
US008572138B2

(12) United States Patent (10) Patent No.: US 8,572,138 B2
Sundar et al. (45) Date of Patent: Oct. 29, 2013

(54) DISTRIBUTED COMPUTING SYSTEM 7,246,351 B2 * 7/2007 Bloch et al. 717/175
HAVING AUTONOMIC DEPLOYMENT OF 2002/0129129 A1* 9, 2002 Bloch et al. TO9.220

2002fO156877 A1 10, 2002 Lu et al.
VIRTUAL MACHINE DISKIMAGES 2003/0074360 A1* 4/2003 Chen et al. 7O7/1OO

2003/0078958 A1* 4, 2003 Pace et al. ... TO9,201
(75) Inventors: Jagane Sundar, Saratoga, CA (US); 2003/0110173 A1* 6/2003 Marsland........................ 707/10

Sanjay Radia, Fremont, CA (US); 2003/O126265 A1 7, 2003 Aziz et al.
David A. Henseler, Maplewood, MN (Continued)
(US)

FOREIGN PATENT DOCUMENTS
(73) Assignee: CA, Inc., Islandia, NY (US)

WO WO?O3,085526 A1 10/2003
(*) Notice: Subject to any disclaimer, the term of this WO WO, 2006/081503 A1 8, 2006

patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1339 days.

OTHER PUBLICATIONS

(21) Appl. No.: 11/694,483 E.N. Herness et al., “WebSphere Application Server: A Foundation
1-1. for on Demand Computing.” IBM Systems Journal IBM, vol.43, No.

(22) Filed: Mar. 30, 2007 2, pp. 213-237, XP-002383791, 2004.

(65) Prior Publication Data (Continued)

US 2007/O233698 A1 Oct. 4, 2007 Primary Examiner — Angelica Ruiz
(74) Attorney, Agent, or Firm — Baker Botts, L.L.P.

Related U.S. Application Data
(60) Provisional application No. 60/787,280, filed on Mar. (57) ABSTRACT

30, 2006. One or more control nodes provide for the efficient and auto
mated allocation and management of computing functions

(51) Int. Cl. and resources within the distributed computing system. The
G06F 12/00 (2006.01) distributed computing system includes a software image
G06F 7/30 (2006.01) repository storing: (i) one or more image instances of a virtual

(52) U.S. Cl. machine manager that is executable on the application nodes,
USPC 707/828; 707/831: 718/1 wherein when executed on the applications nodes, the image

(58) Field of Classification Search instances of the virtual machine manager provide one or more
None virtual machines, and (ii) one or more image instances of one
See application file for complete search history. or more Software applications that are executable on the Vir

tual machines. The distributed computing system also
(56) References Cited includes a control node that comprises an automation infra

U.S. PATENT DOCUMENTS

6.256,637 B1 * 7/2001 Venkatesh et al. 1f1
6.513,059 B1* 1/2003 Gupta et al. TO9,202
6,775,829 B1 8/2004 Kroening
6,865,737 B1 3/2005 Lucas et al.
7,093.239 B1* 8/2006 van der Made 717/135

- 10
- - - - - - - - - - - - - - - - - - 11

DiscoveRED pool r
DISCOWERED

s
--- ?------

ALLocATEDTIERS

APPLICATION |
NDES

CONTRONE
12

structure to provide autonomic deployment of the image
instances of the virtual machine manager on the application
nodes and to provide autonomic deployment of the image
instances of the software applications on the virtual
machines.

26 Claims, 29 Drawing Sheets

rFREEFoo
UNALLOCATED :
NES

- - - - - - - 17 MAINTENANCEP

FAILEONDES |

20

AMINISTRATR

RANZATIONAL IMAGE
DATA REPOSITORY
21 26

Netflix, Inc. - Ex. 1001, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
Page 2

(56) References Cited FOREIGN PATENT DOCUMENTS

U.S. PATENT DOCUMENTS WO WO, 2006/083727 A1 8, 2006
WO WO 2006/083893 A1 8, 2006

2003/0135509 A1* 7/2003 Davis et al. 707/100 WO WO 2006/083894 A1 8, 2006
2003/0135658 A1* 7/2003 Haggaret al. TO9/312 WO WO/2006/083895 A1 8/2006
2003/0140282 A1 7/2003 Kaler et al. WO WO/2006/083901 A1 8/2006

2003/0192035 A1 * 10, 2003 Duesterwald ald 717/138
2004/0088694 A1 5, 2004 Ho B. Urgaonkar et al., “Resource Overbooking and Application Profil
2004O162741 A1 8, 2004 Flaxer et al. ing in Shared Hosting Platforms.” Proceedings of the 5" Symposium
2004/O181794 A1 9, 2004 Coleman et al. on Operating Systems Design and Implementation, 17 pgs.
2004/O187104 A1 9, 2004 Sardesai et al. XP-002387427, 2002.
2004/0230948 A1* 11/2004 Talwar et al. T17,114 G. Lodi et al., “QoS-aware Clustering of Application Servers.” Pro
2004/0260734 A1 12/2004 Ren et al. ceedings of the 1 IEEE Workshop on Quality of Service for Appli
2005.0005200 A1 1/2005 Matena et al. cation Servers. In Conjunction With the 23' International Sympo
2005/0039180 A1 2/2005 Fultheim et al. T18, 1 sium on Reliable Distributed Systems, 6 pages, XP-002383792, Oct.
2005, 0138370 A1* 6/2005 Goudet al. T13, 164 17, 2004.
2005/O193265 A1 9, 2005 Lin et al. Preinstalling Microsofi Windows XP by Using the OEM Preinstalla
2006/0173856 A1 8/2006 Jackson et al. tion Kit, Part I. XP-00230.1441, Apr. 4, 2003, 24 pages.
2006/0173857 A1 8/2006 Jackson R. Mark Koan et al. It Takes a Village to Build an Image,
2006/0173895 A1 8/2006 Engquist et al. XP-002384269, 2003, pp. 200-207. 20 U.S. Appl. No. 1 1/607.819 entitled. “Automated Deplovment and pp ploym
2006/0173984 A1 8, 2006 Emeis et al. Configuration of Applications in an Autonomically Controlled Dis
2006/0173993 A1 8 2006 Henseler et al. tributed Computing System”, filed Dec. 1, 2006.
2006/0173994 A1 8, 2006 Emeis et al. U.S. Appl. No. 1 1/607,820 entitled, "Automated Deployment and
2006/0174238 A1 8/2006 Henseler et al. Configuration of Applications in an Autonomically Controlled Dis
2006/0259292 A1* 11/2006 Solomon et al. 703/27 tributed Computing System”, filed Dec. 1, 2006.
2007/0168919 A1* 7/2007 Henseler et al. 717/101
2007/0169049 A1* 7/2007 Gingell et al. 717/151 * cited by examiner

Netflix, Inc. - Ex. 1001, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 1 of 29 US 8,572,138 B2

- - - - - - - - - - - - - - - - - 13
DISCOVERED FREE POOL

NODES

V UNALLOCATED
NODES

- - - - - - - - - - - - - 17
MAINTENANCE POOL'

| |
| | FAILED NODES |

- - - - - - - - - - - - - - - - - - -

NETWORK
18 APPLICATION l

NODES

CONTROL NODE
12 ADMINISTRATOR

ORGANIZATIONAL
DATA
21

IMAGE
REPOSITORY

26

FIG. 1

Netflix, Inc. - Ex. 1001, Page 000003
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Netflix, Inc. - Ex. 1001, Page 000004
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 3 of 29

RECEIVE INPUT DEFINING
HIERARCHY OF DISTRIBUTED

COMPUTING SYSTEM

RECEIVE INPUT IDENTIFYING
NODE REGUIREMENTS OF TERS

SELECT NODES FROM FREE
POOL OR LOWER PRIORITY TER

DYNAMICALLY ASSIGN NODESTO
NODE SLOTS OF THE DEFINED

TIERS

FIG. 3

US 8,572,138 B2

50

52

54

56

Netflix, Inc. - Ex. 1001, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 4 of 29 US 8,572,138 B2

SELECT A TIER TO ENABLE

RETRIEVE TIER RECQUIREMENTS

COMPARE CAPABILITIES OF A
NODE TO TIER REQUIREMENTS

NODE MEETS REMOVE NODE FROM LIST OF
INIMUM REQ'TS? CANDIDATES

NODE IS IMMEDIATELY ASSIGNED
TO THE TER

NODE COUNT
CALCULATE AND RECORD THE FORTIER MET2

ENERGY OF THE NODE

MORE NODES IN
THE FREE POOL2

IDENTIFY AND ASSIGN NODE
WITH THE MINIMUM POSITIVE

ENERGY TO THE TER

NODE COUNT
FORTIER MET2

Netflix, Inc. - Ex. 1001, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 5 Of 29 US 8,572,138 B2

IDENTIFY NEED FOR MORE NODE
CAPACITY ON TER

94

NODES IN THE
FREE POOL2

SELECT NODE

IDENTIFY TIERS WITH A LOWER
PRIORITY

DETERMINE WHICH NODES OF
THE LOWER PRIORITY TERS

MEET REQUIREMENTS

CALCULATE ENERGY OF NODES
THAT MEET REQUIREMENTS

SELECT NODE WITH THE LOWEST
ENERGY

ASSIGN THE SELECTED NODE TO
THE TER IN NEED OF CAPACITY

FIG. 5

Netflix, Inc. - Ex. 1001, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 6 of 29

110

IDENTIFY EXCESS NODE
CAPACITY ON TER

112

CALCULATE ENERGY OF ALL THE
NODES IN THE TER

114

SELECT NODE WITH THE HIGHEST
ENERGY (FURTHEST MATCH
FROM TIER'S IDEAL NODE)

116

RETURN SELECTED NODE TO THE
FREE POOL

FIG. 6

US 8,572,138 B2

Netflix, Inc. - Ex. 1001, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2

rrž~~~?

Sheet 7 Of 29 Oct. 29, 2013

&& ????????????

U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000009
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 8 of 29 Oct. 29, 2013

?

U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 9 Of 29 Oct. 29, 2013 U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 10 of 29 Oct. 29, 2013 U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 11 of 29 Oct. 29, 2013 U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 12 of 29 Oct. 29, 2013

0/11,

U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 13 Of 29 Oct. 29, 2013 U.S. Patent

-------------------------------^---------------------------|?

Netflix, Inc. - Ex. 1001, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 14 of 29 Oct. 29, 2013 U.S. Patent

Netflix, Inc. - Ex. 1001, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Netflix, Inc. - Ex. 1001, Page 000017
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Netflix, Inc. - Ex. 1001, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Netflix, Inc. - Ex. 1001, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent

FIG. 18

Oct. 29, 2013 Sheet 18 Of 29 US 8,572,138 B2

WORKING MEMORY -270

EXPECTED STATE (READ ONLY) 272
MAX NODES: 5

BLT
N

ACTUAL STATE (READ/WRITE) 274

/ SENSORI
5 MINUTE LOADAVERAGE: 24. RULE

N ENGINES

276
LOCAL OBJECT (READ/WRITE)

/ SENSORT
(RULE
N ENGINES

Netflix, Inc. - Ex. 1001, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Netflix, Inc. - Ex. 1001, Page 000021
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 20 Of 29 US 8,572,138 B2

RULE ENGINE

RULE COMPLER
344

EXECUTION ENGINE
346

WORKING MEMORY
348

LOCAL
OBJECTS

350

FIG. 20

Netflix, Inc. - Ex. 1001, Page 000022
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 21 of 29 Oct. 29, 2013 U.S. Patent

999

EGION TO?| LNO O

cþz-º viva STILLVILS

Netflix, Inc. - Ex. 1001, Page 000023
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 22 of 29 Oct. 29, 2013 U.S. Patent

Z/19

STEMAET E?OIARHES 019

SELTMEIRHILLV/ CIERHOLINOW E™OIANES 899

SETTVA CIERIO LINOIN EGION 999

SE OIARHES

Z99

| =sepoNu?uu Z=sepoNXeuu OzL=Kelaqpeol 099

Netflix, Inc. - Ex. 1001, Page 000024
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 23 Of 29 US 8,572,138 B2

STAGE APPLICATION WITHIN STAGING
ENVIRONMENT AND GENERATE 380

APPLICATION DEFINITION

382

DEFINE APPLICATION CONFIGURATION
PROPERTIES

384
GENERATE APPLICATION ENTRY USING

APP. DEFINITION AND APP.
CONFIGURATION PROPERTIES

386

MODIFY APPLICATION ENTRY

INSERT APPLICATION ENTRY INTO 388
APPLICATION MATRIX

390
APPLICATION MATRIX ALERTS
CONFIGURATION PROCESSOR

392
CONFIGURATION PROCESSOR UPDATES

APPLICATION RULE ENGINE AND
MONITORING SUBSYSTEM

394
CONTROL NODE HAS AUTONOMIC
CONTROL OVERAPPLICATION

FIG. 23

Netflix, Inc. - Ex. 1001, Page 000025
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 24 of 29 US 8,572,138 B2

- - - - - -------------------- - - - - - --408A -408B -408N

OSIAPP. OSIAPP. OSIAPP.
406A 406B 406N

VIRTUAL MACHINE VIRTUAL MACHINE VIRTUAL MACHINE
404A 404B 404N

VIRTUAL MACHINE MANAGER
402

PHYSICAL NODE
400

FIG. 24

Netflix, Inc. - Ex. 1001, Page 000026
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 25 Of 29 US 8,572,138 B2

410

SET ASIDE A NODE AS AN
IMAGE HOST

412

INSTALL VIRTUAL MACHINE
MANAGER ON HOST

414
CONFIGURE VIRTUAL MACHINE
MANAGER WITH DESIRED
NUMBER OF VM INSTANCES

416

PERFORM NETWORK OR SAN
CONFIGURATION FOR NODE

418
CAPTURE NODE WITH THE
CONTROL NODE, SPECIFY IP
ADDRESS, AND SPECIFY
CAPTURE OF A VIRTUAL
MACHINE MANAGER

FIG. 25

Netflix, Inc. - Ex. 1001, Page 000027
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 26 of 29 US 8,572,138 B2

420
SET ASIDE ANODE THAT IS
RUNNINGVIRTUAL MACHINE

MANAGER

422

CREATE A VIRTUAL MACHINE
ON THE NODE

424
INSTALLAN OPERATING
SYSTEM ON THE VIRTUAL

MACHINE

426

INSTALL APPLICATIONS ON
THE OPERATING SYSTEM

428
PERFORMANY NEEDED

CONFIGURATION TO OS OR
APPLICATONS

430

SNAPSHOT THE VIRTUAL DISK
OF THE VIRTUAL MACHINE

432

CAPTURE THE VIRTUAL DISK
TO THE CONTROL NODE

FIG. 26

Netflix, Inc. - Ex. 1001, Page 000028
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 27 Of 29 US 8,572,138 B2

440 446

CREATE NEW TER CREATE NEW TER

4.42 448
SPECIFY CAPTURED VIRTUAL SPECIFY CAPTURED OS/
MACHINE MANAGER IMAGE APPLICATION IMAGE FOR NEW

FOR NEW TER TIER

444 450

ACTIVATE TER SET TARGETS FORTER

452

ACTIVATE TIER

FIG. 27A FIG. 27B

Netflix, Inc. - Ex. 1001, Page 000029
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2

4 ;

U.S. Patent

FIG. 28

Netflix, Inc. - Ex. 1001, Page 000030
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 U.S. Patent

FIG. 29

Netflix, Inc. - Ex. 1001, Page 000031
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
1.

