
c12) United States Patent
Kbandekar et al.

(54) PROVISIONING OF COMPUTER SYSTEMS
USING VIRTUAL MACHINES

(75) lnveutors: Dilip Khandekar, San Jose, CA (US):
Dragutin Petkovic, Saratoga, CA (US);
Pratap Subrahmanyam, Suru1yvale, CA
(US); Bicb Cau Le, San Jose, CA (US)

(73) Assignee: VMware, lnc .. Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjus ted under 35
U.S.C. 154(b) by 582 days.

(21) Appl. No.: 10/117,143

(22) Filed: Apr. S, 2002

(51)

(52)

(58)

(56)

lnt.CI.
G06F 151177 (2006.0 I)
G06F 1511 73 (2006.0 I)
G06F 9/00 (2006.01)
G06F 9/455 (2006.0 I)
U.S. Cl. 709/220; 709/221 ; 709/222;

709/223; 713/1 ; 718/1
Field of Classification Search 709/220-223;

718/ 1; 713/1
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,453,392 BI*
6,535.977 BI *
6,865,732 Bl •
6,978,232 Bl *
7,006,964 B2 *
7,228,337 8 I •

9/2002 Flynn, Jr. 71 1/ 151
3/2003 lfolle ct al. 7 13/2
3/2005 Morgan 717/ 140

12/200 5 Tobler 703/21
2/2006 Aaltonen et al 703/24
6/2007 Bornstein et al. 709/217

800

PROVISIONING SERVER

I 1111111111111111 11111 111111111111111 IIIII IIIII IIIII IIIII IIIIII IIII 11111111
US007577722Bl

(10) Patent No.: US 7,577,722 Bl
Aug. 18, 2009 (45) Date of Patent:

7,448,079 B2 *
2002/0069369 A 1 *
2002/0120660 Al *
2002/0144257 Al ,.
2002/0 I 56877 A I *
2004/0268348 Al +

I 1/2008 Trema.in 726/14
6/2002 Tremain 713/201
8/2002 Hay ct al 709/100

l 0/2002 Matsushima 7 17 / l 78
I 0/2002 Lu et al. 709/22 I
12/2004 Wa.l<i ct al 718/1

FOREIGN PATENT DOCUMENTS

WO WO 02/03220 A2 1/2002

OTHER PUBLJCATJONS

"lmagcCast- Total PC Deployment and Image Management. Enter­
prise Edition," StoragcSoft, Inc., 2000, (http://www.storagesoft.com/
su pport/doc/imagecasl/D S_ i magecast_ v4 5 .pdJ).
"AppNstall- lnstant Application Deployment & Change Manage­
ment, Enterprise Edition," StoragcSofl, Inc., 2000, (http://www.
storagesofl.com/support/doc/appnstall/DS_ appnstall.pdf).

(Continued)

Primary Examiner- Nathan J Flynn
Assis1a111 Examiner- Joshua Joo
(74) Allorney, Agent, or Fir111- Rajeev Madnawat

(57) ABSTRACT

A provisioning server automatically configures a vimial
machine (VM) according to user specifications and tl1en
deploys tl1e VM on a physical host. The user may either
choose from a list of pre-configured. ready-to-deploy VMs. or
he may select which hardware. operating system and appli­
cation(s) he would like the VM to have. TI1e provisioning
server then configures the VM accordingly, if the desired
configuration is available, or it applies heuristics to configure
a VM that best matches the user's request if it isn't. 1l1c
invention also includes mechanisms for monitoring the status
ofVMs and hosts. for migrating VMs between hosts, and for
creating a network ofVMs.

850

APPLICATION
LIBRARY

10 Claims, 5 Drawing Sheets

6
~

TASK i ~ 820
MANAGER !

Netflix, Inc. - Ex. 1004, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
Page2

OTHER PUBLICATlONS

.. Altiris sXpress, Deployment Solution," Altiris, lnc .. 2001. (http://
w,.vw.altiris.com/products/docs/deploymentserver.pdf).
'"Information Brief- IBM MANC!ient Control Manager version
3 .0." IBM Corp., date unknown, (http://www.pc.ibm.com/us/infobrf/
lccmv3.html.
BladeFrame.--Enterprise-class Computing Built for I.he Data Center,
Egenera. lnc. 200 I, (http://w,.vw.egenera.com/pdf/
BladcFra.mc_ Brochurc.pdl).
"Prebool Execution Envriorunent {PXE) Specification," Version 2. 1,
lntel Corp .. pp. 4 & 10-14, Sep. 20, 1999, (flp://download.intel.com/
ial/wf1n/pxespec.pdl).
.. INTEL Networking Technologies-Wake on LAN," Intel Corp.,
1999 (http://www.intel.co1n/network/connectivity/resources/tech­
nologics/wake_ on_ lan.htm).

"Symantec Ghost 7 .5," Symantec Corp., 200 I (http://
e nterpri scsecuri ty. symant ec .coin/content/di splaypd f.cfm?pd fid = 34
&PID- 1 117 5620&EID=O).
"PowerQuest- Powerfli l Solutions for deploying and upgrading
computer systems," PowerQuest Corp.. 200 1, (http://www.
powerquest.co1n/deploycenter/POC50_EN_spec.pdl).
"RLX ServerBladc 800i." RLX Technologies, Inc., 2002 (http://
www.rlxtcchnologics.com/pd17RLXDS_ 800i_ v I .J .pdf).
Technical White Paper-Sun Enterprise 10000 Server: Dynamic
System Domains. Sun Microsystems, Inc .• Feb. 1999, (http://www.
su n.com/servcrs/h i ghend/ I 0000/tour/ domains. pd I).
"Rational TestManager," Rational Software Corp., 2002. (http://
www.rational.com/media/products/testmanager/
D327 _ Test Manager.pd I).

* cited by examiner

Netflix, Inc. - Ex. 1004, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent

FIG. 1
(Prior Art)

VM

320

Aug. 18, 2009 Sheet 1 of 5

340

VDEVICES

314

GUEST ~ DRVS I .__....__ VDISK
OS 322 I___ _ __,

310 312

VPROC VMEM

---- ---- -----------1
VMM

DEVICE
540 / EMULATORS

200 SYSTEM
SOFTWARE

400 100

MEMORY
512 MAPPING

US 7,577,722 Bl

300-n

VMn

500-1 VMMn

500-n t

DEVICES

SYSTEM HARDWARE ~

~ 114~ 1182
~ ~~~ MEM 110 150 _ NIC

700

Netflix, Inc. - Ex. 1004, Page 000003
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

FIG. 2

EXT
SYST

900

800

PROVISIONING SERVER

810 850 890

PROVISIONING APPLICATION
ENGINE LIBRARY DATABASE

880

HEURISTICS
ENGINE

TASK 820

USER

801
,,_-860

TEMP
USAGE AREA

700

DEPL. DEPL.
VMx VMy

HOST

1000

MANAGER

_L_830

VM
STAGING

,,.- - - MIGR
VMy

HOST
-r-

1001

,,,,-840

INSTANT-DEPLOY
VMs

1003

~
00 .
~
~
~
~ = ~

> =
~
~oe
N
0
0
\0

00
::r
('D

a
N
0
Ul

d
VJ
-l
u.
---l
-l
~
N
N

= 1-4

Netflix, Inc. - Ex. 1004, Page 000004
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent

FIG. 3
/

830

FIG. 4

840

Aug. 18, 2009 Sheet 3 of 5

VM STAGING

/836

DEPLOY ABLE VM

833"' 834~

VM LAUNCH TEMPLATE
S/W VM CONFIG

FLOPPY IMAGE

I CO~IG I
835~

1832:::::,., 8311 FLOPPY IMAGE
K CONFIG S/W

INSTANT-DEPLOY VMs

846

84~8~84~

~m~
SUSPEND TO DISK ---844

IMAGE FILE

US 7,577,722 Bl

- - -

Netflix, Inc. - Ex. 1004, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Aug. 18, 2009 Sheet 4 of 5 US 7,577,722 Bl

FIG. 5 / 850

APPLICATION
LIBRARY / 856

INSTALL TEMPLATE
EXECUTABLE ANSWER FILE

853~"----- 851 854~ "-.___ 852 - - -
APP INSTALL APP INSTALL
FILES/DATA CONFIG SNV

FIG. 6 860

TEMP USAGE AREA

866

862"' 864"'
APP INSTALL APP CUSTOM

SNV ANSWER FILE - - -
861~ 863~

VM CONFIG USER
FLOPPY IMAGE CHOICES

Netflix, Inc. - Ex. 1004, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Aug. 18, 2009 Sheet 5 of 5 US 7,577,722 Bl

,- 900
910

Storing a plurality of pre-configured model virtual machines (VMs) µ
having different configurations and at least one model virtual machine

identifier

1 ,

920
Creating a set of staged VMs from the model VMs with the at least µ

one model virtual machine identifier removed

+
Inputting from a requester information to determine an appropriate

staged VM and a desired computer configuration to host the staged µ
VMs, Inputting includes validating the information for correctness and

930

consistency and suggesting changes if the staged VM cannot be
implemented in the desired computer configuration

l
Monitoring the status of a plurality of hosts platforms and selecting the µ

appropriate staged VM from the set of staged VMs, the staged VM

940

being most closely incorporating a configuration that is requested via
the information

+
determining and selecting a compatible physical host platform , which w
of a plurality of host platforms the desired computer configuration is

950

compatible with

1 ,

960
Automatically deploying a deployed VM onto the compatible physical µ

host platform by copying the staged VM to the compatible physical
host platform, automatically deploying includes installing an additional

application in the deployed VM if the additional application being
requested via the information the the additional application not pre-

installed in the staged VM.

FIG. 7

Netflix, Inc. - Ex. 1004, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
1

PROVISIONING OF COMPUTER SYSTEMS
USING VIRTUAL MACHINES

BACKGROUND OF THE fNVENTION

2
art, the process is difficult to automate completely. Thls is
because. for example. the machines themselves must be
physically powered on and storage media such as CD-ROM
disks and floppy disks must be physically inserted in the

l. Field of the Invention
1bis invention relates in general to the field of creating,

configuring and deploying computer systems with user­
specified features and in particular to an application of virtual
machine technology.

