
c12) United States Patent
Le et al.

(54) SYSTEM AND METHOD FOR DISK IMAG[NG
ON DIVERSE COMPUTERS

(75) lnveutors: Bich C. Le, San Jose. CA (US); Oilip
Khandekar, San .Jose, CA (US);
Sirishkumar Raghuram, Maharashtra
(IN)

(73) Assignee: VMware, Inc .. Palo Alto, CA (US)

(*) Notice: Subject 10 any disclaimer, the term o f this
patent is extended or adjus ted under 35
U.S.C. 154(b) by 1435 days.

(21) Appl. No.: 10/611,815

(22) Filed: Jun. 30, 2003

Related U.S. Application Data

(60) Provisional application No. 60/462,445, filed on Apr.
I J, 2003.

(51) Int. CI.
G06F 91445 (2006.01)
G06F 9100 (2006.01)

(52) U.S.CI . .. 717/174; 713/J
(58) Field of Classification Search 717/ 134,

(56)

717/ 135, 168--178; 713/1. 2. 100
See application file for complete search ltistory.

References Cited

U.S. PATENT DOCUMENTS
5,604,906 A • 2/1997 Mtuphy et al 717/162
5,99 1.542 A * 11/1999 Han cl al. 717/ 167
6,075,938 A • 6/2000 Bugnion et al. 703/27
6,080,207 A • 6/2000 Kroening el al. 717/172

I 1111111111111111 11111 111111111111111 lllll 111111111111111111111111111111111
US008209680B I

(10) Patent No.: US 8,209,680 Bl
Jun. 26, 2012 (45) Date of Patent:

6,108,147 A *
6.108,697 A •
6.205,450 B l *
6,253,300 Bl +
6.477,624 Bl *
6.5 19,762 B l +
6.598,13 1 82*
6,658,435 B l *
6.721,846 82 ,.
6,804,774 Bl ,.
7,000,23 1 8 1 •

2003/0191911 A l *

8/2000 Jeon 360/ 15
8/2000 Raymond et al. 709/218
3/2001 Kanome 707/203
6/2001 Lawrence et al 71 1/173

I 1/2002 Kedem et al. 711/147
2/2003 Coll igan el al. 717/170
7/2003 Kedem et al. 711/ 147

12/2003 McCall 707/204
4/2004 Mund et al. 711 / 118

1012004 Larvoiie el al. 713/2
2/2006 Gold.............. 717/ 174

1012003 Kleinschnilz el al 711/154

OTHER PUBLICATJONS

Lee et al., "Petal: Distributed Virl11al Disks," 1996, AC M, p. 84-92 .•
''Norton Ghos1n1 User's Guide." 1998-2001 , Syman tec Corp. ,
<http://scIVi.icis.pcz.pl/files/Ghosl_guide.pcU>, p. 1-124.•
Sapuntzakis el al .. '"Oplimizing the M igration o fVirtual Compulers,"
2002. ACM, p. 377-390. •

"'cited by examiner

Primary Examiner - Wei Zhen
Assistant Examiner - Qing Chen

(57) ABSTRACT

A system is disclosed that uses a dua l loopback mounting
mechanism to capmre and deploy an image of a source disk
with no need for the source disk to be loaded with special
software or otherwise prepared. Tue image may be caprnred
even where the source clisk uses a proprietary file sys rem. The
invention also provides mechanisms to extract a system's
hardware configuration from a s tatic image of its d isk, and 10

catalog, warehouse, reconfigure, customize, and deploy disk
images on diverse computers. Still other mechanisms are
provided to perform efficient physical-to-virtual. virtual-to­
physical, and virtual-to-virtual system migration.

