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(57) ABSTRACT

A class of soft-input soft-output demodulation schemes for
multiple-input multiple-output (MIMO) channels, based on
the sequential Monte Carlo (SMC) framework under both
stochastic and deterministic settings. The stochastic SMC
sampler generates MIMO symbol samples based on impor-
tance sampling and resampling techniques, while the deter-
ministic SMC approach recursively performs exploration
and selection steps in a greedy manner. By exploiting the
artificial sequential structure of the existing simple Bell Labs
Layered Space Time (BLAST) detection method based on
nulling and cancellation, the proposed algorithms achieve an
error probability performance that is orders of magnitude
better than the traditional BLAST detection schemes while
maintaining a low computational complexity. Performance
is comparable with that of the sphere decoding algorithm,
with a much lower complexity. Both the stochastic and
deterministic SMC detectors can be employed as the first-
stage demodulator in an iterative or turbo receiver in coded
MIMO systems.
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FIG. 6
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FIG. 7

Stochastic SMC turbo receiver, pilot + feedback
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FIG. 8

Stochastic SMC turbo receiver, genie - aided
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FIG. 9

Deterministic SMC turbo receiver, pilot only
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FIG. 10

Deterministic SMC turbo receiver, pilot + feedback
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FIG. 11

Deterministic SMC turbo receiver, genie - aided
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NEAR-OPTIMAL MULTIPLE-INPUT
MULTIPLE-OUTPUT (MIMO) CHANNEL
DETECTION VIA SEQUENTIAL MONTE

CARLO

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
patent application No. 60/450,777, filed Feb. 28, 2003,
incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of Invention

The invention relates generally to digital data receivers.

2. Description of Related Art

The ever-increasing demand for high-speed wireless data
transmission has posed great challenges for wireless system
designers to achieve high-throughput wireless communica-
tions in radio channels with limited bandwidth. Multiple
transmit and receive antennas are most likely to be the
dominant solution in future broadband wireless communi-
cation systems, as the capacity of such a multiple-input
multiple-output (MIMO) channel increases linearly with the
minimum between the numbers of transmit and receive
antennas in a rich-scattering environment, without increas-
ing the bandwidth or transmitted power [1, 2, 3]. See the
Appendix for references. Because of the extremely high
spectrum efficiency, MIMO techniques have been incorpo-
rated into several standards of various wireless applications,
such as the IEEE 802.11 a wireless LAN, the IEEE 802.16
wireless MAN, and the WCDMA standards.

The Bell-labs layered space-time (BLAST) architecture is
an example of uncoded MIMO systems now under imple-
mentation. In the literature [4, 5, 6], different BLAST
detection schemes have been proposed based on nulling and
interference cancellation (IC), such as the method of zero-
forcing (ZF) nulling and IC with ordering, and the method
based on minimum mean-squared error (MMSE) nulling and
IC with ordering. The performance of these simple detection
strategies is significantly inferior to that of the maximum
likelihood (ML) detection, whose complexity grows expo-
nential in terms of the number of transmit antennas. In [7, 8,
9], sphere decoding is proposed as a near-optimal BLAST
detection method, whose complexity is cubic in terms of the
number of transmit antennas. As hard decision algorithms,
the above schemes suffer performance losses when concat-
enated with outer channel decoder in coded MIMO systems.
In [8], a list sphere decoding algorithm is proposed to yield
soft-decision output by storing a list of symbol sequence
candidates. However, the complexity is significantly
increased compared with the original sphere decoding algo-
rithm.

The present invention provides a new family of demodu-
lation algorithms based on sequential Monte Carlo methods.
The new algorithms may advantageously be used for soft
MIMO demodulation and achieve near-optimal performance
with low complexities.

The sequential Monte Carlo (SMC) methodology [10, 11,
12, 13, 14, 15] originally emerged in the field of statistics
and engineering and has provided a promising new para-
digm for the design of low complexity signal processing
algorithms with performance approaching the theoretical
optimum for fast and reliable communication in highly
severe and dynamic wireless environments. The SMC can be
loosely defined as a class of methods for solving online
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2

estimation problems in dynamic systems, by recursively
generating Monte Carlo samples of the state variables or
some other latent variables. In [10, 11, 12, 15], SMC has
been successfully applied to a number of problems in
wireless communications including channel equalization,
joint data detection and channel tracking in fading channels,
and adaptive OFDM receiver in time dispersive channels.

BRIEF SUMMARY OF THE INVENTION

The present inventor has recognized that an SMC detector
may advantageously be used as the soft-input soft-output
demodulator in a turbo receiver. In particular, the present
invention encompasses a new class of detection schemes
that may advantageously be used for soft-input soft-output
MIMO detection for quasi-static MIMO fading channels.

This novel class of receivers is based on the SMC
framework and can have either stochastic or deterministic
settings. The stochastic SMC demodulator employs the
techniques of importance sampling and resampling, where
the trial sampling distribution is formed by exploiting the
artificial sequential structure of the existing simple nulling
and cancellation BLAST detection scheme. The determin-
istic SMC demodulator recursively performs exploration
and selection steps to detect the final survivor signal paths
with the corresponding importance weights. Being soft-
input and soft-output in nature, these SMC detectors can
serve as the soft demodulator in a turbo receiver for coded
MIMO systems, where the extrinsic information is itera-
tively exchanged between the soft demodulator and the soft
outer channel decoder to successively improve the receiver
performance. Moreover, when the channel is unknown and
is estimated by using pilot symbols, the decoded code bits
with high reliability can act as pilots for channel re-estima-
tion. By performing iterative channel estimation and data
detection, the receiver performance can be further improved.
The invention can be used in other applications as well, such
as in decoding linear dispersion MIMO systems.

In one aspect of the invention, a method for demodulating
data from a channel includes receiving a priori probability
values for symbols transmitted across the channel, in accor-
dance with the a priori probability values, determining a set
of Monte Carlo samples of the symbols weighted with
respect to a probability distribution of the symbols, and
estimating a posteriori probability values for the symbols
based on the set of Monte Carlo samples.

