-1(7-37). 38); Arg²⁶, 34 Lys^{18,39}GLP-1(8-39); Arg²⁶, 34 Lys^{23,36}GLP-1 In a further preferred embodiment, the (8-36); Arg^{26, 34}Lys²³GLP-1-(8-37); Arg^{26, 34}Lys^{23,37}GLP-(8-37); Arg²⁶, ³⁴Lys²³, ³⁸GLP-1(8-38); Arg²⁶, ²⁴Lys²³, ³⁶GLP-1(8-39); Arg²⁶, ³⁴Lys²⁷, ³⁶GLP-1(8-36); Arg²⁶, ³⁴Lys²⁷, ³⁶GLP-1(8-37); Arg²⁶, ³⁴Lys²⁷, ³⁷GLP-1(8-37); Arg²⁶, ³⁴Lys²⁷, ³⁷GLP-1(8-38); Arg²⁶, ³⁴Lys²⁷, ³⁹GLP-1(8-39); Gly⁸GLP-1 (8-36); Gly⁸GLP-1(8-37); Gly⁸GLP-1(8-38); Gly⁸GLP-1(8-39); Gly⁸Arg²⁶Lys³⁶GLP-1(8-36); Gly⁸Arg³⁴Lys³⁶GLP-1(8-36); Gly⁸Arg²⁶Lys³⁶GLP-1(8-37); Gly⁸Arg³⁴Lys³⁶GLP-Gly⁸ Arg²⁶ Lys³⁷ GLP-1(8-37); 35 is Arg²⁶ Lys³⁴ (N'-tetradecanoyl) GLP-1(7-37). 1(8-37); Gly⁸Arg²⁶Lys³⁷GLP-1(8-37); Gly⁸Arg³⁴Lys³⁷GLP-1(8-37); Gly⁸Arg²⁶Lys³⁹GLP-1(8-37); Gly⁸Arg²⁶Lys³⁹GLP-1(8-37); 39); Gly⁸Arg³⁴Lys³⁹GLP-1(8-39); Gly⁸Arg^{26, 34}Lys^{36,} 39GLP-1(8-39); Gly⁸Arg²⁶Lys¹⁸GLP-1y(8-36); Gly⁸Arg³⁴Lys¹⁸GLP-1((8-36); Gly⁸Arg²⁶Lys¹⁸GLP-1(8-37); Gly⁸Arg³⁴Lys¹⁸GLP-1(8-37); Gly⁸Arg²⁶Lys¹⁸GLP-1 40 (8-38); Gly⁸Arg³⁴Lys¹⁸GLP-1(8-38); Gly⁸Arg²⁶Lys¹⁸GLP-1(8-38); Gly⁸Arg²⁶Lys¹⁸GLP-1 40 (8-38); Gly⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys¹⁸Arg²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys²⁶Lys² 1(8-39); Gly⁸Arg³⁴Lys¹⁸GLP-1(8-39); Gly⁸Arg²⁶Lys²³GLP-1(8-36); Gly⁸Arg³⁴Lys²³GLP-1(8-36); Gly⁸Arg²⁶Lys²³GLP-1(8-37); Gly⁸Arg³⁴Lys²³GLP-1 (8-37); Gly⁸Arg²⁶Lys²³GLP-1(8-38); Gly⁸Arg³⁴Lys²³GLP- 45 is Gly⁸Lys³⁴(N^e-tetradecanoyl) GLP-1(7-38). 1(8-38); Gly⁸Arg²⁶Lys²³GLP-1(8-39); Gly⁸Arg³⁴Lys²³GLP-1(8-39); Gly⁸Arg²⁶Lys²⁷GLP-1(8-39); Gly⁸Arg²⁷GLP-1(8-39); Gly⁸Ar 36); Gly⁸Arg³⁴Lys²⁷GLP-1(8-36); Gly⁸Arg²⁶Lys²⁷GLP-1 (8-37); Gly⁸Arg³⁴Lys²⁷GLP-1(8-37); Gly⁸Arg²⁶Lys²⁷GLP-1(8-37); Gly⁸Arg²⁷GLP-1(8-37); Gl 1(8-38); Gly⁸ Arg³⁴ Lys²⁷ GLP-1(8-38); 50 Gly⁸ Arg²⁶ Lys²⁷ GLP-1(8-39); Gly⁸ Arg³⁴ Lys²⁷ GLP-1(8-39); Gly⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(8-36); Gly⁸Arg²⁶, ³⁴Lys¹⁸GLP-1(8-37); Gly⁸Arg²⁶, ³⁴Lys^{18,37}GLP-1(8-37); Gly⁸Arg²⁶, ³⁴Lys^{18,38}GLP-1(8-38); Gly⁸Arg²⁶, ³⁴Lys¹⁸, 39GLP-1(8-39); Gly⁸Arg^{26, 34}Lys^{23,36}GLP-1(8-36); 55 is Lys^{26, 34}-bis(N^ε-tetradecanoyl) GLP-1(7-39). Gly⁸Arg²⁶, ³⁴Lys²³GLP-1(8-37); Gly⁸Arg²⁶, ³⁴Lys²³, ³⁷GLP-1(8-37); Gly⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-38); Gly⁸Arg²⁶, ³⁴Lys²³, ³⁸GLP-1(8-38); Gly⁸Arg²⁶, ³⁴Lys²⁷, ³⁶GLP-1(8-36); Gly⁸Arg²⁶, ³⁴Lys²⁷, ³⁶GLP-1(8-37); Gly⁸Arg²⁶, ³⁴Lys²⁷, ³⁶GLP-1(8-38); Gly⁸Arg²⁶, ³⁴Lys²⁷, ³⁸GLP-1(8-38); Gly⁸Arg²⁶, ³⁴Lys²⁷, ³⁸GLP-1(8-38); Gly⁸Arg²⁶, ³⁴Lys²⁷, ³⁸GLP-1(8-39); Val⁸GLP-1(8-36); Val⁸GLP-1(8-37); Val⁸GLP-1(8-38); Val⁸GLP-1(8-39); Val⁸Arg²⁶Lys³⁶GLP-1(8-36); Val⁸Arg³⁴Lys³⁶GLP-1(7-36); Val⁸Arg²⁶Lys³⁶GLP-1(8-37); $Val^8 Arg^{34} Lys^{36} GLP-1(8-37); Val^8 Arg^{26} Lys^{37} GLP-1(8-37); 65$ is $Lys^{26} (N^\epsilon$ -tetradecanoyl) GLP-1(7-40). $Val^8 Arg^{34} Lys^{37} GLP-1(8-37); Val^8 Arg^{26} Lys^{39} GLP-1(8-39); Val^8 Arg^{26} Lys^{36} GLP-1 (8-39); Val^8 Lys^{36} GLP-1 (8-39); Val^8 Lys^{36} Lys$ (8-39); Val⁸Arg²⁶Lys¹⁸GLP-1(8-36); Val⁸Arg³⁴Lys¹⁸GLP-1 (8-36); Val⁸Arg²⁶Lys¹⁸GLP-1(8-37); Val⁸Arg²⁶Lys¹⁸GLP-1(8-38); Val⁸Arg²⁶Lys¹⁸GLP-1(8-38); Val⁸Arg²⁶Lys¹⁸GLP-1(8-39); Val⁸Arg²⁶Lys¹⁸GLP-1(8-39); Val⁸Arg²⁶Lys¹⁸GLP-1(8-39); Val⁸Arg²⁶Lys¹⁸GLP-1(8-39); Val⁸Arg²⁶Lys¹⁸GLP-1(8-39); Val⁸Arg²⁶Lys²⁶GLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶Lys²⁶CLP-1(8-39); Val⁸Arg²⁶CLP-1(8-39); Va (8-39);
Val⁸Arg²⁶Lys²³GLP-1(8-36); Val⁸Arg³⁴Lys²³GLP-1 (8-36); Val⁸Arg²⁶Lys²³GLP-1(8-37); Val⁸Arg³⁴Lys²³GLP-1 (8-37); Val⁸Arg²⁶Lys²³GLP-1(8-38); Val⁸Arg³⁴Lys²³GLP-1 (8-38); Val⁸Arg²⁶Lys²³GLP-1(8-39); Val⁸Arg³⁴Lys²³GLP-1 (8-39); Val⁸Arg²⁶Lys²⁷GLP-1(8-36); Val⁸Arg³⁴Lys²⁷GLP-1 (8-39); Val⁸Arg²⁶Lys²⁷GLP-1(8-36); Val⁸Arg³⁴Lys²⁷GLP-1 (8-36); Val⁸Arg²⁶Lys²⁷GLP-1(8-37); Val⁸Arg³⁴Lys²⁷GLP-1 (8-37); Val⁸Arg²⁶Lys²⁷GLP-1(8-38); Val⁸Arg³⁴Lys²⁷GLP-1 (8-38); Val⁸Arg²⁶Lys²⁷GLP-1(8-39); Val⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(8-36); Val⁸Arg²⁶, ³⁴Lys^{18,36}GLP-1(8-37); Val⁸Arg²⁶, ³⁴Lys^{18,37}GLP-1(8-37); Val⁸Arg²⁶, ³⁴Lys^{18,38}GLP-1(8-38); Val⁸Arg²⁶, ³⁴Lys^{18,38}GLP-1(8-37); Val⁸Arg²⁶, ³⁴Lys²³, ³⁵GLP-1(8-37); Val⁸Arg²⁶, ³⁴Lys²³, ³⁵GLP-1(8-37); Val⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-38); Val⁸Arg²⁶, ³⁴Lys²³, ³⁶GLP-1(8-37); ³⁶Lys²³, ³⁶GLP-1(8-37); Val⁸Arg²⁶, ³⁶Lys²³, ³⁶GLP-1(8-37); Val⁸Arg²⁶, ³⁶Lys²³, ³⁶GLP-1(8-37); Val⁸Arg²⁶, ³⁶Lys²³, ³⁶GLP-1(8-37); Val⁸Arg²⁶, ³⁶Lys²³, ³⁶Lys²³, ³⁶GLP-1(8-37); Val⁸Arg²⁶, Val⁸Arg²⁴, ³⁶Lys²³, ³⁶Lys²³, ³⁶Lys²³, ³⁶Lys²³, ³⁶Lys²³, ³⁶Lys²³, ³⁶ 36GLP-1(8-36); Val⁸Arg^{26, 34}Lys²⁷GLP-1(8-37); Val⁸Arg^{26,} ³⁴Lys^{27,37}GLP-1(8-37); Val⁸Arg^{26, 34}Lys^{27,38}GLP-1(8-38); or Val⁸Arg^{26, 34}Lys^{27,39}GLP-1(8-39). In a further preferred embodiment, the GLP-1 derivative is Lys 26 (N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , 34 -bis(N^{ϵ} -tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ} -tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^ϵ-tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^c-tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is Gly 8 Lys $^{26,\ 34}$ -bis(N $^\epsilon$ -tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Arg²⁶Lys³⁴(N^e-tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^ϵ-tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Arg²⁶Lys³⁴(N^e-tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^ϵ-tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(\tilde{N}^{\epsilon}$ -tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 5 is Gly⁸Lys³⁴(N^e-tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-tetradecanoyl)$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N^e-tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^e-tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ϵ-tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative 20 is Gly⁸Lys^{26, 34}-bis(N[€]-tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^e-tetradecanoyl) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative 30 is $Gly^8Lys^{26}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-35) In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^ε-tetradecanoyl) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Arg²⁶Lys³⁴(N⁶⁸-tetradecanoyl) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ} -tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative 40 is Lys³⁴(N[€]-tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^ϵ-tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N^ϵ-tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N $^\epsilon$ -tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative 50 is $Arg^{26}Lys^{34}(\tilde{N}^{\epsilon}$ -tetradecanoyl) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ε-tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}$ -tetradecanoyl)Arg³⁴GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^c-tetradecanoyl)Arg³⁴GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Arg^{26, 34}Lys³⁶(N^ε-tetradecanoyl) GLP-1(7-37). is Gly⁸Arg²⁶, $\overline{^{34}}$ Lys³⁶(N^{ϵ}-tetradecanoyl) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ε-tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^ϵ-tetradecanoyl)Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^e-tetradecanoyl)Arg³⁴GLP-1(7-38). 36 In a further preferred embodiment, the GLP-1 derivative is Arg^{26, 34}Lys³⁶(N^ε-tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{38}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26,\ 34}Lys^{36}(N^\epsilon$ -tetradecanoyl) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^e-tetradecanoyl)Arg³⁴GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ϵ-tetradecanoyl)Arg³⁴GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg^{26, 34}Lys³⁶(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ϵ-tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^e-tetradecanoyl)Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ϵ-tetradecanoyl)Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Arg^{26, 34}Lys³⁶(N^e-tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 25 is Gly⁸Arg²⁶, ³⁴Lys³⁶(N^ε-tetradecanoyl) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N⁶⁸-(ω-carboxynonadecanoyl)) GLP-1(7- In a further preferred embodiment, the GLP-1 derivative is $Glv^8Lvs^{26}(N^{\epsilon}-(\omega-carboxynonadecanovl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly $^8\mathrm{Lys}^{26,~34}$ -bis(N-(ω -carboxynonadecanoyl)) GLP-1(7- In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 45 is Lys^{26, 34}-bis(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is
$Gly^8Lys^{26}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , 34 -bis(N^{ϵ} -(ω -carboxynonadecanoyl)) GLP-1 In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26, 34}$ -bis(N^{ϵ} -(ω -carboxynonadecanoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative 60 is $Gly^8Lys^{26}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative > is $Glv^8Lvs^{34}(N^{\epsilon}-(\omega-carboxynonadecanovl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $\text{Gly}^8\text{Lys}^{26,~34}\text{-bis}(N^\varepsilon\text{-}(\omega\text{-carboxynonadecanoyl}))$ GLP-1 65 (7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N⁶⁸-(ω-carboxynonadecanoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^{ϵ} -(ω -carboxynonadecanoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^ε-(ω-carboxynonadecanoyl)) GLP-1 (7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-36). is $Lvs^{26, 34}$ -bis(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26,\ 34}$ -bis(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1 In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-36)amide. ₂₅ In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-36) amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(\tilde{N}^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-36) In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N⁶⁸-(ω-carboxynonadecanoyl)) GLP-1(7-36) In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1 (7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N⁶⁸-(ω-carboxynonadecanoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative 45 40). is Gly⁸Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N $^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-35). (7-35). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ε-(ω-carboxynonadecanoyl)) GLP-1(7- 55 is Lys³⁴(N^ε-(7-deoxycholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl))Arg³⁴GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(\omega-carboxynonadecanoyl))Arg^{34}GLP-1(7-60)$ In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7- In a further preferred embodiment, the GLP-1 derivative 65 is $Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-37). is Gly^8Arg^{26} , $^{34}Lys^{36}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1 In a further preferred embodiment, the GLP-1 of $^{34}Lys^{36}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-37). 1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-38) In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(ω -carboxynonadecanoyl))Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ε-(ω-carboxynonadecanoyl))Arg³⁴GLP-1(7- In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7- In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative 15 is Arg^{26, 34}Lys³⁸(N^ε-(ω-carboxynonadecanoyl)) GLP-1(7- > In a further preferred embodiment, the GLP-1 derivative is Gly^8Arg^{26} , $^{34}Lys^{36}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-38). > In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^\epsilon\text{-}(\omega\text{-}carboxynonadecanoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(ω -carboxynonadecanoyl))Arg³⁴GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(\omega-carboxynonadecanoyl))Arg^{34}GLP-1(7-$ In a further preferred embodiment, the GLP-1 derivative is Arg^{26, 34}Lys³⁶(N^ε-(ω-carboxynonadecanoyl)) GLP-1(7- In a further preferred embodiment, the GLP-1 derivative is Glv^8Arg^{26} , $^{34}Lvs^{36}(N^{\epsilon}-(\omega-10 \text{ carboxynonadecanov}))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7- In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^{ϵ}-(ω -carboxynonadecanoyl))Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(\omega-carboxynonadecanoyl))Arg^{34}GLP-1(7-$ In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(\omega-carboxynonadecanoyl))$ GLP-1(7- In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N^{ϵ} -(ω -carboxynonadecanoyl)) GLP-1 50 is $Gly^8Lys^{26, 34}$ -Lys³⁶(N^{ϵ} -(ω -carboxynonadecanoyl)) GLP-1 In a further preferred embodiment, the GLP-1 derivative 1(7-40) > In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-37). > In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(7-3\ 0\ deoxycholoyl))\ GLP-1(7-37)$. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N⁶⁸-(7-deoxycholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , \hat{s}^4 -bis(N^{ϵ}-(7-deoxycholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^e-(7-deoxycholoyl)) GLP-1(7-38). 39 In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 5 is Gly⁸Lys²⁶(\tilde{N}^{ϵ} -(7-deoxycholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , 3^4 -bis(N^{ϵ} -(7-deoxycholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1
derivative is $Gly^8Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative 20 is Gly⁸Lys²⁶(N^c-(7-deoxycholoyl))Arg³⁴GLP-1(7-37). is $Gly^8Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , 34 -bis(N^{ϵ} -(7-deoxycholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 30 is Lys^{26, 34}-bis(N^{ϵ}-(7-deoxycholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, \overline{34}}$ -bis(N^{ϵ}-(7-deoxycholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholov))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 40 is Lys²⁶(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^e-(7-deoxycholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $\text{Glv}^8\text{Lys}^{26}(\bar{N}^{\epsilon}\text{-(7-deoxycholoyl)})$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative 50 is Gly⁸Lys²⁶, ³⁴-bis(N⁶⁸-(7-deoxycholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N ϵ -(7-deoxycholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative 60 is $Gly^8Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , \tilde{s}^4 -bis(N°-(7-deoxycholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-35). 40 In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Lys^{26, 34}$ -bis(N^{ϵ} -(7-deoxycholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^ϵ-(7-deoxycholoyl)) GLP-1(7-36) amide. In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(\tilde{N}^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))Arg^{34}GLP-1(7-37)$. In a further preferred embodiment, the GLP-1 derivative In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26, \ ^34}Lys^{36}(N^\epsilon\text{-(7-10 deoxycholoyl)})$ GLP-1(7-25 37). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}-(choloyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^{ϵ}-(choloyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ϵ-(choloyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative 35 is Gly⁸Lys³⁴(N $^{\epsilon}$ -(choloyl)) GLP-20 1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , $\overline{^{34}}$ -bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}$ -(choloyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ε-(7-deoxycholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^e-(7-deoxycholoyl))Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 45 is Gly⁸Lys²⁶(N^ϵ-(7-deoxycholoyl))Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{38}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg^{26, 34}Lys³⁶(N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}$ -(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 55 is $Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N⁶⁸-(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(choloyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 65 is $Arg^{26}Lys^{34}(N^{68}$ -(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N[€]-(7-deoxycholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{68}$ -(7-deoxycholoyl))Arg³⁴GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(\hat{N}^{\epsilon}-(7-deoxycholoyl))Arg^{34}GLP-1(7-39).$ In a further preferred embodiment, the GLP-1 derivative 5 is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg^{26, 34}Lys³⁶(N[€]-(7-deoxycholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(choloyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(choloyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N ϵ -(choloyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(choloyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(\tilde{N}^{\epsilon}-(choloyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , 34 -bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative 20 is $Arg^{26}Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(7-deoxycholoyl))Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(7-deoxycholoyl))Arg^{34}GLP-1(7-40)$. In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(7-deoxycholoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 30 is Gly 8 Arg 26 , 34 Lys 36 (N $^{\epsilon}$ -(7-deoxycholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(choloyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(choloyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(choloyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 40 is $Gly^8Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶, ³⁴-bis(N⁶⁸-(choloyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Arg²⁶Lys³⁴(N-(choloyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(choloyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(choloyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative 50 is Lys^{26, 34}-bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(choloyl))$
GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^ε-(choloyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-36) In a further preferred embodiment, the GLP-1 derivative 60 is Lys²⁶(N $^{\epsilon}$ -(choloyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(choloyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(choloyl))$ GLP-1(7-35). 42 In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N⁶⁸-(choloyl)) GLP-1(7-35) In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys^{26, 34}-bis(N^ε-(choloyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(\tilde{N}^{\epsilon}-(choloyl))$ GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(choloyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(choloyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^{ϵ}-(choloyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(\hat{N}^{\epsilon}-(choloyl))$ GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N^{\epsilon}-(choloyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N $^{\epsilon}$ -(choloyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(\hat{N}^{68}$ -(choloyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^e-(choloyl)) GLP-1(7-37) In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}-(choloyl))Arg^{34}GLP-1(7-37)$. In a further preferred embodiment, the GLP-1 derivative 25 is $Gly^8Lys^{26}(N^{\epsilon}-(choloyl))Arg^{34}GLP-1(7-37)$. In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}$ -(choloyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg^{26, 34}Lys³⁶(N[€]-(choloyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative 35 is Lys^{26, 34}-bis(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N^{ϵ} -(lithocholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lvs^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative 45 is Gly⁸Arg²⁶Lys³⁴(N^ε-(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^ϵ-(choloyl))Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^e-(choloyl))Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}$ -(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{38}(N^{\epsilon}-(choloyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 55 is Gly⁸Arg²⁶, ³⁴Lys³⁶(N^ε-(choloyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N^ϵ-(lithocholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 65 is $Gly^8Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative 5 is $Lys^{26}(N^{\epsilon}-(choloyl))Arg^{34}GLP-1(7-39)$. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^e-(choloyl))Arg³⁴GLP-1(7-39) In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(choloyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26.}$ $^{34}Lys^{36}(N^\epsilon$ -(choloyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^ε-(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^e(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative 20 is Gly⁸Lys³⁴(N^e-(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly^8Lys^{26} , 3^{34} -bis(N^{ϵ} -(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(choloyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}$ -(choloyl))Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 30 is Gly⁸Lys²⁶(N^{\epsilon}-(choloyl))Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(choloyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Glv^8Arg^{26} , $^{34}Lys^{36}(N^{\epsilon}$ -(choloyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Lys^{34}(N^{68}$ -(lithocholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative 40 is Lys $^{26, 34}$ -bis(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N^e-(lithocholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N^{ϵ} -(lithocholoyl)) GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative 50 is Lys²⁶(N $^{\epsilon}$ -(lithocholoyl)) GLP-30 1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative 60 is Gly⁸Lys^{26, 34}-bis(N^{ϵ}-(lithocholoyl)) GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-36). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-35). 44 In a further preferred embodiment, the GLP-1 derivative is Lys^{26, 34}-bis(N^{ϵ}-(lithocholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(\tilde{N}^{\epsilon}$ -(lithocholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{34}(\tilde{N}^{\epsilon}-(lithocholoyl))$ GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26, 34}$ -bis(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-35). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^e-(lithocholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Lys³⁴(N $^{\epsilon}$ -(lithocholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative 15 is Lys^{26, 34}-bis(N^ε-(lithocholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ϵ-(lithocholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys³⁴(N^ε-(lithocholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26,~\hat{34}}\text{-bis}(N^\epsilon\text{-(lithocholoyl)})$ GLP-1(7-36)amide. In a further
preferred embodiment, the GLP-1 derivative is Arg²⁶Lys³⁴(N^ε-(lithocholoyl)) GLP-1(7-36)amide. In a further preferred embodiment, the GLP-1 derivative 25 is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^ε-(lithocholoyl))Arg³⁴GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))Arg^{34}GLP-1(7-37)$. In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{38}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative 35 is Gly^8Arg^{26} , $^{34}Lys^{36}(N^{\epsilon}$ -(lithocholoyl)) GLP-1(7-37). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26}Lys^{34}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^ϵ-(lithocholoyl))Arg³⁴GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))Arg^{34}GLP-1(7-38)$. In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative 45 is Arg^{26, 34}Lys³⁸(N^ε-(lithocholoyl)) GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Arg^{26, 34}Lys^{36}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-38). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ε-(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Lys²⁶(N^ε-(lithocholoyl))Arg³⁴GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Lys²⁶(N^ϵ-(lithocholoyl))Arg³⁴GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg^{26, 34}Lys³⁶(N[€]-(lithocholoyl)) GLP-1(7-39). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg²⁶Lys³⁴(N^ε-(lithocholoyl)) GLP-1(7-40) In a further preferred embodiment, the GLP-1 derivative is $Lys^{26}(N^{\epsilon}$ -(lithocholoyl))Arg³⁴GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is $Gly^8Lys^{26}(N^{\epsilon}-(lithocholoyl))Arg^{34}GLP-1(7-40)$. In a further preferred embodiment, the GLP-1 derivative 65 is $Arg^{26, 34}Lys^{36}(N^{\epsilon}-(lithocholoyl))$ GLP-1(7-40). In a further preferred embodiment, the GLP-1 derivative is Gly⁸Arg^{26, 34}Lys³⁶(N[€]-(lithocholoyl)) GLP-1(7-40). Other preferred embodiments will be described using the following abbreviations: Glut= N^{ϵ} -(γ -L-glutamyl) Aspa= N^{ϵ} -(β -L-asparagyl) Glyc=N^e-glycyl GAB=N $^{\epsilon}$ -(α -(γ -aminobutanoyl) ADod=N^α-dodecanovl ATet=N^α-tetradecanoyl AHex=Nα-hexadecanoyl AOct=N^α-octadecanoyl ALit=N^α-lithocholyl GDod=N^γ-dodecanoyl GTet= N^{γ} -tetradecanoyl GHex=N^{\gamma}-hexadecanoyl GOct=N^γ-octadecanoyl GLit=N^γ-lithocholyl Other preferred GLP-1 derivatives of the present inven- **Val**Arg** (Glut-ADod) GLP-1(7-36); Val**Arg** (Glut-ADod) GLP-1(7-36); Val**Arg** (Glut-ADod) GLP-1(7-36); Val**Arg** (Glut-ADod) GLP-1(7-36); Val**Arg** (Glut-ADod) GLP-1(7-36); Val**Asp** (Glut-ADod) GLP-1(7-36); Val**Asp** (Glut-ADod) GLP-1(7-36); Val**Asp** (Glut-ADod) GLP-1(7-37); Val**Asp** (Glut-ADod) GLP-1(7-37); Val**Asp** (Glut-ADod) GLP-1(7-37); Val** (Glut-ADod) GLP-1(7-37); Val** (Glut-ADod) GLP-1(7-37); Val** (Glut-ADod) GLP-1(7-38); GLP-1(7-37); Val** (Glut-ADod) GLP-1(7-38); (Glu ³⁴Lys³⁹-(Glut-ADod) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶, 3⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glut-ADod) ADod) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Glut-ADod) 60 GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-37); Ser⁸Arg²⁶ 34Lys³⁶-(Glut-ADod) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-38); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); 46 Ser⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ADod) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-36); Thr⁸Arg²⁶, 34Lys³⁶-(Glut-ADod) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) Thr⁸Arg³⁶, Thr⁸Arg³⁶-(Glut-ADod) Thr⁸Arg⁸-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Arg⁸-(Glut-ADod) GLP-1(7-36 1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-37); 1(7-36)amide; 1nf⁻Arg⁻ Lys -(Giut-ADod) GLP-1(7-37); Thr⁸Arg²⁶-(Glut-ADod) GLP-1(7-37); Thr⁸Arg²⁶-(Glut-ADod) GLP-1(7-37); Thr⁸Arg²⁶-(Glut-ADod) GLP-1(7-38); Thr⁸Arg²⁶-(Glut-ADod) GLP-1(7-38); Thr⁸Arg²⁶-(3⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Thr⁸Arg²⁶-(Slut-ADod) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-39); Thr⁸Arg²⁶-(Slut-ADod) GLP-1(7-39); Thr⁸Arg²⁶-(Slut-ADod) GLP-1(7-30); 15 ³⁴Lys³⁹-(Glut-ADod) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36)amide; on are: Arg²6Lys³4-(Glut-ADod) GLP-1(7-36); Arg³4Lys²6-(Glut-ADod) GLP-1(7-36); Arg²6-Lys³4-(Glut-ADod) GLP-1(7-36) amide; Arg³4-Lys²6-(Glut-ADod) GLP-1(7-36) amide; Arg²6-34-Lys³6-(Glut-ADod) GLP-1(7-36) amide; Arg²6-34-Lys³6-(Glut-ADod) GLP-1(7-37); Arg³4-Lys²6-(Glut-ADod) GLP-1(7-37); Arg²6-34-Lys³6-(Glut-ADod) GLP-1(7-37); Arg²6-34-Lys³6-(Glut-ADod) GLP-1(7-37); Arg²6-1ys³4-(Glut-ADod) GLP-1(7-39); Arg²6-1ys³4-(Glut-ADod) GLP-1(7-39); Arg²6-1ys³4-(Glut-ADod) GLP-1(7-39); Arg²6-1ys³4-(Glut-ADod) GLP-1(7-39); Arg²6-1ys³4-(Glut-ADod) GLP-1(7-36); Gly8-Arg²6-1ys³4-(Glut-ADod) Gly8-Arg²6-1ys³4-Gly⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Glut-ADod) GLP-1(7-37); GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36) amide; Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36) amide; Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36) amide; Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glut-ADod) GLP-1(7-37); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); ³⁴Lys³⁶-(Glut-ADod Val⁸Arg²⁶Lys³⁴-(Glut-ADod) GLP-1(7-39); Val⁸Arg^{26, 34}Lys³⁸-(Glut-ADod) GLP-1(7-38); Val⁸Arg³⁴Lys²⁶-(Glut-ADod) GLP-1(7-39); Val⁸Arg^{26, 34}Lys³⁹-(Glut-ADod) GLP-1(7-39); Val Asp Arg Lys -(Glut-ADod) GLP-1(7-39); Ser Glu SArg Co. 34 Lys Clut-ADod) GLP-1(7-36); Ser Glu Arg Co. 34 Lys Clut-ADod) GLP-1(7-36); Ser Glu Charles Clut-ADod) GLP-1(7-36); Ser Glu Arg Co. 34 Lys Clut-ADod) GLP-1(7-37); Ser Glu Arg Co. 34 Lys Clut-ADod) GLP-1(7-38); Ser Glu Arg Co. 34 Lys Clut-ADod) GLP-1(7-39); Ser Glu Arg Co. 34 Lys Clut-ADod) GLP-1(7-39); Ser ⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶(Glut-ADod) GLP-1(7-36); Ser ⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36)amide; Ser ⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-ADod) GLP-1(7-37); ``` 48 Ser⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glut-ADod) GLP-1(7-37); Ser⁸Asp³⁷Arg^{26, 34}Lys³⁸-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Glut-ADod) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-37); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-36); GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP-1(7-38); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ADod) GLP Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ADod) GLP-1(7-39); Thr⁸Glu⁻³Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36)amide; 20 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ADod) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-36)amide; 25 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-ADod) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ADod) GLP-1(7-38): Thr Asp Arg 16, 34 Lys 18 - (Glut-ADod) GLP-1(7-37); Thr Asp 37 Arg 26, 34 Lys 38 - (Glut-ADod) GLP-1(7-38); Thr Asp 38 Arg 26, 34 Lys 39 - (Glut-ADod) GLP-1(7-39); Arg 26, 34 Lys 18 - (Glut-ADod) GLP-1(7-36); Arg 26, 34 Lys 18 - (Glut-ADod) GLP-1(7-36) amide; Arg 26, 34 Lys 18 - (Glut-ADod) GLP-1(7-37); GLP-1(7-38); (Glut-ADod 38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, Ser⁸As Gly³Asp¹³Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; 35 Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod)
GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-37); Arg²⁶Lys²³-(Glut-ADod) GLP-1(7-38); Arg²⁶Lys²⁸-(Glut-ADod) GLP-1(7-38); Arg²⁶-(Glut-ADod) Arg²⁶-(Glut-ADod) Arg²⁶-(Glut-ADod) Arg²⁶-(Glut-ADod) Arg²⁶-(Glut-ADod) Arg²⁶-(Glut-ADod) A Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); 34}Lys²⁸-(Glut-ADod) GLP-1(7-36); Arg^{26, 34}Lys²⁹-(Glut-ADod) GLP- 38); Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); 55 Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); 55 Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); 56 Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; 6ly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; 6ly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; 6ly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-37); 6ly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-38); 34</sup>Lys²⁸-(Glut-ADod) GLP-1(7-38); 6ly⁸Asp¹⁹Arg^{26, 34}Lys³-(Glut-ADod) GLP-1(7-38); 6ly⁸Asp¹⁹Arg^{26, 34}Lys³-(Glut-ADod) GLP-1(7-36); 6ly⁸Asp¹⁹Arg^{26, 34}Lys³-(Glut-ADod) GLP-1(7-36); 6ly⁸Asp¹⁹Arg^{26, 34}Lys³-(Glut-ADod) GLP-1(7-36); 6ly⁸Asp¹⁹Arg^{26, 34}Ly ADod) GLP-1(7-37); Arg²⁶, 34Lys¹⁸(Glut-ADod) GLP-1(7- Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ADod) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36); ``` ``` (Glut-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7- 38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Ser*Asp¹⁹ Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; Ser⁸ Asp¹⁹ Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-37); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-38); Ser⁸ Asp¹⁷ Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-36); ADOd) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ADod) GLP-1(7-36)amide; ``` $\begin{array}{l} {\rm Thr^8 Asp^{17} Arg^{26,\ 34} Lys^{18} \hbox{--} (Glut-ADod)\ GLP-1 (7-36) amide;} \\ {\rm Thr^8 Asp^{19} Arg^{26,\ 34} Lys^{18} \hbox{--} (Glut-ADod)\ GLP-1 (7-37);} \end{array}$ Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ADod) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36); 10 GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Thr⁸Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-38); Thr⁸Arg^{26, 34}Lys²³-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ATet) Thr⁸Arg²⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg²⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg²⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg²⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg³⁴Lys³⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg³⁴Lys³⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg²⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg³⁴Lys³⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Arg³⁶-(Glut-ATet) G ÀDod) GLP-1(7-37); Àrg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-38); 38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ADod) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Asp¹/Arg²⁶, ³⁴Lys²⁷-(Glut-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36); Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-36); Arg³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(Glut-ATet) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36) amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36) amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36) amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-38); Gly⁸Asp³⁶-(Glut-ATet) GLP-1(7-38); Gly⁸Asp³⁶-(Glut-ATet) GLP-1(7 34Lys³⁸-(Glut-ATet) GLP-1(7-38); Arg²⁶Lys³⁴-(Glut-ATet) 35 Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); GLP-1(7-39); Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36)amide; ³⁴Lys³⁹-(Glut-ATet) GLP-1(7-39); Gly⁸ Arg²⁶ Lys³⁴ - (Glut-ATet) GLP-1(7-36); Gly⁸ Arg³⁴ Lys²⁶ - (Glut-ATet) GLP-1(7-36); Gly⁸ Arg²⁶, ³⁴ Lys³⁶ - (Glut-ATet) GLP-1(7-36); Gly⁸ Arg²⁶ - (Glut-ATet) GLP-1(7-36); Gly⁸ Arg²⁶ - (Glut-ATet) Gly⁸ - (Gly⁸ Arg²⁶ - (Gly⁸ Arg²⁶ - (Gly⁸ Arg²⁶ - (Gly⁸ - (Gly⁸ - (Gly⁸ Arg²⁶ - (Gly⁸ (G ATet) GLP-1(7-36) amide; Gly⁸ Arg³⁴ Lys²⁶ - (Glut-ATet) GLP-1(7-36) amide; Gly⁸ Arg²⁶, ³⁴ Lys³⁶ - (Glut-ATet) GLP-1 (7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-37); $Gly^8Arg^{34}Lys^{26}$ -(Glut-ATet) GLP-1(7-37); Gly^8Arg^{26} 34Lys³⁶-(Glut-ATet) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); ATet) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-37); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ATet) GLP-1(7-39); Val⁸Glu³⁸Arg³⁰-(Glut-ATet) GLP-1 ³⁴Lys³⁹-(Glut-ATet) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-36); Val⁸Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36) amide; Val⁸Árg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-36)amide; amide; Val*Arg**1ys**2*-(Glut-ATet) GLP-1(7-36)amide; Val*Arg**2*6, 34Lys**3*-(Glut-ATet) GLP-1(7-36); Val*Arg**2*6Lys**4-(Glut-ATet) GLP-1(7-37); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-37); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-38); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-38); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-38); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-38); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-39); GLP-1(7-38); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-38); Val*Arg**4Lys**5-(Glut-ATet) GLP-1(7-36); Ser**6lu**5-Arg**5-(3*4Lys**5-(Glut-ATet) Ser**6lu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Arg**5-(Slu**5-Ser⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-36), Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36), Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36) amide; Ser⁸Arg²⁶, ³⁴Lys²⁶-(Glut-ATet) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) Ser⁸Glu 50 $\begin{array}{l} Ser^8 Arg^{26} Lys^{34} \hbox{-} (Glut\hbox{-}ATet) \ GLP\hbox{-}1(7\hbox{-}37); \ Ser^8 Arg^{34} Lys^{26} \hbox{-} \\ (Glut\hbox{-}ATet) \ GLP\hbox{-}1(7\hbox{-}37); \ Ser^8 Arg^{26, \ 34} Lys^{36} \hbox{-} (Glut\hbox{-}ATet) \end{array}$ GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-38); Ser⁸Arg²⁶, 34Lys³⁸-(Glut-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Glut-ATet) GLP-1(7-39); Ser⁸Arg²⁶, 34Lys³⁹-(Glut-ATet) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Glut-ATet) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-ATet) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glut-ATet)
GLP-1(7-Alet) GLP-1(7-39); flir Arg Lys -(Glut-Alet) GLP-1(7-39); Thr⁸Arg²⁶, ³⁴Lys³⁹-(Glut-Alet) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-Alet) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-Alet) GLP-1(7-36); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-Alet) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-Alet) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(Glut-Alet) GLP-1(7-36); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-Alet) GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glut-Alet) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-Alet) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-Alet) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-Alet) GLP-1(7-36)amide; Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁶-(Glut-Alet) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸ (Glut-Alet) GLP-1(7-38) Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glut-ATet) GLP-1(7-39); Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-ATet) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ATet) GLP-1(7-39); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-ATet) GLP-1(7-37); 20 Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ATet) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ATet) GLP-1(7-39); Thr⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Glut-ATet) GLP-1(7-39); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁷-(Glut-ATet) GLP-1(7-37); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glut-ATet) GLP-1(7-38); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁸-(Glut-ATet) GLP-1(7-38); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-38); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-39); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Thr⁸Asp³⁶Arg^{26, GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36); GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁶-(Glut-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁶-(Glut-ATet) GLP-1(7 Inf Asp Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-30), and (Glut-ATet) GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36) amide; Arg^{26, 34}Lys²⁸-(Glut-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-37); Arg^{26, 34}Lys²⁸-(Glut-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁸-(Glut-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ATet) GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ATet) GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ATet) GLP-1(7-38); 34}Lys²³ Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36); Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36); Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36); Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36) amide; Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36) amide; Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36) amide; Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-36) amide; Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-37); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Gly 8 Asp 19 Arg 26, 34 Lys 23 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 19 Arg 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 26, 34 Lys 27 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 34 Lys 34 Lys 34 Lys 34 Lys 34 Lys 35 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 34 Lys 35 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 37 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 37 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 36 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38); Ser 8 Asp 37 Arg 36 Arg 37 Lys 37 (Glut-ATet) GLP-1(7-38 GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-38); (Glut-ATet) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glut-ATet) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ATet) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ATet) GLP-1(7-36); 51 Ser⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Glut-ATet) GLP-1(7-38); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-37); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁸-(Glut-ATet) GLP-1(7-37); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁹-(Glut-ATet) GLP-1(7-38); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁹-(Glut-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-ATet) GLP-1(7-38); GLP-(Glut-ATet) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36); Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glut-ATet) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-37): Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-37); Glut-ATet) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ATet) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ATet) GLP-1(7-38); Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-36); Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36); Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36); Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36), Arg³⁴Lys²⁶-(Gl Aftex) GLP-1(7-30), Aig Lys - (Glut-Allex) GLP-1(7-36) amide; Arg²⁶Lys²⁶-(Glut-Allex) GLP-1(7-36) amide; Arg²⁶, 3³⁴Lys³⁶-(Glut-Allex) GLP-1(7-36) amide; Arg²⁶, 3³⁴Lys³⁶-(Glut-Allex) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-37); Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-37); Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-37); Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-38); Arg^{26, 34}Lys³⁸-(Glut-AHex) GLP-1(7-25) 38); Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-39); Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-39); Arg^{26, 34}Lys³⁹-(Glut-AHex) Glp-1(7-39); Arg²⁶, S^aLys³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37);
Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg²⁶-(Glut-AHex) Gly⁸Arg²⁶-(Glut-AHe ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-38); Gly⁸Arg²⁶-(Glut-AHex) GLP-1 Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Gly⁸Arg²⁶ Lys³⁴-(Glut-AHex) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg²⁴Lys²⁶-(Glut-AHex) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, Val⁸Glu³⁵Arg³⁶-(Glut-AHex) Val⁸Glu³⁵ ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-36); $Val^8Arg^{34}Lys^{26}$ -(Glut-AHex) GLP-1(7-36); Val^8Arg^{26} 3⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-36)amide; Val⁸Arg³⁴Lys²⁶-(Glut-AHex) 45 GLP-1(7-36)amide; Val⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) Val⁸Arg²⁶-(Glut-AHex) GLP-1(7-36)amide; Val⁸-(Glut-AHex) Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); amide; Val⁸Arg²⁶Lys³⁴(Glut-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-38); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-38); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) Val⁸Asp³⁵Arg³⁶-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AHex) GLP-1(7-37); Val⁸As 34Lys³⁹-(Glut-AHex) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36); Ser⁸Arg²⁶ ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-37); 60 Ser⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1 (7-38); Ser⁸Arg^{26, 34}Lys³⁸-(Glut-M[]ex) GLP-1(7-38); $Ser^{8}Arg^{26}Lys^{34}$ -(Glut-AHex) GLP-1(7-39); 65 $Ser^8Arg^{34}Lys^{26}$ -(Glut-AHex) GLP-1(7-39); Ser^8Arg^{26} ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); $Thr^8 Arg^{26} Lys^{34}$ -(Glut-AHex) GLP-1(7-36); $Thr^8Arg^{34}Lys^{26}$ -(Glut-AHex) GLP-1(7-36); Thr^8Arg^{26} , 34Lys³⁶-(Glut-AHex) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶, 34Lys²⁶-(Glut-AHex) 34Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶, 34Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶, 34Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶, 34Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶, 34Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Arg⁸-(Glut-AHex) Thr⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸-(Glu 1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-37); $Thr^8Arg^{34}Lys^{26}$ -(Glut-AHex) GLP-1(7-37); Thr^8Arg^{26} , ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Glut-AHex) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1 (7-38); Thr⁸Arg²⁶. ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); Thr⁸Arg²⁶-Lys³⁴-(Glut-AHex) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glut-AHex) GLP-1(7-39); Thr⁸Arg²⁶. 1llr Alg Lys -(Glut-Allex) GLP-1(7-39); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36); 15 Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Gly⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Glut-AHex) GLP-1(7-37); Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Glut-AHex) GLP-1(7-38); Gly⁸Glu³⁸A-z^{26, 34}Lys³⁸-(Glut-AHex) GLP-1(7-39); Gly⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glut-AHex) GLP-1(7-39); Gly°Glu³Arg²⁶, ³⁴Lys³°-(Glut-AHex) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³6 (Glut-AHex) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³°-(Glut-AHex) GLP-1(7-36)amide; Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³³-(Glut-AHex) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³³-(Glut-AHex) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³³-(Glut-AHex) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁵-(Glut-AHex) GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³³-(Glut-AHex) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³³-(Glut-AHex) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³³-(Glut-AHex) GLP-1(7-38). Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); Val⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Glut-AHex) GLP-1(7-37); Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-36); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-39); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-S(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex)-1 LP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); S5 Ser⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Glut-AHex)GLP-1(7-39); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glut-AHex) GLP-1(7-37); Ser⁸Asp³⁷Arg^{26, 34}Lys³⁸-(Glut-AHex) GLP-1(7-38); 5 Ser⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Glut-AHex) GLP-1(7-36); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-31(7-36)amide; Thr⁸Glu³⁶Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-31(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); 10 Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AHex) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-38); 15 Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AHex) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glut-AHex) GLP-1(7-37); Thr⁸Asp³⁷Arg^{26, 34}Lys³⁸-(Glut-AHex) GLP-1(7-38); 20 Thr⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Glut-AHex) GLP-1(7-39); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glut-AHex) GLP-1(7-37); Thr⁸Asp³⁷Arg^{26, 34}Lys³⁸-(Glut-AHex) GLP-1(7-38); 25 Thr⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Glut-AHex) GLP-1(7-39); Arg^{26, 34}Lys¹⁸-(Glut-AHex) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glut-AHex) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glut-AHex) GLP-1(7-37); GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Gly³Asp¹³Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; 45 Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38). Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AHex) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glut-AHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AHex) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glut-AHex) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-AHex) GLP-1(7-38); 56 38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-37);
Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-38). Lys¹⁸Lys¹⁸Lys¹⁸Lys¹⁸Lys¹⁸Lys¹⁸Lys¹⁸Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-36); 38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁸-(Glut-AHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁸-(Glut-AHex) GLP-1(7-36); GLP-1(7 $\begin{array}{lll} Arg^{26, \ 34}Lys^{23}\text{-}(Glut\text{-}AHex) \ GLP\text{-}1(7\text{-}36); \ Arg^{26, \ 34}Lys^{23}\text{-}(Glut\text{-}AHex) \ GLP\text{-}1(7\text{-}36)amide; \ Arg^{26, \ 34}Lys^{23}\text{-}(Glut\text{-}AHex) \ GLP\text{-}1(7\text{-}37); GLP\text{-}1(7\text{-}38); GLP\text{$ Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); 5 Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AHex) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-37); GLP-1(7-38); Thr⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys 38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-37); 20 Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36) amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AHex) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36) amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glut-AOct) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶ Arg³⁴Lys²⁶-(Glut-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36)amide; Arg²⁶Lys³⁴-(Glut-3⁴Lys³⁶-(Glut-AOct) GLP-1(7-36)amide; Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-37); Arg²⁶Lys³⁶-(Glut-AOct) GLP-1(7-37); Arg²⁶Lys³⁶-(Glut-AOct) GLP-1(7-37); Arg²⁶Lys³⁶-(Glut-AOct) GLP-1(7-38); Arg²⁶-(Glut-AOct) GLP-1(7-38); Arg²⁶-(Glut-AOct) GLP-1(7-38); Arg²⁶Lys³⁶-(Glut-AOct) GLP-1(7-38); Arg²⁶Lys³⁶-(Glut-AOct) GLP-1(7-38); Arg²⁶Lys³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁶Arg²⁶, Gly⁸Asp³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁶-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁶-(Glut-AOct) G Gly⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-36); 35 Gly⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Arg^{26, 34}Lys³⁶-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Arg²⁶, 34Lys³⁶-(Glut-AOct) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Arg³⁶-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct)-GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); 40 Gly⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1 (7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); (7-38); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Asp³⁶-(Glut-AO (7-36)amide; Val⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-37); Val⁸Árg³⁴Lys²⁶-(Glut-AOct) GLP-1(7-37); Val⁸Árg²⁶, Val⁸Asp³⁶-(Glut-AOct) GLP-1(7-37); Val⁸Arg²⁶, Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-39); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-36); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-36); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-38); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-38); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-38); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-39); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-39); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-39); Val⁸Asp³⁵-(Glut-AOct) GLP-1(7-39); Val⁸-(Glut-AOct) GLP-1(7-36); Ser⁸-(Glut-AOct) Se ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Glut-AOct) AUCt) GLP-1(7-30)amide; Ser Arg 26, 34 Lys 36-(Glut-AOct) GLP-1(7-36); Ser Glu 35 Arg 26, 34 Lys 36-(Glut-AOct) GLP-1(7-36); amide; Ser Arg 26 Lys 34-(Glut-AOct) GLP-1(7-37); Ser Arg 34 Lys 34-(Glut-AOct) GLP-1(7-38); Ser Arg 26, 34 Lys 36-(Glut-AOct) GLP-1(7-36) amide; Ser Glu 36 Arg 26, 34 Lys 37-(Glut-AOct) GLP-1(7-37); Ser Glu 36 Arg 26, 34 Lys 37-(Glut-AOct) GLP-1(7-37); ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Ser ⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1 (7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Ser⁸ Arg²⁶ Lys³⁴-(Glut-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AOct) GLP-1(7-39); Thr⁸ Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-36); 15 AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1 (7-38); Thr⁸Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-AOct) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Arg²⁶, Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AOct) GLP-1(7-37); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-AOct) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glut-AOct) GLP-1(7-39); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-AOct) GLP-1(7-39); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Ser⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glut-AOct) GLP-1(7-39); ``` Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-AOct) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct)