26 Claims, 9 Drawing Sheets

2000

2020 SERVER COMPUTER
,,-1000

SOURCE COMPUTER
~----~ v1020

MEMORY

MEMORY

~~~G ,, •• c§) .. 
NETWORK 
LOOPBACK 
ADAPTER 

2llQ. 
1Q2.1 i '------
SECONDARY i 
OS : 
filZ. i 

1010----.... 

PRIMARY 
FILES 
1Q.ll 

SOURCE DISK 
2010 

LOOPBACK 
DRIVER 
2211N 

SERVER DISK 

IMAGING SERVER 
2100 

SIMULATED SIMULATED 
SOURCE DEST. 

DISK DISK 
~ ZZ1Q 

SERVER OPERATING SYSTEM 

LOCAL 
LOOPBACK 
ADAPTER 
~ 

LOOPBACK 
DRIVER 
2211L 

., 

. 

PRIMARY 
OS FILES 
~ 

APPLICATION 
FILES 

W-1. 

IMAGE 
FILE 

~ 

Netflix, Inc. - Ex. 1005, Page 000001 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



U.S. Patent Jun.26,2012 Sheet 1 of 9 US 8,209,680 Bl 

FIG. 1 
(Prior art) 

500 

SYSTEM 
SOFTWARE 

VM 

502 

501 

GUEST SYSTEM SOFTWARE 

,,,...., 
520 

522 -

GUEST OS 

V DRVS I VDSK I 
524 

VIRTUAL SYSTEM HARDWARE 

fvci,uJ I VMEM I ~ VDEVICE(S) 
~ 512 ~ 540 

600 

VMM DEVICE EMU LA TORS 
640 

HOS 
DRIVERS "'· 

220 

100 

./ 222 

SYSTEM HARDWARE 

CPU(S) 
110 

---

IMEMl~iNicl 
LJ:g_J~~ 

DEVICE(S) 
400 

Netflix, Inc. - Ex. 1005, Page 000002 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



FI
G

. 
2 

(P
ri

o
r 

ar
t)

 

co
s 

22
0 

I 

8
0

0
 

K
E

R
N

E
L

 

iM
M

LI
7 

W
O

R
L

D
S

 
~
 

8
1

2
 

I 

V
M

 
50

0 

V
M

M
 

I 
60

0 

IN
T

E
R

R
U

P
T

/E
X

C
E

P
T

IO
N

 
H

A
N

D
L

E
R

 
85

5 

L
O

A
D

A
B

L
E

 
M

O
D

U
L

E
S

 &
 D

R
IV

E
R

S
 

8
1

0
 

1
0

0
 .

__
_ _

_
_

_
_

_
_

_
_

_
_

_
_
_

_
_

_
_

_
_

_
_

_
_

_
 __

_.
 

S
Y

S
T

E
M

 
H

A
R

D
W

A
R

E
 

C
P

U
(s

) 
IM

M
ii7

 M
E

M
O

R
Y

 

11
.Q

 
~
 

il
l 

~
!N

ie
l 

~
~
 

D
E

V
IC

E
(S

) 
l-•
--

•I 
40

0 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'- =
 

? N
 

~C
l'.

 

N
 

Q
 .... 1-
.l

 

0
0

 
::r

 
('

D
 a N
 

0 .... \
0

 

d V
J

 
0

0
 

'N
 

0 ~
 °' 00 0 =
 

1-
4 

Netflix, Inc. - Ex. 1005, Page 000003 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



F
ig

. 
3 

(P
ri

o
r 

A
rt

) 

10
00

 

~
O

U
R

C
E

 C
O

M
P

U
T

E
R

 

1
0

2
0

 

M
E

M
O

R
Y

 
13

00
 

IM
A

G
IN

G
 C

L
IE

N
T

 

D
E

C
O

D
E

R
 

1
3

1
0

 

S
E

C
O

N
D

A
R

Y
 

O
S

 
1

2
0

0
 

1
0

1
0

 

P
R

IM
A

R
Y

 
F

IL
E

S
 

10
12

 

S
O

U
R

C
E

 D
IS

K
 

2
0

0
0

 

S
E

R
V

E
R

 C
O

M
P

U
T

E
R

 

2
0

2
0

 

30
00

 
1 

1 
M

E
M

O
R

Y
 

1
1

1
 

c
::

2
1

0
0

 

~ 
i 

-
-
-
-
-
-
-
-
-

--
t-

r-
r-

--
--

--
--

--
-:

 I I I I I I I 

IM
A

G
IN

G
: 

S
E

R
V

E
R

 
: I ' .. 

IM
A

G
E

 F
IL

E
 

2
0

1
2

 

S
E

R
V

E
R

 
O

S
 F

IL
E

S
 

2
0

1
3

 

S
E

R
V

E
R

 D
IS

K
 S

E
R

V
E

R
 

O
S

 
2

2
0

0
 2
0

1
0