5 appropriate drives on the computer in order to install the
operating system and/or applications. Technologies do exist
to automate individual ones of these tasks, but it then becomes
increasingly difficult to manage all of the tasks together.
Examples or such existing technologies include the "Altiris

2. Description of the Related Art
rew users of modern computers have managed to avo.id the

fmstrations invo.lved in configuring a new computer for use.

to eXpress" system deployment and software management
products of Altiris, Inc., of Lindon, Utah; the "AppNstall"
product of S torageSoft, lnc., of Lousivi lle, Colo.; the "lBM
LANClient Control Manager" product oflBM Corp.; and the

Of course, one way to minimize set-up problems is to buy a
"ready-made" computer with all software already loaded. 15
This solution is often far from optimal, especially for more
sophisticated users who may need a hardware and software
configuration that is not common and therefore not offered at
all, or only at unacceptable cost. Even for the non11al user,
however, the "computer- iu-a-box" solution has the di sad van- 20
tage of inflexibility-once the ''box" is delivered, every new
application and upgrade must be installed by the user.

Once a computer is configured, it must then also be man­
aged and administered it 011 an ongoing basis. The tasks of
configuration, management and administration are further 25

COl1lplicated by the fact that a typical multi-user enviro1u11ent
includes a large number of computers havi11g a variety of
operatlng systems and applications rnnning iu them. Further­
more, the demands for specific configurations of operating
systems and applicat ions often arise unpredictably, as they 30
are needed. Provisioned computers may, for example, be
needed for on.ly a few minutes for some environments (for
exam pie. in the classroom, forqual ity assurauce testing, etc.),
a few days (for example, miming simulations, analyzing data,
etc.), or for longer periods (for example, in an IT department). 35

One solution thar has been made possible by the growth of
networks. especially the Internet. is "hosting," in which pro­
viders remotely take care of installation, configuration and
maintenance not only of the physical machines and the inter-
net connectivity. but also of the applications rnnningon them. 40
This is advantageous for customers because it provides a
comprehensive service that aJlows the users to outsource tbeir
application hosting and management needs.

A major component of the cost to the hosting providers
who offer such a service is the need ro provision machines and 45
applications for new customers. A typical scenario of what
happens when a new customer requests the provisioning and
hosting service is that tbe customer logs onto the service
provider's web site and, via a web browser. custom-config­
ures a server by specifying the operatiug system and applica- 50

tions. These specifications identify tbe machine configuration
that the hosting service provider needs to provision. Depend­
ing on the specifications. !he provider will either need to
provision a new machine. or may satisfy the user's request by
creating a replica, that is, an additional instance ofan existing 55
machine. ln either case. the service provider must find a
suitable unused physical machlne, install the required com­
ponents. configure the machlne. and install and config11re tbe
selected appl ications. 1l1e service provider then powers on
the machine, whereupon farther configuration oft he machine 60
and applications is often required. The system is then finally
ready to be used by the customer. If there are o ther machlnes
that need to be configured, the whole process is repeated.

The process of provisioning new computers for a given task
has hitherto been very resource intensive. requiring much 65
human intervention. Although some aspects of the various
provisioning tasks can be automated, according to the prior

"BladeFrame" technology ofEgenera, Inc.
Moreover. some tasks, like remotely powering on of

machines, requires specialized hardware on the machines.
Examples of such systems include the PXE ("Preboot Execu­
tion Environment") and "Wake on LAN" systems of Intel
Corp. Another disadvantage is that a dedicated physical
machine must typically be provided for each user.

There are still otber solutions. such as "server blades,"
whlch attempt to share hardware resources, logical partition­
ing, etc .. but even these solutions require specialized systems;
note that a server blade is typically a single circuit board
populated with components such as processors, memory. and
network connections that are usually found on multiple
boards. One of many examples of this solution is the "RLX
ServerBlade 800i" made by RLX Technologies, Inc., of The
Woodlands. Tex. An example of a scalable, logically parti­
tionable server is the "Sun Enterprise J 0000 Server" made by
Sun Microsystems, Jnc., of Palo Alto. Calif. This of course is
usually both inefficient and expensive. since few users wi ll
need all of the processing power of a network server. To
illustrate, consider the fo llowiug major steps that are nor­
mally required for provisioning a new computer using the
prior art:

I) Assembling hardware: The first step is to assemble the
required hardware. Based on the requirements of the appli­
cations that need to mn on the machine. the user specifies the
amount of memory that needs to be installed, the number of
disk drives and size of disk space required, the number of
network cards needed, the number of CPUs required, etc. A
system administrator then configures the hardware according
to these specifications.

2) Installing theoperati.ngsystem (OS): The system adm in­
istrator installs the OS by inserting an installation CD into a
CD-ROM drive, which typically includes a "wizard" that
guides the installer by presenting various questions to be
answered. This is followed by instaJling the required service
pack levels for the OS.

3) Installing applications: Any applications required by the
user are then instal led and con.figured on the newly created
machine. 'J11is step is repeated for each appl ication that is
needed.

If replicas of an existing COl1lputer are to be deployed to
meet the needs of the user, the system administrator follows
the following main steps:

J) The OS and the applications on the computer that is to be
replicated are copied using conventional disk imaging soft­
ware, which creates an exact image of the bits on the com­
puter's disk. This image represents the entire contents of the
disk, includiug the boot record, the boot sectors. the system
partition holding the OS and applications and data partitions,
if any, holding additional software and or data.

2) The hardware for the new computer is then assembled as
described above. Since it is assumed that the replica is to be
identical to the original computer, the requirements for

Netflix, Inc. - Ex. 1004, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
3

memory, the disk, etc., are simply taken from that computer,
which acts as the "model computer" from which the replicas
are derived.

3) The image created in the step I above is then installed on
the new computer. which may usually also be done using the 5

disk imaging software. Successful completion of this step
results in the new computer's disk being an identical replica
of the disk of the model computer.

4) ·me newly created complller is then an exact replica of
the model computer. In order to function correctly in a net- 10
work selling that includes the original as well, however, it
needs to be given its owL1 unique identify. The sys1em admin­
istrator therefore gives th.is machine a new identity by assign­
ing it a new hostname and a new IP address. Machines with
Microsoft Windows operating systems also require each 15
newly created machine to have a unique Security Identifier
(SID). The administrator assigns SlDs to the respective rep­
lica computers by mnning specific, known tools for that pur­
pose.

Another scenario where provisioning of computers is 20
required is a Quality Assurance (QA), or testing lab: A prod­
uct is typically tested against a very large set of configura­
tions, that is, combinations of operating systems, service
packs, patches and hot fixes , applications. etc. When a new
version of the product to be tested is ready, a suite of tests is 25

nm on it for each and every such configuration. Usually. this
is done by mnning the tests on small subsets of configurations
by installing each configmation subset on a respective, sepa­
rate computer. When a test completes, the current con.figura­
tion subset is un-installed from ll1e respective computer and a 30
new subset of configurations is installed. Th.is process is
repeated until the product has been tested against all the
configurations. ll1is entire process is repeated the next time
the tests have 10 be mu.

Testing products exist that automate the task of nllilling 35
tests. The task of switching between computer con.fig1tra1ions
remains, however, mostly a manual operation. Exalllples of
such products include Ilic "TcstDirector 7i" made by Mercury
Interactive Corp. of Sunnyvale, Calif.: and the "Rational Test­
Manager" made by the Ra tiona I Software Corp. of Cuperti 110, 40
Calif.

4
provided. witb a potentially wide range of available options.
It should not be necessary to have a separate dedicated physi­
cal system for each user, and configuring systems should
ideally be fully automated, or al least more so than is now
possible. From l11e perspective of users, what is needed is
greater flexibility in choosing computer configttrations, with
easy access to a wide range of options and with quick
response. This invention provides such a system and related
method of operation.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. I isa block diagram that shows the main hardware and
software components of a computer system that includes a
virnial machine, as well as the typical components ofa virtual
machine itself.

FIG. 2 illustrates the general principle of virtual machine
provisioning according lo the invention.

FIGS. 3-6 illustrate certain components of a provisioning
server according to the preferred embodiment of the i11ven­
tion, namely. a virtual machine staging subsystem. a sub­
system that provides instantly-deployable virtual machines,
an application library, and a temporary usage area, respec­
tively.

FIG. 7 illustrates a method of creating a virtualized com­
puter system.

SUMMARY OF THE INVENTION

ll1c invention includes a method and system implementa­
tion forcreatinga virtualized computer system based on input
information identifying a desired computer configuration.
The invention then automatically config11res and deploys on a
physical host platform a virnial machine (VM) according to
tbe inputted information.

In a preferred embodiment of ilie invention, a plurality of
pre-configured VMs having different configurations are pre­
stored. A requester (which wi ll usually be a human user but
may also be a computer program) then selects one of the
pre-con.figured VMs, wbkb is then automatically prepared
for deployment.

Because of tbe large number of operating systems. each
with a number of service packs, patches and hot fixes, and the
large number of applications that a given product usually
needs to be tested against, the number of configurations to be
tested against can quickly grow into hundreds. Provisioning
computers for each test cycle for all these configurations
obviously requires significam time and human resources.

In other embodiments of the invention, ilie requester speci­
fies various components of the desired VM, including the
characteristics of a desired operating system (OS), of a

45 desired hardware platform, of desired applications. or of any
combination of these components. The various components
available for selection are stored in a database.

There are known variations on the above scheme that
attempt to improve the tum-around time between con.fig11ra­
tion tests. One option, for example. is to maintain each con­
figttration in a removable disk and ilien to shutdown a
machine, swap the disks and boot the new config11ration.
Even Ibis procedure is extremely resource- and personnel­
intensive. Note that the disks themselves must be stored and
managed separately. Another option is to partition the disks in
tbe computers and to have each partition host a con.figuration.
This reduces !lie need for managing disks separately, but does
not reduce the time required to switch between configura­
tions, because the computer rulllling one configuration must
be shut down and rebooted with another configuration. Not
onJy is this method also resource-intensive, but it also
requires a higher degree of skill in those involved.

From the perspective of hosting providers, or of those who
simply configure and deliver computer systems to user, what
is needed is therefore a system and method that allows them
to easily and flexibly configmc the systems to be hosted or

Once a VM has been configured and deployed. note that it
will also be possible to alter its configmation, for example by

so upgrading the software and/or hardware. installing different
applications, etc.

111e invention also provides for heuristically selecting for
and configuring the VM the available. stored components that
best match the requester's specifications if these cannot be

55 met exactly. Rather than specifying components, the
requester may instead (or in addition) specify desired perfor­
mance or ftt11ctional goals for the VM.