GLP-1(7-38); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 15 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-37); Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-39); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glut-AOct) GLP-1(7-38); 17 Thr⁸A Lys⁻⁶-(Glut-AOct) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; GLP-1(7-37); Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; 34</sup>Lys³-(Glut-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys³-(Glut-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys³-(Glut-AOct) GLP-1(7-36)a 38); Scr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-AOct) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glut-AOct) GLP-1(7-36); 34}Lys³⁸-(Glut-AOct) GLP-1(38); ``` ``` Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-37); ³⁴Lys²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glut-AOct) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glut-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glut-AOct) GLP-1(7-37); 34</sup>-1(7-38); 34</sup>-1(7-3 Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-37); Val Asp - Arg - Lys - (Glut-AOct) GLP-1(7-37); Val Asp - Arg - Arg - Arg - (Glut-AOct) GLP-1(7-38); Val Asp - Arg - (Glut-AOct) GLP-1(7-38); Arg - (Glut-AOct) GLP-1(7-36); Arg - (Glut-AOct) GLP-1(7-37); (Glut-AO Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glut-AOct) GLP-1(7-36); ``` 61 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glut-AOct) GLP-1(7-38); 38); (Glut-AOct) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glut-AOct) GL ALit) GLP-1(7-36) amide; Gly⁸ Arg³⁴ Lys²⁶ - (Glut-ALit) GLP-1(7-36) amide; Gly⁸ Arg²⁶ - (Glut-ALit) GLP-1(7-36) amide; Gly⁸ Arg²⁶ - (Glut-ALit) GLP-1(7-36) amide; Gly⁸ Arg²⁶ Lys³⁴ - (Glut-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-37); Gly⁸Arg²⁶, (Glut-ALit) GLP-1(7-36); Val8Arg26, 34Lys36-(Glut-ALit) Ser⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) ³⁴Lys³⁶- 62 Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Arg³⁴Lys³⁴-(Glut-ALit) Ser⁸Arg³⁴-(Glut-ALit) GLP-1(ALit) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys³⁹-(Glut-ALit) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-AOct) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) Thr⁸Arg³⁴Lys³⁶-(Glut-ALit) GLP-1(7-38); ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys³⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁶Lys³⁶-(Glut-ALit) Thr⁸Arg³⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁶-(Glut-ALit) GLP-1(7-38); Thr⁸Arg⁸-(Glut-ALit) GLP-1(7-38); Thr⁸Arg⁸-(Glut-ALit) GLP-1(7-38); Thr⁸-(Glut-ALit) GLP-1 38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36); Thr⁸Asp¹⁸Asp¹⁸Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-AOct) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36); Arg³⁴Lys²⁶-(Glut-ALit) GLP-1(7-36); Arg³⁶Lys³⁶-(Glut-ALit) GLP-1(7-37); Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-ALit) GLP-1(7-38); Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36) amide; 36); Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-39); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, Gly⁸Asp³⁵Arg³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Asp³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Asp³⁶-(Glut-ALit) GLP-1(7-36); Gly⁸Asp³⁶-(Glut-ALit) Gly⁸Asp³⁶-(Glut-ALit) Gly⁸Asp³⁶-(Glut-ALit) Gly⁸Asp³⁶-(Glut-ALit) Gly⁸Asp³⁶-(Glut-A (Glut-ALit) GLP-1(7-36)amide; Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-37); Arg²⁶, 34Lys²⁶-(Glut-ALit) GLP-1(7-37); Arg²⁶, 34Lys²⁶-(Glut-ALit) GLP-1(7-37); Arg²⁶, 34Lys³⁶-(Glut-ALit) GLP-1(7-37); Arg²⁶, 34Lys³⁶-(Glut-ALit) GLP-1(7-37); GLP-1(7-38); Arg²⁶Lys³⁴-(Glut-ALit) GLP-1(7-38); Arg²⁶, 34Lys³⁶-(Glut-ALit) GLP-1(7-38); GLP-1(7-39); Arg²⁶, 34Lys³⁶-(Glut-ALit) GLP-1(7-39); Arg²⁶, 34Lys³⁶-(Glut-ALit) GLP-1(7-39); GLP-1(7-39); Arg²⁶, 34Lys³⁶-(Glut-ALit) GLP-1(7-36); GLP-1(7-36) Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); 45 Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ALit) GLP-1(7-39); Gly-Arg⁵ (Glut-ALit) GLP-1(7-37); Gly-Arg²⁶, 45 Val-Glu-ALit) GLP-1(7-39); Val-Sarg²⁶, 34 Lys³⁶ (Glut-ALit) GLP-1(7-36); Val-Sarg²⁶, 34 Lys³⁶ (Glut-ALit) GLP-1(7-36); Val-Sarg²⁶, 34 Lys³⁶ (Glut-ALit) GLP-1(7-37); Gly-Sarg²⁶, 34 Lys³⁶ (Glut-ALit) GLP-1(7-38); Gly-Sarg²⁶, 34 Lys³⁶ (Glut-ALit) GLP-1(7-37); Val-Sarg²⁶ (Glut-ALit) GLP-1(7-37); Val-Sarg²⁶, 34 Lys³⁶ (Glut-ALit) GLP-1(7-38); Val-Sarg²⁶ (Glut-ALit) GLP-1(7-38); Val-Sarg²⁶ (Glut-ALit) GLP-1(7-36); GLP-1(7-Val Asp Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Val Asp 26, 34 Lys 36 (Glut-ALit) GLP-1(7-39); Val Asp 26 Lys 34 (Glut-ALit) GLP-1(7-37); Val Asp 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Val Asp 35 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Val Asp 35 Arg 26, 34 Lys 36 (Glut-ALit)
GLP-1(7-36); Val Asp 35 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-37); Val Asp 36 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-37); Val Asp 36 Arg 26, 34 Lys 37 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 38 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GLP-1(7-38); Val Asp 36 Arg 26, 34 Lys 38 (Glut-ALit) GL Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-ALit) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-ALit) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glut-ALit) GLP-1(7-36)amide; 5 Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glut-ALit) GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glut-ALit) GLP-1(7-39); (7-38);Gly*Asp*Arg***-Lys**-(Glut-ALit) GLP-1(7-37); Gly*Asp*19Arg*26, 34Lys*27-(Glut-ALit) GLP-1(7-38); Gly*Asp*17Arg*26, 34Lys*27-(Glut-ALit) GLP-1(7-38); Arg*26, 34Lys*18-(Glut-ALit) GLP-1(7-36); Arg*26, 34Lys*18- 65 (Glut-ALit) GLP-1(7-36)amide; Arg*26, 34Lys*18-(Glut-ALit) GLP-1(7-37); Arg*26, 34Lys*18-(Glut-ALit) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36); ³⁴Lys²⁵-(Glut-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁵-(Glut-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁵-(Glut-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁶-(Glut-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁶-(Glut-ALit) GLP-1(7-36); Arg²⁶-(Glut-ALit) GLP-1(7-36); Arg²⁶-(Glut-ALit) GLP-1(7-36); Arg²⁶-(Glut-ALit) GLP-1(7-36); Ser*Asp 38 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Asp 35 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); GLP-1(7-36); Ser 8 Asp 36 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); GLP-1(7-37); Ser 8 Asp 36 Arg 26, 34 Lys 37 (Glut-ALit) GLP-1(7-37); Ser 8 Asp 38 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Asp 38 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Glu 35 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Glu 36 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Glu 36 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Glu 36 Arg 26, 34 Lys 36 (Glut-ALit) GLP-1(7-36); Ser 8 Glu 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Glu 37 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Glu 37 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 37 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 38 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 38 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Asp 36 Arg 26, 36 Lys 36 (Glut-ALit) GLP-1(7-38); Ser 8 Thr *Glu *37 Arg *26, *34 Lys *38, (Glut-ALit) GLP-1(7-38); Thr *Glu *38 Arg *26, *34 Lys *39, (Glut-ALit) GLP-1(7-39); Thr *Glu *35 Arg *26, *34 Lys *36, (Glut-ALit) GLP-1(7-36); Thr *Glu *36 Arg *26, *34 Lys *36, (Glut-ALit) GLP-1(7-36); Thr *SGlu *36 Arg *26, *34 Lys *37, (Glut-ALit) GLP-1(7-36); Thr *SGlu *36 Arg *26, *34 Lys *37, (Glut-ALit) GLP-1(7-37); Thr *SGlu *36 Arg *26, *34 Lys *37, (Glut-ALit) GLP-1(7-38); Thr *SGlu *36 Arg *26, *34 Lys *36, (Glut-ALit) GLP-1(7-38); Thr *SGlu *36 Arg *26, *34 Lys *36, (Glut-ALit) GLP-1(7-39); Thr *Sap *35 Arg *26, *34 Lys *36, (Glut-ALit) GLP-1(7-36); Thr *Sap *35 Arg *26, *34 Lys *37, (Glut-ALit) GLP-1(7-36); Thr *Sap *36 Arg *26, *34 Lys *37, (Glut-ALit) GLP-1(7-37); Thr *Sap *36 Arg *26, *34 Lys *37, (Glut-ALit) GLP-1(7-38); T (Glut-ALit) GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-38); GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Ar Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36); Glut-ALit) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) (7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glut-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ALit) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glut-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glut-ALit) GLP-1(7-38); 34</sup>Lys²⁸-(Glut-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glut-ALit) GLP-1(7-36); 34</sup>Lys¹⁸-(Glut-ALi Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glut-ALit) GLP-1(7-38); $\begin{array}{lll} Arg^{26, & 34}Lys^{23}\text{-}(Glut\text{-}ALit) & GLP\text{-}1(7\text{-}36); & Arg^{26, & 34}Lys^{23}\text{-}\\ (Glut\text{-}ALit) & GLP\text{-}1(7\text{-}36)amide; & Arg^{26, & 34}Lys^{23}\text{-}(Glut\text{-}ALit) \end{array}$ GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁸Asp²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-37); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36)amide; Thi Asp Aig Lys Chit List, CL L (17-37);
Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-38); Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-36); Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-36); Arg^{26, 34}Lys³⁶-(Aspa-ADod) GLP-1 (7-36); Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-36)amide; Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36)amide; Arg²⁶Lys³⁴- 25 (Aspa-ADod) GLP-1(7-37); Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-37); Arg^{26, 34}Lys³⁶-(Aspa-ADod) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Aspa-ADod) GLP-L1(7-36); Gly⁸Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-36); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴- 35 (Aspa-ADod) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-65 ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶(Aspa-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ADod) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ADod) GLP-4(7- $Thr^8Arg^{26}Lys^{34}$ -(Aspa-ADod) GLP-1(7-36); Thr^aAsp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glut-ALit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glut-ALit) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-38); ³⁴Lys³⁶-(Aspa-ADod) Thr⁸ Thr⁸Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys³⁸6(Aspa-ADod) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-3*Lys3*6(Aspa-ADod) GLP-1(7-38); Thr*Arg2*Lys3*-(Aspa-ADod) GLP-1(7-39); Thr*Arg3*Lys2*6-(Aspa-ADod) 20 GLP-1(7-39); Thr*Arg2*6, 3*Lys3*9-(Aspa-ADod) GLP-1(7-39); Gly*SGlu3*5Arg2*6, 3*Lys3*6-(Aspa-ADod) GLP-1(7-36); Gly*SGlu3*5Arg2*6, 3*Lys3*6-(Aspa-ADod) GLP-1(7-36)amide; Gly*SGlu3*6Arg2*6, 3*Lys3*8-(Aspa-ADod) GLP-1(7-37); Gly*SGlu3*Arg2*6, 3*Lys3*8-(Aspa-ADod) GLP-1(7-38); Gly*SGlu3*5Arg2*6, 3*Lys3*9-(Aspa-ADod) GLP-1(7-39); Gly*SGlu3*5Arg2*6, 3*Lys3*6-(Aspa-ADod) GLP-1(7-36); Gly*SGlu3*5Arg2*6, 3*Lys3*6-(Aspa-ADod) GLP-1(7-36)amide; Gly*SGlu3*6Arg2*6, 3*Lys3*6-(Aspa-ADod) GLP-1(7-37). GLP-1(7-37); Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-37); Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-38); Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Aspa-ADod) GLP-1(7-39); Arg²⁶, ³⁴Lys³⁸-(Aspa-ADod) GLP-1(7-39); Arg²⁶, ³⁴Lys³⁹-(Aspa-ADod) GLP-1(7-39); GLP-1(7-39); GLP-1(7-39); GLP-1(7-39); GLP-1(7-36); GLP-1(7-39); GLP-1(7-36); GLP-1(7 Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ADod) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ADod) GLP-1(7-39); 34Lys36-(Aspa-ADod) GLP-1(7-36); Gly8Arg26-Lys34- 35 Gly8Asp38Arg26, 34Lys36-(Aspa-ADod) GLP-1(7-36); Gly8Arg34Lys26-(Aspa-ADod) GLP-1(7-36)amide; Gly8Arg26, 34Lys36-(Aspa-ADod) GLP-1(7-36)amide; Gly8Arg26, 34Lys36-(Aspa-ADod) GLP-1(7-37); Gly8Arg36-(Aspa-ADod) GLP-1(7-37); Gly8Arg36-(Aspa-ADod) GLP-1(7-37); Gly8Arg36-(Aspa-ADod) GLP-1(7-37); Gly8Arg36-(Aspa-ADod) GLP-1(7-38); ""Lys" (Aspa-ADod) GLP-1(7-38); Gly Arg 26 Lys 34 - (Aspa-ADod) GLP-1(7-39); Gly Arg 34 Lys 26 - (Aspa-ADod) GLP-1(7-39); Gly Arg 26, 34 Lys 39 - (Aspa-ADod) GLP-1(7-36); Val Arg 26 Lys 34 - (Aspa-ADod) GLP-1(7-36); Val Arg 34 Lys 26 - (Aspa-ADod) GLP-1(7-36); Val Arg 34 Lys 36 - (Aspa-ADod) GLP-1(7-36); Val Arg 34 Lys 36 - (Aspa-ADod) GLP-1(7-36); Val Arg 36 Lys 36 - (Aspa-ADod) GLP-1(7-37); GLP-1(7-38); Val Arg 36 Lys 36 - (Aspa-ADod) GLP-1(7-37); Val Arg 36 Lys 36 - (Aspa-ADod) GLP-1(7-38); Val Arg 36 Lys 36 Lys 36 - (Aspa-ADod) GLP-1(7-38); Val Arg 36 Lys 36 Lys 36 - (Aspa-ADod) GLP-1(7-38); Val Arg 36 Lys GLP-1(7-37); Val⁸Arg²⁶-(Aspa-ADod) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ADod) GLP-1(7-38); Val⁸Arg³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Val⁸Arg³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-39); Val⁸Arg³⁴Lys²⁶-(Aspa-ADod) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Arg³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-38); Ser⁸Glu³⁵Arg Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ADod) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹(Aspa-ADod) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ADod) GLP-1(7-36)amide; | Ser*Glu** Ser* 68 | Separation | Gil-1(1-7), age | Separation | Separation | Gil-1(7-36); | Gily | Separation | Gil-1(7-36); | Gily | Separation 35 Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ADod) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ADod) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ADod) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36); 10 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36)amide; Thr³Asp¹³Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ADod) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-ADod) GLP-1(7-36); Arg²⁷-(Aspa-ADod) GLP-1(7-36); Arg²⁸-(Aspa-ADod) Arg² (Aspa-ADod) GLP-1(7-36) amide; Arg²⁶, 34 Lys²⁷-(Aspa-(Aspa-ADod) GLP-1(7-36) amide; Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-36) amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-36) amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ADod) GLP-1(7-38); Thr⁸Asp¹⁷Arg26,34Lys²⁷-(Aspa-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-36); Arg³⁴Lys²⁶-(Aspa-Arg - Lys - (Aspa-Alet) GLP-1(7-36); Arg - Lys - (Aspa-Alet) GLP-1(7-36); Arg - (Aspa-Alet) GLP-1(7-36); Arg - (Aspa-Alet) GLP-1(7-36); Arg - (Aspa-Alet) GLP-1(7-36); Arg - (Aspa-Alet) GLP-1(7-36) amide; Arg - (Aspa-Alet) GLP-1(7-37); Arg - (Aspa-Alet) GLP-1(7-38); Arg - (Aspa-Alet) GLP-1(7-38); Arg - (Aspa-Alet) GLP-1(7-38); Arg - (Aspa-Alet) GLP-1(7-38); Arg - (Aspa-Alet) GLP-1(7-36); Gly (Aspa-A ATet) GLP-1(7-38); Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-39); Arg³⁶Lys²⁶- ³⁵ Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ATet) GLP-1(7-37); 38); Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-39); Arg³⁶Lys²⁶- ³⁵ Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-38); (Aspa-ATet) GLP-1(7-39); Arg^{26, 34}Lys³⁹-(Aspa-ATet) (Aspa-Alet) GLP-1(7-39); Arg²⁶, Aspa-Alet) GLP-1(7-39); GLP-1(7-39); GLP-1(7-39); Gly⁸ Arg²⁶ Lys³⁴-(Aspa-ATet) GLP-1(7-36); Gly⁸ Arg²⁶, Aspa-ATet) GLP-1(7-36); GLP-1(7-36 $Gly^8Arg^{34}Lys^{26}$ -(Aspa-ATet) GLP-1(7-37); Gly^8Arg^{26} 34Lys³⁶-(Aspa-ATet) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Aspa-45) Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-38); Gly⁸Arg²⁶-(Aspa-ATet) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); 38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-38); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-36); Val⁸Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-36) amide; Val⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-36)amide; amide; Val⁸Arg²⁶, ³⁴Lys²⁶ (Aspa-ATet) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-37); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-37); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-39); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶ (Aspa-ATet) GLP-1(7-36); Ser⁸Arg³⁴ Lys²⁶ (Aspa-ATet) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶ Ser⁸Glu Ser⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-36); Ser⁸Arg²⁶ 3⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Aspa-65 ATet) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1 (7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-38); Ser⁸Arg²⁶, 3⁴Lys³⁸-(Aspa-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-36) amide; Thr⁸ Arg³⁴ Lys²⁶-(Aspa-ATet) GLP-1(7-36) amide; Thr⁸ Arg²⁶, ³⁴ Lys³⁶-(Aspa-ATet) GLP-1(7-36) amide; Thr⁸ Arg²⁶ Lys³⁴-(Aspa-ATet)
GLP-1(7-37); 15 Thr⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Aspa-ATet) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-38); Thr⁸Arg²⁶, 34Lys³⁸-(Aspa-ATet) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Aspà-ATet) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Aspa-ATet) GLP-1(7-39); Thr⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36)amide; Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ATet) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ATet) GLP-1(7-37); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-37); 50 Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-ATet) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ÁTet) GLP-1(7-37); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ATet) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ATet) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ATet) GLP-1(7-39); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-36); 72 ``` Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Aspa-ATet) GLP-1(7-37); Ser⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ATet) GLP-1(7-38); Ser⁸Glu³⁸Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-37); Ser⁸Asp³⁷Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-38); Ser⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Aspa-ATet) GLP-1(7-38); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-ATet) GLP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-35); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); See* Asp³⁵ Arg²⁵ . 341 ys³⁵ . (Aspa. Afte) GIP-1(7-36); Introduction of the seem se Gly *Asp ¹⁷ Arg ²⁶, ³⁴Lys ²³ - (Aspa-Atet) GLP-1(7-30) annual Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²³ - (Aspa-Atet) GLP-1(7-30); Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²³ - (Aspa-Atet) GLP-1(7-38); Gly *Asp ¹⁸ Arg ²⁶, ³⁴Lys ²³ - (Aspa-Atet) GLP-1(7-38); Gly *Asp ¹⁸ Arg ²⁶, ³⁴Lys ²³ - (Aspa-Atet) GLP-1(7-38); Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36) amide; Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36) amide; Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36) amide; Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36) amide; Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36) amide; Gly *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-38); Ser *Asp ¹⁹ Arg ²⁶, ³⁴Lys ²⁷ - (Aspa-Atet) GLP-1(7-36); Arg ²⁶, ³⁴Lys ³ 38); ``` ``` Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-36); Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-36)amide; 5 Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-ATet) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-ATet) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-ATet) GLP-1(7-37); Arg^{26, 34}Lys²³-(Aspa-ATet) GLP-1(7-37); Arg^{26, 34}Lys²³-(Aspa-ATet) GLP-1(7-38): Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-ATet) GLP-1(7-36); ``` Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ATet) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ATet) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ATet) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-38); 38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-37); Thr²Asp²Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-37); ³⁶, ³⁶Lys²⁷-(Aspa-ATet) GLP-1(7-37); Arg²⁷-(Aspa-ATet) GLP-1(7-37); Arg²⁸-(Aspa-ATet) GLP-1(7-37); Arg²⁸ Alet) GLP-1(7-37), Aug 38); IIII Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-36); 20 Thr⁷ Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-36); GLP Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-37); GLP Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-38); 25 39); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ATet) GLP-1(7-38); Gly⁸ Aro²⁶I vs³⁴-(Aspa-AHex) GLP-1(7-36); Arg³⁴Lys²⁶-(Aspa-ATet) Gly⁸ ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-37); Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-37); (7-38); Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-39); Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-39); Arg^{26, 34}Lys³⁹-(Aspa-AHex) GLP-1(7-39); (Aspa-AHex) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-37); 45 Gly⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Va18 Arg26 Lys34 - (Aspa-AHex) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Aspa-55 AHex) GLP-1(7-36)amide; Val⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-37); Val⁸Arg²⁶ ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-38); Val⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1 (7-38); Val⁸Arg^{26, 34}Lys³⁸-(Aspa-26 ex) GLP-1(7-38), Val⁸ Arg²⁶ Lys³⁴ - (Aspa-AHex) GLP-1(7-39); Val⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-39); Val⁸Arg²⁶ ³⁴Lys³⁹-(Aspa-AHex) GLP-A1(7-39); $Ser^8Arg^{26}Lys^{34}$ -(Aspa-AHex) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶ (Aspa-AHex) GLP ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1 (7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1 (7-36); Thr⁸Arg ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-15 (Aspa-AHex) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36)amide; Thr⁸Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-38); Thr⁸Arg² ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-39); Thr⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-36); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1 Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁶Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-39); Gly⁸Glu³⁸Arg²⁶, ³⁶Gly⁸Glu³⁸Arg²⁶, ³⁶Gly⁸Glu³⁸Arg²⁶, ³⁶Gly⁸Glu³⁸Arg²⁶, ³⁶Gly⁸Glu³⁸Arg²⁶, ³⁶Gly⁸Glu³⁸Arg²⁶,
³⁶Gly⁸G Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); Arg²⁶Lys³⁴-(Aspa-AHex) GLP-1(7-38); Arg³⁴Lys²⁶-(Aspa-AHex) GLP-1(7-38); Gly⁸Glu³⁷Arg²⁶, Jspa-AHex) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, Jspa-AHex) GLP-1(7-39); Gly⁸Glu³⁸Arg²⁶, Jspa-AHex) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); GLP-1(7-37); Gly⁸Arg²⁶ Lys³⁴-(Aspa-AHex) GLP-1(7-36); Gly⁸Arg²⁶ (Aspa-AHex) GLP-1(7-36); Gly⁸Arg²⁶, 40 Gly Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Gly⁸ Arg ²⁶ Lys ³⁴ - (Aspa-AHex) GLP-1(7-37); Val⁸ Glu³⁵ Arg ²⁶, ³⁴ Lys ³⁶ - (Aspa-AHex) GLP-1(7-36); Val⁸ Glu³⁵ Arg ²⁶, ³⁴ Lys ³⁶ - (Aspa-AHex) GLP-1(7-36); Val⁸ Glu³⁵ Arg ²⁶, ³⁴ Lys ³⁶ - (Aspa-AHex) GLP-1(7-36) idigiting idigiti Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-AHex) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Aspa-AHex) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; ``` Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Ser Glu Aig Ly3 (Aspa-AHex) GLP-1(7-36)amide; 5 Ser 8Glu 35 Arg 26, 34 Lys 36 (Aspa-AHex) GLP-1(7-37); Ser 8Glu 36 Arg 26, 34 Lys 37 (Aspa-AHex) GLP-1(7-38); GLP-1(7-38); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Ser Glu ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-39); Ser ⁸Asp ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-36); Ser ⁸Asp ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-36)amide; Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁷-(Aspa-AHex) GLP-1(7-37); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁸-(Aspa-AHex) GLP-1(7-38); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-36); Ser ⁸Asp ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-36); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-36); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-38); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-38); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-38); Ser ⁸Asp ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AHex) GLP-1(7-36); ³⁶, ³ Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Ser³Asp³Arg²⁶, ³⁴Lys³-(Aspa-AHex) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; 20 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; 25 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; 30 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AHex) GLP-1(7-36)amide; 35 Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Aspa-AHex) GLP-1(7-37); Thr³Asp³Arg²⁶, ³⁴Lys³⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AHex) GLP-1(7-39); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1 (7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; 45 Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; 45 Ser⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; 50ly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-37); 50ly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-38); 50ly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-38); 50ly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-38); 50ly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-37); GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); A Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); 55 Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); 55 Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁸Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁹Asp^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁹Asp^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Asp^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁹Asp^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); 65 Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; ``` ``` Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-37); GLP-1(7-38); Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys³⁶-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}-(Aspa- AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-AHex) GLP-1 (7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-38): (7-38); (7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁷Ag²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); ³⁴Lys¹⁸-(34) (Aspa-AHex) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1 (7-38); Ser⁸Asp¹⁹Arg^{26,
34}Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; ``` Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Aspa- 5 AHex) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Aspa-AHex) GLP-1 (7-38);Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; 10 Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-AHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³- 15 (Aspa-AHex) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-AHex) GLP-1 (7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36); 20 Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AHex) GLP-1(7-38); 25 Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1(7-37): Arg^{26, 34}Lys²⁷-(Aspa-AHex) GLP-1 7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36) mide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); ³⁴Ly Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AHex) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg³⁶-(Aspa-AOct) Gly⁸Gly⁸Arg³⁶-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Gly⁸Arg³⁶-(Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-36); Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36); Arg^{26, 34}Lys³⁶-(Aspa-AOct) GLP-1(7-36); Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-36)amide; Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36)amide; Arg²⁶, 40 ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-37); Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-37); Arg^{26, 34}Lys³⁶-(Aspa-AOct) GLP-1(7-37); Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-38); Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-38); Arg^{26, 34}Lys³⁸-(Aspa-AOct) GLP-1(7-45 38); Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-39); Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-39); Arg^{26, 34}Lys³⁹-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp³⁷Arg^{26, 34}Lys³⁹-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg^{26, 34}Lys³⁹-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-AOct) Gly⁸Asp³⁵Arg³⁶-(Aspa-AOct) Gly⁸Asp³⁵-(Aspa-AOct) Gly⁸Asp³⁵-(Aspa-34Lys³⁶-(Aspa-AOct) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁴-(Aspa-AOct) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Val⁸ Arg²⁶ Lys³⁴ - (Aspa-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Arg³⁴Lys²⁶-(Aspa-AOct) 65 GLP-1(7-36)amide; Val⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-37); 78 Val⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-37); Val⁸Arg²⁶, 3⁴Lys³⁶-(Aspa-AOct) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-38); Val⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-38); Val⁸Arg^{26, 34}Lys³⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Arg²⁶ (Aspa-AOct) GLP-1(7-39); Val⁸Arg²⁶ (Aspa-AOct) GLP-1(7-39); Val⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Ser⁸ Arg²⁶ Lys³⁴-(Aspa-AOct) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-37). Ser⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-37); Ser⁸Arg²⁶, 3⁴Lys³⁶-(Aspa-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1 (7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); $Thr^8 Arg^{26} Lys^{34} - (Aspa-AOct) GLP-1(7-36);$ Thr⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-37); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-37); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-30); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹(Aspa-AOct) GLP-1(7-39); Gly⁸Asp³⁸Arg^{26, 34}Lys³⁰(Aspa-AOct) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-AOct) GLP-1(7-36); 55 Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Aspa-AOct) GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Aspa-AOct) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Aspa-AOct) GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁶-(Aspa-AOct) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Glu³⁵Ar Thr Glu ³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-37); Thr ⁸Glu ³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Thr ⁸Glu ³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); ³⁶GLP-1(7-39); ³⁶GLP-1(7-3 Thr ⁸Glu ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AOct) GLP-1(7-36); Thr ⁸Glu ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr ⁸Glu ³⁶Arg ²⁶, ³⁴Lys ³⁶-(Aspa-AOct) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); 40 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-AOct) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-AOct) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-AOct) GLP-1(7-39); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) 38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Glp⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct)
GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AOct) GLP-1(7-37); 65 Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-AOct) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-AOct) GLP-1(7-38); 80 Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Aspa-AOct) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Aspa-AOct) GLP-1(7-38); 38); $\text{Val}^8 \text{Asp}^{19} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}36); \\ \text{Val}^8 \text{Asp}^{17} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}36); \\ \text{Val}^8 \text{Asp}^{19} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}36) \text{amide}; \\ \text{Val}^8 \text{Asp}^{19} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}36) \text{amide}; \\ \text{Val}^8 \text{Asp}^{19} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}37); \\ \text{Val}^8 \text{Asp}^{19} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{Val}^8 \text{Asp}^{17} \text{Arg}^{26, \ 3^4} \text{Lys}^{18} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}36) \text{amide}; \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}36) \text{amide}; \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{ASpa-AOct}) \ \text{GLP-1} (7\text{-}36) \text{amide}; \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{ASpa-AOct}) \ \text{GLP-1} (7\text{-}37); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{ASpa-AOct}) \ \text{GLP-1} (7\text{-}37); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{ASpa-AOct}) \ \text{GLP-1} (7\text{-}37); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{23} \text{-} (\text{Aspa-AOct}) \ \text{GLP-1} (7\text{-}38); \\ \text{Arg}^{26, \ 3^4} \text{Lys}^{26, 3^4}$ 38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-37); GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) 38); 38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-37); Aspa-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-38); 38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); 38); Val Arg Lys - (Aspa-ALit) GLP-1(7-39); Val Arg 26, 34Lys 18-(Aspa-AOct) GLP-1(7-36); Thr 8Asp 19 Arg 26, 34Lys 18-(Aspa-AOct) GLP-1(7-36); Thr 8Asp 19 Arg 26, 34Lys 18-(Aspa-AOct) GLP-1(7-36) amide; Thr 8Asp 19 Arg 26, 34Lys 18-(Aspa-AOct) GLP-1(7-36) amide; Thr 8Asp 19 Arg 26, 34Lys 18-(Aspa-AOct) GLP-1(7-36); Ser 8Arg 26-(Aspa-ALit) GLP-1(7 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-AOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(Aspa-AOct) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Aspa- 20 AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36)amide; 25 Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-37); Thr²Asp⁻¹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-AOct) GLP-1(7-37); Arg²⁷, ³⁸, ³⁸ 38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1p(7-36) amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36) 38); Thr⁸Arg^{26, 34}Lys²⁸-(Aspa-ALit) GLP-1(7-38); Thr⁸Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); Thr⁸Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); 36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36) amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-36) amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); 40; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); 41; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); 42; Thr⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); 42; Thr⁸Asp¹⁸Arg^{26, 34}Lys²⁷-(Aspa-AOct) GLP-1(7-38); 43; Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-36); 44; Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-37); 45; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-37); 46; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); 47; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-37); 47; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-37); 47; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); 48; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-37); 48; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); 48; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-37); 48; Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); 34</sup>Lys ALit) GLP-1(7-36); Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-36); Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36)amide; Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-36)amide; Arg²⁶, 45 Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Glu²⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; (Aspa-ALit) GLP-1(7-37); Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1 (7-37); Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); (Aspa-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-38); Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-38); Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-39); Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-39); Arg²⁶Lys³⁵-(Aspa-ALit) GLP-1(7-39); Arg²⁶Lys³⁶-(Aspa-ALit) GLP-1(7-39); Arg²⁶Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit)
GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, Gly⁸Asp³⁵Arg²⁶, Gly⁸Asp³⁵Arg²⁶, Gly⁸Asp³⁵Arg²⁶, Gly⁸Asp³⁶, GLP-1(7-39); Gly⁸Àrg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36); Gly⁸Arg²⁶, 55 Gly⁸Asp³⁸Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Arg³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-37); ALit) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-37); Val⁸Glu³⁵Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-38); Val⁸Glu³⁵Arg²⁶, 34Lys³⁶-(Aspa-ALit) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, 34Lys³⁸-(Aspa-ALit) GLP-1(7-38); GLP-1 ALit) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-39); 65 Gly⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-39); Gly⁸Arg²⁶ ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-36); Val⁸Arg²⁶, Val Ang Lys -(Aspa-ALit) GLP-1(7-36), val Ang ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Val Ang ²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36)amide; Val Ang ³⁴Lys ³⁶-(Aspa-ALit) GLP-1(7-36)amide; Val Ang ³⁴Lys ³⁶-(Aspa-ALit) GLP-1(7-37); Val Ang ³⁴Lys Val⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-37); Val⁸Arg²⁶, Val⁸ Arg²⁶ Lys³⁴ - (Aspa-ALit) GLP-1(7-39); Val⁸ Arg³⁴ Lys²⁶ - (Aspa-ALit) GLP-1(7-39); Val⁸ Arg²⁶, ALit) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1 (7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Aspa-ALit) GLP-1(7-36), amide; Thr⁸Arg²⁶(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys²⁶ (Aspa-ALit) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴ (Aspa-ALit) GLP-1(7-37); Thr⁸Arg²⁶(Aspa-ALit) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(Aspa-ALit) GLP-1(7-37); Thr⁸Arg²⁶, Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Gly⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Aspa-ALit) GLP-1(7-39); Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 84 ``` Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-37); GLP-1(7-38); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 10 Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 15 Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); 38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Aspa-ALit) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Aspa-ALit) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Aspa-ALit) GLP-1(7-38): Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); 20 Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-37); Ser ⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 25 Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Val^aAsp⁻¹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Altity GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) Ser⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Aspa-ALit) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 30 Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-37); 35 Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 35 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-37); 35 Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Asp³⁷Arg^{26, 34}Lys³⁸-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-38); Arg^{26, 34}Lys³⁶-(Aspa-ALit) GLP-1(7-36); GLP-1(7-38); GLP-1(7-38) Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Aspa-ALit) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Aspa-ALit) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7-36); Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7-37); Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7-37); Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7- ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-L Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); 38); ``` Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-37); (7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Val⁸Arg²⁶Lys²⁴-(Glyc-ADod) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-36); Arg²⁶,
³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁸-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-39); Val⁸Arg²⁶-(Glyc-ADod) Val⁸Arg³⁴-(Glyc-ADod) GLP-1(7-39); Val⁸-(Glyc-ADod) GLP-1(7-36); Val⁸ Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-37); 25 Thr³Asp²Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁸-(Aspa-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1 (7-36); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶ (Glyc-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg²⁶-(Glyc-ADod) GLP-1(7-38 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Aspa-ALit) GLP-1(7-36)amide; 35 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-36)amide; 35 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Aspa-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-39). Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Aspa-ALit) GLP-1(7-36); Thr³Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-39); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-38); Gly⁸Glu³⁶Arg²⁶, Gly⁸Gly³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-38); Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-38); Gly⁸Gly³⁶Arg²⁶, Gly⁸Gly³⁶-(Glyc-ADod) GLP-1(7-38); Gly⁸Gly³⁶-(Glyc-ADod) GLP-1(7-38); Gly⁸Gly³ Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; 45 Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Aspa-ALit) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36)amide; Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) Arg³⁶Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Arg³⁶Lys³⁶-(Glyc-ADod) Arg³⁶Lys³⁶ Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-36)amide; Arg²⁶, Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-36)amide; Arg²⁶, 3⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-37); Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-37); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-37); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-39); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-39); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-39); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-39); Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-39); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-38); Arg²⁶-(Glyc-ADod) GLP-1(7-39); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-38); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-38); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-38); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-38); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-38); Glys³Arg²⁶-(Glyc-ADod) GLP-1(7-36); GLP-1(7-36 Gly⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-36); Gly⁸Arg²⁶, 3³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Glyc-ADod) 65 GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg²⁶, 3⁴Lys³⁶-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-38); Gly⁸Arg²⁶-(Glyc-ADod) GLP-1 (7-38); Gly⁸Arg²⁶, 3⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Gly⁸Arg²⁶ Lys³⁴-(Glyc-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁶-(Glyc-ADod) GLP-1(7-37); Val⁸Arg²⁶-(Glyc-ADod) Val⁸-(Glyc-ADod) 20 Ser⁸ Arg²⁶ Lys³⁴-(Glyc-ADod) GLP-1(7-36); Ser⁸ Arg³⁴ Lys²⁶-(Glyc-ADod) GLP-1(7-36); Ser⁸ Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶-(Slyc-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶-(Lys³⁴-(Glyc-ADod) GLP-1(7-37); Ser⁸-(Glyc-ADod) GLP-1(7-36); GLP-1(7-37); Ser⁸ Ser⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1 (7-38); Thr⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴-(Glyc-ADod) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glyc-ADod) GLP-1(7-39); Thr⁸Arg²⁶, Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-38); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-39); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; 10 Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-38); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; 15 Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸ (Glyc-ADod) GLP-1(7-37); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37); (7-38); (7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-38); ³⁴Lys¹⁸-(Glyc-Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; 35 Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-37);
Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; 40 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36): Thr 8Glu 35 Arg 26, 34 Lys 36 - (Glyc-ADod) GLP-1(7-36); Thr 8Glu 35 Arg 26, 34 Lys 36 - (Glyc-ADod) GLP-1(7-36)amide; 45 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ADod) GLP-1(7-36)amide; 45 Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; 50 Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ADod) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ADod) GLP-1(7-39); Thr³Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-ADod) GLP-1(7-36)amide; 55 Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁹-(Glyc-ADod) GLP-1(7-39); Arg^{26, 34}Lys³⁸-(Glyc-ADod) GLP-1(7-36); GLP-1(7-37); Arg^{26, 34}Lys³⁸-(Glyc-ADod) GLP-1(7-36); Arg^{26, 34}Lys³⁸-(Glyc-ADod) GLP-1(7-37); Arg^{26, 34}Lys³⁸-(Glyc-ADod) GLP-1(7-37); Arg^{26, 34}Lys³⁸-(Glyc-ADod) GLP-1(7-36); Arg^{26, 34} (Glyc-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Glyc-60 ADod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1 Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36); 88 Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-36); Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1 Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-37); Arg²⁷-(Glyc-ADod) (Glyc-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1 (7-38);(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38): (7-38);Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; (7-38);Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-38); $\begin{array}{l} {\rm Arg^{26,\ 3^4Lys^{23}\text{-}(Glyc\text{-}ADod)\ GLP\text{-}1(7\text{-}36);\ Arg^{26,\ 3^4Lys^{23}\text{-}}(Glyc\text{-}ADod)\ GLP\text{-}1(7\text{-}36)amide;\ Arg^{26,\ 3^4Lys^{23}\text{-}(Glyc\text{-}ADod)\ GLP\text{-}1(7\text{-}37);\ Arg^{26,\ 3^4Lys^{23}\text{-}(Glyc\text{-}ADod)\ GLP\text{-}1} \end{array}$ Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); 5 Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Gly⁸ Arg²⁶ Lys³ - (Glyc-ATet) GLP-1(7-39); Gly⁸ Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36) amide; Cly-1(7-36); Val⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36) amide; Val⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36) amide; Val⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-37); Val⁸Arg²⁶-(Glyc-ATet) Val⁸-(Glyc-ATet) GLP-1(7-37); Val⁸-(Glyc-ATet) GLP-1(7-37); Val⁸-(Glyc-ATet) G Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Val⁸Arg²⁶-(Glyc-ATet) GLP-1(7-38); Val⁸Arg²⁶-(Glyc-ATet) GLP-1(7-38); Val⁸Arg²⁶-(Glyc-ATet) GLP-1(7-38); Val⁸Arg²⁶-(Glyc-ATet) GLP-1(7-39); Val⁸-(Glyc-ATet) Val⁸ Arg Lys -(Glyc-ADod) GLP-1(7-36); Arg Lys -(Glyc-ADod) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1 (7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-25); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg²⁶ (Glyc-ATet) G 36); Thr³Asp¹/Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-38); 40 Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ADod) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glyc-ADod) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ADod) GLP-1(7-37); 34</sup>Lys (7-38);(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-39); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36); Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-36); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36) amide; Arg²⁶-(Glyc-ATet) GLP-1(7-37); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-37); Arg²⁶-(Glyc-ATet) GLP-1(7-37); Arg²⁶-(Glyc-ATet) GLP-1(7-37); Arg²⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Arg²⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁶-(Glyc-ATet) GLP-1(7-38); Arg³⁶-(Glyc-ATet) GLP-1(7-38); Arg³⁶-(Glyc-ATet) GLP-1(7-39); Arg³⁶-(Gly Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-39); Arg^{26, 34}Lys³⁹-(Glyc-ATet) GLP-1(7- $Gly^8Arg^{26}Lys^{34}$ -(Glyc-ATet) GLP-1(7-36); 65 Gly⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-36); Gly⁸Arg²⁶, 3⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Glyc- ATet) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-3 (7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶ (Glyc-ATet) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶ (Glyc-ATet) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶ (Glyc-ATet) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶ (Glyc-ATet) GLP-1(7-37); Gly⁸Arg³⁶Lys³⁶ Gly⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-37); Gly⁸Arg²⁶, 3⁴Lys³⁶-(Glyc-ATet) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Gly⁸Arg²⁶Lys²⁶-(Glyc-ATet) GLP-1(7-38); Gly⁸Arg²⁶, 3⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38);
Gly⁸Arg²⁶, 3⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); (Glyc-ATet) GLP-1(7-37); Val⁸Arg^{26, 34}Lys³⁶-(Glyc-ATet) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Arg²⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Arg²⁶-(Glyc-ATet) GLP-1(7-36) amide; Ser⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36), 1lll Alg ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-37). Thr⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-37). Thr⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glyc-ATet) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); 45 Thr⁸Arg²⁶Lys³⁴-(Glyc-ATet) GLP-1(7-39); Gly-Asp Asp Asp Clys (Glyc-Alet) GLP-1(7-39); Gly⁸Asp Arg Co. 34 Lys Clyc-Alet) GLP-1(7-36); Gly⁸Asp Arg Co. 34 Lys Clyc-Alet) GLP-1(7-36) amide; Gly⁸Asp Arg Co. 34 Lys Clyc-Alet) GLP-1(7-37); Gly⁸Asp Arg Co. 34 Lys Clyc-Alet) GLP-1(7-38); Gly⁸Asp Co. 34 Lys Clyc-Alet) GLP-1(7-38); Gly⁸Asp Clyc-Alet) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Val S Glu S Arg 26, 34 Lys 36 - (Glyc-ATet) GLP-1(7-38); Val S Glu S Arg 26, 34 Lys 36 - (Glyc-ATet) GLP-1(7-39); Val S Glu S Arg 26, 34 Lys 36 - (Glyc-ATet) GLP-1(7-36); Val S Glu S Arg 26, 34 Lys 36 - (Glyc-ATet) GLP-1(7-36)amide; Val S Glu S Arg 26, 34 Lys 37 - (Glyc-ATet) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-37); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-39); 15 Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Val⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glyc-ATet) GLP-1(7-37); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-AIet) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-39); 25 Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-36); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-37); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-38); ³⁴Lys²³-(Glyc-Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-36); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-38); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); ³⁴Lys³⁶-(Glyc-Thr²Asp³Arg²⁶, ³⁴Lys³⁷-(Glyc-ATet) GLP-1(7-37); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-37); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁸-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁹-(Glyc-ATet) GLP-1(7-38 Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36); Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36); Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-37); Gly⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁸-(Glyc-ATet) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁸-(Glyc-ATet) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ATet) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ATet) Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36) Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-37); GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36); 93 Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ATet) GLP-1(7-38); 5 Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ATet) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Glyc-ATet) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Glyc-ATet) (Glyc-ATet) GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸ (Glyc-ATet) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-36); Ser Arg Lys²⁶-(Glyc-AHex) GLP-1(7-30); Ser Arg Lys²⁶-(Glyc-AHex) GLP-1(7-36); Lys²⁶-(Gl Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ATet) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-36); ³⁴Lys³³-(Glyc-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys³³-(Glyc-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁴-(Glyc-ATet) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁵-(Glyc-ATet) Arg³⁶, ³⁴Lys³⁵-(Glyc-ATet) GLP-1(7-36); Arg³⁶, ³⁴Lys³⁵-(Glyc-ATet) GLP-1(7-36); Arg³⁶, ³⁴Lys³⁶-(Glyc-ATet) GLP-1(7-36); Arg³⁶-(Glyc-ATet) Arg^{26, 34}Lys²³-(Glyc-Alet)