DISTRIBUTED COMPUTING SYSTEM
HAVING AUTONOMIC DEPLOYMENT OF
VIRTUAL MACHINE DISKIMAGES

This application claims the benefit of U.S. provisional
Application Ser. No. 60/787,280, filed Mar. 30, 2006, the
entire content of which is incorporated herein by reference.

TECHNICAL FIELD

The invention relates to computing environments and,
more specifically, to distributed computing systems.

BACKGROUND

Distributed computing systems are increasingly being uti
lized to Support business as well as technical applications.
Typically, distributed computing systems are constructed
from a collection of computing nodes that combine to provide
a set of processing services to implement the distributed
computing applications. Each of the computing nodes in the
distributed computing system is typically a separate, indepen
dent computing device interconnected with each of the other
computing nodes via a communications medium, e.g., a net
work.
One challenge with distributed computing systems is the

organization, deployment and administration of Such a sys
tem within an enterprise environment. For example, it is often
difficult to manage the allocation and deployment of enter
prise computing functions within the distributed computing
system. An enterprise, for example, often includes several
business groups, and each group may have competing and
variable computing requirements.

SUMMARY

In general, the invention is directed to a distributed com
puting system that conforms to a multi-level, hierarchical
organizational model. One or more control nodes provide for
the efficient and automated allocation and management of
computing functions and resources within the distributed
computing system in accordance with the organization
model.
As described herein, the model includes four distinct lev

els: fabric, domains, tiers and nodes that provide for the
logical abstraction and containment of the physical compo
nents as well as system and service application Software of the
enterprise. A user, Such as a system administrator, interacts
with the control nodes to logically define the hierarchical
organization of the distributed computing system. The con
trol nodes are responsible for all levels of management in
accordance with the model, including fabric management,
domain creation, tier creation and node allocation and
deployment.

In one embodiment, a distributed computing system com
prises a plurality of application nodes interconnected via a
communications network and a control node. The control
node comprises a set of one or more applications to be
executed on the application nodes, an application matrix that
includes parameters for controlling the deployment of the
applications within the distributed computing system, and an
automation unit having one or more rule engines that provide
autonomic control of the application nodes and the applica
tions in accordance with a set of one or more rules and the
application matrix.

In another embodiment, a method comprises generating an
application matrix that specifies data for controlling the

10

15

25

30

35

40

45

50

55

60

65

2
deployment of a set of applications within a distributed com
puting system, and performing operations to provide auto
nomic control over the deployment of the applications within
the distributed computing system in accordance with param
eters of the application matrix.

In another embodiment, a computer-readable medium
comprises instructions. The instructions cause the processor
to generate an application matrix that specifies data for con
trolling the deployment of a set of applications within a dis
tributed computing system, and perform operations to pro
vide autonomic control over the deployment of the
applications within the distributed computing system in
accordance with parameters of the application matrix.

In another embodiment, a distributed computing system
comprises a plurality of application nodes interconnected via
a communications network. In addition, the distributed com
puting system includes a Software image repository storing:
(i) one or more image instances of a virtual machine manager
that is executable on the application nodes, wherein when
executed on the applications nodes, the image instances of the
virtual machine manager provide one or more virtual
machines, and (ii) one or more image instances of one or more
software applications that are executable on the virtual
machines. The distributed computing system also includes a
control node that comprises an automation infrastructure to
provide autonomic deployment of the image instances of the
virtual machine manager on the application nodes and to
provide autonomic deployment of the image instances of the
Software applications on the virtual machines.
The details of one or more embodiments of the invention

are set forth in the accompanying drawings and the descrip
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a distributed comput
ing system constructed from a collection of computing nodes.

FIG. 2 is a schematic diagram illustrating an example of a
model of an enterprise that logically defines an enterprise
fabric.

FIG. 3 is a flow diagram that provides a high-level over
view of the operation of a control node when configuring the
distributed computing system.

FIG. 4 is a flow diagram illustrating exemplary operation of
the control node when assigning computing nodes to node
slots of tiers.
FIG.5 is a flow diagram illustrating exemplary operation of

a control node when adding an additional computing node to
a tier to meet additional processing demands.

FIG. 6 is a flow diagram illustrating exemplary operation of
a control node harvesting excess node capacity from one of
the tiers and returning the harvested computing node to the
free pool.

FIG. 7 is a screen illustration of an exemplary user interface
for defining tiers in a particular domain.

FIG. 8 is a screen illustration of an exemplary user interface
for defining properties of the tiers.

FIG.9 is a screen illustration of an exemplary user interface
for viewing and identify properties of a computing node.

FIG. 10 is a screen illustration of an exemplary user inter
face for viewing software images.

FIG. 11 is a screen illustration of an exemplary user inter
face for viewing a hardware inventory report.

Netflix, Inc. - Ex. 1001, Page 000032
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
3

FIG. 12 is a screen illustration of an exemplary user inter
face for viewing discovered nodes that are located in the free
pool.

FIG. 13 is a screen illustration of an exemplary user inter
face for viewing users of a distributed computing system.

FIG. 14 is a screen illustration of an exemplary user inter
face for viewing alerts for the distributed computing system.

FIG. 15 is a block diagram illustrating one embodiment of
control node that includes a monitoring Subsystem, a service
level automation infrastructure (SLAI), and a business logic
tier (BLT).

FIG. 16 is a block diagram illustrating one embodiment of
the monitoring Subsystem.

FIG. 17 is a block diagram illustrating one embodiment of
the SLAI in further detail.

FIG. 18 is a block diagram of an example working memory
associated with rule engines of the SLAI.

FIG. 19 is a block diagram illustrating an example embodi
ment for the BLT of the control node.

FIG. 20 is a block diagram illustrating one embodiment of
a rule engine in further detail.

FIG. 21 is a block diagram illustrating another example
embodiment of the control node.

FIG. 22 is a flowchart illustrating an exemplary mode of
initiating a control node utilizing an application matrix.

FIG. 23 is a block diagram illustrating an exemplary appli
cation matrix.

FIG. 24 is a block diagram illustrating an exemplary con
figuration of a physical node to which a virtual machine
manager and one or more virtual machines are deployed.

FIG. 25 is a flowchart illustrating an exemplary procedure
for creating and capturing an image of a virtual machine
manager for autonomic deployment within the distributed
computing System.

FIG. 26 is a flowchart illustrating an exemplary procedure
for creating and capturing a virtual disk image file for auto
nomic deployment within the distributed computing system.

FIG. 27A is a flowchart illustrating an exemplary proce
dure for deploying a virtual machine manager to a node
within the distributed computing system.

FIG. 27B is a flowchart illustrating an exemplary proce
dure for deploying an operating system and application image
to a node that is executing a virtual machine manager within
the distributed computing system.

FIG. 28 is a screen image illustrating an exemplary tier
control interface for the embodiment described in FIGS. 24
through 27.

FIG. 29 is a screen image illustrating an exemplary node
control interface for the embodiment described in FIGS. 24
through 27.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating a distributed comput
ing system 10 constructed from a collection of computing
nodes. Distributed computing system 10 may be viewed as a
collection of computing nodes operating in cooperation with
each other to provide distributed processing.

In the illustrated example, the collection of computing
nodes forming distributed computing system 10 are logically
grouped within a discovered pool 11, a free pool 13, an
allocated tiers 15 and a maintenance pool 17. In addition,
distributed computing system 10 includes at least one control
node 12.

Within distributed computing system 10, a computing
node refers to the physical computing device. The number of
computing nodes needed within distributed computing sys

10

15

25

30

35

40

45

50

55

60

65

4
tem 10 is dependent on the processing requirements. For
example, distributed computing system 10 may include 8 to
512 computing nodes or more. Each computing node includes
one or more programmable processors for executing Software
instructions stored on one or more computer-readable media.

Discovered pool 11 includes a set of discovered nodes that
have been automatically “discovered within distributed
computing system 10 by control node 12. For example, con
trol node 12 may monitor dynamic host communication pro
tocol (DHCP) leases to discover the connection of a node to
network 18. Once detected, control node 12 automatically
inventories the attributes for the discovered node and reas
signs the discovered node to free pool 13. The node attributes
identified during the inventory process may include a CPU
count, a CPU speed, an amount of memory (e.g., RAM), local
disk characteristics or other computing resources. Control
node 12 may also receive input identifying node attributes not
detectable via the automatic inventory, such as whether the
node includes I/O, such as HBA. Further details with respect
to the automated discovery and inventory processes are
described in U.S. patent application Ser. No. 1 1/070,851,
entitled AUTOMATED DISCOVERY AND INVENTORY
OF NODES WITHIN AN AUTONOMIC DISTRIBUTED
COMPUTING SYSTEM filed Mar. 2, 2005, the entire con
tent of which is hereby incorporated by reference.

Free pool 13 includes a set of unallocated nodes that are
available for use within distributed computing system 10.
Control node 12 may dynamically reallocate an unallocated
node from free pool 13 to allocated tiers 15 as an application
node 14. For example, control node 12 may use unallocated
nodes from free pool 13 to replace a failed application node
14 or to add an application node to allocated tiers 15 to
increase processing capacity of distributed computing system
10.

In general, allocated tiers 15 include one or more tiers of
application nodes 14 that are currently providing a computing
environment for execution of user Software applications. In
addition, although not illustrated separately, application
nodes 14 may include one or more input/output (I/O) nodes.
Application nodes 14 typically have more substantial I/O
capabilities than control node 12, and are typically configured
with more computing resources (e.g., processors and
memory). Maintenance pool 17 includes a set of nodes that
either could not be inventoried or that failed and have been
taken out of service from allocated tiers 15.

Control node 12 provides the system support functions for
managing distributed computing system 10. More specifi
cally, control node 12 manages the roles of each computing
node within distributed computing system 10 and the execu
tion of software applications within the distributed comput
ing system. In general, distributed computing system 10
includes at least one control node 12, but may utilize addi
tional control nodes to assist with the management functions.

Other control nodes 12 (not shown in FIG. 1) are optional
and may be associated with a different subset of the comput
ing nodes within distributed computing system 10. Moreover,
control node 12 may be replicated to provide primary and
backup administration functions, thereby allowing for grace
ful handling a failover in the event control node 12 fails.
Network 18 provides a communications interconnect for

control node 12 and application nodes 14, as well as discov
ered nodes, unallocated nodes and failed nodes. Communi
cations network 18 permits internode communications
among the computing nodes as the nodes perform interrelated
operations and functions. Communications network 18 may
comprise, for example, direct connections between one or
more of the computing nodes, one or more customer networks

Netflix, Inc. - Ex. 1001, Page 000033
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
5

maintained by an enterprise, local area networks (LANs).
wide area networks (WANs) or a combination thereof. Com
munications network 18 may include a number of Switches,
routers, firewalls, load balancers, and the like.

In one embodiment, each of the computing nodes within
distributed computing system 10 executes a common general
purpose operating system. One example of a general-purpose
operating system is the WindowsTM operating system pro
vided by Microsoft Corporation. In some embodiments, the
general-purpose operating system such as the Linux kernel
may be used.

In the example of FIG. 1, control node 12 is responsible for
Software image management. The term "software image'
refers to a complete set of software loaded on an individual
computing node to provide an execution environment for one
or more applications. The software image including the oper
ating system and all boot code, middleware files, and may
include application files. As described below embodiments of
the invention provide application-level autonomic control
over the deployment, execution and monitoring of applica
tions onto Software images associated with application nodes
14.

System administrator 20 may interact with control node 12
and identify the particular types of Software images to be
associated with application nodes 14. Alternatively, adminis
tration software executing on control node 12 may automati
cally identify the appropriate Software images to be deployed
to application nodes 14 based on the input received from
system administrator 20. For example, control node 12 may
determine the type of Software image to load onto an appli
cation node 14 based on the functions assigned to the node by
system administrator 20. Application nodes 14 may be
divided into a number of groups based on their assigned
functionality. As one example, application nodes 14 may be
divided into a first group to provide web server functions, a
second group to provide business application functions and a
third group to provide database functions. The application
nodes 14 of each group may be associated with different
Software images.

Control node 12 provides for the efficient allocation and
management of the various Software images within distrib
uted computing system 10. In some embodiments, control
node 12 generates a 'golden image' for each type of software
image that may be deployed on one or more of application
nodes 14. As described herein, the term “golden image” refers
to a reference copy of a complete Software stack for providing
an execution environment for applications.

System administrator 20 may create a golden image by
installing an operating system, middleware and Software
applications on a computing node and then making a com
plete copy of the installed Software. In this manner, a golden
image may be viewed as a “master copy’ of the software
image for a particular computing function. Control node 12
maintains a Software image repository 26 that stores the
golden images associated with distributed computing system
10.

Control node 12 may create a copy of a golden image,
referred to as an "image instance for each possible image
instance that may be deployed within distributed computing
system 10 for a similar computing function. In other words,
control node 12 pre-generates a set of K image instances for
a golden image, where Krepresents the maximum number of
image instances for which distributed computing system 10 is
configured for the particular type of computing function. For
a given computing function, control node 12 may create the
complete set of image instance even if not all of the image
instances will be initially deployed. Control node 12 creates

5

10

15

25

30

35

40

45

50

55

60

65

6
different sets of image instances for different computing
functions, and each set may have a different number of image
instances depending on the maximum number of image
instances that may be deployed for each set. Control node 12
stores the image instances within Software image repository
26. Each image instance represents a collection of bits that
may be deployed on an application node.

Further details of Software image management are
described in co-pending U.S. patent application Ser. No.
11/046,133, entitled “MANAGEMENT OF SOFTWARE
IMAGES FOR COMPUTING NODES OF A DISTRIB
UTED COMPUTING SYSTEM filed Jan. 28, 2005 and
co-pending U.S. patent application Ser. No. 11/046,152,
entitled UPDATING SOFTWARE IMAGES ASSOCI
ATED WITHA DISTRIBUTED COMPUTING SYSTEM
filed Jan. 28, 2005, each of which is incorporated herein by
reference in its entirety.

In general, distributed computing system 10 conforms to a
multi-level, hierarchical organizational model that includes
four distinct levels: fabric, domains, tiers and nodes. Control
node 12 is responsible for all levels of management, including
fabric management, domain creation, tier creation and node
allocation and deployment.
As used herein, the “fabric' level generally refers to the

logical constructs that allow for definition, deployment, par
titioning and management of distinct enterprise applications.
In other words, fabric refers to the integrated set of hardware,
system Software and application Software that can be “knit
ted together to form a complete enterprise system. In gen
eral, the fabric level consists of two elements: fabric compo
nents or fabric payload. Control node 12 provides fabric
management and fabric services as described herein.