In most embodiments of the invention, there is a plurality
of physical hosts on which VMs can be deployed. In ll1is case,

60 according to another aspect of the preferred embodiment of
the invention. the status of the hosts is monitored and the host
on which a con.figttred VM is lo be deployed is selected
heuristically. A deployed VM may also be migrated from one
host to another based on !lie monitored stat11s of the p lurality

65 ofhosts.
According to another embodiment of the invention. a vir­

tual machine-to-hardware interface, such as a virtual machine

Netflix, Inc. - Ex. 1004, Page 000009
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
5

monitor (VMM), is installed on each of a plurality of llard­
ware hosts. Deployment of the VM is thereby made substan­
tially independent of the overall physical hardware configu­
ration. Al least one of the hosts is then selected as the host for
actual VM deployment. Because each host plus interface
fonns a separate physical host platfo m1, the actual host may
be selected substantially arbitrarily. according to any given
criterion.

TI1e invent ion also allows for creation of a network of
cooperating VMs. In this case, VMs are deployed on respec­
tive physical host platforms. At least two of the deployed
virtual machines have installed in them di1Tere111, mutually
interacting applications.

One way to obtain information identifying the desired
computer configuration is to input an image of an existing
physical computer.

Rathe r than installing the configured VM directly on a
physical host platform. it is a lso possible according to the
invention lo deploy the VM by copying in.formation defining
the VM onto a machine-readable storage medium such as a
CD.

DETAJLED DESCRIPTION

The invention enables users to configure. deploy and gel
access to substantially "customized" computer systems. ln
the preferred embodiment of the invention, this is done with
no need for human intervention. bl broadest tenus, the inven­
tion makes this possible by allowing the user either to select
one of a set of "model" virtual machines that are pre-built
with such components as virtual hardware, an operating sys­
tem and one or more applications, or 10 specify desired com­
ponents that are then assembled i1110 a virtual machi11e. The
chosen or specified virtual machine is then loaded o nto a
physical platform such as a host server. The user can then use
the virtual machi11e as iJ ii were a dedicated computer.

Because more than one virtual mach.ille can uonnally be
installed on a si11gle host server. and will be fully isolated
from other virnial machines installed on the same host. the
number of users who may have "dedicated" systems is not
limited to tl1e number of avai lable physical servers, yet there
wi ll be no loss of security. Moreover, thanks to the properties
of vim1al machines. each user's provisioned vimml
machi11e(s) can be migrated to other hosts as needed, or even
exported for nmning on other servers or systems, including
the user's own, in which case the numbers of virtual mach.illes
and users is essentially unlimited. Before the specific novel
features of the different embodimellls of the i11ve111ion are
described, certain key concepts and structures are explained.

General System Configuration

F.IG. J shows the main components of a computer system
that includes one or more virtual machines (VMs). The illus­
trated system includes an underlying system hardware plat­
form 100, system software 200, a11d a plurality of virtual
machines (VMs) 300-1, . .. , 300-n that nm on the system
software 200; the l1ardware platform 100 and the system
software 200 thus form a " host" for the VMs.

As in most computers, two different types of data storage
are commonly provided: a system memory 112, typically
implemented using any of the various RAM technologies.
and a 11011-volatile storage medium such as one or more disks
114. FIG. 1 also shows that conventional peripheral devices
400 may be conuected to nm on the hardware 100 via the
system software 200. Note that the disk 114 itself. from tl1e
perspective of the system hardware and software. is also a
"peripheral" device.

6
The system hardware 100 illcludes one or more central

processors CPU(s) 110, which may be a single processor. or
two or more cooperating processors in a k11own multiproces­
sor arrangement. As ill other kuown systems, the hardware

5 iDcludes. or is coOJlected to. conventional registers. intem1p1-
handling circuitry, etc. Any conventional network interface
device such as one or more cards 150 may also be included to
enable communicatio11 a11d data t ra11sfer with external sys­
tems via a network 700. T he network 700 may be of any

10 kJ1own type. botl1 publicly accessible networks such as the
Internet and proprietary networks, and may be either wired or
wireless or both.

'l11e system software 200 e it11er is or at least includes an
operating system (OS), shown in FIG. 1 as a "host operating

15 system" HOS 220, which will include drivers 222 as needed
for controlling and commm1ica1ing with the various devices
400 and, usually. for the disk 114 as wel l. Because 1his inven­
tion does not presuppose any particular host operating sys­
te m, and because the characteristics and functions o f operat-

20 ing systems are so well known, tJ1e HOS 220 is not discussed
ill greater detail. except insofar as it cooperates with the
components of the system unique to the invention.

Vimial Machines
As is well kJ10wn in computer science. a virtual machine

25 (VM), which is sometimes also referred to as a "virtual com­
puter," is a software abstraction- a "virtualization"-of an
actual physical computer system. Actual execution of instruc­
tions for the VM is ultimately carried out on tbe system
hardware 100. so that the VM may be considered to be a

30 "guest" system running on t11e "host" platform, which
includes the system hardware and software 100. 200. Like
physical computers. each VM wi ll typically include one or
more virt11al CPUs 310 (VPROC). a guest operating system
320 (wl1icb may, but need 11ot, simply be a copy of a conveu-

35 tional, commodity OS), virtual system memory 312
(VMEM), a virtual disk 314 (VDISK), optional vi1111al
peripheral devices 340 (VDEVICES) a11d drivers 322
(DRVS) for handling the virt11al devices 340, a ll of which are
implemented in software to emulate tbe corresponding com-

40 ponents of an act11al computer. Alt bough tbe key components
ofonly one VM are illustraled in FlG. l. the structureofother
VMs will be essentially identical.

Of course. most computers are intended to nm various
applications. and VMs are usually no exception. Conse-

45 quently, by way of example. FJG. 1 illustrates one or more
applications 360 installed to run at user level on the guest OS
320; a11y number of applica tions, including none at all. may
be loaded for numing on tbe guest OS, limited only by tbe
requirements of tbe VM itself. Usually, no modifications of

so auy kind are needed ill order to install applications on a VM as
opposed to on a "real" computer. lf the VM is properly
designed, then the applications (tliat is, the user of the appli­
cations) wi ll not "kJ1ow" that they are not nullling directly on
"real" bardware. Of course, all of tbe appli.cations and the

55 components of the VM are instructions and data stored in
memory, just as any other software.

The concept, design and operation of virtual machines are
well kuown in the field of computer science. One should keep
in mind, though, that because all of the components of a

60 virtual machine arc software, or software constructs, a VM
can be defined completely by its code and state information.

Virtual Macl1ine Moni tors
Some interface is usually required between a VM and the

underlying host platform, in particular, between the VM and
65 the host OS 220, which is the " real" OS in the se.115e of being

either tl1c native OS of the underlying physical computer. or
the OS or other system-level software that handles actual 1/0

Netflix, Inc. - Ex. 1004, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
7

operations, takes faults and intem1pts, etc. As is memioned
above, the host platform is responsible for actllally executing
VM-issued instrnctions and transferring data to and from the
actual. physical memory 112 and storage devices 114. Th.is
interface is often referred to as a "virtual machine monitor" 5
(VMM).

A VMM is usually a thin piece of software that nms
directly on top oftbe host and virtualizes all, or at least some
of, the resources of the machine, or at least of some machine.
ln some systems, the VMM may even be included in the 10

system software itself, or operate alongside it at system level.
111 some conventional systems. VMMs nm directly on the
underlying system hardware 100. and will thus act as the
"real" operating system for its associated VM. ln other sys­
tems. such as the one shown in FIG. 1, the HOS 220 is 15
interposed as a software layer between VMMs and the hard­
ware. Still other arrangements arc possible. all of which may
be used in the invention. Regardless of which level the VMM
is implemented on, the interface exported to the respective
VM is the same as U1e hardware interface of the machine, or 20
at least of some predefined hardware platform, so that the
guest OS 320 usually cannot determine U1e presence of the
VMM . The VMM also usually tracks and either forwards (to
the HOS 220) or itself schedules and handles all requests by
its VM for machine resources as well as various faults and 25

interrupts. The general features ofYMMs are known in the art
and are therefore not discussed iJ1 detail here.

In FIG. 1, VMMs 500-1, ... , 500-n. are shown, acting as
interfaces for their respective attached VMs 300-1,
300-111. It would also be possible to use a single VMM to act 30
as the interface to all VMs, although it will in many cases be
more difficult to switch between the different contexts of the
various VMs (for example. if different VMs use diJTerent
guest operating systems) than it is simply to include a separate
VMM for each VM. The important point is simply that some 35

well -defined, known interface should be provided between
each VM and the underlying system hardware 100 and soft­
ware 200.

8
Interface," David A. Pallerson and John L. Hellllessey, Mor­
gan Kaufinann Publishers, ISBN 1-55860-428-6, 1998, pp.
579-93.

Vim1alization introduces an extra level of addressing indi-
rection: TI1e guest operating system allocates pages of virtual
memory. which are then mapped to "physical" pages (PPNs),
which the VM "believes" are the same as actual machine
pages, but which in fact are an intermediate addressing stmc-
ture. The VMM therefore usually includes a memory map­
ping module 512 to translate, that is, map. physical page
numbers to machine page numbers.

One advantage of this extra level of indirection is that each
VM can be isolated from all others, and .from all software
other than the VMM, which itself will be transpare111 to the
VM: indeed, the user of a VM will often be completely
unaware the VM is not a "real" computer. Moreover, each VM
as a whole is U1erefore also relocatable to other systems as
long as these other systems have the same memory structure
and the appropriate mappings are established in the VMM.

Because of the isolation ofVMs. components ranging frolll
applicatious to even the virtual processor 310 and guest OS
320 can therefore be added, deleted or modified with no effect
on any other VM. IJ1 the context of this invention. another
advantage is that each VM will operate essentially as a "self­
contained" computer completely within a virtual address
space that is defined by the VMM. As a result, a change in
mapping of physical addresses can be accomplished in a
maimer that is transparent to the VM, and that does uot require
modifications to either tl1e guest OS 320 or to the underlying
host operating system HOS 220. As long as the VMM is
configured appropriately, any VM may therefore be migrated
freely, even to other hardware and software platforms. and
complete, exact images, that is, copies, of a VM may be
created, which will function exactly like the VM from which
they were copied.

