

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 15/12, C07K 13/00 C12N 5/10, G01N 33/74

A1

(11) International Publication Number:

WO 93/19175

(43) International Publication Date:

30 September 1993 (30.09.93)

(21) International Application Number:

PCT/EP93/00697

(22) International Filing Date:

23 March 1993 (23.03.93)

(30) Priority data:

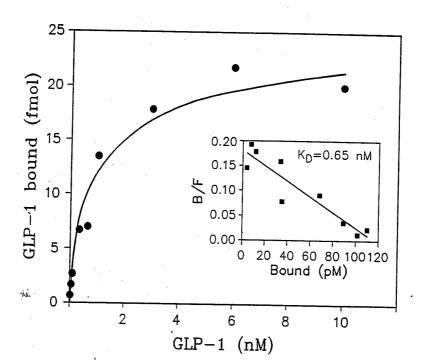
398/92

25 March 1992 (25.03.92)

DK

(71)(72) Applicant and Inventor: THORENS, Bernard [CH/CH]; 70, Grand-Chemin, CH-1066 Epalinges (CH).

(74) Agent: NOVO NORDISK A/S; Patent Department, Novo Allé, DK-2880 Bagsvaerd (DK).


(81) Designated States: AU, BB, BG, BR, CA, CZ, FI, HU, JP, KP, KR, KZ, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SK, UA, US, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: RECEPTOR FOR THE GLUCAGON-LIKE-PEPTIDE-1 (GLP-1)

(57) Abstract

The present invention relates to a recombinant glucagon-like peptide-1 (GLP-1) receptor, to a DNA construct which comprises a DNA sequence encoding a GLP-1 receptor, to methods of screening for agonists of GLP-1 activity, and to the use of the GLP-1 receptor for screening for agonists of GLP-1 activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
		GÁ	Gabon	MW	Malawi
AU	Australia	_		NL	Netherlands
BB	Barbados	GB	United Kingdom		
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PĹ	Poland
BJ	Benin	ΙE	Ireland	PT	Portugai
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JР	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
Ci	Côte d'Ivoire	КZ	Kazakhstan	SN	Senegal
CM	Cameroon	LI	Liechtenstein	SU	Soviet Union
CS	Czechoslovakia -	LK	Srī Lanka	TD	Chad
CZ	Czech Republic	LU	1.uxembourg	TG	Togo
DE	Germany	MC	Monaco	UA	Ukraine
DK	Denmark	MG	Madagascar	US	United States of America
ES	Spain	ML.	Mali	VN	Viet Nam
171	Finland	MN	Mongolia		

RECEPTOR FOR THE GLUCAGON-LIKE-PEPTIDE-1 (GLP-1)

FIELD OF THE INVENTION

The present invention relates to a recombinant glucagon-like peptide-1 (GLP-1) receptor, to a DNA construct which comprises a DNA sequence encoding a GLP-1 receptor, to methods of screening for agonists of GLP-1 activity, and to the use of the GLP-1 receptor for screening for agonists of GLP-1 activity.

BACKGROUND OF THE INVENTION

As used in the present specification the designation GLP-1 comprises GLP-1(7-37) as well as GLP-1(7-36)amide.

Glucose-induced insulin secretion is modulated by a number of hormones and neurotransmitters. In particular, two gut hormones, glucagon-like peptide-1 (GLP-1) and gastric: inhibitory peptide (GIP) potentiate the effect of glucose on 15 insulin secretion and are thus called gluco-incretins (Dupre, in The Endocrine Pancreas, E. Samois Ed. (Raven Press, New York, (1991), 253 - 281) and Ebert and Creutzfeld, (Diabetes Metab. Rev. 3, (1987)). Glucagon-like peptide-1 is a glucoincretin both in rat and in man (Dupre and Ebert and 20 Creutzfeld, vide supra, and Kreymann et al. (Lancet 2 (1987), 1300)). It is part of the preproglucagon molecule (Bell et al. Nature 304 (1983), 368) which is proteolytically processed in intestinal L cells to GLP-1(1-37) and GLP-1(7-36) amide or GLP-1(7-37) (Mojsov et al. (J.Biol.Chem. 261 (1986), 11880) and 25 Habener et al.: The Endocrine Pancreas E. Samois Ed. (Raven Press, New York (1991), 53 - 71). Only the truncated forms of GLP-1 are biologically active and both have identical effects on insulin secretion in beta cells (Mojsov et al. J.Clin.Invest 79 (1987), 616) and Weir et al. (Diabetes 38 (1989), 338). They 30 are the most potent gluco-incretins so far described and are

active at concentrations as low as one to ten picomolar. The stimulatory effect of these gluco-incretin hormones requires the presence of glucose at or above the normal physiological concentration of about 5 mM and is mediated by activation of 5 adenylate cyclase and a rise in the intracellular concentration of cyclic AMP (Drucker et al. Proc.Natl.Acad.Sci. USA 84 (1987), 3434) and Göke et al. (Am.J.Physiol. 257 (1989), G397). GLP-1 has also a stimulatory effect on insulin gene transcription (Drucker et al. Proc.Natl.Acad.Sci. USA 84 10 (1987), 3434). In a rat model of non-insulin-dependent diabetes mellitus (NIDDM) is associated with a reduced stimulatory effect of GLP-1 on glucose-induced insulin secretion (Suzuki et al. Diabetes 39 (1990), 1320). In man, in one study, GLP-1 levels were elevated in NIDDM patients both in the basal state 15 and after glucose ingestion; however, following a glucose load there was only a very small rise in plasma insulin concentration (Ørskov et al. J.Clin.Invest. 87 (1991), 415). A recent study (Nathan et al. Diabetes Care 15 (1992), 270) showed that GLP-1 infusion could ameliorate postprandial 20 insulin secretion and glucose disposal in NIDDM patients. Thus, as a further step in understanding the complex modulation of insulin secretion by gut hormones and its dysfunction in diabetes, we isolated and characterized a complementary DNA for the beta cell GLP-1 receptor and showed that it is part of a 25 new family of G-coupled receptors.

DESCRIPTION OF THE INVENTION

The present invention relates to a recombinant glucagon-like peptide-1 (GLP-1) receptor.

More preferably, the invention relates to a GLP-1 receptor which comprises the amino acid sequence shown in SEQ ID No. 1, or an analogue thereof binding GLP-1 with an affinity constant, KD, below 100 nM, preferably below 10 nM. In the present

context, the term "analogue" is intended to indicate a naturally occurring variant (including one expressed in other animal species, in particular human) of the receptor or a "derivative" i.e. a polypeptide which is derived from the native GLP-1 receptor by suitably modifying the DNA sequence coding for the variant, resulting in the addition of one or more amino acids at either or both the C- and N-terminal ends of the native amino acid sequence, substitution of one or more amino acids at one or more sites in the native amino acid sequence, deletion of one or more amino acids at either or both ends of the native sequence or at one or more sites within the native sequence, or insertion of one or more amino acids in the native sequence.

In another aspect, the present invention relates to a DNA construct which comprises a DNA sequence encoding the GLP-1 receptor of the invention, as well as a recombinant expression vector carrying the DNA construct and a cell containing said recombinant expression vector.

In one embodiment of the invention, the GLP-1 receptor molecule 20 may be provided in solubilised and/or reconstituted form.

In the present context "solubilised" is intended to indicate a receptor as present in detergent-solubilised membrane preparations. "Reconstituted" is intended to indicate a receptor solubilised in the prescence of essential cofactors, e.g. G-protein. In this embodiment the receptor may be in a reconstituted micellar form.

The DNA construct of the invention encoding the GLP-1 receptor preferably comprises the DNA sequence shown in SEQ ID No. 1, or at least a DNA sequence coding for a functional analogue thereof binding GLP-1 with an affinity below 100 nM, preferably below 10 nM or a suitable modification thereof. Examples of suitable modifications of the DNA sequence are nucleotide

substitutions which do not give rise to another amino acid sequence of the GLP-1 receptor, but which may correspond to the codon usage of the host organism into which the DNA construct is introduced or nucleotide substitutions which do give rise to a different amino acid sequence and therefore, possibly, a different protein structure without, however, impairing the properties of the native variant. Other examples of possible modifications are insertion of one or several nucleotides into the sequence, addition of one or several nucleotides at either end of the sequence, or deletion of one or several nucleotides at either either end or within the sequence.

Another example of a DNA construct of the invention is one which encodes a GLP-1 receptor variant particularly suitable for solubilisation and reconstitution.

15 The DNA construct of the invention encoding the present GLP-1 receptor may be prepared synthetically by established standard methods, e.g. the phosphoamidite method described by Beaucage and Caruthers, Tetrahedron Letters 22 (1981), 1859 - 1869, or the method described by Matthes et al., EMBO Journal 3 (1984), 20 801 - 805. According to the phosphoamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in suitable vectors.

The DNA construct of the invention may also be of genomic or cDNA origin, for instance obtained by preparing a genomic or cDNA library and screening for DNA sequences coding for all or part of the GLP-1 receptor of the invention by hybridization using synthetic oligonucleotide probes in accordance with standard techniques (cf. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989). In this case, a genomic or cDNA sequence encoding the GLP-1 receptor may be modified at a site corresponding to the site(s) at which it is desired to introduce amino acid substitutions, e.g. by

site-directed mutagenesis using synthetic oligonucleotides encoding the desired amino acid sequence for homologous recombination in accordance with well-known procedures.

Finally, the DNA construct may be of mixed synthetic and 5 genomic, mixed synthetic and cDNA or mixed genomic and cDNA origin prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate), the fragments corresponding to various parts of the entire DNA construct, in accordance with standard techniques. The DNA construct may also be prepared by polymerase chain reaction using specific primers, for instance as described in US 4,683,202 or Saiki et al., Science 239 (1988), 487 - 491.