In contrast, a “domain is a logical abstraction for contain
ment and management within the fabric. The domain pro
vides a logical unit of fabric allocation that enables the fabric
to be partitioned amongst multiple uses, e.g. different busi
ness services.
Domains are comprised of tiers, such as a 4-tier application

model (web server, application server, business logic, persis
tence layer) or a single tier monolithic application. Fabric
domains contain the free pool of devices available for assign
ment to tiers.
A tier is a logically associated group of fabric components

within a domain that share a set of attributes: usage, availabil
ity model or business service mission. Tiers are used to define
structure withina domain e.g. N-tier application, and each tier
represents a different computing function. A user, Such as
administrator 20, typically defines the tier structure within a
domain. The hierarchical architecture may provide a high
degree of flexibility in mapping customer applications to
logical models which run within the fabric environment. The
tier is one construct in this modeling process and is the logical
container of application resources.
The lowest level, the node level, includes the physical

components of the fabric. This includes computing nodes
that, as described above, provide operating environments for
system applications and enterprise Software applications. In
addition, the node level may include network devices (e.g.,
Ethernet switches, load balancers and firewalls) used in cre
ating the infrastructure of network 18. The node level may
further include network storage nodes that are network con
nected to the fabric.
System administrator 20 accesses administration Software

executing on control node 12 to logically define the hierar
chical organization of distributed computing system 10. For
example, system administrator 20 may provide organiza
tional data 21 to develop a model for the enterprise and

Netflix, Inc. - Ex. 1001, Page 000034
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
7

logically define the enterprise fabric. System administrator
20 may, for instance, develop a model for the enterprise that
includes a number of domains, tiers, and node slots hierar
chically arranged within a single enterprise fabric.
More specifically, system administrator 20 defines one or

more domains that each correspond to a single enterprise
application or service, such as a customer relation manage
ment (CRM) service. System administrator 20 further defines
one or more tiers within each domain that represent the func
tional Subcomponents of applications and services provided
by the domain. As an example, System administrator 20 may
define a storefront domain within the enterprise fabric that
includes a web tier, an application tier and a database tier. In
this manner, distributed computing system 10 may be config
ured to automatically provide web server functions, business
application functions and database functions.

For each of the tiers, control node 12 creates a number of
"node slots’ equal to the maximum number of application
nodes 14 that may be deployed. In general, each node slot
represents a data set that describes specific information for a
corresponding node, such as Software resources for a physical
node that is assigned to the node slot. The node slots may, for
instance, identify a particular Software image instance asso
ciated with an application node 14 as well as a network
address associated with that particular image instance.

In this manner, each of the tiers include one or more node
slots that reference particular software image instances to
boot on the application nodes 14 to which each software
image instance is assigned. The application nodes 14 to which
control node 12 assigns the image instances temporarily
inherit the network address assigned to the image instance for
as long as the image instance is deployed on that particular
application node. If for some reason the image instance is
moved to a different application node 14, control node 12A
moves the network address to that new application node.

System administrator 20 may further define specific node
requirements for each tier of the fabric. For example, the node
requirements specified by System administrator 20 may
include a central processing unit (CPU) count, a CPU speed,
an amount of memory (e.g., RAM), local disk characteristics
and otherhardware characteristics that may be detected on the
individual computing nodes. System administrator 20 may
also specify user-defined hardware attributes of the comput
ing nodes, such as whether I/O (like HBA) is required. The
user-defined hardware attributes are typically not capable of
detection during an automatic inventory. In this manner, sys
tem administrator 20 creates a list of attributes that the tier
requires of its candidate computing nodes. In addition, par
ticular node requirements may be defined for Software image
instances.

In addition to the node requirements described above, sys
tem administrator 20 may further define policies that are used
when re-provisioning computing nodes within the fabric.
System administrator 20 may define policies regarding tier
characteristics, such as a minimum number of nodes a tier
requires, an indication of whether or not a failed node is
dynamically replaced by a node from free pool 13, a priority
for each tier relative to other tiers, an indication of whether or
not a tier allows nodes to be re-provisioned to other tiers to
satisfy processing requirements by other tiers of a higher
priority or other policies. Control node 12 uses the policy
information input by System administrator 20 to re-provision
computing nodes to meet tier processing capacity demands.

After receiving input from system administrator 20 defin
ing the architecture and policy of the enterprise fabric, control
node 12 identifies unallocated nodes within free pool 13 that
satisfy required node attributes. Control node 12 automati

10

15

25

30

35

40

45

50

55

60

65

8
cally assigns unallocated nodes from free pool 13 to respec
tive tier node slots of a tier. As will be described in detail
herein, in one embodiment, control node 12 may assign com
puting nodes to the tiers in a “best fit fashion. Particularly,
control node 12 assigns computing nodes to the tier whose
node attributes most closely match the node requirements of
the tier as defined by administrator 20. The assignment of the
computing nodes may occur on a tier-by-tier basis beginning
with a tier with the highest priority and ending with a tier with
the lowest priority. Alternatively, or in addition, assignment
of computing nodes may be based on dependencies defined
between tiers.
As will be described in detail below, control node 12 may

automatically add unallocated nodes from free pool 13 to a
tier when more processing capacity is needed within the tier,
remove nodes from a tier to the free pool when the tier has
excess capacity, transfer nodes from tier to tier to meet pro
cessing demands, or replace failed nodes with nodes from the
free pool. Thus, computing resources, i.e., computing nodes,
may be automatically shared between tiers and domains
within the fabric based on user-defined policies to dynami
cally address high-processing demands, failures and other
eVentS.

Distributed computing system 10 may provide one or more
advantages. For example, distributed computing system 10
may deliver application services in a manner that is indepen
dent of the computational infrastructure which generates the
application services. For example, the computation infra
structure that provides an application service to a user of
distributed computing system 10 may be irrelevant to the user,
So long as distributed computing system provides the appli
cation service. Distributed computing system 10 may deliver
application services in a manner that is independent of the
computational infrastructure by utilizing an infrastructure
management facility (IMF) that may guarantee application
service delivery using "service level automation.”

This concept is itself based upon two concepts: The Service
Delivery Model and Service Level Automation.

1. Service Delivery Model: The concept of computing as a
service is based upon the ability of the consumer to be guar
anteed availability of the quantity and quality of an applica
tion service required at the time and location necessary, inde
pendent of the type of service provided (e.g. audio, video,
application programs, etc). This may be achieved if the appli
cation services are provided in a manner that is independent
of the location and condition of the physical and logical
infrastructure which generates the application service, lim
ited only by total capability and capacity available. This dis
closure may refer to this concept as the “Service Delivery
Model

Physical and logical infrastructure facilities that provide an
application service may comprise a "computing infrastruc
ture. A "computing infrastructure' may include computing,
storage and communication hardware and related Software
infrastructure; the application Software and application con
tainers; and other enabling facilities and services that are part
of the environment necessary to generate and deliver appli
cation services.

2. Service Level Automation: In order to implement the
service delivery model, the IMF may provide service level
automation. The IMF may implement the service delivery
model for single and/or multiple application service flows.
For example, the IMF may automatically and dynamically
adjust application service levels of these application service
flows based on a policy automation facility. The policy auto
mation facility may automate delivery of application service
based upon dynamically extensible policies. These dynami

Netflix, Inc. - Ex. 1001, Page 000035
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2

cally extensible policies may include but are not limited to:
customer, location, priority, duration, date and time of day,
service type, business demands and conditions, quantity and
quality of the application service. The policy automation
facility may also enable independent control of the applica
tion service by a service provider and by a consumer. Further
more, the policy automation facility may allow the consumer
provide the application service or a service based on the
application service to another consumer. In addition, the IMF
may measure both efficiency and cost as reflected in the
behavior of the product. For example, the IMF may provide
the ability to make decisions that account for the best uses of
the resources on a dynamic basis in order to choose between
functionally equivalent alternatives that make the best usage
of the economics of the infrastructure at the time. This dis
closure may refer to this concept as “Service Level Automa
tion” (SLA).

Service-level automation may enable the separation of
Some or all aspects of the implementation of the computing
infrastructure from the delivery of application services. Sepa
rating the implementation of the computing infrastructure
from the delivery of application services may allow a con
Sumer of the application services to decrease risk and cost
while increasing business agility. Implementations of Ser
Vice-level automation may be based upon a new abstraction
which operates independent of existing software categories
(e.g. applications, middleware, database, operating systems
and system management) which for the purposes of this dis
closure shall be referred to as "Metaware.”
The IMF may comprise Metaware that regulates the deliv

ery of application services through service-level automation.
The IMF may use service-level automation to regulate the
delivery of application services in a manner that is indepen
dent of the computing infrastructure that provides the appli
cation services. Because application services are the result of
applications running within distributed computing system 10,
the IMF may automate application service levels and may
make independent of all aspects of the computing infrastruc
ture within the limits of the capability and capacity available
for delivery to the consumer. Service-level automation may
provide extensible, dynamic policy-driven control of service
delivery for both service providers and service consumers.
The IMF may include the following six functional design
capabilities:

1. Application Service Independence: The basic concept
which enables the IMF to deliver application services may be
the ability of the IMF to dynamically manage service-level
automation in a manner that is independent of the computing
infrastructure. A key element of this is that application ser
vices themselves are independent and unmodified. The IMF
may be able to accomplish this by abstracting the physical and
logical computing infrastructure away from the quantity and
quality of application services generated by the computing
infrastructure.

2. Scale Independence: The incremental overhead of the
IMF required by any server included in distributed computing
system 10 may be independent of the number of nodes in
distributed computing system 10.

3. Container Capacity Metering: Distributed computing
system 10 may achieve application service independence by
dynamically metering higher-level software facilities of the
computing infrastructure. The higher-level software facilities
may generate the application services, service flow and flux.
This disclosure may refer to these facilities as “container
services.” Examples of container services may include, but
are not limited to, virtual machine managers, operating sys
tems, and web application servers. Furthermore, Some con

10

15

25

30

35

40

45

50

55

60

65

10
tainer services may contain other container services that the
IMF manages. The system may conceptualize the application
service as being independent of the type of computing infra
structure (e.g., middleware and hardware nodes) that generate
these services.

4. Policy Automation: The IMF may deliver the required
service-level automation through its extensible policy man
agement facility. The policy management facility may
dynamically adjust application service levels in order to
implement user-defined policy. The ability to adjust applica
tion service levels may be limited only by the capacity and
capability of the available computing infrastructure. The
policy management facility may be capable of providing
guaranteed service levels for single and/or multiple applica
tion service flows which the IMF automatically and dynami
cally adjust based on user-defined and extensible policies in
response to changes in the environment. Examples of policies
may include, but are not limited to: customer, location, Ser
Vice type, cost and/or pricing, quantity and quality of service,
priority, duration, date and time of day, business demands and
conditions, and other policies. The policy management facil
ity may also allow the service provider to manage delivery
and meter the capacity that the service provider delivers to
individual customers. The policy management facility may
allow the service provider to manage delivery and meter
capacity independent of the ability of the customer to set and
manage their own policies of how their capacity is utilized.
This may be effectively done by leveraging application ser
Vice independence.

5. Dynamic Provisioning: The IMF described herein may
Support the ability to dynamically provision at boot and run
time all software in order to Support installation, capacity
management, service levels and other policies, and Software
upgrades. Offering a computing infrastructure architecture
that is application service independent may create flexibility
in deployment of a single instance of a service.

6. Data Capture Capability: The IMF described herein may
acquire the data necessary to enable the service provider to
implement metering and auditing facilities necessary to con
trol, audit, bill and account for services provided in complete
detail. The customer may also use the ability to capture this
data as a means to educate the IMF about the performance
characteristics of combinations of resources in order to allow
the IMF to improve the quality of its scheduling decisions
over time. Improvement of the quality of scheduling deci
sions may enhance the ability of the IMF to provide the
requisite services with high efficiency.
The described system may allow customers to conve

niently acquire the guaranteed quantity and quality of appli
cation services required at competitive market-driven rates
with the ability to directly control the SLA capability of the
IMF in order to maximize their operations efficiency and
effectiveness without having to tradeoff operation risk, cost
and business agility. Potential advantages may include, but
are not limited to:

1. Efficiency and Effectiveness: The customer may not
need to manage the technology, and can focus on the auto
mation of the application service to improve their efficiency
and effectiveness without having to tradeoff operation risk,
cost and business agility which the IMF may enable through
the service-level automation capability of the IMF.

2. Capabilities & Convenience: By leveraging the Internet
as a generic, global delivery facility and separating the com
puting infrastructure from the application service delivery,
the IMF may simplify the consumer's life in several ways:

Netflix, Inc. - Ex. 1001, Page 000036
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
11

i. Complexity: The IMF may eliminate the complexity of
purchasing, installing, configuring, managing and
administering the computing infrastructure.

ii. Access: The IMF may provide ubiquitous access to a full
range of computing services wherever and whenever
desired from any client device capable of accessing the
Internet.

iii. Service Provider Independence: Consumers may be
free to change providers by simply transferring their
Software images to a new service provider.

iv. Service Management: Service management may enable
a consumer to provide services to customers of the con
Sumer. For example, a corporation may be able to regu
late and bill their individual business units for the capac
ity consumed.

3. Cost: By logically abstracting the application services
from the computing infrastructure, the IMF may enable a
competitive service provider industry that includes:

i. Capacity Utilization: A service provider using the IMF
may be able to charge customers for capacity actually
utilized by the customers. Presently, customers typically
pay for the maximum capacity they would need at peak
load.

ii. Choice of Suppliers: As the basic computing infrastruc
ture facilities may be generic, the customer may have a
choice of suppliers without the level of lock-in current
Vendors may enjoy. This may be enabled through the
image and policy management implementation of the
IMF. The image and policy management implementa
tion of the IMF may allow portability across service
providers through by enabling the customer to simply
transfer the files to the new provider and initiating it with
the IMF Metaware. The ability to easily migrate from a
first service provider to a second service provider may
drive the pricing competition. In this way, the ability of
the IMF to provide application services independent of
the computing infrastructure may enable customers to
choose a service provider more effectively.

iii. Capital Expense Leverage: The customer may not need
to own the capital equipment or software. Rather the
service provider may be motivated to use the most cost
effective components and amortize costs of these com
ponents across a customer base of the service provider.
As a result, the cost to the consumer may be lower.

iv. Operations Expense Leverage: As the IMF automates
most of the information technology operations func
tions, these costs may drop dramatically.

The IMF may enable the implementation of a service deliv
ery model based on service-level automation by service pro
viders:

1. A service provider may use the IMF to implement a
service delivery model for application services independent
of the computing infrastructure or of the service types pro
vided. This capability may enable the service provider to
deliver service-level automation on a global basis utilizing
generic computing infrastructure for all types of digital Ser
vices. Such digital service may include traditional applica
tions and service flow processing, digital audio and digital
Video services independently to any consumer type (e.g. indi
vidual, organization or corporation) as long as the consumer
has access to sufficient capacity of broadband communica
tions for the services levels require, and other types of digital
services. This capability of the IMF may also allow a con
Sumer of an application service to, in turn, be a service pro
vider as well.

2. The IMF described herein may enable a service provider
to meter application services that distributed computing sys

5

10

15

25

30

35

40

45

50

55

60

65

12
tem 10 delivers. For example, the service provider may meter
application services based on the capacity of computing
infrastructure consumed by customer. The service provider
may meter application services in order to control, audit, bill
and account for the application services provided to indi
vidual consumers of the application services. This capability
may represent a uniform model of service-level automation
that is independent of the capacity of computing infrastruc
ture for Some or all types of application services. As a result,
a pricing model of a service provider may reflect the goal of
utility computing by enabling the service provider to bill
based upon a combination of application service delivery
parameters. These application service delivery parameters
may include, but not limited to: customer, type of service,
duration, date and/or time of day, location, point of delivery,
quantity and quality of service and excess or reserved capac
ity, and other application service delivery parameters.

3. The IMF may also enable the service provider to lever
age the economics of the service delivery model in several
ways:

i. Utilization: By managing the computing infrastructure
with the IMF, a service provider may be able to maintain
much higher average utilization levels of the computing
infrastructure. The maintenance of higher average utili
Zation levels may dramatically reduce the amount of
hardware purchased, Software licensed and operations
expenses.

ii. Global Service Demand Levels: Demand for an appli
cation service by an organization may vary by local time
of day. By leveraging the global reach of the Internet, a
service provider may be able to effectively manage the
utilization of the computing infrastructure necessary to
meet demand for the application service on a global
“follow the Sun' basis.

iii. Service Digitization: As more services become digital,
service providers may deliver these services using a
generic computing infrastructure architecture.

iv. Value-Added Services: A service provider may be free
to provide value-added services beyond basic applica
tion services. A few examples of value-added services
may include: a bundle of personal computer services
that includes applications, storage, security, administra
tion and related services; Software as a service; compli
ance verification and certification, and other types of
value-added services.