A related program storage device and receiver apparatus
are also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, benefits and advantages of the
present invention will become apparent by reference to the
following text and figures, with like reference numbers
referring to like structures across the views, wherein:

FIG. 1 illustrates a transmitter structure of a coded mul-
tiple-input, multiple-output (MIMO) system;

FIG. 2 illustrates a receiver structure of a coded MIMO
system,

FIG. 3 illustrates a stochastic SMC MIMO demodulation
process;

FIG. 4 illustrates a deterministic SMC MIMO demodu-
lation process;

FIG. 5 illustrates bit error rate (BER) performance of
various MIMO demodulation algorithms in an uncoded
MIMO system;
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FIG. 6 illustrates BER performance of a turbo MIMO
receiver employing the stochastic sequential Monte Carlo
(SMC) MIMO demodulator, where channel estimation is
based on pilots only;

FIG. 7 illustrates BER performance of a turbo MIMO
receiver employing the stochastic SMC MIMO demodula-
tor, where iterative channel estimation is based on pilots and
the decoded symbols with high reliability;

FIG. 8 illustrates BER performance of a turbo MIMO
receiver employing the stochastic SMC MIMO demodula-
tor, where genie-aided channel estimation is based on pilots
and all information symbols;

FIG. 9 illustrates BER performance of a turbo MIMO
receiver employing the deterministic SMC MIMO demodu-
lator, where channel estimation is based on pilots only;

FIG. 10 illustrates BER performance of a turbo MIMO
receiver employing the deterministic SMC MIMO demodu-
lator, where iterative channel estimation is based on pilots
and the decoded symbols with high reliability; and

FIG. 11 illustrates BER performance of a turbo MIMO
receiver employing the deterministic SMC MIMO demodu-
lator, where genie-aided channel estimation is based on
pilots and all information symbols.

DETAILED DESCRIPTION OF THE
INVENTION

The description is organized as follows. Section 2
describes the system under consideration. Background mate-
rials on the SMC methodology are provided in Section 3. In
Section 4, we derive the new class of soft MIMO demodu-
lation algorithms using the stochastic SMC and the deter-
ministic SMC, based on the simple nulling and cancellations
BLAST detection scheme. Computer simulation results are
provided in Section 5, and conclusions are drawn in Section
6.

2 System Descriptions

In this section, we consider a generic coded MIMO
system with a turbo receiver. The transmitter and receiver
structures are shown in FIG. 1 and FIG. 2, respectively. In
FIG. 2, IT denotes the interleaver and IT' denotes the
deinterleaver.

2.1 Transmitter Structure

At the transmitter 100, a block of information bits {a, } are
encoded into code bits {b,} at a channel encoder 10. The
code bits are then randomly interleaved at an interleaver 120
and mapped to an M-PSK or M-QAM modulation symbol
stream using a QPSK modulator 130, taking values from a
finite alphabet set A={a,, a,, . . ., a,,}. Bach symbol is
serial-to-parallel (S/P) converted at an S/P converter 140 to
n, sub-streams via demultiplexing, and each sub-stream is
associated with one of a number n; of transmit antennas 150.
At each time instance, one symbol from each sub-stream is
transmitted from its corresponding antenna, resulting in n,
symbols transmitted simultaneously in the same frequency
band. Such a space-time bit interleaved coded modulation
(BICM) allows for a better exploitation of the spatial,
temporal and frequency diversity resources available in the
wireless MIMO systems [16].

We consider a MIMO system with n,. transmit and ng
receive antennas under the BLAST assumption, i.e., assum-
ing that nz =n;in order to guarantee that the transmitted data
symbols can be uniquely decoded at the receiver. The
wireless channel is assumed to have rich-scattering and flat
fading. The fading between each transmit and receive
antenna pair is assumed to be independent. The channel is
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4

also assumed quasi-static, i.e., it is static over a data burst
and changes from burst to burst.

At the receiver 200, after matched filtering and symbol
rate sampling at the receiver’s antennas 205, the received
signal vector from all n, receive antennas 205 is denoted as

YO -y, @O17

In complex baseband representation, the received signal can
be expressed as the linear combination of the transmitted

signal s(i)=[s,(), . . . , s, (D"

yiy= | L Hs@y v, i=1..N,
nr

where s(i)eA™, p is the total signal energy at the transmitter,
HeC""7 is the complex fading channel matrix, v(i)~N_(O,
L) is the spatially and temporally white Gaussian noise, and
N is the data burst length.

Denote QaH”H. The received signal is matched-filtered
and whitened, to obtain (here for simplicity, we drop the
time index 1)

€Y

1 f 1 2)
uéQTHHy: ﬁﬂis+w,
nr
where
P
w=Q"2H"v ~ N0, g ).

Based on (2), the maximum likelihood (ML) MIMO detec-
tor is given by:

2 ©)

f I
u— £ Ozs) .
nr

Subsequently, the complexity of the ML receiver grows
exponentially in the number of transmit antennas. Alterna-
tive sub-optimal approaches such as the method based on
zero-forcing nulling and cancellation with ordering, and the
method based on MMSE nulling and cancellation with
ordering [1, 6], have lower complexities but also incur
substantial performance loss. The sphere decoding method
has recently emerged as a near-optimal BLAST detection
algorithm. However, its complexity is cubic in term of the
number of transmit antennas [7, 8].

2.2 Turbo Receiver

Since the combination of M-PSK or M-QAM modulation
and symbol-antenna mapping effectively acts as an inner
encoder in the MIMO transmitter, the whole system can be
perceived as a serial concatenated system and an iterative
(turbo) receiver [17, 18] can be designed for such a system
as shown in FIG. 2. The turbo receiver 200 includes two
stages: the soft-input soft-output SMC demodulator 210 to
be developed in Section 4 followed by a soft channel
decoder 260. The two stages are separated by a deinterleaver
250 and an interleaver 230.