GLP-1(7-36); Arg^{26, 34}Lys²³-(Glyc-Alet) GLP-1(7-38); Ser⁸Arg²⁶ Lys³⁴-(Glyc-Alex) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys²³-(Glyc-Alet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-Alet) GLP-1(7-36); 30 Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-Alet) GLP-1(7-36); 31 Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-Alet) GLP-1(7-36) and contains the series of se Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ATet) GLP-1(7-37); Thr Asp Arg Lys -(Glyc-Aret) GLP-1(7-37), Thr Asp 19 Arg 26, 34 Lys 23 -(Glyc-Aret) GLP-1(7-38); Thr Asp 17 Arg 26, 34 Lys 23 -(Glyc-Aret) GLP-1(7-38); Arg 26, 34 Lys 27 -(Glyc-Aret) GLP-1(7-36); Arg 26, 34 Lys 27 -Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-37); Thr⁸Arg³⁶-(Glyc-Alex) GLP-1(7-37); Thr⁸Arg³⁶-(Glyc-Alex) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-37); Glys³⁶-(Glyc-Alex) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-Alet) GLP-1(7-38); Glys³⁶-(Glyc-Alex) GLP-1(7-36)amide; GLP-1(7-36 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ATet) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-ATet) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-36); Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1 (7-36); Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-36)amide; (7-36); Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-36)amide; Arg²⁶, Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-36)amide; Arg²⁶, Arg³⁶-(Glyc-AHex) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, Arg³⁷-(Glyc-AHex) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, Arg³⁶-(Glyc-AHex) GLP-1(7-38); Arg²⁶-(Glyc-AHex) GLP-1(7-37); Gly⁸Sap³⁵Arg²⁶, Arg³⁶-(Glyc-AHex) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, Gly⁸Asp³⁵-(Glyc-AHex) Gly⁸-(Glyc-AHex) GLP-1(7-36); Gly⁸-(Glyc-AHex) GLP-1(7-36); Gly⁸-(Glyc-AHex) GLP-1(7-36); Gly⁸-(Glyc-AHex) GLP-1(7-36); Gly⁸-(Glyc-AHex) GLP Arex) GLP-1(7-38); Arg Lys -(Glyc-Arex) GLP-1 Gly Asp Arg Lys -(Glyc-Arex) GLP-1(7-30) affilde; Glyc-Arex) GLP-1(7-39); Arg Lys -(Glyc-Arex) GLP-1(7-37); Glyc-Arex) GLP-1(7-39); GLP-1(7-39); GLP-1(7-36); GLP-1(7-3 ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Glyc-60 AHex) GLP-1(7-36)amide; Gly⁸Arg²⁶-(Glyc-AHex) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36)amide; Gly⁸Arg²⁶-(Glyc-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glyc- 65 (ex) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-38); 94 $Gly^8Arg^{26}Lys^{34}$ -(Glyc-AHex) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AHex) GLP-1(7-39); $Val^8 Arg^{26} Lys^{34} - (Glyc-AHex) GLP-1(7-36);$ Val⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-36); Val⁸Arg²⁶, 3⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-36)amide; Val⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-36)amide; Val⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36)amide; Val⁸Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-38); Val⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1 (7-38); Val⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-39); 15 Val⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AHex) GLP-1(7-39); Ser⁸ Arg²⁶ Lys³⁴ - (Glyc-AHex) GLP-1(7-36); $\operatorname{Ser^8Arg^{34}Lys^{26}}$ -(Glyc-AHex) GLP-1(7-36); $\operatorname{Ser^8Arg^{26}}$, Ser⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶, 3³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴-(Glyc-25 AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1 (7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-38); 34Lys³⁶-(Glyc-AHex) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) Thr⁸Arg²⁶-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Arg²⁶-(Glyc-AHex) Arg²⁶-(Glyc-AHex) Arg²⁶-(Glyc-AHex) Arg²⁶-(Glyc-AHex) Arg²⁶-(Gly 35 1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glyc-AHex) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(Glyc-AHex) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AHex) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36)amide; 45 Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-AHex) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AHex) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-AHex) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AHex) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AHex) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-AHex) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AHex) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AHex) GLP-1(7-39); 96 ``` Thr⁸Asp³⁸Arg Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-AHex) GLP-1(7-30), Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-AHex) GLP-1(7-37); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁸-(Glyc-AHex) GLP-1(7-38); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁸-(Glyc-AHex) GLP-1(7-39), Arg^{26, 34}Lys³⁸-(Glyc-AHex) GLP-1(7-30), Arg^{26, 34}Lys³⁸-(Glyc-AHex) GLP-1(7-36), Glyc-AHex) GLP-1(7-36) amide; Arg^{26, 34}Lys³⁸-(Glyc-AHex) GLP-1 (7-38); Clyseap (Glyc-AHex) GLP-1(7-36), Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1 (7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1 (7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1 (7-36) amide; Ser⁸Asp¹⁹Arg Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-37); Glyc-AHex) GLP-1(7-37); (7-38); ``` ``` Val⁸Asp¹⁵Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-37); GLP-1 Ser Asp - Arg - 1 - Lys - (Glyc-AHex) GLP-1(7-5/); Ser Asp - 19 Arg - 26, 34 Lys - (Glyc-AHex) GLP-1(7-38); Ser Asp - 17 Arg - 26, 34 Lys - (Glyc-AHex) GLP-1(7-38); Arg - 26, 34 Lys - (Glyc-AHex) GLP-1(7-36); Arg - 34 Lys - 34 Lys - (Glyc-AHex) GLP-1(7-36); (Glyc-AHex) GLP-1(7-36); Arg - 36, 34 Lys Ly AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1 Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-36); ``` Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-38); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glyc-AHex) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-AHex) GLP-1(7-37); GLP-(7-38);(7-38); Val Arg Lys - (Glyc-AOct) GLP-1(7-30); val Arg Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-36); ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-36) amide; Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-36) amide; Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-36) amide; Val Sarg 26 Lys 34 Lys 28 - (Glyc-AOct) GLP-1(7-37); Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-38); Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-38); Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-38); Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-38); Ser Sasp 19 Arg 26, 34 Lys 27 - (Glyc-AHex) GLP-1(7-38); Ser Sasp 19 Arg 26, 34 Lys 38 - (Glyc-AHex) GLP-1(7-38); Ser Sasp 19 Arg 26, 34 Lys 38 - (Glyc-AHex) GLP-1(7-38); Val Sarg 34 Lys 38 - (Glyc-AOct) GLP-1(7-38); Val Sarg 34 Lys 38 - (Glyc-AOct) GLP-1(7-38); Val Sarg 36 - (Glyc-AOct) GLP-1(7-38); Val Sarg 36 - (Glyc-AOct) GLP-1(7-37); Val Sarg 36 - (Glyc-AOct) GLP-1(7-38); GLP-1 (Glyc-AHex) GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1 (7-38);7-30); 20 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AHex) GLP-1(7-37); 25 Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1(7-3/); 25 Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-36) amide; Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶-(Glyc-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-39); Ser⁸Arg²⁶-(Glyc-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Glyc-AOct) Ser⁸Arg³⁴Lys³⁶-(Glyc-AOct) Ser⁸Arg³⁶-(Glyc-AOct) Se Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-AHex) GLP-1(7-36)amide; 35 Thr⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AHex) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-36); (7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-36)amide; 45 Thr⁸Arg²⁶ Lys³⁴-(Glyc-AOct) GLP-1(7-39); Thr⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-AHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-37);
Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-AHex) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-36); Arg³⁴Lys²⁶-(Glyc- 50 AOct) GLP-1(7-36); Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36); Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-36)amide; Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Arg²⁶Lys³⁴-Glyc-AOct) GLP-1(7-36) amide; Arg²⁶Lys³⁴- (Glyc-AOct) GLP-1(7-36) amide; Arg²⁶Lys³⁴- (Glyc-AOct) GLP-1(7-37); Arg²⁶, 3⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); Arg²⁶, 3⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-38); Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-39); Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-39); Arg²⁶Lys³⁶-(Glyc-AOct) GLP-1(7-36); GLP-1(7-39); GLP-1(7-39); GLP-1(7-36); $Gly^{8}Arg^{26}Lys^{34}$ -(Glyc-AOct) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-36); Gly⁸Arg²⁶, 3³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Glyc-AOct) 65 GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-37); $Gly^8 Arg^{34} Lys^{26} \hbox{-} (Glyc\hbox{-}AOct) \quad GLP\hbox{-}1(7\hbox{-}37); \quad Gly^8 Arg^{26},$ 3⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1 (7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); Va1⁸ Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-36); Val⁸Arg²⁶, Val⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-39); Val⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-39); Val⁸Arg²⁶, Val Arg Tys Carlot GLP-1(7-39); var Arg Lys Carlot GLP-1(7-39); Ser Arg Carlot GLP-1(7-39); Ser Arg Carlot GLP-1(7-36); Ser Arg Carlot GLP-1(7-36) amide; Ser Arg Carlot GLP-1(7-36) amide; Ser Arg Carlot GLP-1(7-36) amide; Ser Arg Carlot GLP-1(7-36) GLP-1(7-36); Ser Arg Carlot GLP-1(7-36) GLP-1(7-36); Ser Arg Carlot GLP-1(7-36) GLP-1(7-37); ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-37); ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); ³⁵Lys³⁶-(Glyc-AOct) GLP-1(7-37); ³⁶Lys³⁶-(Glyc-AOct) GLP-1 Thr ⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(Glyc-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1 (7-38); Thr⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(Glyc-AOct) GLP-1(7-39); Thr⁸Arg²⁶, Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); Gly⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Gly⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-AOct) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Val⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Glyc-AOct) GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Glyc-AOct) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glyc-AOct) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Val⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Glyc-AOct) GLP-1(7-37); Val⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Glyc-AOct) GLP-1(7-38); Val⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glyc-AOct) GLP-1(7-39); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-36); Val⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-AOct) GLP-1(7-37); Val⁸Asp³⁶Arg^{26, 34}Lys³⁸-(Glyc-AOct) GLP-1(7-38); Val⁸Asp³⁸Arg^{26, 34}Lys³⁸-(Glyc-AOct) GLP-1(7-38); Val⁸Asp³⁸Arg^{26, 34}Lys³⁸-(Glyc-AOct) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); 15 Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Nation of the properties th Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-AOct) GLP-1(7-37); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Thr⁸Glu³7Arg²⁶, ³⁴Lys³-(Glyc-AOct) GLP-1(7-37); Val Asp Aig Lys -(Glyc-AOct) GLP-1(7-37), Thr⁸Glu³7Arg²⁶, ³⁴Lys³-(Glyc-AOct) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-38); Thr⁸Glu³5Arg²⁶, ³⁴Lys³-(Glyc-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) ³⁴Lys²⁸-(Glyc-AOct) Arg²⁶-(Glyc-AOct) GLP-1(7-Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-AOct) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-AOct) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-AOct) GLP-1(7-39); **Sp** Arg** of Str.** (Glyc-AOct) GLP-1(7-36) amide; Thr** Asp** Arg** of Str.** (Glyc-AOct) GLP-1(7-36); Thr** Asp** Arg** of Str.** (Glyc-AOct) GLP-1(7-38); Thr** Asp** Arg** of Str.** (Glyc-AOct) GLP-1(7-36); GLP-1(7-38); Thr** Asp** Arg** of Str.** (Glyc-AOct) GLP-1(7-38); Thr** Asp** Arg** of Str.** (Glyc-AOct) GLP-1(7-38); Glyc-AOct) GLP-1(7-36); Arg** of Str.** (Glyc-AOct) 100 Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AOct) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AOct) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-38); 38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-38); (Glyc-AOct) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-37); Arg²⁶, 34Lys²³-(Glyc-AOct) GLP-1(7-Nal⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-37); (Glyc-AOct) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-50 Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-AOct) GLP-1(7-36)amide; 102 Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-36); Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-37); Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-38); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ - (Glyc-AOct) GLP-1(7-36); ₅ Ser⁸ Asp¹⁷ Arg²⁶, ³⁴ Lys²³ - (Glyc-AOct) GLP-1(7-36); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ - (Glyc-AOct) GLP-1(7-36) amide; Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ - (Glyc-AOct) GLP-1(7-37); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ - (Glyc-AOct) GLP-1(7-37); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ - (Glyc-AOct) GLP-1(7-37); Scr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-37); Scr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-38); Scr⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36); ACCT) GLP-1(7-37); ACCT) GLP-1(7-37); ACCT) GLP-1(7-36) amide; ACCT) GLP-1(7-36); Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36); Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36); Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36) amide; Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36) amide; Scr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-36); 34</sup>Lys¹⁸ (Glyc-AOct) GLP-1(7-36) amide; Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-36); 25 Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-37); Glyc-AOct) GLP-1(7-37); Ser⁸Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-38); Glyc-AOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(Glyc-AOct) GLP-1(7-38); Glyc-AOct) GLP-1(7-38); Ser⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Ser⁸Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-36); Arg^{26, 34}Lys³⁹-(Glyc-ALit) Arg³⁰-(Glyc-ALit) Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1 (7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1 (7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-AOct) GLP-1(7-38); Thr⁸Asp²⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg²⁶-(Glyc-ALit) GLP-1(7-39); Thr⁸Arg²⁶-(Gl
Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-36); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-AOct) GLP-1(7-37); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁸-(Glyc-ALit) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁹-(Glyc-ALit) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁹-(Glyc-ALit) GLP-1(7-39); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-ALit) Gly⁸Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Gly⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg⁸-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg⁸-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg⁸-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg⁸-(Glyc-Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36); Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36); Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7- 55 36); Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36) amide; Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36) amide; Arg²⁶Lys³⁶-(Glyc-ALit) GLP-1(7-36) amide; Arg²⁶Lys³⁶-(Glyc-ALit) GLP-1(7-37); Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-38); Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1 (7-38); Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Àrg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-39); Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Arg^{26, 34}Lys³⁹-(Glyc-ALit) GLP-1(7-Gly⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg²⁶, 34Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1 (7-36)amide; Gly⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Gly⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Gly⁸Arg²⁶-(Lys³⁴-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg²⁶-(Glyc-ALit) Gly⁸-(Glyc-ALit) Glyc-1(Glyc-ALit) GLP-1(7-39); Glyc-1(Glyc-ALit) GLP-1(7-39); Glyc-Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg²⁶, Gly⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg²⁶, 3⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36) amide; Val⁸Arg²⁶Lys³⁶-(Glyc-ALit) GLP-1(7-36) amide; Val⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36) amide; Val⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36) amide; Val⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Arg²⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Arg²⁶-(Glyc-ALit) GLP-1(7-39); 39); Val⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36); Ser⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36); Ser⁸Arg²⁶-(Glyc-ALit) GLP-1(7-36) amide; Ser⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit)-GLP1 (7-39); 35 Thr⁸Arg²⁶Lys³⁴-(Glyc-ALit) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Arg² Thr⁸Arg³⁴Lys²⁶-(Glyc-ALit) GLP-1(7-39); Thr⁸Arg²⁶, Gly⁸Glu³⁸Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-39); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; 55 Gly⁸Glu³⁶Arg^{26, 34}Lys³⁷-(Glyc-ALit) GLP-1(7-37); Gly⁸Glu³⁷Arg^{26, 34}Lys³⁸-(Glyc-ALit) GLP-1(7-38); Gly⁸Glu³⁸Arg^{26, 34}Lys³⁹-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp³⁵Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; 60 Gly⁸Asp³⁶Arg^{26, 34}Lys³⁶-(Glyc-ALit) GLP-1(7-37); Gly⁸Asp³⁷Arg^{26, 34}Lys³⁸-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp³⁸Arg^{26, 34}Lys³⁸-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp³⁸Arg^{26, 34}Lys³⁸-(Glyc-ALit) GLP-1(7-39): Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); Gly Asp Arg Clys -(Glyc-ALit) GLP-1(7-39); Gly Asp SArg Clys -(Glyc-ALit) GLP-1(7-36); Gly Asp Clys Clys -(Glyc-ALit) GLP-1(7-36) amide; Gly Asp Clys -(Glyc-ALit) GLP-1(7-37); Gly Asp Asp Clys -(Glyc-ALit) GLP-1(7-37); Gly Asp Clys -(Glyc-ALit) GLP-1(7-38); Gly Asp Clys -(Glyc-ALit) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ALit) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ALit) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-37); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); 15 Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Val⁸Asp³⁶Arg^{26, 34}Lys³⁷-(Glyc-ALit) GLP-1(7-37); Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Val⁸Asp38Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(Glyc-ALit) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); 25 Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser ⁸Glu ³⁶Arg ²⁶, ³⁴Lys ³⁷-(Glyc-ALit) GLP-1(7-30); Ser ⁸Glu ³⁷Arg ²⁶, ³⁴Lys ³⁸-(Glyc-ALit) GLP-1(7-38); Ser ⁸Glu ³⁸Arg ²⁶, ³⁴Lys ³⁶-(Glyc-ALit) GLP-1(7-39); Ser ⁸Asp ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Glyc-ALit) GLP-1(7-36); Ser ⁸Asp ³⁵Arg ²⁶, ³⁴Lys ³⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, GLP-1(7-37); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); 45 Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-39); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-37); Thr²Asp³Arg²⁶, ³⁴Lys³⁷-(Glyc-ALit) GLP-1(7-37); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-37); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁸Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁸Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁸Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-37); Ser⁸Asp¹⁸Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-38); ³⁴Lys²⁸-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁸Arg²⁶, ³⁴Lys³⁸-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁸Arg²⁶, ³⁴ GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36); 65 Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36)amide; 104 Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²³(Glyc-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(Glyc-ALit) GLP-1(7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁸-(Glyc-ALit) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, Val⁸Asp¹⁹-(Glyc-ALit) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ALit) GLP-1(7-36);
Val⁸Asp¹⁹-(Glyc-ALit) GLP-1(7-36); Val⁸Asp¹⁹-(Glyc-ALit Val Asp ¹⁷Arg ²⁶, ³⁴Lys ¹⁸-(Glyc-ALit) GLP-1(7-36); Val Asp ¹⁹Arg ²⁶, ³⁴Lys ¹⁸-(Glyc-ALit) GLP-1(7-36) amide; Val Asp ¹⁷Arg ²⁶, ³⁴Lys ¹⁸-(Glyc-ALit) GLP-1(7-36) amide; Val Asp ¹⁹Arg ²⁶, ³⁴Lys ¹⁸-(Glyc-ALit) GLP-1(7-37); (Glyc-ALit) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glyc-ALit) 45 GLP-1(7-37); Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; 50 Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-38); Val⁸Asp¹⁵Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glyc-ALit) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glyc-ALit) GLP-1(7-36); Glyc-ALit) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(Glyc-ALit) 55 GLP-1(7-37): Arg^{26, 34}Lys¹⁸-(Glyc-ALit) GLP-1(7-38); GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ALit) GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(Glyc-ALit) GLP-1(7-38); 5 Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-38); Ser⁸Asp¹⁸-(Glyc-ALit) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(Glyc-ALit) GLP-1(7-38); Glyc-ALit) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(Glyc-ALit) GLP-1(7-38); (Glyc-ALit) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys¹⁶-(Glyc-ALit) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-11(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36); 20 Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36) amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36) amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-36) amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(Glyc-ALit) GLP-1(7-38); 25 Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); (Glyc-ALit) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(Glyc-ALit) (Glyc-ALit) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(Glyc-ALit) GLP-1(7-38); GGAB-GDod) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Arg^{26, 34}Lys²⁶-(GAB-GDod) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36)amide; Thr⁸Arg²⁶-(GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-36); GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-38); GAB-GDod) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys²⁶-(GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(Glyc-ALit) GLP-1(7-38); GAB-GDod) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys³⁶-(GAB-GDod) GLP-1(7-36); GBP-1(7-39); GBP-1(7-36); GBP-1(7-36) Arg²⁶Lys³⁴-GAB-GDod) GLP-1(7-36); Arg³⁴Lys²⁶-(GAB-Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-36); Arg²⁶Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); GAB-GDod) GLP-1(7-36)amide; Arg²⁶Lys³⁴- 50 Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-39); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸-(GAB-GDod) Gly⁸-(GAB-GD (GAB-GDod) GLP-1(7-37) Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁶-(GAB-GDod) GLP-1(7-37); Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-38); Arg²⁶Lys³⁸-(GAB-GDod) Arg²⁶-(GAB-GDod) Arg Gly Glu Arg - 1 (7-38); Arg - 34 Lys - (GAB-GDod) GLP-1 (7-37); Gly Glu Arg - 1 (7-38); Arg - 34 Lys - (GAB-GDod) GLP-1 (7-39); Gly Glu - 37 Arg - 34 Lys - (GAB-GDod) GLP-1 (7-39); Gly (GAB-GD (GAB-GDod) GLP-1(7-39); $Gly^8Arg^{26}Lys^{34}$ -(GAB-GDod) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Arg²⁶, 34Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴- 60 (GAB-GDod) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GDOD) GDod) GLP-1(7-36)amide; Gly8Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); 65 Gly⁸Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴-(GAB-GDod) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-39); Va1⁸ Arg ²⁶ Lys ³⁴ - (GAB-GDod) GLP-1(7-36); Va1⁸ Arg ³⁴ Lys ²⁶ - (GAB-GDod) GLP-1(7-36); Va1⁸ Arg ²⁶, ³⁴ Lys ³⁶ - (GAB-GDod) GLP-1(7-36); Va1⁸ Arg ²⁶ Lys ³⁴ - (GAB-GDod) GLP-1(7-36)amide; Va1⁸ Arg ³⁴ Lys ³⁶ - (GAB-GDod) GLP-1(7-36)amide; Va1⁸ Arg ²⁶, ³⁴ Lys ³⁶ - (GAB-GDod) GLP-1(7-37); Va1⁸ Arg ³⁴ Lys ²⁶ - (GAB-GDod) GLP-1(7-37); Va1⁸ Arg ²⁶, ³⁴ Lys ³⁶ - (GAB-GDod) GLP-1(7-37); Va1⁸ Arg ²⁶, (GAB-GDod) GLP-1(7-38); Va1⁸ Arg ³⁴ Lys ³⁶ - (GAB-GDod) GLP-1(7-38); Va1⁸ Arg ³⁴ Lys ³⁶ - (GAB-GDod) GLP-1(7-38); Va1⁸ Arg ³⁶ Lys ³⁶ - (GAB-GDod) GLP-1(7-38); Va1⁸ Arg ²⁶ Lys ³⁴ - (GAB-GDod) GLP-1(7-38); Va1⁸ Arg ²⁶ Lys ³⁶ - (GAB-GDod) GLP-1(7-38); Va1⁸ Arg ²⁶ Lys ³⁶ - (GAB-GDod) GLP-1(7-39); Va1⁸ Arg ³⁶ (GAB-GD Ser⁸ Arg²⁶ Lys³⁴ - (GAB-GDod) GLP-1(7-36); Ser⁸ Arg³⁴ Lys²⁶ - (GAB-GDod) GLP-1(7-36); Ser⁸ Arg²⁶, Ser Arg Lys - (GAB-GDod) GLP-1(7-36); Ser Arg 26, 34 Lys 36 - (GAB-GDod) GLP-1(7-36); Ser Arg 26 Lys 34 - (GAB-GDod) GLP-1(7-36)amide; Ser Arg 34 Lys 36 - (GAB-GDod) GLP-1(7-36)amide; Ser Arg 26, 34 Lys 36 - (GAB-GDod) GLP-1(7-36)amide; Ser Arg 26 Lys 34 - (GAB-GDod) GLP-1(7-37); Ser Arg 26, 34 Lys 36 - (GAB-GDod) GLP-1(7-37); Ser Arg 26, 34 Lys 36 - (GAB-GDod) GLP-1(7-37); Ser Arg 26, 34 Lys 36 - (GAB-GDod) GLP-1(7-38) $\operatorname{Ser}^{8}\operatorname{Arg}^{26}\operatorname{Lys}^{34}$ -(GAB-GDod) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(GAB-GDod) GLP-1(7-38); Ser⁸Arg²⁶ Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36) amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-37); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36) amide; Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GDod) GLP-1(7-37); Gly⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-39); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36)amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GDod) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36) amide; Val⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); Val⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Val⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-39); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Val⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); Ser⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-38); Ser⁸Glu Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GDod) GLP-1(7-37); 25 (7-38); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Val⁸As Val⁸As Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Val⁸As Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁷-(GAB-GDod) GLP-1(7-37); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); GAB-GDod) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); GAB-GDod) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); 35 (7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); 35 (7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Val⁸As Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³-(GAB-GDod) GLP-1(7-37); 35 Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37); 40 Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GDod) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GDod)
GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-36); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GDod) GLP-1(7-37): 45 108 Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1 (7-38); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-37); Gly⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-38); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-38): (7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36); Gly⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36) amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-38); Gly⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-38); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1 (7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36); Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36); Val⁸Asp^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-38); (7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-37); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-38); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-37); GLP-1(7-38); 110 Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-37); 5 Ser⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-38); Ser⁸Asp¹⁷Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-38); Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1 10 (7-38);(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; 15 Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-38); Arg²⁶, ³⁴Lys¹⁸-(GAB-GDod) GLP-1(7-36); Arg²⁶, ³⁴Lys¹⁸-Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36), Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1 (7-38);Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GDod) GLP-1(7-36); Ser⁸Arg²⁶-(GAB-GTet) GLP-1(7-36); GAB-GDod) GLP-1(7-36); Ser⁸Arg²⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Arg²⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Arg²⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Arg²⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Arg²⁶-(GAB-GTet) GLP-1(7-36) amide; Ser⁸Arg²⁶-(Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GDod) GLP-1(7-37); Thr³Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(GAB-GDod) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³- ³⁰(GAB-GDod) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1 Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GDod) GLP-1(7-36); Thr Asp Arg Lys -(OAB-ODdd) GLP-1(7-36); 25 (OAB-OR) GLP-1(7-36); 35 Thr Asp 19 Arg 26, 34 Lys 23 -(GAB-GDod) GLP-1(7-36); 35 Thr Arg 26 Lys 34 -(GAB-GTet) GLP-1(7-36); Thr Arg 26, 34 Lys 28 -(GAB-GTet) GLP-1(7-36); Thr Arg 26, 34 Lys 26 GL Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GDod) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); (GAB-GDod) GLP-1(7-36)amide; Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1(7-37); Arg^{26, 34}Lys²⁷-(GAB-GDod) GLP-1 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-30), ⁴⁵ Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GDod) GLP-1(7-36); 45 Thr⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-39); Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-36); Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-36); Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-GTet) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Arg³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Arg³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-36) amide; Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-37); Arg²⁶Lys³⁶-(GAB-GTet) GLP-1(7-37); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Slu³⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Asp³⁸Arg²⁶, Gly⁸Asp³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Asp³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Asp³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Asp³⁸-(GAB-GTet) Gly⁸Asp³⁸-(GAB-G GLP-1(7-39); $Gly^8 Arg^{26} Lys^{34}$ -(GAB-GTet) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-36)amide; Gly⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-36)amide; Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Gly⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-39); Gly⁸Arg³⁴Lys³⁶-(GAB-GTet) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-39); $\operatorname{Ser}^{8}\operatorname{Arg}^{26}\operatorname{Lys}^{34}$ -(GAB-GTet) GLP-1(7-36); GLP-1(7-36)amide; Ser Arg 1-1 Lys 1-(GAB-G1et) GLP-1(7-36)amide; Ser Arg 2-6 Lys 3-4 - (GAB-G1et) GLP-1(7-37); Ser 8 Arg 3-4 Lys 2-6 - (GAB-G1et) GLP-1(7-37); Ser 8 Arg 2-6 - (GAB-G1et) GLP-1(7-37); Ser 8 Arg 2-6 - (GAB-G1et) GLP-1(7-38); Ser 8 Arg 3-4 Lys 2-6 - (GAB-G1et) GLP-1(7-38; Ser 8 Arg 2-6 - 3-4 Lys 3-8 - (GAB-G1et) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-36)amide; Thr⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys²⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys²⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Arg²⁶, ³⁴Lys²⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GTet) Thr⁸Ar 3⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Arg²⁶Lys³⁴-(GAB-GTet) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶-(GAB-GTet) GLP-1(7-38); Thr⁸Arg²⁶, 3⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Gly-Asp Arg Clys (GAB-GIet) GLP-1(7-39); Gly⁸Asp SArg Co. 34 Lys CGAB-GTet) GLP-1(7-36); Gly⁸Asp Arg Co. 34 Lys CGAB-GTet) GLP-3(7-36) amide; Gly⁸Asp Arg Co. 34 Lys CGAB-GTet) GLP-1(7-37); Gly⁸Asp Arg Co. 34 Lys CGAB-GTet) GLP-1(7-38); Gly⁸Asp CGAB-GTet) GLP-1(7-39); Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GTet) GLP-1(7-37); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Ser⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Ser⁸Glu³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-36); Ser⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶,
³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-37); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(GAB-GTet) GLP-1(7-38); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Arg²⁶, Arg³⁶-(GAB-GTet) GLP-1(7-36); Arg³⁶-(GAB-GTet) GLP-1(7-36); Arg³⁶-(GAB-GTet) GLP-1 Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-39); Ser⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Ser⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GTet) GLP-1(7-38); Ser⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-39); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-37); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-38); Thr ⁸Glu ³⁷Arg ²⁶, ³⁴Lys ³⁸-(GAB-GTet) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-38); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-38); Thr⁸Glu³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Glu³⁶Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-38); GAB-GTet) GLP-1(7-38); Thr⁸Glu³⁷Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-38); GAB-GTet) GLP-1(7-38); Thr⁸Glu³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GTet) GLP-1(7-38); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) ³⁴Lys²⁷-(GAB-GT Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GTet) GLP-1(7-30)aimlee; Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(GAB-GTet) GLP-1(7-37); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁹-(GAB-GTet) GLP-1(7-38); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(GAB-GTet) GLP-1(7-36); Arg^{26, 34}Lys³⁸-(GAB-GTet) GLP-1(7-37); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁸-(GAB-GTet) GLP-1(7-38); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁸-(GAB-GTet) GLP-1(7-38); Arg^{26, 34}Lys³⁸-(GAB-GTet) GLP-1(7-36); GLP-1(7 38); Ser Sap 17 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-36); Ser Sap 17 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-36); Ser Sap 19 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-36); Ser Sap 19 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-36); Ser Sap 19 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-36); Ser Sap 19 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-36); Ser Sap 17 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-38); Ser Sap 17 Arg 26, 34 Lys 18 - (GAB-GTet) GLP-1(7-38); 111 Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Val⁸Glu³⁵Arg^{26, 34}Lys³⁸-(GAB-GTet) GLP-1(7-37); Val⁸Glu³⁵Arg^{26, 34}Lys³⁸-(GAB-GTet) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-39); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-37); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36) amide; Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-37); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Val⁸Asp³⁵Arg^{26, Val⁸Asp³⁶Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-38); Val⁸Asp³⁶-Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-38); Val⁸Asp³⁶-Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-38); Val⁸ 112 (GAB-GTet) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-36); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-36); Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-36)amide; Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-37); Val⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-37); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ -(GAB-GTet) GLP-1(7-36); 5 Ser⁸ Asp¹⁷ Arg²⁶, ³⁴ Lys²³ -(GAB-GTet) GLP-1(7-36); Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ -(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GTet) GLP-1(7-38); Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36); Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36); GLP-1(7-36)amide; GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36) Arg²⁶Lys³⁴-(GAB-GHex) GLP-1(7-38); Arg³⁴Lys²⁶-(GAB-GHex) GLP-1(7-38); Arg^{26, 34}Lys³⁸-(GAB-GHex) GLP-1 GHex) GLP-1(7-38); Arg²⁶, ³⁴Lys³⁸-(GAB-GHex) GLP-1 (GAB-GHex) GLP-1(7-39); Arg²⁶, ³⁴Lys³⁹-(GAB-GHex) GLP-1(7-39); GAB-GHex) GLP-1(7-39); Arg²⁶, ³⁴Lys³⁹-(GAB-GHex) GLP-1(7-39); GLP-1(114 Gly⁸ Arg²⁶ Lys³⁴ - (GAB-GHex) GLP-1(7-36); Gly⁸ Arg²⁶ - (GAB-GHex) GLP-1(7-36); Gly⁸ Arg²⁶, ³⁴ Lys³⁶ - (GAB-GHex) GLP-1(7-36); Gly⁸ Arg²⁶ Lys³⁴ - (GAB-GHex) GLP-1(7-36)amide; Gly⁸ Arg²⁶ Lys³⁴ - (GAB-GHex) GLP-1(7-36)amide; Gly⁸ Arg²⁶, ³⁴ Lys³⁶ - (GAB-GHex) GLP-1(7-36)amide; Gly⁸ Arg²⁶ Lys³⁴ - (GAB-GHex) GLP-1(7-37); Gly⁸ Arg³⁶ Lys³⁶ - (GAB-GHex) GLP-1(7-37); Gly⁸ Arg²⁶, ³⁴ Lys³⁶ - (GAB-GHex) GLP-1(7-37); Gly⁸ Arg²⁶ Lys³⁴ - (GAB-GHex) GLP-1(7-38); Gly⁸ Arg³⁶ Lys³⁶ - (GAB-GHex) GLP-1(7-38); Gly⁸ Arg³⁶ Lys³⁶ - (GAB-GHex) GLP-1(7-38); Gly⁸ Arg²⁶ Lys³⁸ - (GAB-GHex) GLP-1(7-38); Gly⁸ Arg²⁶ Lys³⁶ - (GAB-GHex) GLP-1(7-38); Gly⁸ Arg²⁶ Lys³⁶ - (GAB-GHex) GLP-1(7-39); Gly⁸ Arg²⁶ Lys³⁶ - (GAB-GHex) GLP-1(7-39); Gly⁸ Arg³⁶ Use GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-36) amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-38); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GTet) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GHex) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GHex) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GHex) GLP-1(7-38); Val⁸Arg³⁶-(GAB-GHex) GLP-1 GAB-GTet) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys¹⁸-(GAB-GTet) GLP-1(7-37); Arg²⁶, ³⁴Lys¹⁸(GAB-GTet) GLP-1(7-25), Val Arg²⁶, ³⁴Lys³⁸-(GAB-GHex) GLP-1(7-38); Val Arg²⁶Lys³⁴-(GAB-GHex) GLP-1(7-39); Val Arg²⁶, ³⁴Lys³⁸-(GAB-GHex) GLP-1(7-39); Val Arg²⁶, ³⁴Lys³⁸-(GAB-GHex) GLP-1(7-39); Val Arg²⁶, ³⁴Lys³⁹-(GAB-GHex) ³⁴Lys³⁸-(GAB-GHex) ³⁴Lys³⁸ 38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GTet) GLP-1(7-38); GAB-GTet) GLP-1(7-36)amide; Ser⁸Arg²⁶-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Arg²⁶-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Arg²⁶-(GAB-GHex) GLP-1(7-37); GAB-GTet) GLP-1(7-36)amide; Arg^{26, 34}Lys²³-(GAB-GTet) GLP-1(7-38); GTet) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GTet) GLP-1(7-38); Ser⁸Arg^{26, 34}Lys³⁶-(GAB-GHex) GLP-1(7-37); GLP-1(7-38); 38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GTet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GTet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GTet) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GTet) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys³⁶-(GAB-GTet) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys³⁶-(GAB-G Ser⁸Arg³⁴Lys²⁶-(GAB-GHex) GLP-1(7-38); Ser⁸Arg²⁶ 187 Arg 26 Lys 34 - (GAB-GHex) GLP-1(7-36); Arg 34 Lys 26 - (GAB-GHex) GLP-1(7-36); Arg 26 Lys 34 - (GAB-GHex) GLP-1(7-36); Arg 35 Lys 36 - (GAB-GHex) GLP-1(7-36); Arg 36 Lys 36 - (GAB-GHex) GLP-1(7-36) amide; Arg 36 Lys 36 - (GAB-GHex) GLP-1(7-36) amide; Arg 36 Lys 36 - (GAB-GHex) GLP-1(7-36) amide; Arg 26 Lys 37 - (GAB-GHex) GLP-1(7-37); Arg 36 Lys 36 - (GAB-GHex) GLP-1(7-36); Gly Lys 36 - (GAB-GHex) GLP-1(7-36); Gly 36 Lys Ly Gly⁸Glu³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GHex) GLP-1(7-37); 115 116 Gly*Asp3*Arg2**** Gly*Asp3*Arg2**** Gly*Asp3*Arg2**** Gly*Asp3*Arg2*** Gly*Asp3*Arg2** Gly*Asp3*Arg2* 115 | Comparison Com (7-38); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-36); Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-36)amide; Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-37); Val⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-38); Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-30 1(7-38); Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36)amide; Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-38): Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GHex) GLP-1(7-36); Thr⁸Asp³⁵Arg²⁶, ³⁴Lys³⁶-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GHex) GLP-1(7-37); 65 Thr⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GHex) GLP-1(7-38); Thr⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GHex) GLP-1(7-39); (7-38); 116 118 Ser⁸ Asp¹⁹ Arg²⁶, ³⁴ Lys²³ - (GAB-GHex) GLP-1(7-38); Ser⁸ Asp¹⁷ Arg²⁶, ³⁴ Lys²³ - (GAB-GHex) GLP-1(7-38); Arg²⁶, ³⁴ Lys²⁷ (GAB-GHex) GLP-1(7-36); Arg²⁶, ³⁴ Lys²⁷ (GAB-GHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²⁷-(GAB- 20 GHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1 Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1(7-36)amide; 25 Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GHex) GLP-1(7-37); Val⁸Arg²⁶-(GAB-GOct) GLP-1(7-38); Val⁸Arg³⁴Lys³⁸-(GAB-GOct) GLP-1(7-38); Val⁸Arg³⁴Lys³⁸-(GAB-GOct) GLP-1(7-39); Val⁸Arg³⁴Lys³⁶-(GAB-GOct) GLP-1(7
Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(GAB-GHex) GLP-1(7-36); 35 Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GHex) GLP-1(7-37); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GHex) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(GAB-GHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36)amide; Arg²⁶, ³⁴Lys²³-(GAB-GHex) GLP-1(7-37); Arg²⁶, ³⁴Lys²³-(GAB-GHex) GLP-1 (7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-38); GAB-GHex) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-38); GAB-GHex) GLP-1(7-36)amide; Thr⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GHex) GLP-1(7-36)amide; Thr⁸Arg³⁴Lys²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36)amide; Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-39); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-39); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-39); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-39); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-38); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-39); Thr⁸Arg²⁶-(AB-GOct) GLP-1(7-36); GLP-1(7-36 36); Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-36)amide; Arg²⁶, 65 Gly⁸Glu³⁸Arg²⁶, 3⁴Lys³⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, 3⁴Lys³⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, 3⁴Lys³⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Glu³⁵Arg²⁶, 3⁴Lys³⁶-(GAB-GOct) GLP-1(7-36)amide; GAB-GOct) GLP-1(7-37); Arg³⁴Lys²⁶-(GAB-GOct) GLP-1(7-36)amide; Gly⁸Glu³⁶Arg²⁶, 3⁴Lys³⁶-(GAB-GOct) GLP-1(7-37); Gly⁸Glu³⁶Arg²⁶, 3⁴Lys³⁶-(GAB-GOct) GLP-1(7-37); 117 Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36); Ser⁸Asp¹⁷Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GHex) GLP-1(7-38); Ser⁸Asp¹⁹Arg^{26, 34}Lys²⁸-(GAB-GHex) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-38); GGAB-GHex) GLP-1(7-36); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36); GHex) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-38); GGAB-GOct) GLP-1(7-39); Arg^{26, 34}Lys²³-(GAB-GHex) GLP-1(7-36); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-36); GlP-1(7-37); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-37); Gly⁸Arg²⁶-(GAB-GOct) GLP-1(7-38); ³⁴Lys³⁸-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶-(GAB-GOct) GLP-1(7-39); Gly⁸Arg³⁴Lys³⁹-(GAB-GOct) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GOct) Gly⁸-1(7-39); Gly⁸-1(7 39); Val⁸ Arg²⁶ Lys³⁴ - (GAB-GOct) GLP-1(7-36); Val⁸ Arg³⁴ Lys²⁶ - (GAB-GOct) GLP-1(7-36); Val⁸ Arg²⁶, ³⁴Lys³⁶-(GAB-GOct) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-36)amide; Val⁸Arg³⁴Lys²⁶-(GAB-GOct) GLP-1(7-36)amide; Val⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GOct) ³⁴Lys³⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸Arg²⁶-(7-36)amide; Val⁸ 1(7-36)amide; Val⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-37); ³⁴Lys³⁹-(GAB-GOct) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶-(GAB-GOct) GLP-1 (7-36); Ser⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GOct) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys²⁶-(GAB-GOct) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GOct) GLP-1(7-36)amide; Ser⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GOct) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GOct) GLP-1(7-37); Ser Arg Lys - (GAB-GOct) GLP-1(7-37), Ser Arg 26, 34 Lys 36 - (GAB-GOct) GLP-1(7-37); Ser Arg 26 - (GAB-GOct) GLP-1(7-37); Ser Arg 26 - (GAB-GOct) GLP-1(7-38); Ser Arg 34 Lys 36 - (GAB-GOct) GLP-1 (7-38); Ser Arg 26, 34 Lys 38 - (GAB-GOct) GLP-1(7-38); Ser Arg 26, 34 Ly Ser⁸Arg²⁶Lys³⁴-(GAB-GOct) GLP-1(7-39); 120 119 Gly⁸Glu³7Arg²⁶, ³⁴Lys³⁸·(GAB-GOct) GLP-1(7-38); Gly⁸Asp³Arg²⁶, ³⁴Lys³⁹·(GAB-GOct) GLP-1(7-39); Gly⁸Asp³Arg²⁶, ³⁴Lys³⁹·(GAB-GOct) GLP-1(7-30); Gly⁸Asp³Arg²⁶, ³⁴Lys³⁹·(GAB-GOct) GLP-1(7-36); Micking and the state of sta Ser Glu 36 Arg 26, 34 Lys 37 - (GAB-GOct) GLP-1(7-38); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-38); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-39); Ser 8Glu 35 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Glu 35 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-38); Ser 8Glu 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-39); Ser 8Asp 35 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-37); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-36); Ser 8Asp 36 Arg 26, 34 Lys 39 - (GAB-GOct) GLP-1(7-37); Ser 8Asp 36 Arg 26, 34 Lys 39 -Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GOct) GLP-1(7-36); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GOct) GLP-1(7-36)amide; Thr⁸Glu³⁷Arg^{26, 34}Lys³⁸-(GAB-GOct) GLP-1(7-38); Thr⁸Glu³⁸Arg^{26, 34}Lys³⁹-(GAB-GOct) GLP-1(7-38); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁹-(GAB-GOct) GLP-1(7-36); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GOct) GLP-1(7-36); Thr⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GOct) GLP-1(7-36); Thr⁸Glu³⁶Arg^{26, 34}L Thr⁸Asp³⁶Arg^{26, 34}Lys³⁶-(GAB-GOct) GLP-1(7-36)amide; Thr⁸Asp³⁶Arg^{26, 34}Lys³⁷-(GAB-GOct) GLP-1(7-37); 65 Val⁸Asp¹⁷Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-38); Thr⁸Asp³⁸Arg^{26, 34}Lys³⁸-(GAB-GOct) GLP-1(7-38); 4rg^{26, 34}Lys¹⁸(GAB-GOct) GLP-1(7-36); Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36); 4rg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36)amide; Arg^{26, Arg^{26, 34}Lys¹⁸ Ser Asp ¹⁹ Arg ²⁶, ³⁴Lys²³-(GAB-GOct) GLP-1(7-38); Ser Asp ¹⁷ Arg ²⁶, ³⁴Lys²³-(GAB-GOct) GLP-1(7-38); Arg ²⁶, ³⁴Lys ²⁷-(GAB-GOct) GLP-1(7-36); ²⁸-(GAB-GOct) GL Ser Asp 1 Arg 20, 34 Lys 27
- (GAB-GOct) GLP-1(7-36); Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-36); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-37); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-37); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-37); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-38); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-38); Ser Asp 1 Arg 26, 34 Lys 27 - (GAB-GOct) GLP-1(7-38); Ser Asp 1 Arg 26, 34 Lys 28 - (GAB-GOct) GLP-1(7-38); Ser Asp 1 Arg 26, 34 Lys 18 - (GAB-GOct) GLP-1(7-36); Thr Asp 1 Arg 26, 34 Lys 18 - (GAB 38); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GOct) GLP-1(7-36); GLP-1(7-36) GLP-1 Thr⁸Asp¹ 'Arg^{26, 34}Lys¹⁸ - (GAB-GOct) GLP-1(7-36) amide; 35 Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸ - (GAB-GOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys¹⁸ - (GAB-GOct) GLP-1(7-38); Thr⁸Asp¹⁷Arg^{26, 34}Lys¹⁸ - (GAB-GOct) GLP-1(7-38); Arg^{26, 34}Lys²³ (GAB-GOct) GLP-1(7-36); Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-36) amide; Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-37); Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³ - (GAB-GOct) GLP-1(7-36) amide; Thr⁸Asp¹⁷Arg^{26, (GAB Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-38); Arg^{26, 34}Lys²³-(GAB-GOct) GLP-1(7-36); Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys³-(GAB-GLit) GLP-1(7-39); Thr⁸Arg³-(AB-GOct) GLP-1(7-36); Thr⁸Asp¹⁹Arg^{26, 34}Lys³-(GAB-GLit) GLP-1(7-39); Thr⁸Arg³-(AB-GOct) GLP-1(7-36); Thr⁸Asp³-(AB-GOct) GLP-1(7-36); Thr⁸Asp³-(AB-GOct) Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-36)amide; 55 Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-37); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-38); Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg^{26, 34}Lys²⁷-(GAB-GOct) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36)amide; Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-37); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-39); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-39); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-39); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-38); Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) Gly⁸Glu³⁵Arg^{26, 34}Lys³⁶-(121 GOct) GLP-1(7-37); Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36)amide; Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-36); GlP-1(7-37); Ser⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GOct) GLP-1(7-38); GlP-1(7-38); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-37); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-37); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-37); GlP-1(7-38); GlP-1(7-36)amide; GlP-1(7-37); GlP-1(7-37); GlP-1(7-38); GlP-1(7-38)amide; GlP-1(7-37); GlP-1(7-37); GlP-1(7-38); GlP-1(7-38)amide; GlP-1(7-37); GlP-1(7-38); GlP-1(7-38)amide; GlP-1(7-37); GlP-1(7-37); GlP-1(7-38); GlP-1(7-38)amide; GlP-1(7-37); GlP-1(7-38); GlP-1(7-38)amide; GlP-1(7-37); GlP-1(7-38); GlP-1(7-38)amide; GlP-1(7-38)amide $Val^8Arg^{26}Lys^{3'4}$ -(GAB-GLit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶-(GAB-GLit) GLP-1(7-36); Val⁸Arg²⁶, Ser⁸Arg³⁴Lys²⁶-(GAB-GLit) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶-(GAB-GLit) GLP-1(7-37), Ser⁸Arg²⁶Lys³⁴-(GAB-GLit) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶-(GAB-GLit) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁸-(GAB-GLit) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴-(GAB-GLit) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶-(GAB-GLit) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-39); Thr⁸Arg²⁶Lys³⁴-(GAB-GLit) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶-(GAB-GLit) GLP-1(7-39); Thr⁸Arg²⁶, 124 Val⁸Asp³⁷Arg²⁶, ³⁴Lys³⁸-(GAB-GLit) GLP-1(7-38); Val⁸Asp³⁸Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-39); Val⁸Asp³⁸Arg^{26, 34}Lys³⁸-(GAB-GLit) GLP-1(7-38); Val⁸Asp³⁸Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁷-(GAB-GLit) GLP-1(7-36) amide; Ser⁸Glu³⁶Arg^{26, 34}Lys³⁷-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁶Arg^{26, 34}Lys³⁸-(GAB-GLit) GLP-1(7-38); Ser⁸Glu³⁸Arg^{26, 34}Lys³⁸-(GAB-GLit) GLP-1(7-38); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-38); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁵Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁶Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁶Arg^{26, 34}Lys³⁶-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁶Arg^{26, 34}Lys³⁸-(GAB-GLit) GLP-1(7-36); Ser⁸Glu³⁷Arg^{26, 34}Lys³⁸-(GAB-GLit) GLP-1(7-36); Val⁸Asp¹⁹Arg^{26, 34}Lys¹⁸-(GAB-GLit) 34} Ser Gila Aig. **14.57** (GAB-GLii) GLP-1(7-36) amide; Ser Gila Arg. **15.** (GAB-GLii) GLP-1(7-36); Ser Asg. **15.** (GAB-GLii) GLP-1(7-37); Ser Asg. **15.** (GAB-GLii) GLP-1(7-36); 123 Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁷-(GAB-GLit) GLP-1(7-37); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁸-(GAB-GLit) GLP-1(7-38); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-39); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-37); Gly⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Gly⁸Asp³⁶Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-39); Yal⁸Glu³⁵Arg²⁶, GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Yal⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp¹⁷Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Yal⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Yal⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Yal⁸Glu³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-39); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-38); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Yal⁸Asp³⁵Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹Arg²⁶, ³⁴Lys³⁹-(GAB-GLit) GLP-1(7-36); Gly⁸Asp³⁹ Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GLit) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys¹⁸-(GAB-GLit) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸-(GAB-GLit) GLP-1(7-38); Arg²⁶, ³⁴Lys²³-(GAB-GLit)-GLP-1 (7-36) Arg^{26, 34}Lys²³-(GAB-GLit) GLP-1(7-36); Arg^{26, 34}Lys²³-(GAB-GLit) GLP-1(7-36) amide; Arg^{26, 34}Lys²³-(GAB-GLit) GLP-1(7-37); Arg^{26, 34}Lys²³-(GAB-GLit) GLP-1(7-36); Val⁸Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-36); Val⁸Asp¹⁷Arg^{26, 34}Lys²³-(GAB-GLit) GLP-1(7-36) amide; Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ADod) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ADod) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ADod) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶-36-bis-(Glut-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys³⁶-36-bis-(Glut-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys³⁶-38-bis-(Glut-ADod) GLP-1(7-38); Val⁸Arg³⁴Lys³⁶-38-bis-(Glut-ADod) GLP-1(7-38); Val⁸Arg³⁶-36-bis-(Glut-ADod) GLP-1(7 GAB-GLil) GLP-1(7-38); GAB-GLil) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-36); Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-36)amide; Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-37); Val⁸Arg³⁶, ³⁹-bis-(Glut-ADod) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-37); Val⁸Arg²⁶, ³⁴Lys²⁶, ³⁴Lys²⁷, ³⁴-bis-(Glut-ADod) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Glut-ADod) GLP-1(7-37); Cfl Paragraphy (Glaphy Appel) Glaphy (Glap Thr⁸Asp¹⁹Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-38); Thr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-38); present invention are: Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-36); Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-37); Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-38); Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-39) 1(7-38); Lys²⁶, 54-bis-(Glut-ADod) GLP-1(7-39)