The recombinant expression vector into which the DNA construct of the invention is inserted may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

25 In the vector, the DNA sequence encoding the GLP-1 receptor of the invention should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA encoding the GLP-1 receptor of the invention in mammalian cells are the SV40 promoter (Subramani et al., Mol. Cell Biol. 1 (1981), 854 -

864), the MT-1 (metallothionein gene) promoter (Palmiter et al., Science 222 (1983), 809 - 814) or the adenovirus 2 major late promoter. A suitable promoter for use in insect cells is the polyhedrin promoter (Vasuvedan et al., FEBS Lett. 311, 5 (1992) 7 - 11). Suitable promoters for use in yeast host cells include promoters from yeast glycolytic genes (Hitzeman et al., J. Biol. Chem. 255 (1980), 12073 - 12080; Alber and Kawasaki, J. Mol. Appl. Gen. 1 (1982), 419 - 434) or alcohol dehydrogenase genes (Young et al., in Genetic Engineering of Microorganisms for Chemicals (Hollaender et al, eds.), Plenum Press, New York, 1982), or the TPI1 (US 4,599,311) or ADH2-4c (Russell et al., Nature 304 (1983), 652 - 654) promoters. Suitable promoters for use in filamentous fungus host cells are, for instance, the ADH3 promoter (McKnight et al., The EMBO 15 J. 4 (1985), 2093 - 2099) or the tpiA promoter.

The DNA sequence encoding the GLP-1 receptor of the invention may also be operably connected to a suitable terminator, such as the human growth hormone terminator (Palmiter et al., op. cit.) or (for fungal hosts) the TPI1 (Alber and Kawasaki, op. cit.) or ADH3 (McKnight et al., op. cit.) terminators. The vector may further comprise elements such as polyadenylation signals (e.g. from SV40 or the adenovirus 5 Elb region), transcriptional enhancer sequences (e.g. the SV40 enhancer) and translational enhancer sequences (e.g. the ones encoding adenovirus VA RNAs).

The recombinant expression vector of the invention may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. An example of such a sequence (when the host cell is a mammalian cell) is the SV40 origin of replication. The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the gene coding for dihydrofolate reductase (DHFR) or one which confers resistance to a drug, e.g. neomycin, hygromycin or methotrexate.

The procedures used to ligate the DNA sequences coding for the GLP-1 receptor of the invention, the promoter and the terminator, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., op.cit.).

The host cell into which the expression vector of the invention is introduced may be any cell which is capable of producing the GLP-1 receptor of the invention and is preferably a eukaryotic 10 cell, such as invertebrate (insect) cells or vertebrate cells, e.g. <u>Xenopus laevis</u> oocytes or mammalian cells, in particular insect and mammalian cells. Examples of suitable mammalian cell lines are the COS (ATCC CRL 1650), BHK (ATCC CRL 1632, ATCC CCL 10), CHL (ATCC CCL39) or CHO (ATCC CCL 61) cell lines. Methods 15 of transfecting mammalian cells and expressing DNA sequences introduced in the cells are described in e.g. Kaufman and Sharp, J. Mol. Biol. <u>159</u> (1982), 601 - 621; Southern and Berg, J. Mol. Appl. Genet. $\underline{1}$ (1982), 327 - 341; Loyter et al., Proc. Natl. Acad. Sci. USA 79 (1982), 422 - 426; Wigler et al., Cell 20 14 (1978), 725; Corsaro and Pearson, Somatic Cell Genetics 7 (1981), 603, Graham and van der Eb, Virology 52 (1973), 456; and Neumann et al., EMBO J. $\underline{1}$ (1982), 841 - 845.

Alternatively, fungal cells (including yeast cells) may be used as host cells of the invention. Examples of suitable yeasts cells include cells of Saccharomyces spp. or Schizosaccharomyces spp., in particular strains of Saccharomyces cerevisiae. Examples of other fungal cells are cells of filamentous fungi, e.g. Aspergillus spp. or Neurospora spp., in particular strains of Aspergillus oryzae or Aspergillus niger.

The use of Aspergillus spp. for the expression of proteins is described in, e.g., EP 272 277.

The GLP-1 receptor according to the invention may be produced by a method which comprises culturing a cell as described above

in a suitable nutrient medium under conditions which are conducive to the expression of the GLP-1 receptor, and recovering the GLP-1 receptor from the culture. The medium used to culture the cells may be any conventional medium suitable for growing mammalian cells, such as a serum-containing or serum-free medium containing appropriate supplements. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. in catalogues of the American Type Culture Collection).

10 If the GLP-1 receptor has retained the transmembrane and (possibly) the cytoplasmic region of the native variant, it will be anchored in the membrane of the host cell, and the cells carrying the GLP-1 receptor may be used as such in the screening or diagnostic assay. Alternatively, the receptor may 15 be a component of membrane preparations, e.g. in solubilised and/or reconstituted form as defined above.

In a still further aspect, the present invention relates to a method of screening for agonists or enhancers of GLP-1 activity, the method comprising incubating a GLP-1 receptor according to any of claims 1 - 3 with a substance suspected to be an agonist of GLP-1 activity and subsequently with a GLP-1 or an analogue thereof, and detecting any effect from the suspected agonist on the binding of GLP-1 to the GLP-1 receptor. An enhancer being defined as a compound capable of stabilizing interaction between a high-affinity form of the receptor and the corresponding ligand, as described e.g. for the adenosin receptor (Bruns et al. Molecular Pharmacology 38 (1990), 939).

An alternative method of screening for agonists of GLP-1 30 activity, comprises incubating GLP-1 or an analogue thereof with a substance suspected to be an agonist of GLP-1 activity and subsequently with a GLP-1 receptor of the invention, and detecting any effect on the binding to the GLP-1 receptor. Such

agonists of GLP-1 activity will be substances stimulating glucose-induced insulin secretion and may be used in the treatment of NIDDM.

The GLP-1 receptor may be immobilized on a solid support and 5 may, as such, be used as a reagent in the screening methods of the invention. The GLP-1 receptor may be used in membrane-bound form, i.e. bound to whole cells or as a component of membrane preparations immobilised on a solid support.

The solid support employed in the screening methods of the 10 invention preferably comprises a polymer. The support may in itself be composed of the polymer or may be composed of a matrix coated with the polymer. The matrix may be of any suitable material such as glass, paper or plastic. The polymer may be selected from the group consisting of a plastic (e.g. polystyrene, polyvinylchloride, polyurethane, polyacrylamide, polyvinylalcohol, nylon, polyvinylacetate, and any suitable copolymer thereof), cellulose (e.g. various types of paper, such as nitrocellulose paper and the like), a silicon polymer (e.g. siloxane), a polysaccharide (e.g. agarose or 20 dextran), an ion exchange resin (e.g. conventional anion or cation exchange resins), a polypeptide such as polylysine, or a ceramic material such as glass (e.g. controlled pore glass).

The physical shape of the solid support is not critical, although some shapes may be more convenient than others for the present purpose. Thus, the solid support may be in the shape of a plate, e.g. a thin layer or microtiter plate, or a film, strip, membrane (e.g. a nylon membrane or a cellulose filter) or solid particles (e.g. latex beads or dextran or agarose beads). In a preferred embodiment, the solid support is in the form of wheat germ agglutinin-coated SPA beads (cf. US 4,568,649).

Alternatively, screening for GLP-1 agonists can also be carried out using a cell line expressing the cloned GLP-1 receptor functionally coupled to a G-protein. In living cells, exposure to an agonist will give rise to an increase in the intracellular cAMP concentration. The cAMP concentration can then be measured directly. Changes in cAMP levels may also be monitored indirectly using appropriate cell lines in which a measurable signal is generated in response to an increase in intracellular cAMP.

10 It is furthermore contemplated to locate the ligand-binding site on the GLP-1 receptor of the invention, for instance by preparing deletion or substitution derivatives of the native GLP-1 receptor (as described above) and incubating these with ligands known to bind the full-length GLP-1 receptor and 15 detecting any binding of the ligand to the GLP-1 receptor deletion derivative. Once the ligand-binding site has been located, this may be used to aquire further information about the three-dimensional structure of the ligand-binding site. Such three-dimensional structures may, for instance, protein engineering, 20 established by means of modelling, NMR technology and/or crystallographic techniques. Based on the three-dimensional structure of the ligand-binding site, it may be possible to design substances which are agonists to the GLP-1 molecule.

25 The characterization of the GLP-1 receptor is of considerable physiological and pathological importance. It will help study a fundamental aspect of the entero-insular axis (Unger and Eisentraut, Arch.Int.Med. 123 (1969), 261): the potentiating effect of gut hormones on glucose-induced insulin secretion, the role of these hormones in the control of glucose homeostasis and also the possible therapeutic use of GLP-1 to stimulate insulin secretion in NIDDM patients (Mathan et al. Diabetes Care 15 (1992), 270). Investigation of the regulated expression and desensitization of the receptor in the normal

state and during the development of diabetes will contribute to a better understanding of the modulation of insulin secretion in normal and pathological situations. Availability of antibodies against this receptor may also allow an analysis of 5 the surface localization of this receptor and its distribution relative to the beta cell glucose transporter GLUT2 (Thorens et al. Cell 55 (1988), 281 and Orci et al. Science 245 (1989), 295). This aspect pertains to the hypothesis that the beta cell membrane has a "regulatory" domain which contains hormone 10 receptors (Bonner-Weir Diabetes 37 (1988), 616), and which may be distinct from GLUT2-containing membrane domains previously identified (Thorens et al. Cell 55 (1988), 281 and Orci et al. Science 245 (1989), 295). Finally, the identification of an additional member of this new family of G-coupled receptors 15 will help design experiments to probe the structure-function relationship of these new molecules.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is further illustrated in the following examples with reference to the appended drawings in which

20 Fig. 1A and Fig. 1B which is a continuation of Fig. 1A together show the amino acid sequence of the rat GLP-1 receptor in a comparison with the sequence of the rat secretin receptor (SECR), the opossium parathyroid hormone receptor (PTHR) and the porcine calcitonin receptor (CTR1). The GLP-1 receptor has 25 three N glycosylation sites in the extracellular domain (arrows). Four cysteines are conserved at identical places in the four receptor (boxes). Note the otherwise very divergent sequences in this part of the molecules as well as in the COOHterminal cytoplasmic tail. Sequence identities are denoted by stars and homologies by dots. The location of the putative transmembrane domains are indicated by horizontal bars above the sequences.