§=arg min
seA"T
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The soft MIMO demodulator 210 takes as the input the
extrinsic information A,[b,] delivered by the channel
decoder 260 in the previous turbo iteration as well as the
received signals u given by (2). First, the symbol a priori
probability is calculated at the symbol probability calculator
220 as follows. Assuming QPSK modulation is employed,
the bit pair {f,,, f,,} is mapped to symbol a,. Additionally,
assume that in the MIMO systems, the transmitted symbol
s, corresponds to the interleaved code bit pair {b,
b, 2} fork=1, ..., n;. The a priori symbol probability for

each symbol a€A is then given by
ijép (Sk:aj):P (bn(k,l)zﬁj,l)'P (bn(k,z):ﬁj,z)a 4)

where the code bit probability can be computed from the
corresponding log likelihood ratio (LLR) as follows [19]:
exp(2[b;])

1 +exp(Az[b:])

= %[1 + la.nh(%exp(/lz [bi]))].

5
Pi=1)= ©

Note that initially the extrinsic information is set to be zero
so that the QPSK symbols are equally probable.
At the output of the soft demodulator 210 are the a

posteriori symbol probabilities P(s;=a/u), k=1, 2, . . ., ng
=1, 2, ..., M. Denote
Sf(j) B {(51, cee s Skels @)y Sktls e s Spp)t ST E A, l#k}.

The exact expression of P(s;=a lu) is given by

pul s =aj)P(sy =aj;) (6)

Plsi =aj|u)=

plu)
2
p A1
o P(sg = aj) E exp[— u— [ — Q2
nr
xeS(j)

Since the summations in (6) are over all the A"~ possible
vector s in S, j=1, . . ., M, its complexity is exponential
in the number of transmit antennas and impractical for
systems with high spatial-multiplexing gain. Here, we
develop some low complexity algorithms for approximating
(6). Based on the symbol a posteriori probabilities computed
by the soft demodulator 210, the bit LLR computer 240
calculates the a posteriori log-likelihood ratios (LLRs) of the
interleaved code bits b, ;). Assuming that the code bit b,
is included in a QPSK symbol s,eA, the LLR of this code bit
is given by

Ploiy =1 uw)
P(bniy =0 u)

> Plsc =a; | w
@ j& Aisy = j,by(y=1 /

y=0 Plsi =a;|w’

s @

A1 lbr] = log

= log
ZajeA:xk :aj,b,m-
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-continued

., nr.

Using the Bayes’ rule, (7) can be written as

Pu| by = 1) Plogiy = 1) ®
Ai[br] =1
1[bri] ng(u | briiy = 0) ng(blr(i) =0’
A Bry] lbnii]

where the second term in (8), denoted by A, [b,, ], represents
the a priori LLR of the code bit b, ), which is computed by
the channel decoder 260 in the previous iteration, inter-
leaved at the interleaver 230 and then fed back to the soft
MIMO demodulator 210. For the first iteration, it is assumed
that all code bits are equally likely. The first term in (8),
denoted by A, [b, ], represents the extrinsic information
delivered by the soft MIMO demodulator 210, based on the
received signals u, the MIMO signal structure, and the a
priori information about all other code bits. The extrinsic
information A,[b,Jis then deinterleaved at the deinter-
leaver 250 and fed back to the channel decoder 260, as the
a priori information for the channel decoder. The soft
decoder 210 takes as input the a priori LLRs of the code bits
and delivers as output an update of the LLRs of the coded
bits, as well as the LLRs of the information bits based on the
code constraints. The soft channel decoding algorithm [20]
computes the a posteriori LLR of each code bit,

P(b; =1[{A1(b)};; code constraints)
P(b; =0 [{A1(b)};; code constraints)

=L [bi] + Ay [Bi]):

Aa[bi] = log ©

where the factorization (9) is shown in [19]. It is seen from
(9) that the output of the soft decoder is the sum of the a
priori information A,[b,], and the extrinsic information
A,[b,] delivered by the channel decoder 260. This extrinsic
information is the information about the code bit b, gleaned
from the a priori information about the other code bits,
{\[b,]}..., based on the constraint structure of the code.
Note that at the first iteration, the extrinsic information
{n[b,]}; and {A,[b,]}; are statistically independent. But
subsequently, since they use the same information indirectly,
they will become more and more correlated and finally the
improvement through the iterations will diminish.
2.3 MIMO Channel Estimation

Since the receiver 200 has no knowledge of channel state
information in realistic MIMO systems, pilot symbols
embedded in the data stream are required to estimate the
channel impulse response. Assume T=n, time slots are used
at the beginning of each data burst to transmit known pilot
symbols S=[s,, s,, . . . , s7]. Denote the corresponding
received signal as Y==[y,, . . ., ¥7|. Then we have

Y= ﬁHS+V,
nr

(10)
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where V=[v,, . . . v7]. In [21], two forms of channel
estimators at the channel estimator 270 are given, namely,
the maximum likelihood (ML) estimator, given by

= | 2 vs¥ssty
nr

and the minimum mean-square error (MMSE) channel esti-
mator given by

A p p —1
Hase = IE }’SH(ESSH +1nT) )

It is also shown in [21, 22] that the optimal training
sequence in the sense of minimizing the channel estimation
error should satisfy the following orthogonality condition

(11

(12)

SSH=T1,. 13)
One way to produce such a training sequence is to use the
complex Walsh codes generated by the Hadamard matrix. As
shown in FIG. 2, at the end of each turbo iteration, the a
posteriori LLRs of the code bits are fed back from the soft
channel decoder 260 through the interleaver 280 to the
MIMO channel estimator 270 for channel re-estimation. If
the LLRs of all 2n, code bits corresponding to one QPSK
MIMO symbol are above a predetermined threshold, the
corresponding decoded MIMO symbol is considered as
having high-reliability and will act as a training symbol for
channel reestimation at the beginning of the next turbo
iteration. Intuitively, as the turbo receiver 200 iterates, such
a scheme obtains more and more accurate channel estima-
tion since it makes use of more and more training symbols.
Accordingly, the overall receiver performance will be
improved compared with the scheme where the channel is
estimated only once using the pilot symbols before the first
turbo iteration.