In the following description of the invention, merely for the
sake of simplicity . only one VMNMM pair is discussed. The
discussion applies equally. however. to all such VM/VMM

40 pairs that may be included in any given implernentatiou of the
inventiou. Moreover. it will be assumed below that when a
VM is installed on a host, then a corresponding VMM is either
already instaJled on the host, or is included and installed
together with tl1e VM.

Because operation of the VM requires some form of inter­
face with the host platform, from ihe perspective of the sys­
tem designer the VM and VMM can be considered to form a
single cooperating system, a lthough. as is mentioned above
the VMM is typically transparent to the VM. The important
point to keep in mind when it comes to this invention is that
the VM is slmcrured and performs as a complete " real" com- 45
puter system, even though it is a software construct and
assumes an interface such as the VMM.

50

Definition of Various Key Terms

Before proceeding with the description of tl1e various
embodiments of the invention described below, it is helpful to
keep in 1J1ind the definitions of several terms that are used
throughout tl1e description.

A "model virtual machine" is a virtl1al machine (VM) that
contains a certain configuration of guest operating system
320, service pack. and applications 360, where the applica­
tions have been tested and are known to work correctly. A

Each VMM will typically include other software compo­
nents such as device emulators 540 that emulate the charac­
teristics of respective physical devices. Such components,
and others such as an interrupt handler. etc., are common in
VMMs, but a description of these components is not neces­
sary to understanding this invemion and is therefore not
included here; these components are well known in the art of
computer virtualization.

In conventional. non-virtualized systems, memory is usu­
ally partitioned into units such as "pages," each of which has

55
model VM may be used to provision new VMs with tl1e san1e
configuration.

a page number. The actual machine memory is addressed
using "machine page numbers" (MPNs), whereas the operat­
ing system al locates and the processor generates pages of 60
"vir111al memory," identified by virtual page tlllmbers
(VPNs). A memory mapping unit then translates VPNs to
MPNs. This single level of addressing indirection makes it
possible to easily relocate processes simply by changing the
appropriate mappings. These concepts are well known in the 65
art and are explairnxl. for example, in the standard text "Com­
puter Organization and Design: The Hardware/Software

"Staging" is the step of taking the model VM and stripping
off its identity (Security lD in Mjcrosoft Windows operating
systems. JP Address, etc.) and con.figuring it such that next
time it is booted, it nms a tool to assign a new identity (a new
SID. computer llame, JP address, etc.), and to perform any
oilier setup required as per user requirements. A VM thus
prepared is referred to as a "staged VM."

"Deployment" is the step of taking a stagedVM, copying it
to a host machine and letting it configure with a new identity.
The process of deployment is complete when the virtual
machine is ready to be accessed and used by a user.

Netflix, Inc. - Ex. 1004, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
9

"Cloning" is the step of copying the virtual machine con­
figuration file and disk images to a new host machine or to a
different location in the same host machine.

10
of the 1.1Ser console 801 (or via the network, using conven­
tional technology) selects components of the computer that
be wants to have. These components are the system hardware,
the system software (in particuJar, the OS), and one or more "Migration" is the step of moving a virtual machine con­

figuration file and disk images Crom oue host to another,
un-registering it at the original host and registering it at the
new host, such that the VM is operational on the new. target
host.

VM Provisioning General Architecture

5 applications (if any). The user thus specifies the hardware
characteristics of the desired machine, such as memory size,
n1.1U1ber, type and size of disks. n1.1U1ber of network cards. etc.
One such component is an operating system. ln addition to
selecting a preferred operation system, the user will usually

10 also need 10 specify the desired OS configuration. for
example, hostname, IP address, MAC address of the network
cards, etc. Ffoally. the user selects the additional applications
he wants 10 have installed on the machine, and submits the

FIG. 2 shows the main components of the preferred
embodiment of the invention, which allows VMs lo be created
and provisioned by cloning one of a set of model VMs, or by
starting from scratch and installing an operating system. and
then installing and configuring additional so'ftware according

15
to user specifications. The invention provides the user with
three choices:

1) Clone an existing, pre-built model VM and con.figure a
few parameters, such as host name, IP address, etc.

request to the provisioni11g server.
Any conventional interface may be used in the user console

801 to present the various options to the user and to submit the
selected options to the provisioning server. For example. for
pre-built VMs, a list of available staged VMs, along with a
descriptfon of !heir respective (virtual) hardware platform,

2) Install an operating system and/or one or more applica­
tions to a VM created from scratch and then con.figure them.
Such a VM is referred to below as a "custom-built" VM.

3) Instant ly provision a VM by resuming it from a sus­
pended state. Such a VM is referred to below as a an "instant­
deploy" VM.

20 system software. and pre-installed applications (if any) could
be presented for display; the user may then select one of the
VMs from the list using known methods. In the case of cus­
tom-bui lt VMs. pull-down menus or similar graphical input
devices may instead be included to allow separate specifica-

TI1e main fean1re of the invention is a VM provisioning
server 800, which, like any conventional computer system,
wiU include system hardware, system software, devices, etc.

25 tion ofVM components such as a hardware platform, OS, and
applications.

as needed; these are standard components of any computer
a nd are therefore not described in further detail. The 1em1 30
"server" is ust'CI here in a loose sense to identify the set of
tasks it performs.

Ah hough not necessary to tlus invention, each of the com­
ponents that comprise the server 800 could. for example,
actually reside on separate physical machines. Even in that 35

case, the separate machines are referred to here collectively as

A heuristics engine 880 wi 1Jun the provisioning server then
takes this user input and applies heuristics/rules to select the
most appropriate VM from a library 830 of staged VMs. At
least one host computer 1000, 1001 is made available to the
provisioning server, and the heuristics engine 880 also selects
which host machine 1000, 1001 is most appropriate to pro­
vision and deploy the VM on. The heuristics engine 880 also
selects tbe applications from a library 850 of avai lable appli­
cations to install in the newly created VM. The system
designer will be able to determine which heuristics/rules to
implement in the heuristics engine 880 using known design
criteria. Known expert systems, "intelligent ass istants," and
other knowledge-based systems and engines that can be
embedded in other products and loaded witb domain knowl­
edge may be included in the heuristics engine 880 to imple-
ment the various decision functions.

Tue heuristics engine 880 preferably also applies rules to
validate user input for both correctness and consistency. For

45 example, it will check that the memory size is su.lli.cient for
the requested operating system and the set of applications. If
the user-entered parameters cannot be implemented as input,
then the heuristics engine preferably also applies known rules

the "provisioning server" 800. The computer(s) used to
implement the provisioning server 800 are thus whichever
computer system(s) are used to provide the VM provisioning
service according to the invention. In the preferred embodi- 40
ment of the invention. these machines are configured as a
network server. and conventional network server technology
may be used to implement it. The term "server" is not. how­
ever, intended to limit the invention to use w·ith any particular
hardware platform.

One or more users 900 communicate with the provisioning
server 800 via their own respective computer systems and a
network 700, such as the Internet, or over any other known
channel. Users may be individuals, groups. service providers,
etc., in short, any person or entity who wants one or more 50

VMs 10 be created and deployed according 10 their specifica­
tions. A "user" could also be a software application or 1001.
The provisioning server 800 in the preferred embodiment of
the invention includes a frolll-end presentation layer-a user
console 801- by means of which end users interact with the 55
provisioning server to specify various input parameters. Soft­
ware applications acting as a user interact with the provision­
ing server using a well-defined progranunatic interface (AP!).
which may be designed in a known manner. Another presen­
tation layer- an administration console 802- is preferably 60
also included, by means of which an administrator interacts
with the provisioning server to monitor the operational state
of the various computers. to maintain the database (see
below), etc.

Tue main idea of the invention is that a user who wants 65
access to a computer with specific configuration characteris­
tics interacts with the provisioning server 800, and. by means

to suggest changes.
In FIG. 2. By way of example, two VMs- VMx and

VMy-are shown as having been deployed, that is, installed
for running, on host 1000. Note that. just as in the standard
configuration ofFIG. l , any oumberofVMs may be deployed
and loaded on a single host , limited only by the capacity of the
host itself. Similarly, in FIG. 2. only two hosts 1000, 1001 are
shown merely for the sake of simplicity. Any number of host
systems may be included; indeed, in the case where the hosts
are external to the system according lo the invention and are
controlled by or designated by the users , the number of pos­
sible hosts is essentially unlimited.

Before starting the process of provisioning. tile provision­
ing server preferably creates a temporary usage area 860 for
the provisioning request that holds the user input as well as
the various temporary data needed while the provisioning
task is in progress. FinaUy. the provisioning server initiates a
new transaction using a task manager 820. which ret11ms a
task identifier (task ID) to ihe user.

Netflix, Inc. - Ex. 1004, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
11

In a prototype of the invention, tbe entire process of pro­
visioning a new machine for the user could take ru1ywhere
from a few seconds, for instrult-deployYMs, to a few minutes
in case of pre-built VMs and possibly even hours in the case
of custom-built YMs. While wai ting , the user can query the 5
provisioning server via the user console 801 with the task JD

12
application library for use by others. Alternatively, the user
could designate a network address from which the provision­
ing server itself could upload theapplication(s). Such upload-
ing of applications should ofcourse follow a well-defined and
preferably standardized protocol. Asstune. for example. that a
user has developed a software application, but wishes to test
it for backwards compatibility with a legacy operating sys­
tem. The user could then select that desired legacy OS, but
then direct the provisioning server to install the application to

to find out the progress of the task. The status returned is, for
example. the stage the provisioning task is in and, if possible,
the percent of the stage completed; whether a failure has
occurred and. if so. a failure message. etc. 10 be tested. for example , by selecting a choice such as "other"

or "user-selected" from the menu item for •~t\pplieations"
displayed on the conso.le 801.

Tn the preferred embodiment of the invention, the user is
given some cboice about bow tbe provisioned VM's vi.r111al
hardware, system software, and applications are selected.
Each such VM is therefore at least partially customized. lftbe
user's configuration preferences cannot be matched exactly, 15
then the heuristics engine 880 suggests the best available
match by applying a database of heuristic niles about prop­
erties ofVMs, available applications ru1d operating systems,
virtualized devices. etc.