SUBSTITUTE SHEET

Fig. 2 shows binding of $125_{I-GLP-1}$ to COS cells transfected with the pGLPR-16 plasmid. Specific binding reaches saturation at 1 to 10 nM GLP-1. Insert: Scatchard analysis of GLP-1 binding.

5 Fig. 3 shows binding of ¹²⁵I-GLP-1 to INS-1 cells. Specific binding reaches saturation at 1 to 10 nM GLP-1. Insert: Scatchard analysis of GLP-1 binding.

Fitting of the curves in Figs. 2 and 3 were performed with the LIGAND program (McPherson, Kinetic, EBDA, Ligand, Lowry. A 10 Collection of radioligand analysis programs (Elsevier, Amsterdam, 1985)).

Fig. 4 shows displacement of ¹²⁵I-GLP-1 binding to COS cells transfected with the rat GLP-1 receptor cDNA. Transfected cells were incubated with 20 pM ¹²⁵I-GLP-1 in the presence of increasing concentrations of cold peptides. Each point was measured in duplicate and the experiments repeated three times for GLP-1, GIP and glucagon and once for VIP and secretin.

Fig. 5 shows stimulation of cyclic AMP formation in COS cells transfected with the rat GLP-1 receptor cDNA. COS cells were transfected with the pcDNA-1 vector alone (open bars) or the pGLPR-1 plasmid (stripped bar) and incubated in the absence or the presence of GLP-1 at the indicated concentration. cAMP production was measured in triplicate with a radioimmunoassay (Amersham).

25 Fig. 6 shows tissue specificity of GLP-1 receptor expression assessed by Northern blotting of RNA from different tissues and from the INS-1 cell line. Ten micrograms of total RNA was analyzed on each lane. Two major RNA species of 2.7 and 3.6 kb were detected in all tissues in which the receptor was 30 detected. The position of the migration of the ribosomal RNAs is indicated to the left of the picture.

Fig. 7 is a comparison of the rat GLP-1 receptor amino acid sequence (rat) and a partial amino acid sequence of the human GLP-1 receptor (human).

The present invention is further illustrated in the following 5 examples which is not intended to be in any way limiting to the scope of the invention as claimed.

EXAMPLE 1

Molecular Cloning and Characterisation of the Rat Islet GLP-1 Receptor cDNA.

10 A rat pancreatic islet cDNA library was constructed in the pcDNA-1 expression vector (Rat pancreatic islets were prepared according to Gotoh et al. (Transplantation 43 (1985), 725). PolyA+ RNA was prepared and the cDNA library was constructed in the pcDNA-1 vector (In Vitrogen) as described by Aruffo and 15 Seed (Proc.Natl.Acad.Sci. USA <u>84</u> (1987), 8573) and Lin et al. (Proc.Natl.Acad.Sci. USA 88 (1991), 3185). Plasmid DNA was prepared from pools of five to eight thousands bacterial clones (Maniatis et al., Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, 1982) and transfected into COS cells 20 (Sompayrac and Dana, Proc.Natl.Acad.Sci. USA 78 (1981), 7575). The presence of GLP-1 receptor expressed in COS cells was assessed by binding of the radioiodinated peptide followed by photographic emulsion autoradiography and screening by dark field microscopy (Gearing et al. EMBO J. 8 (1989), 3667). GLP-25 1(7-36) amide, as well as the other peptides, were purchased from Peninsula Laboratories. Iodination was performed by the iodine monochloride method (Contreras et al. Meth.Enzymol. 92 (1983), 277), the peptide was purified by passage over Sephadex G-10 followed by CM-Sepharose and specific activity was 30 determined by the self displacement technique (Calvo et al. Biochem. 212 (1983), 259). A 1.6 kb cDNA clone (pGLPR-1) was isolated by subfractionation of an original positive pool and

was used to isolate, by DNA hybridization screening, two additional clones from primary positive pools. These plasmids (pGLPR-16 and -87) had inserts of 3.0 and 2.0 kb, respectively. Transfection of these clones into COS cells generated high affinity ($K_D = 0.6$ nM) binding sites for GLP-1 (Fig. 2). This affinity is comparable to that seen for binding of GLP-1 to the rat insulinoma cell line INS-1 (Asfari et al. Endocrinology 130 (1992), 167) ($K_D = 0.12$ nM; Fig. 3). In both cases a single high affinity binding component was detected. The binding to GLP-1 receptor transfected COS cells reached a plateau between 1 and 10 nM. At concentrations above 10 nM a second, high capacity, low affinity, binding component was detected. Although specifically displacable by cold GLP-1, this binding was also present in COS cells transfected with the expression 5 vector alone and was therefore not further characterized.

Binding of GLP-1 to the receptor expressed in COS cells was displaced by cold GLP-1 with a 50 percent displacement achieved at 0.5 to 1 nM (Fig. 4). Other peptide hormones of related structure such as secretin, gastric inhibitory peptide (GIP) and vasoactive intestinal peptide (VIP) (Dupre in The Endocrine Pancreas, E. Samois Ed. (Raven Press, New York, (1991), 253 - 281) and Ebert and Creutzfeld, Diabetes Metab. Rev. 3, (1987) did not displace binding. Glucagon could displace the binding by 50 percent but only at a concentration of one micromolar (Fig. 4). The addition of subnanomolar concentrations of GLP-1 to transfected COS cells stimulated the production of cyclic AMP indicating that the receptor was functionally coupled to activation of adenylate cyclase (Fig. 5).

DNA sequence analysis of the rat GLP-1 receptor cDNA revealed 30 a major open reading frame coding for a 463 amino acid polypeptide (SEQ ID No. 1). Hydrophaphy plot analysis indicated the presence of an amino-terminal hydrophobic region most probably representing a leader sequence. This hydrophobic segment is followed by a hydrophilic domain of about 120 amino

acids which contains three N-linked glycosylation sites. Seven hydrophobic segments are present which may form transmembrane domains. Search for sequence identities showed the GLP-1 receptor to be homologous to the secretin receptor (Ishihara et 5 al. EMBO J. 10 (1991), 1635) (40 percent identity), the parathyroid hormone receptor (Jüppner et al. (Science 254 (1991), 1024) (32.4 percent identity) and the calcitonin receptor (Lin et al. Science 254 (1991), 1022) (27.5 percent identity) (Fig. 1). These four receptors do not share any 10 significant sequence homology with other known members of the G-coupled receptor family and are characterized by a relatively long amino terminal, probably extracellular, domain. sequence of the extracellular domain is unique for each receptor, yet four cysteines are perfectly conserved (boxes in 15 Fig. 1). A fifth cysteine at position 126 of the GLP-1 receptor is also conserved in the parathyroid and calcitonin receptors and at a similar location in the secretin receptor (position 123). The highest sequence identity between the four proteins resides in the transmembrane domains. The carboxyl terminal, 20 cytoplasmic, ends of each receptor are also very different. These receptors all stimulate the production of cyclic AMP in response to ligand binding (Ishihara et al. EMBO J. 10 (1991), 1635), Jüppner et al. (Science 254 (1991), 1024) and Lin et al. Science 254 (1991), 1022) and are presumably coupled to the 25 cyclase via $Gs\alpha$. In that respect, it is interesting to note that a sequence motif present in the third cytoplasmic loop of the GLP-1 receptors (RLAK, present just before the sixth transmembrane domain) is very similar to a motif of the beta2 adrenergic receptor (KALK) present at the same location and 30 whose basic amino acids have been shown to be important in the coupling of the receptor to $Gs\alpha$ (Okamoto et al. Cell 67 (1991); 723). Moreover, in the beta2 adrenergic receptor, this motif is preceded by a basic amino acid located twelve amino acid toward the amino-terminal end. This basic amino acid is also 35 required at this particular distance for efficient coupling to $Gs\alpha$. In the GLP-1 receptor a lysine residue is also present at a similar location. This suggests that, despite the very low overall sequence identity, a structural feature may have been conserved in the third cytoplasmic loop between the two receptors which, may be required for the coupling of receptor 5 to the $Gs\alpha$ protein.

Determination of the tissue distribution of the GLP-1 receptor was performed by Northern blot analysis. Northern blot analysis was performed with 10 μg of total RNA (Chomczynski and Sacchi, Anal.Biochem. 126 (1987), 156) denatured with glyoxal (McMaster 10 and Carmichael, Proc.Natl.Acad.Sci. USA 74 (1977), separated on a 1% agarose gel and transferred to Nylon membranes (Thomas, Proc.Natl.Acad.Sci. USA 77 (1980), 5201). Hybridization was performed with the random primed labelled (Feinberg and Vogelstein, Anal.Biochem. 132 (1983), 6) 1,6 kb 15 pGLPR-1 insert. Two mRNAs of 2.7 and 3.6 kb could be detected in pancreatic islets as well as in rat insulinoma cell lines (INS-1), in stomach and in lung (Fig. 6). No GLP-1 receptor mRNA could be detected in brain, liver, thymus, muscle, intestine and colon. The presence of the GLP-1 receptor has 20 been reported in stomach where the peptide inhibits acid secretion by parietal cells in in vivo experiments (Schjoldager et al. Dig.Dis.Sci. 34 (1989), 703) but stimulates acid secretion on isolated parietal glands (Schmidtler et al. Am.J.Physiol. 260 (1991), G940). Binding sites for GLP-1 have 25 also ben reported in lung membrane preparations (Richter et al. FEBS Letter 1 (1990), 78) but the role of the hormone on lung physiology is not known.