 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'
­ =
 

? N
 

~C
l'.

 

N
 

Q
 .... 1-
.l

 

0
0

 
::r

 
('

D
 a w
 

0 .... \
0

 

d V
J 

0
0

 
'N

 
0 ~
 °' 00 0 =
 

1-
4 

Netflix, Inc. - Ex. 1005, Page 000004 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



F
ig

. 4
 10

00
 

S
O

U
R

C
E

 C
O

M
P

U
T

E
R

 
1

0
2

0
 

M
E

M
O

R
Y

 
__

,, 

IM
A

G
IN

G
 

C
L

IE
N

T
 

,,
 -

-
I , 

cE
S 

10
21

 
I 1 

S
E

C
O

N
D

A
R

Y
: 

O
S

 
I I I 

1
0

2
2

 
I I I I I I I I I I I I I I 

1 0
 1

 0-
--

,_
 

I I I 

P
R

IM
A

R
Y

 
F

IL
E

S
 

1
0

1
2

 

2
0

 
S

O
U

R
C

E
 D

IS
K

 

20
00

 

;-
2

0
2

0
 

S
E

R
V

E
R

 C
O

M
P

U
T

E
R

 

M
E

M
O

R
Y

 

N
E

T
W

O
R

K
 

L
O

C
A

L
 

L
O

O
P

B
A

C
K

 
L

O
O

P
B

A
C

K
 

A
D

A
P

T
E

R
 

IM
A

G
IN

G
 S

E
R

V
E

R
 

A
D

A
P

T
E

R
 

. -
-

2
3

1
0

 
2

1
0

0
 

2
3

1
4

 
1--

, ' ' I 
I 

' 
' 

,
,
-

2
2

0
0

 
' I ' 

I 

I I 

F
IL

E
 

F
O

R
M

A
T

T
E

R
 

I I I 
,-

..
._

,,
 

S
Y

S
T

E
M

 
22

31
 

I 

2
2

1
2

 
I I 

D
R

IV
E

R
(S

) 
I I I I ' I 

L
O

O
P

B
A

C
K

 
S

IM
U

L
A

T
E

D
 

S
IM

U
L

A
T

E
D

 
L

O
O

P
B

A
C

K
 

D
R

IV
E

R
 

S
O

U
R

C
E

 
D

E
S

T
. 

D
R

IV
E

R
 

t 

---
---

--
I I 

2
2

1
1

N
 

D
IS

K
 

D
IS

K
 

2
2

1
1

L
 

I ' ' 
2

2
1

0
 

2
2

3
0

 
I I I ' ' I 

S
E

R
V

E
R

 O
P

E
R

A
 T
IN

G
 S

Y
S

T
E

M
 

' ' ' I ' 
S

E
R

V
E

R
 D

IS
K

 
+

 
---.

... 
P

R
IM

A
R

Y
 

A
P

P
L

IC
A

T
IO

N
 

IM
A

G
E

 
O

S
 F

IL
E

S
 

F
IL

E
S

 
F

IL
E

 
20

11
 

2
0

1
4

 
2

0
1

5
 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'­ =
 

? N
 

~C
l'.

 

N
 

Q
 .... 1-
.l

 

0
0

 
::r

 
('

D
 a ~ 0 .... \

0
 

d V
J 

0
0

 
'N

 
0 ~
 °' 00 0 =
 

1-
4 

Netflix, Inc. - Ex. 1005, Page 000005 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



F
ig

. 
5 15

00
 

D
E

S
T

IN
A

T
IO

N
 

C
O

M
P

U
T

E
R

 
15

20
 

ME
~~i;

itf :~-
~1 -ll

-~
 

, I 

r
20

20
 

M
E

M
O

R
Y

 

A
D

A
P

T
E

R
 

--
-

23
14

 
! S

E
C

O
N

D
A

R
Y

 
' : 

O
S

 
' 

22
00

 
- -

r--
---

,_
 

: 
15

22
 

/
' 

20
00

 
-

-
-

-

S
E

R
V

E
R

 C
O

M
P

U
T

E
R

 

I 
IM

A
G

IN
G

 S
E

R
V

E
R

 

I 
A

D
A

P
T

E
R

 
... 

21
01

 
23

10
 

• 
' 

' 
' 

' 
' 

' 
' 

I 
I 

' 
I 

I 

I 
I 

F
O

R
M

A
T

T
E

R
 

2
2

~
 

: 
F

IL
E

 
: 

: 
S

Y
S

T
E

M
: 

22
31

 

,,
-1

5
1

0
 

D
E

S
T

l N
A

T
IO

N
 

D
IS

K
 

15
10

 

20
 ' 

~
 

I ' 
L

O
O

P
B

A
C

K
 

D
R

IV
E

R
 

---
22

31
 

S
E

R
V

E
R

 D
IS

K
 

: 
D

R
IV

E
R

(S
) 

: 
I 

I 

' 
' 

S
IM

U
L

A
T

E
D

 
S

IM
U

L
A

T
E

D
 

L
O

O
P

B