Arg²⁶Lys³⁴,36-bis-(Glut-ADod) GLP-1(7-36); Arg³⁴Lys²⁶, 56-bis-(Glut-ADod) GLP-1(7-36); Arg³⁴Lys²⁶, 36-bis-(Glut-ADod) GLP-1(7-37); Arg³⁴Lys²⁶, 36-bis-(Glut-ADod) GLP-1(7-37); Arg³⁴Lys²⁶, 37-bis-(Glut-ADod) GLP-1(7-37); Arg³⁴Lys²⁶, 37-bis-(Glut-ADod) GLP-1(7-37); Arg³⁴Lys²⁶, 39-bis-(Glut-ADod) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴, 39-bis-(Glut-ADod) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴, 39-bis-(Glut-ADod) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁶, 39-bis-(Glut-ADod) GLP-1(7-39); Ser⁸Arg²⁶, 34-bis-(Glut-ADod) GLP-1(7-39); Thr⁸Lys²⁶, 34-bis-(Glut-ADod) GLP-1(7-36); Thr⁸Lys²⁶, 34-bis-(Glut-ADod) GLP-1(7-37); GLP-1(7-GLP-1(7-39); 126 Arg²⁶Lys^{18, 34}-bis-(Glut-ADod) GLP-1(7-36); Arg³⁴Lys^{18,} ²⁶-bis-(Glut-ADod) GLP-1(7-36), Arg ²⁶Lys^{18, 34}-bis-(Glut-ADod) GLP-1(7-37); Arg ³⁴Lys^{18,26}-bis-(Glut-ADod) GLP-1(7-37); Arg ²⁶Lys^{18, 34}-bis-(Glut-ADod) GLP-1(7-38); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys¹⁸ (GAB-GLii) GLP-1(7-36); Arg²⁶, ³⁴Lys²²-(GAB-GLii) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Ser⁸Asp¹⁷Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-37); Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-38); Arg²⁶Liys²³, ³⁴-bis-(Glut-ADod) GLP-1(7-37); Arg³⁶Lys²³, Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-37); Arg³⁶Lys²³, Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Arg³⁶Lys³³, Ser⁸Asp¹⁹Arg²⁶, ³⁴Lys²³-(GAB-GLii) GLP-1(7-36); Arg³⁶Lys³⁷, Arg³⁶Lys³⁷Lys³⁸, Arg³⁸Lys³ Val⁸Arg³⁴Lys^{26,38}-bis-(Glut-ADod) GLP-1(7-38); Val⁸Arg^{26, 34}Lys^{36,38}-bis-(Glut-ADod) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(Glut-ADod) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Glut-ADod) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Glut-ADod) GLP-1(7-38); G hr⁸Asp¹⁷Arg²⁶, ³⁴Lys²⁷-(GAB-GLit) GLP-1(7-38); ADod) GLP-1(7-38); Ser⁸Arg²⁶Lys²⁴, ³⁶-bis-(Glut-ADod) GLP-1(7-36); Ser⁸Arg²⁶Lys³⁴, ³⁶-bis-(Glut-ADod) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ADod) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁷-bis-(Glut-ADod) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁸-bis-(Glut-ADod) Ser⁸Arg³⁴Lys³⁶, bis-(Glut-ADod) GLP-1(7-38); Ser⁸Arg³⁴Lys³⁶, bis-(Glut-ADod) GLP-1(7-38); Ser⁸Arg³⁴Lys³⁶, bis-(Glut-ADod) GLP-1(7-38); Ser⁸Arg³⁴Lys³⁶, bis-(Glut-ADod) GLP-1(7-38); Ser⁸Arg³⁴Lys³⁶, bis-(Glu Thr⁸Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-36); Thr⁸Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-37); GLP-1(7-36); 34}-bis-(Gl ADod) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(Glut-ADod) GLP-1(7-39) Thr⁸Arg²⁶Lys^{34,36}-bis-(Glut-ADod) GLP-1(7-36); Thr⁸Arg³⁴Lys^{26, 36}-bis-(Glut-ADod) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glut-ADod) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(Glut-ADod) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(Glut-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glut-ADod) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(Glut-ADod) GLP-1(7-38); Thr⁸Arg^{26, 34}Lys^{36,38}-bis-(Glut-ADod) GLP-1(7-38); 10 Thr⁸Arg²⁶Lys^{34, 39}-bis-(Glut-ADod) GLP-1(7-39); Thr Arg Lys -015-(Glut-ADod) GLP-1(7-39); Thr Arg 26, 34 Lys 26,39 -bis-(Glut-ADod) GLP-1(7-39); Lys 26, 34 Lys 36,39 -bis-(Glut-ADod) GLP-1(7-39); Lys 26, 34 -bis-(Glut-ADod) GLP-1(7-36); Lys 26, 34 -bis-(Glut-ADod) GLP-1(7-36); ATet) GLP-1(7-37); Lys^{26, 34}-bis-(Glut-ATet) GLP-1(7-38); 15 Ser⁸Arg³⁴Lys^{26, 36}-bis-(Glut-ATet) GLP-1(7-37); Lys^{26, 34}-bis-(Glut-ATet) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Glut-ATet) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ATet) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glut-ATet) GLP-1(7-37); Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ATet) GLP-1 (7-37); Arg²⁶Lys^{34,37}-bis-(Glut-ATet) GLP-1(7-37); 20 Arg³⁴Lys^{26,37}-bis-(Glut-ATet) GLP-1(7-37); Arg²⁶Lys³⁴. ³⁹-bis-(Glut-ATet) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Glut-ATet) GLP-1(7-39); Arg^{26, 34}Lys^{36,39}-bis-(Glut-ATet) GLP-1(7-39); 1(7-39); Arg²⁶Lys^{18, 34}-bis-(Glut-ATet) GLP-1(7-36); Arg³⁴Lys^{18, 25} 26-bis-(Glut-ATet) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(Glut-ATet) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glut-ATet) GLP-1 (7-37); Arg²⁶Lys^{18, 34}-bis-(Glut-ATet) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Glut-ATet) GLP-1(7-38); Arg²⁶Lys^{18, 34}-bis-(Glut-ATet) GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(Glut-ATet) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(Glut-ATet) GLP-1 (7-36); Arg³⁴Lys^{23,26}-bis-(Glut-ATet) GLP-1(7-36); Arg³⁴Lys^{23,26}-bis-(Glut-ATet) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(Glut-ATet) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glut-ATet) GLP-1 (7-38); Arg²⁶Lys^{23, 34}-bis-(Glut-ATet) GLP-1 (7-39); Arg³⁴Lys^{23,26}-bis-(Glut-ATet) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Glut-ATet) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Glut-ATet) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Glut-ATet) GLP-1(7-36); Arg³⁴Lys^{27, Arg³⁴Lys³⁴Lys³⁵Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys³⁶Lys Arg 26 Lys 27, 34-bis-(Glut-Afet) GLP-1(7-36); Arg 34 Lys 27, 26-bis-(Glut-Afet) GLP-1(7-36); Arg 34-bis-(Glut-Afet) GLP-1(7-36); Arg 26-bis-(Glut-Afet) GLP-1(7-37); Arg 34-Lys 27, 26-bis-(Glut-Afet) GLP-1 (7-37); Arg 26-bis-(Glut-Afet) GLP-1(7-38); Arg 34-Lys 27, 26-bis-(Glut-Afet) GLP-1(7-38); Arg 34-Lys 27, 26-bis-(Glut-Afet) GLP-1(7-38); Arg 34-Lys 27, 26-bis-(Glut-Afet) GLP-1(7-38); Arg 36-bis-(Glut-Afet) (7-57); Arg - Lys - 7-6 bis-(Glut-ATet) GLP-1(7-38); Arg - 26 Lys - 26 bis-(Glut-ATet) GLP-1(7-38); Arg - 26 Lys - 26 bis-(Glut-ATet) GLP-1(7-39); Arg - 26 bis-(Glut-ATet) GLP-1(7-39); Gly - 26 bis-(Glut-ATet) GLP-1(7-39); Gly - 26 bis-(Glut-ATet) GLP-1(7-39); Gly - 26 bis-(Glut-ATet) GLP-1(7-37); Arg - 26 Lys - 34 bis-(Glut-ATet) GLP-1(7-36); Gly - 26 bis-(Glut-ATet) GLP-1(7-37); Arg - 26 Lys - 34 bis-(Glut-ATet) GLP-1(7-36); Arg - 26 Lys - 36 bis-(Glut-ATet) GLP-1(7-36); Gly - 26 Arg - 26 Lys - 36 bis-(Glut-ATet) GLP-1(7-37); Gly - 26 Lys L Gly⁸Arg³⁴Lys^{26,37}-bis-(Glut-ATet) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-ATet) GLP-1(7-39); Gly⁸Arg²⁶Lys³⁶, ³⁹-bis-(Glut-ATet) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys²⁶, ³⁹-bis-(Glut-ATet) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glut-ATet) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Glut-ATet) GLP-1(7-37); Val⁸Lys ATet) GLP-1(7-38); Val⁸Lys^{26, 34}-bis-(Glut-ATet) GLP-1(7- Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ATet) GLP-1(7-36); Val⁸Arg³⁴Lys^{26, 36}-bis-(Glut-ATet) GLP-1(7-36); 65 Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ATet) GLP-1(7-37); $Val^8Arg^{34}Lys^{26}$, 36-bis-(Glut-ATet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glut-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(Glut-ATet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(Glut-ATet) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Glut-ATet) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glut-ATet) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-ATet) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(Glut-ATet) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(Glut-ATet) ³⁴Lys³⁶, ³⁴Lys ATet) GLP-1(7-39); Ser⁸Lys^{26,34}=bis-(Glut-ATet) GLP-1(7-36); Ser⁸Lys^{26, 34}-bis-(Glut-ATet) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(Glut-ATet) GLP-1(7-38); 34}-bi ATet) GLP-1(7-39) Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-ATet) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ATet) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-ATet) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,37}-bis-(Glut-ATet) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Glut-ATet) GLP-1(7-37); Ser⁸ Arg²⁶ Lys^{34,38}-bis-(Glut-ATet) GLP-1(7-38); Ser⁸ Arg³⁴ Lys^{26,38}-bis-(Glut-ATet) GLP-1(7-38); Ser⁸ Arg²⁶, 34 Lys 36,38 - bis-(Glut-ATet) GLP-1(7-38); Ser 8 Arg 26 Lys 39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 34 Lys 26,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg 26, 34 Lys 36,39 - bis-(Glut-ATet) GLP-1(7-39); Ser 8 Arg bis-(Glut ATet) GLP-1(7-39); Thr⁸Lys^{26, 34}-bis-(Glut-ATet) GLP-1(7-Arei) GLP-1(7-39); 1nr Lys²⁻⁵-51s-(Glut-Arei) GLP-1(7-36); Thr⁸Lys²⁶, 34-bis-(Glut-Arei) GLP-1(7-37); Thr⁸Lys²⁶, 34-bis-(Glut-Arei) GLP-1(7-38); Thr⁸Lys²⁶, 34-bis-(Glut-Arei) GLP-1(7-39) Thr⁸Arg²⁶Lys³⁴,36-bis-(Glut-Arei) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, 36-bis-(Glut-Arei) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, 36-bis-(Glut-Arei) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, 37-bis-(Glut-Arei) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, 37-bis-(Glut-Arei) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(Glut-ATet) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glut-ATet) GLP-1(7-38); Thr Arg Lys -bis-(Glut-Aret) GLP-1(7-38); Thr Arg Constant Strategies - Strategies - Glut-Aret GLP-1(7-38); Thr Arg Constant Strategies - Glut-Aret GLP-1(7-38); Thr Arg College - Glut-Aret GLP-1(7-39); Thr⁸ Arg³⁴ Lys^{26,39}-bis-(Glut-ATet) GLP-1(7-39); Thr⁸ Arg^{26, 34} Lys^{36,39}-bis-(Glut-ATet) GLP-1(7-39); Lys^{26, 34}-bis-(Glut-AHex) GLP-1(7-36); Lys² AHex) GLP-1(7-37); Lys^{26, 34}-bis-(Glut-AHex) GLP-1(7-38); Lys^{26, 34}-bis-(Glut-AHex) GLP-13(7-39) Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1(7-36); Arg³⁴Lys²⁶ Arg³⁴Lys^{18,26}-bis-(Glut-AHex) GLP-1(7-38); Arg²⁶Lys¹⁸, Gly⁸Arg²⁶Lys³⁴,³⁸-bis-(Glut-ATet) GLP-1(7-38); 34-bis-(Glut-AHex) GLP-1(7-39); Arg³⁴Lys¹⁸,²⁶-bis-(Glut-AHex) GLP-1(7-38); 55 AHex) GLP-1(7-39); Arg²⁶Lys²³, 34-bis-(Glut-AHex) GLP-1(7-36); Arg³⁴Lys²³,²³-bis-(Glut-AHex) GLP-1(7-36); Arg²⁶Lys²³, 34-bis-(Glut-AHex) GLP-1(7-36); Arg²⁶Lys²³, 34-bis-(Glut-AHex) GLP-1(7-36); Arg²⁶Lys²³, 34-bis-(Glut-AHex) GLP-1(7-36); Arg²⁶Lys²³, 34-bis-(Glut-AHex) GLP-1(7-37); Arg³⁴Lys²³, Arg³⁴Lys³⁵Lys³⁵Lys³⁵Lys³⁵Lys³⁵Lys³⁵Lys³⁵Lys³⁵ Arg²⁶Lys²³, ³⁴-bis-(Glut-AHex) GLP-1(7-37); Arg³⁴Lys²³, ²⁶-bis-(Glut-AHex) GLP-1(7-37); Arg²⁶Lys²³, ³⁴-bis-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²³, ²⁶-bis-(Glut-AHex) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(Glut-AHex) GLP-1(7-39); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AHex) GLP-1(7-36); Arg³⁴Lys²⁷, ²⁶-bis-(Glut-AHex) GLP-1(7-36); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AHex) GLP-1(7-38); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AHex) GLP-1(7-38); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁶-bis-(Glut-AHex)
²⁸-bis-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁸-bis-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁸-bis-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁸-bis-(Glut-AHex) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁸-bis-(Glut-AHex) ²⁶-bis-(Glut-AHex) GLP-1(7-38); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AHex) GLP-1(7-39); Arg³⁴Lys²⁷, ²⁶-bis-(Glut-AHex) GLP- 1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-37); Gly⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Glut-AHex) GLP-1(7-39); Gly⁸Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AHex) GLP-1 (7-36) Gly⁸Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1 (7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(Glut-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys^{26,37}-bis-(Glut-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(Glut-AHex) GLP-1(7-38); 10 Gly⁸Arg³⁴Lys²⁶, ³⁸-bis-(Glut-AHex) GLP-1(7-38); Gly⁸Arg³⁴Lys²⁶, ³⁸-bis-(Glut-AHex) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Glut-AHex) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-AHex) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶, ³⁴Lys³⁶, ³⁹-bis-(Glut-AHex) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-36); ³⁴-bis-(Glut-AHex) GLP-1(7-37); Val⁸Lys^{26, '34}-bis-(Glut-AHex) GLP-1(7-38); Val⁸Lys^{26, 34}-bis-(Glut-AHex) GLP-1 (7-39) Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AHex) GLP-1(7-36); 20 Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glut-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(Glut-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(Glut-AHex) GLP-1(7-38); 25 Val⁸Arg³⁴Lys^{26,38}-bis-(Glut-AHex) GLP-1(7-38); Val⁸Arg^{26, 34}Lys^{36,38}-bis-(Glut-AHex) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-AHex) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys²⁶, ³⁹-bis-(Glut-AHex) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Glut-AHex) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴bis-(Glut-AHex) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1 (7-39) Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-AHex) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁷-bis-(Glut-AHex) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶,³⁷-bis-(Glut-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁸-bis-(Glut-AHex) GLP-1(7-38); 40 Ser⁸Arg³⁴Lys²⁶,³⁸-bis-(Glut-AHex) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glut-AHex) GLP-1(7-38); Ser⁸Arg²⁶Lys^{34, 39}-bis-(Glut-AHex) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Glut-AHex) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(Glut-AHex) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AHex) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AH ex) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AHex) Thr⁸Arg³⁴Lys^{26,37}-bis-(Glut-AHex) GLP-1(7-37); Thr Arg ²⁶Lys ³⁴, ³⁸-bis-(Glut-AHex) GLP-1(7-38); 55 Thr Arg ³⁴Lys ²⁶, ³⁸-bis-(Glut-AHex) GLP-1(7-38); Thr Arg ²⁶, ³⁴Lys ³⁶, ³⁸-bis-(Glut-AHex) GLP-1(7-38); Thr Arg 26 Lys 34, 39-bis-(Glut-AHex) GLP-1(7-39); Thr Arg 34 Lys 26,39-bis-(Glut-AHex) GLP-1(7-39); Thr Arg 26, 34 Lys 36,39-bis-(Glut-AHex) GLP-1(7-39); Thr Arg 26, 34 Lys 36,39-bis-(Glut-AHex) GLP-1(7-39); Lys^{26, 34}-bis-(Glut-AOct) GLP-1(7-36); Lys^{26, 34}-bis-(Glut-AOct) GLP-1(7-37); Lys^{26, 34}-bis-(Glut-AOct) GLP-1(7-38); Lys^{26, 34}-bis-(Glut-AOct) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Glut-AOct) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glut-65 AOct) GLP-1(7-37); Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Glut-AOct) GLP-1(7-37); $\begin{array}{lll} Arg^{34}Lys^{26,37}\text{-bis-(Glut-AOct)} & GLP\text{-}1(7\text{-}37); & Arg^{26}Lys^{34}, \\ ^{39}\text{-bis-(Glut-AOct)} & GLP\text{-}1(7\text{-}39); & Arg^{34}Lys^{26,39}\text{-bis-(Glut-AOct)} \\ & GLP\text{-}1(7\text{-}39); & Arg^{26, \ \ 34}Lys^{36,39}\text{-bis-(Glut-AOct)} \end{array}$ GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(Glut-AOct) GLP-1(7-36); Arg³⁴Lys^{18, 26}-bis-(Glut-AOct) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(Glut-AOct) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glut-AOct) GLP-1(7-37); Arg²⁶Lys^{18, 34}-bis-(Glut-AOct) GLP-1(7-38); (7-37); Arg²⁶Lys¹⁸, ⁵⁴-bis-(Glut-AOct) GLP-1(/-58); Arg³⁴Lys¹⁸,26-bis-(Glut-AOct) GLP-1(7-38); Arg²⁶Lys¹⁸, ⁵⁴-bis-(Glut-AOct) GLP-1(7-39); Arg³⁴Lys¹⁸,26-bis-(Glut-AOct) GLP-1(7-39); Arg³⁴Lys²³, ³⁴-bis-(Glut-AOct) GLP-1(7-36); Arg³⁴Lys²³,26-bis-(Glut-AOct) GLP-1(7-37); Arg³⁴Lys²³, ²⁶-bis-(Glut-AOct) GLP-1(7-37); Arg³⁴Lys²³, ²⁶-bis-(Glut-AOct) GLP-1(7-37); Arg³⁴Lys²³, ²⁶-bis-(Glut-AOct) GLP-1(7-38); Arg²⁶Lys²³, ³⁴-bis-(Glut-AOct) GLP-1(7-39); Arg³⁴Lys²³, ²⁶-bis-(Glut-AOct) GLP-1(7-39); Arg³⁴Lys²³, ²⁶-bis-(Glut-AOct) GLP-1(7-39); Arg²⁶Lys²⁷, ²⁷ Arg³⁴Lys^{23,26}-bis-(Glut-AOct) GLP-1(7-39); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AOct) GLP-1(7-36); Arg³⁴Lys²⁷, ²⁶-bis-(Glut-AOct) GLP-1(7-36); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AOct) GLP-1(7-37); Arg³⁴Lys²⁷, ²⁶-bis-(Glut-AOct) GLP-1(7-37); Arg²⁶Lys²⁷, ³⁴-bis-(Glut-AOct) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁶-bis-(Glut-AOct) GLP-1(7-38); Arg³⁴Lys²⁷, ³⁴-bis-(Glut-AOct) Arg³Lys²⁷, ³⁴-bis-(Glut-AOct) Arg³Lys²⁷, ³⁴-bis-(Glut-AOct) Arg³Lys²⁸, Arg³Lys²⁸, Arg³Lys²⁸, Arg³Lys²⁸, Arg³Lys²⁸, Arg³Lys²⁸, Arg³Lys²⁸ ²⁶-bis-(Glut-AOct) GLP-1(7-38); Arg²⁶Lys^{27, 34}-bis-(Glut-AOct) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Glut-AOct) GLP-1(7-39);Gly⁸Lys^{26,34}bis-(Glut-AOct) GLP-1(7-36); Gly⁸Lys^{26,34}-bis-(Glut-AOct) GLP-1(7-37); Gly⁸Lys^{26,34}-bis-(Glut-AOct) AOct) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Glut-AOct) GLP-1 (7-39) Gly⁸Arg²⁶Lys³⁴,³⁶-bis-(Glut-AOct) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴,³⁶-bis-(Glut-AOct) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(Glut-AOct) GLP-1(7-37); Gly⁸Arg³⁴Lys^{26,37}-bis-(Glut-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(Glut-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys^{26, 36}-bis-(Glut-AHex) GLP-1(7-36); 35 Gly⁸Arg³⁴Lys^{26,38}-bis-(Glut-AOct) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(Glut-AOct) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-AOct) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glut-AOct) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(Glut-AOct) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-36), Val⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1 (7-39) Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-AOct) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glut-AOct) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(Glut-AOct) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(Glut-AOct) GLP-1(7-38); AH ex) GLP-1(7-38); Thr°Lys²⁶, 5-bis-(Glut-AHex) GLP-1(7-36); Val⁸Arg²⁶Lys³⁴, 38-bis-(Glut-AOct) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, 36-bis-(Glut-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴, 38-bis-(Glut-AOct) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, 39-bis-(Glut-AOct) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, 39-bis-(Glut-AOct) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴, 39-bis-(Glut-AOct) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(Glut-AOct) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(Glut-AOct) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(Glut-AOct) GLP-1 Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-AOct) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-AOct) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,37}-bis-(Glut-AOct) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Glut-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glut-AOct) GLP-1(7-38); Ser⁸Arg³⁴Lys^{26,38}-bis-(Glut-AOct) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glut-AOct) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶, ³⁹-bis-(Glut-AOct) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Glut-AOct) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Glut-AOct) GLP-1(7-36); (7-39) Thr⁸Arg²⁶Lys³⁴, ³⁶-bis-(Glut-AOct) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 36}-bis-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 37}-bis-(Glut-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 37}-bis-(Glut-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26, 38}-bis-(Glut-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys^{36, 38}-bis-(Glut-AOct) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys^{36, 38}-bis-(Glut-AOct) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys^{36, 39}-bis-(Glut-AOct) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26, 39}-bis-(Glut-AOct) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26, 39}-bis-(Glut-AOct) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg²⁶Lys^{34, 36}-bis-(Glut-ALit) GLP-1(7-38); Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-38); Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26, 36}-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys³⁶, 36-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁶Lys^{34, 36}-bis-(Glut-ALit) Ser⁸Arg³⁶Lys³⁴-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁶Lys³⁶-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁶-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁶-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁶-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁶-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³ Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-39) Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁴Lys^{26, 36}-bis-(Glut-ALit) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-37); Arg³⁴Lys^{26, 36}-bis-(Glut-ALit) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Glut-ALit) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glut-ALit) GLP-1(7-37); Arg²⁶Lys^{34, 39}-bis-(Glut-ALit) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Glut-ALit) GLP-1(7-39); Arg^{36,39}-bis-(Glut-ALit) Arg^{36,39}-bis-1(7-39); Arg 13(7-39); Arg²⁶Lys^{18, 34}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁴Lys^{18,26}-bis-(Glut-ALit) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(Glut-ALit) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glut-ALit) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Glut-ALit) GLP-1(7-38);
Arg³⁴Lys^{18,26}-bis-(Glut-ALit) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Glut-ALit) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-39); Arg³⁶Lys^{23,26}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁶Lys^{27,26}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁶Lys^{27,26}-bis-(Glut-ALit) GLP-1(7-36); Arg³⁶-bis-(Glut-ALit) Arg³⁶-bis-(Glut-ALi Arg Lys 1-01s-(Glut-ALit) GLP-1(7-39); Arg 1-1ys 1-1ys 1-01s-(Glut-ALit) GLP-1(7-39); Arg 1-1ys 1-1ys 1-01s-(Glut-ALit) GLP-1(7-39); Arg 1-1ys 1-1ys 1-1ys 1-1ys 1-01s-(Glut-ALit) GLP-1(7-39); Arg 1-1ys ALit) GLP-1(7-39); Arg Lys (7-39); Gly⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-36); Gly⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-50) ALit) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-50) (Aspa-ADod) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Aspa-ADod) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Aspa-ADod) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Aspa-ADod) GLP-1(7-39); Arg³⁴Lys^{36,39}-bis-(Aspa-ADod) GLP-1(7-Gly⁸Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-37); Gly*Arg**Lys**6-bis-(Glut-ALit) GLP-1(7-37); Gly*Arg**26, 36-bis-(Glut-ALit) GLP-1(7-37); 55 Gly*Arg**26Lys**34,37-bis-(Glut-ALit) GLP-1(7-37); Gly*Arg**34Lys**26,37-bis-(Glut-ALit) GLP-1(7-37); Gly*Arg**26Lys**34,38-bis-(Glut-ALit) GLP-1(7-38); Gly*Arg**4Lys**26,38-bis-(Glut-ALit) GLP-1(7-38); Gly*Arg**4Lys**26,38-bis-(Glut-ALit) GLP-1(7-38); 60 Gly**Arg**26Lys**34, 39-bis-(Glut-ALit) GLP-1(7-38); 60 Gly**Arg**26Lys**4, 39-bis-(Gly**Alit) GLP-1(7-38); 61 Gly**41; 6 Gly⁸Arg²⁶Lys^{34, 39}-bis-(Glut-ALit) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glut-ALit) GLP-1(7-39); Gly⁸Arg^{26,34}Lys^{36,39}-bis-(Glut-ALit) GLP-1(7-39); Val⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-36); Val⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-37); Val⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-38); Val⁸Lys²⁶-bis-(Glut-ALit) GLP-1(7-38); Val⁸Lys²⁶-bis-(Glut-ALit) Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ALit) GLP-1(C7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glut-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(Glut-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(Glut-ALit) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Glut-ALit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glut-ALit) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-ALit) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(Glut-ALit) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Glut-ALit) GLP-11(7-39); Ser⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1 (7-36); Ser⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Glut-ALit) GLP-1(7-38); Ser⁸Lys²⁶, Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ALit) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-37); Ser Arg ³⁴Lys²⁶, ³⁶-bis-(Glut-ALit) GLP-1(7-37); Ser ⁸Arg ²⁶Lys³⁴, ³⁷-bis-(Glut-ALit) GLP-1(7-37); Ser ⁸Arg ³⁴Lys ²⁶, ³⁷-bis-(Glut-ALit) GLP-1(7-37); Ser ⁸Arg ³⁴Lys ²⁶, ³⁸-bis-(Glut-ALit) GLP-1(7-38); Ser ⁸Arg ³⁴Lys ²⁶, ³⁸-bis-(Glut-ALit) GLP-1(7-38); Ser ⁸Arg ²⁶Lys ³⁴, ³⁸-bis-(Glut-ALit) GLP-1(7-38); Ser ⁸Arg ²⁶Lys ³⁴, ³⁶, ³⁸Lys ²⁶, ³⁶, ³⁸Lys ²⁶, ³⁸Lys ²⁶, ³⁸Lys ²⁶, ³⁸Lys ³⁶, ³⁸Lys ²⁶, ³⁸Lys ³⁶, ³⁶Lys ³⁶, ³⁸Lys ³⁶Lys ³⁶Ly ³⁴Lys^{36,38}-bis-(Glut-ALit) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Glut-ALit) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(Glut-ALit) Ser⁸Arg²⁶-(Glut-ALit) Ser⁸-(Glut-ALit) GLP-1(7-39); Ser⁸-(Glut-ALit) GLP-1(7-39); Ser⁸-(Glut-ALit) GLP-1(7-39); Ser⁸-(Glut-AL ALit) GLP-1(7-39); Thr⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-36); Thr⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-37); Thr⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(Glut-ALit) GLP-1(7-39) $Thr^{8}Arg^{26}Lys^{34,36}$ -bis-(Glut-ALit) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ALit) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glut-ALit) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glut-ALit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(Glut-ALit) GLP-1(7-37); Thr 8 Arg 34 Lys 26,37 -bis-(Glut-ALit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glut-ALit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glut-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(Glut-ALit) GLP-1(7-38); Thr⁸Arg²⁶Lys^{34,39}-bis-(Glut-ALit) GLP-1(7-39); Thr⁸Arg²⁶Lys^{34,39}-bis-(Glut-ALit) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39}-bis-(Glut-ALit) GLP-1(7-39); Thr⁸Arg^{26,34}Lys^{36,39}-bis-(Glut-ALit) GLP-1(7-39); Lys^{26,34}-bis-(Aspa-ADod) GLP-1(7-37); Lys²⁶-bis-(Aspa-ADod) Lys²⁶-bi bis-(Aspa-ADod) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Aspa-ADod) GLP-1(7-37); Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Aspa-ADod) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Aspa-ADod) GLP-1(7-37); Arg³⁴Lys²⁶, Arg²⁶Lys^{18, 34}-bis-(Aspa-ADod) GLP-1(7-36); Arg³⁴Lys^{18,} Arg Lys -ols-(Aspa-ADod) GLP-1(7-30); Arg Lys -ols-(Aspa-ADod) GLP-1(7-36); Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-ADod) GLP-1(7-37); Arg³⁴Lys¹⁸, ²⁶-bis-(Aspa-ADod) GLP-1(7-37); Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-ADod) GLP-1(7-38); Arg³⁴Lys¹⁸, ²⁶-bis-(Aspa-ADod) GLP-1(7-38); Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-ADod) GLP-1(7-39); ³⁴ 38); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ADod) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ADod) GLP-1(7-36); Arg³⁴Lys²³, ²⁶-bis-(Aspa-ADod) GLP-1(7-36); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ADod) GLP-1(7-36); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ADod) GLP-1(7-37); Arg³⁴Lys²³, ²⁶-bis-(Aspa-ADod) GLP-1(7-37); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ADod) GLP-1(7-38); Arg²⁶Lys²³, Arg²⁶Lys²³, Arg²⁶Lys²³, Arg²⁶Lys²³, Arg²⁶Lys²³, Arg²⁶Lys²³, Arg²⁶Lys²³, Arg²⁶Lys²³ Arg³⁴Lys^{23,26}-bis-(Aspa-ADod) GLP-1(7-38); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ADod) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Aspa-ADod) GLP-1(7-39); Arg²⁶Lys^{27,34}-bis-(Aspa-ADod) GLP-1(7-39); Arg²⁶Lys^{27,34}-bis-(Aspa-ADod) ADod) GLP-1(7-36); Arg³⁴Lys^{27, 26}-bis-(Aspa-ADod) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(Aspa-ADod) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(Aspa-ADod) GLP-1(7-37); Arg²⁶Lys^{27, 34}-bis-(Aspa-ADod) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Aspa-ADod) GLP-1(7-38); Arg³⁴Lys^{27, 34}-bis-(Aspa-ADod) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Aspa-ADod) GLP-1(7-39); Gly⁸Lys^{26, 34}-bis-(Aspa-ADod) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Aspa-ADod) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Aspa-ADod) GLP-1(7-38); Gly⁸Lys²⁶-bis-Gly⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-38); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-39) Gly⁸Arg²⁶Lys³⁴, ³⁶-bis-(Aspa-ADod) GLP-1(7-36); Gly⁸Arg²⁶Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴, ³⁶-bis-(Aspa-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴, ³⁷-bis-(Aspa-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁷-bis-(Aspa-ADod) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁸-bis-(Aspa-ADod) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys³⁶, ³⁸-bis-(Aspa-ADod) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Aspa-ADod) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ADod) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁶,³⁹-bis-(Aspa-ADod) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-36); ³⁴-bis-(1(7-39) Val⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ADod) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ADod) GLP-1(7-37); Val⁸ Arg²⁶ Lys^{26,37}-bis-(Aspa-ADod) GLP-1(7-37); Val⁸ Arg²⁶ Lys^{26,37}-bis-(Aspa-ADod) GLP-1(7-37); Val⁸ Arg²⁶ Lys³⁴,38-bis-(Aspa-ADod) GLP-1(7-38); Val⁸ Arg³⁴ Lys^{26,38}-bis-(Aspa-ADod) GLP-1(7-38); Val⁸ Arg²⁶ Lys³⁴, 39-bis-(Aspa-ADod) GLP-1(7-39); Val⁸ Arg²⁶ Lys³⁴, 39-bis-(Aspa-ADod) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(Aspa-ADod) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Lys^{26, 34}-bis-(Aspa-ADod) GLP-1(7-36); Ser⁸Lys^{26, 35} 34-bis-(Aspa-ADod) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(Aspa-ADod) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(Aspa-ADod) GLP-Abod) GLP-1(7-37); Ser*Lys²⁶, 34-bis-(Aspa-Abod) GLP-1(7-36); Gly⁸ Arg²⁶ Lys³⁴,36-bis-(Aspa-Abod) GLP-1(7-36); Gly⁸ Arg²⁶ Lys³⁴,36-bis-(Aspa-Abod) GLP-1(7-36); Gly⁸ Arg²⁶ Lys³⁴,37-bis-(Aspa-Abod) GLP-1(7-36); Gly⁸ Arg²⁶ Lys³⁴,36-bis-(Aspa-Abod) GLP-1(7-37); Gly⁸ Arg²⁶ Lys³⁴,37-bis-(Aspa-Abod) GLP-1(7-37); Gly⁸ Arg²⁶ Lys³⁴,37-bis-(Aspa-Abod) GLP-1(7-37); Gly⁸ Arg²⁶ Lys³⁴,37-bis-(Aspa-Abod) GLP-1(7-37); Gly⁸ Arg²⁶, 34-bis-(Aspa-Abod) GLP-1(7-38); Arg²⁶ Ser⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ADod) GLP-1(7-37); Ser⁸Arg²⁶, ³⁴Lys³⁶, ³⁸-bis-(Aspa-ADod) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys²⁶, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys²⁶, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴, Val⁸Arg²⁶ Ser⁸Arg³⁴Lys^{26,37}-bis-(Aspa-ADod) GLP-1(7-37); 1(7-39) Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ADod) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ADod)
GLP-1(7-37); 55 Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{26,37}-bis-(Aspa-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Aspa-ADod) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(Aspa-ADod) GLP-1(7-38); 60 Thr⁸Arg^{26, 34}Lys^{36,38}-bis-(Aspa-ADod) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ADod) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39}-bis-(Aspa-ADod) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,38}-bis-(Aspa-ADod) GLP-1(7-39); Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-36); Lys^{26, 34}-bis-(Aspa-65 ATet) GLP-1(7-37); Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-38); Lys²⁶, ³⁴-bis-(Aspa-ATet) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Aspa-ATet) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-36); Arg²⁶Lys³⁴,³⁶-bis-(Aspa-ATet) GLP-1(7-37); Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-37); Arg²⁶Lys³⁴,³⁷-bis-(Aspa-ATet) GLP-1(7-37); Arg³⁴Lys²⁶,³⁷-bis-(Aspa-ATet) GLP-1(7-37); Arg²⁶Lys³⁴, ³⁶-bis-(Aspa-ATet) Arg³⁴Lys²⁶-bis-(Aspa-ATet) GLP-1(7-37); Arg³⁴-bis-(Aspa-ATet) GLP-1(7-37); Arg³⁶-bis-(Aspa-ATet) GLP-1(7-3 ³⁹-bis-(Aspa-ATet) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Aspa-ATet) GLP-1(7-39); Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ATet) GLP-Arg²⁶Lys^{18, 34}-bis-(Aspa-ATet) GLP-1(7-36); Arg³⁴Lys^{18,} Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-Alet) GLP-1(7-36); Arg²⁴Lys¹⁸, ³⁴-bis-(Aspa-Alet) GLP-1(7-36); Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-Alet) GLP-1(7-37); Arg³⁴Lys¹⁸, ³⁴-bis-(Aspa-Alet) GLP-1(7-38); Arg³⁴Lys¹⁸, ²⁶-bis-(Aspa-Alet) GLP-1(7-38); Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-Alet) GLP-1(7-39); Arg²⁶Lys¹⁸, ³⁴-bis-(Aspa-Alet) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(Aspa-Alet) GLP-1(7-36); Arg²⁶Lys²³, ³⁴-bis-(Aspa-Alet) GLP-1(7-36); Arg²⁶Lys²³, ³⁴-bis-(Aspa-Alet) GLP-1(7-37); Arg³⁴Lys²³, Arg³⁴Lys³-bis-(Aspa-Alet) Arg³⁴-bis-(Aspa-Alet) GLP-1(7-37); Arg³⁴-bis-(Aspa-Alet) GLP-1(7-38); Arg³-bis-(Aspa-Alet) GL 26-bis-(Aspa-ATet) GLP-1(7-37); Arg²⁶Lys^{23, 34}-bis-(Aspa-ATet) GLP-1(7-38); Arg³⁴Lys²³,26-bis-(Aspa-ATet) GLP-1 (7-38); Arg²⁶Lys²³, 34-bis-(Aspa-ATet) GLP-1(7-39); Arg³⁴Lys²³,26-bis-(Aspa-ATet) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Aspa-ATet) GLP-1(7-36); Arg³⁴Lys^{27,} ²⁶-bis-(Aspa-ATet) GLP-1(7-36); Arg²⁶Lys²⁷, ³⁴-bis-(Aspa-ATet) GLP-1(7-37); Arg³⁴Lys²⁷, ²⁶-bis-(Aspa-ATet) GLP-1 (7-37); Arg²⁶Lys²⁷, ³⁴-bis-(Aspa-ATet) GLP-1 (7-38); Arg³⁴Lys²⁷, ²⁶-bis-(Aspa-ATet) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁶-bis-(Aspa-ATet) GLP-1(7-38); Arg³⁵Lys²⁷, ²⁶-bis-(Aspa-ATet) GLP-1 (7-38); Arg³⁶Lys²⁷, ²⁸-bis-(Aspa-ATet) Arg³⁶Lys²⁸, ²⁸-bis-(Aspa-ATet) GLP-1 (7-38); Arg³⁶Lys²⁸, ²⁸-bis-(Aspa-ATet) (7-88); Arg³⁶Lys²⁸, ²⁸-bis-(Aspa-ATet) (7-88); Arg³⁸Lys²⁸, ²⁸-bis-(Aspa-ATet) (³⁴-bis-(Aspa-ATet) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Aspa-ATet) GLP-1(7-39); Gly⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-36); Gly⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1 (7-39) $Gly^8Arg^{26}Lys^{34,36}$ -bis-(Aspa-ATet) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ATet) GLP-1(7-37); Gly⁸Arg³⁴Lys^{26, 36}-bis-(Aspa-ATet) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ATet) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Asps-ATet) GLP-1(7-39); Gly⁸Arg^{26,34}Lys^{26,34}-bis-(Asps-ATet) GLP-1(7-39); Val⁸Arg²⁶Lys^{34,38}-bis-(Aspa-ATet) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Aspa-ATet) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Aspa-ATet) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ATet) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{26,39}-bis-(Aspa-ATet) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ATet) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-ATet) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-ATet) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1 (7-39)Ser⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ATet) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁷-bis-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶,³⁷-bis-(Aspa-ATet) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁸-bis-(Aspa-ATet) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶,³⁸-bis-(Aspa-ATet) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁶,³⁸-bis-(Aspa-ATet) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶,³⁹-bis-(Aspa-ATet) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶,³⁹ bis (Aspa-ATet) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Aspa-ATet) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ATet) GLP-1(7-39); Thr⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-36); Thr⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-37); Thr⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(Aspa-ATet) GLP-1 Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ATet) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ATet) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-Aftet) GLP-1(7-37); 15 Val⁸Arg³⁴Lys^{26,38}-bis-(Aspa-Aftet) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,36}-bis-(Aspa-Aftet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Aspa-Aftet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Aspa-Aftet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Aspa-Aftet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,39}-bis-(Aspa-Aftet) GLP-1(7-39); Val⁸Arg²⁶Lys^{34,39}-bis-(Aspa-Aftet) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,37}-bis-(Aspa-ATet) GLP-1(7-37); Thr Arg 26 Lys 34,38-bis-(Aspa-ATet) GLP-1(7-38); Thr Arg 34 Lys 26,38-bis-(Aspa-ATet) GLP-1(7-38); Thr Arg 34 Lys 26,38-bis-(Aspa-ATet) GLP-1(7-38); 20 Thr Arg 26, 34 Lys 36,38-bis-(Aspa-ATet) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ATet) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶, ³⁹-bis-(Aspa-ATet) GLP-1(7-39); Thr⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Aspa-ATet) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ATet) GLP-1(7-39); Lys^{26, 34}-bis-(Aspa-AHex) GLP-1(7-36); Lys^{26, 34}-bis- 25 (Aspa-AHex) GLP-1(7-37); Lys^{26, 34}-bis-(Aspa-AHex) GLP-1(7-38); Lys^{26, 34}-bis-(Aspa-AHex) GLP-1(7-39) GLP-1(7-38); Lys²⁻⁶ bis-(Aspa-AHex) GLP-1(7-39), Arg²⁶Lys^{34,36}-bis-(Aspa-AHex) GLP-1(7-36); Arg³⁴Lys²⁶, 36-bis-(Aspa-AHex) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Aspa-AHex) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Aspa-AHex) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Aspa-AHex) GLP-1(7-37); Arg²⁶Lys^{34,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg²⁶Lys^{26,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys^{26,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys^{26,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg²⁶Lys^{34,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg²⁶Lys^{34,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg²⁶Lys^{34,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys^{36,38}-bis-(Aspa-AHex) GLP-1(7-37); Ser⁸Arg³⁴Lys^{36,38}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Arg³⁴Lys ³⁹-bis-(Aspa-AHex) GLP-1(7-39); Arg³⁴Lys²⁶,³⁹-bis-(Aspa-AHex) GLP-1(7-39); Arg²⁶Lys³⁶,³⁹-bis-(Aspa-AHex) GLP-Arg²⁶Lys^{18, 34}-bis-(Aspa-AHex) GLP-1(7-36); Arg³⁴Lys^{18,} 26-bis-(Aspa-AHex) GLP-1(7-36); Arg ²⁶Lys¹⁸, ³⁴-bis-(Aspa-AHex) GLP-1(7-37); Arg ³⁴Lys^{18, 26}-bis-(Aspa-AHex) GLP-1(7-37); Arg ³⁴Lys^{18, 26}-bis-(Aspa-AHex) GLP-1(7-38); Arg ³⁴Lys^{18, 26}-bis-(Aspa-AHex) GLP-1(7-38); Arg ³⁴Lys^{18, 26}-bis-(Aspa-AHex) GLP-1(7-38); Arg ³⁴Lys^{18, 34}-bis-(Aspa-AHex) GLP-1(7-39); Arg ³⁴Lys¹⁸. 26-bis-(Aspa-AHex) GLP-1(7-39); Arg Lys 3, 34-bis (Aspa-AHex) GLP-1(7-36); Arg 34Lys 23, 26-bis-(Aspa-AHex) GLP-1(7-36); Arg 26Lys 23, 34-bis- (Aspa-AHex) GLP-1(7-37); Arg 34Lys 23, 26-bis-(Aspa-AHex) GLP-1(7-37); Arg 26Lys 23, 34-bis- (Aspa-AHex) GLP-1(7-38); Arg 26Lys 23, 34-bis- (Aspa-AHex) GLP-1(7-39); Arg 26Lys 23, 34-bis- (Aspa-AHex) GLP-1(7-39); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-36); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-37); Arg 34Lys 27, 26-bis- (Aspa-AHex) GLP-1(7-37); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-38); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-38); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-38); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-39); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-39); Arg 26Lys 27, 34-bis- (Aspa-AHex) GLP-1(7-36); Lys 26, 34-bis- (Aspa-AOct) GLP-1(7-36); Lys 26, 34-bis- (Aspa-AOct) GLP-1(7-37); Lys 26, 34-bis- (Aspa-AOct) GLP-1(7-38); 2 Arg²⁶Lys²³, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Arg³⁴Lys²³, ²⁶-bis-(Aspa-AHex) GLP-1(7-38); Arg²⁶Lys²⁷, ³⁴-bis-(Aspa-AHex) GLP-1(7-39); Arg³⁴Lys²⁷, ²⁶-bis-(Aspa-55 AHex) GLP-1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Aspa-AHex) GLP-1(7-38); Gly⁸Lys²⁶, GLP-1(7-38); Gly²Lys²⁶, 34-bis-(Aspa-AHex) GLP-1(7-39); Gly⁸Arg²⁶Lys³⁴,36-bis-(Aspa-AHex) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, 36-bis-(Aspa-AHex) GLP-1(7-36); Gly⁸Arg³⁶Lys³⁴,36-bis-(Aspa-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, 36-bis-(Aspa-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶,37-bis-(Aspa-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶,37-bis-(Aspa-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴,38-bis (Aspa-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴,38-bis (Aspa-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(Aspa-AHex) GLP-1(7-38); 65 Gly⁸Arg³⁴Lys^{26,38}-bis-(Aspa-AHex) GLP-1(7-38); Gly⁸Arg^{26, 34}Lys^{36,38}-bis-(Aspa-AHex) GLP-1(7-38); Gly⁸Arg²⁶Lys^{34, 39}-bis-(Aspa-AHex) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Aspa-AHex) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Aspa-AHex) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-37); Val⁸Lys^{26,34}bis-(Aspa-AHex) GLP-1(7-38); Val⁸Lys^{26,34}-bis-(Aspa-AHex) GLP-1(7-39)Val⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AHex) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AHex) GLP-1(7-36); Val Arg 26 Lys 34,36 - bis-(Aspa-AHex) GLP-1(7-37); Val Arg 26 Lys 34,36 - bis-(Aspa-AHex) GLP-1(7-37); Val Arg 26 Lys 34,37 - bis-(Aspa-AHex) GLP-1(7-37); Val Arg 26 Lys 34,37 - bis-(Aspa-AHex) GLP-1(7-37); Val Arg 26 Lys 34,38 - bis-(Aspa-AHex) GLP-1(7-38); Val Arg 26 Lys 34,38 - bis-(Aspa-AHex) GLP-1(7-38); Val⁸Arg^{26, 34}Lys^{26,39}-bis-(Aspa-AHex) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-AHex) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Ser⁸Lys²⁶, 34-bis-(Aspa-AHex) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(Aspa-AHex) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(Aspa-AHex) GLP-1(7-39)Ser⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AHex) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AHex) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AHex) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AHex) GLP-1(7-37);
Ser⁸Arg²⁶Lys^{34, 39}-bis-(Aspa-AHex) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Aspa-AHex) GLP-1(7-39); 35 Ser⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(Aspa-AHex) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AHex) GLP-1(7-39)Thr⁸Arg²⁶Lys^{34,36}-bis(Aspa-AHex) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AHex) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AHex) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AHex) GLP-1(7-37); 1(7-38); Lys^{26, 34}-bis-(Aspa-AOct) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AOct) GLP-1(7-36); Arg²⁶Lys^{24,36}-bis-(Aspa-AOct) GLP-1(7-37); Arg³⁴Lys^{26, 36}-bis-(Aspa-AOct) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Aspa-AOct) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Aspa-AOct) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Aspa-AOct) GLP-1(7-37); Arg³⁶Lys³⁴-ys³⁶-bis-(Aspa-AOct) GLP-1(7-37); Arg³⁶-bis-(Aspa-AOct) ³⁹-bis-(Aspa-AOct) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Aspa-AOct) GLP-1(7-39); Arg^{26, 34}Lys^{36,39}-bis-(Aspa-AOct) GLP-1(7-39); Arg²⁶Lys^{18, '34}-bis-(Aspa-AOct) GLP-1(7-36); Arg³⁴Lys^{18,} ²⁶-bis-(Aspa-AOct) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(Aspa-AOct) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Aspa-AOct) GLP-1 (7-37); Arg²⁶Lys^{18,34}-bis-(Aspa-AOct) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis -(Aspa -AOct) -G LP-1(7-38); ``` Arg²⁶Lys^{18, 34}-bis-(Aspa-AOct) GLP-1(7-39); Arg³⁴Lys^{18,} 26-bis -(Aspa -AOct) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(Aspa-AOct) GLP-1(7-36); Arg³⁴Lys²³, 26-bis-(Aspa-AOct) GLP-1(7-36); Arg²⁶Lys^{23, 34}-bis-(Aspa- AOct) GLP-1(7-37); Arg³⁴Lys²³,²⁶-bis-(Aspa-AOct) GLP-1 (7-37); Arg²⁶Lys²³, ³⁴-bis-(Aspa-AOct) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Aspa-AOct) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Aspa-AOct) GLP-1(7-38); Arg³⁶Lys²³, ³⁴-bis-(Aspa-AOct) GLP-1(7-38); Arg³⁶Lys²³, ³⁴-bis-(Aspa-AOct) GLP-1(7-38); Arg³⁶-bis-(Aspa-AOct) GLP-1(7 ³⁴-bis-(Aspa-AOct) GLP-1(7-39); Arg³⁴Lys²³, 26-bis-(Aspa- **Thr **Arg **26 Lys **3 - bis-(Aspa-AOct) GLP-1(7-39); Arg **26 Lys **27, 34 - bis-(Aspa-AOct) GLP-1(7-36); Arg **4 Lys **27, 34 - bis-(Aspa-AOct) GLP-1(7-36); Arg **4 Lys **27, 34 - bis-(Aspa-AOct) GLP-1(7-39); AOct) GLP-1(7-37); Arg **4 Lys **27, 26 - bis-(Aspa-AOct) GLP-1(7-38); **26, 34 - bis-(Aspa-ALit) GLP-1(7-36); GLP-1(7 Gly⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Aspa- AOct) GLP-1(7-38); Gly⁸Lys²⁶, 34-bis-(Aspa-AOct) GLP-1 Gly⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AOct) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(Aspa-AOct) GLP-1(7-37); 25 Gly⁸Arg³⁴Lys^{26,37}-bis-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(Aspa-AOct) GLP-1(7-38); Gly⁸Arg³⁴Lys^{26,38}-bis-(Aspa-AOct) GLP-1(7-38); Gly⁸Arg^{26,34}Lys^{36,38}-bis-(Aspa-AOct) GLP-1(7-38); Gly*Arg* Clys* (Aspa-AOct) GLP-1(7-38); Arg* Clys* (Aspa-ACt) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(Aspa- AOct) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1 35 (7-39) Val⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-36); (7-39) Val Arg Lys - ols-(Aspa-AOct) GLP-1(7-36); Val Arg - Lys - ols-(Aspa-AOct) GLP-1(7-36); Val Arg - ols - ols-(Aspa-AOct) GLP-1(7-37); Val Arg - ols - ols-(Aspa-AOct) GLP-1(7-38); Val Arg - ols - ols-(Aspa-AOct) GLP-1(7-38); Val Arg - ols - ols-(Aspa-AOct) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Aspa-AOct) GLP-1(7-38); Val⁸Arg^{26, 34}Lys^{36,38}-bis-(Aspa-AOct) GLP-1(7-38); Val⁸Arg²⁶Lys^{34, 39}-bis-(Aspa-AOct) GLP-1(7-39); 45 ³⁴-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Aspa-Val⁸Arg³⁴Lys^{26, 39}-bis-(Aspa-AOct) GLP-1(7-39); ALit) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Aspa-ALit) GLP-1 Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-AOct) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁶Lys³⁶, Gly⁸Arg³⁶, Gly⁸Arg³ (7-39) Ser⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-36); Ser⁸Arg³⁴Lys^{26, 36}-bis-(Aspa-AOct) GLP-1(7-36); Ser Arg 26 Lys 34,36 - bis-(Aspa-AOct) GLP-1(7-37); Gly Arg - Lys 26,38 - bis-(Aspa-ALit) GLP-1(7-38); Gly Arg 34 Lys 26,38 - bis-(Aspa-ALit) GLP-1(7-38); Gly Arg 34 Lys 26,38 - bis-(Aspa-ALit) GLP-1(7-38); Ser Arg 26 Lys 34,37 - bis-(Aspa-AOct) GLP-1(7-37); Gly Arg 26 Lys 34,39 bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 34 Lys 26,39 - bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 26 Lys 34,38 - bis-(Aspa-AOct) GLP-1(7-38); Gly Arg 36 Lys 36,39 - bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 36 Lys 36,38 - bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 36 Lys 36,39 - bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 36 Lys 36,39 - bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 36 Lys 36,39 - bis-(Aspa-ALit) GLP-1(7-39); Gly Arg 36 Lys 36,38 Ser Arg 26 Lys 34,37 -bis-(Aspa-AOct) GLP-1(7-37); Ser Arg 26 Lys 34,37 -bis-(Aspa-AOct) GLP-1(7-37); Ser Arg 34 Lys 26,37 -bis-(Aspa-AOct) GLP-1(7-38); Ser Arg 26 Lys 34,38 -bis-(Aspa-AOct) GLP-1(7-38); Ser Arg 26, 34 Lys 36,38 -bis-(Aspa-AOct) GLP-1(7-38); Ser Arg 26, 34 Lys 36,38 -bis-(Aspa-AOct) GLP-1(7-38); Ser Arg 26, 34 Lys 36,38 -bis-(Aspa-AOct) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Aspa-AOct) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-AOct) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Aspa-AOct) GLP-1 (7-39) Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-36); ``` ``` 138 Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AOct) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-AOct) GLP-1(7-37); Thr⁸ Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-AOct) GLP-1(7-37); Thr⁸ Arg²⁶ Lys^{34,37}-bis-(Aspa-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(Aspa-AOct) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Aspa-AOct) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(Aspa-AOct) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys³⁶, ³⁸-bis-(Aspa-AOct) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-AOct) GLP-1(7-39); ³⁶-bis-(Aspa-ALit) GLP-1(7-36); Arg²⁻¹Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-36); Arg²⁻⁶Lys^{34,36}-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁻⁶Lys³⁻⁶-bis-(Aspa-ALit) GLP-1(7-37); Arg²⁻⁶Lys³⁻⁶-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁻⁶Lys³⁻⁶-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁻⁶Lys³⁻⁶-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁻⁶Lys³⁻⁶-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁻⁶-bis-(Aspa-ALit) Arg³⁻⁶-bi ³⁹-bis-(Aspa-ALit) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Aspa-ALit) GLP-1(7-39); Arg^{26,34}-Lys^{36,39}-bis-(Aspa-ALit) GLP- 1(7-39); Arg²⁶Lys^{18, 34}-bis-(Aspa-ALit) GLP-1(7-36); Arg³⁴Lys^{18,} ²⁶-bis-(Aspa-ALit) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Aspa-ALit) GLP-1(7-38); Arg²⁶Lys^{18, 34}-bis-(Aspa-ALit) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Aspa-ALit) GLP-1(7-38); Arg²⁶Lys¹⁸. ³⁴-bis-(Aspa-ALit) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(Aspa- ALit) GLP-1(7-37); Arg³⁴Lys²³,²⁶-bis-(Aspa-ALit) GLP-1 (7-37); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ALit) GLP-1(7-38); Arg³⁴Lys²³,²⁶-bis-(Aspa-ALit) GLP-1(7-38); Arg³⁴Lys²³,²⁶-bis-(Aspa-ALit) GLP-1(7-38); Arg²⁶Lys²³, ³⁴-bis-(Aspa-ALit) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Aspa- ALit) GLP-1(7-39); Arg²⁶Lys²⁷, ³⁴-bis-(Aspa-ALit) GLP-1(7-36); Arg³⁴Lys²⁷, ²⁶-bis-(Aspa-ALit) GLP-1(7-36); Arg²⁶Lys²⁷, ³⁴-bis-(Aspa-ALit) GLP-1(7-37); Arg³⁴Lys²⁷, ²⁶-bis-(Aspa-ALit) GLP-1(7-37); Arg²⁶Lys²⁷, ³⁴-bis-(Aspa-ALit) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Aspa-ALit) GLP-1(7-38); Arg²⁶Lys^{27, 34}-bis-(Aspa-ALit) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Aspa-ALit) Arg³⁴Lys²⁷-bis-(Aspa-ALit) GLP-1(7-39); Arg³⁴Lys²⁷-bis-(Aspa-ALit) GLP-1(7-39); Arg³⁴-bis-(Aspa-ALit) GLP-1(Aspa-ALit) GLP-1(Aspa-ALit) GLP-1(Aspa-ALit) GLP-1(Aspa-ALit) ALit) GLP-1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(Aspa-ALit) GLP-1(7-36); Gly⁸Lys²⁶, (7-39) Gly⁸Arg²⁶Lys³⁴,36-bis-(Aspa-ALit) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, 36-bis-(Aspa-ALit) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴,36-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ALit) GLP-1(7-37); Gly⁸Arg³⁴Lys^{26,37}-bis-(Aspa-ALit) GLP-1(7-38); Gly⁸Arg²⁶Lys^{34,38}-bis-(Aspa-ALit) GLP-1(7-38); Val⁸Lys^{26, 34}-bis-(Aspa-ÀLit) GLP-1(7-36); Val⁸Lys^{26,} ³⁴-bis-(Aspa-ALit) GLP-1(7-37); Val⁸Lys^{26, 34}-bis-(Aspa-ALit) GLP-1(7-38); Val⁸Lys^{26, 34}-bis-(Aspa-ALit) GLP-1 Va18Arg²⁶Lys^{34,36}-bis-(Aspa-ALit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ALit) GLP-1(7-37); ``` ``` Val⁸Arg³⁴Lys^{26,37}-bis-(Aspa-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(Aspa-ALit) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Aspa-ALit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Aspa-ALit) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ALit) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(Aspa-ALit) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ALit) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-ALit) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-ALit) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-ALit) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(Aspa-ALit) GLP-1 10 (7-39) Ser⁸Arg²⁶Lys³⁴ ³⁶-bis-(Aspa-ALit) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ALit) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); 15 Ser⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ALit) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Aspa-ALit) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Aspa-ALit) GLP-1(7-38); Ser⁸Arg³⁴Lys^{26,38}-bis-(Aspa-ALit) GLP-1(7-38); Ser⁸Arg^{26,34}Lys^{36,38}-bis-(Aspa-ALit) GLP-1(7-38); 20 Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Aspa-ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Aspa-ALit) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(Aspa-ALit) GLP-1(7-39);