V. Hardware Commoditization: Hardware commoditiza
tion may enable a service provider to implement a com
puting infrastructure using generic low cost servers,
storage facilities, and network Switches. These hardware
elements are undergoing dramatic commoditization
which may allows for much lower capital expenses then
in the past. This commoditization may continue for
many years to come making capital expenses a much
smaller part of the fixed costs for the service provider.

vi. Automation of Operations: One of the primary eco
nomic values of the IMF is that IMF may automate most
of the runtime operations costs of the computing infra
structure. Operations expenses may constitute the
majority of the costs of today. Because the IMF auto
mates the runtime operations, the IMF may reduce runt
ime operations costs. Thus by leveraging the ability of
the IMF to dramatically reduce the capital and opera
tions expenses, the service provider may be able to
implementan service delivery model that may justify the
consumers Switching cost.

Netflix, Inc. - Ex. 1001, Page 000037
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
13

vii. Software Commoditization: Software pricing is being
commoditized based upon several factors which may
continue to accelerate. These factors may include:
1. Service-Oriented Architecture: Software systems that

utilize a service-oriented architecture may accelerate
innovation, allow for incremental independent inno
Vation, eliminate down stream lock in by Software
Vendors, and may make it possible to use commodity
servers to run applications that previously required
large expensive servers. Service-oriented architecture
may also reduce complex applications to their most
fundamental independently divisible functional ser
vices which will be the basis for the complete com
moditization of Software further leveraging the open
SOurce movement.

2. Open Source Software: The open source software
paradigm may serve as an accelerator for the com
moditization of many types of software by both com
promising the pricing power of Software and serving
as a reusable model of software services which may
further compromise the value of horizontal software
services.

3. Good Enough: Application services are becoming
more and more generic, thus accelerating their com
moditization further in combination with service-ori
ented architectures and Open Source.

FIG. 2 is a schematic diagram illustrating an example
embodiment of organizational data 21 that defines a model
logically representing an enterprise fabric in accordance with
the invention. In the example illustrated in FIG. 2, control
node 12 (FIG. 1) maintains organizational data 21 to define a
simple e-commerce fabric 32.

In this example, e-commerce fabric 32 includes a store
front domain 34A and a financial planning domain 34B.
Storefront domain 34A corresponds to the enterprise store
front domain and allows customers to find and purchase prod
ucts over a network, Such as the Internet. Financial planning
domain 34B allows one or more employees to perform finan
cial planning tasks for the enterprise.

Tier level 31C includes one or more tiers within each
domain that represent the functional Subcomponents of appli
cations and services provided by the domain. For example,
storefront domain 34A includes a web server tier (labeled
“web tier) 36A, a business application tier (labeled “app
tier”)36B, and a database tier (labeled “DB tier”)36C. Web
server tier 36A, business application tier 36B and database
tier 36C interact with one another to present a customer with
an online storefront application and services. For example,
the customer may interact with web servertier 36A via a web
browser. When the customer searches for a product, web
server tier 36A may interacts with business application tier
36B, which may in turn access a database tier 36C. Similarly,
financial planning domain 34B includes a financial planning
tier 36D that provides subcomponents of applications and
services of the financial planning domain 34B. Thus, in this
example, a domain may include a single tier.

Tier level 31D includes one or more logical node slots
38A-38H (“node slots 38”) within each of the tiers. Each of
node slots 38 include node specific information, such as soft
ware resources for an application node 14 that is assigned to
a respective one of the node slots 38. Node slots 38 may, for
instance, identify particular Software image instances within
image repository 26 and map the identified Software image
instances to respective application nodes 14. As an example,
node slots 38A and 38B belonging to web servertier 36A may
reference particular Software image instances used to boot
two application nodes 14 to provide web server functions.

10

15

25

30

35

40

45

50

55

60

65

14
Similarly, the other node slots 38 may reference software
image instances to provide business application functions,
database functions, or financial application functions depend
ing upon the tier to which the node slots are logically associ
ated.

Although in the example of FIG. 2, there are two node slots
38 corresponding to each tier, the tiers may include any num
ber of node slots depending on the processing capacity
needed on the tier. Furthermore, not all of node slots 38 may
be currently assigned to an application node 14. For example,
node slot 28B may be associated with an inactive software
image instance and, when needed, may be assigned to an
application node 14 for deployment of the Software image
instance.

In this example, organizational data 21 associates free node
pool 13 with the highest-level of the model, i.e., e-commerce
fabric 32. As described above, control node 12 may automati
cally assign unallocated nodes from free node pool 13 to at
least a portion of tier node slots 38 of tiers 36 as needed using
the “best fit” algorithm described above or another algorithm.
Additionally, control node 12 may also add nodes from free
pool 13 to a tier when more processing capacity is needed
within the tier, remove nodes from a tier to free pool 13 when
a tier has excess capacity, transfer nodes from tier to tier to
meet processing demands, and replace failed nodes with
nodes from the free tier.
Although not illustrated, the model for the enterprise fabric

may include multiple free node pools. For example, the model
may associate free node pools with individual domains at the
domain level or with individual tier levels. In this manner,
administrator 20 may define policies for the model such that
unallocated computing nodes of free node pools associated
with domains or tiers may only be used within the domain or
tier to which they areassigned. In this manner, a portion of the
computing nodes may be shared between domains of the
entire fabric while other computing nodes may be restricted to
particular domains or tiers.

FIG. 3 is a flow diagram that provides a high-level over
view of the operation of control node 12 when configuring
distributed computing system 10. Initially, control node 12
receives input from a system administrator defining the hier
archical organization of distributed computing system 10
(50). In one example, control node 12 receives input that
defines a model that specifies a number of hierarchically
arranged nodes as described in detail in FIG. 2. Particularly,
the defined architecture of distributed computing system 10
includes an overall fabric having a number of hierarchically
arranged domains, tiers and node slots.

During this process, control node 12 may receive input
specifying node requirements of each of the tiers of the hier
archical model (52). As described above, administrator 20
may specify a list of attributes, e.g., a central processing unit
(CPU) count, a CPU speed, an amount of memory (e.g.,
RAM), or local disk characteristics, that the tiers require of
their candidate computing nodes. In addition, control node 12
may further receive user-defined custom attributes, such as
requiring the node to have I/O, such as HBA connectivity. The
node requirements or attributes defined by System adminis
trator 20 may each include a name used to identify the char
acteristic, a data type (e.g., integer, long, float or string), and
a weight to define the importance of the requirement.

Control node 12 identifies the attributes for all candidate
computing nodes within free pool 13 or a lower priority tier
(54). As described above, control node 12 may have already
discovered the computing nodes and inventoried the candi
date computing nodes to identify hardware characteristics of
all candidate computing nodes. Additionally, control node 12

Netflix, Inc. - Ex. 1001, Page 000038
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
15

may receive input from system administrator 20 identifying
specialized capabilities of one or more computing nodes that
are not detectable by the inventory process.

Control node 12 dynamically assigns computing nodes to
the node slots of each tier based on the node requirements
specified for the tiers and the identified node attributes (56).
Population of the node slots of the tier may be performed on
a tier-by-tier basis beginning with the tier with the highest
priority, i.e., the tier with the highest weight assigned to it. As
will be described in detail, in one embodiment, control node
12 may populate the node slots of the tiers with the computing
nodes that have attributes that most closely match the node
requirements of the particular tiers. Thus, the computing
nodes may be assigned using a “best fit algorithm.

FIG. 4 is a flow diagram illustrating exemplary operation of
control node 12 when assigning computing nodes to node
slots of tiers. Initially, control node 12 selects a tier to enable
(60). As described above, control node 12 may select the tier
based on a weight or priority assigned to the tier by adminis
trator 20. Control node 12 may, for example, initially select
the tier with the highest priority and successively enable the
tiers based on priority.

Next, control node 12 retrieves the node requirements asso
ciated with the selected tier (62). Control node 12 may, for
example, maintain a database having entries for each node
slot, where the entries identify the node requirements for each
of the tiers. Control node 12 retrieves the node requirements
for the selected tier from the database.

In addition, control node 12 accesses the database and
retrieves the computing node attributes of one of the unallo
cated computing nodes of free pool 13. Control node 12
compares the node requirements of the tier to the node
attributes of the selected computing node (64).

Based on the comparison, control node 12 determines
whether the node attributes of the computing node meets the
minimum node requirements of the tier (66). If the node
attributes of the selected computing node do not meet the
minimum node requirements of the tier, then the computing
node is removed from the list of candidate nodes for this
particular tier (68). Control node 12 repeats the process by
retrieving the node attributes of another of the computing
nodes of the free pool and compares the node requirements of
the tier to the node attributes of the computing node.

If the node attributes of the selected computing node meet
the minimum node requirements of the tier (YES of 66),
control node 12 determines whether the node attributes arean
exact match to the node requirements of the tier (70). If the
node attributes of the selected computing node and the node
requirements of the tier are a perfect match (YES of 70), the
computing node is immediately assigned from the free pool to
a node slot of the tier and the image instance for the slot is
associated with the computing node for deployment (72).

Control node 12 then determines whether the node count
for the tier is met (74). Control node 12 may, for example,
determine whether the tier is assigned the minimum number
of nodes necessary to provide adequate processing capabili
ties. In another example, control node 12 may determine
whether the tier is assigned the ideal number of nodes defined
by system administrator 20. When the node count for the tier
is met, control node 12 selects the next tier to enable, e.g., the
tier with the next largest priority, and repeats the process until
all defined tiers are enabled, i.e., populated with application
nodes (60).

If the node attributes of the selected computing node and
the node requirements of the tier are not a perfect match
control node 12 calculates and records a “processing energy’
of the node (76). As used herein, the term “processing energy’

10

15

25

30

35

40

45

50

55

60

65

16
refers to a numerical representation of the difference between
the node attributes of a selected node and the node require
ments of the tier. A positive processing energy indicates the
node attributes more than satisfy the node requirements of the
tier. The magnitude of the processing energy represents the
degree to which the node requirements exceed the tier
requirements.

After computing and recording the processing energy of
the nodes, control node 12 determines whether there are more
candidate nodes in free pool 13 (78). If there are additional
candidate nodes, control node 12 repeats the process by
retrieving the computing node attributes of another one of the
computing nodes of the free pool of computing nodes and
comparing the node requirements of the tier to the node
attributes of the computing node (64).
When all of the candidate computing nodes in the free pool

have been examined, control node 12 selects the candidate
computing node having the minimum positive processing
energy and assigns the selected computing node to a node slot
of the tier (80). Control node 12 determines whether the
minimum node count for the tier is met (82). If the minimum
node count for the tier has not been met, control node 12
assigns the computing node with the next lowest calculated
processing energy to the tier (80). Control node 12 repeats this
process until the node count is met. At this point, control node
12 selects the next tier to enable, e.g., the tier with the next
largest priority (60).

In the event there are an insufficient number of computing
nodes in free pool 13, or an insufficient number of computing
nodes that meet the tier requirements, control node 12 notifies
system administrator 20. System administrator 20 may add
more nodes to free pool 13, add more capable nodes to the free
pool, reduce the node requirements of the tier so more of the
unallocated nodes meet the requirements, or reduce the con
figured minimum node counts for the tiers.

FIG.5 is a flow diagram illustrating exemplary operation of
control node 12 when adding an additional computing node to
a tier to meet increased processing demands. Initially, control
node 12 or system administrator 20 identifies a need for
additional processing capacity on one of the tiers (90). Con
trol node 12 may, for example, identify a high processing load
on the tier or receive input from a system administrator iden
tifying the need for additional processing capacity on the tier.

Control node 12 then determines whether there are any
computing nodes in the free pool of nodes that meet the
minimum node requirements of the tier (92). When there are
one or more nodes that meet the minimum node requirements
of the tier, control node 12 selects the node from the free pool
based the node requirements of the tier, as described above,
(94) and assigns the node to the tier (95). As described in
detail with respect to FIG.4, control node 12 may determine
whether there are any nodes that have node attributes that are
an exact match to the node requirements of the tier. If an exact
match is found, the corresponding computing node is
assigned to a node slot of the tier. If no exact match is found,
control node 12 computes the processing energy for each
node and assigns the computing node with the minimum
processing energy to the tier. Control node 12 remotely pow
ers on the assigned node and remotely boots the node with the
image instance associated with the node slot. Additionally,
the booted computing node inherits the network address asso
ciated with the node slot.

If there are no adequate computing nodes in the free pool,
i.e., no nodes at all or no nodes that match the minimal node
requirements of the tier, control node 12 identifies the tiers
with a lower priority than the tier needing more processing
capacity (96).

Netflix, Inc. - Ex. 1001, Page 000039
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
17

Control node 12 determines which of the nodes of the
lowerpriority tiers meet the minimum requirements of the tier
in need of processing capacity (98). Control node 12 may, for
example, compare the attributes of each of the nodes assigned
to node slots of the lower priority tiers to the node require
ments of the tier in need of processing capacity. Lower pri
ority tiers that have the minimum number of computing nodes
may be removed from possible tiers from which to harvest an
application node. If, however, all the lower priority tiers have
the minimum number of computing nodes defined for the
respective tier, the lowest priority tier is selected from which
to harvest the one or more nodes.

Control node 12 calculates the processingenergy of each of
the nodes of the lower priority tiers that meet the minimum
requirements (100). The energies of the nodes are calculated
using the differences between the node attributes and the node
requirements of the tier needing additional capacity. Control
node 12 selects the computing node with the lowest process
ingenergy that meets the minimum requirements, and assigns
the selected computing node to the tier in need of processing
capacity (102.95).

FIG. 6 is a flow diagram illustrating exemplary operation of
control node 12 when harvesting excess node capacity from
one of the tiers and returning the harvested computing node to
free pool 13. Initially, control node 12 identifies a tier having
excess node capacity (110). Control node 12 may, for
example, periodically check the node capacity of the tiers to
identify any tiers having excess node capacity. Performing a
periodic check and removal of excess nodes increases the
likelihood that a capable computing node will be in free pool
13 in the event one of the tiers needs additional node capacity.
When harvesting a node, control node 12 calculates the

processing energy of all the nodes in the tier as described
above with reference to FIG. 4 (112). Control node 12 iden
tifies the node within the tier with the highest processing
energy and returns the identified node to the free pool of
nodes (114, 116). As described above, the node with the
highest processing energy corresponds to the node whose
node attributes are the most in excess of the node require
ments of the tier.

Returning the node to the free pool may involve remotely
powering off the computing node and updating the database
to associate the harvested node with free pool 13. In addition,
control node 12 updates the database to disassociate the
returned node with the node slot to which it was assigned. At
this point, the node no longer uses the network address asso
ciated with the image instance mapped to the node slot. Con
trol node 12 may, therefore, assign a temporary network
address to the node while the node is assigned to free pool 13.