According to an alternat ive " instant-deployment" embodi- 20
meat of the invention, the user selects one of a plurality of
fully configured VMs. which are stored in a library 840 of
instant deployment VMs and are kept in a suspended state
until deployed. 'foe provisioning server then selects an appro­
priate host 1000, 1001 on which to provision the YM, copies 25

the necessary data on that host, and resumes the execution of
tbe YM on tbenew host. The VM is thus instantly available to

·111e procedure for building a model YM from selected
components will typically not be simply a matter of storing
the components in the same place. For example. many appli­
cations have settings and parameters that depend on the oper-
ating system they will be numing on. and an operating system
will have parameters that depend on which processor it is
installed on. One way 10 overcome these complications is to
store in the library 850 different copies of applications, with
different settings for the different possible operating systems.
different copies of operating systems configured for different
processors, etc.

It is possible that the user does not know just how he wrults
a YM to be co,lfigured, or that he wishes the VM to include
one or more components that the library 830 does not have.
Thus, neither a ready-assembled, "stock" VM nor a user­
configured, custom-built VM is available that exactly
matches the user's preferred specifications. In yet another
alternative embodiment of the invention, the heuristics engine
880 inputs information about the user's intended tasks and
pcrfomrnncc specifications ancVor even functional goals and
then suggests an entire YM that implements these iu some
optimal sense. For example. a user could indicate that he

35 wants the system according to the invention to build a (vir­
lllal) web server rull.llillg a Window OS that can handle 2000
requests ("llits") per second, and the heuristics engine 880
will pass parrulleters to other components such llrnt they will

the user for use. Whereas configuring a VM based on a selec­
tion of components may take a few minutes, the process of
provisioning a new, pre-configured VM takes only a few 30
seconds ru1d the user can start using it almost instantru1eously.
Since the host servers have to have a hardware configuration
identical to that where the VM was suspended, the heuristics
engine will select the appropriate host server to deploy the
YM on.

Different choices for virn1al hardware, system software,
and applications may be stored in respective libraries using
any known data stnicn,res. For example, one such library
could contain the code of different operating systems such as
Linux Red Hat, Windows 2000, Windows Me, etc., and/or 40
difTerent versions or releases of a single operating system, as
well as other system software such as drivers, etc. By offering
even older, legacy operating systems as options. users could,
for example. test a newly designed application for bacJ...'Wards
compatibility, with no need to reconfigure their own physical
machines orto configure a dedicated physical machine. In the
preferred embodiment of the invention, the operating systems
are pre-installed in virtual machines. which are then stored as
staged-VMs ready for deployment.

Another library (such as Library 850) could contain code
for any collection of the myriad of existing applications, :from
web servers, database servers, spreadsheets and word-pro­
cessing programs, to games and browsers. Still ru.1other
library could contain the code for various virn.,alized system
hardware components such as processors, memory devices,
etc .. and yet another library could contain the virtualization
code for hardware devices such as graphics cards, disks,
network interface devices. etc.

Presenting a set of available operating systems. applica­
tions. virtualizcxl hardware, etc., for the user to select from has
the advantage that the properties of the presented components
wilJ be known and compatibility can be assured. Especially in
the case of applications, however. for which installation into
a VM is well understood and straightforward, it would also be
possible to allow the user llimseU to upload to the provision­
ing server one or more applications he wishes the provision­
ing server to install in a provisioned VM, or to include in the

build a YM having the desired characteristics.
In the preferred embodiment of the invention, hosting is

provided to users by the same entity that controls the provi­
siooi11g server 800. In this embodiment, hosting is preferably
provided using a bank or "farm" of servers, each fornting one
of the hosts. Users then access the hosts as they would any

45 o ll1er servers and interact with the respective deployed VM
via the network in a conventional manner. One advru11age of
including the hosts within the overall provisioning system is
that the system admin.istrator can ensure that staged and
deployed VMs are operating properly. This embodiment of

50 the invention therefore provides the same function as conven­
tional hosting, but with much greater flexibility, no need for
hlllnan intervention to configure, install and maintain the
user-selected "computer," no need to physically power on a
computer, and, assuming sufficient server capacity. no need to

55 install additional physical equipment in order 10 increase the
number of hosted systems.

Moreover, the concern that a hosting server might fail is
also reduced, because the VMs deployed on any malfunction­
ing se.rver (depending on the malfonction, of course), or on a

60 server that is due for maintenance, can be migrated to anoll1er
host server. Easy migration also means that VMs can be
deployed to hosts with the greatest current available capacity.
For example. in FIG. 2, virtual machine VMy is shown as
having been migrated (or copied) from host 1000 to host

65 1001. Information about the current state of the different
hosts is preferably input dynru11ically into a database or other
data structure in the heuristics engine 880. Host state infor-

Netflix, Inc. - Ex. 1004, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
13 14

user logs it1 to the provisioning server, he can either chose to
custom-provision a VM or can select any pre-configured,
instantly deployable VM in tl1e library 840.

In order to provision an instantly deployable VM., the con-

mation can then be used to suggest components, as well as the
properties ofVMs that need to be matched with user requests
and any static rules pre-defined by the system administrator.
The heuristics engine may then also efficiently direct deploy­
ment and migration in order to balance the load on the differ­
ent available bosts, for example by deploying a selected,
staged VM to the host whose processor currently has the most
available cycles.

If automated VM provisio11i11g is not required or desired in
a given case. as FlG. 2 illustrates, a staged VM could also be
delivered to a user in the fom1 of a storage device such as a
CD, DVD or tape 1002, wl1ich tbe user can then load into b.is
own chosen computer system in tl1e conventiona l maimer.
The staged VM could also be delivered to the user via a
network such as the lnternet. using any known transfer pro­
tocol.

5 sole 801 need present only a single dialog to the user (al­
tl1ough more may of course be included as needed). This VM
configuration selection dialog may be as simple as a drop­
down list of available VM configurations. A brief description
of the operating system, service pack and set of applications

10 installed in each instantly deployable VM is preferably also
included. and known techniques may be implemented to
enable the user to view additional details of any of the con­
figurations. When the user selects a configuration, 1he heuris­
tics engine 880 applies the heuristics and rnles to determine

15 the best host. and provisions the VMon that host. The user can
then access the newly created VM via any known remote
access software, such as the remote console software avail­
able from VMware, IJ1c., of Palo Alto, Calif.

As is mentioned above. a VMM is typically included for
each VM in order to act as its software interface with the
underlying host system. In the preferred embodiment of the
invention, a VMM is already pre-installed on eacb host l 000,
1001 so as to ensure compatibility and proper configuration.
Several prod11cts are available from VMware, Inc. of Palo
Alto, Calif .. that configure conventional computers. both
stand-alone desl-..'lop computers ai1d multi-user servers, to
load and run multiple VMs. lt would also be possible, how­
ever, for a corresponding VMM to be included along with
each staged VM, as long as the characteristics of the host on
wh.ich the VM is to be i11Stalled are known. An advantage of
pre-installing a VMM, without a VM, on a plurality of hosts.
such as hosts l 000, 1001. 1003, is that it will then be possible 30
10 deploy a given VM on any arbitrary one (or more) oftl1esc
hosts. Moreover. as long as the VM-M on each host exports a
known hardware ii11erface to the VM deployed on it, then VM
deployment wilJ be substantially independent of the ac111al
physical hardware configuration.

In order to provision a pre-built VM, the console 801 pref-
20 erably presents a dialog to the user to select tl1e model VM to

provision and allows the user to specify additional coiifigu­
ration parameters such as the host name. IP address, etc. The
user may also be presented with an optional dialog where he
can query the details of the model VM, such as its OS, appli-

25 cations, etc.).

Once a VM is deployed on a host, it may be started ("pow­
ered on") in any conventional manner. either by the provi­
sioning server remotely, or by the user himself. Note that
powering on a VM does 1101 nonnally involve a manual action,

35

but rather can be carried out tlirough a softv,are procedure. 40
Since a VM operates as a "regular" computer, the user may
then also load other applications into the deployed VM and
nm them as any other.

The deployed VMs can be monitored regularly so that any
unexpected event. like the crash of the operating system in the 45
VM. can be reported to the user or administrator. Also. main­
tenance tasks like upgrade of software and hardware (for
example. activating a different number of processors,
memory ch.ips. etc.) installation of service packs or hot fixes,
detection of vims, etc., can be run by the admin.istrative 50

component of the provisioning server. Hosts can be moni­
tored for load ai1d if the load crosses a threshold, the admin­
istrator can be alerted and/o r actions can be taken such as
migrating VMs to a lightly loaded server. For example. in
FIG. 2, virtual machiue VMy is shown as having been 55
migrated (or copied) from host 1000 to host 1001.

COMPONENTS OF THE PREFERRED
EMBODIMENT OF THE INVENTION

TI1e description above gives a general overview of the
workings of the invention. In the following sections, the indi­
vidual components of the provisioning server in the preferred
embodiment of the invention are described in deta.il.

User Console 801
TI1e user console is preferably a web server. with which the

user interacts with any conventional web browser. Wl1en the

60

65

Jn order to provision a custom-bui lt VM, tl1e console 801
preferably presents three primary dialogs for the user as fol­
lows, relating to hardware selection, OS selection, and appli­
cation selection:

I) Hardware Selection Dialog
ll1e user specifies the various (virtual) hardware compo­

nents of a VM in order for the provisionjng server to be able
to create the VM. The various parameters lbat the user wil l
normally need to specify are:

a) The main memory (RAM) oftl1e VM. The user prefer­
ably specifies both minimum and maximum amounis.
The amount of memory required will depend on the
application(s) that the user desires to rnn and the typical
workload. The desired amount will be sufficient to run
the workload efficiently: the min.imum amount will be
that which is required for the workload to nm at all. 11,e
provisioning server will try to provision a VM with the
desired amollllt of memory. However. in case it is not
able to. it will try to provision a VM with less as long as
it is greater than the minimum required. Note tl1at one of
tl1e heuristics and mies included in the engine 880 may
be a database of tl1e minimum and recommended
ruuouuts of RAM for the different OSs and applications
available for provisioning.

b) The disks of the VM. The VMcreated by the provision­
ing server w ill contain a (virtual) disk that has the OS
and selected applications installed. If the user wants
addit ional d isks for the VM. he specifies the number of
disks wanted, as well as the type (for example, SCSI or
IDE) and the size of each disk. "n1e user can also specify
the amount of data he expects these disks to contain. that
is, the actual size of these disks. The provisioning server
will then. as before. try to allocate the most appropriate
host to provision the new VM on such that the disks can
grow as needed to their maxitmuu sizes. 111 case no such
host is found, the provisioning server (in particular. the
heuristics engine 880) selects the best host that has
enough storage space to host the d.isks with expected
amount of data.

c) Networking. The preferred system configuration is such
that all hosts 1000 . .1001. e tc. are connected by a local
area network (LAN), which allows for easy commun.i-

Netflix, Inc. - Ex. 1004, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
15

cation, and VM deployment and migration. The VM
created by the provisioning server is therefore prefer­
ably provided with one network card in a bridged mode.
The VM thus also becomes available on the LAN as a
machine that can be reached from a11y other machine i11 5
the LAN and the VM can reach any other machine in the
LAN. The user can request the provisioning server to
configure additional network cards and/or change the
networking to be host-onl y. The advantage of configur­
ing the VM with host-only networking is that the VM to
then is not accessible on the LAN, so other machines in
the LAN cannot get to it. Tb.is might be a dcsi.red feat ure
for example, for short-l ived machines whicb do not need
to participate in the network.