Thr⁸Lys^{26, 34}-bis-(Aspa-ALit) GLP-1(7-36); Thr⁸Lys^{26,} ³⁴-bis-(Aspa-ALit) GLP-1(7-37); Thr⁸Lys^{26, 34}-bis-(Aspa- 25 ALit) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(Aspa-ALit) GLP-1 Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ALit) GLP-1(7-36); Val⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ADod) GLP-1(7-38); Thr⁸Arg²⁶Lys^{34,36}-bis-(Aspa-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ADod) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,36}-bis-(Aspa-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ADod) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ADod) GLP-1(7-38); Val⁸Arg³⁴Lys^{36,38}-bis-(Glyc-ADod) Val⁸Arg³⁴Lys^{36,38}-bis-(Gly Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Aspa-ALit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(Aspa-ALit) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(Aspa-ALit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Aspa-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(Aspa-ALit) GLP-1(7-38); 35 Thr⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Aspa-ALit) GLP-1(7-38); Thr Arg 26 Lys 34, 39-bis-(Aspa-ALit) GLP-1(7-39); Thr Arg 34 Lys 26, 39-bis-(Aspa-ALit) GLP-1(7-39); Thr Arg 34 Lys 26, 39-bis-(Aspa-ALit) GLP-1(7-39); Thr Arg 36, 34-bis-(Glyc-ADod) GLP-1(7-36); Lys 26, 34-bis-40 (Glyc-ADod) GLP-1(7-37); Lys^{26, 34}-bis-(Glyc-ADod) GLP-1(7-38); Lys^{26, 34}-bis-(Glyc-ADod) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-36); Arg³⁴Lys²⁶, Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-37); Arg³⁴Lys^{26,36}-bis-(Glyc-ADod) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Glyc-ADod) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-ADod) GLP-1(7-37); Arg²⁶Lys³⁴, 39-bis-(Glyc-ADod) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Glyc-ADod) GLP-1(7-39); Arg²⁶, 34Lys^{36,39}-bis-(Glyc-ADod) GLP-1(7-39); Arg²⁶, 34Lys^{36,39}-bis-(Glyc-ADod) GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(Glyc-ADod) GLP-1(7-36); Arg³⁴Lys^{18,} ₂₆-bis-(Glyc-ADod) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(Glyc-ADod) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glyc-ADod) GLP-1(7-37); Arg²⁶Lys^{18, 34}-bis-(Glyc-ADod) GLP-1(7-38); ADod) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys^{18,36}-bis-(Glyc-ADod) GLP-1(7-38); Thr⁸Arg²⁶Lys²⁶-bis-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg³⁴Lys^{18,26}-bis-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glyc-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-37); ³⁴-bis-(Glyc-ADod) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(Glyc- ADod) GLP-1(7-39); Arg²⁶Lys^{23, 34}-bis-(Glyc-ADod) GLP-1(7-36); Arg³⁴Lys^{23,} 26-bis-(Glyc-ADod) GLP-1(7-36); Arg²⁶Lys^{23, 34}-bis-(Glyc- ADod) GLP-1(7-37); Arg³⁴Lys²³,2⁶-bis-(Glyc-ADod) GLP-1(7-37); Arg²⁶Lys²³, ³⁴-bis-(Glyc-ADod) GLP-1(7-38); Arg³⁴Lys²³,2⁶-bis-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys²³, ³⁴-bis-(Glyc-ADod) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Glyc- ADod) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Glyc-ADod) GLP-1(7-36); Arg³⁴Lys^{27, 65}²⁶-bis-(Glyc-ADod) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(Glyc-ADod) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(Glyc-ADod) GLP- ``` ``` 1(7-37); Arg²⁶Lys^{27, 34}-bis-(Glyc-ADod) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Glyc-ADod) GLP-1(7-38); Arg²⁶Lys^{27, 34}-bis-(Glyc-ADod) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Glyc-ADod) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Glyc-ADod) ADod) GLP-1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-37); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-38); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-39) Gly⁸Arg²⁶Lys³⁴, ³⁶-bis-(Glyc-ADod) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ADod) GLP-1(7-36); Gly⁸Arg²⁶Lys³⁴, ³⁶-bis-(Glyc-ADod) GLP-1(7-37). Gly⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg²⁶Lys²⁶, ³⁷-bis-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁷-bis-(Glyc-ADod) GLP-1(7-37); Gly⁸Arg²⁶Lys³⁴, ³⁸-bis-(Glyc-ADod) GLP-1(7-38); Gly⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ADod) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glyc-ADod) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glyc-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ADod) GLP-1(7-39); Gly⁸Arg³⁴Lys^{36,39}-bis-(Glyc-ADod) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(Glyc-ADod) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP- 1-(7-39) Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ADod) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ADod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ADod) GLP-1(7-37); Va18Arg²⁶Lys^{34,37}-bis-(Glyc-ADod) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-ADod) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys²⁶, ³⁹-bis-(Glyc-ADod) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Glyc-ADod) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Glyc-ADod) GLP-1(7-37); Ser⁸Lys^{26, '34}-bis-(Glyc- ADod) GLP-1(7-38); Ser⁸Lys²⁶, 34-bis-(Glyc-ADod) GLP- ADdd) GLF-1(7-38), Set Lys -ols-(Glyc-ADdd) GLF-1(7-36); Set Arg 26 Lys 34,36-bis-(Glyc-ADdd) GLP-1(7-36); Set Arg 34 Lys 26, 36-bis-(Glyc-ADdd) GLP-1(7-37); Set Arg 34 Lys 26, 36-bis-(Glyc-ADdd) GLP-1(7-37); Set Arg 34 Lys 26, 36-bis-(Glyc-ADdd) GLP-1(7-37); Set Arg 34 Lys 26, 37-bis-(Glyc-ADdd) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ADod) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg^{26, 34}Lys^{36,38}-bis-(Glyc-ADod) GLP-1(7-38); Ser⁸Arg²⁶Lys^{34, 39}-bis-(Glyc-ADod) GLP-1(7-39); Ser⁸ Arg³⁴ Lys^{26,39} -bis-(Glyc-ADod) GLP-1(7-39); Ser⁸ Arg^{26,34} Lys^{36,39} -bis-(Glyc-ADod) GLP-1(7-39); Ser⁸ Arg^{26,34} -bis-(Glyc-ADod) GLP-1(7-36); Thr⁸ Lys^{26,34} -bis-(Glyc-ADod) GLP-1(7-36); Thr⁸ Lys^{26,34} -bis-(Glyc-ADod) GLP-1(7-38); Thr⁸ Lys^{26,34} -bis-(Glyc-ADod) GLP-1(7-36); Thr⁸ Lys^{26,34} -bis-(Glyc-ADod) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ADod) GLP-5 1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ADod) GLP-1(7-37); Thr Arg ²⁴Lys^{26,37}-bis-(Glyc-ADod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ADod) GLP-1(7-38); Thr Arg Lys -01s-(Glyc-ADod) GLP-1(7-38); Thr Arg Constant Lys Constant Con Thr⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ADod) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-ADod) GLP-1(7-39); Lys^{26, 34}-bis-(Glyc-ATet) GLP-1(7-36); Lys^{36, 36}-bis-(Glyc-ATet) GLP-1(7-36); Lys^{36, 3} ATet) GLP-1(7-37); Lys^{26, 34}-bis-(Glyc-ATet) GLP-1(7-38); Lvs²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-39) ``` 142 ``` Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); Arg²⁶Lys³⁴, Arg²⁶Lys³⁶, Arg³⁶Lys³⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); Arg³⁶Lys³ ATet) GLP-1(7-37); Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1 (7-37); Arg²⁶Lys^{34,37}-bis-(Glyc-ATet) GLP-1 (7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-ATet) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-ATet) GLP-1(7-37); Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Glyc-ATet) GLP-1(7-39); Arg^{26,34}Lys^{36,39}-bis-(Glyc-ATet) GLP- Arg²⁶Lys¹⁸, ³⁴-bis-(Glyc-ATet) GLP-1(7-36); Arg³⁴Lys¹⁸, ²⁶-bis-(Glyc-ATet) GLP-1(7-36); Arg²⁶Lys¹⁸, ³⁴-bis-(Glyc-ATet) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glyc-ATet) GLP-1(7-37); Arg²⁶Lys¹⁸, ³⁴-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys¹⁸-bis-(Glyc-ATet) Arg³⁴-bis-(Glyc-ATet) Arg³⁴-bis-(Glyc-AT ATet) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(Glyc-ATet) GLP-1(7-36); Arg³⁴Lys²³, 26-bis-(Glyc-ATet) GLP-1(7-36); Arg²⁶Lys^{23, 34}-bis-(Glyc- ATet) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(Glyc-ATet) GLP-1 (7-37); Arg²⁶Lys^{23, 34}-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glyc-ATet) GLP-1(7-39); GLP-1(7-38); Arg³⁴Lys²⁵-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁵-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁵-bis-(Glyc-ATet) GLP-1 ATet) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Glyc-ATet) GLP-1(7-36); Arg³⁴Lys^{27,} ²⁶-bis-(Glyc-ATet) GLP-1(7-36); Arg²⁶Lys²⁷, ³⁴-bis-(Glyc-ATet) GLP-1(7-37); Arg³⁴Lys²⁷, ²⁶-bis-(Glyc-ATet) GLP-1 (25); Arg³⁴Lys²⁷, ³⁴-bis-(Glyc-ATet) GLP-1 (7-38); Arg³⁴Lys²⁷, ²⁶-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁶-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁶Lys²⁷, Arg³⁶Lys² 34bis-(Glyc-ATet) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Glyc- ATet) GLP-1(7-39); Gly⁸Lys^{26, 34}-bis-(Glyc-ATet) GLP-1(7-36); Gly⁸Lys^{26, 30} ³⁴-bis -(Glyc-ATet) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(Glyc-ATet) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Glyc-ATet) GLP-1 Gly⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); 35 ³⁹-bis-(Glyc-AHex) GLP-1(7-39); Arg³⁴Lys²⁶, ³⁹-bis-(Glyc-AHex) GLP-1(7-39); Arg³⁶, ³⁹-bis-(Glyc-AHex) GLP-1(7-39); Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(Glyc-AHex) Gly*Arg**Clys**, 36-bis-(Glyc-Alet) GLP-1(7-37); GLP**Arg**Cly** Afg**Sizes** Sizes** Glyc-Alet) GLP-1(7-37); GLP**L(7-39); Arg**Sizes** Sizes** Sizes** Sizes** Glyc-Alet) GLP-1(7-37); GLP**L(7-39); GLP**L(7-39); Arg**Sizes** Sizes** Sizes** Glyc-Alet) GLP-1(7-37); GLP**L(7-39); Arg**Sizes** Sizes** Sizes** Glyc-Alet) GLP-1(7-37); Arg**Clys** Sizes** Sizes** Sizes** Sizes** Glyc-Alet) GLP-1(7-37); Arg**Lys** Sizes** Si Gly⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ATet) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-ATet) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-38); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-38); Val⁸Arg²⁶Lys²³, ³⁴-bis-(Glyc-ATet) GLP-1(7-38); Arg³⁴Lys²³, ³⁴-bis-(Glyc-AHex) GLP-1(7-38); Arg³⁴Lys²³, ³⁴-bis-(Glyc-AHex) GLP-1(7-38); Arg³⁴Lys²³, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); GLP-1(7- Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys^{26, 36}-bis-(Glyc-ATet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ATet) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ATet) GLP-1(7-37); 55 Val⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ATet) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ATet) GLP-1(7-38); Val⁸Arg²⁶
³⁴Lys^{36,38}-bis-(Glyc-ATet) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-ATet) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ATet) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc- 60 ATet) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) ATet) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(Glyc-ATet) GLP-1(7- Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); ``` ``` Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,36}-bis-(Glyc-ATet) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ATet) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ATet) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ATet) GLP-1(7-38); Ser Arg Lys -- bls-(Glyc-Aret) GLP-1(7-38); Ser Arg 34 Lys 26,38 - bls-(Glyc-Aret) GLP-1(7-38); Ser Arg 26, 34 Lys 36,38 - bls-(Glyc-Aret) GLP-1(7-38); Ser Arg 26 Lys 34, 39 - bls-(Glyc-Aret) GLP-1(7-39); Ser⁸ Arg³⁴ Lys^{26,39} - bis - (Glyc-ATet) GLP-1(7-39); Ser⁸ Arg^{26, 34} Lys^{36,39} - bis - (Glyc-ATet) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Glyc-ATet) GLP-1 15 Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ATet) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ATet) GLP-1(7-38); Thr⁸ Arg³⁴Lys^{26,38}-bis-(Glyc-ATet) GLP-1(7-38); Thr⁸ Arg^{26,34} Lys^{36,38}-bis-(Glyc-ATet) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-ATet) GLP-1(7-39); Thr⁸ Arg³⁴ Lys^{26,39}-bis-(Glyc-ATet) GLP-1(7-39); Thr⁸ Arg^{26, 34} Lys^{36,39}-bis-(Glyc-ATet) GLP-1(7-39); AHex) GLP-1(7-39); 45 Arg²⁶Lys^{23, 34}-bis-(Glyc-AHex) GLP-1(7-36); Arg³⁴Lys^{23,} AHex) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Glyc-AHex) GLP-1(7-36); Arg³⁴Lys^{27, 26}-bis-(Glyc-AHex) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(Glyc-AHex) GLP-1(7-36); Arg³⁶Lys³⁷-bis-(Glyc-AHex) Arg³⁶-bis-(Glyc-AHex) GL AHex) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(Glyc-AHex) GLP-1(7-37); Arg²⁶Lys^{27, 34}-bis-(Glyc-AHex) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Glyc-AHex) GLP-1(7-38); Arg²⁶Lys^{27, 36}-bis-(Glyc-AHex) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis -(Glyc-AHex) GLP-1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-AHex) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-AHex) GLP-1(7-37); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-AHex) GLP-1(7-38); Gly⁸Lys²⁶, ³⁴-bis-(Glyc-AHex) GLP- Gly⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AHex) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(Glyc-AHex) GLP-1(7-37); ``` 144 ``` Gly⁸Arg³⁴Lys^{26,37}-bis-(Glyc-AHex) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AHex) GLP-1(7-38); Gly⁸Arg³⁴Lys^{26,38}-bis-(Glyc-AHex) GLP-1(7-38); Gly⁸Arg^{26, 34}Lys^{36,38}-bis-(Glyc-AHex) GLP-1(7-38); Gly⁸Arg²⁶Lys^{34, 39}-bis-(Glyc-AHex) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glyc-AHex) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-AHex) GLP-1(7-39); Val⁸Lys^{26, 34}-bis-(Glyc-AHex) GLP-1(7-36); Val⁸Lys^{26, 34}-bis-(Glyc-AHex) GLP-1(7-37); Val⁸Lys^{26, 34}-bis-(Glyc-AHex) GLP-1(7-38); Val⁸Lys²⁶-1(7-38); Val⁸Lys²⁶-1(7-38); Val⁸Lys²⁶-1 AOct) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(Glyc-AOct) GLP-1 (7-37); Arg²⁶Lys^{18,34}-bis-(Glyc-AOct) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(Glyc-AOct) GLP-1(7-38); Arg²⁶Lys¹⁸, ³⁴-bis-(Glyc-AOct) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(Glyc- AOct) GLP-1(7-39); AOct) GLP-1(7-39); Arg²⁶Lys^{23, 34}-bis-(Glyc-AOct) GLP-1(7-36); Arg³⁴Lys^{23, 26}-bis-(Glyc-AOct) GLP-1 (7-36); Arg²⁶Lys^{23, 34}-bis-(Glyc-AOct) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(Glyc-AOct) GLP-1 (7-37); Arg³⁴Lys^{23,26}-bis-(Glyc-AOct) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glyc-AOct) GLP-1(7-38); Arg²⁶Lys^{23, 34}-bis-(Glyc-AOct) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Glyc-AOct) GLP-1(7-30); Arg³⁴Lys²³-bis-(Glyc-AOct) GLP-1(7-30); Arg³⁴-bis-(Glyc-AOct) GLP-1(7-30); Arg³⁴-bis- Val⁸Árg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-36); Val Arg 34Lys²⁶, 36-bis-(Glyc-AHex) GLP-1(7-36); AGCt) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(Glyc-AOct) GLP-1(7-36); Arg³⁴Lys^{27, 26}-bis-(Glyc-AOct) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(Glyc-AOct) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(Glyc-AOct) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Glyc-AOct) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Glyc-AOct) GLP-1(7-38); Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys^{26, 36}-bis-(Glyc-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴, ³⁷-bis-(Glyc-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴, ³⁷-bis-(Glyc-AHex) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁷-bis-(Glyc-AHex) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁸-bis-(Glyc-AHex) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys³⁶, ³⁸-bis-(Glyc-AHex) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-AHex) GLP-1(7-39); Val⁸Arg³⁴Lys²⁶, Val⁸Arg ³⁴-bis-(Glyc-AOct) GLP-1(7-39); Arg³⁴Lys²⁷, ²⁶-bis-(Glyc- AOct) GLP-1(7-39); Gly⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-36); Gly⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-37); GLP-1(7-36); Gly⁸Lys⁸-bis-(Glyc-AOct) GLP-1(7-36); Gly⁸-bis-(Glyc-AOct) Glyc-1(7-36); Glyc-1(7-36); Glyc-1(7-36); Glyc-1(7-36); Glyc-1(7-36); Glyc-1(7-36); Glyc-1(7-36); Glyc-1(7-36); Gly Val⁸Arg³⁴Lys^{26,39}-bis-(Glyc-AHex) GLP-1(7-39); Val Arg 26, 34Lys 36,39-bis-(Glyc-AHex) GLP-1(7-39); AOct) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1 Ser⁸Lys²⁶, ³⁴-bis-(Glyc-ÀHex) GLP-1(7-36); Ser⁸Lys²⁶, (7-39) 34-bis-(Glyc-AHex) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(Glyc-AHex) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(Glyc-AHex) GLP- 25 Gly⁸Arg³⁴Lys^{26, 36}-bis-(Glyc-AOct) GLP-1(7-36); GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-37); 1(7-39) Gly Arg Lys --01s-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,37}-bis-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Glyc-AHex) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AHex) GLP-1(7-38); Gly⁸Arg³⁴Lys^{26,38}-bis-(Glyc-AOct) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glyc-AOct) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-AOct) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glyc-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,38}-bis-(Glyc-AHex) GLP-1(7-38); Ser⁸Arg^{26, 34}Lys^{36,38}-bis-(Glyc-AHex) GLP-1(7-38); 35 Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-AOct) GLP-1(7-39); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-AHex) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glyc-AOct) GLP-1(7-36); Val⁸Lys²⁶, Ser⁸Arg³⁴Lys^{26,39}-bis-(Glyc-AHex) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-AHex) GLP-1(7-39); ³⁴-bis-(Glyc-AOct) GLP-1(7-37); Val⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-38); Val⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1 Thr⁸Lys²⁶, ³⁴-bis-(Glyc-AHex) GLP-1(7-36); Thr⁸Lys²⁶, (7-39) ³⁴-bis-(Glyc-AHex) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(Glyc- 40 AHex) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(Glyc-AHex) GLP- Val⁸Árg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AHex) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,37}-bis-(Glyc-AOct) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AHex) GLP-1(7-37); 45 Val⁸ Arg³⁴Lys^{26,37}-bis-(Glyc-AOct) GLP-1(7-37); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AHex) GLP-1(7-37); Val⁸Arg²⁶Lys³⁴ ³⁸-bis-(Glyc-AOct) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-AOct) GLP-1(7-38); Val⁸Arg^{26,34}Lys^{36,38}-bis-(Glyc-AOct) GLP-1(7-38); Thr⁸Arg²⁶Lys^{34,37}-bis-(Glyc-AHex) GLP-1(7-37); Thr Arg Lys^{26,37}-bis-(Glyc-AHex) GLP-1(7-37); Thr Arg²⁶Lys^{34,38}-bis-(Glyc-AHex) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-AOct) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39}-bis-(Glyc-AHex) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-AHex) GLP-1(7-39); AOct) GLP-1(7-36); Ser⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1 Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-AHex) GLP-1(7-39); Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-36); Lys^{26, 34}-bis- 55 (7-39) Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-36); (Glyc-AOct) GLP-1(7-37); Lys^{26, 34}-bis-(Glyc-AOct) GLP- Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-37); 1(7-38); Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-36); Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glyc- Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-37); AOct) GLP-1(7-37); Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(Glyc-AOct) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-AOct) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-AOct) GLP-1(7-37); Arg³⁶Lys³⁴, Ser⁸Arg²⁶Lys^{34,37}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(Glyc-AOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,38}-bis-(Glyc-AOct) GLP-1(7-38); ³⁹-bis-(Glyc-AOct) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Glyc- Ser⁸Arg³⁴Lys^{26,38}-bis-(Glyc-AOct) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glyc-AOct) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴, ³⁹-bis-(Glyc-AOct) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Glyc-AOct) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(Glyc-AOct) GLP-1(7-39); AOct) GLP-1(7-39); Arg^{26, 34}Lys^{36,39}-bis-(Glyc-AOct) GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(Glyc-AOct) GLP-1(7-36); Arg³⁴Lys^{18,} 26-bis-(Glyc-AOct) GLP-1(7-36); Arg²⁶Lys^{18,
34}-bis-(Glyc- ``` ``` Thr⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-36); Thr⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-37); Thr⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(Glyc-AOct) GLP-1 Thr⁸Arg²⁶Lys^{34,36}-bis-(Glyc-AOct) GLP-1(7-36); 5 Thr⁸ Arg³⁴ Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-30); Thr⁸ Arg²⁶ Lys³⁴, ³⁶-bis-(Glyc-AOct) GLP-1(7-37); Thr⁸ Arg²⁶ Lys²⁶, ³⁶-bis-(Glyc-AOct) GLP-1(7-37); Thr⁸ Arg²⁶ Lys³⁴, ³⁷-bis-(Glyc-AOct) GLP-1(7-37); Thr Arg - Lys - bis-(Glyc-AOct) GLP-1(7-37); Thr Arg - Lys - bis-(Glyc-AOct) GLP-1(7-37); Thr Arg - Clys - AOct) GLP-1(7-38); Thr Arg - Clys - AOct) GLP-1(7-38); Thr Arg - Clys - Clys - Clyc-AOct) GLP-1(7-38); Thr Arg - Clys - Clys - Clyc-AOct) GLP-1(7-38); Thr Arg - Clys - Clys - Clyc-AOct) GLP-1(7-39); Thr Arg - Clys - Clys - AOct) GLP-1(7-39); Thr Arg ³⁴Lys ²⁶, ³⁹ -bis-(Glyc-AOct) GLP-1(7-39); Thr Arg ²⁶, ³⁴Lys ³⁶, ³⁹-bis-(Glyc-AOct) GLP-1(7-39); Lys ²⁶, ³⁴-bis-(Glyc-ALit) GLP-1(7-36); Lys ²⁶, ³⁴-bis-(Glyc-ALit) GLP-1(7-36); Lys ²⁶, ³⁴-bis-(Glyc-ALit) GLP-1(7-36); ALit) GLP-1(7-37); Lys^{26, 34}-bis-(Glyc-ALit) GLP-1(7-38); Lys^{26, 34}-bis-(Glyc-ALit) GLP-1(7-39) Lys²⁶, 34,36-bis-(Glyc-ALit) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(Glyc-ALit) GLP-1(7-36); Arg³⁴Lys²⁶, 36-bis-(Glyc-ALit) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis-(Glyc-20) ALit) GLP-1(7-37); Arg³⁴Lys²⁶, 36-bis-(Glyc-ALit) GLP-1(7-37); Arg²⁶Lys³⁴, 37-bis-(Glyc-ALit) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-ALit) GLP-1(7-37); Arg³⁴Lys^{26,37}-bis-(Glyc-ALit) GLP-1(7-37); Arg³⁴Lys^{26,39}-bis-(Glyc-ALit) Arg³⁴Lys³⁶-bis-(Glyc-ALit) Arg³⁶-bis-(Glyc-ALit) ³⁹-bis-(Glyc-ALit) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(Glyc-ALit) GLP-1(7-39); Arg^{26, 34}Lys^{36,39}-bis-(Glyc-ALit) GLP- 25 ALIU GLF-1(7-39); Arg 26Lys 18, 34-bis-(Glyc-ALit) GLP-1(7-36); Arg 34Lys 18, 26-bis-(Glyc-ALit) GLP-1(7-36); Arg 34-bis-(Glyc-ALit) GLP-1(7-36); Arg 34-bis-(Glyc-ALit) GLP-1(7-38); Arg 34-bis-(Glyc-ALit) GLP-1(7-38); Arg 34-bis-(Glyc-ALit) GLP-1(7-39); Arg 34-bis-(Glyc-ALit) GLP-1(7-38); Arg 34-bis-(Glyc-ALit) GLP-1(7-38); Arg 34-bis-(Glyc-ALit) GLP-1(7-39); Arg 34-bis-(Glyc-ALit) GLP-1(7-36); Arg 34-bis-(Glyc-ALit) GLP-1(7-37); Thr 8-rg 26-bis-(Glyc-ALit) GLP-1(7-37); Thr 8-rg 34-bis-(Glyc-ALit) GLP-1 ALit) GLP-1(7-39); Arg²⁶Lys^{23, 34}-bis-(Glyc-ALit) GLP-1(7-36); Arg³⁴Lys^{23,} 26-bis-(Glyc-ALit) GLP-1(7-36); Arg²⁶Lys^{23, 34}-bis-(Glyc- 35 ALit) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(Glyc-ALit) GLP-1 (7-37); Arg²⁶Lys^{23, 34}-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴-bis-(Glyc-ALit) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴Lys²⁵-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴-bis-(Glyc-ALit) Arg³ ALit) GLP-1(7-39); Arg²⁶Lys²⁷ ³⁴-bis-(Glyc-ALit) GLP-1(7-36); Arg³⁴Lys²⁷, ²⁶-bis-(Glyc-ALit) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(Glyc-ALit) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(Glyc-ALit) GLP-1 (7-37); Arg²⁶Lys^{27, 34}-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(Glyc-ALit) 27}-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴Lys^{27, 27}-bis-(Glyc-ALit) GLP-1(7-38); Arg³⁴Lys^{27, 27}-bis-(Glyc-ALit) GLP-1(7- ³⁴-bis-(Glyc-ALit) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(Glyc- ALit) GLP-1(7-39); Alg Lys 1-bis-(GIye-ALit) GLP-1(7-30); Alg Lys 1-bis-(GIye-ALit) GLP-1(7-39); Alg Lys 1-bis-(GAB-GDod) GLP-1(7-36); Arg 2⁶Lys 3⁴, 3⁶-bis-(GAB-GDod) GLP-1(7-37); Arg 2⁶Lys 3⁴, 3⁶-bis-(GAB-GDod) GLP-1(7-37); Arg 3⁴Lys 2⁶, 3⁴-bis-(GAB-GDod) GLP-1(7-37); Arg 3⁴Lys 2⁶, 3⁴-bis-(GAB-GDod) GLP-1(7-37); Arg 3⁴Lys 2⁶, 3⁴-bis-(GAB-GDod) GLP-1(7-37); Arg 3⁴Lys 2⁶, 3⁵-bis-(GAB-GDod) GLP-1(7-37); Arg 2⁶Lys 3⁴, 3⁹-bis-(GAB-GDod) GLP-1(7-39); Arg 3⁴Lys 2⁶, 3⁴-bis-(GAB-GDod) GLP-1(7-39); Arg 3⁶Lys 3⁶, 3⁹-bis-(GAB-GDod) GLP-1(7-37); Arg 3⁶Lys 3⁶, 3⁹-bis-(GAB-GDod) GLP-1(7-39); 3⁶Lys 3⁶, 3⁶-bis-(GAB-GDod) GLP-1(7-39); Arg 3⁶Lys 3⁶Lys 3⁶Lys 3⁶Lys 3⁶Lys 3⁶Lys 3⁶ Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ALit) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ALit) GLP-1(7-37); Gly*Arg**Lys**,36*-bis-(Glyc-ALit) GLP-1(/-3/); Gly*Arg**Lys**26, 36*-bis-(Glyc-ALit) GLP-1(7-37); 55 Gly*Arg**26*Lys**34,37*-bis-(Glyc-ALit) GLP-1(7-37); Gly*Arg**Arg**26*Lys**34,38*-bis-(Glyc-ALit) GLP-1(7-38); Gly**Arg**26*Lys**34,38*-bis-(Glyc-ALit) GLP-1(7-38); Gly**Arg**34*Lys**26,38*-bis-(Glyc-ALit) GLP-1(7-38); Gly**Arg**26*Lys**34*, 39*-bis-(Glyc-ALit) GLP-1(7-39); Gly**Arg**34*Lys**26,39*-bis-(Glyc-ALit) GLP-1(7-39); Gly**Arg**34*Lys**26,39*-bis-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ALit) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(Glyc-ALit) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ALit) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ALit) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(Glyc-ALit) GLP-1(7-38); G 39) ``` ``` Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ALit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ALit) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ALit) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ALit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ALit) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ALit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glyc-ALit) GLP-1(7-38); Val⁸Arg²⁶Lys^{34,39}-bis-(Glyc-ALit) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ALit) GLP-1(7-39); Val⁸Arg^{26,34}Lys^{36,39}-bis-(Glyc-ALit) GLP-1(7-39); Ser⁸Lys^{26,34}-bis-(Glyc-ALit) GLP-1(7-36); Ser⁸Lys^{26,34}-bis-(Glyc-ALit) GLP-1(7-37); Ser⁸Lys^{26,34}-bis-(Glyc-ALit) GLP-1(7-38); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ALit) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(Glyc-ALit) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(Glyc-ALit) GLP-1(7-37); Ser Arg 26 Lys 36-bis-(Glyc-ALit) GLP-1(7-37); Ser Arg 26 Lys 34,37-bis-(Glyc-ALit) GLP-1(7-37); Ser Arg 26 Lys 34,37-bis-(Glyc-ALit) GLP-1(7-37); Ser Arg 34 Lys 26,37-bis-(Glyc-ALit) GLP-1(7-37); Ser Arg 26 Lys 34,38-bis-(Glyc-ALit) GLP-1(7-38); Ser Arg Lys -- bis-(Glyc-ALit) GLP-1(7-38); Ser Arg -- Lys -- bis-(Glyc-ALit) GLP-1(7-38); Ser Arg -- 34 Lys -- 36,38 - bis-(Glyc-ALit) GLP-1(7-38); Ser Arg -- 6 Lys -- 39 - bis-(Glyc-ALit) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(Glyc-ALit) GLP-1(7-39); Ser⁸Arg^{26,34}Lys^{36,39}-bis-(Glyc-ALit) GLP-1(7-39); Thr⁸Arg²⁶Lys^{34,37}-bis-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(Glyc-ALit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(Glyc-ALit) GLP-1(7-38); Thr⁸Arg²⁶, 34_{Lys³⁶, 39</sup>-bis-(Glyc-ALit) GLP-1(7-38); 40 Thr⁸Arg²⁶Lys³⁴, 39-bis-(Glyc-ALit) GLP-1(7-39); Thr⁸Arg²⁶, 34_{Lys²⁶, 39</sup>-bis-(Glyc-ALit) GLP-1(7-39); Thr⁸Arg²⁶, 34_{Lys³⁶, 39</sup>-bis-(Glyc-ALit) GLP-1(7-39); Lys²⁶, 34</sup>-bis-(GAB-GDod) GLP-1(7-36); Lys²⁶, 34-bis-(GAB-GDod) 45 GLP-1(7-38); Lys²⁶, 34</sup>-bis-(GAB-GDod) GLP-1(7-39) Arg²⁶Lys³⁴, 36 bis (GAB-GDod) GLP-1(7-39)}}} Arg²⁶Lys^{34,36}-bis-(GAB-GDod) GLP-1(7-36); Arg³⁴Lys²⁶, (GAB-GDod) GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(GAB-GDod) GLP-1(7-36); Arg³⁴Lys^{18,} 26-bis-(GAB-GDod) GLP-1(7-36); Arg²⁶Lys¹⁸, ³⁴-bis-(GAB-GDod) GLP-1(7-37); Arg³⁴Lys¹⁸, ²⁶-bis-(GAB-GDod) GLP-1(7-37); Arg²⁶Lys¹⁸, ³⁴-bis-(GAB-GDod) GLP-1(7-38); Arg³⁴Lys¹⁸, ²⁶-bis-(GAB-GDod) GLP-1(7-38); Arg²⁶Lys¹⁸, ³⁴-bis-(GAB-GDod) GLP-1(7-38); Arg²⁶Lys¹⁸, ³⁴-bis-(GAB-GDod) GLP-1(7-39); Arg³⁴Lys¹⁸, ²⁶-bis-(GAB-GDod) GLP-1(7-39); Arg³⁴Lys¹⁸, ²⁶-bis-(GAB-GDod) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(GAB-GDod) GLP-1(7-39); Arg²⁶Lys^{23, 34}-bis-(GAB-GDod) GLP-1(7-36); Arg³⁴Lys^{23, 26}-bis-(GAB-GDod) GLP-1(7-36); Arg²⁶Lys^{23, 34}-bis- (GAB-GDod) GLP-1(7-30); Arg³⁴Lys^{23,26}-bis-(GAB-GDod) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(GAB-GDod) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(GAB-GDod) GLP-1(7-38); Arg²⁶Lys^{23,36}-bis-(GAB-GDod) GLP-1(7-38); Arg²⁶Lys^{23,34}-bis-(GAB-GDod) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(GAB-GDod) GLP-1(7-39); ``` Arg²⁶Lys^{27, 34}-bis-(GAB-GDod) GLP-1(7-36); Arg³⁴Lys^{27, 26}-bis-(GAB-GDod) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(GAB-GDod) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(GAB-GDod) GLP-1(7-37); Arg²⁶Lys^{27, 34}-bis-(GAB-GDod) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(GAB-GDod) GLP-1(7-38); Arg²⁶Lys^{27,34}bis-(GAB-GDod) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-(GAB-GDod) GLP-1(7-39); Clts⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-1(7-39); Glts⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-1(7-39); Glts⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-1(7-36); 36</sup>-bis-(GAB-GDod) 36</sup>-bis-(GAB Gly⁸Arg²⁶Lys²⁴, 36-bis-(GAB-GDod) GLP-1(7-36); Gly⁸Arg²⁶Lys²⁴, 36-bis-(GAB-GDod) GLP-1(7-37); GLP-1(7-39); Arg²⁶Lys³⁴, 36-bis-(GAB-GDod) GLP-1(7-37); GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶, 36-bis-(GAB-GDod) GLP-1(7-37); 5 Arg²⁶Lys¹⁸, 34-bis-(GAB-GTet) GLP-1(7-36); Arg³⁴Lys¹⁸, Arg³⁴Lys³⁴L Gly⁸Arg³⁴Lys^{26,37}-bis-(GAB-GDod) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(GAB-GDod) GLP-1(7-38); Gly⁸Arg³⁴Lys^{26,38}-bis-(GAB-GDod) GLP-1(7-38); Gly⁸Arg^{26,34}Lys^{36,38}-bis-(GAB-GDod) GLP-1(7-38); 20 Gly⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(GAB-GDod) GLP-1(7-38); 20 Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GDod) GLP-1(7-39); Gly⁸Arg³⁴Lys²⁶, ³⁹-bis-(GAB-GDod) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(GAB-GDod) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-36); Val⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-37); Val⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-38); ³⁴-bis-1(7-38); Val⁸Ly 1(7-39) Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GDod) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GDod) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GDod) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GDod) GLP-1(7-37); 30 Val⁸Arg²⁶Lys^{34,37}-bis-(GAB-GDod) GLP-1(7-37); Val Alg Lys 26,37-bis-(GAB-GDod) GLP-1(7-37);
Val⁸Arg²⁶Lys^{34,38}-bis-(GAB-GDod) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(GAB-GDod) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(GAB-GDod) GLP-1(7-38); 35 GTet) GLP-1(7-39); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GDod) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(GAB-GDod) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GDod) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys^{36,39}-bis-(GAB-GDod) GLP-1(7-35), Ser⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GDod) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GTet) Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(GAB-GTet) Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(GAB-GTet) Gly⁸Arg³⁴Lys³⁶, ³⁶-bis-(GAB-GTet) Gly⁸Arg³⁶, ³⁶-bis-(GAB-GTet) Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GDod) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GDod) GLP-1(7-37); 45 Gly⁸Arg³⁴Lys^{26,37}-bis-(GAB-GTet) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁷-bis-(GAB-GDod) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁸-bis-(GAB-GDod) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴,³⁸-bis-(GAB-GDod) GLP-1(7-38); Ser⁸Arg²⁶Lys³⁴,³⁸-bis-(GAB-GDod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁶,³⁸-bis-(GAB-GDod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁶,³⁸-bis-(GAB-GDod) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁶,³⁸-bis-(GAB-GDod) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁶,³⁸-bis-(GAB-GTet) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-39); Val⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-38); GLP-1(7-38 Ser⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GDod) GLP-1(7-37); Thr⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-1(7-36); Thr⁸Lys^{26, 55} ³⁴-bis-(GAB-GDod) GLP-1(7-37); Thr⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-1(7-38); Thr⁸Lys^{26, 34}-bis-(GAB-GDod) GLP-Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GDod) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GDod) GLP-1(7-36); 60 Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GDod) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GDod) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(GAB-GDod) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(GAB-GDod) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(GAB-GTet) GLP-1(7-38); Thr⁸Arg²⁶Lys^{26,38}-bis-(GAB-GDod) GLP-1(7-38); Val⁸Arg²⁶Lys^{34,38}-bis-(GAB-GTet) GLP-1(7-39); Thr⁸Arg^{26,34}Lys^{26,38}-bis-(GAB-GDod) GLP-1(7-38); Val⁸Arg^{26,34}Lys^{26,39}-bis-(GAB-GTet) GLP-1(7-39); Val⁸Arg^{26,34}Lys^{36,39}-bis-(GAB-GTet) GLP-1(7-39); 148 $\begin{array}{lll} Thr^8 Arg^{26} Lys^{34}, & ^{39}\text{-bis-}(GAB\text{-}GDod) & GLP\text{-}1(7\text{-}39); \\ Thr^8 Arg^{34} Lys^{26,39}\text{-bis-}(GAB\text{-}GDod) & GLP\text{-}1(7\text{-}39); \\ Thr^8 Arg^{26}, & ^{34} Lys^{36,39}\text{-bis-}(GAB\text{-}GDod) & GLP\text{-}1(7\text{-}39); \\ Lys^{26}, & ^{34}\text{-bis-}(GAB\text{-}GTet) & GLP\text{-}1(7\text{-}36); & Lys^{26}, & ^{34}\text{-bis-}1(3\text{-}26), & 10\text{-}26\text{$ (GAB-GTet) GLP-1(7-37); Lys^{26, 34}-bis-(GAB-GTet) GLP-1(7-38); Lys^{26, 34}-bis-(GAB-GTet) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-36); Arg³⁴Lys²⁶, GTet) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(GAB-GTet) GLP-1 (7-37); Arg²⁶Lys^{18, 34}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(GAB-GTet) GLP-1(7-38); Arg²⁶Lys^{18,} ³⁴-bis-(GAB-GTet) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(GAB-GTet) GLP-1(7-39); Glet) GLP-1(7-39); Arg²⁶Lys^{23, 34}-bis-(GAB-GTet) GLP-1(7-36); Arg³⁴Lys^{23, 26}-bis-(GAB-GTet) GLP-1(7-36); Arg²⁶Lys^{23, 34}-bis-(GAB-GTet) GLP-1(7-37); Arg³⁴Lys^{23,26}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁴Lys^{23,26}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁶Lys^{23,26}-bis-(GAB-GTet) GLP-1(7-38); Arg²⁶Lys^{23,26}-bis-(GAB-GTet) Arg²⁶Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵Lys²⁵ ³⁴-bis-(GAB-GTet) GLP-1(7-39); Arg³⁴Lys^{23,26}-bis-(GAB--ois-(GAB-G1et) GLP-1(7-39); Arg Lys -ois-(GAB-GTet) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(GAB-GTet) GLP-1(7-36); Arg³⁴Lys^{27, 26}-bis-(GAB-GTet) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(GAB-GTet) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(GAB-GTet) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(GAB-GTet) GLP-1(7-39); Arg³⁴Lys²⁷-1(7-39); Arg³⁴Lys²⁷-1(7-39); Arg³⁴-1(7-39); Arg³⁴-1(7-39); Arg³⁴-1(7-39); Arg³⁴-1(7-39); Arg³⁴-1(7-39); Arg³⁴-1(7-39 Gly⁸Lys^{26, 34}-bis-(GAB-GTet) GLP-1(7-36); Gly⁸Lys^{26,} ³⁴-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-38); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1 Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(GAB-GTet) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(GAB-GTet) GLP-1(7-38); (7-39)Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-36); Val Arg Lys -015-(GAB-GTet) GLP-1(7-36), Val Arg 34 Lys 26, 36-bis-(GAB-GTet) GLP-1(7-36); Val Arg 26 Lys 34,36-bis-(GAB-GTet) GLP-1(7-37); Val Arg 34 Lys 26, 36-bis-(GAB-GTet) GLP-1(7-37); Val Arg 26 Lys 34,37-bis-(GAB-GTet) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(GAB-GTet) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(GAB-GTet) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(GAB-GTet) GLP-1(7-38); ``` Ser⁸Lys^{26, 34}-bis-(GAB-GTet) GLP-1(7-36); Ser⁸Lys^{26, 34}-bis-(GAB-GTet) GLP-1(7-37); Ser⁸Lys^{26, 34}-bis-(GAB-GTet) GLP-1(7-38); Ser⁸Lys^{26, 34}-bis-(GAB-GTet) GLP-1 Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-36); ₅ Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GTet) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GTet) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,37}-bis-(GAB-GTet) GLP-1(7-37); Ser Arg Lys 1,5 - bis-(GAB-G1et) GLP-1(7-37); Ser Arg 34 Lys 26,37 - bis-(GAB-GTet) GLP-1(7-37); Ser Arg 26 Lys 34,38 - bis-(GAB-GTet) GLP-1(7-38); Ser Arg 34 Lys 26,38 - bis-(GAB-GTet) GLP-1(7-38); Ser Arg 26, 34 Lys 36,38 - bis-(GAB-GTet) GLP-1(7-38); Ser Arg 26 Lys 34, 39 - bis-(GAB-GTet) GLP-1(7-39); Ser Arg 34 Lys 26,39 - bis-(GAB-GTet) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(GAB-GTet) GLP-1(7-39); Ser⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GTet) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-36), Thr⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1(7-38); Thr⁸Lys²⁶, ³⁴-bis-(GAB-GTet) GLP-1 Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-36); 20 Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GTet) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GTet) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GTet) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(GAB-GTet) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(GAB-GTet) GLP-1(7-37); 25 Thr⁸Arg²⁶Lys^{34,38}-bis-(GAB-GTet) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴,36-bis-(GAB-GTet) GLP-1(7-38); Thr⁸Arg³⁴Lys²⁶,38-bis-(GAB-GTet) GLP-1(7-38); Thr⁸Arg²⁶, 34_Lys³⁶,38-bis-(GAB-GTet) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, 39-bis-(GAB-GTet) GLP-1(7-39); Thr⁸Arg³⁴Lys²⁶,39-bis-(GAB-GTet) GLP-1(7-39); 30 Thr⁸Arg³⁴Lys³⁶,39-bis-(GAB-GTet) GLP-1(7-39); Lys²⁶, 34-bis-(GAB-GHex) GLP-1(7-36); Lys²⁶, 34-bis-(GAB-GHex) GLP-1(7-38); Lys²⁶, 34-bis-(GAB-GHex) GLP-1(7-39) Arg²⁶Lys³⁴,36 bis-(GAB-GHex) GLP-1(7-36); Arg³⁴Lys²⁶, 35 Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-36); Arg³⁴Lys²⁶, 35 ³⁶-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys^{34,36}-bis- GAB-GHex) GLP-1(7-37); Arg³⁴Lys²⁶,
³⁶-bis-(GAB-GHex) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(GAB-GHex) GLP-1(7-37); Arg³⁴Lys^{26,37}bis-(GAB-GHex) GLP-1(7-37); Arg²⁶Lys^{34,39}-bis-(GAB-GHex) GLP-1(7-39); Arg³⁴Lys²⁶, ⁴⁰ 39-bis-(GAB-GHex) GLP-i(7-39); Arg^{26, 34}Lys^{36,39}-bis- so-bis-(GAB-GHex) GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-37); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-37); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-38); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-38); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-39); Arg²⁶Lys^{18, 34}-bis-(GAB-GHex) GLP-1(7-39); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-36); Arg³⁴Lys^{18,26}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Arg³⁴Lys³⁶-bis-(GAB-GHex) GLP-1(7-37 Arg²⁶Lys²³, 34-bis-(GAB-GHex) GLP-1(7-36); Arg³⁶Lys²³, 34-bis-(GAB-GHex) GLP-1(7-37); Arg³⁶Lys²³, 34-bis-(GAB-GHex) GLP-1(7-37); Arg³⁶Lys²³, 34-bis-(GAB-GHex) GLP-1(7-37); Arg²⁶Lys²³, 34-bis-(GAB-GHex) GLP-1(7-38); Arg³⁴Lys²³,26-bis-(GAB-GHex) GLP-1(7-39); 55 Arg³⁴Lys²³,26-bis-(GAB-GHex) GLP-1(7-39); Arg²⁶Lys²³, 34-bis-(GAB-GHex) GLP-1(7-36); Arg³⁴Lys²³,26-bis-(GAB-GHex) GLP-1(7-36); Arg³⁴Lys²⁷, 34-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys²⁷, 34-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys²⁷, 34-bis-(GAB-GHex) GLP-1(7-36); Arg²⁶Lys²⁷, 34-bis- Arg Lys -018-(GAB-GHex) GLP-1(7-30); Arg Lys -018-(GAB-GHex) GLP-1(7-36); Arg 2⁶Lys²⁷, 3⁴-bis-(GAB-GHex) GLP-1(7-37); Arg 3⁶Lys²⁷, 2⁶-bis-(GAB-GHex) GLP-1(7-37); Arg 2⁶Lys²⁷, 3⁴-bis-(GAB-GHex) 60 GLP-1(7-38); Arg 3⁴Lys²⁷, 2⁶-bis-(GAB-GHex) GLP-1(7-38); Arg 2⁶Lys²⁷, 3⁴-bis-(GAB-GHex) GLP-1(7-39); Arg 3⁴Lys²⁷, 2⁶ bis (CAB-GHex) GLP 1(7-39); Arg³⁴Lys^{27, 26}-bis-(GAB-GHex) GLP-1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴bis-(GAB-GHex) GLP-1(7-37); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-38); 1(7-39) ``` ``` Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GHex) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GHex) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(GAB-GHex) GLP-1(7-37); Gly Arg Lys -ols-(GAB-GHex) GLP-1(7-37); Gly Arg 3⁴Lys 2^{6,37}-bis-(GAB-GHex) GLP-1(7-37); Gly Arg 2⁶Lys 3^{4,38}-bis-(GAB-GHex) GLP-1(7-38); Gly Arg 3⁴Lys 2^{6,38}-bis-(GAB-GHex) GLP-1(7-38); Gly Arg 2⁶Clys 3⁴, 3⁹-bis-(GAB-GHex) GLP-1(7-39); Gly Arg 2⁶Lys 3⁴, 3⁹-bis-(GAB-GHex) GLP-1(7-39); Gly⁸Arg³⁴Lys-^{26,39}-bis-(GAB-GHex) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GHex) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GHex) GLP-1(7-39); Val⁸Lys^{26, 34}-bis-(GAB-GHex) GLP-1(7-36); Val⁸Lys^{26, 34}-bis-(GAB-GHex) GLP-1(7-37); Val⁸Lys^{26, 34}-bis-(GAB-GHex) GLP-1(7-38); Val⁸Lys²⁶ 1(7-39) Val⁸ Arg ²⁶ Lys ^{34,36}-bis-(GAB-GHex) GLP-1(7-36); Val⁸ Arg ³⁴ Lys ²⁶, ³⁶-bis-(GAB-GHex) GLP-1(7-36); Val⁸ Arg ²⁶ Lys ^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Val⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GHex) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(GAB-GHex) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(GAB-GHex) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(GAB-GHex) GLP-1(7-38); Val⁸Arg³⁴Lys^{26,38}-bis-(GAB-GHex) GLP-1(7-38); Val⁸Arg²⁶- ³⁴Lys^{36,38}-bis-(GAB-GHex) GLP-1(7-38); Val⁸Arg²⁶- ³⁴Lys^{36,38}-bis-(GAB-GHex) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(GAB-GHex) GLP-1(7-39); Val⁸Arg³⁶- ³⁴Lys^{36,39}-bis-(GAB-GHex) GLP-1(7-39); Ser⁸I vc^{26, 34}-bis-(GAB-GHex) GLP-1(7-36); Ser⁸Lys²⁶, Val⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(GAB-GHex) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-36); 1(7-39) Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GHex) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁷-bis-(GAB-GHex) GLP-1(7-37); Ser⁸Arg³⁴Lys²⁶,³⁷-bis-(GAB-GHex) GLP-1(7-37); Ser⁸Arg²⁶Lys³⁴,³⁸-bis-(GAB-GHex) GLP-1(7-38); Ser⁸Arg³⁴Lys²⁶, ³⁸-bis-(GAB-GHex) GLP-1(7-38); Ser⁸Arg²⁶, ³⁴Lys³⁶, ³⁸-bis-(GAB-GHex) GLP-1(7-38); Ser⁸Arg³⁴Lys³⁴, ³⁹-bis-(GAB-GHex) GLP-1(7-39); Ser⁸Arg³⁴Lys²⁶, ³⁹-bis-(GAB-GHex) GLP-1(7-39); Ser⁸Arg²⁶, ³⁴Lys³⁶, ³⁹-bis-(GAB-GHex) GLP-1(7-39); Thr⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-36); Thr⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-37); Thr⁸Lys²⁶, ³⁴-bis-(GAB-GHex) GLP-1(7-38); ³⁴-bis-(GAB-G Thr⁸Arg²⁶Lys^{34,38}bis-(GAB-GHex) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(GAB-GHex) GLP-1(7-38); Thr⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(GAB-GHex) GLP-1(7-38); Thr⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GHex) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39}-bis-(GAB-GHex) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GHex) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GHex) GLP-1(7-39); Lys^{26, 34}-bis-(GAB-GOct) GLP-1(7-36); Lys^{26, 34}-bis- (GAB-GOct) GLP-1(7-37); Lys²⁶, ³⁴-bis-(GAB-GOct) GLP-1(7-38); Lys^{26, 34}-bis-(GAB-GOct) GLP-1(7-39) Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-36); Arg³⁴Lys^{26,36}-bis-(GAB-GOct) GLP-1(7-36); Arg³⁴Lys^{26,36}-bis-(GAB-GOct) GLP-1(7-37); Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-37); Arg²⁶Lys^{34,37}-bis-(GAB-GOct) Arg²⁶Lys^{34,37}-bis-1(3-34)-1(3-34 ³⁹-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys^{26,39}-bis-(GAB-GOct) GLP-1(7-39); Arg^{26,34}Lys^{36,39}-bis-(GAB-GOct) GLP-1(7-39); ``` ``` Arg²⁶Lys^{18, 34}-bis-(GAB-GOct) GLP-1(7-36); Arg³⁴Lys^{18,} ₂₆-bis-(GAB-GOct) GLP-1(7-36); Arg²⁶Lys^{18,34}bis-(GAB-GOct) Arg³⁶Lys^{18,34}bis-(GAB-GOct) Arg³⁶Lys^{18,3} GOct) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(GAB-GOct) GLP-1(7-37); Arg²⁶Lys^{18,34}-bis-(GAB-GOct) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(GAB-GOct) GLP-1(7-38); Arg²⁶Lys¹⁸, ³⁴-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys^{18,26}-bis-(GAB- -ols-(GAB-GOct) GLP-1(7-39); Arg Lys -ols-(GAB-GOct) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-36); Arg²⁶Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-36); Arg²⁶Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-37); Arg³⁴Lys²³, ²⁶-bis-(GAB-GOct) GLP-1(7-38); Arg³⁴Lys²³, ²⁶-bis-(GAB-GOct) GLP-1(7-38); Arg²⁶Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-39); Arg²⁶Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys²³, ³⁴-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys²³, 26-bis-(GAB-GOct) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(GAB-GOct) GLP-1(7-36); Arg³⁴Lys^{27, 15} ²⁶-bis-(GAB-GOct) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis- (GAB-GOct) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(GAB-GOct) GLP-1(7-37); Arg²⁶Lys²⁷, ³⁴-bis-(GAB-GOct) GLP-1(7-38); Arg³⁴Lys²⁷, ²⁶-bis-(GAB-GOct) GLP-1(7-38); Arg²⁶Lys²⁷, ³⁴-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys²⁷, ²⁰-bis-(GAB-GOct) GLP-1(7-39); Arg³⁴Lys²⁷, ²⁰ Gly⁸Lys^{26, 34}-bis-(GAB-GOct) GLP-1(7-36); Gly⁸Lys^{26,} ³⁴-bis-(GAB-GOct) GLP-1(7-37); Gly⁸Lys^{26, 34}-bis-(GAB-GOct) GLP-1(7-38); Gly⁸Lys^{26, 34}-bis-(GAB-GOct) GLP-1 Gly8Arg26Lys34,36-bis-(GAB-GOct) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-37); Gly⁸Arg³⁴Lys^{26,36}-bis-(GAB-GOct-GG1P-3(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(GAB-GOct) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶Lys^{34,38}-bis-(GAB-GOct) GLP-1(7-38); Gly⁸Arg³⁴Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶Lys^{34,38}-bis-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys^{26,38}-bis-(GAB-GOct) GLP-1(7-38); Gly⁸Arg²⁶Lys^{34,39}-bis-(GAB-GOct) GLP-1(7-39); Gly⁸Arg²⁶Lys^{26,39}-bis-(GAB-GOct) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys^{26,39}-bis-(GAB-GOct) GLP-1(7-39); Gly⁸Arg²⁶, ³⁴Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-39); Gly⁸Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-39); Gly⁸Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-39); Arg²⁶Lys^{23,34}-bis-(GAB-GLit) GLP-1(7-36); Arg³⁴Lys^{23,26}-bis-(GAB-GLit) GLP-1(7-38); Arg³⁴Lys Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GOct) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GOct) GLP-1(7-37); 45 Val⁸Arg²⁶Lys^{34,37}-bis-(GAB-GOct) GLP-1(7-37); Val⁸ Arg ³⁴Lys^{26,37}-bis-(GAB-GOct) GLP-1(7-37); Val⁸ Arg ²⁶Lys^{34,38}-bis-(GAB-GOct) GLP-1(7-38); Val⁸ Arg ³⁴Lys^{26,38}-bis-(GAB-GOct) GLP-1(7-38);
Val⁸ Arg ²⁶, ³⁴ Lys^{36,38}-bis-(GAB-GOct) GLP-1(7-38); 50 Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GOct) GLP-1(7-39); Val⁸Arg³⁴Lys^{26,39}-bis-(GAB-GOct) GLP-1(7-39); Val⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GOct) GLP-1(7-39); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GOct) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GOct) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GOct) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GOct) GLP-1 (7-39) Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-36); Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GOct) GLP-1(7-36); Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-37); 60 Ser⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GOct) GLP-1(7-37); Ser⁸Arg²⁶Lys^{34,37}-bis-(GAB-GOct) GLP-1(7-37); Ser⁸Arg³⁴Lys^{26,37}-bis-(GAB-GOct) GLP-1(7-37); Ser⁸ Arg²⁶ Lys^{34,38}-bis-(GAB-GOct) GLP-1(7-38); Val⁸ Lys^{26, 34}-bis-(GAB-GLit) GLP-1(7-36); Val⁸ Lys^{26, 34}-bis-(GAB-GLit) GLP-1(7-36); Val⁸ Lys^{26, 34}-bis-(GAB-GLit) GLP-1(7-37); Val⁸ Lys^{26, 34}-bis-(GAB-GLit) GLP-1(7-38); GLP-1(7-38); Val⁸ Lys^{26, 34}-bis-(GAB-GLit) Ser⁸Arg²⁶Lys^{34, 39}-bis-(GAB-GOct) GLP-1(7-39); ``` ``` Ser⁸Arg³⁴Lys^{26,39}-bis-(GAB-GOct) GLP-1(7-39); Ser⁸Arg^{26,34}Lys^{36,39}-bis-(GAB-GOct) GLP-1(7-39); Thr⁸Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-36); Thr⁸Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-37); Thr⁸Lys^{26,34}-bis-(GAB-GOct) GLP-1(7-38); Thr⁸Lys^{26,34}-bis-(GAB-GOct) GLP-1 Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GOct) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,36}-bis-(GAB-GOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(GAB-GOct) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(GAB-GOct) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,38}-bis-(GAB-GOct) GLP-1(7-38); Thr⁸Arg^{26,34}Lys^{36,38}-bis-(GAB-GOct) GLP-1(7-38); Thr⁸Arg^{26,34}Lys^{36,38}-bis-(GAB-GOct) GLP-1(7-38); Thr⁸Arg²⁶Lys^{34,39}-bis-(GAB-GOct) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39}-bis-(GAB-GOct) GLP-1(7-39); Thr⁸Arg^{26,34}Lys^{36,39}-bis-(GAB-GOct) GLP-1(7-39); Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-36); Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-37); Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-38); 1(7-38); Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-39) 1(7-39); Arg²⁶Lys^{18, 34}-bis-(GAB-GLit) GLP-1(7-36); Arg³⁴Lys^{18, 26}-bis-(GAB-GLit) GLP-1(7-36); Arg²⁶Lys^{18, 34}-bis-(GAB-GLit) GLP-1(7-37); Arg³⁴Lys^{18,26}-bis-(GAB-GLit) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(GAB-GLit) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(GAB-GLit) GLP-1(7-38); Arg³⁴Lys^{18,26}-bis-(GAB-GLit) GLP-1(7-39); Arg³⁴Lys¹⁸-bis-(GAB-GLit) GLP-1(7-39); Arg³⁴Lys¹⁸-bis-(GAB-GLit) GLP-1(7-39); Arg³⁴Lys¹⁸-bis-(GAB-GLit) GLP-1(7-39); Arg³⁴-bis-(GAB-GLit) GLP-1(7-3 GLit) GLP-1(7-39); Arg²⁶Lys^{27, 34}-bis-(GAB-GLit) GLP-1(7-36); Arg³⁴Lys^{27, 26}-bis-(GAB-GLit) GLP-1(7-36); Arg²⁶Lys^{27, 34}-bis-(GAB-GLit) GLP-1(7-37); Arg³⁴Lys^{27, 26}-bis-(GAB-GLit) GLP-1(7-37); Arg³⁴Lys^{27, 34}-bis-(GAB-GLit) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(GAB-GLit) GLP-1(7-38); Arg³⁴Lys^{27, 26}-bis-(GAB-GLit) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-GAB-GLit) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-GAB-GLit) GLP-1(7-39); Arg³⁴Lys^{27, 26}-bis-GAB-GLit) GLP-1(7-30); (GAB-G Lit) GLP-1(7-39); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1(7-36); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1(7-37); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1(7-38); Gly⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1 (7-39) Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-36); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GLit) GLP-1(7-36); Gly⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-37); Gly⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GLit) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(GAB-GLit) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,37}-bis-(GAB-GLit) GLP-1(7-37); Gly⁸Arg³⁴Lys^{26,37}-bis-(GAB-GLit) GLP-1(7-37); Gly⁸Arg²⁶Lys^{34,38}-bis-(GAB-GLit) GLP-1(7-38); Gly⁸Arg²⁶, ³⁴Lys^{26,38}-bis-(GAB-GLit) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GLit) GLP-1(7-38); Gly⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GLit) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39} bis (GAB-GLit) GLP-1(7-39); Gly⁸Arg³⁴Lys^{26,39}-bis-(GAB-GLit) GLP-1(7-39); Gly⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GLit) GLP-1(7-39); ``` 154 Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-36); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GLit) GLP-1(7-36); Val⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-37); Val⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GLit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,37}-bis-(GAB-GLit) GLP-1(7-37); Val⁸Arg³⁴Lys^{26,37}-bis-(GAB-GLit) GLP-1(7-37); Val⁸Arg²⁶Lys^{34,38}-bis-(GAB-GLit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{26,38}-bis-(GAB-GLit) GLP-1(7-38); Val⁸Arg²⁶, ³⁴Lys^{36,38}-bis-(GAB-GLit) GLP-1(7-38); Val⁸Arg²⁶Lys³⁴, ³⁹-bis-(GAB-GLit) GLP-1(7-39); ¹⁰ Val⁸Arg²⁶Lys^{36,39}-bis-(GAB-GLit) GLP-1(7-39); Val⁸Arg²⁶, ³⁴Lys^{26,39}-bis-(GAB-GLit) GLP-1(7-39); Ser⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-36); Ser Arg 26 Lys 34,36 - bis-(GAB-GLit) GLP-1(7-36); Ser Arg 26 Lys 34,36 - bis-(GAB-GLit) GLP-1(7-36); Ser Arg 26 Lys 34,36 - bis-(GAB-GLit) GLP-1(7-37); Ser Arg 26 Lys 34,37 - bis-(GAB-GLit) GLP-1(7-37); Ser Arg 26 Lys 34,37 - bis-(GAB-GLit) GLP-1(7-37); Ser Arg 26 Lys 34,38 - bis-(GAB-GLit) GLP-1(7-38); Ser Arg 26 Lys 34,38 - bis-(GAB-GLit) GLP-1(7-38); Ser Arg 34 Lys 26,38 - bis-(GAB-GLit) GLP-1(7-38); Ser Arg 34 Lys 26,38 - bis-(GAB-GLit) GLP-1(7-38); Ser Arg ²⁶, ³⁴Lys ^{26,38}-bis-(GAB-GLit) GLP-1(7-38); Ser ⁸Arg ²⁶, ³⁴Lys ^{36,38}-bis-(GAB-GLit) GLP-1(7-38); Ser ⁸Arg ²⁶Lys ³⁴, ³⁹-bis-(GAB-GLit) GLP-1(7-39); Ser⁸Arg³⁴Lys^{26,39}-bis-(GAB-GLit) GLP-1(7-39); Ser⁸Arg^{26,34}Lys^{26,39}-bis-(GAB-GLit) GLP-1(7-39); Ser⁸Arg^{26,34}Lys^{36,39}bis-(GAB-GLit) GLP-1(7-36); Thr⁸Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-36); Thr⁸Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-37); Thr⁸Lys^{26,34}-bis-(GAB-GLit) GLP-1(7-38); Thr⁸Lys^{26,34}-bis-(GAB-GLit) GLP-1 (7-39)Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-36); Thr⁸Arg³⁴Lys²⁶, ³⁶-bis-(GAB-GLit) GLP-1(7-36); Thr⁸Arg²⁶Lys^{34,36}-bis-(GAB-GLit) GLP-1(7-37); 35 Thr⁸Arg²⁶Lys^{26, 36}-bis-(GAB-GLit) GLP-1(7-37); 35 Thr⁸Arg³⁴Lys^{26, 36}-bis-(GAB-GLit) GLP-1(7-37); Thr⁸Arg²⁶Lys^{34,37}-bis-(GAB-GLit) GLP-1(7-37); Thr⁸Arg³⁴Lys^{26,37}-bis-(GAB-GLit) GLP-1(7-38); Thr⁸Arg³⁴Lys^{26,38}-bis-(GAB-GLit) GLP-1(7-38); 40 Thr⁸Arg³⁴Lys^{36,38}-bis-(GAB-GLit) GLP-1(7-38); Thr⁸Arg²⁶, 34, 39-bis-(GAB-GLit) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39} bis-(GAB-GLit) GLP-1(7-39); Thr⁸Arg³⁴Lys^{26,39}-bis-(GAB-GLit) GLP-1(7-39); Thr⁸Arg^{26, 34}Lys^{36,39}-bis-(GAB-GLit) GLP-1(7-39). ## Pharmaceutical Compositions The present invention also relates to pharmaceutical compositions comprising a GLP-1 derivative of the present invention and a pharmaceutically acceptable vehicle or Preferably, the pharmaceutical compositions comprise an isotonic agent, a preservative and a buffer. Examples of isotonic agents are sodium chloride, mannitol and glycerol. Examples of preservatives are phenol, m-cresol, methyl p-hydroxybenzoate and benzyl alcohol. Suitable buffers 55 include sodium acetate and sodium phosphate. The pharmaceutical compositions preferably further comprise a surfactant in order to improve the solubility and/or the stability of the GLP-1 derivative. Individual embodiments of the surfactant, such as a detergent, for use in the pharmaceutical composition of the invention include ethoxylated castor oil, polyglycolyzed glycerides, acetylated monoglycerides, sorbitan fatty acid esters, poloxamers, such as 188 and 407, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene derivatives such as alkylated and alkoxylated derivatives (tweens, e.g. Tween-20), monoglycerides or ethoxylated derivatives thereof, diglycerides or polyoxy- ethylene derivatives thereof, glycerol, cholic acid or derivatives thereof, lecithins, alcohols and phospholipids, glycerophospholipids (lecithins, kephalins, phosphatidyl serine), glyceroglycolipids (galactopyransoide), sphingophospholipids (sphingomyelin), and sphingoglycolipids (ceramides, gangliosides), DSS (docusate sodium, CAS registry no [577-11-7]), docusate calcium, CAS registry no [128-49-4]), docusate potassium, CAS registry no [7491-09-0]), SDS (sodium dodecyl sulfate or sodium lauryl sulfate), dipalmitoyl phosphatidic acid, sodium caprylate, bile acids and salts thereof and glycine or taurine conjugates, ursodeoxycholic acid, sodium cholate, sodium deoxycholate, sodium Ser⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1(7-36); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1(7-37); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1(7-38); Ser⁸Lys²⁶, ³⁴-bis-(GAB-GLit) GLP-1 (5-38); lysophosphatidyl-L-serine, lysophospholipids (e.g. 1-acylsn-glycero-3-phosphate esters of ethanolamine, choline, serine or threonine), alkyl, alkoxyl (alkyl ester), alkoxy (alkyl ether)-derivatives of lysophosphatidyl and phosphatidylcholines, e.g. lauroyl and myristoyl derivatives lysophosphatidylcholine, dipalmitoylphosphatidylcholine, and modifications of the polar head group, that is cholines, ethanolamines, phosphatidic acid, serines, threonines, glycerol, inositol, and the postively charged DODAC, DOTMA, DCP, BISHOP, lysophosphatidylserine and lysophosphatidylthreonine, zwitterionic surfactants (e.g. N-alkyl-N,N-dimethylammonio-1propanesulfonates, 3-cholamido-1propyldimethylammonio-1-propanesulfonate, dodecylphosphocholine, myristoy1 lysophosphatidylcholine, hen egg lysolecithin), cationic surfactants (quarternary ammonium bases) (e.g. cetyltrimethylammonium bromide, cetylpyridinium chloride), non-ionic surfactants, polyethyleneoxide/polypropyleneoxide block copolymers (Pluronics/Tetronics, Triton X-100, Dodecyl β -D-glucopyranoside) or polymeric surfactants (Tween-40, Tween-80, Brij-35). Other preferred surfactants include fusidic acid derivatives-(e.g. sodium tauro-dihydrofusidate etc.), long-chain fatty acids and salts thereof C6-C12(eg. oleic acid and caprylic acid), acylcarnitines and derivatives, N^{α} -acylated derivatives of lysine, arginine or histidine, or side-chain acylated derivatives of lysine or arginine, N^α-acylated derivatives of dipeptides comprising any combination of lysine, arginine or histidine and a neutral or 45 acidic amino acid, N^{α} -acylated derivative of a tripeptide comprising any combination of a neutral amino acid and two charged amino acids, or the surfactant may be selected from the