3 Background on Sequential Monte Carlo

Sequential Monte Carlo (SMC) is a class of efficient
methods to obtain random samples from a sequence of
probability distributions known only up to a normalizing
constant. A general framework for the SMC methods is
briefly explained next. Consider the following generic
sequence of the a posteriori probability distributions
IPXJY D)} iz where X;=(Xg, X, - - ., X;) is the set of
unobserved parameters to be estimated and Y, =(y,,
Vs - - -5 V5 1s the set of available observations at index k.
We emphasize the fact that k is not necessarily a time index.
Typically a posteriori distributions are only known up to a
normalizing constant as p(Y,)=|p(Y X pXdX, is not
available in closed form and thus SMC is of great interest in
this context. Assume one wants to compute the minimum
mean-square error (MMSE) estimate of h(X,), which is
given by

14
Eth(Xo)| Yol = f XOp(Xe | Yod Xe. d
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Given m random samples

X

distributed according to p(X,Y,), this expectation can be
approximated numerically through

1 (15)
Eth(xo 1 Vb= — 5 h(x").
=

Sampling directly from p(X,]Y,) is often not feasible and it
is necessary to derive approximate methods.

3.1 Importance Sampling

Sampling directly from p(XklYk) is often not feasible or
too computationally expensive, but drawing samples from
some trial density “close” to the distribution of interest is
often easy. In this case, we can use the idea of importance
sampling. Suppose a set of random samples

X

distributed according to q(X,Y,) is available. We can still
come up with valid estimates of (14) by correcting for the
discrepancy between p(X,IY,) and q(X,Y,). By associating
the importance weight

| %)
(X(J) | Yk)

(J)
Wi

to the sample XY, we can indeed estimate (14) as

m

h(X )| Y} (J)h X(J)
WY} m Z
with
mn -
Wy = Z w,((”.
=
The pair
[T
{ij B ij }?:1

is called a properly weighted sample with respect to the
distribution p(X,Y,). It is crucial to notice that one only
needs to compute the weights up to a normalizing constant
so that the knowledge of p(Y,) is not necessary. In the
“optimal” case where q(X,Y,)=p(X,Y,), then all the
weights are equal and have zero variance. Roughly speak-
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ing, the performance of the method typically deteriorates
when the variance of the weights increases.

The importance sampling method is a generic method that
is not sequential. However, one may come up with a
sequential version of it. Suppose a set of properly weighted
samples

{X/iji)l > W/ijf)l }?:1

with respect to p(X,_;IY,_,) is available at index k-1. Based
on these samples, we want to generate a new set of samples

{x, W/ij)};il

properly weighted with respect to p(X,/Y,). The Sequential
Importance Sampling (SIS) algorithm proceeds as follows.
Draw a sample x”, from a trial distribution

alu | X0 1)
and let
X9 = (X9, 1)
Update the importance weight

p(XIEj) | Yk) (16)

Q(Xli{’l | kal)lZ(ij) | X, Yl‘).

D _ D
W= Weert

One can check that the above algorithm indeed generates
properly weighted samples with respect to the distribution
PXLY,). It is indeed simply an importance sampling
method with trial distribution satisfying

XY =g Y- DaOG 1, Y-

This procedure is very general but it is crucial to design a
“good” trial distribution to obtain good performance. It is
easy to establish that the optimal importance distribution—
optimal as it minimizes the conditional variance of the
weights var {w,X,_,, Y.} [23]—is given by

OG- 1, V) =P Ol X1, Y) 17

In this case, the importance weight recursion is

ol plye | X Vi),

3.2 Resampling

The importance weight w'”, measures the “quality” of the
corresponding imputed signal sequence X, A relatively
small weight implies that the sample is drawn far from the
main body of the a posteriori distribution and has a small
contribution in the final estimation. Such a sample is said to
be ineffective. Whatever being the importance distribution
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used, the SIS algorithm is getting inefficient as k increases.
This is because the discrepancy between q(X,IY;) and
p(X,lY,) can only increase with k. In practice, after a few
steps of the procedure, only one stream dominates all the
others; i.e., its importance weight is close to 1 whereas the
others are close to 0. To make the SIS procedure efficient in
practice, it is necessary to use a resampling procedure as
suggested in [24]. Roughly speaking, the aim of resampling
is to duplicate the streams with large importance weights
while eliminating the streams with small ones; i.e., one
focuses the computational efforts in the promising zones of
the space. Each sample X%, is copied K; times with

m
ZKj:h’l.

J=1

Many resampling procedures have been proposed in the
literature [11, 14, 15, 24, 25]. We use here the systematic
resampling procedure proposed in [25].
Compute the cumulative distribution pOZO,pj?pj_1+w(i)k/
W, forj=1,...,m.
Draw a random number U uniformly in [0, 1]. Compute
U=U+j)/m with j=0, . . . ,m~1.
Set k={#i e{0, ..., m-1};p,_ =U,<p,}.

Assign uniform weights

>

wm_ 1
« m

to the new set of streams

s m
{Xn }jzl'

This algorithm is very computationally efficient. In the
class of unbiased resampling schemes, i.e., E{Kj}:mw(")k_1
this algorithm minimizes the variance var {Kj} and displays
better performance than other algorithms.

Note that if resampling is used in conjunction with the
optimal importance distribution (17), one should perform
the resampling step before the sampling step at time k as, in
this very specific case, the importance weight at time k is
independent of the samples x7k.

Resampling can be done at every fixed-length time inter-
val (say, every five time steps or otherwise periodically) or
it can be conducted dynamically. The effective sample size
is a criterion that can be used to monitor the variation of the
importance weights of the sample streams, and to decide
when to resample as the system evolves. The effective
sample size is defined as
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where v,, the coefficient of variation, is given by

1 & 0} 2
Vi=— E [VKL—I , 5
m Wy

J=1

with
10

15

Roughly speaking, the effective sample size is a measure of
variation over the weights. In the optimal case, where all the
weights are equal, then it is maximum and equal to m. When
one weight dominates all the others, then it is very small. In
dynamic resampling, a resampling step is performed once
the effective sample size m,, is below a certain threshold. An
alternative criterion such as the entropy of the weights could
also be used.

Heuristically, resampling can provide chances for good
sample streams to amplify themselves and hence “rejuve-
nate” the samples to produce better results in the next steps.
It can be shown that if m is sufficiently large the resampled
streams drawn by the above resampling scheme are also
properly weighted with respect to p(X,]Y,). In practice,
when small to modest m is used (We use m=64 here), the
resampling procedure can be seen as a trade-off between the
bias and the variance. That is, the new samples with their
weights resulting from the resampling procedure are only
approximately proper, which introduces small bias in the
Monte Carlo estimates. On the other hand, resampling
significantly reduces the Monte Carlo variance for the future
samples.