A

C
K

 
D

E
S

T
. 

S
O

U
R

C
E

 
---

--·
 

D
R

IV
E

R
 

D
IS

K
 

D
IS

K
 

22
11

 
22

30
 

22
10

 

S
E

R
V

E
R

 O
P

E
R

A
T

IN
G

 S
Y

S
T

E
M

 

P
R

IM
A

R
Y

 
A

P
P

L
IC

A
T

IO
N

 
IM

A
G

E
 

O
S

 F
IL

E
S

 
F

IL
E

S
 

F
IL

E
(S

) 
20

11
 

20
14

 
20

15
 

I 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'­ =
 

? N
 

~C
l'.

 

N
 

Q
 .... 1-
.l

 

0
0

 
::r

 
('

D
 a U
l 

0 .... \
0

 

d V
J

 
0

0
 

'N
 

0 ~
 °' 00 0 =
 

)-
,4

 

Netflix, Inc. - Ex. 1005, Page 000006 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



F
ig

. 
6 

N
E

T
W

O
R

K
 

(
2

0
0

0
 

~
 

\_
_3

00
0 

S
E

R
V

E
R

 C
O

M
P

U
T

E
R

 

C
O

N
S

O
L

E
 U

S
E

R
 

IM
A

G
IN

G
 S

E
R

V
E

R
 

S
E

C
O

N
D

A
R

Y
 S

O
F

T
W

A
R

E
 

IN
T

E
R

F
A

C
E

 
P

X
E

 S
E

R
V

E
R

 
S

T
A

C
K

 

40
10

 
27

00
 

21
01

 
40

02
 

(O
S

+
IM

A
G

IN
G

 C
L

IE
N

T
) 

\ 
41

00
 

F
IL

E
 C

A
C

H
E

 
V

E
R

S
IO

N
 

R
E

G
IS

T
R

A
T

IO
N

 
N

E
T

W
O

R
K

 
V

IR
T

U
A

L
 D

IS
K

 

F
IL

E
 

D
A

T
A

B
A

S
E

 
D

A
T

A
B

A
S

E
 

L
O

O
P

B
A

C
K

 
L

O
O

P
B

A
C

K
 

C
O

N
T

A
IN

E
R

 
T

E
M

P
L

A
T

E
 

40
16

 
40

04
 

A
D

A
P

T
E

R
 

A
D

A
P

T
E

R
 

23
10

 
23

14
 

40
12

 
IM

A
G

E
S

 
40

20
 

! 
I 

C
U

S
T

O
M

IZ
A

T
IO

N
 

R
E

S
O

U
R

C
E

 
L

O
O

P
B

A
C

K
 S

W
IT

C
H

 

D
E

L
T

A
S

 
R

U
L

E
S

 
D

A
T

A
B

A
S

E
 

S
E

R
V

IC
E

 

40
14

 
D

A
T

A
B

A
S

E
 

40
05

 
42

00
 

40
17

 
I I I I I 

S
E

R
V

E
R

 O
P

E
R

A
 T

IN
G

 S
Y

S
T

E
M

 
~
 

I I I I 

22
00

 
N

A
T

IV
E

 F
IL

E
 

A
D

D
IT

IO
N

A
L

 F
IL

E
 

S
Y

S
T

E
M

 D
R

IV
E

R
S

 
S

Y
S

T
E

M
 D

R
IV

E
R

S
 

L
O

O
P

B
A

C
K

 D
IS

K
 

22
50

 
~ 

22
52

 
D

R
IV

E
R

 
22

11
 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'­ =
 

? N
 

~C
l'.

 

N
 

Q
 .... 1-
.l

 

0
0

 
::r

 
('

D
 a C

l'.
 

0 .... \
0

 

d V
J 

0
0

 
'N

 
0 ~
 °' 00 0 =
 

1-
4 

Netflix, Inc. - Ex. 1005, Page 000007 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



U.S. Patent Jun.26, 2012 Sheet 7 of 9 US 8,209,680 Bl 

Fig. 7 

1000 

PHYSICAL COMPUTER 

1020 

1010 

5200 

MEMORY 

IMAGING CLIENT 
1021 

SECONDARY 
OS 

1022 

SOURCE 
DISK 

PRIMARY 
SOFTWARE 

STACK 
5100 

. 
, ,," .---

PHYSICAL HARDWARE 

NIC(S) 
5204 

SECONDARY 
SOFTWARE STACK 

IMAGE/ 
CD-ROM 

Netflix, Inc. - Ex. 1005, Page 000008 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



F
ig

. 
8 

'-
-

N
E

T
W

O
R

K
 

~
3

0
0

0
 

V
IR

T
U

A
L

 M
A

C
H

IN
E

 
M

O
N

IT
O

R
 

63
00

 

V
IR

T
U

A
L

 M
A

C
H

IN
E

 
M

A
N