FIG. 7 is a screen illustration of an exemplary user interface
120 presented by control node 12 with which administrator
20 interacts to define tiers for a particular domain. In the
example illustrated in FIG. 7, system administrator 20 has
selected the “Collage Domain.” User interface 120 presents
the tiers that are currently in the selected domain. In the
example illustrated, the Collage Domain includes three tiers,
“test tier 1,” “test tier 2, and “test tier 3. As shown in FIG. 7,
in this example, each of the tiers includes two nodes. In
addition, user interface 120 lists the type of software image
currently deployed to application nodes for each of the tiers.
In the example illustrated, image “applone (1.0.0) is
deployed to the nodes of test tier 1 and image “appltwo
(1.0.0) is deployed to the nodes of test tier 2. System admin
istrator 20 may add one or more tiers to the domain by click
ing on new tier button 122.

FIG. 8 is a screen illustration of an exemplary user interface
130 for defining properties of the tiers. In particular, user

10

15

25

30

35

40

45

50

55

60

65

18
interface 130 allows system administrator 20 to input a name
for the tier, a description of the tier, and an image associated
with the tier. The image associated with the tier refers to a
golden image from which image instances are generated and
deployed to the nodes assigned to the tier.
When configuring a tier, system administrator 20 may elect

to activate email alerts. For example, system administrator 20
may activate the email alerts feature in order to receive email
alerts providing system administrator 20 with critical and/or
non-critical tier information, such as a notification that a tier
has been upgraded, a node of the tier has failed or the like.
Furthermore, system administrator 20 may input various poli
cies, such node failure rules. For example, system adminis
trator 20 may identify whether control node 12 should reboot
a node in case of failure or whether the failed node should
automatically be moved to maintenance pool 17. Similarly,
system administrator 20 may identify whether nodes assigned
to the tier may be harvested by other tiers.

User interface 130 may also allow system administrator 20
to input node requirements of a tier. In order to input node
requirements of a tier, system administrator 20 may click on
the “Requirements’ tab 132, causing user interface 130 to
present an input area to particular node requirements of the
tier.

FIG.9 is a screen illustration of an exemplary user interface
140 for viewing and identifying properties of a computing
node. User interface 140 allows system administrator 20 to
define a name, description, and location (including a rack and
slot) of a computing node. In addition user interface 140 may
specify user-defined properties of a node, such as whether the
computing node has I/O HBA capabilities.

User interface 140 also displays properties that control
node 12 has identified during the computing node inventory
process. In this example, user interface 140 presents system
administrator 20 with the a CPU node count, a CPU speed, the
amount of RAM, the disk size and other characteristics that
are identifiable during the automated node inventory. User
interface 140 additionally presents interface information to
system administrator 20. Specifically, user interface 140 pro
vides system administrator 20 with a list of components and
their associated IP and MAC addresses.

User interface 140 also allows system administrator 20 to
define other custom requirements. For example, system
administrator 20 may define one or more attributes and add
those attributes to the list of node attributes presented to
system administrator 20.

FIG. 10 is a screen illustration of an exemplary user inter
face 150 for viewing software images. User interface 150
presents to a system administrator or another user a list of
images maintained by control node 12 within image reposi
tory 26. The image list further includes the status of each
image (i.e., either active or inactive), the version of the image,
the operating system on which the image should be run, the
operating system version on which the image should be run
and a brief description of the image.

System administrator 20 or another user may select an
image by clicking on the box in front of the image identifier/
name and perform one or more actions on the image. Actions
that system administrator 20 may perform on an image
include deleting the image, updating the image, and the like.
System administrator 20 may select one of the image actions
via dropdown menu 152. In some embodiments, user inter
face 150 may further display other details about the images
Such as the node to which the images are assigned (if the node
status is “active'), the network address associated with the
images and the like.

Netflix, Inc. - Ex. 1001, Page 000040
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
19

FIG. 11 is a screen illustration of an exemplary user inter
face 160 for viewing a hardware inventory report. User inter
face 160 presents to system administrator 20 or another user
a list of the nodes that are currently assigned to a domain.
System administrator 20 may elect to view the nodes for the
entire domain, for a single tier within the domain or for a
single rack within a tier.

For each node, user interface 160 presents a node ID, a
status of the node, the tier to which the node belongs, a
hostname associated with the node, a NIC IP address, a rack
location, a slot location, the number of CPUs of the node, the
amount of RAM on the node, the number of disks on the node,
whether the node has I/O HBA, and the number of NICs of the
node.

System administrator 20 or other user may select a node by
clicking on the box in front of the node identifier/name and
perform one or more actions on the node. Actions that system
administrator 20 may perform on the node include deleting
the node, updating the node attributes or other properties of
the node, and the like. System administrator 20 may select
one of the node actions via dropdown menu 162.

FIG. 12 is a screen illustration of an exemplary user inter
face 170 for viewing discovered nodes that are located in
discovered pool 11. For each node, user interface 170 pre
sents a node ID, a state of the node, a NIC IP address, a rack
location, a slot location, the number of CPUs of the node, the
amount of RAM on the node, the number of disks on the node,
whether the node has I/O HBA, and the number of NICs of the
node.

FIG. 13 is a screen illustration of an exemplary user inter
face 180 for viewing users of distributed computing system
10. User interface 180 presents a list of users as well as the
role assigned to each of the users and the status of each of the
users. Thus, system administrator 20 may define different
roles to each of the users. For example, a user may be eitheran
operator (i.e., general user) or an administrator. System
administrator 20 may add a new user to the list of users by
clicking on the “New User' button 182.

FIG. 14 is a screen illustration of an exemplary user inter
face 190 for viewing alerts for distributed computing system
10. For each of the alerts, user interface 190 identifies the
severity of the alert, whether the alert has been acknowledged,
an object associated with the alert, an event associated with
the alert, a state of the alert, a user associated with the alert and
a date associated with the alert.

System administrator 20 or other user may select an alert
by clicking on the box in front of the logged alert and perform
one or more actions on the logged alert. Actions that system
administrator 20 may perform include deleting the alert,
changing the status of the alert, or the like. System adminis
trator 20 may specify the log actions via dropdown menu 192.

FIG. 15 is a block diagram illustrating one embodiment of
control node 12 in further detail. In the illustrated example,
control node 12 includes a monitoring Subsystem 202, a ser
vice level automation infrastructure (SLAI) 204, and a busi
ness logic tier (BLT) 206.

Monitoring Subsystem 202 provides real-time monitoring
of the distributed computing system 10. In particular, moni
toring subsystem 202 dynamically collects status data 203
from the hardware and software operating within distributed
computing system 10, and feeds the status data in the form of
monitor inputs 208 to SLAI 204. Monitoring inputs 208 may
be viewed as representing the actual state of the fabric defined
for the organizational model implemented by distributed
computing system 10. Monitoring Subsystem 202 may utilize
well defined interfaces, e.g., the Simple Network Manage

10

15

25

30

35

40

45

50

55

60

65

20
ment Protocol (SNMP) and the Java Management Extensions
(JMX), to collect and export real-time monitoring informa
tion to SLAI 204.
SLAI 204 may be viewed as an automation subsystem that

provides Support for autonomic computing and acts as a cen
tral nervous system for the controlled fabric. In general, SLAI
204 receives monitoring inputs 208 from monitoring sub
system 202, analyzes the inputs and outputs appropriate
action requests 212 to BLT 206. In one embodiment, SLAI
204 is a cybernetic system that controls the defined fabric via
feedback loops. More specifically, administrator 20 may
interact with BLT 206 to define an expected state 210 for the
fabric. BLT 206 communicates expected state 210 to SLAI
204. SLAI 204 receives the monitoring inputs from monitor
ing Subsystem 202 and applies rules to determine the most
effective way of reducing the differences between the
expected and actual states for the fabric.

For example, SLAI 204 may apply a rule to determine that
a node within a high priority tier has failed and that the node
should be replaced by harvesting a node from a lower priority
tier. In this example, SLAI 204 outputs an action request 212
to invoke BLT 206 to move a node from one tier to the other.

In general, BLT 206 implements high-level business opera
tions on fabrics, domains and tiers. SLAI 204 invokes BLT
206 to bring the actual state of the fabric into accordance with
the expected state. In particular, BLT 206 outputs fabric
actions 207 to perform the physical fabric changes. In addi
tion, BLT 206 outputs an initial expected state 210 to SLAI
204 and initial monitoring information 214 to SLAI 204 and
monitoring subsystem 202, respectively. In addition, BLT
206 outputs notifications 211 to SLAI 204 and monitoring
subsystem 202 to indicate the state and monitoring changes to
distributed computing system 10. As one example, BLT 206
may provide control operations that can be used to replace
failed nodes. For example, BLT 206 may output an action
request indicating that a node having address 10.10.10.10 has
been removed from tier ABC and a node having address
10.10.10.11 has been added to tier XYZ. In response, moni
toring Subsystem 202 stops attempting to collect status data
203 from node 10.10.10.10 and starts monitoring for status
data from node 10.10.10.11. In addition, SLAI 204 updates an
internal model to automatically associate monitoring inputs
from node 10.10.10.11 with tier XYZ.

FIG. 16 is a block diagram illustrating one embodiment of
monitoring Subsystem 202. In general, monitoring Subsystem
202 dynamically detects and monitors a variety of hardware
and software components within the fabric. For example,
monitoring subsystem 202 identifies, in a timely and efficient
manner, any computing nodes that have failed, i.e., any node
that does not respond to a request to a known service. More
generally, monitoring Subsystem 202 provides a concise, con
sistent and constantly updating view of the components of the
fabric.
As described further below, monitoring subsystem 202

employs a modular architecture that allows new detection and
monitoring collectors 224 to be “plugged-in' for existing and
new protocols and for existing and new hardware and soft
ware. As illustrated in FIG. 16, monitoring subsystem 202
provides a plug-in architecture that allows different informa
tion collectors 224 to be installed. In general, collectors 224
are responsible for protocol-specific collection of monitoring
information. The plug-in architecture allows for new proto
cols to be added by simply adhering to a collector plug-in
signature. In this example, monitoring Subsystem 202
includes collectors 224A and 224B for collecting information
from operating systems and applications executing on nodes
within tier A and tier B, respectively.

Netflix, Inc. - Ex. 1001, Page 000041
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
21

In one embodiment, collectors 224 are loaded at startup of
control node 12 and are configured with information retrieved
from BLT 206. Monitoring engine 222 receives collection
requests from SLAI 204, sorts and prioritizes the requests,
and invokes the appropriate one of collectors 224 based on the
protocol specified in the collection requests. The invoked
collector is responsible for collecting the required status data
and returning the status data to monitoring engine 222. If the
collector is unable to collect the requested Status data, the
collector returns an error code.

In one embodiment, collectors 224 are Java code compiled
into a jar file and loaded with a class loader at run time. Each
of collectors 224 has an associated configuration file written
in a data description language. Such as the extensible markup
language (XML). In addition, a user may interact with BLT
206 to add run-time configuration to dynamically configure
collectors 224 for specific computing environments. Each of
collectors 224 expose an application programming interface
(API) to monitoring engine 222 for communication and data
exchange.
A user, Such as a system administrator, specifies the pro

tocol or protocols to be used for monitoring a software image
when the image is created. In addition, the users may specify
the protocols to be used for monitoring the nodes and each
service executing on the nodes. Example protocols Supported
by the collectors 224 include Secure Shell (SSH), Simple
Network Management Protocol (SNMP), Internet Control
Message Protocol (ICMP) ping, Java Management Exten
sions (JMX) and the Hypertext Transfer Protocol (HTTP).
Some protocols require special privileges, e.g., root privi

leges, to perform the required data collection. In this case, the
corresponding collectors 224 communicate with a separate
process that executes as the root. Moreover, Some protocols
may require deployment and/or configuration of data provid
ers within the fabric. Software agents may, for example, be
installed and configured on nodes and configured on other
hardware. If needed, custom in-fabric components may be
deployed.

In this example, the modular architecture of monitoring
Subsystem 202 also Supports one or more plug-in interfaces
220 for data collection from a wide range of third-party moni
toring systems 228. Third-party monitoring systems 228
monitor portions of the fabric and may be vendor-specific.

FIG. 17 is a block diagram illustrating one embodiment of
SLAI 204 in further detail. In the illustrated embodiment,
SLAI 204 is composed of three subsystems: a sensor sub
system 240, an analysis Subsystem 244 and an effector Sub
system 248.

In general, sensor Subsystem 240 receives actual state data
from monitoring Subsystem 202 in the form of monitoring
inputs 208 and Supplies ongoing, dynamic input data to analy
sis Subsystem 244. For example, sensor Subsystem 240 is
notified of physical changes to distributed computing system
10 by monitoring subsystem 202. Sensor subsystem 240 uses
the state data received from monitoring subsystem 202 to
maintain ongoing, calculated values that can be sent to analy
sis subsystem 244 in accordance with scheduler 242.

In one embodiment, sensor subsystem 240 performs time
based hierarchical data aggregation of the actual state data in
accordance with the defined organization model. Sensor Sub
system 240 maintains organizational data in a tree-like struc
ture that reflects the current configuration of the hierarchical
organization model. Sensor Subsystem 240 uses the organi
Zational data to perform the real-time data aggregation and
map tiers and domains to specific nodes. Sensor Subsystem
240 maintains the organizational databased on notifications
211 received from BLT 2.06.

5

10

15

25

30

35

40

45

50

55

60

65

22
Sensor Subsystem 240 sends inputs to analysis Subsystem

244 to communicate the aggregated data on a periodic or
event-driven basis. Analysis Subsystem 244 may register an
interest in a particular aggregated data value with sensor
Subsystem 240 and request updates at a specified frequency.
In response, sensor Subsystem 240 interacts with monitoring
Subsystem 202 and scheduler 242 to generate the aggregated
data required by analysis Subsystem 244.

Sensor Subsystem 240 performs arbitrary data aggrega
tions via instances of plug-in classes (referred to as “trig
gers') that define the aggregations. Each trigger is registered
under a compound name based on the entity being monitored
and the type of data being gathered. For example, a trigger
may be defined to aggregate and compute an average com
puting load for a tier every five minutes. Analysis Subsystem
244 requests the aggregated data based on the registered
names. In some embodiments, analysis Subsystem 244 may
define calculations directly and pass them to sensor Sub
system 240 dynamically.

Analysis Subsystem 244 is composed of a plurality of for
ward chaining rule engines 246A-246N. In general, rule
engines 246 match patterns in a combination of configuration
data and monitoring data, which is presented by extraction
agent 251 in the form of events. Events contain the aggregated
data values that are sent to rule engines 246 in accordance
with scheduler 242.

Sensor subsystem 240 may interact with analysis sub
system 244 via trigger listeners 247 that receives updates
from a trigger within sensor Subsystem 240 when specified
events occur. An event may be based on system state (e.g., a
node transitioning to an up or down state) or may be time
based.

Analysis subsystem 244 allows rule sets to be loaded in
Source form and compiled at load time into discrimination
networks. Each rule set specifies trigger-delivered attributes.
Upon loading the rule sets, analysis Subsystem 244 estab
lishes trigger listeners 247 to receive sensor notifications and
update respective working memories of rule engines 246. As
illustrated in FIG. 17, each of rule engines 246 may serve a
different tier defined within the fabric. Alternatively, multiple
rule engines 246 may serve a single tier or a single rule engine
may serve multiple tiers.

Rule engines 246 process the events and invoke action
requests via calls to effector subsystem 248. In addition, rule
engines 246 provide a call-back interface so that effector
Subsystem 248 can inform a rule engine when an action has
completed. Rule engines 246 prevent a particular rule from
re-firing as long as any action invoked by the rule has not
finished. In general, rules contain notification calls and Ser
Vice invocations though either may be disabled by configu
ration of effector subsystem 248. BLT 206 supplies initial
system configuration descriptions to seed each of rule engines
246.