16
created from one of these images. One other advantage
of this procedure is that the VM thus created from the
ghost image of the physical machine will be a working
replica of the machine and can therefore function as a
bad..1.1p clone. T he client-side of the disk imaging soft­
ware is nm in a newly createdVM, typically usiJ1ga boot
floppy, whose software dowu.loads the disk image and
installs it ou the VM's virtual disk. Since the hardware
configuration regis tered in the disk image is very likely
dill'erent than the hardware configuration of the VM. the
disk may have to be "repaired" after the disk image is
instal.led.

Typically, the hardware abstraction layer (BAL) and the
kernel of the operating system need to be replaced with the

2) OS Selection Dialog
'Il1e next step is for the user to select the operating system

and. if needed. the service pack level desired. The user con­
sole 801 therefore presents the user with a drop-down list of
available OS and service pack combinations and the user
selects one. l nfonnation about the available OSs and service
packs may be stored, for example, in database 890.

15 versions appropriate for the VM's virtual hardware. Simi­
larly, device drivers for devices that are different in VMs need
to be replaced as well. For example, the device driver software
for the disk in the VM will typically need to be insta.lled and
configured. Such repair may be carried out in the staging

20 server using known techniques.

3) Application Selection Dialog
Aller the VM virtua l hardware and OS have been selected,

the user then selects the applications he wants installed in the
VM. The list of available applications preselited to the user 25

wi ll depend on the selected OS-only applications that are
able to rnn on the selected OS are presented. The user can
select any number of applications or none at al l.

When the user has finished making the above selections, he
submits the request to the provisioning engine 810, which 30
creates a new VM by the process described below. As soon as
the process is initiated. a new transaction is started in the task
manager 820 and the user is returned a task ID. TI1e user can
tl1en query the stat11s of the task or can abort the task before it
completes. When the task completes successfully, the VM 35

will have been created and the user is so informed. for
example. via the browser from which he submitted the
request, or by email. The user can th en access the VM using
remote access software.

c) Import of a physical machine 897. A variant of the
method ofinstallation from a disk image is to create the
disk image by extracting the disk image of an existing
physical machine 897. The image may then be installed
in the VM's virtual disk. As in the case of installation
from a disk image, the virtual machine disk may need to
be repaired (as discussed above) after the image is
installed. Disk image extraction may be done using
known techniques.

2) Aller the model VM is created as described above, it is
then prepared for being staged for deployment. Th.is in tum
involves two steps. First. ins tall software is included within
tbe VM 10 assist in provisioning. Tue task of this software
(sbown as the VM lau11cb software module 833) is 10 config­
ure the operating system parameters such as the computer
name, IP address, etc., to establish a collllection (a shared
folder, for example) to the server hosting the temporary usage
area 860, and to start the application i11stallation process (if
necessary). Second. software tools loaded in the model VM

VM Staging 830- FIG. 3
See FIG . 3. Th.is component of the provisioning server

contains model VMs that have been prepared for deployment.

40 are then executed to strip off the computer's identity (in case
of Microsoft Windows, the security identifier) and to sched­
ule to run the launch software 833 the next time the VM boots.

In the preferred embodiment of the invention, pre-builtVMs
will be stored with their operating systems and applications
installed, whereas custom-built VMs will be stored with just 45
their operating systems installed. In FIG. 3. a s ingle, staged,
deployable VM is illustra ted; as iud.icated by the ellipsis,
however, any number of deployable VMs may be staged.
Preparation is a two-step process. namely, creation of the
model VM and then staging of th.is VM: 50

1) In the first step, a model VM is created and the necessary
OS and applications arc installed in it. FIG. 2 illustrates
various options involved in installing the OS and appl ications
in the VM after it is created from scratch.

a) Installation from an install CD 895 or ISO image. This is 55
the most common way ofinstalling an OS in a VM. The
user (or administrator) inserts the CD 895 in the conven­
tional CD-ROM drive of the VM staging server 83 0 and
powers on the VM. After install ing the OS, the user (or
administrator) inserts the CDs for the desired applica- 60
lions and installs them as nomrnl.

b) Instal la tion from a d isk image 896. Especially in the area
of quality assurance and testing, users often have a
library of disk drive images that they use to deploy
physical machines. See, for example, the "Ghost 7.5" 65
technology of Symantec Corp. of Cupertino. Calif.
According to the invention, the model VM can also be

After the above steps are completed, the guest operating
system in the VM is shut down and the VM is powered down
(for the VM. a soil ware procedure). This VM is then ready to
be deployed and is stored as one of the staged VMs 830. '!11is
VM may then also be added to the database 890. For each
VM, the data sets kept in the VM staging server 830 are
illustrated in FIG. 3 and are as follows:

1) The VM configtuation ("config") file 831.
2) VM disk files 832.
3) A lmmch software module 833, which is installed inside

the VM and resides on the disk 832.
4) A template VM configuration floppy image 834. which

is used by a provisioning engine 810 at the time of deploy­
ment to provide the data to the VM launch software 833 at the
time of boot to enable the VM to configure itself according to
externally specified parameters. This is discussed in more
detail below.

5) A software module 835 for creating a floppy image
starting from the template floppy image 834 and customized
according 10 the user i11pu1. This is also discussed in more
detail below.

In the preferred embodiment of the invention. the disks of
the VM are configured in an hierarchical fashion and are
stored in a shared storage area accessible from the s taging
server as well as the host servers where the VMs are deployed.

Netflix, Inc. - Ex. 1004, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
17

The disks are configured using known REDO log technology,
where a disk may have a REDO log associated with it, the
REDO log may itself have another REDO log. and so on. The
hierarchy thus fonns "layers" where the base disk is at the
irtuennosi layer and the REDO logs are at the outer layers. 5

When the OS a11empts to read a disk sector, it is served from
the outem1ost layer if the sector is present there. If not, it1J1er
layers are queried until the sector is fetched from the iuuer­
most layer or the base disk. When the operating system writes
a disk sector. it is written to the outermost layer. Thus, all IO
layers except the outermost are immutable, and can be shared
by more than one VM.

There are three possibilities of disk layout for provisioning
aVM:

1) Only the outermost layer is cloned for the newly created
VM and all other layers are shared with other VMs. This
results in a fast provisioning process, since the disk layer that
needs to be copied is typically small in size.

15

2) No layers are shared and tbe entire disk is copied for the 20
new VM. This results in a slow provisioning process. but may
be necessary in environments that do not have a shared stor­
age network.

18
Database 890
The database 890 (see FIG. 2) is a central repository of data

required by the various components of the provisioning
server. Ju the preferred embodiment of the invention, this
database includes the following information:

I) Instantly deployable VMs: This is a data structure
indexed by the name of the VM configuration, and contains
the following fields:

a) Name of the configuration (primary key)
b) Operating system
c) Service pack level for the OS
d) List of applica tions ava.i lab le
e) List of users configured with accotmts on the machine
f) Location of the VM in the instantly-deployable VMs

repository 840.
2) Staging VMs: This data structme is required for provi­

sioning pre-built or custom-built VMs and contains the fol­
lowing fields:

a) Operaring system name (primary key)
b) Service pack level for the operating system
c) List of applications available in the VM
d) List of users configured with accounts on thls VM
e) Location of the VM in the VM staging repository 830.
3) Applications: Tlus data structure keeps infonuation 3) As a combination of the two teclrniques above, the entire

disk may be copied to a host server: however. the VMs on that
host server may share tbe disk's inner layers as in option I
above. llus results in fast provisioning of subsequent VMs
after the first one has been deployed on a host server. even in

25 about the applications available for installation in a custom­

the absence of a shared storage network.

Instantly-Deployable VMs 840-FJG. 4 30

built VM and has. for example. the following fields:
a) Name of the applicatio n (primary key)
b) List of operating systems it runs on
c) Location of the application software in the application

library 850
d) Information on hardware properties it needs. such as

minimum CPU, memory. disk space, etc.
4) Host servers: This data structme keeps information

about the hosts available to deploy VMs on, and has the
35

following fields :

This component of the provisioning server 800 contains
fully configured VMs that are suspended and are ready to be
instantly deployed. In the preferred embodiment of the inven­
tion, these ready-to-deploy VMs (one of which is indicated
with reference number 846) a re created as follows. First, a
new VM is created according to the steps out I ined above in the
section 011 VM Staging. User accounts are then created in the
VM and include user 11an1es and passwords that the users can
use when accessing the VM. 1l1e VM's g11est OS 320 is then 40
shut down and the VM's virtual disk 314 is switched to a
non-persistent mode. The VM is then powered on again (once
again, a software procedure) and, when it is l'i.1lly booted, it is
suspended. A virtual disk file 841 is preferably stored in a
network share folder so that it is accessible from any machine

a) Name o f the host (primary key)
b) Number ofVMs deployed on the server
c) Hardware configuration of the host (memory size, disk

space. etc.)
d) Other infom1ation required by the heuristic engine to

make decision on deployment.
5) Users: This data structure keeps information about the

users authorized to access the provisioning server and the

45 deployedVMs. and bas the following keys: 20% a) User name
(primary key) in the LAN. A REDO Jog file 843, as well as a suspend-to-disk

image file 844 and a VM config file 842 are then preferably
also stored as part oft he instant-deploy VM 846. The VM will
then be ready to be deployed (see the deployment section
below), and may also be added to the database 890.