A stable cell line expressing the cloned rat GLP-1 receptor was established by Ca-phosphate mediated transfection (Maniatis et al., Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Laboratory, 1989) of the CHL cell line (ATCC CCL39). The plasmid, pGLPR-1, which contains a 1.6 kb rat GLP-1 receptor cDNA insert cloned in the pCDNA-1 vector, was cotransfected with the pWL-neo plasmid (Stratagene, La Jolla,

CA) into CHL cells. The pWL-neo plasmid contains the neomycin resistance gene. Stable clones were selected in medium containing 0.8 mg/ml G418. A stable transformant expressing an estimate of 70.000 rat GLP-1 receptors pr cell was selected by 5 this scheme and further propagated in the presence of 80 μM G418. Membranes from this transformant was subsequently used in the high-volume-throughput-screening (HVTS) assay as described in Example 3. Characterization of the receptor expressed by the GLP-1 R/CHL cell line led to an estimated Kd of 0.8 nM for whole cells, 2.3 nM for cell membranes using 125I-GLP-1(7-36) amide as radioligand.

EXAMPLE 2

Molecular cloning of the human islet GLP-1 receptor cDNA.

Human islets were prepared as described (Ricordi et al., 15 Diabetes $\underline{37}$ (1988), 413 - 420), and poly-A⁺ RNA was isolated by affinity chromatography by published methods (Gonda et al., Mol. Cell. Biol. $\underline{2}$ (1982) 617 - 624).

A human islet cDNA library was constructed in the λ ZAPII vector from Stratagene (La Jolla, CA). Briefly, double stranded cDNA 20 was synthesized as previously described (Aruffo and Seed, 84 (1987), 8573 - 8577; Thorens, Proc. Natl. Acad. Sci., USA 89 (1992), 8641 - 8645), and EcoRI/NotI adaptors (Stratagene, La Jolla, CA) were added with T_{λ} DNA ligase.

The resulting cDNA molecules were phosphorylated with T_4 polynucleotide kinase before size fractionation on potassium acetate gradients (Aruffo and Seed, <u>84</u> (1987), 8573 - 8577). Double stranded cDNA with a size above 1.6 kb was ligated into λ ZAPII arms (Stratagene, La Jolla, CA), packaged in λ phage and grown on a lawn of XL-1 Blue E. coli cells as described in protocols from Stratagene.

The cDNA library was screened by hybridization to a 32P labelled

DNA fragment from the rat GLP-1 receptor cDNA by previously described methods (Maniatis et al., Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Laboratory, 1982). The reduced stringency conditions used were: prehybridization and hybridization in 30 % formamide, 5 * SSC, 5 * Denhardt, 50 mM phosphate buffer pH 6.8, 5 mM EDTA, 0.2 % SDS and 100 μ g/ml salmon sperm DNA at 42°C. Washings were 4 * 30 min in 2 * SSC, 0.2 % SDS at 42°C (Maniatis et al., Molecular Cloning. A Laboratory Manual. Cold Spring Harbour Laboratory, 1982).

10 Positive λ phages were purified by replating and hybridization, the cDNA inserts contained in the Bluescript vector present in the λ ZAPII arms were excised using helper phages obtained from Stratagene (La Jolla, CA). The inserts were partially sequenced. One clone designated 3(20) showed high homology to 15 the rat GLP-1 receptor and was sequenced (Tabor and Richardson, Proc. Natl. Acad. Sci., USA 84 (1987), 4767 - 4771) in its entire length. The DNA sequence is shown as SEQ ID No. 3.

From homology analysis (Fig. 7), it was concluded that this cDNA encoded the 3' part of the human GLP-1 receptor.

20 The deduced amino acid sequence of the human receptor has 92 % identity to the rat GLP-1 receptor in the region from amino acid number 170 to amino acid number 463 (numbers refer to the rat sequence).

The isolated human GLP-1 cDNA does not contain the entire open reading frame at the 5' end. However, a full length clone can easily be obtained by methods well known to persons skilled in the art. Among the alternative methods of choice, the following examples should be mentioned: 1) The human islet cDNA library can either be rescreened with a probe from the 5' end of the already cloned sequence. 2) Anchor-PCR or RACE (Rapid Amplification of cDNA Ends) (Kriangkum et al., Nucleic Acids Res. 20 (1992) 3793 - 3794; Troutt et al., Proc. Natl. Acad. Sci., USA 89 (1992), 9823 - 9825) methodology can be used to

clone the remaining 5' sequences from islet RNA. 3) The remaining 5' part can be isolated from human genomic libraries, and DNA fragments considered to represent introns can be identified based on homology to the cDNA of the rat receptor and deleted by mutagenesis.

After cloning of the 5' end of the open reading frame, this part of the cDNA can be fused to the remaining 3' part of the human GLP-1 receptor cDNA by the use of PCR or through fusion at appropriate restriction enzyme recognition sequences 10 identified in both the 5' and the 3' parts.

The cDNA encoding the full length open reading frame can be cloned in suitable mammalian expression vectors and transfected into mammalian cell lines for expression. Examples of such suitable cell lines are the CHO and CHL cells, but other 15 mammalian cells will also express receptors of this type.

It has recently been demonstrated that insect cells (Vasudevan et al. FEBS Lett. 311 (1992), 7 - 11) and microorganisms like e.g. yeast (King et al., Science 250 (1990), 121 - 123) can express G-protein coupled receptors.

20 Recently frog skin melanophore cells have been used to express G-protein coupled receptors (Potenza et al, Analytical Biochem., 206, (1992), 315 - 322) and a functional coupling to adenylate cyclase was demonstrated.

Other microorganisms like <u>Aspergillus</u>, <u>Bacillus</u>, <u>E. coli</u> might 25 be able to express these receptors after appropriate genetic engineering and selection.

It is therefore clear to persons skilled in the art that a number of different expression systems can be designed that will lead to expression of a functional receptor molecule. As demonstrated in Example 3, the rat as well as the human GLP-1 receptor can be used in screening assays for detection of new potential agonist lead structures.

EXAMPLE 3

5 <u>High throughput screening assay for GLP-1 receptor agonists.</u>

Screening of microbial extracts for secondary metabolites with potential GLP-1 agonist activity was carried out using the SPA (Scintillation Proximity Assay) technology (US patent 4568649, Hart and Greenwalt (Mol.Immunol., 16 (1979) 265-267), Udenfri-10 end et al (Proc.Natl.Acad.Sci. USA, 82 (1985) 8672-8676). Wheatgerm agglutinin (WGA) coated SPA beads developed by Amersham International were used (US. patent 4568649, European patent 0154734, Japanese patent appl. 84/52452). The WGA coat allows GLP-1 receptor bearing membranes to be immobilized on 15 the SPA beads. Membranes used in the screening assay were prepared from a CHL (ATTC CCL39) cell line expressing the cloned rat GLP-1 receptor as described in in Example 1. Membranes were prepared essentially as decribed by Unden et al (Eur.J.Biochem. $\underline{145}$ (1984), 525-530). The binding of ^{125}I -GLP-20 1(7-36) amide to such immobilized receptors brings the tracer in close proximity to the scintillant present within the SPA beads resulting in the emission of light. Any unbound ligand will not generate a signal. Thus under assay conditions a microbial extract - containing a component capable of binding to the GLP-25 1 receptor and thereby displacing the tracer - may be identified by virtue of a reduction in signal intensity.

A high throughput assay was established using 96 well microtiter plates. The assay was optimized with regard to the amounts of WGA particles, membrane and tracer used. (The ¹²⁵I- ³⁰ GLP-1(7-36) amide tracer was labelled using the lactoperoxidase method (Morrison et al., Methods Enzymol. <u>70</u> (1980), 214-219) followed by purification on reverse phase HPLC). Using a Pac-

kard TopCountTM microplate scintillation counter (Packard Instrument Company) these optimized conditions resulted in a B_0 of more than 7000 cpm. (Non specific binding determined in the presence of 500 nM unlabelled GLP-1(7-36) amide amounts to less than 1000 cpm. $IC_{50}=0.5-1.0$ nM GLP-1(7-36) amide).

So far 1250 microbial extracts have been screened using the SPA GLP-1 receptor assay. The extracts were tested at a final dilution of 1:400. Under these conditions 15 out of the 1250 extracts resulted in a reduction of specific counts to below the 10 chosen cut-off level. These 15 hits have been further characterized in a secondary assay. This secondary assay was designed to test whether cAMP synthesis in a GLP-1 receptor bearing cell line can be induced by components in the extract. β -TC3 cells (Hanahan et al., Nature 315 (1985) 115-122) and 15 Efrat et al (Proc.Natl.Acad.Sci. USA <u>85</u> (1988) 9037-9041) grown in 96-well microtiter plates were exposed to extracts diluted in culture media. After 20 min at 37°C the cells were lysed by addition of acid and the cAMP concentration determined using the cyclic AMP SPA system (Amersham International). Of the 15 20 primary hits tested in this secondary assay, 5 extracts have been found to significantly increase the cAMP level in β -TC3 cells.