A
G

E
R

 
62

00
 

L
O

C
A

L
 V

M
 

D
A

T
A

B
A

S
E

 
62

10
 

IJ
 

1
--

--
--

--
--

--
--

--
-

1 
P

O
W

E
R

E
D

-O
N

 
I I I I I I 

• 
I 

"?
"I

 I I I I I I 

V
IR

T
U

A
L

 M
A

C
H

IN
E

 

V
IR

T
U

A
L

 
M

A
C

H
IN

E
 1

 
60

10
 

L
~

 
: 

A
C

T
IV

E
 

: 
IM

A
G

E
 1

 
V

M
 C

O
N

F
IG

 
F

IL
E

S
 1

 
60

11
 

I 
60

12
 

I 
._

_
_

~
~

--
--

' 
I 

I 
P

O
W

E
R

E
D

-O
F

F
 

l 

I I 

V
IR

T
U

A
L

 M
A

C
H

IN
E

 

,-
-
-
-
-
-
-
- 1 

: 
V

IR
T

U
A

L
 

1 

1 
M

A
C

H
IN

E
 2

: 
: 

60
20

 
: 

I 
_

_
_

_
_

_
_

 J
 

A
C

T
IV

E
 

IM
A

G
E

2
 

60
22

 

V
M

 C
O

N
F

IG
 

F
IL

E
S

 2
 

60
21

 

--
--

--
--

--
--

--
--

-
O

P
T

IO
N

A
L

 H
O

S
T

 O
P

E
R

A
T

IN
G

 S
Y

S
T

E
M

 
64

00
 

V
IR

T
U

A
L

 M
A

C
H

IN
E

 H
O

S
T

 
-
-
-

~
 60

0
0

 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'­ =
 

? N
 

~C
l'. 

N
 

Q
 .... 1

-.
l 

0
0

 
::r

 
('

D
 a 0
0

 
0 .... \
0

 

d V
J 

0
0

 
'N

 
0 ~
 °' 00 0 =
 

)-
,4

 

Netflix, Inc. - Ex. 1005, Page 000009 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



F
ig

. 9
 

P
H

Y
S

IC
A

L
 C

O
M

P
U

T
E

R
/ 

70
 

V
M

 M
E

M
O

R
Y

 

--
D

E
P

LO
Y

E
D

 S
O

F
T

W
A

R
E

 S
T

A
C

K
 

71
 

A
P

P
L

IC
A

T
IO

N
 

71
 

_
i
-
-

C
O

M
P

U
T

E
R

 
S

O
F

T
W

A
R

E
 

!'l-
C

O
N

T
R

O
L

 A
G

E
N

T
 

73
00

 
D

E
P

L
O

Y
E

D
 

P
R

IM
A

R
Y

 
U

S
E

R
 A

P
P

L
IC

A
T

IO
N

S
 

D
IS

K
 

71
14

 
--

I 

'-
--

-
1

11
0 

---
O

P
E

R
A

T
IN

G
 S

Y
S

T
E

M
 

72
 

O
P

E
R

A
 T

IN
G

 S
Y

S
T

E
M

 
C

O
N

F
IG

U
R

A
T

IO
N

 
I I 

72
10

 
I I I I I ! I I I I I I 

B
A

C
K

D
O

O
R

 C
H

A
N

N
E

L
 

I 

1 
N

E
T

W
O

R
K

 C
O

M
M

U
N

IC
A

T
IO

N
 

I 
-
-
<

 
I 

T
O

V
M

M
 

---
---

~ 
C

H
A

N
N

E
L(

S
) 

74
01

 
74

00
 

~
 

0
0

 
. ~
 

~
 
~
 

~
 =
 

~
 

"'­ =
 

? N
 

~C
l'.

 

N
 

Q
 .... 1-
.l

 

0
0

 
::r

 
('

D
 a \0
 

0 .... \
0

 

d V
J 

0
0

 
'N

 
0 ~
 °' 00 0 =
 

1-
-4

 

Netflix, Inc. - Ex. 1005, Page 000010 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
1 

SYSTEM AND METHOD FOR DISK l!VIAGING 
0 ' DTVERSE COMPUTERS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority ofU.S. Provisional Patent 
Application No. 60/462,445, filed 11 Apr. 2003. 

BACKGROUND OF THE lNVENTION 

J. Field of the lnveution 
111is invention relates to the creation, ma11ipulation and 

deploymelll of computer disk images. 
2. Description of the Related Art 

Disks and File Systems 
A computer disk can be viewed as a linear list of data 

blocks called sectors. Most disks are used to store files and 