In general, rule engines 246 analyze the events and dis
cover discrepancies between an expected state of the fabric
and an actual state. Each of rule engines 246 may be viewed
as Software that performs logical reasoning using knowledge
encoded in high-level condition-action rules. Each of rule
engines 246 applies automated reasoning that works forward
from preconditions to goals defined by System administrator
20. For example, rule engines 246 may apply modus ponens
inferences rules.

Rule engines 246 output requests to effector Subsystem
248 which produce actions requests 212 for BLT 206 to
resolve the discrepancies. Effector subsystem 248 performs
all operations on behalf of analysis subsystem 244. For
example, event generator 250, task invocation module 252

Netflix, Inc. - Ex. 1001, Page 000042
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
23

and logger 254 of effector subsystem 248 perform event
generation, BLT action invocation and rule logging, respec
tively. More specifically, task invocation module 252 invokes
asynchronous operations within BLT 206. In response, BLT
206 creates a new thread of control for each task which is
tracked by a unique task identifier (taskid). Rules engine 246
uses the task id to determine when a task completes and, if
needed, to re-fire any rules that were pended until completion
of the task. These tasks may take arbitrary amounts of time,
and rules engine 246 tracks the progress of individual task via
change notifications 211 produced by BLT 206.

Event generator 250 creates persistent event records of the
state of processing of SLAI 204 and stores the event records
within a database. Clients uses these event records to track
progress and determine the current state of the SLAI 204.

Logger 254 generates detailed trace information about sys
tem activities for use in rule development and debugging. The
logging level can be raised or lowered as needed without
changing operation of SLAI 204.

FIG. 18 is a block diagram of an example working memory
270 associated with rule engines 246. In this example, work
ing memory 270 includes a read-only first data region 272 that
stores the expected state received from BLT 206. Data region
272 is read-only in the sense that it cannot be modified in
response to a trigger from sensor Subsystem 240 or by rule
engines 246 without notification from BLT 206.

In addition, working memory 270 includes a second data
region 274 that is modifiable (i.e., read/write) and may be
updated by monitoring subsystem 202 or used internally by
rule engines 246. In general, data region 274 stores aggre
gated data representing the actual state of the fabric and can
be updated by sensor subsystem 240 or by rule engines 246.
The actual state may consist of a set of property annotations
that can be attached to objects received from BLT 206 or to
objects locally defined within a rule engine, such as local
object 276.

FIG. 19 is a block diagram illustrating an example embodi
ment for BLT 206. In this example, BLT 206 includes a set of
one or more web service definition language (WSDL) inter
faces 300, a report generator 302, a fabric administration
interface service 304, a fabric view service 306, a user admin
istration service 308, a task interface 311, a task manager 312
and an event subsystem 315.
As described, BLT 206 provides the facilities necessary to

create and administer the organizational model (e.g., fabric,
domains, tiers and nodes) implemented by distributed com
puting system 10. In general, BLT 206 abstracts access to the
persisted configuration state of the fabric, and controls the
interactions with interfaces to fabric hardware services. As
such, BLT 206 provides fabric management capabilities, such
as the ability to create a tier and replace a failed node. WSDL
interfaces 300 provide web service interfaces to the function
ality of BLT 206 that may be invoked by web service clients
313. Many of WSDL interfaces 300 offered by BLT 206 allow
administrator 20 to define goals, such as specifying a goal of
the expected state of the fabric. As further described below,
rule engines 246 within SLAI 204, in turn, invoke task man
ger 312 to initiate one or more BLT tasks to achieve the
specified goal. In general, web service clients 313 may be
presentation layer applications, command line applications,
or other clients.
BLT 206 abstracts all interaction with physical hardware

for web service clients 313. BLT 206 is an enabling compo
nent for autonomic management behavior, but does not
respond to real-time events that either prevent a goal from
being achieved or produce a set of deviations between the
expected State and the actual state of the system. In contrast,

10

15

25

30

35

40

45

50

55

60

65

24
BLT 206 originates goals for autonomic reactions to changing
configuration and state. SLAI 204 analyzes and acts upon
these goals along with real-time state changes. BLT 206 sets
the goals to which SLAI 204 strives to achieve, and provides
functionality used by the SLAI in order to achieve the goals.

In general, BLT 206 does not dictate the steps taken in
pursuit of a goal since these are likely to change based on the
current state of distributed computing system 10 and changes
to configurable policy. SLAI 204 makes these decisions based
on the configured rule sets for the fabric and by evaluating
monitoring data received from monitoring Subsystem 202.

Fabric administration service 304 implements a set of
methods for managing all aspects of the fabric. Example
methods include methods for adding, viewing, updating and
removing domains, tiers, nodes, notifications, assets, appli
cations, Software images, connectors, and monitors. Other
example methods include controlling power at a node, and
cloning, capturing, importing, exporting or upgrading soft
ware images. Rule engines 246 of SLAI 204 may, for
example, invoke these methods by issuing action requests
212.

Task manager 312 receives action requests 212 via task
interface 311. In general, task interface 311 provides an inter
face for receiving action requests 212 from SLAI 204 or other
internal Subsystem. In response, task manager 312 manages
asynchronous and long running actions that are invoked by
SLAI 204 to satisfy a goal or perform an action requested by
a client.

Task manager 312 generates task data 310 that represents
identification and status for each task. Task manager 312
returns a task identifier to the calling web service clients 313
or the internal subsystem, e.g., SLAI 204, that initiated the
task. Rule engines 246 and web service clients 313 use the
task identifiers to track progress and retrieve output, results,
and errors associated with achieving the goal.

In one embodiment, there are no WSDL interfaces 300 for
initiating specific tasks. Rather, administrator 20 interacts
with BLT 206 though goal interfaces presented by WSDL
interfaces 300 to define the goals for the fabric. In contrast,
the term task is used to refer to internal system constructs that
require no user interaction. Tasks are distinct, low-level units
of work that affect the state of the fabric. SLAI 204 may
combine tasks to achieve or maintain a goal state.

For example, administrator 20 can request configuration
changes by either adding new goals to an object or by modi
fying the attributes on existing goals. Scheduled goals apply
a configuration at a designated time. For example, the goals
for a particular tier may specify the minimum, maximum, and
target node counts for that tier. As a result, the tier can increase
or decrease current node capacity by scheduling goals with
different configuration values.

This may be useful, for example, in Scheduling a Software
image upgrade. As another example, entire domains may
transition online and offline per a defined grid Schedule.
Administrator 20 may mix and match goals on a component
to achieve configurations specific to the application and envi
ronment. For example, a tier that does not support autonomic
node replacement would not be configured with a harvesting
goal.

In some embodiments, goals are either “inforce' or “out of
force.” SLAI 204 only works to achieve and maintain those
goals that are currently in force. SLAI 204 may applies a
concept of “gravity” as the goals transition from in force to
out of force. For example, SLAI 204 may transition a tier
offline when an online goal is marked out of force. Some goal
types may have prerequisite goals. For example, an image
upgrade goal may require as a prerequisite that a tier be

Netflix, Inc. - Ex. 1001, Page 000043
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
25

transitioned to offline before the image upgrade can be per
formed. In other embodiments, goals are always inforce until
modified.

SLAI 204 may automatically formulate dependencies
between goals or may allow a user to specify the dependen
cies. For example, a user may request that a newly created tier
come online. As a result of this goal, SLAI 204 may auto
matically direct task manager 312 to generate a task of har
vesting a target number of nodes to enable the tier. Generally,
all goals remain in-force by SLAI 204 until modified by BLT
206. In one embodiment, each goal remains in-force in one of
three states: Satisfied, Warning, or Critical depending on how
successful SLAI 204 was in achieving the goal at the time the
event record was generated and stored.

In this manner, SLAI 204 controls the life cycle of a goal
(i.e., the creation, scheduling, update, deletion of the goal),
and provides a common implementation of these and other
services such as timeout, event writing, goal conflicts, man
agement of intra-goal dependencies, and tracking tasks to
achieving the goals.

Progress toward a goal is tracked though event Subsystem
315. In particular, event subsystem 315 tracks the progress of
each in force goal based on the goal identifiers. Tasks
executed to achieve a particular goal produce events to com
municate result or errors. The events provide a convenient
time-based view of all actions and behaviors.

Examples of goal types that may be defined by administra
tor 20 include Software image management goals, node allo
cation goals, harvest goals, tier capacity goals, asset require
ment goals, tier online/offline goals, and data gathering goals.

In one embodiment, BLT 206 presents a task interface to
SLAI 204 for the creation and management of specific tasks
in order to achieve the currently in force goals. In particular,
rule engines 246 invoke the task interface based on evaluation
of the defined rule sets in view of the expected state and actual
state for the fabric. Example task interfaces include interfaces
to: reserve node resources; query resources for a node slot;
associate or disassociate an image with a node in a tier node
slot; allocate, de-allocate, startup or shutdown a node; move a
node to a tier, apply, remove or cycle power of a node; create
a golden image; create or delete an image instance; and delete
an activity, node or tier.

Report generator 302 provides an extensible mechanism
for generating reports 314. Typical reports include image
utilization reports that contain information with respect to the
number of nodes running each Software image, inventory
reports detailing both the logical and physical aspects of the
fabric, and system event reports showing all events that have
occurred within the fabric. Report generator 302 gathers,
localizes, formats and displays data into report form for pre
sentation to the user. Report generator 302 may include one or
more data gathering modules (not shown) that gather events
in accordance with a schedule and update an events table to
record the events. The data gathering modules may write the
events in XML format.

FIG. 20 is a block diagram illustrating one embodiment of
a rule engine 246 (FIG. 17). In the illustrated embodiment,
rule engine 246 includes a rule compiler 344 and an execution
engine 346. Each of rules 342 represents a unit of code that
conforms to a rule language and expresses a set of triggering
conditions and a set of implied actions. When the conditions
are met, the actions are eligible to occur. The following is one
example of a configuration rule:

10

15

25

30

35

40

45

50

55

60

65

26

rule checkTierLoad {
Tiert where status = 'overloaded:
LoadParameterp where app == tapp && maxload st. load:

-> {
modify t{

status: “overloaded:
}:

When translated, this example rule marks a tier as overloaded
if an application is implemented by the tier and the maximum
specified load for the application has been exceeded. Another
example rule for outputting a notification that a tier is over
loaded and automatically invoking a task within BLT 206 to
add a node is:

rule tierOverload Notify {
Tiert where status == "overloaded:

-> {
notify "Tier: + t + “is overloaded.:
BLTaddNode(f);

Rule compiler 344 compiles each of rules 344 and trans
lates match conditions of the rules into a discrimination net
work that avoids redundant tests during rule execution.
Execution engine 346 handles rule administration, object
insertion and retrieval, rule invocation and execution of rule
actions. In general, execution engine 346 first matches a
current set of rules 342 against a current state of working
memory 348 and local objects 350. Execution engine 346
then collects all rules that match as well as the matched
objects and selects a particular rule instantiation to fire. Next,
execution engine 346 fires (executes) the instantiated rule and
propagates any changes to working memory 348. Execution
engine 346 repeats the process until no more matching rule
instantiations can be found.

Firing of a rule typically produces a very small number of
changes to working memory 348. This allows Sophisticated
rule engines to scale by retaining match state between cycles.
Only the rules and rule instantiations affected by changes are
updated, thereby avoiding the bulk of the matching process.
One exemplary algorithm that may be used by execution
engine 346 to handle the matching process includes the RETE
algorithm that creates a decision tree that combines the pat
terns in all the rules and is intended to improve the speed of
forward-chained rule system by limiting the effort required to
re-compute a conflict set after a rule is fired. One example of
a RETE algorithm is described in Forgy, C. L.: 1982, RETE:
a fast algorithm for the many pattern/many object pattern
match problem, Artificial Intelligence 19, 1737, hereby
incorporated by reference. Other alternatives include the
TREAT algorithms, and LEAPS algorithm, as described by
Miranker, D. P.: TREAT: A New and Efficient Match Algo
rithm for AI Production Systems”. ISBN 0934613710 Daniel
P. Miranker, David A. Brant, Bernie Lofaso, David Gadbois:
On the Performance of Lazy Matching in Production Sys
tems. AAAI 1990: 685692, each of which is hereby incorpo
rated by reference.

FIG. 21 is a block diagram illustrating an alternative
embodiment of control unit 12 (FIG. 15). In this embodiment,
control unit 12 operates substantially as described above, but
includes an application matrix 350, an application governor
352, a configuration processor 354, and an application service
level automation infrastructure (“application SLAI) 358. As

Netflix, Inc. - Ex. 1001, Page 000044
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
27

described below, application matrix 350, application gover
nor 352, configuration processor 354, and application SLAI
358 provide a framework that allows control unit 12 to auto
nomically control the deployment, execution and monitoring
of applications across application nodes 14 of distributed
computing system 10.

Application matrix350 contains all the information needed
by control unit 12 to interact with one or more applications or
application servers and provide autonomic control over a set
of applications. Specifically, application matrix 350 provides
a logical definition for deploying and controlling the set of
applications to one or more tiers within distributed computing
system 10. In one embodiment, application matrix 350 is an
electronic document that conforms to a data description lan
guage, e.g., the extensible markup language (XML). Appli
cation SLAI 358 includes an application rules engine 355
dedicated to processing application-level rules, i.e., forward
chaining rules to provide autonomic control over the appli
cations defined within application matrix 350. Like rules
engine 246, application rules engine355 contains a rule com
piler, an execution engine, and a working memory. In order to
give effect to changes in application matrix 350, application
SLAI 358 automatically updates application rules engine355
and monitoring Subsystem 202. In particular, application
matrix 350 sends an alert whenever application matrix 350
changes. In response to this alert, application SLAI 358 cap
tures application-specific attributes from application matrix
350. Specifically, application SLAI 358 captures configura
tion attributes and rule attributes contained in application
matrix 350. Application SLAI 358 transfers any new rule
attributes to the working memory of application rules engine
355 to provide autonomic control over the deployment, moni
toring and the execution of the applications defined within
application matrix 350. In addition, application SLAI 358
updates monitoring Subsystem 202 to collect information
required to control the applications. In this manner, adminis
trator 20 may continue to add new application definitions and
configurations to application matrix350 after distributed con
trol node 12 has started.
As described in further detail below, configuration proces

Sor 354 is a Software module that generates an application
matrix entry based on an application definition and applica
tion configuration properties of a 'staged' application. A
staged application is an application that has been deployed in
a staging environment and customized for Subsequent
deployment within distributed computing system 10. After
creating the application matrix entry, administrator 20 may
insert the application matrix entry into application matrix
350.

Configuration processor 354 is “pluggable.” That is,
administrator 20 can “plug in different implementations of
configuration processor 354 as needed. For example, admin
istrator 20 may need to “plug in a different implementation
of configuration processor 354 to handle applications that do
not use an application server.

Application governor 352 is a Software engine that per
forms application-level actions based on requests received
from application rules engine 355. In this manner, BLT 206
effects fabric-level actions (e.g., deployment and monitoring
of nodes and images) based on request from fabric-level rules
engines 246 (FIG. 17), while matrix governor 352 performs
application-level actions (e.g., deployment and monitoring of
applications) based on requests from application rules engine
355.

Application governor 352 uses application matrix 350 as a
Source of parameters when carrying out the application-level
operations requested by application rules engine 355. For

10

15

25

30

35

40

45

50

55

60

65

28
example, application rules engine 355 may detect that a node
to which the application is not deployed is ready for use by the
application. As a result, application rules engine 355 directs
application governor 352 to handle the details of deploying
the application to the node. In turn, application governor 352
accesses application matrix 350 to retrieve application-spe
cific parameters necessary to deploy the application. Storing
application-specific parameters in application matrix 350
allows the application-specific parameters to change without
having to recompile the rules within working memory of
application rules engine 355.