3.3 An Alternative Deterministic Procedure

SMC is a very general set of methods to sample prob- ,,
ability distributions on any space one wants. We restrict
ourselves to a case of great interest in telecommunications;
namely the case where X, can only take values in a finite set
say X. In this case the a posteriori distribution p(XJY,)
could be computed exactly but it is typically far too com- s
putationally expensive when k is large as X, can take [XF
possible values where [X| is the number of elements in X.

In this very specific case, the SIS procedure with the
optimal importance distribution (17) takes the following
form. 50

Draw a sample x¥, from p(x,[X"”,_,, Y,) and let X*,=

@ @
X k15 X770,
Update the importance weight

35

55
W,((J) oc W,((J,)l -p(y/( | X,EJ,)I, Yi-1 )
The importance weight is computed using
60
POk | Xi—15 Yem1) = Z P | Xy Yee) pii | Xi—1)- s
XX
65

Two points can be criticized about this algorithm. First,
assume that the number of streams m is equal to [XI’ with 1<n.

12

(If 1=k then one could compute p(X,Y;) exactly). The
algorithm should enumerate the first MI possibilities and
compute their a posteriori probabilities; i.e., one should
compute p(X,Y,) exactly. This can be easily incorporated in
the initialization phase of an SMC algorithm. Second, one
can see that the calculation of the weights (18) involves
computing the a posteriori distribution up to a normalizing
constant of mX| streams. Indeed for each X%, _,, one needs
to compute p(y,XY,_,, X, Y,,) for X,eX. By sampling
Xy, this information is somehow discarded. An alternative
deterministic approach consists of keeping among the m/X|
“candidate” trajectories at time

{X,if)l, X € X};l:l’

the m trajectories with the highest a posteriori distribution.
This algorithm can be interpreted as an extended Viterbi
algorithm with m survivors. Clearly the local approximation
error one commits at the selection step using this determin-
istic strategy is lower than using the randomized strategy.
Nevertheless it does not guarantee performance to be better
overall.

To sum up, given
GRS
{kal}j:1

with a posteriori distributions (known up to a normalizing
constant)

{sz—)l }'7=1 ’

the algorithm proceeds as follows at time k.
Compute

wi Pt e Wi PP (X, Pk, Yh-1), ykeX.

Select and preserve only the m “best” distinct streams
amongst the mm hypotheses.

The drawback of this approach is that clearly the past
observations are as important as the current observation in
the calculation of the weight. If an error is committed then
it has a significant impact on further decisions. The random-
ized algorithm is less sensitive to this problem as when the
streams are resampled their weights are set to 1/m.

It is worth noticing that both the stochastic and determin-
istic algorithms are well suited for parallel implementation.

4 Soft MIMO Demodulation Algorithms

In this section, we will derive soft-input soft-output
MIMO demodulation algorithms based on the sequential
Monte Carlo principle. The importance sampling density is
obtained by utilizing the artificial sequential structure of the
existing simple nulling and cancellation BLAST detection
scheme. First, the channel parameters are assumed to have
been estimated perfectly at the receiver through the short
training sequence before detection. Later, we will examine
the effect of channel estimation error on systems perfor-
mance with pilot symbols along with high-quality symbol
decision feedback.
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4.1 Simple Nulling and Cancellation BLAST Detection
Algorithm
Consider the signal model (2), we denote the QR-decom-
position of Q2 as

Q2=0R, (20)
where Q is a unitary matrix and R is an upper triangular
matrix. The nulling operation is a coordinate rotation that
left-multiplies the vector u on (2) by QY to produce a
sufficient statistic,

z=Q"u= £ Rs +7,
nr

where ¥=Q%v. Since Q is unitary, there is no noise enhance-
ment and the noise whitening characteristic maintains by
nulling, i.e., ¥~N_(0, 1, ). We rewrite (21) as

@n

2 LU Pt Fuap st gl (22)
2 o rap o ranp || S2 1)
= — . .|+ .
nr . : :
Znp Fopnp |1 Snr Vg
Z R s v

We can detect data symbols directly by nulling operation,
i.e., multiply z by R™*. However in [5], it is shown that by
utilizing the upper triangular structure of R, significant
improvement over zero-forcing can be obtained with the
following successive interference cancellation method:

. nr Znp (23)
Spp = — ,
T P Topnr
1 n
Snp-1 = =z Znp—1 = Fap—LnpSng ||
Png—Lnp—1 P
R 1 nr N
S = - _ZI_Z FLesS ||
ri,1 P =

where L(x)=arg ming,_,(x-s;). Although the above simple
nulling and cancellation scheme has a very low complexity,
its performance is much worse than that of the methods
based on zero forcing or MMSE nulling and interference
cancellation with ordering as well as that of the sphere
decoding algorithm (See FIG. 5). In what follows, we
develop SMC-based MIMO demodulation algorithms using
the above simple nulling and cancellation method as the
kernel. As will be seen in Section 5, these new algorithms
provide near-optimal performance in both uncoded and
coded MIMO systems.

4.2 Stochastic SMC MIMO Demodulator

As from (22), the artificial sequential structure of the
simple nulling and interference cancellation scheme due to

the upper-triangular structure is well suited for applying the
SMC method to MIMO data detection with the particularity
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of operating on spatial domain starting from antenna n; to
antenna 1. Indeed one has

nr . 24)
Pslwy=Pis| 2 e | | pla | Si)Pesi,

k=1

where 7,=(z,, . . . Z,,,) and S=(5 - - - $,,,)- We can thus use
SMC methods to simulate from the sequence of probability
distributions

{P(5¢1 Z )}k:nr,nrfl, L

This sequence of “artificial” distributions is defined by

nr

VAT l_[ Pl 1 31)Pesy)-

=k

(25)

The aim of SMC MIMO detection is to compute an
estimate of the a posteriori symbol probability

P(s,=ajlr),aed, k=1, . . ., Hy, (26)

based on the received signal z after nulling. Let

() A h P
SR

nT),j:l, e, m,

be a sample drawn by the SMC at each symbol interval,
where m is the number of samples. In order to implement the
SMC, we need to obtain a set of Monte Carlo samples of the
transmitted symbols {s’,, W} properly weighted with
respect to the distribution of p(slz). In the application of
MIMO demodulation, the function h(-) in (15) is specified
by the indicator function 1(-) as

if x=a, 27

1,
1(x = =
(x=a) {0, if x#a.