folders. A file's content is stored in one or more sectors. called 
data sectors. ·n1e mappiug between a file and its data sectors 
is stored in special sectors called metadata. Metadata also 
stores file attributes (such as file name and access rights) and 
describe the stnrctural relationship between files and folders. 
A disk's data and metadata sectors form a file system. 

Metadata also keeps track of the location of free sectors. A 
free sector is neither used as data nor metadata. lts coutent is 
undefined unti l the sector becomes al located as data or meta­
data for a new file or folder. 

The specification of the layout and interpretation of meta­
data fora particular type offile system is called the file system 
format. There exist many file system fonuats; each has a 
dist inct sct of characteristics and limitations. 

111e process of creating a file system on aD uninitialized or 
damaged disk is called formalling. This process creates meta­
data defining an empty file system. Once a disk is formatted, 
its file system can be populated with files and folders. lo 
general. software applications create and access files through 
an operating system. The operating system forwards file 
requests to a file system driver. which is a software module 
capable of marlipulaiing a file system's metadata. A file sys­
tem d river is designed for a specific file system format and can 
generally nm only ona specific operating system. Support for 
a given file system format on different operating systems 
generally requires multiple drivers. one for each operating 
system. 

Some file system fonnats such as EXT2 are public, i.e., 
widely published alld avai !able for free. Anyone ski lied in the 

2 
source disk), and a second computer containing lhe generated 
image file. ln this setup, the disk imaging system generally 
comprises two software programs: an imaging client. n11uling 
on the first computer, and an imaging server on the second 

5 computer. During capture, disk data is transferred from the 
clien! to the server over a network or a cable. 

10 

111e reverse of the capture process is called deployment. 
During a deployment, a third computer's disk (the destination 
disk) is overwritten with data from an image file residing on 
the second computer. The data is transferred from the imaging 
server to an imaging client running on the thi1·d computer. The 
first and third computers can be the same. 

A co=on use for disk imaging is backup and restore: A 

15 first computer is backed up by capt tiring an image of its disk, 
then the image is stored on a second computer. If the ilrst 
computer's disk becomes damaged for any reason, it can be 
restored to its original state by deploying the image from the 