Application governor 352 performs a similar procedure to
undeploy an application. That is, application rules engine355
may detect that a second application needs to use a node more
than a first application that is currently deployed to the node.
In this situation, application rules engine 355 sends an
instruction to application governor 352 to undeploy the first
application and deploy the second application. To carry out
this instruction, application governor 352 accesses applica
tion matrix 350 to discover configuration parameters of both
applications. Application governor 352 then uses the discov
ered configuration parameters to communicate with the appli
cations.

Like configuration processor 354, application governor
352 is also “pluggable.” That is, administrator 20 can easily
install or remove implementations of application governor
352 depending on the circumstances. Because application
governor 352, and configuration processor 354 represent
interchangeable, plug-in modules, the other parts of control
unit 12 and system 10, including application rules engine355.
can remain generic and application neutral while providing
autonomic control over distributed computing system 10.

FIG.22 provides a conceptual view of an exemplary appli
cation matrix 350. Although application matrix 350 is typi
cally represented in an encoded, electronic document (e.g., an
XML document), FIG.22 provides a conceptual view for ease
of illustration.

In this example, application matrix 350 contains seven
columns and two rows. Each row represents a different appli
cation entry for deployment within distributed computing
system 10. In FIG. 22, only the first entry is shown in detail.

Each of the columns represents a different category of
elements that make up an application's logical definition. In
this example, the columns include:

(1) an application column 360 that includes elements gen
erally related to the deployment of the application,

(2) an application nodes column 362 that contains elements
related to the tier node slots to which the application may be
assigned,

(3) a services column 364 that contains elements related to
the executable services launched when the application is
deployed,

(4) a node monitor values column 366 that contains ele
ments related to attributes of the nodes that are to be moni
tored after the application is deployed to that node,

(5) a service monitored attributes column 368 that contains
elements related to attributes of the services that are to be
monitored after the application is deployed,

(6) a service levels column 370 that contains elements
related to attributes for use when constructing rules to moni
tor execution of the services, and

(7) a deployment constraints column 372 that contains
elements related to attributes for use when constructing rules
to control deployment of the application.
Different types of applications may have different elements in
each column, and different numbers of columns.

Netflix, Inc. - Ex. 1001, Page 000045
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
29

In the example of FIG.22, application matrix 350 contains
two applications 360 “DataDomain 374 and “PortalDo
main 376. DataDomain application 374 has eleven attributes
that define how control node 12 accesses and launches the
application. For instance, the “adminIP and “adminPort'
attributes instruct governor 352 as to which the server and
port hosts the administrative part of the logically defined
application. Other attributes like “maxNodes' and “min
Nodes' instruct application rules engine 355 to run the appli
cation no less than minNodes and no more than maxNodes.
Applications other than application 374 may have different
numbers or types of attributes. In XML format, the attributes
of application 374 may appear as follows:

<WebServerDomain
name=''DataDomain
adminP=172.31.64.201.
adminPort=1100'
adminTier=Web Admin'
clusterName="PathCluster'
expected StartupDelay="120
load Delay="120
maxNodes=2
minNodes='1'
nodeManagerPort=“5811
nodeTier=“Web App

In addition to these attributes, application 374 contains a
series of elements (columns 362-372). In general, application
nodes 362 contain a list of all of the available tier-node slots
to which control node 12 may deploy application 374. In this
example, two tier-node slots are specified. In XML, managed
servers 362 appears as:

<ManagedServers IP="172.31.64.201 name="managedServer O'
state-STOPPED >
<ManagedServers IP="172.31.64.201 name="managedServer 1
state-STOPPED >

Each services 364 element identifies a service that control
node 12 launches when deploying application 374 on a given
application node. A service element comprises a service name
and a path to a file containing the executable service. Gover
nor 352 uses the path to locate and launch the service. For
example, the following XML code indicates that governor
352 must access the file at “/lib/worklistApp/worklistAp
p.ear.

<services name="Worklist User Interface
path="/lib/worklistAppfworklistApp.ear f>

Node Monitored Values 366 elements represent character
istics for use in constructing rules for monitoring nodes to
which the applications are deployed. Similarly, Service
Monitored Values 368 elements represent characteristics for
use in constructing rules for monitoring services that are
launched once the application is deployed. In this example, a
"nodeMonitoredValues' element defines characteristics of a
particular node that are to be monitored. For instance, the
amount of free memory in a node is one example of a char
acteristic listed as a “nodeMonitored Values' element. On the
other hand, a “serviceMonitoredValues' element is specific
attribute of a service that is to be monitored. For example, the

10

15

25

30

35

40

45

50

55

60

65

30
number of pending operating system-level requests for the
service, the number of idle threads, etc., could be service
monitored values. In a XML rendition of application matrix
350, node monitored values and service monitored values
could appear as follows:

<nodeMonitored Values name="Load5Average' f>
<nodeMonitored Values name="PercentMemoryFree' f>
<serviceMonitored Values name="PendingRequests' f>
<serviceMonitoredValues name="ExecuteThreadIdleCount f
<serviceMonitoredValues name="ExecuteThreadTotalCount f

Deployment constraint elements 372 specify characteris
tics of a node under which application rules engine 355
should (or should not) deploy a service to the node. In this
example, a deployment constraint element has five attributes:
“attribute”, “expression”, “frequency”, “maxThreshold'.
“minThreshold', and “period.” The “attribute” attribute
names the deployment constraint. The “expression' attribute
specifies an arithmetic expression manipulating a monitored
value. For example, the expression could be “PercentMemo
ryFree* 100', meaning monitor the value of the “Percent
MemoryFree' node monitored value multiplied by 100. The
“expression' attribute may specify one or more node moni
tored values. The “frequency’ attribute informs application
rules engine 355 how frequently to check the monitored
value. The “maxThreshold' attribute tells application rules
engine 355 to invoke a rule when the value of the expression
exceeds the value specified by the “maxThreshold” attribute.
Similarly, the “minThreshold' attribute tells application rules
engine355 to invoke the rule when the value of the expression
drops below the value specified by the “minThreshold”
attribute. Finally, the “period’ attribute informs application
rules engine355 of the period over which to collect monitored
value. For example, a deployment constraint element may
specify that application rules engine 355 should monitor the
PercentMemoryFree attribute of a node every 15 seconds for
60 seconds. If the value of PercentMemoryFree*100 should
drop below 1.0 (i.e. 1% of memory free) for 60 seconds, then
application rules engine 355 should not deploy the applica
tion to that node. In XML, this rule would be represented as:

<deploymentConstraints attribute="FreeMemory”
expression=“PercentMemoryFree* 100 frequency=“15” maxThreshold="-
1.0 minThreshold=“1.0 period="60 f>

Service level elements 370 have the same five attributes as
deployment constraints elements: “attribute”, “expression'.
“frequency”, “maxThreshold”, “minThreshold', and
“period’. However, the “expression' attribute deals with ser
vice monitored attributes rather than node monitored
attributes. For example, a service level element may specify
that application rules engine355 check the “pendingRequest'
service-monitored attribute every 15 seconds for 30 seconds.
Then, if there are more than 20 pending requests for more than
30 seconds, application rules engine 355 should take the
action of starting a new application. On the other hand, if
there are fewer than 5 pending requests for 30 seconds, appli
cation rules engine 355 enables the action to remove the
application to free up space on a node. Such a service level
element could be represented as:

Netflix, Inc. - Ex. 1001, Page 000046
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
31

<serviceLevels attribute="PendingRequests'
expression="PendingRequests' frequency="15" maxThreshold="20.0
minThreshold="5.0" period="30 fis

Put together, an XML representation of an application
matrix logically defining a single application for deployment
within autonomically controlled distributed computing sys
tem 10 may appear as follows:

<?xml version=“1.0 encoding=UTF-8 standalone="yes' 25
<appMatrixRegisters
<WebServerDomain adminP=172.31.64.201 adminPort=1100'
adminTier=Web
Admin' clusterName="PathCluster expected StartupDelay="120
load Delay="120 maxNodes="2 minNodes='1' name="DataDomain
nodeManagerPort=“5811 nodeTier=“Web App's

<ManagedServers IP="172.31.64.201 name="managedServer O'
state-STOPPED >
<ManagedServers IP="172.31.64.201 name="managedServer 1
state-STOPPED >
<applications name="AI Design-time
path="/lib/ai-designtime.ear f>
<applications name="System EJBs' path="/lib/ebs.ear f>
<applications name="Worklist Worker User Interface'
path="/lib/worklist worklist.ear f>
<applications name="DBMS ADK path="/lib/DBMS ADK.ear
f>
<applications name="UserApp'
path=/user projects domainsfuser App.ear
f>
<nodeMonitoredValues name="Load5Average' f>
<nodeMonitoredValues name="PercentMemoryFree' f>
<serviceMonitoredValues name="PendingRequests
<serviceMonitoredValues name="ExecuteThreadIdleCount f
<serviceMonitoredValues name="ExecuteThreadTotalCount f
<deploymentConstraints attribute="LoadAverage'
expression="Load5Average' frequency="15"
maxThreshold=4.0
minThreshold=-1.0 period=“15” f>
<deploymentConstraints attribute="FreeMemory”
expression=“PercentMemoryFree* 100 frequency=“15”
maxThreshold='-1.0
minThreshold=“1.0 period="60 f>
<serviceLevels attribute="BusyThreadPercentage'
expression="(ExecuteThreadTotalCount
ExecuteThread IdleCount) * 100/ExecuteThreadTotal Count
frequency="15"
maxThreshold="20.0 minThreshold="5.0" period="30 f>
<serviceLevels attribute="PendingRequests'
expression="PendingRequests' frequency="15"
maxThreshold=20. O'
minThreshold="5.0" period="30 f>

</WebServerDomain
</appMatrixRegisters

s

FIG. 23 is a flowchart illustrating an exemplary series of
general steps that are performed to add an application to
application matrix 350 in accordance with the principles of
this invention. Administrator 20 first stages the application
within a staging environment including deploying the appli
cation on a desired image, creating a domain, specifying any
services and external system connectivity (e.g., connections
to databases, queues) (380).

During this process, administrator 20 directs the applica
tion to generate an application definition file that represents
an application-specific configuration based on the environ
ment specified by the administrator. The application defini
tion file contains information specific to an installation
instance of the application. For example, the application defi
nition file typically specifies the locations (paths) for all soft
ware components of the application as staged within the
staging environment, a list of files to execute, connectivity

10

15

25

30

35

40

45

50

55

60

65

32
information for the application, and other information that
may be recorded by the configured application.

After staging the application, administrator 20 defines a set
of application configuration properties that specify desired
behavior of the application within distributed computing sys
tem 10 (382). Examples of such application configuration
properties include a minimum number of nodes, minimum
resource requirements for a node, deployment timing infor
mation, network addresses of tier node slots that are able to
execute the application and other properties.

Next, administrator 20 directs configuration processor 354
to generate an application entry for the application using the
application definition and the application configuration prop
erties (384). The application entry contains configuration
attributes used by application governor 352 to interact with
the application. In addition, the application entry contains
rule attributes used by application rules engine355 that define
how control node 12 monitors the deployment and execution
of the application within distributed computing environment
10.

After configuration processor 354 creates the application
entry, administrator 20 may modify the application entry
(386). In particular, administrator 20 may update start scripts
or shell Scripts for the application due to path changes
between the staging environment and distributed computing
system 10.
Once administrator 20 has finished modifying the applica

tion entry, administrator 20 inserts the application entry into
application matrix 350 (388). Because application matrix 350
detects that it has changed, application matrix 350 sends an
alert to application SLAI 358 (390).

In response to the alert, application SLAI 358 may update
application rules engine 355 and monitoring subsystem 202
(392). In particular, application SLAI 358 automatically
scans application matrix 350. If application SLAI 358 detects
new rule attributes, application SLAI 358 creates local
objects reflecting the new rule attributes in the working
memory of application rules engine355. In addition, if appli
cation SLAI 358 detects new monitored values, application
SLAI 358 updates monitoring subsystem 202 to add new
monitoring collectors 224 (FIG. 16).

After application SLAI 358 updates application rules
engine 355 and monitoring subsystem 202, control node 12
has autonomic control over the deployment of applications to
tiers based on the configuration of application matrix 350
(394). For example, control node 12 deploys images, deploys
applications, monitors the state of nodes and the execution of
the applications, and applies tier-level rules as well as appli
cation-specific rules. Application SLAI 358 continues to lis
ten for alerts from application matrix 350.

FIGS. 24 through 29 illustrate exemplary embodiments of
distributed computing system 10 that provides autonomic
control and deployment of virtual machines and virtual disk
image files. For example, FIG. 24 is a block diagram illus
trating an exemplary configuration of a physical node 400.
Node 400 may be any node within distributed computing
system 10 (FIG. 1). For instance, node 400 may be any one of
application nodes 14.
As illustrated in FIG. 24, a virtual machine manager 402 is

executing on node 400. As used herein, a virtual machine
manager is a software program that is capable of managing
one or more virtual machines. For example, virtual machine
manager 402 may be an instance of VMWare ESX software
produced by VMWare, Inc. of Palo Alto, Calif.
When deployed on physical node 200, virtual machine

manager 402 hosts virtual machines 404A through 404N
(collectively, virtual machines 404). The term virtual

Netflix, Inc. - Ex. 1001, Page 000047
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
33

machine is used herein to refer to software that creates an
environment that emulates a computer platform. For
example, virtual machines 40 provide environments on which
guest operating systems (OS) execute as through the operat
ing systems were operating directly on a physical computing
platform. In this manner, multiple operating systems and
software applications 406A through 406N (collectively, oper
ating systems and applications 406) may execute on virtual
machines 404A through 404N, respectively, and the virtual
machines 404 may execute on a single physical node 400 or
multiple physical nodes. For example, if virtual machine
404A emulates an x86 machine, an instance of the Microsoft
Windows operating system (e.g., OS 406A) may execute on
virtual machine 404A as through the instance of Windows
were running on a physical x86 machine. Other Software
applications may be installed and configured on the guest
operating system running on virtual machine 404. For
example, an instance of Microsoft Internet Information
Server may execute on an instance of Microsoft Windows that
is executing on a virtual machine that emulates an x86
machine. In this manner, virtual machine manager 402 and
virtual machines 404 provide a level of independence from
the particular hardware environment provided by physical
node 400.

Virtual machine manager 402 utilizes operating system
data and application data for execution of each of virtual
machines 404. The operating system data and application
data, as well as instance-specific configuration data for the
underlying virtual machines 404, is stored as respective Vir
tual disk image files 408. From the perspective of the guest
operating system, each of virtual disk image files 408 appears
as a bootable hard disk of the host computer. In other words,
the virtual disk image file provides a bootable software image
of the operating system and applications, and includes all
necessary configuration data and file structures. As illustrated
in FIG. 24, virtual machine disk image file 408A provides a
bootable Software image for operating system/application
information 406A that is capable of being executed on virtual
machine 404A. For instance, if virtual machine manager 402
is an instance of VMWare ESX, virtual machine disk image
files 408 may be specially captured .vmdk files.
A two-phase capture process may be used to provide auto

nomic control and deployment of the virtual machine disk
image files 408 as well as virtual machine manager 402 to
physical nodes within distributed computing system 10. In
particular, control node 12 may first capture an image of
virtual machine manager 402 installed on physical node 400
prior to installation and configuration of any guest operating
system and applications 406. Control node 12 may utilize this
captured image of virtual machine manager 402 as a 'golden
image' from which instance images can be created for this
type virtual machine. The instance images may be stored
within application matrix 350 for autonomic deployment as
other software images (FIG. 21).