group of imidazoline derivatives. > One group of preferred surfactants consists of zwitterionic surfactants, cationic surfactants, non-ionic surfactants and polymeric surfactants. > Another group of preferred surfactants consists of SDS, sodium caprylate, sodium cholate, sodium deoxycholate, sodium taurocholate and sodium glycocholate. > A further group of preferred surfactants consists of lauroyl lysophosphatidylcholine, palmitoyl lysophosphatidyl-Lserine, myristoyl lysophosphatidylcholine and N-Hexadecyl-N, N-dimethyl-3-ammonio-1propanesulfonate. > The pharmaceutical compositions preferably also comprise zinc. > The pharmaceutial compositions preferably further comprise another antidiabetic agent. The term "antidiabetic agent" includes compounds for the treatment and/or prophylaxis of insulin resistance and diseases wherein insulin resistance is the pathophysiological mechanism. In one embodiment of this invention, the antidiabetic agent is an insulin, more preferably human insulin. In another embodiment the antidiabetic agent is a hypoglycaemic agent, preferably an oral hypoglycaemic agent. Oral hypoglycaemic agents are preferably selected ⁵ from the group consisting of sulfonylureas, biguanides, thiazolidinediones, glucosidase inhibitors, glucagon antagonists, GLP-1 agonists, potasium channel openers, insulin sensitizers, hepatic enzyme inhibitors, glucose uptake modulators, compounds modifying the lipid ¹⁰ metabolism, compounds lowering food intake, and agents acting on the ATP-dependent potassium channel of the β-cells. Preferred sulfonylureas are tolbutamide, glibenclamide, glipizide and gliclazide. A preferred biguanide is metformin. Preferred thiazolidinediones are troglitazone and ciglitazone. A preferred glucosidase inhibitors is acarbose. Preferred agents acting on the ATP-dependent potassium channel of the β -cells are: glibenclamide, glipizide, gliclazide, and repaglinide. The pharmaceutical compositions of the present invention may further comprise another antiobesity agent. In one embodiment of this invention, the antiobesity agent is leptin. In another embodiment the antiobesity agent is amphetamin. In another embodiment the antiobesity agent is dexfen-fluramine. In another embodiment the antiobesity agent is sibutra- 30 mine. In another embodiment the antiobesity agent is orlistat. In another embodiment the antiobesity agent is selected from a group of CART agonists, NPY antagonists, orexin antagonists, H3-antagonists, TNF agonists, CRF agonists, CRF BP antagonists, urocortin agonists, β3 agonists, MSH agonists, CCK agonists, serotonin re-uptake inhibitors, mixed serotonin and noradrenergic compounds, 5HT agonists, bombesin agonists, galanin antagonists, growth hormone, growth hormone releasing compounds, glucagon, TRH agonists, uncoupling protein 2 or 3 modulators, leptin agonists, DA agonists (Bromocriptin, Doprexin), lipase/amylase inhibitors, PPAR modulators, PXR modulators or TR P agonists. The present invention also relates to pharmaceutical compositions comprising water and a GLP-1 derivative which has a helix content as measured by CD at 222 nm in $\rm H_2O$ at 22±2° C. exceeding 25%, preferably in the range of 25% to 50%, at a peptide concentration of about 10 μ M. The size of the partially helical, micelle-like aggregates may be estimated by size-exclusion chromatography. Similarly, the apparent (critical micelle concentrations) CMC's of the peptides may be estimated from the concentration dependent fluorescence in the presence of appropriate dyes (e.g. Brito, 55 R. & Vaz, W. (1986) Anal. Biochem. 152, 250–255). That the derivatives have a partially structured micellar-like aggregate conformation in aqueous solutions makes them more soluble and stable in solution as compared to the native peptide. The increased solubility and stability can be seen by comparing the solubility after 9 days of standing for a derivative and native GLP-1(7-37) in a pharmaceutical formulation, e.g. 5 mM phosphate buffer, pH 6.9 added 0.1 M NaCl. Circular Dichroism (CD) can be used to show that the 65 GLP-1 derivatives have a certain partially structured conformation independent of their concentration. In contrast, for 156 native GLP-1(7-37) an increase in the helix content is seen with increasing concentration, from 10–15% to 30–35% (at 500 μ M concentration) in parallel with peptide self-association. For the GLP-1 derivatives forming partially structured micellar-like aggregates in aqueous solution the helix content remains constant above 30% at concentrations of 10 μ M. The aggregated structured conformation is an inherent property of the derivative present in water or dilute aqueous buffer without the need for any additional structure-10 inducing components. The pharmaceutical compositions of the present invention may be prepared by conventional techniques, e.g. as described in Remington's *Pharmaceutical Sciences*, 1985 or in Remington: *The Science and Practice of Pharmacy*, 19th edition, 1995. For example, injectable compositions of the GLP-1 derivative of the invention can be prepared using the conventional techniques of the pharmaceutical industry which involves dissolving and mixing the ingredients as appropriate to give the desired end product. A composition for nasal administration of certain peptides may, for example, be prepared as described in European Patent No. 272097(to Novo Nordisk A/S) or in WO 93/18785. In a preferred embodiment of the present invention, the GLP-1 derivative is provided in the form of a composition suitable for administration by injection. Such a composition can either be an injectable solution ready for use or it can be an amount of a solid composition, e.g. a lyophilised product, which has to be dissolved in a solvent before it can be injected. The injectable solution preferably contains not less than about 2 mg/ml, preferably not less than about 5 mg/ml, more preferred not less than about 10 mg/ml of the GLP-1 derivative and, preferably, not more than about 100 mg/ml of the GLP-1 derivative. ## Uses The present invention also relates to the use of a GLP-1 derivative of the invention for the preparation of a medicament which has a protracted profile of action relative to GLP-1(7-37). The present invention relates also to the use of a GLP-1 derivative of the invention for the preparation of a medicament with protracted effect for the treatment of non-insulin dependent diabetes mellitus. The present invention also relates to the use of a GLP-1 derivative of the invention for the preparation of a medicament with protracted effect for the treatment of insulin dependent diabetes mellitus. The present invention also relates to the use of a GLP-1 derivative of the invention for the preparation of a medicament with protracted effect for the treatment of obesity. The present invention also relates to the use of a GLP-1 derivative of the present invention for treating insulin resistance The present invention also relates to the use of a GLP-1 derivative of the present invention for the preparation of a medicament with protracted effect for the treatment of obesity. The present invention relates to a method of treating insulin dependent or non-insulin dependent diabetes mellitus in a patient in need of such a treatment, comprising administering to the patient a therapeutically effective amount of a GLP-1 derivative of the present invention together with a pharmaceutically acceptable carrier. The present invention relates to a method of treating obesity in a patient in need of such a treatment, comprising administering to the patient a therapeutically effective amount of a GLP-1 derivative of the present invention together with a pharmaceutically acceptable carrier. The particular GLP-1 derivative to be used and the optimal dose level for any patient will depend on the disease to be treated and on a variety of factors including the efficacy of the specific peptide derivative employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity of the case. The pharmaceutical compositions of the present invention may be administered parenterally to patients in need of such a treatment. Parenteral administration may be performed by subcutaneous, intramuscular or intravenous injection by means of a syringe, optionally a pen-like syringe. Alternatively, parenteral administration can be performed by means of an infusion pump. A further option is a composition which may be a powder or a liquid for the administration of the GLP-1 derivative in the form of a nasal or pulmonal spray. As a still further option, the GLP-1 derivatives of the invention can also be administered transdermally, e.g. from a patch, optionally a iontophoretic patch, or transmucosally, e.g. bucally. #### Methods of Production The parent peptide can be produced by a method which comprises culturing a host cell containing a DNA sequence encoding the polypeptide and capable of expressing the polypeptide in a suitable nutrient medium under conditions permitting the expression of the peptide, after which the resulting peptide is recovered from the culture. The medium used to culture the cells may be any conventional medium suitable for growing the host cells, such as minimal or complex media containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared of published recipes (e.g. in catalogues of the American Type Culture Collection). The peptide produced by the cells may then be recovered from the culture medium by conventional procedures including separating the host cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the supernatant or filtrate by means of a salt, e.g. ammonium sulphate, purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, gel filtration chromatography, affinity chromatography, or
the like, dependent on the type of peptide in question. The DNA sequence encoding the parent peptide may 50 suitably be of genomic or cDNA origin, for instance obtained by preparing a genomic or cDNA library and screening for DNA sequences coding for all or part of the peptide by hybridisation using synthetic oligonucleotide probes in accordance with standard techniques (see, for 55 example, Sambrook, J, Fritsch, EF and Maniatis, T, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1989). The DNA sequence encoding the peptide may also be prepared synthetically by established standard methods, e.g. the phosphoamidite 60 method described by Beaucage and Caruthers, Tetrahedron Letters 22(1981), 1859–1869, or the method described by Matthes et al., *EMBO Journal* 3(1984), 801–805. The DNA sequence may also be prepared by polymerase chain reaction using specific primers, for instance as described in U.S. 65 Pat. No. 4,683,202 or Saiki et al., Science 239(1988), 487-491. 158 The DNA sequence may be inserted into any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated. The vector is preferably an expression vector in which the DNA sequence encoding the peptide is operably linked to additional segments required for transcription of the DNA, such as a promoter. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA encoding the peptide of the invention in a variety of host cells are well known in the art, cf. for instance Sambrook et al., supra. The DNA sequence encoding the peptide may also, if necessary, be operably connected to a suitable terminator, polyadenylation signals, transcriptional enhancer sequences, and translational enhancer sequences. The recombinant vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell or one which confers resistance to a drug, e.g. ampicillin, kanamycin, tetracyclin, chloramphenicol, neomycin, hygromycin or methotrexate. To direct a parent peptide of the present invention into the secretory pathway of the host cells, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) may be provided in the recombinant vector. The secretory signal sequence is joined to the DNA sequence encoding the peptide in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the peptide. The secretory signal sequence may be that normally associated with the peptide or may be from a gene encoding another secreted protein The procedures used to ligate the DNA sequences coding for the present peptide, the promoter and optionally the terminator and/or secretory signal sequence, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., supra). The host cell into which the DNA sequence or the recombinant vector is introduced may be any cell which is capable of producing the present peptide and includes bacteria, yeast, fungi and higher eukaryotic cells. Examples of suitable host cells well known and used in the art are, without limitation, *E. coli, Saccharomyces cerevisiae*, or mammalian BHK or CHO cell lines. The GLP-1 derivatives of this invention can be used in the treatment of various diseases. The particular GLP-1 derivative to be used and the optimal dose level for any patient will depend on the disease to be treated and on a variety of factors including the efficacy of the specific peptide derivative employed, the age, body weight, physical activity, and diet of the patient, on a possible combination with other drugs, and on the severity 159 of the case. It is recommended that the dosage of the GLP-1 derivative of this invention be determined for each individual patient by those skilled in the art. In particular, it is envisaged that the GLP-1 derivative will be useful for the preparation of a medicament with a protracted profile of action for the treatment of non-insulin dependent diabetes mellitus and/or for the treatment of obesity. The present invention is further illustrated by the following examples which, however, are not to be construed as limiting the scope of protection. The features disclosed in the foregoing description and in the following examples may, both separately and in any combination thereof, be material for realising the invention in diverse forms thereof. #### **EXAMPLES** The following acronyms for commercially available chemicals are used: DMF: N,N-Dimethylformamide DCC: N,N-Dicyclohexylcarbodiimide NMP: N-Methyl-2-pyrrolidone EDPA: N-Ethyl-N,N-diisopropylamine EGTA: Ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid GTP: Guanosine 5'-triphosphate TFA: Trifluoroacetic acid THF: Tetrahydrofuran H-Glu(OH)-OBu^t: L-Glutamic acid α-tert-butyl ester Cac-ONSu: Decanoic acid 2,5-dioxopyrrolidin-1-yl ester Cap-ONSu: Octanoic acid 2,5-dioxopyrrolidin-1-yl ester Lau-ONSu: Dodecanoic acid 2,5-dioxopyrrolidin-1-yl ester 30 Myr-ONSu: Tetradecanoic acid 2,5-dioxopyrrolidin-1-yl ester Pal-ONSu: Hexadecanoic acid 2,5-dioxopyrrolidin-1-yl Ste-ONSu Octadecanoic acid 2,5-dioxopyrrolidin-1-yl ester 35 Abbreviations: PDMS: Plasma Desorption Mass Spectrometry MALDI-MS: Matrix Assisted Laser Desorptiont/Ionisation Mass Spectrometry HPLC: High Performance Liquid Chromatography amu: atomic mass units Lit-Glu(ONSu)-OBu': Nα-Lithochoyl-L-glutamic acid α-tbutyl ester γ-2,5-dioxopyrrolidin-1-yl ester Cap-Glu(ONSu)-OBu': N^{α} -Octanoyl-L-glutamic acid α -t-butyl ester γ -2,5-dioxopyrrolidin-1-yl ester Cac-Glu(ONSu)-OBu^t: N $^{\alpha}$ -Decanoyl-L-glutamic acid α -t-butyl ester γ -2,5-dioxopyrrolidin-1-yl ester Lau-Glu(ONSu)-OBu': N^{α} -Dodecanoyl-L-glutamic acid α -t-butyl ester γ -2,5-dioxopyrrolidin-1-yl ester Myr-Glu(ONSu)-OBu': N^{α} -Tetradecanoyl-L-glutamic acid 50 operated in linear mode. Alpha-cyano-4-hydroxy-cinnamic α -t-butyl ester γ -2,5-dioxopyrrolidin-1-yl ester acid was used as matrix, and mass assignments were based Pal-Glu(ONSu)-OBu': Nα-Hexadecanoyl-(L)-glutamic acid α-t-butyl-γ-2,5-dioxopyrrolidin-1-yl diester Ste-Glu(ONSu)-OBu': Nα-Octadecanoyl-(L)-glutamic acid α-t-butyl-γ-2,5-dioxopyrrolidin-1-yl diester Lau-β-Ala-ONSu: N^β-Dodecanoyl-β-alanine 2,5-dioxopyrrolidin-1-yl ester Pal-β-Ala-ONSu: N^β-Hexadecanoyl-β-alanine 2,5-dioxopyrrolidin-1-yl ester Lau-GABA-ONSu: N^γ-Dodecanoyl-γ-aminobutyric acid 60 2,5-dioxopyrrolidin-1-yl ester Myr-GABA-ONSu: N^γ-Tetradecanoyl-γ-aminobutyric acid 2,5-dioxopyrrolidin-1-yl ester Pal-GABA-ONSu: N^γ-Hexadecanoyl-γ-aminobutyric acid 2,5-dioxopyrrolidin-1-yl ester Ste-GABA-ONSu: N^γ-Octadecanoyl-γ-aminobutyric acid 2,5-dioxopyrrolidin-1-yl ester 160 Pal-Isonip-ONSu: N-Hexadecanoyl-piperidine-4-carboxylic acid 2,5-dioxopyrrolidin-1-yl ester Pal-Glu(OBu')-ONSu: N^{α} -Hexadecanoyl-L-glutamic acid α -2,5-dioxopyrrolidin-1-yl ester γ -t-butyl ester HOOC—(CH₂)₆—COONSu: ω-Carboxyheptanoic acid 2,5-dioxopyrrolidin-1-yl ester HOOC—(CH₂)₁₀—COONSu: ω-Carboxyundecanoic acid 2,5-dioxopyrrolidin-1-yl ester HOOC—(CH₂)₁₂—COONSu: ω-Carboxytridecanoic acid 2,5-dioxopyrrolidin-1-yl ester HOOC—(CH₂)₁₄—COONSu: ω-Carboxypentadecanoic acid 2,5-dioxopyrrolidin-1-yl ester HOOC— $(CH_2)_{16}$ —COONSu: ω-Carboxyheptadecanoic acid 2,5-dioxopyrrolidin-1-yl ester 15 HOOC—(CH₂)₁₈—COONSu: ω-Carboxynonadecanoic acid 2,5-dioxopyrrolidin-1-yl ester N^{α} -alkanoyl-Glu(ONSu)-OBu': N^{α} -Alkanoyl-(L)-glutamic acid α -t-butyl- γ -2,5-dioxopyrrolidin-1-yl diester #### Analytical Plasma Desorption Mass Spectrometry Sample Preparation: The sample is dissolved in 0.1% TFA/EtOH (1:1) at a concentration of 1 μ g/ μ l. The sample solution (5–10 μ l) is placed on a nitrocellulose target (Bio-ion AB, Uppsala, Sweden) and allowed to adsorb to the target surface for 2 minutes. The target is subsequently rinsed with 2×25 μ l 0.1% TFA and spin-dried. Finally, the nitrocellulose target is placed in a target carrousel and introduced into the mass spectrometer. MS Analysis: PDMS analysis was carried out using a Bio-ion 20 time-of flight instrument (Bio-ion Nordic AB, Uppsala, Sweden). An acceleration voltage of 15 kV was applied and molecular ions formed by bombardment of the nitrocellulose surface with 252-Cf fission fragments were accelerated towards a stop detector. The resulting time-of-flight spectrum was calibrated into a true mass spectrum using the H⁺ and NO⁺ ions at m/z 1 and 30, respectively. Mass spectra were generally accumulated for 1.0×10^6 fission events corresponding to 15–20 minutes. Resulting assigned masses all correspond to isotopically averaged molecular masses. The accuracy of mass assignment is generally better than 0.1%. #### MALDI-MS MALDI-TOF MS analysis was carried out using a Voyager RP instrument (PerSeptive Biosystems Inc., Framingham, Mass.) equipped with delayed extraction and operated in linear mode. Alpha-cyano-4-hydroxy-cinnamic acid was
used as matrix, and mass assignments were based on external calibration. ## Example 1 Synthesis of Lys²⁶(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-37) The title compound was synthesised from GLP-1(7-37). A mixture of GLP-1(7-37) (25 mg, 7.45 µm), EDPA (26.7 mg, 208 µm), NMP (520 µl) and water (260 µl) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of Myr-ONSu (2.5 mg, 7.67 µm) in NMP (62.5 µl), the reaction mixture was gently shaken for 5 min. at room temperature and then allowed to stand for 20 min. An additional amount of Myr-ONSu (2.5 mg, 7.67 µm) in NMP (62.5 µl) was added and the resulting mixture gently shaken for 5 min. After a total reaction time of 40 min. the reaction was quenched by the addition of a 161 solution of glycine (12.5 mg, 166 μ mol) in 50% aqueous ethanol (12.5 ml). The title compound was isolated from the reaction mixture by HPLC using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system, yield: 1.3 mg (corresponding to 4.9% of the theoretical yield). The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The isolated product was analysed by PDMS and the m/z value for the protonated molecular ion was found to be 3567.9±3. The resulting molecular weight was thus 3566.9 \pm 3 amu 10 μ g, 4%) was isolated. (theoretical value: 3565.9 amu). The position of acylation (Lys26) was verified by enzymatic cleavage of the title compound with Staphylococcus aureus V8 protease and subsequent mass determination of the peptide fragments by PDMS. In addition to the title compound two other GLP-1derivatives were isolated from the reaction mixture by using the same chromatographic column and a more shallow gradient (35–38% acetonitrile in 60 minutes), see Examples 2 and 3. #### Example 2 Synthesis of Lys³⁴(N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-37) The title compound was isolated by HPLC from the 25 reaction mixture described in Example 1. PDMS analysis yielded a protonated molecular ion at m/z 3567.7±3. The molecular weight was found to be 3566.7±3 amu (theoretical value: 3565.9 amu). The acylation site was determined on the basis of the fragmentation pattern. ## Example 3 Synthesis of Lys^{26, 34}-bis(N^e-tetradecanoyl) GLP-1 The title compound was isolated by HPLC from the reaction mixture described in Example 1. PDMS analysis yielded a protonated molecular ion at m/z 3778.4±3. The molecular weight was found to be 3777.4±3 amu (theoretical value: 3776.1 amu). #### Example 4 Synthesis of Lys²⁶(N^ϵ-tetradecanoyl)Arg³⁴GLP-1(7- The title compound was synthesised from Arg34GLP-1 (7-37). A mixture of Arg³⁴GLP-1(7-37) (5 mg, 1.47 μ m), EDPA (5.3 mg, 41.1 μ m), NMP (105 μ l) and water (50 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of Myr-ONSu (0.71 mg, 2.2 μ m) in NMP (17.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature and then allowed to stand for 20 min. After a total reaction time of 30 min. the reaction was quenched by the addition of a solution of glycine (25 mg, 33.3 μ m) in 50% aqueous ethanol (2.5 ml). The reaction mixture was purified by HPLC as described in Example 1. PDMS analysis yielded a protonated molecular ion at m/z 3594.9±3. The molecular weight was found to be 3593.9±3 amu (theoretical value: 3593.9 amu). ## Example 5 Synthesis of Gly $^8Arg^{26,\ 34}Lys^{36}(N^{\varepsilon}\text{-tetradecanoyl})$ GLP-1(7-37) The title compound was synthesised from Gly⁸Arg²⁶, ³⁴Lys³⁶GLP-1(7-37) which was purchased from QCB. A 162 mixture of Gly⁸Arg^{26, 34}Lys³⁶GLP-1(7-37) (1.3 mg, 0.39 μ m), EDPA (1.3 mg, 10 μ m), NMP (125 μ l) and water (30 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of Myr-ONSu (0.14 mg, $0.44 \mu m$) in NMP (3.6 ml), the reaction mixture was gently shaken for 15 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (0.1 mg, 1.33 μ m) in 50% aqueous ethanol (10 μ l). The reaction mixture was purified by HPLC, and the title compound (60 ## Example 6 Synthesis of Arg $^{26,~34}$ Lys 36 (N $^{\epsilon}$ -tetradecanoyl) GLP-1(7-37)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-37)-OH (5.0 mg, 1.477 μ mol), EDPA (5.4 mg, 41.78 μ mol), NMP (105 μ l) and water (50 µl) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of Myr-ONSu (0.721 mg, 2.215 μ mol) in NMP (18 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 45 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.5 mg, 33.3 μ mol) in 50% aqueous ethanol (250 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (1.49 mg, 28%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3595±3. The resulting molecular weight was thus 3594±3 amu (theoretical value 3594 amu). ## Example 7 Synthesis of Lys 26,34 bis(N $^{\epsilon}$ -(ω carboxynonadecanoyl)) GLP-1(7-37)-OH A mixture of GLP-1(7-37)-OH (70 mg, 20.85 μ mol), EDPA (75.71 mg, 585.8 μ mol), NMP (1.47 ml) and water $(700 \,\mu\text{L})$ was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution of HOOC- $(CH_2)_{18}$ —COONSu (27.44 mg, 62.42 μ mol) in NMP (686 45 µl), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 50 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (34.43 mg, $458.7 \mu \text{mol}$) in 50% agueous ethanol (3.44 ml). The reaction 50 mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (8.6 mg, 10%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 4006±3. The resulting molecular weight was thus 4005±3 amu (theoretical value 4005 amu). #### Example 8 Synthesis of $Arg^{26, 34}Lys^{36}(N^{\varepsilon}$ -(ω -carboxynonadecanoyl)) GLP-1(7-36)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-36)-OH (5.06 mg, 65 1.52 μ mol), EDPA (5.5 mg, 42.58 μ mol), NMP (106 μ l) and water (100 µl) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of HOOC—(CH $_2$) $_{18}$ —COONSu (1.33 mg, 3.04 μ mol) in NMP (33.2 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2.5 h at room temperature. The reaction was quenched by the addition of a solution of glycine (2.50 mg, 33.34 μ mol) in 50% aqueous ethanol (250 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0–100% in 60 minutes. The title compound (0.46 mg, 8%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3652±3. The resulting molecular weight was thus 3651±3 amu (theoretical value 3651 amu). #### Example 9 Synthesis of Arg^{26, 34}Lys³⁸(N^{ϵ}-(ω carboxynonadecanoyl)) GLP-1(7-38)-OH A mixture of $Arg^{26, 34}Lys^{38}GLP-1(7-38)-OH$ (5.556 mg, $_{20}$ 1.57 μ mol), EDPA (5.68 mg, 43.96 μ mol), NMP (116.6 μ l) and water (50 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{18}$ —COONSu (1.38 mg, 3.14 μ mol) in NMP (34.5 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2.5 h at room temperature. The reaction was quenched by the addition of a solution of glycine (2.5 mg, 33.3 μ mol) in 50% aqueous ethanol (250 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.7 mg, 12%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3866±3. The resulting molecular weight was thus 3865±3 amu (theoretical value 3865 amu). #### Example 10 Synthesis of Arg $^{34}Lys^{26}(N^{\varepsilon}\text{-}(\omega\text{-}carboxynonadecanoyl)) GLP-1(7-37)-OH$ A mixture of Arg³⁴GLP-1(7-37)-OH (5.04 mg, 1.489 μ mol), EDPA (5.39 mg, 41.70 μ mol), NMP (105 μ l) and temperature. To the resulting mixture was added a solution HOOC—(CH₂)₁₈—COONSu (1.31 mg, 2.97 μ mol) in NMP (32.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 30 min. at room temperature. The reaction was 50 quenched by the addition of a solution of glycine (2.46 mg, 32.75 μ mol) in 50% aqueous ethanol (246 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (1.2 mg, 22%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3709±3. The resulting molecular weight was thus 3708±3 amu (theoretical value 60 resulting molecular weight was thus
3837±3 amu 3708 amu). ## Example 11 Synthesis of Arg $^{34}Lys^{26}(N^{\varepsilon}\text{-}(\omega\text{-}carboxyheptadecanoyl)) GLP-1(7-37)-OH$ A mixture of Arg³⁴GLP-1(7-37)-OH (5.8 mg, 1.714 μ mol), EDPA (6.20 mg, 47.99 μ mol), NMP (121.8 μ l) and 164 water (58 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{16}$ —COONSu (2.11 mg, 5.142 μ mol) in NMP (52.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (2.83 mg, 37.70 μ mol) in 50% aqueous ethanol (283 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.81 mg, 13%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3681±3. The resulting 15 molecular weight was thus 3680±3 amu (theoretical value 3680 amu). #### Example 12 Synthesis of Arg^{26, 34}Lys³⁶(N $^{\epsilon}$ -(ω carboxyheptadecanoyl)) GLP-1(7-37)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-37)-OH (3.51 mg, 1.036 μ mol), EDPA (3.75 mg, 29.03 μ mol), NMP (73.8 μ l) and water (35 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{16}$ —COONSu (1.27 mg, 3.10 μ mol) in NMP (31.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h and 10 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (1.71 $_{30}$ mg, 22.79 μ mol) in 50% aqueous ethanol (171 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.8 mg, 21%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3682±3. The resulting molecular weight was thus 3681±3 amu (theoretical value 3681 amu). ## Example 13 Synthesis of $Arg^{26,34}Lys^{38}(N^{68}$ -(ω -carboxylheptadecanoyl)) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (5.168 mg, 1.459 μ mol), EDPA (5.28 mg, 40.85 μ mol), NMP (108.6 μ l) water (50 µl) was gently shaken for 10 min. at room 45 and water (51.8 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂)₁₆—<math>COONSu (1.80 mg, 4.37 μ mol) in NMP (45 μ l), the reaction mixture was gently shaken for 10 min. at room temperature, and then allowed to stand for an additional 2 h and 15 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.41 mg, 32.09 μ mol) in 50% aqueous ethanol (241 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.8 mg, 14%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3838±3. The (theoretical value 3837 amu). ## Example 14 Synthesis of Arg $^{26,~34}$ Lys 36 (N $^{\epsilon}$ -(ω -carboxyheptadecanoyl)) GLP-1(7-36)-OH A mixture of Arg^{26, 34}Lvs³⁶GLP-1(7-36)-OH (24.44 mg, 7.34 μ mol), EDPA (26.56 mg, 205.52 μ mol), NMP (513 μ l) and water (244.4 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{16}$ —COONSu (9.06 mg, 22.02 μ mol) in NMP (1.21 ml), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 30 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (12.12 mg, 161.48 μ mol) in 50% aqueous ethanol (1.21 ml). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (7.5 mg, 28%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3625±3. The resulting molecular weight was thus 3624±3 amu 15 (theoretical value 3624 amu). ## Example 15 Synthesis of Arg $^{26, \ 34}$ Lys 36 (N $^{\epsilon}$ -(ω -carboxyundecanoyl)) GLP-1(7-37)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-37)-OH (4.2 mg, 1.24 μ mol), EDPA (4.49 mg, 34.72 μ mol), NMP (88.2 μ l) and water (42 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂)₁₀—COONSu (1.21 mg, 3.72 μ mol) in NMP 25 $(30.25 \,\mu\text{l})$, the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 40 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.04 mg, $27.28 \mu \text{mol}$) in 50% aqueous ethanol (204 μ l). The reaction ₃₀ mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.8 mg, 18%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3598±3. The resulting molecular weight was thus 3597±3 amu (theoretical value 3597 amu). ## Example 16 Synthesis of $Arg^{26, 34}Lys^{38}(N^{\epsilon}-(\omega-carboxyundecanoyl))$ GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (5.168 mg, 1.46 μ mol), EDPA (5.28 mg, 40.88 μ mol), NMP (108.6 μ l) and water (51.7 μ l) was gently shaken for 10 min. at room ⁴⁵ temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{10}$ —COONSu (1.43 mg, 4.38 μ mol) in NMP (35.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 50 min. at room temperature. The reaction was 50 quenched by the addition of a solution of glycine (2.41 mg, 32.12 μ mol) in 50% aqueous ethanol (241 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.85 mg, 16%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3753±3. The resulting 3752 amu). ## Example 17 Synthesis of Lys 26,34 bis(N $^{\epsilon}$ -(ω -carboxyundecanoyl)) GLP-1(7-37)-OH A mixture of GLP-1(7-37)-OH (10.0 mg, 2.98 µmol), EDPA (10.8 mg, 83.43 μ mol), NMP (210 μ l) and water (100 166 ul) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂) $_{10}$ —COONSu (2.92 mg, 8.94 μ mol) in NMP (73 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 50 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (4.92 mg, 65.56 μ mol) in 50% aqueous ethanol (492 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/ TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (1.0 mg, 9%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3781±3. The resulting molecular weight was thus 3780±3 amu (theoretical value 3780 amu). #### Example 18 Synthesis of $Arg^{26, 34}Lys^{36}(N^{68}-(\omega-carboxyundecanoyl))$ GLP-1(7-36)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-36)-OH (15.04 mg, 4.52 μ mol), EDPA (16.35 mg, 126.56 μ mol), NMP (315.8 μ l) and water (150.4 μ l) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{10}$ —COONSu (4.44 mg, 13.56 μ mol) in NMP (111 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 40 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (7.5 mg, 99.44 μ mol) in 50% aqueous ethanol (750 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (3.45 mg, 22%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3540±3. The resulting molecular weight was thus 3539±3 amu (theoretical value 3539 amu). #### Example 19 Synthesis of $Arg^{34}Lys^{26}(N^{\epsilon}-(\omega-carboxyundecanoyl))$ GLP-1(7-37)-OH A mixture of Arg³⁴GLP-1(7-37)-OH (5.87 mg, 1.73 μ mol), EDPA (6.27 mg, 48.57 μ mol), NMP (123.3 μ l) and water (58.7 μ l) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{10}$ —COONSu (1.70 mg, 5.20 μ mol) in NMP (42.5 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 40 min. at room temperature. The reaction was quenched by the
addition of a solution of glycine (2.86 mg, 286 μ mol) in 50% aqueous ethanol (286 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C., and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (1.27 mg, 20%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3597±3. The resulting molecular weight was thus 3752±3 amu (theoretical value 60 molecular weight was thus 3596±3 amu (theoretical value 3596 amu). ## Example 20 Synthesis of Arg³⁴Lys²⁶(N $^{\epsilon}$ -(ω -carboxyheptanoyl)) GLP-1(7-37)-OH A mixture of Arg³⁴GLP-1(7-37)-OH (4.472 mg, 1.32 μ mol), EDPA (4.78 mg, 36.96 μ mol), NMP (94 μ l) and water 40 167 (44.8 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution HOOC- $(CH_2)_6$ —COONSu (1.07 mg, 3.96 μ mol) in NMP (26.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 1 h and 50 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.18 mg, 29.04 μ mol) in 50% aqueous ethanol (218 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.5 mg, 11%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3540±3. The resulting molecular weight was thus 3539±3 amu (theoretical value 3539 amu). ## Example 21 ## Synthesis of Arg $^{26, \ 34}$ Lys 38 (N $^{\epsilon}$ -(ω -carboxyheptanoyl)) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (5.168 mg, 1.459 μ mol), EDPA (5.28 mg, 40.85 μ mol), NMP (108.6 μ l) and water (51.6 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂)₆—<math>COONSu (1.18 mg, 4.37 μ mol) in NMP (29.5 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 1 h and 50 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.40 mg, $32.09 \mu \text{mol}$) in 50% aqueous ethanol (240 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.5 mg, 9%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3697±3. The resulting molecular weight was thus 3695±3 amu (theoretical value 3695 amu). #### Example 22 # Synthesis of ${\rm Arg}^{26,~34} {\rm Lys}^{36} (N^\epsilon - (\omega - {\rm carboxyheptanoyl}))$ GLP-1(7-37)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-37)-OH (5.00 mg, 1.47 μ mol), EDPA(5.32 mg, 41.16 μ mol), NMP(105 μ l) and water (50 μ l) was gently shaken for 5 min. at room tem- ⁴⁵ perature. To the resulting mixture was added a solution HOOC—(CH₂)₆—<math>COONSu (1.19 mg, 4.41 μ mol) in NMP (29.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h at room temperature. The reaction was 50 quenched by the addition of a solution of glycine (2.42 mg, 32.34 μ mol) in 50% aqueous ethanol (242 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.78 mg, 15%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3542±3. The resulting 3541 amu). ## Example 23 Synthesis of Arg $^{26,~34}$ Lys 36 (N $^{\epsilon}$ -carboxyheptanoyl)) GLP-1(7-36)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-36)-OH (5.00 mg, $1.50 \,\mu\text{mol}$), EDPA (5.44 mg, 42.08 μmol), NMP (210 μ l) and 168 water (50 µl) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂)₆13 COONSu (1.22 mg, 4.5 μ mol) in NMP $(30.5 \,\mu\text{l})$, the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (2.47 mg, 33.0 μ mol) in 50% aqueous ethanol (247 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.71 mg, 14%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3484±3. The resulting molecular weight was thus 3483±3 amu (theoretical value 3483 amu). #### Example 24 ## Synthesis of Lys^{26,34}bis(N^{ϵ}-(ω -carboxyheptanoyl)) GLP-1(7-37)-OH A mixture of GLP-1(7-37)-OH (10 mg, $2.5 \mu mol$), EDPA $(10.8 \text{ mg}, 83.56 \,\mu\text{mol})$, NMP $(210 \,\mu\text{l})$ and water $(100 \,\mu\text{l})$ was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂₁₆-COONSu (2.42 mg, 8.92 μ mol) in NMP (60.5 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h and 35 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (4.92 mg, 65.54 μ mol) in 50% aqueous ethanol (492 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (2.16 mg, 24%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3669±3. The resulting molecular weight was thus 3668±3 amu (theoretical value 3668 amu). ## Example 25 ## Synthesis of $Arg^{34}Lys^{26}(N^{\varepsilon}$ -(ω -carboxypentadecanoyl)) GLP-1(7-37)-OH A mixture of Arg³⁴GLP-1(7-37)-OH (4.472 mg, 1.321 μ mol), EDPA (4.78 mg, 36.99 μ mol), NMP (93.9 μ l) and water (44.7 µl) was gently shaken for 10 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{14}$ —COONSu (1.519 mg, 3.963 μ mol) in NMP (38 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 1 h at room temperature. The reaction was quenched by the addition of a solution of glycine (2.18 mg, 29.06 μ mol) in 50% aqueous ethanol (218 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.58 mg, 12%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3654±3. The resulting molecular weight was thus 3541±3 amu (theoretical value 60 molecular weight was thus 3653±3 amu (theoretical value 3653 amu). ## Example 26 Synthesis of Arg $^{26,~34}$ Lys 36 (N $^{\epsilon}$ -(ω -carboxyheptanoyl)) GLP-1(7-36)-OH A mixture of Arg^{26, 34}Lys³⁶GLP-1(7-36)-OH (5.00 mg, $1.50 \,\mu\text{mol}$), EDPA (5.44 mg, 42.08 μmol), NMP (210 μ l) and water (50 µl) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{14}$ —COONSu (1.72 mg, 4.5 μ mol) in NMP (43 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 1 h at room temperature. The reaction was quenched by the addition of a solution of glycine (2.48 mg, 33 μ mol) in 50% aqueous ethanol (248 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/ TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.58 mg, 11%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular weight was thus 3595±3 amu (theoretical value 3595 amu). ## Example 27 ## Synthesis of Lithocholic Acid 2,5-dioxo-pyrrolidin-1-vl Ester To a mixture of lithocholic acid (5.44 g, 14.34 mmol), N-hydroxysuccinimide (1.78 g, 15.0 mmol), anhydrous THF (120 ml) and anhydrous acetonitrile (30 ml), kept at to 10° C., was added a solution of N,N'-dicyclohexylcarbodiimide (3.44 g, 16.67 mmol) in anhydrous THF. The reaction mixture was stirred at ambient temperature for 16 h, filtered and concentrated in vacuo. The residue was dissolved in dichloromethane (450 ml), washed with a 10% aqueous Na₂CO₃ solution (2×150 ml) and water (2×150 ml), and dried (MgSO₄). Filtered and the filtrate concentrated in vacuo to give a crystalline residue. The residue was recrystallised from a mixture of dichloromethane (30 ml) and n-heptane (30 ml to give the title compound (3.46 g, 51%) as a crystalline solid. ## Example 28 ## Synthesis of Arg³⁴Lys²⁶(N^ε-lithocholyl) GLP-1(7-37)-OH A mixture of Arg³⁴GLP-1(7-37)-OH (4.472 mg, 1.32 μ mol), EDPA (4.78 mg, 36.96 μ mol), NMP (94 μ l) and water To the resulting mixture was added a solution of lithocholic acid 2,5-dioxo-pyrrolidin-1-yl ester (1.87 mg, 3.96 μ
mol) in NMP (46.8 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 1 h at room temperature. The reaction was 50 4011 amu). quenched by the addition of a solution of glycine (2.18 mg, 29.04 μ mol) in 50% aqueous ethanol (218 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (1.25 mg, 25%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3744±3. The resulting molecular weight was thus 3743±3 amu (theoretical value 60 3743 amu). #### Example 29 Synthesis of N^α-tetradecanoyl-Glu(ONSu)-OBu^t To a suspension of H-Glu(OH)-OBu t (2.5 g, 12.3 μ mmol), DMF (283 ml) and EDPA (1.58 g, 12.3 mmol) was added 170 drop by drop a solution of Myr-ONSu (4.0 g, 12.3 mmol) in DMF (59 ml). The reaction mixture was stirred for 16 h at room temperature and then concentrated in vacuo to a total volume of 20 ml. The residue was partitioned between 5% aqueous citric acid (250 ml) and ethyl acetate (150 ml), and the phases were separated. The organic phase was concentrated in vacuo and the residue dissolved in DMF (40 ml). The resulting solution was added drop by drop to a 10% aqueous solution of citric acid (300 ml) kept at 0° C. The precipitated compound was collected and washed with iced water and dried in a vacuum drying oven. The dried compound was dissolved in DMF (23 ml) and HONSu (1.5 g, 13 mmol) was added. To the resulting mixture was added a solution of N,N'-dicyclohexylcarbodiimide (2.44 g, 11.9 molecular ion was found to be 3596±3. The resulting 15 mmol) in dichloromethane (47 ml). The reaction mixture was stirred for 16 h at room temperature, and the precipitated compound was filtered off. The precipitate was recrystallised from n-heptane/2-propanol to give the title compound (3.03 g, 50%). #### Example 30 # Synthesis of Glu $^{22,23,30}Arg^{26,~34}Lys^{38}(N^\epsilon\text{-(}\gamma\text{-glutamyl(}N^\alpha\text{-tetradecanoyl)))}$ GLP-1(7-38)-OH A mixture of Glu^{22,23,30}Arg^{26, 34}Lys³⁸-GLP1(7-38)-OH $(1.0 \text{ mg}, 0.272 \,\mu\text{mol})$, EDPA, $(0.98 \text{ mg}, 7.62 \,\mu\text{mol})$, NMP (70 μ l) and water (70 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of N^{\alpha}-tetradecanoyl-Glu(ONSu)-OBu^t, prepared as described in Example 29,(0.41 mg, 0.816 µmol) in NMP (10.4 μ l), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 45 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (0.448 mg, 35 5.98 μ mol) in 50% aqueous ethanol (45 μ l). A 0.5% aqueous solution of ammonium acetate (0.9 ml) was added, and the resulting mixture was immobilised on a Varian 500 mg C8 Mega Bond Elut® cartridge, the immobilised compound washed with 5% aqueous acetonitrile (10 ml), and finally liberated from the cartridge by elution with TFA (10 ml). The eluate was concentrated in vacuo, and the reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. (44.8 µl) was gently shaken for 10 min. at room temperature. 45 and the acetonitrile gradient was 0–100% in 60 minutes. The title compound (0.35 mg, 32%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 4012±3. The resulting molecular weight was thus 4011±3 amu (theoretical value #### Example 31 ## Synthesis of $Glu^{23,26}Arg^{34}Lys^{38}(N^{\epsilon}-(\gamma-glutamyl$ (N^α-tetradecanoyl))) GLP-1(7-38)-OH A mixture of Glu^{23,26}Arg³⁴Lys³⁸GLP-1(7-38)-OH (6.07 mg, 1.727 μ mol), EDPA (6.25 mg, 48.36 μ mol), NMP (425 μ l) and water (425 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of N^α-tetradecanoyl-Glu(ONSu)-OBu^t, prepared as described in example 29,(2.65 mg, $5.18 \mu mol$) in NMP (66.3 ul), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 45 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.85 mg, 38.0 μ mol) in 50% aqueous ethanol (285 μ l). A 0.5% aqueous solution of ammonium acetate (5.4 ml) was added, and the resulting mixture was immobilised on a Varian 500 mg C8 Mega Bond Elut® cartridge, the immobilised compound washed with 5% aqueous acetonitrile (10 ml), and finally liberated from the cartridge by elution with TFA (10 ml). The eluate was concentrated in vacuo, and the reaction 5 mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0–100% in 60 minutes. The title compound (0.78 mg, 12%) was isolated, and the product 10 was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3854±3. The resulting molecular weight was thus 3853±3 amu (theoretical value 3853 amu). #### Example 32 Synthesis of Lys $^{26, 34}$ -bis(N $^{\epsilon}$ -(ω -carboxytridecanoyl)) GLP-1(7-37)-OH A mixture of GLP-1(7-37)-OH (30 mg, 8.9 μmol), EDPA 20 $(32.3 \text{ mg}, 250 \,\mu\text{mol})$, NMP (2.1 ml) and water (2.1 ml) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution HOOC—(CH₂)₁₂— COONSu (12.7 mg, 35.8 μ mol) in NMP (318 μ l), the reaction mixture was gently shaken for 1 h and 40 min. at 25 room temperature. The reaction was quenched by the addition of a solution of glycine (3.4 mg, 44.7 μ mol) in 50% aqueous ethanol (335 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA sys- 30 tem. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (10 mg, 29%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3840±3. The resulting molecular weight was 35 thus 3839±3 amu (theoretical value 3839 amu). ## Example 33 Synthesis of Lys $^{26, 34}$ -bis(N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -tetradecanoyl))) GLP-1(7-37)-OH A mixture of GLP-1(7-37)-OH (300 mg, 79.8 μ mol), EDPA (288.9 mg, 2.24 mmol), NMP (21 ml) and water (21 ml) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of N^{α} -tetradecanoyl- 45 Glu(ONSu)-OBu^t, prepared as described in Example 29, (163 mg, 319.3 μ mol) in NMP (4.08 ml), the reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 1 h at room temperature. The reaction was quenched by the addition of a solution of glycine (131.8 mg, 1.76 mmol) in 50% aqueous ethanol (13.2 ml). A 0.5% aqueous solution of ammoniumacetate (250 ml) was added, and the resulting mixture was divided into four equal portions. Each portion was eluted onto a Varian 500 mg C8 Mega Bond Elut® cartridge, the 55 pound (6.6 g, 72%). immobilised compound washed with 0.1% aqueous TFA (3.5 ml), and finally liberated from the cartridge by elution with 70% aqueous acetonitrile (4 ml). The combined eluates were diluted with 0.1% aqueous TFA (300 ml). The precipitated compound was collected by centrifugation, washed 60 with 0.1% aqueous TFA (50 ml), and finally isolated by centrifugation. To the precipitate was added TFA (60 ml), and the resulting reaction mixture was stirred for 1 h and 30 min. at room temperature. Excess TFA was removed in vacuo, and the residue was poured into water (50 ml). The 65 precipitated compound was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and 172 a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0–100% in 60 minutes. The title compound (27.3 mg, 8%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 4036±3. The resulting molecular weight was thus 4035±3 amu (theoretical value 4035 amu). ## Example 34 Synthesis of $Arg^{26, 34}Lys^{38}(N^{\epsilon}$ -(ω -carboxypentadecanoyl)) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (30 mg, 8.9 μ mol), EDPA (32.3 mg, 250 μ mol), NMP (2.1 ml) and water (2.1 ml) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution HOOC— $(CH_2)_{14}$ —COONSu (13.7 mg, 35.8 μ mol) in NMP (343 μ l), the reaction mixture was gently shaken for 1 h at room temperature. The reaction was quenched by the addition of a solution of glycine (3.4 mg, 44.7 μ mol) in 50% aqueous ethanol (335 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (4.8 mg, 14%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3894±3. The resulting molecular weight was thus 3893±3 amu (theoretical value 3893 amu). #### Example 35 Synthesis of N^α-hexadecanoyl-Glu(ONSu)-OBu^t To a suspension of H-Glu(OH)-OBu^t (4.2 g, 20.6 mmol), DMF (500 ml) and EDPA (2.65 g, 20.6 mmol) was added drop by drop a solution of Pal-ONSu (7.3 g, 20.6 mmol) in DMF (100 ml). The reaction mixture was stirred for 64 h at room temperature and then concentrated in vacuo to a total volume of 20 ml. The residue was partitioned between 10% aqueous citric acid (300 ml) and ethyl