Hence, the a posteriori probability of the information sym-
bol s, can then be estimated as

Plsi = a;12) = E{l(sc = ai)| 2} (28)
-

= — Is(j):a-w(j),a-eA,
TS el

where

A .
W, w,((J 0,
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Following (17) in Section 3.1, we choose the trial distri-
bution as:

alsic 1 Z2, S ) o Plsi 122, 5. @)

For this trial distribution, the importance weight is
updated according to

( i) 30
0 _ ) P31 Z:) G0
e =W ) @
PS5 |Zk+l) (51 Zis Sk+l)
(J) . (gl(;[ |Zk)

= Wik ) .~ 5

PS8 1 Ze)

wwidly - plae | Zes §k+1)'

We next specity the computation of the predictive distribu-
tion in (29) and (30). First, we consider the trial distributions
in (29)

P = R
qlse | Z, Skjﬂ) o plae | Sks Zests Skj+1)'P(Sk) @D

Since the noise v in (21) is white Gaussian i.e., v-N_(0,1,,),
we have

Pz | Zsrs 5',(321, so=ag) ~ NC(M;<{3, 1), 32)
where the mean p%, ; is given by
) 33
Hi = [ Z klx;ﬂ*'\/jrkkax]
We denote
o) & plac| Zios. 51 s = @) Plsi = @) 34)
= ool 4} 7o = a0 o
Hence, the predictive distribution in (30) is given by
(36)

plzi | Zerrs S'/((le)“ Z Pla | Ziar s 515 = a;) Pls = a;)

aeA

- ()
=2,

Gi€A

Referring to FIG. 3, we summarize the stochastic SMC
MIMO demodulation process, which begins at block 300, as
follows:

0. Imtlahzatlon all 1mp0rtance weights are initialized as

) =1,j=1, , m (block 305).
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At block 310, the following steps are implemented at the
k-th recursion (k=n,, n,~1, ..., 1) to update each weighted
sample. For j=1, . . ., m:

1. At block 315, compute the trial sampling density (x(")k,i
for each a,e A according to (35) with the a priori symbol
probability P(s,=a,) obtained from the last turbo itera-
tion, calculated using (4).

2. At block 320, draw a sample s, from the set A with
probability

Plsi =ai| 52131, VAL ‘123 a; € A. 37)
3. At block 325, compute the importance weight
W S afl, (38)
ajeA

4. At block 330, compute the a posteriori probability of
the information symbol s, according to (28).

5. At block 335, the process is repeated for the next
sample in the recursion until the last (j=m) sample is
reached. At block 340, resampling may be performed as
described in Section 3.2. Note that the resampling does
not necessarily occur in the sequence indicated in FIG.
3. At block 345, the process is repeated for the next
recursion until the last recursion (k=1) is reached. At
block 350, the process ends.

The stochastic and deterministic demodulation processes
of the invention may be implemented using any known
hardware, firmware and/or software. For example, the
demodulator 210 may include an ASIC that is programmed
to perform the desired calculations. A program storage
device such as a memory may tangibly embody a program
of instructions that are executable by a machine such as a
microprocessor to perform the demodulation. The program
storage device and microprocessor may be part of, or
otherwise associated with, the demodulator 210 and possibly
other components in the receiver 200. Moreover, the func-
tionality of any of the components in the receiver 200 may
be implemented similarly.

4.3 Deterministic SMC MIMO Demodulator

The deterministic method for estimating the sequence of
probability distributions

LS E)

proceeds as follows. Similarly to the stochastic case, we
assume that m samples are drawn at each iteration where
m=lAl with l<n;,. Note that if I=n,, it is equivalent to the
maximum likelihood detection and involves IAI"" calcula-
tions. In the exploration step, we compute exactly the
distribution

PSupte1 | Znpt)
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by enumerating all m particles, e.g., samples, for antenna n,
down to antenna n,~l+1. As a result, we have a set of m
distinct QPSK sequences

=) m
Bopsat)

with weights

{Wij;fm }7: "

satisfying
W;jr)—m = P(S‘i{;,,,,[ |an*l+1) &2
nr . . .
o [] plctSs =a)- P = a)
k=np—t+1
v
= |1 A%
k=np—t+1
where
02 pla 150158 = a)- P = a) “
1 ) . 41
= el -~} P = ), “

and p%, , is given by (33).

The second step is the extended Viterbi algorithm as
described in Section 3.3 performed from antenna n,~1 to
antenna 1 (i.e., k=n,~1, . . ., 1). We need to update the
importance weight according to

. ; ) ; (42)
wL”(a;) o w,(‘Jll -p(zk |Sk+1; s,((” = a,»)P(s}fJ = a;), a; €A,

where the m distinct QPSK symbol sequences with highest
importance weights are selected as the survivor paths over
mlAl hypotheses. The deterministic SMC MIMO demodu-
lation algorithm, which begins at block 400, is summarized
in FIG. 4 as follows:

0. Initialization: fork=n, . . ., n,~1+1, calculate the exact
expression of the probability distribution via (41) by
enumerating all m particles (samples) (block 405).

At block 410, the following steps are implemented at the
kth recursion (k=n,~1, n,~1-1, ..., 1) to update each weight
sample. For j=1, . . . , m:

1. At block 415, compute the importance weight

Wi Poewg DBy P, 43)
where B(’)k,i is given by (41).
2. At block 420, select and preserve only the m “best”
distinct streams S, with the highest weights amongst
the mlAl hypotheses with weights set {w"’; ;}.
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3. At block 425, compute the a posteriori probability of
the information symbol S, according to (28). At block
430, the process is repeated for the next sample in the
recursion until the last (j=m) sample is reached. At
block 435, the process is repeated for the next recursion
until the last recursion (k=n;~1+1) is reached. At block
440, the process ends.