It has thus been demonstrated that it is feasible that the screening approach described in this patent application can result in the isolation of natural compounds with GLP-1 agonist activity. The use of such compunds as lead structures for a medicinal chemistry approach will be of significant importance in the design of novel GLP-1 agonists.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Thorens, Bernard
 - (ii) TITLE OF INVENTION: Novel Peptide
- 5 (iii) NUMBER OF SEQUENCES: 4
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: NOVO NORDISK A/S, Patent Department
 - (B) STREET: Novo Alle
- 10 (C) CITY: Bagsvaerd
 - (E) COUNTRY: Denmark
 - (F) ZIP: DK-2880
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
- 15 (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- 20 (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +45 44 44 88 88
 - (B) TELEFAX: +45 44 49 32 56
- 25 (C) TELEX: 37307
 - (2) INFORMATION FOR SEQ ID NO:1:

		(i) SE	QUEN	ICE C	HARA	CTER	ISTI	cs:	•							
			(A) L	ENGT	H: 3	066	base	pai	rs							
				B) T													
			(C) S	TRAN	DEDN	ESS:	sin	gle								
5			(D) T	OPOL	OGY:	lin	ear									
		(ii) MO	LECU	LE T	YPE:	cDN	A									
		(iii) HY	POTH	ETIC	AL:	NO										
		(vi) OR	IGIN	AL S	OURC	E:						-				
			(A) 0	RGAN	ISM:	Rat										
10		(ix	•	ATUR													
				A) N													
			(B) L	OCAI	ION:	17.	.140	8								
							-										
		(xi)) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0:1:						
									•								
																,	
	TCC	TGAG	CGC	CCCG													49
15					M		la V	al Ti	hr P		er Lo	eu L	eu A	_	eu A	la	
						1				5				•	10		
	СТС	CTG	CTG	СТС	GGG	GCG	GTG	GGC	AGG	GCC	GGC	ccc	CGC	ccc	CAG	сст	97
		Leu															31
				15	•			J	20				, y	25	u 1111	uij	
20	GCC	ACG	GTG	TCC	CTC	TCA	GAG	ACA	GTG	CAG	AAA	TGG	AGA	GAG	TAT	CGG	145
	Ala	Thr	Val	Ser	Leu	Ser	Glu	Thr	Val	Gln	Lys	Trp	Arg	Glu	Tyr	Arg	
			30					35					40				
	C A C	C A O	тос	C * *	007	***	075										
		CAG															193
	піѕ	G1n	cys	uIN	arg	rne	Leu	Inr	GIU	Ala	Pro	Leu	Leu	Ala	Thr	Gly	

55

50

	CTC	TTC	TGC	AAC	CGA	ACC	TTT	GAT	GAC	TAC	GCC	TGC	TGG	CCA	GAT	GGG	241	
	Leu 60	Phe	Cys	Asn	Arg	Thr 65	Phe	Asp	Asp	Tyr	A1a 70	Cys	Trp	Pro	Asp	G1y 75		
E			GGT Gly														289)
•	110		uij	J C1	80	141	71311	•	JC1	85	110	119	,,,	LCu	90	11 P		
			AGT														337	r
	AIG	Ser	Ser	95	Leu	um	uly	піз	100	ıyı	Ary	riie	cys	105	AIG	uiu		
10			TGG														385	;
	ыу	116	Trp 110	Leu	HIS	Lys	ASP	115	ser	ser	Leu	Pro	120	Arg	ASP	Leu		
	TCG	GAG	TGC	GAA	GAG	TCC	AAG	CAA	GGA	GAG	AGA	AAC	TCC	ССТ	GAG	GAA	433	}
15	Ser	G1u 125	Cys	Glu	Glu	Ser	Lys 130	Gln	Gly	Glu	Arg	Asn 135	Ser	Pro	Glu	G1u		
	CAG	стс	CTG	TCG	CTG	TAC	ATT	ATC	TAC	ACG	GTG	GGG	TAC	GCA	стт	TCT	481	L
	G1n 140	Leu	Leu	Ser	Leu	Tyr 145	Ile	Ile	Tyr	Thr	Val 150	Gly	Tyr	Ala	Leu	Ser 155		
			GCC														529	3
20	Phe	Ser	Ala	Leu	Va1 160	He	Ala	Ser	Ala	11e 165		Val	Ser	Phe	Arg 170		•	
			TGC														57	7
	Leu	His	Cys	1hr 175	Arg	Asn	lyr	lle	H1S 180	Leu	Asn	Leu	Phe	A1a 185		Phe		
25	ATC	СТС	CGA	GCA	CTG	TCC	GTC	TTC	ATC	AAA	GAC	GCT	GCC	СТС	AAG	TGG	62	5
	Ile	Leu	Arg	Ala	Leu	Ser	Val	Phe		Lys	Asp	Ala	Ala 200		Lys	·Trp		

•	ATG	TAT	AGC	ACG	GCT	GCG	CAA	CAG	CAC	CAG	TGG	GAT	GGG	CTC	CTC	TCG	673
	Met	Tyr	Ser	Thr	Ala	Ala	Gln	Gln	His	Gln	Trp	Asp	Gly	Leu	Leu	Ser	
		205					210					215					
	TAT	CAG	GAC	TCT	CTG	GGC	TGC	CGA	CTG	GTG	TTC	CTG	СТС	ATG	CAA	TAC	721
5	Tyr	Gln	Asp	Ser	Leu	Gly	Cys	Arg	Leu	Va1	Phe	Leu	Leu	Met	Gln	Tyr	
	220					225			•	-	230					235	
	TGC	GTG	GCG	GCC	AAC	TAC	TAC	TGG	TTG	CTG	GTG	GAA	GGC	GTG	TAT	CTG	769
															Tyr		
					240	-		•		245					250		
10	TAC	ACA	CTG	CTG	GCC	TTC	TCG	GTG	TTC	TCG	GAG	CAG	CGC	ATC	TTC	AAG	817
															Phe		
				255					260				· · · J	265	,.	- 3 -	
	CTG	TAC	CTG	AGC	ATA	GGC	TGG	GGA	GTT	CCG	CTG	CTG	TTC	GTT	ATC	CCC	865
															Ile		
15			270	-		_	•	275					280				
	TGG	GGC	ATT	GTC	AAG	TAT	СТС	TAC	GAG	GAC	GAG	GGT	TGC	TGG	ACC	AGG	913
															Thr		
		285				-	290	•		4		295	-3 -		****	5	
				-													
	AAC	TCC	AAC	ATG	AAC	TAT	TGG	СТС	ATC	ATA	CGC	TTG	CCC	ATT	СТС	TTT	961
20															Leu		
	300					305	•				310					315	
																010	
	GCA	ATC	GGG	GTC	AAC	TTC	CTT	GTC	TTC	ATC	CGG	GTC	ATC	TGC	ATC	GTG	1009
															Ile		1000
	-		-		320					325	3	1		-, -	330	- • •	

			AAG Lys												1057
5			TCC Ser												1105
			GCC Ala												1153
10			CTG Leu												1201
15			GTC Val 400												1249
			AGC Ser												1297
20			AGC Ser												1345
						Ser					Ala			CAA Gln	1393
25		AGC Ser	TGA	GCCC	CAG	TGCT	GCGC	тт с	ETGA	TGGT	с ст	TGCT	GCTG		1445

	GCTGGGTGGC	CATCCCAGGT	GGGAGAGACC	CTGGGGACAG	GGAATATGAG	GGATACAGGC	1505
	ACATGTGTGT	GCGTGCCCGC	ACACCACACA	CACACACACA	CACACACACA	CACACACACA	1565
	CACACACACA	CACACGCTTT	CCTCCTCAAA	CCTATCAAAC	AGGCATCGGC	ATCGGCAGTG	1625
	CCTCCTGGGA	CCACAGACAC	ATGTTCTCCA	AGGAGAACAG	CCTGCTAATT	TAATCTCAGG	1685
5	CGACAGGAAG	AGAGGAAGAA	ACAATTGCTG	TTAAGACGAG	GAGGACTTCT	TCCTGTTAAA	1745
	GCTGCAAGGC	CCTTGGGGTT	CCCTCGGACA	GAACTGCAAA	TCAACCCCGG	AACTCTCGCT	1805
	CAAGGGCAAT	TGCTGACGGG	TGGAACTTGG	GCTTGCGAGA	GGAGGCAGGT	CCATGAGAGA	1865
	сствсссттв	GAACCTCAGC	CAGCACAGCG	CTCATCAAGG	TGAGCTGGCT	GTGCTGTGTG	1925
	CACGGCTGGG	GTTGTCACCT	ACATCAGCCT	TCCTCTCGGA	CAAGAGGCTT	TTCTCTGTGC	1985
0	ATCTGGAGTG	CCGCCATTCC	TCCATCTGCC	CGTTCATCCG	CCATCCTGTC	TTTGCCTTGG	2045
	GGAGGGGGAG	GTTTGTTGAA	GTCATGCCGT	GCAGCTCTTT	CTGGAAATAT	CTGTGGATGG	2105
	TGTTGAAGAT	AAGCATGGGG	GAGATACAAC	AGAGGCAGTC	TTTGCCCATG	GCCACTTCTT	2165
	GCCTGGTCCT	TTAAGCCACT	TTGCTGCTTG	GTTTCTGCCC	TGCATGGGTA	CTACTAGGGC	2225
	AGGTCCCAAG	TTGAGAAGCC	CAGAGGTGAG	GTGTGAACCC	TCAGTTCTGT	TGTAAAGATG	2285
5	CTCAAATACC	CTCTAAGGTT	CATCTAAAGG	AGTAACCTGC	CTAGGGGTGC	TGTTGACCTG	2345
	AAATCAAGAG	GACCAAAGGA	TCCATTGCCA	ACACCCCCA	TCCCCCACAC	ACACCTCATC	2405
	TGTGACCAGA	GTCTATGCTT	TGAATCAGAA	TGGGCTATAT	CCTCTGACCT	CAGAGGCTAT	2465
	GACCCAGAAG	AGATTCTTCC	CTGAATCCTC	CCACTTTGCA	CACATATAGA	CTTTATCCTT	2525