After the first capture is complete, an administrator may
install one or more virtual machines 404 to virtual machine
manager 402. After the user installs and configures guest
operating systems and any necessary applications 406 on the
virtual machines 404, control node 12 may capture software
images for storage as virtual disk image files 408. Specifi
cally, control node 12 may utilize the captured images as a
golden images for the particular operating systems, applica
tions and specific configuration of the virtual machine. The
golden image may then be used to produce image instances,
i.e., virtual disk images in this case, that are bootable on the
virtual machines. The image instances may likewise bestored
in application matrix 350 for autonomic deployment.

10

15

25

30

35

40

45

50

55

60

65

34
After generation of image instances for virtual machine

manager 402 and virtual disk image files 408, control node 12
may deploy the image instance of virtual machine manager
402 to one or more nodes in free pool 13. Once control node
12 deploys the image instance of virtual machine manager
402 to a node, the node appears to be one or more new,
unallocated nodes. For instance, if the image instance of
virtual machine manager 402 is configured to Support five
virtual machines, control node 12 represents the newly
deployed image instance as though five new, unallocated
nodes have been added to free pool 13. Subsequently, control
node 12 may deploy an image instance of virtual disk image
files 408 to one of the new unallocated nodes.

In one embodiment, during deployment, administrator 20
may specify whether data in virtual disk image files is to be
treated as persistent or non-persistent. If administrator 20
specifies that the virtual disk image files are persistent,
changes made to a virtual disk image file persist when node is
restarted. To ensure the persistence of the data, administrator
20 may configure virtual machine manager 402 to store Vir
tual disk image files in a storage area network (SAN). Other
wise, if administrator 20 specifies that virtual disk image files
are non-persistent, the original virtual disk image file is
reloaded from control node 12. Non-persistence may be valu
able to minimize risks (e.g., potential corruption due to
viruses) associated with prolonged use of an operating sys
tem. Further, corrupt or invalid data in the virtual disk image
file may be corrected by use of non-persistent image instances
for the virtual disk image files.

In this way, distributed computing system 10 may auto
nomically utilize application nodes, e.g., node 400, to flexibly
supporta wide variety of operating systems and applications,
and provide virtualized execution environment for those
operating systems and applications. For instance, node 400
may autonomically configured to Support a Macintosh Oper
ating System designed for a PowerPC processor, and a
Microsoft Windows Operating System designed for an x86
processor based on the particular goals of the autonomic
system. Thus, control node 12 may not need to distinguish
between hardware processor architectures when deploying
operating systems and applications. However, this system
may also allow administrator 20 to specify that control node
12 operate an image instance directly on a node without the
intervening virtual machine and virtual machine manager.
Furthermore, by executing multiple operating systems on a
single node, distributed computing system 10 may be able to
use and deploy the resources of each node more efficiently.

FIG.25 is a flowchart illustrating an exemplary procedure
for creating and capturing a golden image for a particular
virtual machine manager 402 (FIG. 24). Initially, administra
tor 20 sets aside a node (e.g., node 400) as an image host
(410). Administrator 20 may then install a particular type of
virtual machine manager 402 on node 400 (412). After
administrator 20 installs virtual machine manager 402 on
node 400, administrator 20 may configure the virtual machine
manager to Support a desired number of virtual machine
instances (414). For example, administrator 20 could config
ure virtual machine manager 402 to support one or more
virtual machines. Administrator 20 may then perform other
network or Storage Area Network (SAN) configuration on
virtual machine manager 402 (416). After administrator 20
performs all of the necessary configuration, administrator 20
instructs control node 12 to capture the image of virtual
machine manager 402 with the configurations (418). Control
node 12 may store the captured image as a golden image in
application matrix 350 for use in subsequent autonomic
deployment of image instances.

Netflix, Inc. - Ex. 1001, Page 000048
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
35

FIG. 26 is a flowchart illustrating an exemplary procedure
for creating and capturing a virtual disk image file, i.e., a
golden image of a guest operating system and applications for
execution on a virtual machine. Initially, administrator 20 sets
aside a node (e.g., node 400) that is running a virtual machine
manager (e.g., virtual machine manager 402) (420). Admin
istrator 20 may then configure the virtual machine manager to
create a virtual machine (e.g., virtual machine 404) on node
400 (422). After creating the virtual machine, administrator
20 installs the particular operating system on virtual machine
404 (424). Administrator 20 may then install one or more
applications on the operating system (426). After installation,
administrator 20 may configure the operating system and
applications as needed (428). In some embodiments, virtual
machine manager 402 stores definition data for the particular
virtual machine, operating system, and applications in a vir
tual disk image file. Once configuration is complete, admin
istrator 20 takes a “snapshot of the data in the virtual disk
image file (430). Administrator 20 may then capture this
"Snapshot to control node 12 as a golden image (432). Con
trol node 12 may store the “snapshot in application matrix
350 as a golden image for use in autonomic deployment of
one or more image instances to virtual machines hosting the
particular operating system and applications.

FIG. 27A is a flowchart illustrating an exemplary proce
dure for autonomic deploying a virtual machine manager to a
node. Initially, administrator 20 may instruct control node 12
to create a new tier (440). Subsequently, administrator 20
specifies one or more captured virtual machine manager
image instances for assignment to the slots of the new tier
(442). Administrator 20 may also specify whether the image
instances of the tier run in persistent or non-persistent mode.
Administrator 20 may then activate the new tier (444). After
these physical nodes boot with the virtual machine manager
image instance, each of the nodes creates a set of virtual
machines as specified by the image instances. Control node
12 may then discover each of these virtual machines and place
them in free pool 13 as if they were independent nodes. In this
manner, each of the virtual machines appear to be physical
nodes available for use as application nodes 14 when needed.
However, control node 12 maintains tags or other metadata
that distinguish between virtual machines and actual physical
nodes. Finally, based on the current state and goals of distrib
uted computing system 10, control node 12 may allocate one
or more of the virtual machines to the slots within the tier,
similar to the process by which nodes are deployed from the
free pool 13 to a tier as needed.

FIG. 27B is a flowchart illustrating an exemplary proce
dure for deploying an operating system and application image
instance to a node that is executing a virtual machine man
ager. To start the procedure, administrator 20 may instruct
control node 12 to create a new tier, including defining the
number of slots for the tier, or select an existing tier (446).
Administrator 20 may then specify a captured operating sys
tem and application image for the tier (448). In addition,
administrator 20 may set minimum, maximum, and target
values for the image instances to be deployed to the slots new
tier (450). Administrator 20 may then activate the tier (452).
After administrator 20 activates the tier, based on the current
state and goals of distributed computing system 10, control
node 12 autonomically selects a virtual machine from free
pool 13, associates the virtual machine with a slot in the tier,
identifies the virtual disk image file (image instance) associ
ated with the particular slot, copies the virtual disk image file
to the local hard disk of the physical node on which the virtual
node resides or the an associated SAN, and finally boots the
virtual machine from the virtual disk image file.

10

15

25

30

35

40

45

50

55

60

65

36
FIG. 28 is a screen image illustrating an exemplary tier

control interface 460 for the embodiment described in FIGS.
24 through 27 above. In this example, control interface 460
displays a set of three tiers "elas3u6 2. "elas3u6 Vim', and
“esX17 8. As illustrated in FIG. 28, tier “esX17 8', labeled
462, contains eight physical nodes. The image “esX 17' is
operating on each node in tier 462. If the “esX 17' image is
a virtual machine manager image that operates seventeen
virtual machines, the eight nodes of tier 462 operate as 136
virtual machines.

FIG. 29 is a screen image illustrating an exemplary node
control interface 470 for the embodiment described in FIGS.
24 through 27 above. As illustrated in FIG. 29, a single physi
cal node “collage0104 hosts seventeen virtual machines
“collage0104 Vinode 1 through “collage0104 Vinode 17.
Each of these virtual machines is loaded with the
“w2k3 is sq1 (1.0) image. For instance, the “w2k3 is sql
(1.0)' image may be an image containing instances of
Microsoft Windows 2003 Internet Information Server and
Microsoft SQL Server.

Various embodiments of the invention have been
described. These and other embodiments are within the scope
of the following claims.

The invention claimed is:
1. A distributed computing system comprising:
a software image repository comprising non-transitory,

computer-readable media operable to store: (i) a plural
ity of image instances of a virtual machine manager that
is executable on a plurality of application nodes,
wherein when executed on the applications nodes, the
image instances of the virtual machine manager provide
a plurality of virtual machines, each of the plurality of
virtual machine operable to provide an environment that
emulates a computer platform, and (ii) a plurality of
image instances of a plurality of Software applications
that are executable on the plurality of virtual machines:
and

a control node that comprises an automation infrastructure
to provide autonomic deployment of the plurality of
image instances of the virtual machine manager on the
application nodes by causing the plurality of image
instances of the virtual machine manager to be copied
from the Software image repository to the application
nodes and to provide autonomic deployment of the plu
rality of image instances of the Software applications on
the virtual machines by causing the plurality of image
instances of the Software applications to be copied from
the Software image repository to the application nodes.

2. The distributed computing system of claim 1, wherein
the image instances of the plurality of Software applications
comprise virtual disk image files.

3. The distributed computing system of claim 1, wherein a
first image instance of the plurality of image instances of the
plurality of software applications comprises an operating sys
tem.

4. The distributed computing system of claim 1, wherein a
first image instance of the plurality of image instances of the
plurality of software applications comprises a server applica
tion.

5. The distributed computing system of claim 1, wherein a
first one of the virtual machines provides an environment that
emulates an x86 platform.

6. The distributed computing system of claim 1, wherein
the automation infrastructure captures a first image instance
of the image instances of the virtual machine manager from a
first application node of the plurality of application nodes.

Netflix, Inc. - Ex. 1001, Page 000049
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
37

7. The distributed computing system of claim 6, wherein
the first application node executes the virtual machine man
ager.

8. The distributed computing system of claim 1, wherein
the control node maintains the plurality of image instances of 5
the virtual machine manager and the plurality of image
instances of the plurality of Software applications as persis
tent or non-persistent based on a configuration.

9. The distributed computing system of claim 1, wherein
the control node further comprises one or more rule engines
that provide autonomic deployment of the Software applica
tions to the virtual machines inaccordance with a set of one or
more rules.

10. The distributed computing system of claim 9, wherein
the one or more rule engines are forward-chaining rule
engines.

11. The distributed computing system of claim 9, wherein
the automation infrastructure automatically updates the one
or more rules engines to autonomically control the deploy
ment of the Software applications to the application nodes in
accordance with a current state of an application matrix.

12. The distributed computing system of claim 1, wherein
the control node further comprises an application matrix that
includes parameters for controlling the deployment, unde
ployment, and execution of the Software applications to the
virtual machines within the distributed computing system.

13. The distributed computing system of claim 12, further
comprising an application governor that accesses the appli
cation matrix to communicate instructions from the automa
tion infrastructure to the Software applications.

14. The distributed computing system of claim 9, wherein
the automation infrastructure automatically updates the one
or more rules engines to monitor the execution of the Software
applications when deployed to the application nodes in accor
dance with a current state of the application matrix.

15. The distributed computing system of claim 1, wherein
the automation Subsystem includes a rule compiler that com
piles rules into one or more discrimination networks.

16. The distributed computing system of claim 1, wherein
the control node further comprises:

a monitoring Subsystem that collects status data from the
application nodes and communicates the status data to
the automation Subsystem, wherein the status data rep
resents an actual state for the application nodes; and

a business logic tier that provides expected State data to the
automation Subsystem, wherein the expected State data
represents an expected State for the application nodes,

wherein one or more rule engines analyze the status data
from the monitoring Subsystem and apply a set of rules
to produce action requests to the business logic tier to
control the application nodes to reduce any difference
between the actual state and the expected state.

17. The distributed computing system of claim 1, wherein
the application nodes are organized into tiers, and wherein
status data is collected based on the tiers.

18. The distributed computing system of claim 1, further
comprising:

a database storing data that defines a model for a hierarchi
cal organization of the distributed computing system,
wherein the model specifies a fabric having one or more
domains, and wherein each domain has at least one tier
that includes at least one of the application nodes,

wherein one or more rule engines automatically produce
action requests to control the deployment of the Software
applications in accordance with the hierarchical organi
zation of the distributed computing system defined by
the model.

10

15

25

30

35

40

45

50

55

60

65

38
19. A method comprising:
storing a plurality of image instances of a virtual machine
manager that is executable on a plurality of application
nodes in a distributed computing system, wherein the
image instances of the virtual machine manager provide
a plurality of virtual machines, each virtual machine
operable to provide an environment that emulates a com
puter platform;

storing a plurality of image instances of a plurality of
Software applications that are executable on the plurality
of virtual machines;

executing a rules engine to perform operations to auto
nomically deploy the image instances of the virtual
machine manager on the application nodes by causing
the image instances of the virtual machine manager to be
copied to the application nodes; and

executing the rules engine to perform operations to auto
nomically deploy the image instances of the Software
applications on the virtual machines by causing the
image instances of the Software applications to be cop
ied to the application nodes.

20. The method of claim 19, wherein storing the image
instances of the plurality of Software applications comprises
storing virtual disk image files.

21. The method of claim 19, wherein a first image instance
of the plurality of image instances of the plurality of software
applications comprises an operating system.

22. The method of claim 19,
further comprising generating an application matrix that

specifies data for controlling the deployment of the soft
ware applications within the distributed computing sys
tem; and

wherein performing operations to provide autonomic con
trol comprises providing autonomic control over the
deployment, undeployment, and execution of the Soft
ware applications on the virtual machines within the
distributed computing system in accordance with
parameters of the application matrix.

23. The method of claim 19, wherein performing opera
tions to autonomically deploy the image instances of the
Software applications on the virtual machines comprises:

receiving status data for the distributed computing system,
wherein the status data represents an actual state of the
application nodes;

processing the status data with rules in a set of rule engines
to determine operations for reducing any difference
between an expected state and the actual state of the
application nodes; and

performing the operations to provide autonomic control
over the deployment of the software applications on the
virtual machines within the distributed computing sys
tem in accordance with the rules.

24. The method of claim 19, further comprising accessing
parameters of an application matrix and determining one or
more rules for use in autonomically controlling the deploy
ment of the Software applications on the virtual machines.

25. The method of claim 24, further comprising processing
the one or more rules with a plurality of forward-chaining rule
engines that compile the one or more rules into one or more
discrimination networks.

26. A non-transitory, computer-readable medium compris
ing instructions stored thereon, that when executed by a pro
grammable processor:

store a plurality of image instances of a virtual machine
manager that is executable on a plurality of application
nodes in a distributed computing system, wherein the
image instances of the virtual machine manager provide

Netflix, Inc. - Ex. 1001, Page 000050
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
39

a plurality of virtual machines, each virtual machine
operable to provide an environment that emulates a com
puter platform;

store a plurality of image instances of a plurality of Soft
ware applications that are executable on the plurality of 5
virtual machines;

perform operations to autonomically deploy the image
instances of the virtual machine manager on the appli
cation nodes by causing the image instances of the Vir
tual machine manager to be copied to the application 10
nodes; and

perform operations to autonomically deploy the image
instances of the Software applications on the virtual
machines by causing the image instances of the Software
applications to be copied to the application nodes. 15

k k k k k

40

Netflix, Inc. - Ex. 1001, Page 000051
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