5 Simulation Results

In this section, we provide computer simulation results to
illustrate the performance of the proposed turbo receivers in
flat-fading MIMO channels with n;=n,=8. The fading coef-
ficients are generated according to h,, ““N,(0, 1), where i.i.d.
denotes “independent, identically distributed”. Channels are
assumed to be quasi-static, i.e., they remain constant over
the entire frame of N symbols, but vary from frame to frame.
Simulation results are obtained by averaging over 500
channel realizations. The number of samples drawn in the
stochastic SMC algorithm is m=64. The number of samples
drawn in the deterministic algorithm is m=64 (i.e., 1=3) in
the uncoded case and m=16 (i.e., 1=2) in the coded case.

5.1 Performance in Uncoded MIMO Systems

We first illustrate the performance of the proposed sto-
chastic and deterministic SMC MIMO demodulation algo-
rithms in an uncoded MIMO system. The BER performance
of these two new algorithms, together with some existing
detection algorithms (including the sphere decoding algo-
rithm, the method based on MMSE nulling and cancellation
with ordering, the method based on zero-forcing nulling and
cancellation with ordering, as well as the simple nulling and
cancellation method) are shown in FIG. 5. QPSK modula-
tion is used. Several observations are in order. First of all, the
simple nulling and cancellation method displays very poor
performance. However, when it is combined with SMC
(deterministic or stochastic), we obtain a much more pow-
erful MIMO detector. Secondly, the deterministic detector
outperforms the stochastic SMC detector and it actually
slightly outperforms the sphere decoding algorithms, which
is the best suboptimal MIMO detector known so far!

5.2 Performance in Coded MIMO Systems

For the coded MIMO system, a rate-1/2 constraint
length-5 convolutional code (with generators 23 and 35 in
octal notation) is employed at the transmitter. The bit
interleaver is randomly generated and fixed throughout the
simulations. The code bit block size is 512, corresponding to
256 information bits and 32 QPSK MIMO symbols. The
channel estimator employed here is the MMSE MIMO
channel estimator given by (12), where T=n,=8, and QPSK
orthogonal MIMO pilot symbols are used. The number of
turbo iterations in each simulation run is four.

In FIGS. 6, 7 and 8, the BER performance of the turbo
receiver employing the stochastic SMC demodulator is
plotted. “Iter” denotes “iteration”, “ch” denotes “channel”
and “est.” denotes “estimated”. The solid curves in these
figures correspond to the BER performance with perfectly
known channel; whereas the dashed curves correspond to
the BER performance with different channel estimation
schemes. In FIG. 6, the channel is estimated only once based
on the pilots and used throughout all turbo iterations. In FIG.
7, the channel is re-estimated at the beginning of each turbo
iteration using both the pilots and the decoded symbols with
high-reliability, as discussed in Section 2.3. And in FIG. 8,
we assume the channel is estimated by a genie that knows
both the pilot symbols and all information symbols. Such a
genie aid channel estimate is used throughout all turbo
iterations. The scenario for FIG. 8 provides an upper bound
on the achievable performance for the turbo receivers with
different channel estimation schemes. It is seen that by
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performing iterative channel estimation and symbol detec-
tion, the turbo receiver offers a performance approaching the
genie-aided bound.

The corresponding BER performance of a turbo receiver
employing the deterministic SMC demodulator is shown in
FIGS. 9, 10 and 11. It is seen that the deterministic SMC
algorithm offers improved and more stable performance than
its stochastic counterpart.

6 Conclusions

The invention provides a new family of demodulation
algorithms particularly useful for soft-input soft-output
MIMO demodulation. These new techniques illustratively
use the conventional BLAST detection based on simple
nulling and cancellation as the kernel, and are based on the
sequential Monte Carlo (SMC) method for Bayesian infer-
ence. Two versions of such SMC MIMO demeodulation
algorithms are developed, based on respectively stochastic
and deterministic sampling. As hard MIMO detection algo-
rithms, the proposed SMC demodulation algorithms signifi-
cantly outperform all existing BLAST detection methods.
Moreover, the deterministic SMC MIMO detector slightly
outperforms the sphere decoding algorithm. Furthermore, in
coded MIMO systems, the proposed SMC algorithms can
naturally serve as the soft MIMO demodulator in a turbo
receiver. Simulation results indicate that overall the deter-
ministic SMC MIMO demodulator offers better and more
stable performance compared with its stochastic counterpart
in both the uncoded and the coded MIMO systems.

The invention has been described herein with reference to
particular exemplary embodiments. Certain alterations and
modifications may be apparent to those skilled in the art,
without departing from the scope of the invention. The
exemplary embodiments are meant to be illustrative, not
limiting of the scope of the invention, which is defined by
the appended claims.
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What is claimed is:
1. A method for demodulating data from a multiple-input
multiple-output (MIMO) channel, comprising:
receiving a priori probability values for symbols trans-
mitted across the MTNO channel, said a priori prob-
ability values are represented by P(s,=a,), where the
symbols in a symbol interval are represented by s,, and



US 7,317,770 B2

21

k is an index identifying a transmit antenna; and a, is an
ith value in an alphabet set from which the symbols
take their values;

in accordance with the a priori probability values, deter-

mining a set of Monte Carlo samples of the symbols
weighted with respect to a probability distribution of
the symbols; and

estimating a posteriori probability values for the symbols

based on the set of Monte Carlo samples.
2. The method of claim 1, wherein:
the Monte Carlo samples comprise stochastic Monte
Carlo samples.

3. The method of claim 1, wherein:

the probability distribution of the symbols is represented
by p(slz), where s is a vector of transmitted signal
values for different transmit antennas in a symbol
interval, and z is a vector of received signals from the
different transmit antennas after nulling.