	CTTCACTCTG	TGTCTATTCA	AACGTATAAT	TCTGGTTTCT	CTCACCCCAC	GGAAGAACTA	2 5 85
	GATCACAGCA	ACTGTTATGT	TTGAGGGAGT	GGGGGAGAAG	GTGATTGATT	TGACCCCCTC	2645
	TCCCCCACCG	GTGTTGATAA	GTAGCGTCTG	TCCCACCTCC	AGACTCCACC	CACACATAAT	2705
	GAGCAGCACA	TAGACCAGGA	TGGGGGGGGT	GGTATATCAT	GCTTGCCCTC	CTCCAACCAC	2765
5	TATGAGAAGG	CTAGCAGAAG	ACACCACTGC	ACAGACCCAA	GTCCAAGGAC	TGCCTCCCAG	2825
	GGAATTAGGC	AGTGACTTCC	TAGAGGCCAA	GAAAGACTCC	AAGAGCTGGA	GAAGAATCCT	2885
	AGTCGATCTG	GATCTCTTTT	GAGGTTGGGG	TTGGGGTGGC	TTTCAATGGA	TTCTCTCATG	2945
	AGGCTTATCT	CTCCCTCATC	CCGTGGAGAG	TGGGGGACCC	TCCCTAGTGC	TCACACTAGA	3005
	CACTGTGCCC	CTTGGAGAGG	CATAAGGCAT	GTATGGGAGA	TAATAATGGG	СТАТААААСА	3065
10	Т						3066

(2) INFORMATION FOR SEQ ID NO:2:

15

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 463 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Val Thr Pro Ser Leu Leu Arg Leu Ala Leu Leu Leu Gly
1 5 10 15

	Ala	Val	Gly	Arg 20	Ala	Gly	Pro	Arg	Pro 25	Gln	Gly	Ala	Thr	Val 30	Ser	Leu
	Ser	Glu	Thr 35	Val	G1n	Lys	Trp	Arg 40	Glu	Tyr	Arg	His	G1n 45	Cys	Gln	Arg
5	Phe	Leu 50	Thr	Glu	Ala	Pro	Leu 55	Leu	Ala	Thr	Gly	Leu 60	Phe	Cys	Asn	Arg
	Thr 65	Phe	Asp	Asp	Tyr	A1a 70	Cys	Trp	Pro	Asp	G1 <i>y</i> 75	Pro	Pro	Gly	Ser	Phe 80
10	Val	Asn	Val	Ser	Cys 85	Pro	Trp	Tyr	Leu	Pro 90	Trp	Ala	Ser	Ser	Va1 95	Leu
	Gln	G1 <i>y</i>	His	Va1 100	Tyr	Arg	Phe	Cys	Thr 105	Ala	Glu	Gly	Ile	Trp 110	Leu	His
	Lys	Asp	Asn 115	Ser	Ser	Leu	Pro	Trp 120	Arg	Asp	Leu	Ser	G1u 125	Cys	Glu	Glu
5	Ser	Lys 130	Gln	Gly	G1u	Arg	Asn 135	Ser	Pro	Glu	Glu	Gln 140	Leu	Leu	Ser	Leu
	Tyr 145	Ile	Ile	Tyr	Thr	Va1 150	Gly	Tyr	Ala	Leu	Ser 155	Phe	Ser	Ala	Leu	Va1 160
0	Ile	Ala	Ser	Ala	Ile 165	Leu	Val	Ser	Phe	Arg 170	His	Leu	His	Cys	Thr 175	Arg
	Asn	Tyr	Ile	His 180	Leu	Asn	Leu	Phe	Ala 185	Ser	Phe	Ile	Leu	Arg 190	Ala	Leu
	Ser	Val	Phe	Ile	Lys	Asp	Ala	Ala 200	Leu	Lys	Trp	Met	Tyr 205	Ser	Thr	Ala

	Ala	G1n 210	Gln	His	Gln	Trp	Asp 215	G1y	Leu	Leu	Ser	Tyr 220	Gln	Asp	Ser	Leu
	Gly 225	Cys	Arg	Leu	Val	Phe 230	Leu	Leu	Met	Gln	Tyr 235	Cys	Val	Ala	Ala	Asn 240
5	Tyr	Tyr	Trp	Leu	Leu 245	Val	Glu	Gly	Val	Tyr 250	Leu	Tyr	Thr	Leu	Leu 255	Ala
	Phe	Ser	Val	Phe 260	Ser	G1u	Gln	Arg	Ile 265	Phe	Lys	Leu	Tyr	Leu 270	Ser	Ile
10	Gly	Trp	G1y 275	Val	Pro	Leu	Leu	Phe 280	Val	Ile	Pro	Trp	Gly 285	Ile	Val	Lys
	Tyr	Leu 290	Tyr	Glu	Asp	Glu	Gly 295	Cys	Trp	Thr	Arg	Asn 300	Ser	Asn	Met	Asn
	Tyr 305	Trp	Leu	Ile	Ile	Arg 310	Leu	Pro	Ile	Leu	Phe 315	Ala	Ile	Gly	Val	Asn 320
15	Phe	Leu	Val	Phe	Ile 325	Arg	Val	Ile	Cys	Ile 330	Val	Ile	Ala	Lys	Leu 335	Lys
	Ala	Asn	Leu	Met 340	Cys	Lys	Thr	Asp	Ile 345	Lys	Cys	Arg	Leu	Ala 350	Lys	Ser
20	Thr	Leu	Thr 355	Leu	Ile	Pro	Leu	Leu 360	Gly	Thr	His	Glu	Val 365	Ile	Phe	Ala
	Phe	Va1 370	Met	Asp	Glu	His	Ala 375	_	Gly	Thr	Leu	Arg 380		Val	Lys	Leu
	Phe 385		G1u	Leu	Ser	Phe 390	Thr	Ser	Phe	Gln	G1 <i>y</i> 395		Met	Va1	A1 a	Va1

Leu Tyr Cys Phe Val Asn Asn Glu Val Gln Met Glu Phe Arg Lys Ser 405 410 415

Trp Glu Arg Trp Arg Leu Glu Arg Leu Asn Ile Gln Arg Asp Ser Ser 420 425 430

5 Met Lys Pro Leu Lys Cys Pro Thr Ser Ser Val Ser Ser Gly Ala Thr 435 440 445

Val Gly Ser Ser Val Tyr Ala Ala Thr Cys Gln Asn Ser Cys Ser 450 455 460

- (2) INFORMATION FOR SEQ ID NO:3:
- 10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1909 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- 15 (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(ix) FEATURE:

20 (A) NAME/KEY: CDS

(B) LOCATION: 3..887

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

		AGA (47
	1	Arg H 1	lis I	_eu ¯	Tyr (Cys ⁻ 5	Thr A	Arg /	Asn]	Tyr I	1e F	lis L	.eu A	lsn L	.eu F	he 15	
5		TCC Ser															95
		AAG Lys															143
10		CTC Leu															191
15		CAG Gln 65						Asn									239
		TAC Tyr					Leu										287
20		TTC Phe				· Val											335
		GTC Val			Gly					Leu					Gly		383
25		ACC Thr		Asn					Tyr					Arg		CCC Pro	43]

		CTC Leu 145									479
5	Cys	ATC Ile									527
	160			165			170			175	
		AAA Lys									575
10		ACT Thr									623
15		ACC Thr									671
		CAG G1n 225									719
20		CAG Gln									7 67
		CAC His									815
25		AGC Ser									863

	ACT TGC Thr Cys		Ala			TGAGA	ACTCCA GCGC	CTGCCC	ТСССТ	GGGGT		914
	CCTTGCTG	GCG	GCCGG	GTGGC	AATCC	AGGAG	AAGCAGCCTO	CTAAT	TTGAT	CACAGTG	GCG	974
5	AGAGGAG <i>A</i>	4GG	AAAAA	CGATC	GCTGT	GAAAA	TGAGGAGGAT	TGCTT	CTTGT	GAAACCA	CAG	1034
	GCCCTTGG	GGG	TTCCC	CCAGA	CAGAG	CCGCA	AATCAACCC	AGACT	CAAAC	TCAAGGT	CAA	1094
	CGGCTTAT	ГТА	GTGAA	ACTGG	GGCTT	GCAAG	AGGAGGTGG	T TCTGA	AAGTG	GCTCTTC	TAA	1154
	CCTCAGC	CAA	ACACG	AGCGG	GAGTG	ACGGG	AGCCTCCTC	r gcttg	CATCA	CTTGGGG	TCA	1214
	CCACCCT	CCC	CTGTC	сттстс	TCAAA	GGGAA	GCTGTTTGT	а татст	GGGTT	GCTTATT	тсс	1274
10	CTCATCT	TGC	CCCCT	CATCT	CACTG	CCCAG	тттсттттт	G AGGGC	TTGTT	GGCCACT	GCC	1334
	AGCAGCTO	GTT	TCTGG	GAAATG	GCTGT	AGGTG	GTGTTGAGA	A AGAAT	GAGCA	TTGAGAC	CACG	1394
	GTGCTCG	CTT	стсст	CCAGG	TATTT	GAGTT	GTTTTGGTG	с ствсс	TCTGC	CATGCCC	CAGA	1454
	GAATCAG	GGC	AGGCT	TTGCCA	CCGGG	GAACC	CAGCCCTGG	G GTATG	AGCTG	CCAAGTO	TAT	1514
	TTTAAAG	ACG	CTCAA	AGAATC	СТСТС	GGGTT	CATCTAGGG	A CACGT	TAGGA	ATGTCCA	AGAC	1574
15	TGTGGGT	GTA	GGTTA	ACCTGC	CACTT	CCAGG	ACGCAGAGG	G CCAAG	AGAGA	CATTGCC	стсс	1634
	ACCTCTC	CTG	AATAG	CTTATC	TGTGA	CCACA	ссстстстс	T TGAGA	TTTGG	ATACACT	rc tc	1694
	TAGCTTT	AGG	GGAC	CATGAA	GAGAC	тстст	TAGGAAACC	A ATAGT	CCCCA	TCAGCAG	CCAT	1754
	GGAGGCA	GGC	TCCC	CCTGCC	TTTGA	AATTC	CCCCACTTG	G GAGCT	GATAT	ACTTCAG	CTCA	1814
	стттст	TTA	TTGC	TGTGAT	AGTCT	GTGTG	CACAATGGG	C AATTO	CTGACT	TCTCCC	ATCT	1874