In an alternative embodiment of the invention, the REDO
log file 843 and the suspend-to-disk image file 844 are created
by suspending the VM on die host server the first tin1e it is
deployed there. Tlus involves copying the config file, power­
ing on the VM and. when the operating system is booted.
suspending it. The subsequent deployment of the VM on the
host server can then use the REDO log and the suspend-to­
disk image file local to the host server. 171is process is useful
when there are differences in hardware between the host
server and the provisioning server such that a VM suspended
on one macl:une may not be successfolly resumed on another.

Instant-deploy VMs are especially attractive in situations
where VMs are very short-lived. Typical scenarios are found
in the testing and QA environment, where the VM is provi­
sioned to nm a set of tests and is then discarded. Another
example is a demo environment. where the VM is required
only to run a demo.

50

b) Authorization level (admi1:ustrator, can provision a VM,
can only access a deployed VM, etc.)

c) Usage statistics (number of times the user provisioned a
VM, amount of time the user accessed deployed VMs,
etc.)

171e user console consults the database 890 to present the
user with the choices ofVM configuration. operating system
and/or application when they are to specify their choices for

55 custom-built VMs.
Applications Library 850-FIG. 5
The applications library 850 is a repository of the software

a11d data needed to instaU an application 856 in a VM. Since
the applications arc installed by the provisioning engine 810

60 during deployment phase (see below), they arc installed unat­
tended. that is. without any human intervention. Application
vendors typically provide ways to install their applications
unattended. The common procedure for unattended installa­
tion involves running an executable installation file 851 that

65 takes input from a text file, caJJed an "answer file," that
specifies the parameters for installation for d1at application
(for example, the folder to install it in) and the installation

Netflix, Inc. - Ex. 1004, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
19

files/data 853 that need to be copied to the machine (here,
virtual machine) that the application is to be installed on.

The application library 850 preferably contains an addi­
lfonaJ software module (shown in FIG. 5 as an "application
install configuration software" module 854) that configures 5
the answer file starting from a template answer file 852
according to the preferences of each user. For example. appli­
cations typically have a user who is registered to use that
application, a product license key that needs to be specified
for installation of the application. etc. The module 854 thus 10

inputs user parameters from the provisioning engine 810,
constructs au answer file tai lored for tbat specific user, and
writes a copy of th.is custom answer file (shown as block 864
in FIG. 6) into the temporary usage area 860 for this provi­
sioning session. lt also writes the commands that need to be 15

executed to install this application into a portion of the tem­
porary usage area 860 shown in FIG. 6 as "application instal­
lation software" block 862.

Temporary Usage Area 860-FIG. 6
During the provisioning session, the provisioning server 20

preferably keeps i11fom1ation about the session in a temporary
data storage area 860. In particular, for each VM in the pro­
cess of being provisioned, a corresponding storage space 866
is preferably provided. The data in this component may be
discarded after the session is completed. 25

When the user enters his choices for hardware, operating
system. applications. e tc .. for the VM to be provisioned. this
is kepi in a data structure shown in FIG. 6 as a "user choices"
module 863. The preferred way o f representing the user input
is in the XML format, because it is in widespread use, is 30

welJ-standardized and very ex1eusible; moreover, good data
parsers are available for this fonnat.

When the provisioning engine 810 deploys a VM on a host,
such as host 1000, the VM is powered on and its guest OS is

35
booted. As noted above, before being powered on, the VM
will be in a state such that it may execute the configuration
software to give the new VM its own identity. The data forthis
software is specified in an answer fi le for the operating system
config11ration. This answer file is preferably written into a

40
floppy image. which the provisioning engine makes available
to the VM before it powers it on. Tue configuration software
in the VM then looks for tbe answer file inside this floppy
image. T b.is custom floppy image is shown in FIG. 6 as a "VM
con.fig floppy inrnge" 861 and is maintained in the temporary

45
usage area 860.

TI1e custom floppy image for the user is constnicted from
the template VM con.fig floppy image 834 (FIG. 3), which is
present along with the VM in the VM staging server 830. In
the preferred embodiment of the invention, the provisioning

50
server perfonns tJ1e following steps to construct t11e custom
floppy image:

l) Tue template floppy image 834 is copied over to the
temporary usage area 860 as the "VM con.fig floppy image"

20
priate fields in the answer file, or adds new fields in it, to
produce the custom-tailored answer file for the user.

4) The floppy image is unloaded from the file system. ln
Linux-based systems, for example, this is done by t1lllllotu1t­
ing the floppy image.

5) The VM config floppy image 861 in the temporary usage
area thus constructed is a custom-tailored floppy image for
the specific user for this provisioning session.

Jn an alternate embodiment of the invention, a communi­
cation mechanism between the host server and the latu1ch
software 833 residing in the VM is used to communicate the
user parameters, instead of the answer tile being created on a
floppy. The launch software uses this data to construct an
answer file or to configttre the operating system parameters in
the guest OS.

The temporary usage area 866 is also used to install addi­
tional applications in a custom-built VM. As explained above,
in the discussion of the applications library, application install
software is copied to the temporary usage area (shown as 862)
and the custom answer file for the application is also written
into the temporary usage area (864). The VM launch software
833 then establishes a collllection (a shared folder. for
example) with the temporary usage area on the host server
and executes the application install software 862. ·n1is sotl­
ware takes the answer file data 864 and installs the applica­
tions in the VM. In this embodiment of the invention, the
temporary usage area 860 will reside on the host server where
the VM is being deployed. The provisioning engine creates
the appropriate folders or directories to hold the temporary
usage at the beginning of a provisioning session.

Heuristics/Rules Engine 880
When the user has provided to the provisioning server his

choices of hardware, system software (such as the OS), and
applications, the provisioning server passes this i11fon11ation
to the heuristics/rules engine 880, which then matches the
information against the database 890 to select the appropriate
host and the VM hardware configuration. As its name implies.
the heuristics/rules engine implements heuristics, which may
be determined using normal design methods. but which may
vary from implementatiou to implemental"ion. A sample algo­
rithm, used in a prototype of the inventiou, that the heuristics
engine follows is as follows:

l) If Operating System 01 is selected, then at least M
amount of memory and D amount of disk space is required in
theVM.

2) For each application selected, add the application's
required memory aud disk space.

3) Increase the memory and disk space calculated by a
heuristically determined factor depending on the OS and
applications selected.

4) If the required memory or disk space is higher than the
user-specified amounts, recommend to the user the amount
determined.

5) Scan the list ofavailable host machines 1000, 1001. etc.,
file 861.

2) Tue provisioning server loads the floppy image on the
file system. There are several known ways to do this, depend­
ing on ibe operating system of tJ1e provisioning server. For
example. in servers whose OS is Linux, this can be done by
mounting the floppy image with file system type msdos and
using the loopback mechanism. Similar mechanisms exist for
Microsoft Windows OSs.

55 and determine the one with enough memory and disk space to
host the VM about to be created. This may be done, for
example, by querying the host via anAPI provided to manage
VMs.

3) The provisioning server runs the floppy image configu­
ration software 835 using the answer file residing inside the
floppy image. The config11ration software thus takes user
input (such as registered user name, product license key.
computer hos1nan1e, IP address, etc.) and modifies t11c appro-

6) Request the host (using the AP!) to reserve t11e amount of
60 memory and disk space required.

7) Return the configuration of the host and of the VM's
requested hardware to the provisioning server.

Task Manager 820
The job of the task manager is to monitor and manage the

65 entire provisioning session. When the user submits a request
to provision a new VM, the provisioning engine requests that
a new task be created, and the task manager 820 returns a task

Netflix, Inc. - Ex. 1004, Page 000017
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
21

lD that identifies the task. This task ID is preferably also
returned to the user. The user can then perform various opera­
tions via the user console 801. One such operation is to submit
a query concerning the status of the task. The task manager in
turn. using known methods, then queries the provisioning 5
engine, which determines the stage where the provisioning
process is at. and, if possible, the percent of completion of that
stage.

Anotheroperation is to abon a given task, in which case the
task manager directs the provisioning engine 810 to halt the 10

given task. ·n1e provisioning engine then aborts the process
running the task and reverts the state of the host machine by
removing any files that were copied to both the host and the
temporary usage area. lt also releases the memory and disk
space resources held 011 the host. 15

1f an unrecoverable error occurs during any of the provi­
sioning operations the provisioning process can request the
task manager to abort the given task. which w il l then clean up

22
1) Get a task ID from the task manager 820.
2) Call the heuristics engine to detcm1ine the host to deploy

on.
3) Create a temporary usage area 860 and store the user

iDpUt ill it.
4) Copy the VM's config file 842. REDO logs 843 for the

disks 841 and suspend-to-disk image file 844 to the host.
5) Modify the config file for the VM to access the disk

remotely on the server.
6) Call the AP] on the host to register the VM.
7) Call the API in tl1e host to resume the VM.
8) C lean up the temporary usage area and inform the user of

successful completion of the task.
Administrative ("Admin") Console 802
The admin console is used by administrators to manage

ru1d monitor the entire system. Typical tasks include:
I) Manage the various components of the provisioning

server. These tasks include adding/removing a staged VM to
the pool 830. adding/removing a n application in the applica­
tion library 850, adding/removing a host fonu the pool of host
severs 1000 1001, etc. The database 890 is also updated to
reflec t the change in the configuration of the components.

the intennediate state. which may also be done using known
methods. 'l11is provides a transaction semantic to the provi- 20
sioning operation----either the entire process completes suc­
cessfully or it fails, in which case the stare of the system is
essentially restored as if the provisioning process never
started.

2) Managing users that are allowed to access the provision­
ing server. This includes adding or removing users. assigning

25 o r changing authorization levels for the users. etc. Provisioning Engine 810
TI1e provisioning engine is the component that ties together

the various components described above. The provisioning
engine preferably takes each user request and runs the com:­
sponding provisioning operation as a separate process. An
algorithm used in a prototype of the invention for provision- 30
ing a fully configurable (custom-built) VM is as fo llows:

J) Get a new task ID from the task manager 820.
2) Cali the heuristics engine 880. to determine the VM's

hardware configuration and the host to deploy on.
3) lf the heuristics engine returns an error, call the task 35

manager to abort this task and inform the user about the error.
or invoke and implement some other rule base to suggest
action.

3) Monitoring the deployed VMs and hosts for unexpected
events such as rhe guest OS in the VM crashing, the host going
down, etc., and alerting the administrators by sending a mes­
sage on the console 802 or sending an email.

4) Monitoring the usage by the users in terms of how many
times they have provisioned a VM or the duration that they
have used a deployed VM. This can be used for billing pur­
poses.