acetate (250 ml), and the phases were separated. The organic phase was concentrated in vacuo and the residue dissolved in DMF (50 ml). The resulting solution was added drop by drop to a 10% aqueous solution of citric acid (500 ml) kept at 0° C. The precipitated compound was collected and washed with iced water and dried in a vacuum drying oven. The dried compound was dissolved in DMF (45 ml) and HONSu (2.15 g, 18.7 mmol) was added. To the resulting mixture was added ₅₀ a solution of N,N'-dicyclohexylcarbodiimide (3.5 g, 17 mmol) in dichloromethane (67 ml). The reaction mixture was stirred for 16 h at room temperature, and the precipitated compound was filtered off. The precipitate was recrystallised from n-heptane/2-propanol to give the title com- ## Example 36 Synthesis of Lys^{26, 34}-bis(N^ε-(γ-glutamyl(N^α-hexadecanoyl))) GLP-1(7-37)-OH A mixture of GLP-1(7-37)-OH (10 mg, 2.9 μ mol), EDPA (10.8 mg, 83.4 μ mol), NMP (0.7 ml) and water (0.7 ml) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of N^{α} -hexadecanoyl-Glu(ONSu)-OBu', prepared as described in Example 33, (163 mg, 319.3 μ mol) in NMP (4.08 ml), the reaction mixture was gently shaken 1 h and 20 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (4.9 mg, 65.6 µmol) in 50% aqueous ethanol (492 µl). A 0.5% aqueous solution of ammoniumacetate (9 ml) was added, and the resulting mixture eluted onto a Varian 1 g C8 Mega Bond Elut® cartridge, the 5 immobilised compound washed with 5% aqueous acetonitrile (10 ml), and finally liberated from the cartridge by elution with TFA (10 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a 10 standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (2.4 mg, 20%) was isolated, and the product was analysed by PDMS. The m/z value for resulting molecular weight was thus 4091±3 amu (theoretical value 4091 amu). ## Example 37 Synthesis of $Arg^{34}Lys^{26}(N^{\epsilon}-(\gamma-glutamyl(N^{\alpha}$ hexadecanoyl))) GLP-1(7-37)-OH A mixture of Arg³⁴GLP-1(7-37)-OH (3.7 mg, 1.1 μ mol), EDPA (4.0 mg, 30.8 μ mol), acetonitrile (260 μ l) and water (260 µl) was gently shaken for 5 min. at room temperature. 25 To the resulting mixture was added a solution of N^α-hexadecanoyl-Glu(ONSu)-OBu^t, prepared as described in Example 35,(1.8 mg, 3.3 μ mol) in acetonitrile (44.2 μ l), and the reaction mixture was gently shaken for 1 h and 20 min. at room temperature. The reaction was quenched by the 30 addition of a solution of glycine (1.8 mg, 24.2 μ mol) in 50% aqueous ethanol (181 μ l). A 0.5% aqueous solution of ammonium-acetate (12 ml) and NMP (300 µl) were added, and the resulting mixture eluted onto a Varian 1 g C8 Mega Bond Elut® cartridge, the immobilised compound washed 35 with 5% aqueous acetonitrile (10 ml), and finally liberated from the cartridge by elution with TFA (6 ml). The eluate was allowed to stand for 2 h at room temperature and then concentrated in vacuo. The residue was purified by column chromatography using a cyanopropyl column (Zorbax 40 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.23 mg, 6 %) was isolated, and the product was analysed by PDMS. to be 3752±3. The resulting molecular weight was thus 3751±3 amu (theoretical value 3751 amu). #### Example 38 Synthesis of Arg^{26, 34}Lys³⁸(N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ tetradecanoyl))) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (14 mg, 4.0 μ mol), EDPA (14.3 mg, 110.6 μ mol), NMP (980 μ l) and water (980 μ l) was gently shaken for 5 min. at room 55 temperature. To the resulting mixture was added a solution of N-atetradecanoyl-Glu(ONSu)-OBut, prepared as described in Example 29,(12.1 mg, 23.7 μ mol) in NMP (303 μl), and the reaction mixture was gently shaken for 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (6.5 mg, 86.9 mmol) in 50% aqueous ethanol (652 µl). A 0.5% aqueous solution of ammonium-acetate (50 ml) was added, and the resulting mixture eluted onto a Varian 1 g C8 Mega Bond Elut® cartridge, the immobilised compound washed with 5% aque- 65 ous acetonitrile (15 ml), and finally liberated from the cartridge by elution with TFA (6 ml). The eluate was allowed to stand for 1 h and 45 min. at room temperature and then concentrated in vacuo. The residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (3.9 mg, 26%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3881±3. The resulting molecular weight was thus 3880±3 amu (theoretical value 3880 amu). #### Example 39 Synthesis of Arg^{26, 34}Lys³⁸(N^{ϵ}-(ω carboxypentadecanoyl)) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (14 mg, 4.0 the protonated molecular ion was found to be 4092±3. The 15 µmol), EDPA (14.3 mg, 111 µmol), NMP (980 µl) and water (980 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of HOOC- $(CH_2)_{14}$ —COONSu (4.5 mg, 11.9 μ mol) in NMP (114 μ l), the reaction mixture was gently shaken for 1 h and 45 min. at room temperature. An additional solution of HOOC- $(CH_2)_{14}$ —COONSu (4.0 mg, 10.4 μ mol) in NMP (100 μ l) was added, and the resulting mixture was gently shaken for an additional 1 h and 30 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (1.5 mg, 19.8 μ mol) in 50% aqueous ethanol (148 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (3.9 mg, 26%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3809±3. The resulting molecular weight was thus 3808±3 amu (theoretical value 3808 amu). ## Example 40 Synthesis of Arg^{26, 34}Lys³⁸(N⁶⁸-(γ -glutamyl(N^{α}hexadecanoyl))) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (14 mg, 4.0 μ mol), EDPA (14.3 mg, 110.6 μ mol), NMP (980 μ l) and water (980 µl) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of Nα-hexadecanoyl-Glu(ONSu)-OBut, prepared as described in Example 35,(6.4 mg, $11.9 \mu mol$) in NMP (160 μ l), and the reaction mixture was gently shaken for 1 h and The m/z value for the protonated molecular ion was found 45 20 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (6.5 mg, 87 mmol) in 50% aqueous ethanol (653 μ l). A 0.5% aqueous solution of ammonium-acetate (50 ml) was added, and the resulting mixture eluted onto a Varian 1 g C8 Mega Bond Elut® cartridge, the immobilised compound washed with 5% aqueous acetonitrile (10 ml), and finally liberated from the cartridge by elution with TFA (6 ml). The =eluate was allowed to stand for 1 h and 30 min. at room temperature and then concentrated in vacuo. The residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (7.2 mg, 47%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3881±3. The resulting molecular weight was thus 3880±3 amu (theoretical value 3880 amu). ## Example 41 Synthesis of Arg $^{18,23,26,30,34}Lys^{38}(N^{\varepsilon}\mbox{-hexadecanoyl})$ GLP-1(7-38)-OH A mixture of Arg^{18,23,26,30,34}Lys³⁸GLP-1(7-38)-OH (1.0 mg, 0.27 μ mol), EDPA (0.34 mg, 2.7 μ mol) and DMSO (600 176 Example 44 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of Pal-ONSu (0.28 mg, 0.8 μ mol) in NMP (7 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 6 h at room temperature. 5 The reaction was quenched by the addition of a solution of glycine (1.6 mg, 21.7 μ mol) in 50% aqueous ethanol (163 μl). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was 10 heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (0.17 mg, 16%) was isolated, and the product was analysed by MALDI-MS. The m/z value for the protonated molecular ion was found to be 3961±3. The resulting molecular weight was thus 3960±3 15 amu (theoretical value 3960 amu). ## Synthesis of N^α-octadecanoyl-Glu(ONSu)-OBu^t To a suspension of H-Glu(OH)-OBu^t (2.82 g, 13.9 mmol), DMF (370 ml) and EDPA (1.79 g, 13.9 mmol) was added drop by drop a solution of Ste-ONSu (5.3 g, 13.9 mmol) in DMF (60 ml). Dichloromethane (35 ml) was added, and the reaction mixture was stirred for 24 h at room temperature and then concentrated in vacuo. The residue was partitioned between 10% aqueous citric acid (330 ml) and ethyl acetate (200 ml), and the phases were separated. The organic phase was concentrated in vacuo and the residue dissolved in DMF (60 ml). The resulting solution was added drop by drop to a 10% aqueous solution of citric acid (400 ml) kept at 0° C. The precipitated compound was collected and washed with iced
water and dried in a vacuum drying oven. The dried compound was dissolved in DMF (40 ml) and HONSu (1.63 g, 14.2 mmol) was added. To the resulting mixture was added a solution of DCC (2.66 g, 12.9 mmol) in dichloromethane (51 ml). The reaction mixture was stirred for 64 h at room temperature, and the precipitated compound was filtered off. The precipitate was recrystallised from n-heptane/2-propanol to give the title compound (4.96 g, 68%). ## Example 42 Synthesis of Arg $^{26,~34}$ Lys 38 (N $^{\varepsilon}$ -(ω -carboxytridecanoyl)) GLP-1(7-38)-OH A mixture of Arg^{26, 34}Lys³⁸GLP-1(7-38)-OH (14 mg, 4.0 μ mol), EDPA (14.3 mg, 111 μ mol), NMP (980 μ l) and water (980 μ l) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of HOOC— $(CH_2)_{12}$ —COONSu (4.2 mg, 11.9 μ mol) in NMP (105 μ l), the reaction mixture was gently shaken for 1 h and 50 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (6.5 mg, 87 μ mol) in 50% aqueous ethanol (652 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (5.8 mg, 39%) was isolated, and the product was analysed by MALDI-MS. The m/z value for the protonated molecular ion was found to be 3780±3. The resulting molecular weight was thus 3779±3 amu (theoretical value 3781 amu). ## Example 45 Synthesis of Arg^{26, 34}Lys^{38}(N^{\epsilon}-(\gamma\text{-glutamyl}(N^{\alpha}-\text{octadecanoyl}))) GLP-1(7-38)-OH A mixture of Arg^{26,34}GLP-1(7-38)-OH (28 mg, 7.9 μ mol), EDPA (28.6 mg, 221.5 µmol), NMP (1.96 ml) and water (1.96 ml) was gently shaken for 5 min. at room temperature. To the resulting mixture was added a solution of 35 N^{α}-octadecanoyl-Glu(ONSu)-OBu^t (17.93 g, 31.6 μ mol), prepared as described in Example 44, in NMP (448 µl), and the reaction mixture was gently shaken for 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (13.1 mg, 174 µmol) in 50% aqueous ethanol (1.3 ml). A 0.5% aqueous solution of ammoniumacetate (120 ml) was added, and the resulting mixture was divided into two equal portions. Each portion was eluted onto a Varian 5 g C8 Mega Bond Elut® cartridge, the immobilised compound washed with 5% aqueous acetonitrile (25 ml), and finally liberated from the cartridge by elution TFA (25 ml). The combined eluates were allowed to stand for 1 h and 25 min. at room temperature and then concentrated in vacuo. The residue was purified by column chromatography using a cyanopropyl column (Zorbax column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (3.6 mg, 11%) was isolated, and the product was analysed by MALDI-MS. The m/z value for the protonated molecular ion was found to be 3940±3. The resulting molecular weight was thus 3939±3 amu (theoretical value 3937 amu). ## Example 43 Synthesis of Arg³⁴Lys²⁶(N^{ϵ}-(γ -glutamyl(N $^{\alpha}$ tetradecanoyl))) GLP-1(7-37)-OH A mixture of Arg³⁴GLP-1(7-37)-OH (15 mg, 4.4 μ mol), EDPA (16 mg, 124 μ mol), NMP (2 ml) and water (4.8 ml) was gently shaken for 5 min. at room temperature. To the 45 resulting mixture was added a solution of Nα-tetradecanoyl-Glu(ONSu)-OBu^t, prepared as described in Example 29, (12.1 mg, 23.7 μ mol) in NMP (303 μ l), and the reaction mixture was gently shaken for 2 h at room temperature. The reaction was quenched by the addition of a solution of 50 300SB-CN) and a standard acetonitrile/TFA system. The glycine (6.5 mg, 86.9 μ mol) in 50% aqueous ethanol (652 μl). A 0.5% aqueous solution of ammonium-acetate (50 ml) was added, and the resulting mixture eluted onto a Varian 1 g C8 Mega Bond Elut® cartridge, the immobilised compound washed with 5% aqueous acetonitrile (15 ml), and 55 finally liberated from the cartridge by elution with TFA (6 ml). The eluate was allowed to stand for 1 h and 45 min. at room temperature and then concentrated in vacuo. The residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard 60 acetonitrile/TFA system. The column was heated to 65° C. and the acetonitrile gradient was 0-100% in 60 minutes. The title compound (3.9 mg, 26%) was isolated, and the product was analysed by MALDI-MS. The m/z value for the protonated molecular ion was found to be 3723±3. The resulting molecular weight was thus 3722±3 amu (theoretical value 3723 amu). ## **BIOLOGICAL FINDINGS** Protraction of GLP-1 Derivatives After s.c. Administration The protraction of a number GLP-1 derivatives of the invention was determined by monitoring the concentration thereof in plasma after sc administration to healthy pigs, using the method described below. For comparison also the concentration in plasma of GLP-1(7-37) after sc. administration was followed. The results are given in Table 1. The protraction of other GLP-1 derivatives of the invention can be determined in the same way. Pigs (50% Duroc, 25% Yorkshire, 25% Danish Landrace, app 40 kg) were fasted from the beginning of the experiment. To each pig 0.5 nmol of test compound per kg body weight was administered in a 50 µM isotonic solution (5 mM phosphate, pH 7.4, 0.02% Tween®-20(Merck), 45 mg/ml mannitol (pyrogen free, Novo Nordisk). Blood samples were drawn from a catheter in vena jugularis at the hours indicated in Table 1.5 ml of the blood samples were poured into 178 activated carbon (Merck) in 40 mM NaH₂PO₄/Na₂HPO₄, 0.6 mM thiomersal, pH 7.5, was added to each tube. Before use, the suspension was mixed and allowed to stand for 2 h at 4° C. All samples were incubated for 1 h at 4° C. and then centrifuged at 3400*g for 25 min. Immediately after the centrifugation, the supernatant was decanted and counted in a γ-counter. The concentration in the samples was calculated from individual standard curves. The following plasma concentrations were found, calculated as % of the maximum concentration for the individual compounds (n=2): TABLE 1 | Test _ | Hours after sc. Administration | | | | | | | | | |-------------|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----| | compound*) | 0.75 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 24 | | GLP-1(7-37) | | 100 | 9 | 1 | | | | | | | Example 25 | 73 | 92 | 100 | 98 | 82 | 24 | 16 | 16 | 16 | | Example 17 | 76 | 71 | 91 | 100 | 84 | 68 | 30 | | 9 | | Example 43 | | 39 | 71 | 93 | 100 | 91 | 59 | 50 | 17 | | Example 37 | | 26 | 38 | 97 | 100 | 71 | 81 | 80 | 45 | | Example 11 | 24 | 47 | 59 | 71 | 100 | 94 | 100 | | 94 | | Example 12 | 36 | 54 | 65 | 94 | 80 | 100 | 85 | | 93 | | Example 32 | 55 | 53 | 90 | 83 | 88 | 70 | 98 | 100 | 100 | | Example 14 | 18 | 25 | 32 | 47 | 98 | 83 | 97 | | 100 | | Example 13 | 15 | 22 | 38 | 59 | 97 | 85 | 100 | | 76 | | Example 38 | 60 | 53 | 100 | 66 | 48 | 39 | 25 | 29 | 0 | | Example 39 | 38 | 100 | 70 | 47 | 33 | 33 | 18 | 27 | 14 | | Example 40 | 47 | 19 | 50 | 100 | 51 | 56 | 34 | 14 | 0 | | Example 34 | 19 | 32 | 44 | 84 | 59 | 66 | 83 | 84 | 100 | ^{*)}The test compounds are the title compounds of the examples with the numbers given chilled glasses containing 175 μ l of the following solution: 0.18 M EDTA, 1500 KIE/ml aprotinin (Novo Nordisk) and 3% bacitracin (Sigma), pH 7.4. Within 30 min, the samples kept at 4° C. The supernatant was pipetted into different glasses and kept at minus 20 ° C. until use. The plasma concentrations of the peptides were determined by RIA using a monoclonal antibody specific for the $_{40}$ N-terminal region of GLP-1(7-37). The cross reactivities were less than 1% with GLP-1(1-37) and GLP-1(8-36) amide and <0.1% with GLP-1(9-37), GLP-1(10-36)amide and GLP-1(11-36) amide. The entire procedure was carried out at 4° C. The assay was carried out as follows: 100 µl plasma was mixed with 271 µl 96% ethanol, mixed using a vortex mixer and centrifuged at 2600*g for 30 min. The supernatant was decanted into Minisorp tubes and evaporated completely 50 6275) by homogenisation in buffer (10 mmol/l Tris-HCl and (Savant Speedvac AS290). The evaporation residue was reconstituted in the assay buffer consisting of 80 mM NaH₂PO₄/Na₂HPO₄, 0.1% HSA (Orpha 20/21, Behring), 10 mM EDTA, 0.6 mM thiomersal (Sigma), pH 7.5. Samples were reconstituted in volumes suitable for their expected 55 concentrations, and were allowed to reconstitute for 30 min. To 300 µl sample, 100 µl antibody solution in dilution buffer containing 40 mM NaH₂PO₄/Na₂HPO₄, 0.1% HSA, 0.6 mM thiomersal, pH 7.5, was added. A non-specific sample was prepared by mixing 300 µl buffer with 100 µl dilution buffer. 60 Individual standards were prepared from freeze dried stocks, dissolved in 300 µl assay buffer. All samples were preincubated in Minisorp tubes with antibody as described above for 72 h. 200 μ l tracer in dilution buffer containing 6-7000 CPM was added, samples were mixed and incubated 65 for 48 h. 1.5 ml of a suspension of 200 ml per liter of heparin-stabilised bovine plasma and 18 g per liter of Table 1 shows that the GLP-1 derivatives of the invention have a protracted profile of action relative to GLP-1(7-37) and are much more persistent in plasma than GLP-1(7-37). were centrifuged for 10 min at 5-6000*g. Temperature was 35 It also appears from Table 1 that the time at which the peak concentration in plasma is achieved varies within wide limits, depending on the particular GLP-1 derivative selected. > Stimulation of cAMP Formation in a Cell Line Expressing the Cloned Human GLP-1 Receptor In order to demonstrate efficacy of the GLP-1 derivatives, their ability to stimulate formation of cAMP in a cell line expressing the cloned human GLP-1 receptor was tested. An 45 EC₅₀ was calculated from the dose-response curve. Baby hamster kidney (BHK) cells expressing the
human pancreatic GLP-1 receptor were used (Knudsen and Pridal, 1996, Eur. J. Pharm. 318, 429-435). Plasma membranes were prepared (Adelhorst et al, 1994, J. Biol. Chem. 269, 30 mmol/l NaCl pH 7.4, containing, in addition, 1 mmol/l dithiothreitol, 5 mg/l leupeptin (Sigma, St. Louis, Mo., USA), 5 mg/l pepstatin (Sigma, St. Louis, Mo., USA), 100 mg/l bacitracin (Sigma, St. Louis, Mo., USA), and 16 mg/l aprotinin (Novo Nordisk A/S, Bagsvaerd, Denmark)). The homogenate was centrifuged on top of a layer of 41 w/v % sucrose. The white band between the two layers was diluted in buffer and centrifuged. Plasma membranes were stored at -80° C. until used. The assay was carried out in 96-well microtiter plates in a total volume of 140 μ l. The buffer used was 50 mmol/l Tris-HCl, pH 7.4 with the addition of 1 mmol/l EGTA, 1.5 mmol/l MgSO₄, 1.7 mmol/l ATP, 20 mM GTP, 2 mmol/l 3-isobutyl-1-methylxanthine, 0.01% Tween-20 and 0.1% human serum albumin (Reinst, Behringwerke AG, Marburg, Germany). Compounds to be tested for agonist activity were dissolved and diluted in buffer, added to the membrane preparation and the mixture was incubated for 2 h at 37° C. The reaction was stopped by the addition of 25 μ l of 0.05 mol/l HCl. Samples were diluted 10 fold before analysis for cAMP by a scintillation proximity assay (RPA 538, Amersham, UK). The following results were obtained: | Test Compound*) | EC ₅₀ , pM | Test Compound*) | EC ₅₀ , pM | |-----------------|-----------------------|-----------------|-----------------------| | GLP-1(7-37) | 61 | Example 31 | 96 | | Example 45 | 120 | Example 30 | 41 | | Example 43 | 24 | Example 26 | 8.8 | | Example 40 | 55 | Example 25 | 99 | | Example 39 | 5.1 | Example 19 | 79 | | Example 38 | 54 | Example 16 | 3.5 | | Example 37 | 60 | • | | ^{*)}The test compounds are the title compounds of the examples with the numbers given. #### Example 46 Synthesis of $Arg^{26,34}$, $Lys^{36}(N^{\epsilon}-(\gamma-glutamyl(N^{\alpha}-hexadecanoyl)))$ GLP-1(7-36)-OH To a mixture of Arg^{26,34},Lys³⁶GLP-1(7-36)-OH (12.2 mg, $3.67 \, \mu \text{mol}$), EDPA ($13.3 \, \text{mg}$, $103 \, \mu \text{mol}$), NMP ($1.71 \, \text{ml}$) and $25 \, \mu \text{mol}$ water (855 µl) was added a solution of Pal-Glu(ONSu)-OBu^t (5.94 mg, 11 μ mol), prepared as described in PCT application no. PCT/DK97/00340, in NMP (148 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 90 min. at room 30 temperature. The reaction was quenched by the addition of a solution of glycine (6 mg, 81 μ mol) in water (0.6 ml). A 0.5% aqueous solution of ammonium-acetate (38 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 35 5% aqueous acetonitril (20 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The 40 column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (3.1 mg, 23%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3695±3. The resulting molecular weight was thus 3694±3 45 amu (theoretical value 3694 amu). #### Example 47 Synthesis of Arg 26,34 ,Lys 36 (N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -octadecanoyl))) GLP-1(7-36)-OH To a mixture of Arg^{26,34},Lys³⁶GLP-1(7-36)-OH (12.2 mg, $3.7 \mu \text{mol}$), EDPA (13.3 mg, 103 μmol), NMP (1.71 ml) and water (855 μ l) was added a solution of Ste-Glu(ONSu)-OBu^t (6.25 mg, 11 μ mol), prepared as described in PCT applica- 55 tion no. PCT/DK97/00340, in NMP (1 ml). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (6 mg, 81 μ mol) in water (0.6 ml). A 60 0.5% aqueous solution of ammonium acetate (54 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (20 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was 65 concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0–100% in 60 minutes. The title compound (3.7 mg, 27%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3723±3. The resulting molecular weight was thus 3722±3 amu (theoretical value 3722 amu). #### Example 48 Synthesis of Lithocholic Acid 2,5-dioxopyrrolidin-1-yl Ester To a solution of lithocholic acid (5.44 g, 14.3 mmol) in a mixture of anhydrous THF (120 ml) and anhydrous acetonitril (30 ml) was added N-hydroxysuccinimide (1.78 g, 15 mmol). The mixture was cooled to 10° C., a solution of DCC (3.44 g, 16.7 mmol) in anhydrous THF (30 ml) was added drop wise, and the resulting reaction mixture stirred for 16 h at room temperature. The reaction mixture was filtered and partitioned between dichloromethane (450 ml) and 10% aqueous Na₂CO₃(150 ml). The phases were separated, and the organic phase washed with 10% aqueous Na₂CO₃(150 ml), water (2×150 ml), and dried (MgSO₄). The solvent was concentrated in vacuo. The residue was crystallised from a mixture of dichloromethane (30 ml) and n-heptane (30 ml). The precipitate was dried in a vacuum drying oven for 36 h to give the title compound (3.46 g, 51%). #### Example 49 #### Synthesis of Lit-Glu(ONSu)-OBu^t A suspension of H-Glu(OH)-OBu^t (1.28 g, 6.33 mmol), DMF (88 ml) and EDPA (0.82 g, 6.33 mmol) and lithocholic acid 2,5-dioxopyrrolidin-1-yl ester, prepared as described in example 48, was stirred for 16 h at room temperature. The reaction mixture was concentrated in vacuo and the residue dissolved in ethyl acetate (40 ml). The resulting solution was washed with 5% aqueous citric acid (2×25 ml), brine (10 ml), and filtered). The solvent was concentrated in vacuo and the residue dissolved in DMF (12 ml). The resulting solution was added drop wise to a 10% aqueous solution of citric acid whereby the product precipitates. The precipitate was collected and washed with iced water, and dried in vacuo. The crude product was recrystallised from a mixture of n-heptane (40 ml) and 2-propanol (17 ml). The precipitate was dried in a vacuum drying oven for 4 h to give the free acid intermediate. To a solution of the free acid intermediate in DMF (18 ml) was added hydroxysuccinimide (0.45 g, 3.91 mmol), followed by a solution of DCC (0.73 g, 3.56 mmol) in dichloromethane (18 ml). The resulting mixture was stirred at ambient temperature for 18 h, and then filtered. The filtrate was concentrated in vacuo to a solid, and the residue was dissolved in dichloromethane (25 ml), and the filtration repeated, the solvent removed in vacuo to give a foam. The residue was dissolved in refluxing n-heptane (35 ml), and the product crystallised b addition of 2-propanol. The precipitate was collected, washed with cold n-heptane, dried at 35° C. in vacuo to give the title compound (1.34 g, 57%). #### Example 50 Synthesis of Arg^{34} , $Lys^{26}(N^{\epsilon}-(\gamma-glutamyl(N^{\alpha}-lithochoyl)))$ GLP-1(7-37)-OH To a mixture of Arg^{34} , $Lys^{26}GLP$ -1(7-37)-OH (41.1 mg, 12.2 μ mol), EDPA (44 mg, 340 μ mol), NMP (5.76 ml) and water (2.88 ml) was added a solution of Lit-Glu(ONSu)- OBu^{t} (24 mg, 37 μ mol), prepared as described in example 49, in NMP (600 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 75 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (20 mg, 268 μ mol) in water (2 ml). A 0.5% aqueous solution of ammonium acetate (128 ml) was added, and the resulting mixture divided into two equal portions, and each portion eluted onto a Varian 5 g C8 Mega Bond Elut®, the 10 immobilised compound washed with 5% aqueous acetonitril (2×25 ml), and finally liberated from the cartridge by elution with TFA (2×25 ml). The combined eluates were concentrated in vacuo, and the residue purified by column chromato-graphy using a cyanopropyl column (Zorbax 15 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100\% in 60 minutes. The title compound (5 mg, 11\%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 20 3872±3. The resulting molecular weight was thus 3871±3 amu (theoretical value 3871 amu). ## Example 51 Synthesis of Arg 26 ,Lys 34 (N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-37)-OH To a mixture of Arg²⁶,Lys³⁴GLP-1(7-37)-OH (18 mg, 5.3 μ mol), EDPA (19.3 mg, 149 μ mol), NMP (2.52 ml) and water (1.26 ml) was added a solution of Pal-Glu(ONSu)- 30 OBu^t (8.6 mg, 16 μ mol) in NMP (215 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (8.8 mg, 117 μ mol) in water (0.88 ml). 35 A 0.5% aqueous solution of ammonium acetate (50 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was 40 concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The
column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (6 mg, 30%) was 45 isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3752±3. The resulting molecular weight was thus 3751±3 amu (theoretical value 3751 amu). ## Example 52 Synthesis of Desamino-His⁷,Arg²⁶,Lys³⁴(N^{ϵ}-(γ -glutamyl(N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-37)-OH To a mixture of desamino-His⁷,Arg²⁶,Lys³⁴GLP-1(7-37)- 55 OH (14.3 mg, 4.2 µmol), EDPA (15.3 mg, 119 µmol), NMP (2 ml) and water (1 ml) was added a solution of Pal-Glu (ONSu)-OBu⁷ (6.84 mg, 12.7 µmol) in NMP (171 µl). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 50 60 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (7 mg, 99 µmol) in water (700 µl). A 0.5% aqueous solution of ammonium acetate (42 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 182 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0–100% in 60 minutes. The title compound (5.6 mg, 35%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3738±3. The resulting molecular weight was thus 3737±3 amu (theoretical value 3737 amu). ## Example 53 Synthesis of Gly⁸,Arg^{26,34},Lys³⁸(N⁶⁸-(γ -glutamyl (N^{α}-hexadecanoyl))) GLP-1(7-38)-OH To a mixture of Gly⁸,Arg^{26,34},Lys³⁸GLP-1(7-38)-OH $(11.8 \text{ mg}, 3.4 \mu\text{mol})$, EDPA $(12.1 \text{ mg}, 94 \mu\text{mol})$, NMP $(1.65 \text{ mg}, 3.4 \mu\text{mol})$ ml) and water (0.83 ml) was added a solution of Pal-Glu (ONSu)-OBu^t (5.4 mg, 10 μ mol) in NMP (135 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 75 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (5.5 mg, 73.7 µmol) in water (553 μ l). A 0.5% aqueous solution of ammonium acetate (36 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (5 mg, 38%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3895±3. The resulting molecular weight was thus 3894±3 amu (theoretical value 3894 amu). ## Example 54 Synthesis of Gly 8 ,Glu 37 ,Arg 26,34 ,Lys 38 (N $^\epsilon$ -(γ -glutamyl(N $^\alpha$ -hexadecanoyl))) GLP-1(7-38)-OH To a mixture of Gly⁸,Glu³⁷,Arg^{26,34},Lys³⁸GLP-1(7-38)-OH (9 mg, 2.48 μmol), EDPA (9 mg, 69.4 μmol), NMP (1.25 ml) and water (0.63 ml) was added a solution of Pal-Glu (ONSu)-OBu^t (4 mg, 7.4 μ mol) in NMP (100 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 105 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (4.1 mg, 54.6 µmol) in water (410 µl). A 0.5% aqueous solution of ammonium acetate (27 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (15 ml), and finally liberated from the cartridge by elution with TFA (15 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (2.9 mg, 29%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3967±3. The resulting molecular weight was thus 3966±3 amu (theoretical value 3967 amu). ## Example 55 Synthesis of Gly 8 ,Glu 37 ,Arg 26,34 ,Lys 38 (N $^\epsilon$ -(γ -glutamyl(N $^\alpha$ -octadecanoyl))) GLP-1(7-38)-OH To a mixture of Gly⁸,Glu³⁷,Arg^{26,34},Lys³⁸GLP-1(7-38)-OH (9 mg, 2.5μ mol), EDPA (9 mg, 69.4μ mol), NMP (1.25μ mol) ml) and water (0.63 ml) was added a solution of Ste-Glu (ONSu)-OBu^t (4.2 mg, 7.4 μ mol in NMP (105 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 105 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (4.1 mg, 54.6 µmol) in water (409 μl). A 0.5% aqueous solution of ammonium acetate (27 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (15 ml), and 10 finally liberated from the cartridge by elution with TFA (15 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril 15 (theoretical value 3625 amu). gradient was 0-100% in 60 minutes. The title compound (3.2 mg, 32%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3995±3. The resulting molecular weight was #### Example 56 thus 3994±3 amu (theoretical value 3995 amu). #### Synthesis of Cap-Glu(ONSu)-OBu^t To a solution of octanoic acid (5 g, 34.7 mmol) and 25 N-hydroxysuccinimide (4 g, 34.7 mmol) in anhydrous acetonitril (10 ml) was added a solution of DCC (7.15 g, 34.7 mmol) in anhydrous dichloromethane (15 ml), and the resulting reaction mixture stirred for 16 h at room temperature. The precipitated solid was filtered off and recrystallised 30 from a mixture of n-heptane (40 ml) and 2-propanol (2 ml). The precipitate was dried in a vacuum drying oven for 16 h to give the intermediate Cap-ONSu. A suspension of the crude ester intermediate (3.9 g, 16.2 mmol), (L)-H-Glu (OH)-OBu^t (3.28 g, 16.2 mmol), DMF (268 ml) and EDPA 35 (2.1 g, 16.2 mmol) was stirred for 64 h at room temperature. The reaction mixture was concentrated in vacuo and the residue dissolved in ethyl acetate (50 ml). The resulting solution was washed with 5% aqueous citric acid (2×25 ml). The solvent was concentrated in vacuo and the residue 40 dissolved in DMF (36 ml). The resulting solution was added drop wise to a 10% aqueous solution of citric acid (357 ml) and extracted with ethyl acetate (200 ml), and dried (MgSO₄). The solvent was concentrated in vacuo to give the crude glutamic acid intermediate. To a mixture of the crude 45 glutamic acid intermediate, N-hydroxysuccinimide (1.85 g, 16.1 mmol) and DMF (25 ml) was added a solution of DCC (3.32 g, 16.1 mmol) in dichloromethane (15 ml). The resulting mixture was stirred at ambient temperature for 20 centrated in vacuo. The residue was purified on a silica gel column (40–63 μ), eluted with a mixture of dichloromethane and acetonitril (1:1) to give the title compound (0.63 g, 6% over all). ## Example 57 Synthesis of Desamino-His⁷,Arg²⁶,Lys³⁴(N^ε-(γglutamyl(Nα-octanoyl))) GLP-1(7-37)-OH To a mixture of desamino-His⁷,Arg²⁶,Lys³⁴GLP-1(7-37)-OH (14.3 mg, 4.2 μ mol), EDPA (15.3 mg, 119 μ mol), NMP (2 ml) and water (1 ml) was added a solution of Cap-Glu (ONSu)-OBu^t (6.8 mg, 12.7 μ mol), prepared as described in example 56, in NMP (135 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then 65 allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of ## 184 glycine (7 mg, 93 μ mol) in water (698 μ l). A 0.5% aqueous solution of ammonium acetate (42 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (4.1 mg, 27%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3626±3. The resulting molecular weight was thus 3625±3 amu #### Example 58 Synthesis of Glu³⁷,Arg^{26,34},Lys³⁸(N $^{\epsilon}$ -(γ -glutamyl (N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-38)-OH To a mixture of Glu³⁷,Arg^{26,34},Lys³⁸GLP-1(7-38)-OH $(17.6 \text{ mg}, 4.9 \,\mu\text{mol})$, EDPA $(17.6 \text{ mg}, 136 \,\mu\text{mol})$, NMP $(1.23 \,\mu\text{mol})$ ml) and water (2.46 ml) was added a solution of Pal-Glu (ONSu)OBu^t (7.9 mg, 14.6 μ mol) in NMP (197 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (8 mg, 107 μ mol) in water (804 μ l). A 0.5% agueous solution of ammonium acetate (49 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was
concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (5.1 mg, 26%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3981±3. The resulting molecular weight was thus 3980±3 amu (theoretical value 3981 amu). #### Example 59 Synthesis of Arg³⁴,Lys²⁶(N^{ϵ}-(γ -glutamyl(N $^{\alpha}$ octadecanoyl))) GLP-1(7-37)-OH To a mixture of Arg34GLP-1(7-37)-OH (41.1 mg, 12.2 μ mol), EDPA (44 mg, 341 μ mol), NMP (5.76 ml) and water h. The reaction mixture was filtered and the solvent con- 50 (2.88 ml) was added a solution of Ste-Glu(ONSu)-OBu^t (20.7 mg, 36.5 μ mol in NMP (517 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of 55 glycine (20.1 mg, 268 μ mol) in water (2.01 ml). A 0.5% aqueous solution of ammonium-acetate (120 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (15.4 mg, 34%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3781±3. The resulting molecular weight was thus 3780±3 amu (theoretical value 3779 amu). #### Example 60 Synthesis of Arg³⁴,Lys²⁶(N^e-decanoyl) GLP-1(7-37) To a mixture of Arg³⁴GLP-1(7-37)-OH (20 mg, 5.9 μ mol), EDPA (21.4 mg, 165 μ mol), NMP (2.8 ml) and water (1.4 ml) was added a solution of Cac-ONSu (4.8 mg, 17.7 umol) in NMP (119 ul). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (9.8 mg, 130 μ mol) in water (98 μ l). The resulting mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (7.4 mg, 35%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3539.6±3. The resulting molecular weight was thus 3538.6±3 amu (theoretical value 3538 amu). ## Example 61 Synthesis of Arg 34 ,Lys 26 (N $^{\epsilon}$ -(hexadecanoyl)) GLP- 1(7-37)-OH To a mixture of Arg 34 GLP-1(7-37)-OH (41.1 mg, 12.2 25 μ mol), EDPA (44 mg, 340 μ mol), NMP (2.88 ml) and water (2.88 ml) was added a solution of Pal-ONSu (12.9 mg, 36.5 μ mol) in NMP (3.3 ml). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 110 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (20.1 mg, 268 μ mol) in water (201 μ l). The solvent was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (15 mg, 34%) was isolated, and the product was analysed by PDMS. ## Example 62 Synthesis of Arg 26,34 ,Lys 27 (N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-37)-OH To a mixture of Arg^{26,34}, Lys²⁷GLP-1(7-37)-OH (11.6 mg, 3.4 μmol), EDPA (12.3 mg, 94.9 μmol), NMP (1.6 ml) and water (0.8 ml) was added a solution of Pal-Glu(ONSu)- 45 OBu^t (5.5 mg, 10.2 μ mol) in NMP (137 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 90 min. at room temperature. The reaction was guenched by the addition of a solution of glycine (5.6 mg, 74.6 μ mol) in water (560 μ l). ₅₀ A 0.5% aqueous solution of ammonium acetate (34 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (15 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The solvent was 55 concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (2.1 mg, 16%) $_{60}$ was isolated, and the product was analysed by PDMS. ## Example 63 Synthesis of Arg 26,34 ,Lys 23 (N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-37)-OH To a mixture of Arg^{26,34,} Lys²³GLP-1(7-37)-OH (11.6 mg, 3.4 μmol), EDPA (12.3 mg, 94.9 μmol), NMP (1.6 ml) 186 and water (0.8 ml) was added a solution of Pal-Glu(ONSu)-OBu^t (5.5 mg, 10.2 μ mol) in NMP (137 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (5.6 mg, 74.6 μ mol) in water (560 μ l). A 0.5% aqueous solution of ammonium acetate (34 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (15 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The solvent was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (3.1 mg, 24%) was isolated, and the product was analysed by PDMS. #### Example 64 Synthesis of Arg 26,34 ,Lys 18 (N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-37)-OH To a mixture of Arg^{26,34},Lys¹⁸GLP-1(7-37)-OH (11.7 mg, 3.4 µmol), EDPA (12.2 mg, 94.6 µmol), NMP (1.6 ml) and water (0.8 ml) was added a solution of Pal-Glu(ONSu)-OBu^t $(5.5 \text{ mg}, 10.2 \,\mu\text{mol})$ in NMP $(137 \,\mu\text{l})$. The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (5.6 mg, 74.6 µmol) in water (560 µl). A 0.5% aqueous solution of ammonium acetate (34 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the (Zorbax 300SB-CN) and a standard acetonitril/TFA system. 35 cartridge by elution with TFA (25 ml). The solvent was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (1.9 mg, 15%) was isolated, and the product was analysed by PDMS. ## Example 65 Synthesis of $Arg^{34}\text{,Lys}^{26}(N^\varepsilon\text{-(octanoyl)})$ GLP-1(7-37)-OH To a mixture of Arg³⁴GLP-1(7-37)-OH (41.1 mg, 12.2 μ mol), EDPA (44 mg, 341 μ mol), NMP (5.76 ml) and water (2.88 ml) was added a solution of Cap-ONSu (8.8 mg, 36.5 μ mol), prepared as described in example 56, in NMP (106 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 115 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (20 mg, 268 μ mol) in water (200 μ l). The solvent was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (18.8 mg, 44%) was isolated, and the product was analysed by PDMS. ## Example 66 Synthesis of Arg³⁴,Lys²⁶(N⁶⁸-(dodecanoyl)) GLP-1 (7-37)-OH To a mixture of Arg³⁴GLP-1(7-37)-OH (41.1 mg, 12.2 μ mol), EDPA (44 mg, 341 μ mol), NMP (5.76 ml) and water (2.88 ml) was added a solution of Lau-ONSu (8.8 mg, 36.5 umol), prepared in a similar manner as described for Cap-ONSu in example 56), in NMP (271 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 100 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (20.1 mg, 268 μ mol) in water (200 μ l). The solvent was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA 10 system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (18 mg, 42%) was isolated, and the product was analysed by PDMS. #### Example 67 ## Synthesis of Pal-GABA-ONSu A mixture of Pal-ONSu (3 g, 8.48 mmol), γ-aminobutyric acid (0.87 g, 8.48 mmol) in DMF (200 ml) was stirred at room temperature for 60 h. The reaction mixture was filtered and the filtrate was added drop wise to 10% aqueous citric acid (500 ml). The precipitated N-acylated intermediate was collected and dried in vacuo. To a suspension of the dried intermediate in DMF (35 ml) was added a solution of DCC (1.45 g, 7.0 mmol) in dichloromethane (20 ml). The resulting mixture was stirred at room temperature for 20 h, and then filtered. The
solvent was removed in vacuo to give a solid residue. The residue was recrystallised from a mixture of n-heptane (50 ml) and 2-propanol (2.5 ml) to give the title compound (2.5 g, 75%). ## Example 68 Synthesis of Arg^{34} , $Lys^{26}(N^{\epsilon}-(\gamma-aminobutyroyl(N^{\gamma}$ hexadecanovl))) GLP-1(7-37)-OH To a mixture of Arg³⁴, Lys²⁶GLP-1(7-37)-OH (41.1 mg, $12.2 \mu \text{mol}$), EDPA (44 mg, 341 μmol), NMP (5.76 ml) and water (2.88 ml) was added a solution of Pal-GABA-ONSu 40 (16 mg, 36.5 μ mol), prepared as described in example 67) in NMP (400 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 100 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (20 mg, 45 ture. The reaction was quenched by the addition of a solution 268 μ mol) in water (200 μ l). The solvent was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 50 minutes. The title compound (15.8 mg, 35%) was isolated, and the product was analysed by PDMS. #### Example 69 Synthesis of N^{α} -hexadecanoyl-D-glutamic acid α -tbutyl ester-y-2,5-dioxopyrrolidin-1-yl ester A mixture of Pal-ONSu (6.64 g, 18.8 mmol), D-glutamic acid α-tert-butyl ester (4.5 g, 18.8 mmol) and EDPA (4.85 g, 37.5 mmol) in DMF (538 ml) was stirred at room tempera- 60 ture for 60 h. The solvent was removed and the residue dissolved in ethyl acetate (175 ml). The resulting solution was extracted with 10% aqueous citric acid (2×125 ml), and the organic phase concentrated in vacuo. The residue was dissolved in DMF (60 ml), and the resulting mixture slowly 65 added to 10% aqueous citric acid (500 ml). The precipitated compound was collected and dried in vacuo, to give the 188 crude N-acylated glutamic acid intermediate. The crude intermediate was dissolved in DMF (35 ml), and a solution of DCC (3.5 g, 17 mmol) in dichloromethane (70 ml) was added. The resulting mixture was stirred at room temperature for 20 h, and then filtered. The filtrate was concentrated in vacuo, and the solid residue recrystallised from a mixture of n-heptane (75 ml) and 2-propanol (5 ml), to give the title compound (5.2 g, 50%). ## Example 70 Synthesis of Arg³⁴,Lys²⁶(N $^{\epsilon}$ -(γ -D-glutamyl(N $^{\alpha}$ hexadecanoyl))) GLP-1(7-37)-OH To a mixture of Arg³⁴, Lys²⁶GLP-1(7-37)-OH (41.1 mg, 12.2 μ mol), EDPA (44 mg, 341 μ mol), NMP (5.76 ml) and ¹⁵ water (2.88 ml) was added a solution of N^{α} -hexadecanoyl-D-glutamic acid α-t-butyl ester-γ-2,5-dioxopyrrolidin-1-yl ester (19.7 mg, 36.5 μ mol) in NMP (491 μ l). The reaction mixture was gently shaken for 5 min. at room temperature, and then allowed to stand for an additional 95 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (20 mg, 268 µmol) in water (2 ml). A 0.5\% aqueous solution of ammonium acetate (120 ml) was added, and the resulting mixture divided into to equal portions, and each portion eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The combined eluates were concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100\% in 60 minutes. The title compound (10.5 mg, 23%) was isolated, and the product was analysed by PDMS. ## Example 71 Synthesis of Lys³⁴(N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ tetradecanoyl))) GLP-1(7-37) To a mixture of GLP-1(7-37)-OH (33.6 mg, 8.9 μ mol), EDPA (32.4 mg, 250 μ mol), NMP (2.1 ml) and water (2.1 ml) was added a solution of Myr-Glu(ONSu)-OBu^t (9.1 mg, 17.9 μ mol), prepared as described above, in NMP (228 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 80 min. at room temperaof glycine (14.8 mg, $197 \mu \text{mol}$) in water (1.47 ml). A 0.5% aqueous solution of ammonium acetate (100 ml) was added, and the resulting mixture divided into two equal portions, and each portion eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (2×25 ml), and finally liberated from the cartridge by elution with TFA (2×25 ml). The combined eluates were concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (0.19 mg, 0.6%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3693±3. The resulting molecular weight was thus 3692±3 amu (theoretical value 3695 amu). ## Example 72 Synthesis of Arg 26,34 ,Lys 8 (N $^\epsilon$ -(γ -glutamyl(N $^\alpha$ -hexadecanoyl))) GLP-1(7-37) To a mixture of Arg^{26, 34}Lys⁸GLP-1(7-37)-OH (10.3 mg, 3 μ mol), EDPA (10.8 mg, 83 μ mol), NMP (1.44 ml) and water (0.72 ml) was added a solution of Pal-Glu(ONSu)- OBu^{t} (4.8 mg, 8.9 μ mol), prepared as described above, in NMP (120 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 70 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (4.9 mg, 65.3 µmol) in water (490 µl). A 0.5% aqueous solution of ammonium acetate (30 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and 10 finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril 15 gradient was 0-100% in 60 minutes. The title compound (3.2 mg, 28%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3836±3. The resulting molecular weight was thus 3835±3 AMU (theoretical value 3836 AMU). #### Example 73 #### Synthesis of Lau-Glu(ONSu)-OBut To a solution of H-Glu-OBu^t (3 g, 15 mmol) in DMF (344 25 ml) was added EDPA (2.58 ml, 15 mmol) and a solution of Lau-ONSu (4.5 g, 15 mmol), prepared in a similar manner as described for Cap-ONSu in example 56, in DMF (74 ml). The resulting mixture was stirred at ambient temperature for 18 h, and the solvent removed in vacuo. The oily residue was partitioned between ethyl acetate (150 ml) and 5% aqueous citric acid (250 ml). The organic phase was concentrated in vacuo. The residue was dissolved in DMF (40 ml) and the solution added drop by drop to a 10% aqueous citric acid solution (350 ml). The precipitated product was collected, 35 washed with water and dried in vacuo for 18 h to give the intermediate free acid. To solution of the free acid intermediate in DMF (25 ml) was added N-hydroxysuccinimide (1.7 g, 14.8 mmol) and a solution of N-(3dimethylaminopropyl)-N'-ethylcarbodiimide (2.58 g, 13.5 40 mmol) in dichloromethane (52 ml). The resulting mixture was stirred at room temperature for 18 h, and the solvents removed in vacuo. The oily residue was partitioned between dichloromethane (80 ml) and water (80 ml). The organic phase was washed with 5% aqueous citric acid, dried 45 (MgSO₄), and concentrated in vacuo to a solid. The solid residue was crystallised from a mixture of n-heptane (77 ml) and 2-propanol (50 ml), and finally recrystallised from n-heptane (76 ml) to give the title compound (2.96 g, 46%). ## Example 74 ## Synthesis of Arg 34 ,Lys 26 (N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ -dodecanoyl))) GLP-1(7-37) To a mixture of $Arg^{34}GLP-1(7-37)-OH$ (20.6 mg, 6.1 55 μ mol), EDPA (22 mg, 171 μ mol), NMP (2.88 ml) and water (1.44 ml) was added a solution Lau-Glu(ONSu)-OBu^t (10.2 mg, 21.2 μ mol), prepared as described in example 73, in NMP (255 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 75 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (10 mg, 134 μ mol) in water (100 μ l). A 0.5% aqueous solution of ammonium acetate (61 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 190 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0–100% in 60 minutes. The title compound (8.2 mg, 36%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3693±3. The resulting molecular weight is 3692±3 AMU (theoretical value 3693 AMU). #### Example 75 #### Synthesis of Lau-β-Ala-ONSu To a solution of Lau-ONSu (4.25 g, 14.3 mmol), prepared in a similar manner to in DMF (400 ml) was added EDPA (1.84 g, 14.3 mmol) and β-alanine (1.27 g, 14.3 mmol). The resulting mixture was stirred at ambient temperature for 18 h. Water (250 ml) and DMF (50 ml) were added and the solution stirred for 1 h at room temperature. The solvents were removed in vacuo to give a solid. The solid residue was dissolved in DMF (50 ml) and the solution added drop by drop to a 5% aqueous solution of citric acid (200 ml). The precipitate collected, washed
with water (50 ml) and dried in vacuo to give the title compound (3.6 g, 93%). ## Example 76 #### Synthesis of Pal-β-Ala-ONSu To a solution of Pal-ONSu (4.25 g, 14.3 mmol) in DMF (400 ml) was added EDPA (1.84 g, 14.3 mmol) and β -alanine (1.27 g, 14.3 mmol). The resulting mixture was stirred at ambient temperature for 18 h. Water (250 ml) and DMF (50 ml) were added and the solution stirred for 1 h at room temperature. The solvents were removed in vacuo to give a solid. The solid residue was dissolved in DMF (50 ml) and the solution added drop by drop to a 5% aqueous solution of citric acid (200 ml). The precipitate collected, washed with water (50 ml) and dried in vacuo to give the title compound (3.6 g, 93%). #### Example 77 ## Synthesis of Myr-GABA-ONSu To a solution of Myr-ONSu (4 g, 12.3 mmol) in DMF (350 ml) was added EDPA (1.58 g, 12.3 mmol) and γ-aminobutyric acid (1.26 g, 12.3 mmol). The resulting mixture was stirred at ambient temperature for 18 h. Water (50 ml) was added and the solution stirred for 1 h at room temperature. The solvents were removed in vacuo to give a solid. The solid residue was dissolved in DMF (75 ml) and the solution added drop by drop to a 5% aqueous solution of 50 citric acid (250 ml). The precipitate collected, washed with water (100 ml) and dried in vacuo to give the free acid intermediate (3.65 g, 95%). To a solution of the free acid intermediate (3 g, 9.6 mmol), N-hydroxysuccinimide (1.65 g, 14.4 mmol) and N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (3.67 g, 19.1 mmol) in DMF (330 ml) was stirred for 18 h at room temperature, and the solvent removed in vacuo to give a solid. The solid residue was dissolved in dichloromethane (100 ml) and washed with brine (100 ml). The organic phase was dried (MgSO₄) and concentrated in vacuo to give a solid. The solid residue was recrystallised from n-heptane (75 ml) to give the title compound (2.8 g, 71%). #### Example 78 ## Synthesis of Pal-β-Ala-ONSu To a solution of Pal-ONSu (0.9 g, 2.8 mmol) in DMF (100 ml) were added N-hydroxysuccinimide (0.35 g, 3 mmol) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (0.79 g, 4.1 mmol). The resulting mixture was stirred at ambient temperature for 40 h, and the solvent removed in vacuo. The solid residue was partitioned between water (50 ml) and dichloromethane (50 ml). The organic phase was separated, dried (MgSO₄) and the solvent removed in vacuo to give the title compound (1.1 g, 94%) ## Example 79 ## Synthesis of Arg³⁴,Lys²⁶(N⁶⁸-(β -alanyl(N^{α}-hexadecanoyl))) GLP-1(7-37) To a mixture of Arg³⁴GLP-1(7-37)-OH (19.2 mg, 5.7 μ mol), EDPA (20.5 mg, 159 μ mol), NMP (2.7 ml) and water (1.35 ml) was added a solution Pal-β-Ala-ONSu (7.2 mg, 17 μmol), prepared as described in example 79, in NMP (181 μl). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (9.3 mg, 125 μ mol) in water (93 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (11.6 mg, 55%) was isolated, ²⁵ and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3694±3. The resulting molecular weight was thus 3693±3 AMU (theoretical value 3693 AMU). #### Example 80 ## Synthesis of Pal-Glu(OBu^t)-ONSu To a solution of H-Glu(OH)-OBu t (2.7 g, 11.3 mmol) and $_{35}$ Pal-ONSu (3.98 g, 11.3 mmol) in DMF (300 ml) was added EDPA (3.2 g, 24.8 mmol). The resulting mixture was stirred at ambient temperature for 18 h, and the solvent concentrated in vacuo to give an oil. The oily residue was dissolved in DMF (60 ml) and the solution added drop by drop to a 40 10% aqueous solution of citric acid (300 ml) whereby a precipitate was formed. The precipitate was collected, washed with cold water (25 ml), and dried in vacuo to give free acid intermediate (4.44 g, 89%). The free acid intermediate (4 g, 9.1 mmol) was dissolved in DMF (50 ml) and 45 N-hydroxysuccinimide (1.15 g, 10 mmol) and N-(3dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (2.6 g, 13.6 mmol) were added. The resulting mixture was stirred at room temperature for 60 h, the solvent concentrated in vacuo to give the crude title compound (8.2 g). ## Example 81 ## Synthesis of Arg 34 ,Lys $^{26}(N^{\varepsilon}\text{-}(\alpha\text{-glutamyl}(N^{\alpha}\text{-hexadecanoyl})))$ GLP-1(7-37) To a mixture of $Arg^{34}GLP-1(7-37)-OH$ (25.6 mg, 7.6 μ mol), EDPA (27.4 mg, 212 μ mol), NMP (3.5 ml) and water (1.75 ml) was added a solution of Pal-Glu(OBu')-ONSu (12.2 mg, 22.7 μ mol), prepared as described in example 80, in NMP (305 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 100 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (12.5 mg, 168 μ mol) in water (125 μ l). A 0.5% aqueous solution of ammonium acetate (72.5 ml) was added, and the resulting mixture eluted 65 onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and 192 finally liberated from the cartridge by elution with TFA (30 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0–100% in 60 minutes. The title compound (6.1 mg, 22%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3751±3. The resulting molecular weight was thus 3750±3 AMU (theoretical value 3751 AMU). ## Example 82 ## Synthesis of Ste-GABA-ONSu To a solution of Ste-ONSu (3 g, 7.9 mmol) in DMF (270 ml) was added EDPA (1 g, 7.9 mmol) and a solution of γ-aminobutyric acid (0.81 g, 7.9 mmol) in water (40 ml). The resulting suspension was stirred at ambient temperature for 18 h, and then concentrated in vacuo to a final volume of 50 ml. The resulting suspension was added to a 5% aqueous solution of citric acid (500 ml) whereby a precipitate is formed. The precipitate was collected and washed with water (50 ml), and dried in vacuo for 4 h to give the free acid intermediate (2.8 g, 97%). To a mixture of the free acid intermediate (2.6 g, 7 mmol), N-hydroxysuccinimide (1.21 g, 10.5 mmol) and N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (2.69 g, 14 mmol) in NMP (300 ml) was stirred for 70 h, and the solvent removed in vacuo to give a solid. The solid residue was dissolved in dichloromethane (100 ml) and washed with brine (2×100 ml). The organic phase was dried (MgSO₄) and concentrated in vacuo to give a solid. The solid residue was recrystallised from n-heptane (75 ml) to give the title compound (2.2 g, 67%). #### Example 83 ## Synthesis of Pal-Isonip-ONSu To a suspension of 1-hexadecanoylbenzotriazole (3 g, 8.4 mmol), prepared as described in the literature (Kreutzberger; van der Goot, Arch. Pharm., 307, 1974), in DMF (350 ml) were added EDPA (1.08 g, 8.4 mmol) and a solution of piperidine-4-carboxylic acid in water (20 ml). The resulting suspension was stirred at room temperature for 12d, and then concentrated in vacuo to an oil. The oily residue was added drop by drop to a 5% aqueous solution of citric acid (300 ml) whereby a precipitate was formed. The precipitate was collected and washed with water (50 ml), dried in vacuo for ₅₀ 2 h to give the free acid intermediate (3 g, 97%). To a solution of the free acid intermediate (2.8 g, 7.6 mmol), N-hydroxysuccinimide (1.31 g, 11.4 mmol) in DMF (250 ml) was added N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (2.92 g, 15.2 mmol). The resulting mixture was stirred at ambient temperature for 18 h, and the solvent removed in vacuo to give an oil. The oily residue was dissolved in dichloromethane (100 ml), washed with brine (50 ml), dried (MgSO₄) and concentrated in vacuo to give the crude title compound (4.1 g, quant.). ## Example 84 ## Synthesis of Arg^{34} , Lys^{26} (N $^{\epsilon}$ -(piperidinyl-4-carbonyl (N-hexadecanoyl))) GLP-1(7-37) To a mixture of Arg³⁴GLP-1(7-37)-OH (25 mg, 7.4 μ mol), EDPA (26.7 mg, 207 μ mol), NMP (3.5 ml) and water (1.75 ml) was added a solution Pal-Isonip-ONSu (13.7 mg, 193 30 µmol), prepared as described in example 83 in NMP (343 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (12.2 mg, 163 μ mol) in water (122 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (12 mg, 44%) was isolated, and 10 sis techniques as explained above. the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3734±3. The resulting molecular weight was thus 3733±3 amu (theoretical value 3733 amu). #### Example 85 ## Synthesis of Arg³⁴,Lys²⁶(N $^{\epsilon}$ -(γ -glutamyl(N $^{\alpha}$ decanoyl))) GLP-1(7-37) To a mixture of Arg³⁴GLP-1(7-37)-OH (25 mg, 7.4 μ mol), EDPA (26.7 mg, 207 μ mol), NMP (3.5 ml) and water (1.75 ml) was added a solution of Cac-Glu(ONSu)-OBu^t (10 mg, 22.1 μ mol) in NMP (252 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 140 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (12.2 mg, 162 μ mol) in water (122 μ l). A 0.5% aqueous solution of ammonium acetate (73 ml) was added, and the
resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (12.2 mg, 45%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3669.7±3. The resulting molecular weight was thus 3668.7±3 amu (theoretical value 3667 amu). ## Example 86 ## General Method A ## Synthesis of Alkanoic Acid 2,5-dioxopyrrolidin-1-yl Ester N-hydroxysuccinimide (4 g, 34.7 mmol) in anhydrous acetonitril (10 ml) was added a solution of DCC (7.15 g, 34.7 mmol) in anhydrous dichloromethane (15 ml), and the resulting reaction mixture was stirred for 16 h at room temperature. The precipitated solid was filtered off and recrystallised from a mixture of n-heptane and 2-propanol. The precipitate was dried in vacuo for 16 h to give the title compound. ## Synthesis of Lys(N^e-alkanoyl)-peptide To a mixture of the peptide (5.9 μ mol), EDPA (21 mg, 164 umol), NMP (5.8 ml) and water (2.9 ml) was added a solution of the alkanoic acid 2,5-dioxopyrrolidin-1-yl ester (37 μ mol), prepared as described above, in NMP (0.5 ml). The reaction mixture was gently shaken for 5 min at room 65 temperature, and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the 194 addition of a solution of glycine (9.7 mg, 129 μ mol) in water (97 μ l). The solvent was removed in vacuo, and the residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/ TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% for 60 minutes. Coupling of a desired group A comprising the 5- or 6-membered ring system Y to the N-terminal end of the peptide may be performed using solid phase protein synthe- #### Example 87 ## General Method B ## Synthesis of N^{α} -alkanoyl-(L)-glutamic acid α -tertbutyl-γ-(2,5-dioxopyrrolidin-1-yl) Diester A suspension of the alkanoic acid 2,5-dioxopyrrolidin-1yl ester (16.2 mmol), prepared as described under General method A, (L)-glutamic acid α-tert-butyl ester (3.28 g, 16.2 mmol), DMF (268 ml) and EDPA (2.1 g, 16.2 mmol) was stirred for 64 h at room temperature. The reaction mixture was concentrated in vacuo and the residue was dissolved in ethyl acetate (50 ml). The resulting solution was washed with 5% aqueous citric acid (2×25 ml). The solvent was concentrated removed in vacuo and the residue dissolved in DMF (36 ml). The resulting solution was carefully added to a 10% aqueous solution of citric acid (357 ml) and extracted with ethyl acetate (200 ml) and dried (MgSO₄). The solvent was concentrated removed in vacuo to give the crude glutamic diester intermediate. To a mixture of the crude diester, N-hydroxysuccinimide (1.85 g, 16.1 mmol) and anhydrous DMF (25 ml) was added a solution of DCC (3.32 g, 16.1 mmol) in anhydrous dichloromethane (15 ml). The resulting mixture was stirred at ambient temperature for 20 h. The reaction mixture was filtered and the solvent was concentrated removed in vacuo. The residue was purified on a silica gel column (40–63 μ M) and eluted with a mixture of dichloromethane and acetonitril (1:1) to give the title com-40 pound. ## Synthesis of Lys(N^{ϵ} -(γ -glutamyl(N^{α} -alkanoyl))) peptide To a mixture of the peptide (4.2 μ mol), EDPA (15.3 mg, 119 μ mol), NMP (2 ml) and water (1 ml) was added a solution of N^{α} -alkanoyl-(L)-glutamic acid α -tert-butyl- γ -(2, 5-dioxopyrrolidin-1-yl) diester (12.7 μ mol), prepared as described above, in NMP (135 ml). The reaction mixture To a solution of the alkanoic acid (34.7 mmol) and 50 was gently shaken for 5 min at room temperature and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (7 mg, 93 μ mol) in water (698 μ l). A 0.5% aqueous solution of ammonium acetate (42 ml) was added, and the resulting mixture was eluted onto a Varian 5 g C8 Mega Bond Elut® cartridge, the immobilised compound was washed with 5% aqueous acetonitril (25 ml) and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% for 60 minutes. > Coupling of a desired group A comprising the 5- or 6-membered ring system Y to the N-terminal end of the peptide may be performed using solid phase protein synthesis techniques as explained above. #### Example 88 ## Synthesis of N-terminal Modified Peptides Peptides were synthesised according to the Fmoc strategy on an Applied Biosystems 431A peptide synthesiser in 0.25 mmol scale using the manufacturer supplied FastMoc UV protocols starting with a Fmoc-Gly-Wang resin (NovaBiochem). The protected amino acid derivatives used were commercially obtained Fmoc amino acids, and Adoc-Imidazolylpropionic acid. The derivatives used where side chain protection was needed were: Fmoc-Arg(Pmc), Fmoc-Trp(Boc), Fmoc-Glu(OBut), Fmoc-Lys(Boc), Fmoc-Gln (Trt), Fmoc-Tyr(But), Fmoc-Ser(But), Fmoc-Thr(But), Fmoc-His(Trt) and Fmoc-Asp(OBut), and Adoc-Imidazolylpropionic acid. The peptides were cleaved from the resin and side chain deprotected in TFA/phenol/thioanisole/water/ethanedithiol (83.25:6.25:4.25:4.25:2.00) for 180 min. The cleavage mixture was filtered and the filtrate was concentrated by a stream of nitrogen. The crude peptide was precipitated from this oil with diethyl ether and washed twice with diethyl ether. After drying the crude peptide was dissolved in 50% aqueous acetic acid and diluted to 10% acetic acid with water and purified by semipreparative HPLC on a 25 mm×250 mm column packed with 7 m μ C-18 silica. The column was eluted with a gradient of acetonitril against 0.05 M (NH₄) ₂SO₄, pH 2.5 at 10 ml/min. at 40° C. The peptide-containing fractions were collected, diluted with 3 volumes of water and applied to a Sep-Pak® C18 cartridge (Waters part. 30 51910) which was equilibrated with 0.1% TFA. The peptide was eluted from the Sep-Pak® cartridge with 70% acetonitrile/0.1% TFA, water and isolated from the eluate by lyophilization after dilution with water. The final product obtained was characterised by amino acid analysis, analytical RP-HPLC and by PDMS. Amino acid analysis and mass spectrometry agreed with the expected structure within the experimental error of the method (mass spectrometry +/-2 amu, amino acid analysis +/- 10%, RP-HPLC showed a peptide purity >95%). The RP-HPLC analysis was performed using UV detection at 214 nm and a Vydac 218TP54 4.6 mm \times 250 mm, 5 μ m C-18 silica column which was eluted at 1 ml/min. at 42° C. Two different elution conditions were used: a gradient of and a gradient of 5-60% acetonitrile, 0.1% TFA/0.1% TFA, water. #### Example 89 ## Synthesis of Cap-Glu(ONSu)-OBu^t To a solution of octanoic acid (5 g, 34.7 mmol) and N-hydroxysuccinimide (4 g, 34.7 mmol) in anhydrous acetonitril (10 ml) was added a solution of DCC (7.15 g, 34.7 mmol) in anhydrous dichloromethane (15 ml), and the 55 resulting reaction mixture stirred for 16 h at room temperature. The precipitated solid was filtered off and recrystallised from a mixture of n-heptane (40 ml) and 2-propanol (2 ml). The precipitate was dried in a vacuum drying oven for 16 h to give the intermediate Cap-ONSu. A suspension of the crude ester intermediate (3.9 g, 16.2 mmol), (L)-H-Glu (OH)-OBu^t (3.28 g, 16.2 mmol), DMF (268 ml) and EDPA (2.1 g, 16.2 mmol) was stirred for 64 h at room temperature. The reaction mixture was concentrated in vacuo and the residue dissolved in ethyl acetate (50 ml). The resulting 65 solution was washed with 5% agueous citric acid (2×25 ml). The solvent was concentrated in vacuo and the residue ## 196 dissolved in DMF (36 ml). The resulting solution was added drop wise to a 10% aqueous solution of citric acid (357 ml) and extracted with ethyl acetate (200 ml), and dried (MgSO₄). The solvent was concentrated in vacuo to give the crude glutamic acid intermediate. To a mixture of the crude glutamic acid intermediate, N-hydroxysuccinimide (1.85 g, 16.1 mmol) and DMF (25 ml) was added a solution of DCC (3.32 g, 16.1 mmol) in dichloromethane (15 ml). The resulting mixture was stirred at ambient temperature for 20 h. The reaction mixture was filtered and the solvent concentrated in vacuo. The residue was purified on a silica gel column (40-63 μ m), eluted with a mixture of dichloromethane and acetonitril (1:1) to give the title compound (0.63 g, 6% over all). #### Example 90 ## Synthesis of Desamino-His⁷,Arg³⁴,Lys²⁶(N^ε-(γglutamyl(N^{α} -hexadecanoyl))) GLP-1(7-37) To a mixture of desamino-His⁷,Arg³⁴GLP-1(7-37)-OH (20 mg, 5.9 μmol), EDPA (21.5 mg, 166 μmol), NMP (2.8 ml) and water (1.4 ml) was added a solution Pal-Glu (ONSu)-OBu^t (9.6 mg, 17.8 μ mol in NMP (240 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 75 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (9.8 mg, 130 μ mol) in water (979 μ l). A 0.5% aqueous solution of ammonium acetate (58 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the
residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (9.1 mg, 41%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3739±3. The resulting molecular weight was thus 3738±3 amu (theoretical value 3736 amu). #### Example 91 ## Synthesis of Myr-GABA-ONSu To a solution of Myr-ONSu (4 g, 12.3 mmol) in DMF (350 ml) was added EDPA (1.58 g, 12.3 mmol) and γ-aminobutyric acid (1.26 g, 12.3 mmol). The resulting 5-60% acetonitrile/0.1 M ammonium sulfate, water pH 2.5; 45 mixture was stirred at ambient temperature for 18 h. Water (50 ml) was added and the solution stirred for 1 h at room temperature. The solvents were removed in vacuo to give a solid. The solid residue was dissolved in DMF (75 ml) and the solution added drop by drop to a 5% aqueous solution of citric acid (250 ml). The precipitate collected, washed with water (100 ml) and dried in vacuo to give the free acid intermediate (3.65 g, 95%). To a solution of the free acid intermediate (3 g, 9.6 mmol), N-hydroxysuccinimide (1.65 g, 14.4 mmol) and N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (3.67 g, 19.1 mmol) in DMF (330 ml) was stirred for 18 h at room temperature, and the solvent removed in vacuo to give a solid. The solid residue was dissolved in dichloromethane (100 ml) and washed with brine (100 ml). The organic phase was dried (MgSO₄) and concentrated in vacuo to give a solid. The solid residue was recrystallised from n-heptane (75 ml) to give the title compound (2.8 g, 71%). ## Example 92 Synthesis of Desamino-His $^7\!,Arg^{34}\!,Lys^{26}(N^\epsilon\!-\!(\gamma\!-\!aminobutyroyl(N^\gamma\!-\!hexadecanoyl)))$ GLP-1(7-37) To a mixture of desamino-His⁷,Arg³⁴GLP-1(7-37)-OH (20 mg, 8.9 μ mol), EDPA (21.5 mg, 166 μ mol), NMP (2.8 ml) and water (1.4 ml) was added a solution Pal-GABA-ONSu (7.8 mg, 17.8 μ mol) in NMP (181 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (9.3 mg, 125 μ mol) in water (93 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. title compound (11.6 mg, 55%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3692±3. The resulting molecular weight was thus 3691±3 amu (theoretical value 3693 amu). #### Example 93 Synthesis of Desamino-His⁷,Arg³⁴,Lys²⁶(N^ε-(βalanyl(N⁷-hexadecanoyl))) GLP-1(7-37) To a mixture of desamino-His⁷,Arg³⁴GLP-1(7-37)-OH ²⁰ (25 mg, 7.4 μ mol), EDPA (26.8 mg, 208 μ mol), NMP (3.5 ml) and water (1.75 ml) was added a solution Pal-β-Ala-ONSu (9.4 mg, 22.2 μ mol) in NMP (236 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 130 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (12.2 mg, 163 μ mol) in water (122 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (13.4 mg, 49%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3681±3. The resulting molecular weight was thus 3680±3 amu (theoretical value 3678 amu). #### Example 94 ## Synthesis of Ste-GABA-ONSu To a solution of Ste-ONSu (3 g, 7.9 mmol) in DMF (270 ml) was added EDPA (1 g, 7.9 mmol) and a solution of γ -aminobutyric acid (0.81 g, 7.9 mmol) in water (40 ml). The resulting suspension was stirred at ambient temperature for 18 h, and then concentrated in vacuo to a final volume of 50 ml. The resulting suspension was added to a 5% aqueous solution of citric acid (500 ml) whereby a precipitate is formed. The precipitate was collected and washed with water (50 ml), and dried in vacuo for 4 h to give the free acid intermediate (2.8 g, 97%). To a mixture of the free acid 50 intermediate (2.6 g, 7 mmol), N-hydroxysuccinimide (1.21 g, 10.5 mmol) and N-(3-dimethylaminopropyl)-N'ethylcarbodiimide hydrochloride (2.69 g, 14 mmol) in NMP (300 ml) was stirred for 70 h, and the solvent removed in vacuo to give a solid. The solid residue was dissolved in dichloromethane (100 ml) and washed with brine (2×100 ml). The organic phase was dried (MgSO₄) and concentrated in vacuo to give a solid. The solid residue was recrystallised from n-heptane (75 ml) to give the title compound (2.2 g, 67%). ## Example 95 Synthesis of Arg 34 ,Ala $^8(N^{\alpha}$ -(imidazol-4-ylprop-2-enoyl),Lys $^{26}(N^{\epsilon}$ -(γ -aminobutyroyl(N^{γ} hexadecanovl))) GLP-1(8-37) To a mixture of Arg³⁴,Ala⁸(Nα-(imidazol-4-ylprop-2enoyl) GLP-1(8-37)-OH (5.6 mg, 1.7 µmol), EDPA (6 mg, 198 46.2 µmol), NMP (0.78 ml) and water (0.39 ml) was added a solution Pal-GABA-ONSu (2.2 mg, 5 μ mol) in NMP (54 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 80 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.7 mg, 36 μ mol) in water (27 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to and the acetonitril gradient was 0-100% in 60 minutes. The 10 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (1.9 mg, 31%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3690±3. The resulting molecular weight was thus 3689±3 amu 15 (theoretical value 3690 amu). ## Example 96 Synthesis of Arg^{34} , $Ala^{8}(N^{\alpha}$ -(imidazol-4-ylacetyl), Lys²⁶(N^{ϵ}-(γ -aminobutyroyl(N γ -hexadecanoyl))) GLP-1(8-37) To a mixture of Arg 34 ,Ala 8 (N $^{\alpha}$ -(imidazol-4-ylacetyl) GLP-1(8-37)-OH (5.3 mg, 1.6 μmol), EDPA (5.7 mg, 43.9 umol), NMP (0.74 ml) and water (0.37 ml) was added a solution Pal-GABA-ONSu (2 mg, 4.7μ mol) in NMP (52 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 80 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (2.6 mg, 34 μ mol) in water (26 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (2.2 mg, 38%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3676±3. The resulting molecular weight was thus be 3675±3 amu (theoretical value 3678 amu). #### Example 97 Synthesis of Desamino-His⁷,Arg³⁴,Lys²⁶(N^ε-(γaminobutyroyl(N^y-tetradecanoyl))) GLP-1(7-37) To a mixture of desamino-His⁷,Arg³⁴GLP-1(7-37)-OH 45 (25 mg, 7.4 μmol), EDPA (26.9 mg, 208 μmol), NMP (3.5 ml) and water (1.75 ml) was added a solution Myr-GABA-ONSu (9.1 mg, 22.2 μ mol), prepared as described in example 91, in NMP (228 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 90 min. at room temperature. The reaction was quenched by the addition of a solution of glycine (12.2 mg, 163 μ mol) in water (122 μ l). The reaction mixture was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA 55 system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (10.5 mg, 39%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3667±3. The resulting molecular weight was thus 3664±3 amu (theoretical value 3662 amu). #### Example 98 Synthesis of Desamino-His⁷,Arg³⁴,Lys²⁶(N^ε-(γaminobutyroyl(N⁷-octadecanoyl))) GLP-1(7-37) To a mixture of desamino-His⁷,Arg³⁴GLP-1(7-37)-OH $(25 \text{ mg}, 7.4 \mu\text{mol})$, EDPA $(26.8 \text{ mg}, 207 \mu\text{mol})$, NMP $(3.5 \text{ mg}, 207 \mu\text{mol})$ ml) and water (1.75 ml) was added a solution Ste-GABA-ONSu (10.4 mg, 22.2 μ mol), prepared as described in example 94, in NMP (259 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 170 min. at room temperature. The reaction was 5 quenched by the addition of a solution of glycine (12.2 mg, 163 μ mol) in water (122 μ l) and the reaction mixture purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0–100% in 60 minutes. The title compound (7 mg, 25%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3719±3. The resulting molecular weight was thus 3718±3 amu (theoretical value 3720 amu). #### Example 99 #### General Method A Synthesis of Alkanoic Acid 2,5-dioxopyrrolidin-1-yl Ester To a solution of the alkanoic acid (34.7 mmol) and N-hydroxysuccinimide (4 g, 34.7 mmol) in anhydrous acetonitril (10 ml) was added a solution of DCC (7.15 g, 34.7 mmol) in anhydrous dichloromethane (15 ml), and the resulting reaction mixture was stirred for 16 h at room temperature. The precipitated solid was filtered off and recrystallised from a mixture of n-heptane and 2-propanol. The precipitate was dried in vacuo for 16 h to give the title compound. ## Synthesis of
Lys(N^e-alkanoyl)-peptide To a mixture of the desired parent peptide ($5.9~\mu$ mol), 35~EDPA (21~mg, $164~\mu$ mol), NMP (5.8~ml) and water (2.9~ml) was added a solution of the alkanoic acid 2,5-dioxopyrrolidin-1-yl ester ($37~\mu$ mol), prepared as described above, in NMP (0.5~ml). The reaction mixture was gently shaken for 5~min at room temperature, and then allowed to stand for an additional 2~h at room temperature. The reaction was quenched by the addition of a solution of glycine (9.7~mg, $129~\mu$ mol) in water ($97~\mu$ l). The solvent was removed in vacuo, and the residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65°~C. and the acetonitril gradient is 0-100%~for~60~minutes. ## General Method B Synthesis of N^{α} -alkanoyl-(L)-glutamic Acid α -tert-butyl- γ -(2,5-dioxopyrrolidin-1-yl) Diester A suspension of the alkanoic acid 2,5-dioxopyrrolidin-1-yl ester (16.2 mmol), prepared as described under General 55 method A, (L)-glutamic acid α -tert-butyl ester (3.28 g, 16.2 mmol), DMF (268 ml) and EDPA (2.1 g, 16.2 mmol) was stirred for 64 h at room temperature. The reaction mixture was concentrated in vacuo and the residue was dissolved in ethyl acetate (50 ml). The resulting solution was washed 60 with 5% aqueous citric acid (2×25 ml). The solvent was removed in vacuo and the residue dissolved in DMF (36 ml). The resulting solution was carefully added to a 10% aqueous solution of citric acid (357 ml) and extracted with ethyl acetate (200 ml) and dried (MgSO₄). The solvent was 65 removed in vacuo to give the crude glutamic diester intermediate. To a mixture of the crude diester, ## 200 N-hydroxysuccinimide (1.85 g, 16.1 mmol) and anhydrous DMF (25 ml) was added a solution of DCC (3.32 g, 16.1 mmol) in anhydrous dichloromethane (15 ml). The resulting mixture was stirred at ambient temperature for 20 h. The reaction mixture was filtered and the solvent was removed in vacuo. The residue was purified on a silica gel column (40–63 μ m) and eluted with a mixture of dichloromethane and acetonitril (1:1) to give the title compound. ## Synthesis of Lys(N^{ϵ} -(γ -glutamyl(N^{α} -alkanoyl))) peptide To a mixture of the desired parent peptide (4.2 μ mol), EDPA (15.3 mg, 119 μ mol), NMP (2 ml) and water (1 ml) was added a solution of Nα-alkanoyl-(L)-glutamic acid 15 α -tert-butyl- γ -(2,5-dioxopyrrolidin-1-yl) diester (12.7 umol), prepared as described above, in NMP (135 ml). The reaction mixture was gently shaken for 5 min at room temperature and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (7 mg, 93 µmol) in water (698 µl). A 0.5% aqueous solution of ammonium acetate (42 ml) was added, and the resulting mixture was eluted onto a Varian 5 g C8 Mega Bond Elut® cartridge, the immobilised compound was washed with 5% aqueous acetonitril (25 ml) and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue was purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient is 0-100% for 60 minutes. ### Example 100 Synthesis of Arg³⁴,Lys²⁶(N^{ϵ}-(γ -glutamyl(N $^{\alpha}$ -tetradecanoyl))) GLP-1(9-37) To a mixture of Arg³⁴GLP-1(9-37)-OH (22.4 mg, 7.1 μ mol), EDPA (25.5 mg, 197 μ mol), NMP (3.14 ml) and water (1.57 ml) was added a solution of Myr-Glu(ONSu)- OBu^t (10.8 mg, 21.2 μ mol) in NMP (270 μ l). The reaction mixture was gently shaken for 5 min., and then allowed to stand for an additional 2 h at room temperature. The reaction was quenched by the addition of a solution of glycine (11.6 mg, 155 μ mol) in water (116 μ l). A 0.5% aqueous solution of ammonium acetate (67 ml) was added, and the resulting mixture eluted onto a Varian 5 g C8 Mega Bond Elut®, the immobilised compound washed with 5% aqueous acetonitril (25 ml), and finally liberated from the cartridge by elution with TFA (25 ml). The eluate was concentrated in vacuo, and the residue purified by column chromatography using a cyanopropyl column (Zorbax 300SB-CN) and a standard acetonitril/TFA system. The column was heated to 65° C. and the acetonitril gradient was 0-100% in 60 minutes. The title compound (2.3 mg, 9.2%) was isolated, and the product was analysed by PDMS. The m/z value for the protonated molecular ion was found to be 3516.0±3. The resulting molecular weight was thus 3515.0±3 amu (theoretical value 3515 amu). #### Example 101 In this example and examples 102 and 103, the phrase "8 mM phosphate buffer of pH 7.4" means 4 mM NaH₂PO₄, 2H₂O and 4 mM Na₂HPO₄, 2H₂O pH adjusted to 7.4 (using Sodium Hydroxide and/or Hydrochloric acid). the term "Compound 1" means Arg^{34} , $Lys^{26}(N^{\epsilon}$ -($^{\gamma}$ -Glu (N^{α} -tetradecanoyl))) GLP-1(7-37). 15 30 35 50 201 202 | the term | "Compound | 2" | means | Arg ³ | 4,Lys ²⁶ | N ^ε -(γ-Glu | |----------|---------------|----|-------|------------------|---------------------|------------------------| | | xadecanoyl))) | | | | | | the term "Compound 3" means $Arg^{26,34}$,Lys³⁶(N^e-($^{\gamma}$ -Glu (N $^{\alpha}$ -hexadecanoyl))) GLP-1(7-36). the term "Compound 4" means Arg^{26} , Lys^{34} (N^{ϵ} ($^{\gamma}$ -Glu(N^{α} - 5 hexadecanoyl))) GLP-1(7-37). the term "Compound 5" means Gly^8 , Glu^{37} , $Arg^{26,34}$, Lys^{38} (N^{ϵ} -(7 - $Glu(N^{\alpha}$ -hexadecanoyl))) GLP-1(7-38). | General Example 101 | | | | | |----------------------|--------------|--|--|--| | Compound | 2–7.5 mg/ml | | | | | Mannitol | 34-50 mg/ml | | | | | Phenol | 5-7.5 mg/ml | | | | | 8 mM phosphate buffe | er of pH 7.4 | | | | Mannitol and phenol were dissolved in the phosphate buffer preadjusted to pH 7.4. The compound was then dissolved under slow stirring. The pH was adjusted to 7.4 using sodium hydroxide and/or hydrochloric acid. Finally, the formulation was sterilised by filtration through an appropriate filter. The following specific formulations were produced using $_{25}$ this procedure: | Example 101-A | | |---|---| | Compound 1 Mannitol Phenol 8 mM phosphate buffer of pH 7.4 Example 101-B | 2.0 mg/ml
38 mg/ml
5 mg/ml
ad 100 ml | | Compound 1 Mannitol Phenol 8 mM phosphate buffer of pH 7.4 Example 101-C | 5 mg/ml
36.9 mg/ml
5 mg/ml
ad 100 ml | | Compound 1 Mannitol Phenol 8 mM phosphate buffer of pH 7.4 Example 101-D | 7.5 mg/ml
34 mg/ml
7.5 mg/ml
ad 100 ml | | Compound 2
Mannitol
Phenol
8 mM phosphate
buffer of pH 7.4
Example 101-E | 2.0 mg/ml
38 mg/ml
5 mg/ml
ad 100 ml | | Compound 2 Mannitol Phenol 8 mM phosphate buffer of pH 7.4 Example 101-F | 5 mg/ml
36.9 mg/ml
5 mg/ml
ad 100 ml | | Compound 2
Mannitol
Phenol
8 mm phosphate | 7.5 mg/ml
34 mg/ml
7.5 mg/ml
ad 100 ml | buffer of pH 7.4 Example 101-G Mannitol Phenol | -continued | | |------------|--| | | | | bu | mM phosphate
ffer of pH 7.4
cample 101-H | ad 100 | ml | |-----------------------|---|--------|-------------------------------| | Ma
Ph
8 i
bu | ompound 3
annitol
enol
mM phosphate
ffer of pH 7.4
ample 101-I | 36.9 | mg/ml
mg/ml
mg/ml
ml | | Ma
Ph
8 i
bu | ompound 3
annitol
enol
mm phosphate
ffer of pH 7.4
ample 101-J | 34 | mg/ml
mg/ml
mg/ml
ml | | Ma
Ph
8 1
bu | ompound 4 annitol enol mM phosphate ffer of pH 7.4 tample 101-K | 38 | mg/ml
mg/ml
mg/ml
ml | | Ma
Ph
8 1
bu | ompound 4 annitol enol mM phosphate ffer of pH 7.4 tample 101-L | 36.9 | mg/ml
mg/ml
mg/ml
ml | | Ma
Ph
8 1
bu | ompound 4 annitol enol mM phosphate ffer of pH 7.4 cample 102 | 34 | mg/ml
mg/ml
mg/ml
ml | | Ma
Be | ompound
annitol
enzyl Alcohol
mM phosphate | 19–25 | mg/ml
mg/ml
mg/ml | | | | | | Mannitol and benzyl alcohol were dissolved in the phosphate buffer preadjusted to pH 7.4. The compound was then dissolved under slow stirring. The pH was adjusted to 7.4 using sodium hydroxide and/or hydrochloric acid. Finally, the formulation was sterilised by filtration through an appropriate filter. The following specific formulations were produced using this procedure: | | Example 102-A | | | |----|--|--|--| | 55 | Compound 1 Mannitol Benzyl alcohol 8 mM phosphate buffer of pH 7.4 Example 102-B | 2.0 mg/ml
25 mg/ml
14 mg/ml
ad 100 ml | | | 60 | Compound 1 Mannitol Benzyl alcohol 8 mM phosphate buffer of pH 7.4 Example 102-C | 7.5 mg/ml
19 mg/ml
18 mg/ml
ad 100 ml | | | 65 | Compound 2
Mannitol | 2.0 mg/ml
25 mg/ml | | 2.0 mg/ml 38 mg/ml 5 mg/ml | -continued | | | -continued | | | |---|---|------|--|--|--| | Benzyl alcohol
8 mM phosphate
buffer of pH 7.4
Example 102-D | 14 mg/ml
ad 100 ml | 5 | 8 mM phosphate
buffer of pH 7.4
Example 103-D | ad 100 ml | | | Compound 2 Mannitol Benzyl alcohol 8 mM phosphate buffer of pH 7.4 Example 102-E | 7.5 mg/ml
19 mg/ml
18 mg/ml
ad 100 ml | 10 | Compound 2 Mannitol Metacresol 8 mM phosphate buffer of pH 7.4 Example 103-E | 7.5
mg/ml
42 mg/ml
4 mg/ml
ad 100 ml | | | Compound 3
Mannitol
Benzyl alcohol
8 mM phosphate
buffer of pH 7.4
Example 102-F | 2.0 mg/ml
25 mg/ml
14 mg/ml
ad 100 ml | 15 | Compound 3 Mannitol Metacresol 8 mM phosphate buffer of pH 7.4 Example 103-F | 2.0 mg/ml
44 mg/ml
2.5 mg/ml
ad 100 ml | | | Compound 3 Mannitol Benzyl alcohol 8 mM phosphate buffer of pH 7.4 Example 102-G | 7.5 mg/ml
19 mg/ml
18 mg/ml
ad 100 ml | 20 | Compound 3 Mannitol Metacresol 8 mM phosphate buffer of pH 7.4 Example 103-G | 7.5 mg/ml
42 mg/ml
4 mg/ml
ad 100 ml | | | Compound 5 Mannitol Benzyl alcohol 8 my lalcohol buffer of pH 7.4 Example 102-H | 2.0 mg/ml
25 mg/ml
14 mg/ml
ad 100 ml | 25 | Compound 5 Mannitol Metacresol 8 mM phosphate buffer of pH 7.4 Example 103-H | 2.0 mg/ml
44 mg/ml
2.5 mg/ml
ad 100 ml | | | Compound 5 Mannitol Benzyl alcohol 8 mM phosphate buffer of pH 7.4 | 7.5 mg/ml
19 mg/ml
18 mg/ml
ad 100 ml | 30 | Compound 5 Mannitol Metacresol 8 mM phosphate buffer of pH 7.4 | 7.5 mg/ml
42 mg/ml
4 mg/ml
ad 100 ml | | | Example 103 Compound Mannitol Metacresol 8 mM phosphate buffer o | 2–7.5 mg/ml
42–44 mg/ml
2.5–4.0 mg/ml
f pH 7.4 | pept | ircular Dichroism (CD) | at 222 nm as a function outdes dissolved in 10 mM tr
measured for native GLP-1(2) | | Mannitol and metacresol were dissolved in the phosphate buffer preadjusted to pH 7.4. The compound was then dissolved under slow stirring. The pH was adjusted to 7.4 using sodium hydroxide and/or hydrochloric acid. Finally, the formulation was sterilised by filtration through an appro- 45 priate filter. The following specific formulations were produced using this: | Example 103-A | _ | | |--|-------------------|-------------------------------| | Compound 1
Mannitol
Metacresol
8 mM phosphat
buffer of pH 7.4
Example 103-B | 2.5 ad 100 | mg/ml
mg/ml
mg/ml
ml | | Compound 1
Mannitol
Metacresol
8 mM phosphat
buffer of pH 7.4
Example 103-C | 42
4
ad 100 | mg/ml
mg/ml
mg/ml
ml | | Compound 2
Mannitol
Metacresol | 44 | mg/ml
mg/ml
mg/ml | 37) and the following eight GLP-1 derivatives of the present invention: - (a) Example 37 - (b) Example 50 - (c) Example 63 - (d) Example 51 - (e) Example 55 - (f) Example 61 - (g) Example 68 - (h) Example 64 The results are shown in FIG. 1. Note that the CD signal is proportional to the average content of α -helix in the peptides, i.e., a CD value of -1 corresponds to 10% α -helix content under these conditions. The figure shows that, as the concentration of native GLP-1(7-37) is raised between 25 ₅₅ and 1000 μ M, the content of α -helix increases from about 15% to about 30-35% in parallel with the formation of higher oligomers. In contrast with this concentration dependent behaviour, the figure shows that the helix content remains high and essentially independent of the concentra- $_{60}$ tion in the 1–200 $\mu\mathrm{M}$ range for the GLP-1 derivatives of the present invention forming partially structured micelle-like aggregates under the same conditions. #### Example 105 ## Equilibrium Solubility For pH-solubility profiles, solutions containing the peptide and additives (surfactant and, where indicated, other excipients) at the appropriate concentrations were prepared at pH 9-10. The solutions were filtered, samples were withdrawn, and the pH was adjusted to the desired value in the range of 3–8. The samples were left for 24 hours at 23° C. to attain solubility equilibrium. After centrifugation (20, 000 g for 20 minutes, 23° C.) of each sample, the pH was measured, and the solubility was determined from measurement of the absorbance at 276 nm of the supernatant. Long Term Physical Stability acylated GLP-1(7-37) analogue were dissolved at twice 10 the desired final concentration and incubated briefly (<10 minutes) at pH 11.5, 23° C. before filtration and mixing with an equal volume of a filtered solution containing all the excipients in twice the desired final concentration. The pH transferred to pen-fill cartridges containing a small glass ball (to allow visual determination of changes in solution <160> NUMBER OF SEQ ID NOS: 96 <223> OTHER INFORMATION: mutagen <213> ORGANISM: Artificial Sequence <400> SEOUENCE: 3 <210> SEQ ID NO 4 <211> LENGTH: 31 <212> TYPE: PRT <210> SEQ ID NO 1 <211> LENGTH: 31 206 viscosity). The containers were sealed and incubated at the desired temperature between 4° C. and 37° C. At appropriate time intervals, the samples were gently turned and visually examined using a light box. When physical changes were apparent (precipitation, crystallization or gelation), the sample was centrifuged and the absorbance was measured in the supernatant to determine whether the component coming out of solution was the peptide or not. Equilibrium solubility was determined as a function of pH for 1 mg/ml solutions of the acylated GLP-1(7-37) analogue N^{ϵ} -hexadecanoyl- γ -glutamyl-Lys26,Art34GLP-1(7-37) in the absence of additives and in the presence of increasing amounts of the surfactant LPCL (lauroyl lysophosphatidyl choline). The results show that 1 mM and 2 mM LPCL was then measured and adjusted as needed. The solution was 15 enhance solubility relative to the reference composition, while full solubility is obtained in the presence of 5 mM ``` <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: derivatives of human GLP-1 <400> SEQUENCE: 1 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} <210> SEQ ID NO 2 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 2 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 <210> SEO ID NO 3 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: ``` His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Lys Gly $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$ 10 SEQUENCE LISTING #### -continued ``` <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 4 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly <210> SEQ ID NO 5 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 5 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Arg <210> SEQ ID NO 6 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 6 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys <210> SEO ID NO 7 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 7 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys <210> SEQ ID NO 8 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 8 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Lys Gly 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} ``` #### -continued ``` <210> SEQ ID NO 9 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 9 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly <210> SEQ ID NO 10 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 10 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg Lys <210> SEQ ID NO 11 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 11 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 {\tt Gln\ Ala\ Lys\ Glu\ Phe\ Ile\ Ala\ Trp\ Leu\ Val\ Arg\ Gly\ Arg\ Gly\ Arg} Arg Lys <210> SEQ ID NO 12 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 12 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Arg Lys <210> SEQ ID NO 13 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 13 ``` ``` His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Arg Arg Lys <210> SEQ ID NO 14 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 14 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly <210> SEQ ID NO 15 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 15 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 <210> SEQ ID NO 16 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM:
Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 16 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Lys Gly Lys Gly <210> SEQ ID NO 17 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 17 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly <210> SEQ ID NO 18 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: ``` ``` <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 18 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg 20 25 30 Lys <210> SEQ ID NO 19 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 19 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys <210> SEQ ID NO 20 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 20 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Lys Gly <210> SEQ ID NO 21 <211> LENGTH: 31 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 21 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 <210> SEQ ID NO 22 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 22 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg Lys ``` ``` <210> SEQ ID NO 23 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 23 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys <210> SEQ ID NO 24 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 24 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Arg 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} Lys <210> SEQ ID NO 25 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 25 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Arg Arg Lys <210> SEQ ID NO 26 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 26 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys <210> SEQ ID NO 27 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen ``` ``` <400> SEQUENCE: 27 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1.0 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys <210> SEQ ID NO 28 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 28 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg ^{20} ^{20} ^{30} Arg Lys <210> SEQ ID NO 29 <211> LENGTH: 35 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 29 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Lys 35 <210> SEO ID NO 30 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 30 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Lys 35 <210> SEQ ID NO 31 <211> LENGTH: 37 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 31 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly ``` ``` {\tt Gln\ Ala\ Arg\ Glu\ Phe\ Ile\ Ala\ Trp\ Leu\ Val\ Arg\ Gly\ Arg\ Gly\ Arg} Arg Glu Phe Pro Lys 35 <210> SEQ ID NO 32 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 32 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Lys 35 <210> SEQ ID NO 33 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 33 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg 20 25 30 Arg Glu Phe Pro Glu Glu Lys 35 <210> SEQ ID NO 34 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 34 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys 35 <210> SEQ ID NO 35 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 35 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val 10 Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu 25 ``` ``` Val Arg Gly Arg Gly Arg Lys <210> SEQ ID NO 36 <211> LENGTH: 40 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 36 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu 25 Val Arg Gly Arg Gly Arg Arg Lys <210> SEQ ID NO 37 <211> LENGTH: 41 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 37 Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm} Val Arg Gly Arg Gly Arg Arg Glu Lys <210> SEO ID NO 38 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 38 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Glu Phe Lys <210> SEQ ID NO 39 <211> LENGTH: 43 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 39 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Glu Phe Pro Lys ``` ``` <210> SEQ ID NO 40 <211> LENGTH: 44 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 40 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Glu Phe Pro Glu Lys 35 <210> SEQ ID NO 41 <211> LENGTH: 45 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 41 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Glu Phe Pro Glu Glu Lys 35 40 45 <210> SEQ ID NO 42 <211> LENGTH: 37 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 42 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser 10 Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys <210> SEQ ID NO 43 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 43 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys 35 <210> SEQ ID NO 44 <211> LENGTH: 39 ``` ``` <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 44 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys 35 <210> SEQ ID NO 45 <211> LENGTH: 40 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 45 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Lys <210> SEQ ID NO 46 <211> LENGTH: 41 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 46 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val 25 Arg Gly Arg Gly Arg Glu Phe Lys <210> SEQ ID NO 47 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 47 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Lys <210> SEQ ID NO 48 <211> LENGTH: 43 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: ``` ``` <223> OTHER INFORMATION: mutagen <400>
SEOUENCE: 48 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Glu Phe Pro Glu Lys <210> SEQ ID NO 49 <211> LENGTH: 44 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 49 Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Glu Lys <210> SEQ ID NO 50 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 50 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg 20 25 Gly Arg Gly Lys 35 <210> SEQ ID NO 51 <211> LENGTH: 37 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 51 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser 10 Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys <210> SEQ ID NO 52 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 52 ``` ``` Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys 35 <210> SEQ ID NO 53 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 53 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser 10 Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Lys <210> SEQ ID NO 54 <211> LENGTH: 40 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 54 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Lys 35 <210> SEQ ID NO 55 <211> LENGTH: 41 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 55 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Lys <210> SEQ ID NO 56 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 56 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser 10 ``` ``` Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Lys <210> SEQ ID NO 57 <211> LENGTH: 43 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 57 Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Glu Lys <210> SEQ ID NO 58 <211> LENGTH: 35 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 58 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr 10 Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys <210> SEO ID NO 59 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 59 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly 25 Arg Gly Arg Lys <210> SEQ ID NO 60 <211> LENGTH: 37 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 60 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr 1 5 10 15 Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly ``` ``` Arg Gly Arg Arg Lys 35 <210> SEQ ID NO 61 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 61 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr 10 Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly 25 Arg Gly Arg Arg Glu Lys 35 <210> SEQ ID NO 62 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 62 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr 10 Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Lys 35 <210> SEO ID NO 63 <211> LENGTH: 40 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 63 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr 10 Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly 20 Arg Gly Arg Arg Glu Phe Pro Lys <210> SEQ ID NO 64 <211> LENGTH: 41 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 64 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Arg Gly Arg Arg Glu Phe Pro Glu Lys ``` ``` <210> SEQ ID NO 65 <211> LENGTH: 42 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 65 Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr 10 Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Glu Lys <210> SEQ ID NO 66 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 66 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys <210> SEQ ID NO 67 <211> LENGTH: 35 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 67 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu 10 Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys <210> SEQ ID NO 68 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 68 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys 35 <210> SEQ ID NO 69 <211> LENGTH: 37 ``` ``` <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 69 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu 10 Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg 25 Gly Arg Arg Glu Lys 35 <210> SEQ ID NO 70 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 70 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu 1 5 10 15 Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Lys <210> SEQ ID NO 71 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 71 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg 25 Gly Arg Arg Glu Phe Pro Lys 35 <210> SEQ ID NO 72 <211> LENGTH: 40 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 72 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Lys <210> SEQ ID NO 73 <211> LENGTH: 41 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: ``` ``` <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 73 Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Glu Lys 35 <210> SEQ ID NO 74 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 74 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly 20 \\ 20 \\ 30 Lys <210> SEQ ID NO 75 <211> LENGTH: 34 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 75 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly 25 Arq Lys <210> SEQ ID NO 76 <211> LENGTH: 35 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 76 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Lys <210> SEQ ID NO 77 <211> LENGTH: 36 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 77 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu ``` ``` 10 Gly Gln Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly 2.0 25 Arg Arg Glu Lys 35 <210> SEQ ID NO 78 <211> LENGTH: 37 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 78 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Lys 35 <210> SEQ ID NO 79 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 79 \hbox{Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu } \\ Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly 25 Arg Arg Glu Phe Pro Lys 35 <210> SEQ ID NO 80 <211> LENGTH: 39 <212> TYPE:
PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 80 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Arg Glu Phe Pro Glu Lys <210> SEQ ID NO 81 <211> LENGTH: 40 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 81 Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu 10 Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly ``` ``` 30 20 Arg Arg Glu Phe Pro Glu Glu Lys 35 <210> SEQ ID NO 82 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 82 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Lys 35 <210> SEQ ID NO 83 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 83 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys 35 <210> SEQ ID NO 84 <211> LENGTH: 38 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 84 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val 10 Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu 25 Val Arg Gly Lys Gly Lys 35 <210> SEQ ID NO 85 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 85 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Lys ``` ``` <210> SEQ ID NO 86 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 86 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys <210> SEQ ID NO 87 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 87 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Lys <210> SEQ ID NO 88 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 88 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Lys 20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm} <210> SEO ID NO 89 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 89 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val 10 Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg Lys 35 <210> SEQ ID NO 90 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 90 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val ``` ``` Ser Ser Tyr Leu Glu Gly Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys 35 <210> SEO ID NO 91 <211> LENGTH: 39 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 91 His Asp Glu Phe Glu Arg His Ala Glu Gly Thr Phe Thr Ser Asp Val 10 Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu 25 Val Arg Gly Lys Gly Arg Lys 35 <210> SEQ ID NO 92 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 92 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Arg 20 25 30 Lys <210> SEQ ID NO 93 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 93 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Lys Glu Phe Ile Ala Trp Leu Val Arg Gly Arg Gly Arg Lys <210> SEQ ID NO 94 <211> LENGTH: 33 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 94 His Ala Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Arg 20 \hspace{1cm} 25 \hspace{1cm} 30 Lys ``` #### -continued ``` <210> SEO ID NO 95 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEOUENCE: 95 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 10 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Lys Gly Arg Gly Lys <210> SEQ ID NO 96 <211> LENGTH: 32 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: mutagen <400> SEQUENCE: 96 His Gly Glu Gly Thr Phe Thr Ser Asp Val Ser Ser Tyr Leu Glu Gly 1 5 10 15 Gln Ala Ala Arg Glu Phe Ile Ala Trp Leu Val Arg Gly Lys Gly Lys 20 25 30 ``` What is claimed is: 1. A glucagon-like peptide-1 (GLP-1) derivative of formula I (SEQ ID NO:2): 7 8 9 10 11 12 13 14 15 16 17 His-Ala-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Val-Ser-18 19 20 21 22 23 24 25 26 27 28 Ser-Tyr-Leu-Glu-Gly-Gln-Ala-Ala-Lys-Glu-Phe-29 30 31 32 33 34 35 36 37 Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Glu # wherein - (a) the ϵ -amino group of Lys at position 26 is substituted with a lipophilic substituent optionally via a spacer, and $_{45}$ - (b) the lipophilic substituent is (i) CH₃(CH₂)_nCO—wherein n is 6, 8, 10, 12, 14, 16, 18, 20 or 22 (ii) HOOC(CH₂)_mCO—wherein m is 10, 12, 14, 16, 18, 20 or 22, or (iii) lithocholyl, and - (c) the spacer is an amino acid residue except Cys, or the spacer is γ-aminobutanoyl. 10. The pharmaceutical composition of the antidiabetic agent is human insulin. - 2. The GLP-1 derivative of claim 1, wherein the lipophilic substituent is linked to the ϵ -amino group of Lys via a spacer. - 3. The GLP-1 derivative of claim 2, wherein the spacer is is γ-glutamyl. - 4. The GLP-1 derivative of claim 2, wherein the spacer is 55 β -asparagyl. - 5. The GLP-1 derivative of claim 2, wherein the spacer is glycyl. - **6**. The GLP-1 derivative of claim **2**, wherein the spacer is γ-aminobutanoyl. - 7. The GLP-1 derivative of claim 2, wherein the spacer is β -alanyl. - A pharmaceutical composition comprising a GLP-1 derivative of claim 1 and a pharmaceutically acceptable vehicle or carrier. - The pharmaceutical composition of claim 8, further comprising an isotonic agent, a preservative and a buffer. - 10. The pharmaceutical composition of claim 9, wherein the isotonic agent is sodium chloride, mannitol and glycerol. - 11. The pharmaceutical composition of claim 9, wherein the preservative is phenol, m-cresol, methyl 40 p-hydroxybenzoate or benzyl alcohol. - 12. The pharmaceutical composition of claim 9, wherein the buffer is sodium acetate or sodium phosphate. - 13. The pharmaceutical composition of claim 8, further comprising a surfactant. - 14. The pharmaceutical composition of claim 8, further comprising zinc. - 15. The pharmaceutical composition of claim 8, further comprising an antidiabetic agent. - 16. The pharmaceutical composition of claim 15, wherein the antidiabetic agent is human insulin. - 17. The pharmaceutical composition of claim 15, wherein the antidiabetic agent is a hypoglycemic agent. - 18. The pharmaceutical composition of claim 8, further comprising an antiobesity agent. - 19. A method of treating diabetes, comprising adminstering to a patient a therapeutically effective amount of a GLP-1 derivative of claim 1. - 20. A method of treating obesity, comprising administering to a patient a therapeutically effective amount of a60 GLP-1 derivative of claim 1. * * * * * # UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT NO. : 6,458,924 B2 Page 1 of 1 APPLICATION NO.: 09/398111 DATED: October 1, 2002 INVENTOR(S): Knudsen et al. It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below: <u>In claim 1, Column 249, Line 41</u>: "Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Glu" should read --Ile-Ala-Trp-Leu-Val-Arg-Gly-Arg-Gly-. Signed and Sealed this First Day of July, 2008 JON W. DUDAS Director of the United States Patent and Trademark Office