5

35

AGTGAAATGA GCGAAATCAT GGTTGTAGTG ATCTT

1909

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 294 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Arg His Leu Tyr Cys Thr Arg Asn Tyr Ile His Leu Asn Leu Phe Ala 10 1 5 10 15

Ser Phe Ile Leu Arg Ala Leu Ser Val Phe Ile Lys Asp Ala Ala Leu 20 25 30

Lys Trp Met Tyr Ser Thr Ala Ala Gln Gln His Gln Trp Asp Gly Leu 35 40 45

15 Leu Ser Tyr Gln Asp Ser Leu Ser Cys Arg Leu Val Phe Leu Leu Met 50 55 60

Gln Tyr Cys Val Ala Ala Asn Tyr Tyr Trp Leu Leu Val Glu Gly Val
65 70 75 80

Tyr Leu Tyr Thr Leu Leu Ala Phe Ser Val Phe Ser Glu Gln Trp Ile 20 85 90 95

Phe Arg Leu Tyr Val Ser Ile Gly Trp Gly Val Pro Leu Leu Phe Val 100 105 110

Val	Pro	Trp	Gly	Ile	Val	Lys	Ile	Leu	Týr	GTu	Asp	Glu	Gly	Cys	Trp
		115					120					125			

- Thr Arg Asn Ser Asn Met Asn Tyr Trp Leu Ile Ile Arg Leu Pro Ile 130 135 140
- 5 Leu Phe Ala Ile Gly Val Asn Phe Leu Ile Phe Val Arg Val Ile Cys 145 150 155 160
 - Ile Val Val Ser Lys Leu Lys Ala Asn Val Met Cys Lys Thr Asp Ile 165 170 175
- Lys Cys Arg Leu Ala Lys Ser Thr Leu Thr Leu Ile Pro Leu Leu Gly
 10 180 185 190
 - Thr His Glu Val Ile Phe Ala Phe Val Met Asp Glu His Ala Arg Gly 195 200 205
 - Thr Leu Arg Phe Ile Lys Leu Phe Thr Glu Leu Ser Phe Thr Ser Phe 210 215 220
- 15 Gln Gly Leu Met Val Ala Ile Leu Tyr Cys Phe Val Asn Asn Glu Val 225 230 235 240
 - Gln Leu Glu Phe Arg Lys Ser Trp Glu Arg Trp Arg Leu Glu His Leu 245 250 255
- His Ile Gln Arg Asp Ser Ser Met Lys Pro Leu Lys Cys Pro Thr Ser 20 260 265 270
 - Ser Leu Ser Ser Gly Ala Thr Ala Gly Ser Ser Met Tyr Thr Ala Thr 275 280 285

Cys Gln Ala Ser Cys Ser 290

CLAIMS

- 1. A recombinant glucagon-like peptide-1 (GLP-1) receptor.
- 2. A GLP-1 receptor according to claim 1 of mammalian origin.
- 53. A GLP-1 receptor according to claim 2 of rat or human origin.
- 4. A GLP-1 receptor according to claim 3, which comprises the amino acid sequence shown in SEQ ID No. 1, or an analogue thereof binding GLP-1 with an affinity constant below 100 nM, 10 preferably below 10 nM.
 - 5. A GLP-1 receptor according to claim 3, which comprises the partial amino acid sequence shown in SEQ ID No. 3, or an analogue thereof binding GLP-1 with an affinity constant below 100 nM, preferably below 10 nM.
- 15 6. A GLP-1 receptor according to any of the claims 1 to 5, which is in a solubilised or reconstituted form.
 - 7. A DNA construct which comprises a DNA sequence encoding a GLP-1 receptor according to any of the claims 1 to 6.
- 8. A DNA construct according to claim 7, which comprises the 20 DNA sequence shown in SEQ ID No. 1, or a DNA sequence coding for a functional analogue thereof binding GLP-1 with an affinity constant below 100 nM, preferably below 10 nM.
- 9. A DNA construct according to claim 7, which comprises the partial DNA sequence shown in SEQ ID No. 3, or a DNA sequence 25 coding for a functional analogue thereof binding GLP-1 with an affinity constant below 100 nM, preferably below 10 nM.

- 10. A recombinant expression vector which carries an inserted DNA construct according to any of claims 7 to 9.
- 11. A cell containing a recombinant expression vector according to claim 10.
- 5 12. A cell containing a DNA construct according to any of claims 7 to 9 integrated in its genome.
 - 13. A cell according to claim 11 or 12, which is an eukaryotic cell, in particular an insect or a mammalian cell.
- 14. A method of screening for agonists or enhancers of GLP-1 activity, the method comprising incubating a GLP-1 receptor according to any of claims 1 to 6 with a substance suspected to be an agonist of GLP-1 activity and subsequently with a GLP-1 or an analogue thereof, and detecting any effect of binding of GLP-1 or the analogue to the GLP-1 receptor.
- 15 15. A method of screening for agonists or enhancers of GLP-1 activity, the method comprising incubating GLP-1 or an analogue thereof with a substance suspected to be an agonist of GLP-1 activity and subsequently with a GLP-1 receptor of the invention, and detecting any effect of binding of GLP-1 or the 20 analogue to the receptor.
 - 16. Use of a GLP-1 receptor according to any of claims 1 to 6 for screening for agonists of GLP-1 activity.
- 17. Use of DNA constructs according to claims 7 to 9 for isolation of tissue and/or organ specific variants of the GLP-1 25 receptor.
 - 18. Use of a receptor isolated according to claim 17 for the screening of GLP-1 agonists.

1/8

GLPR SECR PTHR CTR1	MAVTPSLLRLALLLLGAVGRAGPRPQGA	28 28 52 42
GLPR SECR PTHR CTR1	TVSLSETVQKWREYRHQCQRFLTEAPLLATGLFPPRLCDVRRVLLEERAHCLQQLSKEKKGALGPETASG KEVLRVPELAESAKDWMSRSAKTKKEKPAEKLYPQAEESREVSDRSRLQDGFILGKQRMLEAQHRCYDRMQKLPPYQGEGLY	61 65 104 72
GLPR SECR PTHR CTR1	C NRTFDDYA C WPDGPPGSFVNVS C PWYLPWASSVLQGHVYRF C T C EGLWDNMS C WPSSAPARTVEVR C PKSLLSLSNK-NGSLFRN C T C LPEWDNIV C WPAGVPGKVVAVP C PDYFYDFNHKGRAYRR C D C NRTWDGWS C WDDTPAGVLAEQY C PDYFPDFDAAEKVTKY C G	105 108 146 114
GLPR SECR PTHR CTR1	AEGIWLHKDNSSLPWRDLSECEESKQGERNSPEEQLLSLYTTYTVGYALSFS QDG-WSETFPRPDLACGVNINNSFNERRHAYLLKLKVMYTVGYSSSLA SNGSWELVPGNNRTWANYSECVKFLTNETREREV-FDRLGMIYTVGYSISLG EDGDWYRHPESNISWSNYTMCNAFTPDKLQNAYILYYLAIVGHSLSIL .* *	157 155 197 162
GLPR SECR PTHR CTR1	II ALVIASAILVSFRHLHCTRNYIHLNLFASFILRALSVFIKDAALKWMYSTAA MLLVALSILCSFRRLHCTRNYIHMHLFVSFILRALSNFIKDAVLFSSDD SLTVAVLILGYFRRLHCTRNYIHMHLFVSFMLRAVSIFIKDAVLYSGVSTDE TLLISLGIFMFLRSISCQRVTLHKNMFLTYVLNSIIIIVHLVVI * * . * . * . * . * *	209 204 249 206
GLPR SECR PTHR CTR1	QQHQWDG-LLSYQDSLGCRLVFLLMQYCVAANYYWLLVEGVYLYVTYCDAHKVGCKLVMIFFQYCIMANYAWLLVEGLYLH IERITEEELRAFTEPPPADKAGFVGCRVAVTVFLYFLTTNYYWILVEGLYLHVPNGELVK-RDPPICKVLHFFHQYMMSCNYFWMLCEGVYLH	252 241 301 246