4. The method of claim 1, wherein determining the set of
Monte Carlo samples of the symbols in a symbol interval,
represented by {(s,’, w,?)}, comprises:

determining a trial sampling density for each ith value, a,,

in an alphabet set A from which the symbols take their
values, using the a priori probability value P(s,=a,)
from a previous iteration, where the symbols are rep-
resented by s;, and k is an index identifying a transmit

antenna,
drawing the jth sample symbol s,”, from the alphabet set
A, wherej=1,2, ... ,m, and m is a number of the Monte

Carlo samples determined for the symbol interval; and
computing an importance weight w, for s,%.
5. The method of claim 4, further comprising:
performing resampling to obtain updated importance
weights w, 9.
6. The method of claim 4, further comprising:
initializing the importance weights w_,¥=1.
7. The method of claim 1, wherein:
m is a number of the Monte Carlo samples determined for
a symbol interval;
the Monte Carlo samples are represented by {(s,),

Wk(]))}s
each a posteriori probability value P(s,=a,lz) is obtained
from
- C LN
Pl =ailo) = Wk; s =a)ut”. a; e A
where

7 is a vector of received signals from different transmit
antennas after nulling;

the symbols are represented by S,, where k is an index
identifying a transmit antenna;

importance weights for the symbols S, are represented by
Wi

A is an alphabet set from which the symbols take their
values, and a,, is an ith value in A;
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and
1 is an indicator function defined by

. 1,if x=aq,
C=D= 00 vk

8. The method of claim 1, further comprising:

based on the a posteriori probability values, calculating a

posteriori log-likelihood ratios of interleaved code bits.

9. The method of claim 1, wherein:

the Monte Carlo samples comprise deterministic Monte

Carlo samples.

10. The method of claim 1, wherein determining the set of
Monte Carlo samples of the symbols in a symbol interval,
represented by {(s,, w, %)}, comprises:

calculating an exact expression for the probability distri-

bution by enumerating m samples for less than all
transmit antennas to obtain m data sequences, where m
is a number of the Monte Carlo samples determined for
the symbol interval,

computing the importance weight w,? for each symbol

5., where k is an index identifying a transmit antenna;
and

selecting and preserving m distinct data sequences with

the highest weights.

11. A program storage device tangibly embodying a
program of instructions executable by a machine to perform
a method for demodulating data from a multiple-input
multiple-output (MIMO) channel, the method comprising:

receiving a priori probability values for symbols trans-

mitted across the MIMO channel, said a priori prob-
ability values being represented by P(s,=a,), where the
symbols in a symbol interval are represented by s,, and
k is an index identifying a transmit antenna; and a, is an
ith value in an alphabet set from which the symbols
take their values;

in accordance with the a priori probability values, deter-

mining a set of Monte Carlo samples of the symbols
weighted with respect to a probability distribution of
the symbols; and

estimating a posteriori probability values for the symbols

based on the set of Monte Carlo samples.

12. A demodulator for demodulating data from a multiple-
input multiple-output (MIMO) channel, comprising:

means for receiving a priori probability values for sym-

bols transmitted across the MIMO channel, said a
PRIORI probability values being represented by
P(s;=a,;), where the symbols in a symbol interval are
represented by s,, and k is an index identifying a
transmit antenna; and a, is an ith value in an alphabet set
from which the symbols take their values;

means for determining, in accordance with the a priori

probability values, a set of Monte Carlo samples of the
symbols weighted with respect to a probability distri-
bution of the symbols; and

means for estimating a posteriori probability values for

the symbols based on the set of Monte Carlo samples.
13. The demodulator of claim 12, wherein:
the Monte Carlo samples comprise stochastic Monte
Carlo samples.

14. The demodulator of claim 12, wherein:

the Monte Carlo samples comprise deterministic Monte
Carlo samples.
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15. A method for demodulating data from a channel, the
channel comprising a multiple-input multiple-output
(MIMO) channel, the method comprising:

(a) receiving a priori probability values for symbols

transmitted across the channel,

(b) in accordance with the a priori probability values,
determining a set of deterministic Monte Carlo samples
of the symbols in a symbol interval, represented by
{9 ¥ UYL weighted with respect to a probability
distribution of the symbols, by:

(b1) calculating an exact expression for the probability
distribution by enumerating m samples for less than
all transmit antennas to obtain m data sequences,
where m is a number of the deterministic Monte
Carlo samples determined for the symbol interval;

(b2) computing the importance weight w,% for each
symbol 5,7, where k is an index identifying a
transmit antenna; and

(b3) selecting and preserving m distinct data sequences
with the highest weights; and

(c) estimating a posteriori probability values for the
symbols based on the set of deterministic Monte Carlo
samples; wherein:

(d) the probability distribution of the symbols is repre-
sented by p(slz), where s is a vector of transmitted
signal values for different transmit antennas in a sym-
bol interval, and z is a vector of received signals from
the different transmit antennas after nulling.

16. A method for demodulating data from a channel, the
channel comprising a multiple-input multiple-output
(MIMO) channel, the method comprising:

(a) receiving a priori probability values for symbols

transmitted across the channel,

(b) in accordance with the a priori probability values,
determining a set of deterministic Monte Carlo samples
of the symbols in a symbol interval, represented by
{67, w7}, weighted with respect to a probability
distribution of the symbols, by:

(b1) calculating an exact expression for the probability
distribution by enumerating m samples for less than
all transmit antennas to obtain m data sequences,
where m is a number of the deterministic Monte
Carlo samples determined for the symbol interval;

(b2) computing the importance weight w, for each
symbol s, where k is an index identifying a
transmit antenna; and
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(b3) selecting and preserving m distinct data sequences
with the highest weights;

(c) estimating a posteriori probability values for the
symbols based on the set of deterministic Monte Carlo
samples; wherein:

(d) wherein the probability distribution of the symbols is
represented by p(slz), where s is a vector of transmitted
signal values for different transmit antennas in a sym-
bol interval, and z is a vector of received signals from
the different transmit antennas after nulling;

(e) wherein m is a number of the deterministic Monte
Carlo samples determined for a symbol interval;

each a posteriori probability value P(s,=a,lz) is obtained
from

R . .
P(sy =ai|2) = WkZ 1(5,((” = a;)w,((”, a €A
=

where
7 is a vector of received signals from different transmit
antennas after nulling;
A is an alphabet set from which the symbols take their
values, and a, is an ith value in A;

and
1 is an indicator function defined by

. l,if x=a,
CED=0, 0 vt

and
(f) calculating, based on the a posteriori probability val-
ues, aposteriori log-likelihood ratios of interleaved
code bits.