Remote Provisionin g
In thedescriptionofthevarious embodiments of the inven-

tion above. it has been is assumed that the user inputs his
configuration requests via the user console 801, which is
considered as a part of the provisioning server as a whole.
This assLUnption is made simply by way of exan1ple. and is 4) Create a new temporary usage area 860 for this task on

the host server.
5) Store the user input in the user input (choices) file 863 in

the temporary usage area.
6) Create tl1e VM con.fig floppy image 861 from the tem­

plate Hoppy image 834 for the VM, as described above in the
"Temporary Usage Area" section.

40 not necessary to the invention. Rather, assuming sufficient
bandwidth and a high enough transfer speed, it would a lso be
possible for al l interaction between the user 900 and the
provisioning server 800 to take place via the network 700.

7) For each application selected by the user, create the
custom answer file 864 and the application installation soft­
ware 862 using the process described above in the "Applica-

Thus. the user could log into the provisioning server. which
45 would download the various dialog screens to the user in ru1y

conventional fonnat such as HTML. The user could then

tion Library" section.
50

8) Copy the VM's config file and the disk files to the host.
9) Call the A Pl in the host to register this new VM.
10) Call the A.Pl in the host to connect the VM config floppy

image to the VM.
J J) Call the A.Pl in the host to power on the VM. This 55

causes the configuration script in the VM to configure the
operating system parameters using the data in the config
floppy image; it also causes installation of the appl ications

enter his configuration request via his own browser. After the
requested VM has been provisioned. it could be downloaded
to a user-specified destination or file, whereupon the user
could install the downloaded VM onto a host and power it up
using known methods.

Computer-Generated Provisioning Requests
lt is also not strictly necessary for the user ro be human,

although this will be the most commonly anticipated appli­
cation of the invention. lnstead, as long as a protocol is agreed
upon (in terms of a well-defined programmatic interface or
A.PI) by the provisioning server and an external (possibly
remote) computer system, then the external computer could
itself input VM provisioning requests to the provisioning 12) If there is any error during step J I , call the task man­

ager to abort the task.
13) When the configuration step successfully completes,

call the A.Pl in the host to power the VM down.
14) Clean up the temporary usage area and inform the user

of t11e successful completion of the task.

60 server. This arrangement would be beneficial in the context of
testing, in which a very large nwnber VMs having different
hardware/OS/application combinations need to be provi­
sioned. The external computer could then be programmed to

For provisioning an instantly-deployable VM, the algo- 65
rithm followed in t11e prototype of the invention was as fol­
lows:

request all the needed combinations, nm the VMs. and log the
results. Using the invention, such testing of many configura­
tion combinations could therefore be made substantially
wholly automatic.

Netflix, Inc. - Ex. 1004, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
23

Provisioning a Network of Computers
TI1e invention described above is easily extensible 10 pro­

visioning more than one computer at a time, where the various
computers have applications that are configured to interact
wilb applications on other computers. In sucb implemema- 5
lions, the provisioning engine assigns new identities to the
computers and also configures the applications within them,
and as it does that it re-configures the applications such that
the interactions continue to work even when the computers
have a new identity.

An example of where this would be useful is where a
developer wants to test LliS web application, which uses a web
server on one computer. an application server on another. and

10

a database server on yet another. Tue web server may then be
con1ig1.tred to connect to the application server. which in turn 15

is configured to connect to the database server. Another
example is where a web application is tested against a large
number of clients simulating web accesses: The user provi­
sions one computer wi th the web server appl ication and sev­
eral computers with the testing application. 20

VM Provisioning and Hosting Service
The invention as described above is also easily amenable to

implementing a method for doing business by charging users
a fee for each VM provisioned aml/or deployed, based on the
number and type of components included in a deployed VM, 25

as a function of time of acn1al or available use, or auy com­
bination of these or other possible fee structures.

24
iupuning from a requester, information to determine an

appropriate staged VM and a desired computer configu­
ration to host the staged VM, wherein the inputting
includes validating the information for correctness and
consistency and suggesting changes if the staged VM
cannot be implemented in the desired computer configu­
ration;

detennining and selecting the appropriate staged VM from
the set of staged VMs, the staged VM being most closely
incorporating a config11ra1ion that is requested via the
information;

monitoring a status of a plurality of hosts platforms and
hettristically sel<-'Cting a compatible physical bost plat­
fonu from the plurality of the host platforms that is
compatible with the desired computer configuration and
best suited for hosting the staged VM; and

automatically deploying a deployed VM onto the compat­
ible physical host platfonu by copying the staged VM to
the compatible physical host platform, the deployed VM
thereby obtaining a new identity by obtaining at least
one new identifier different from the at least one model
virtual machine identifier that identified the staged VM,
wherein the automatically deploying includes installing
an additional application in the deployed VM if the
additional application is being requested via the infor­
mation and the additional application is not pre-iJ1Stalled
in the staged VM.

2. "l11e method as in claim 1, in which the inputted infor­
mation includes characteristics ofa desired operating system.

3. 171e method as in claim 1, in which the inputted infor­
mation includes characteristics of a desired hardware plat­
form.

4 . Tbe method as in claim 1. in which the requester is a
human user. the method further comprising the following
steps:

storing a plurality ofvirtualized hardware configurations, a
plltrality of operating systems. and a plurality of appli­
cations:

displaying for the user lists of the stored virtualized hard­
ware configurations, operating systems, and applica­
tions;

sensing selection by a requester of a desired one of the
virnialized hardware con:fig11rations, a desired one of
operating systems, and of any of the applications: and

automatically configuring a virtual machine with the
selected hardware configuration, operating system, and
applications.

5. The method as in claim 1. in which the requester is a
complller program.

FIG. 7 illustrates a method 900 of creating a virtualized
computer system. At step 910 a plurality of pre-configured
model virtual machines (VMs) having different configura- 30
tions and al least one model virtual machine identifier are
stored. At step 920 a set of staged VMs are created from the
model VMs with the at least one model virtual machine iden­
tifier removed. At step 930 a requester inputs information to
determine an appropriate staged VM and a desi red computer 35

con:figmation to host the staged VM. The input is validated for
correctness and consistency and changes are suggested if the
staged VM cannot be implemented in the desired computer
configttration. At step 940, the status of a plurality of hosts
platforms is monitored and the appropriate staged VM is 4o
determined and selected from the set of staged VMs. The
staged VM 010s1 closely incorporates a configuration that is
requested via the infonnation. At step 950 a compatible
physical host is determined and selected from a plurality of
host platfonus. At step 960 a VM is automatically deployed 45
onto the compatible physical host platfom1 by copying the
staged VM to the compatible physical host platfom1. The
automatically deploying includes installing an additional
application in the deployed VM if the additional application
being requested via the information and the additional appli- 50

cation not pre-installed in the staged VM.
6. 111e method as in claim 1, further including the step of

automatically migrating the deployed vim1al machine from
one host to another based on the monitored sta11.1s of the

55 plurality of hosts.

What is claimed is:
1. A method for creating a virtualized computer system

comprising:
storing a plurality of pre-configured model vimial

machines (VMs) having different hardware and soft­
ware configurations. wherein each of the model VMs
have at least one model v irn1al machine identifier;

creating a set of staged VMs from the model VMs by, for 60
each of the model VMs. include software to configure
operation system parameters to establ ish a connection to
a server comprising additional data needed to provision
staged VMs onto physical host platforms and strip au
identity. wherein stripping the identity comprises 65
removing the at least one model virtual machine identi­
fier:

7.111e method as in claim 1, further including the following
steps:

insta lling a virrnal machine-to-hardware interface on each
of a plurality of hardware hosts:

selecting at least one of the hardware hosts for hosting; and

deploying a virtual machine on each selected hardware
host, each of which thereby forms a separate physical
host platform;

whereby deployment of the virtual machine is substantially
independent of the overall physical hardware configura-
lion.

Netflix, Inc. - Ex. 1004, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,577,722 Bl
25

8. The method as in claim 1, in which the step of inputting
information identifying the desired computer configuration
comprises inputting an image of an existing physical com­
puter.

9. The method as in claim 1, further comprising:

deploying a vim1al machine on each ofa plurality of physi­
cal host platfonns:

installing in at least two of the deployed virtual machines
different, mutually interacting appl ications, the at least 10

two of the deployed virttial machines thereby forming a
network.

10. A system for creating a virrualizcd computer system
comprising a plurality of physical host platforms and a pro-
visioning server. which comprises: 15

a database storing a plurality of pre-configured model vir­
tual machines (VMs) having different hardware and
software co11figurations, wherein each of the model
VMs have at least one model virtual machine identifier;

a staging module creating a set of staged VMs from the
20

model VMs by, for each of the model VMs, include
software to configure operation system parameters to
establish a counection to a server comprising additional
data needed to provision staged VMs onto physical host

25
p latforms and strip an identity. wherein stripping the
identity comprises removing at least one model virtual
machine identifier; and

26
a prov1s1ouing engine receiving information from a

requester to detcnnine an appropriate staged VM and a
desired computer configuration to host the staged VM,
wherein the receiving includes validating the informa­
tion for correctness and consistency and suggesting
changes if tbe staged VM cannot be implemented in the
desired computer configuration. determining and select­
ing the appropriate staged VM from the set of staged
VMs. the staged VM being most closely incorporating a
configuration that is requested via the information,
monitoring a status ofa plurality ofhosts platfonns and
beuristically sefocting a compatible physical bost plat­
fonu from the plurality of host platfonns that is compat­
ible with the desired computer configuration and best
suited for hosting the staged VM, and automatically
deploying a deployed VM onto the compatible physical
host platform by copying the staged VM to the compat­
ible physical host platform. the deployed VM thereby
obtaining a new identity by obtaining at least one new
identifier different from the at least one model virtual
identifier that identified the staged VM. wherein the
automatically deploying includes selecting and install­
ing an additional application in the deployed VM if the
additional application is being requested via the infor­
mation and the additional application is not pre-installed
in the staged VM.

* * * * *

Netflix, Inc. - Ex. 1004, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 7,577,722 Bl Pagel of 1
APPLICATION NO.: 10/117143
DATED : Augusr 18, 2009
INVENTOR(S) : Kbandekar et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 V.S.C . 154(b)
by 1599 days.

Signed and Sealed this

Seventh Day of September, 2010

David J. Kappos
Director of the United Stales Patel// and 1i·ademark Office

Netflix, Inc. - Ex. 1004, Page 000021
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