Fig. 1A

SUBSTITUTE SHEET

2/8

	IV	
GLPR SECR PTHR CTR1	TLLAFSVFSEQRIFKLYLSIGWGVPLLFVIPWGIVKYLYEDEGCWTRNSNMN TLLAISFFSERKYLQAFVLLGWGSPAIFVALWAITRHFLENTGCWDINANAS SLIFMAFFSEKKYLWGFTLFGWGLPAVFVAVWVTVRATLANTECWDLSSGNK TLIVVSVFAEGQRLWWYHVLGWGFPLIPTTAHAITRANLFNDNCW-LSVDTN .* *.*	304 293 353 297
GLPR SECR PTHR CTR1	V YWLIIRLPILFAIGVNFLVFIRVICIVIAKLKANLMCKTDIKCRLAKST VWWVIRGPVILSILINFIFFINILRILMRKLRTQETRGSETNH-YKRLAKST KW-IIQVPILAAIVVNFILFINIIRVLATKLRETNAGRCDTRQQYRKLLKST LLYIIHGPVMAALVVNFFFLLNILRVLVKKLKESQEAESHMYLKAVRAT .*. * ** ** ** **	353 344 404 346
GLPR SECR PTHR CTR1	VI LTLIPLLGTHEVIFAFVMDEHARGTLRFVKLFTELSFTSFQGFMVAVLYCFV LLLIPLFGIHYIVFAFSHEDAMEVQLFFELALGSFQGLVVAVLYCFL LVLMPLFGVHYIVFMATPYTEVSGILWQVQMHYEMLFNSFQGFFVAIIYCFC LILVPLLGVQFVVLPWRPSTPLLGKIYDYVVHSLIHFQGFFVAIIYCFC * **** *****************************	405 391 456 395
GLPR SECR PTHR CTR1	NNEVQMEFRKSWERWRLE-RLNIQRDSSMKPLKC	438 424 508 437
GLPR SECR PTHR CTR1	PTSSVSSGATVATNGPTHSTKA ALSLSPRLAPGAGASANGHHQLPGYVKHGSISENSLPSSGPEPGTKDDGYLN AETVEIPVYICHQEPREEPAGEEPVVEVEG	449 435 560 467
GLPR SECR PTHR CTR1	GSSVYAATCQNSCS 463 STEQSRSIPRASII 449 GSGLYEPMVGEQPPPLLEEERETVM 585 VEVIAMEVLEQETSA 482	

Fig. 1B

SUBSTITUTE SHEET

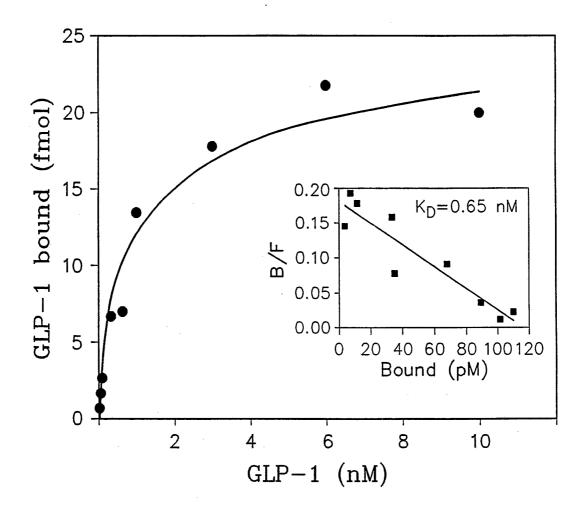


FIG. 2

SUBSTITUTE QUEET

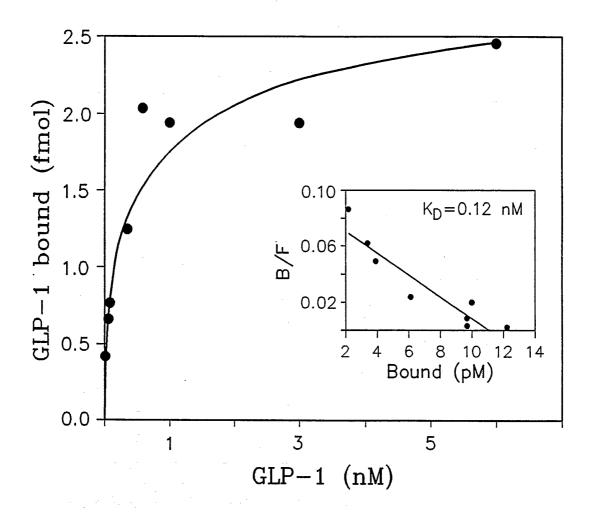


FIG. 3

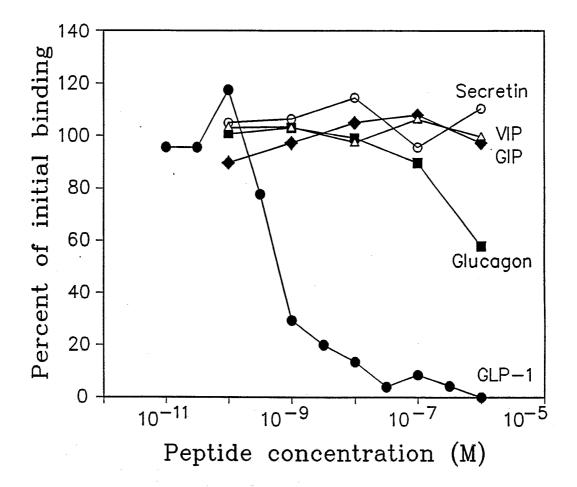


FIG. 4

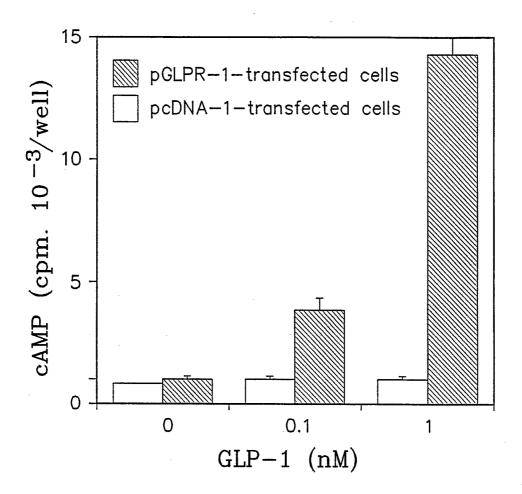


FIG. 5

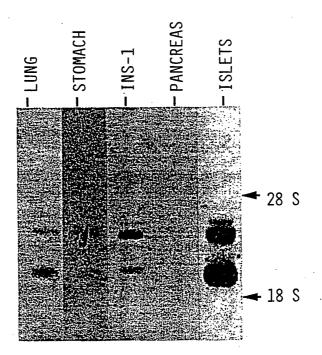


FIG. 6

RAT	- MAVTPSLLRLALLLLGAVGRAGPRPQGATVSLSETVQKWREYRHQCQRFL -	· 50
RAT	- TEAPLLATGLFCNRTFDDYACWPDGPPGSFVNVSCPWYLPWASSVLQGHV -	·100
RAT	- YRFCTAEGIWLHKDNSSLPWRDLSECEESKQGERNSPEEQLLSLYIIYTV -	150
RAT	- GYALSFSALVIASAILVSFRHLHCTRNYIHLNLFASFILRALSVFIKDAA -	-200
HUM	- RHLYCTRNYIHLNLFASFILRALSVFIKDAA -	- 31
RAT	- LKWMYSTAAQQHQWDGLLSYQDSLGCRLVFLLMQYCVAANYYWLLVEGVY -	·250
HUM	- LKWMYSTAAQQHQWDGLLSYQDSLSCRLVFLLMQYCVAANYYWLLVEGVY -	81
RAT	- LYTLLAFSVFSEQRIFKLYLSIGWGVPLLFVIPWGIVKYLYEDEGCWTRN -	300
HUM	- LYTLLAFSVFSEQWIFRLYVSIGWGVPLLFVVPWGIVKILYEDEGCWTRN -	131
RAT	- SNMNYWLIIRLPILFAIGVNFLVFIRVICIVIAKLKANLMCKTDIKCRLA -	·350
HUM	- SNMNYWLIIRLPILFAIGVNFLIFVRVICIVVSKLKANLMCKTDIKCRLA -	·181
RAT		400
HUM	- KSTLTLIPLLGTHEVIFAFVMDEHARGTLRFIKLFTELSFTSFQGLMVAI -	·231
RAT	- LYCFVNNEVQMEFRKSWERWRLERLNIQRDSSMKPLKCPTSSVSSGATVG -	·450
HUM	- LYCFVNNEVQLEFRKSWERWRLEHLHIQRDSSMKPLKCPTSSLSSGATAG -	·281
RAT	- SSVYAATCQNSCS -463	
HUM	- SSMYTATCQASCS -294	

FIG. 7

SUBSTITUTE QUEET

International Application No

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)6 According to International Patent Classification (IPC) or to both National Classification and IPC Int.C1. 5 C12N15/12; C07K13/00; G01N33/74 II. FIELDS SEARCHED Minimum Documentation Searched? Classification System Classification Symbols Int.Cl. 5 C12N ; C07K ; G01N Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹ Category o Citation of Document, 11 with indication, where appropriate, of the relevant passages 12 Relevant to Claim No.13 P,X PROCEEDINGS OF THE NATIONAL ACADEMY OF 1-18 SCIENCES OF USA. vol. 89, no. 18, 15 September 1992, **WASHINGTON US** pages 8641 - 8645 THORENS B; 'Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1.1 see the whole document FEBS LETTERS. 1-18 vol. 267, no. 1, July 1990, AMSTERDAM NL pages 78 - 80 Richter G; Goke R; Goke B; Arnold R; 'Characterization of receptors for glucagon-like peptide-1(7-36)amide on rat lung membranes. $^{\rm o}$ Special categories of cited documents : 10 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this International Search Report 12 JULY 1993 6 1. W. 95 International Searching Authority Signature of Authorized Officer NAUCHE S.A. **EUROPEAN PATENT OFFICE**

Form PCT/ISA/210 (second sheet) (January 1985)

II. DOCUME	NTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)	
ategory °	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
and gory		1-18
	FEBS LETTERS. vol. 262, no. 1, March 1990, AMSTERDAM NL pages 139 - 141	1-10
	UTTENTHAL, L.O. ET AL; 'Characterization of high-affinity receptors for truncated	
	glucagon-like peptide-1 in rat gastric glands. ¹ see the whole document	
	266 CHE AUDIE COCCUMENC	
	•	