second computer back to the first computer. Disk imaging can 

20 also be used to cloue a computer; an image of a first computer 
can thus be deployed to other computers. 
Disk Image Formats 

The internal format of an image file, that is, lhe way in 
which the file represents the state of a d isk, is arbitrary and 

25 generally known only to the disk imaging system's vendor. 
Despite th.is, disk image formats cao generally be classified 
iuto two types: sector-based and file-based. 
Sector-Based l mage Fonuats 

A sector-based image format describes the state of a disk at 
30 the sector (or "block") level. The simplest of such formats, 

called a "flat" image, represents all sectors of the disk as a 
linear list of bytes io the image file. For example, a flat file of 
512,000 bytes can represent a disk with I 000 sectors of 5 I 2 

35 
bytes. 

An advantage of a sector-based irnage file is that it repre­
sents an exact copy of the source disk, regardless of the file 
system format used on the disk. When it is deployed to a 
destination disk. the desti11ation clisk will contain an exact 

4o copy of the original file system. A sector-based imaging sys­
tem therefore guarantees faithful data recoverability and 
reproducibility without the need to decode any file system; io 
other words, it does not require a file system driver. 

A first disadvantage of the sector-based approach is. when 
45 an image is deployed, the destination disk must be at least as 

large as the original disk since the file system metadata on the 
original disk may encode the disk's capacity and assume that 
it never changes. This metadata is captured into the image file 
and copied to the destination disk. lf the destioation disk is 

art can examine a public file system format , and develop a 
driver or software tool to decode and manipulate any file 
system of that format. A file system format can also be pro­
prietary, i.e .. is owned by a single vendor and not publicly 
shared. ln order to access files residing on a proprietary file 
system. software generally has to use the services of a driver 
developed by the format's ow!ler. Some proprietary file sys­
tem drivers exist only on specific operating systems: there­
fore. a software application may need to nm on a specific 
operating system in order to access a proprietary file system. 
For example. the NTFS file system format is proprietary. and 
commercial NTFS drivers exist only on certain operating 
systems developed by Microsoft Corp., lhe owner of the 60 

format . 

50 smaller than the source disk, some sectors that the metadata 
assume exist may not exist on the destination disk, resulting in 
an inconsistent file system. Ftrrthcrmore, if the destination 
disk is larger than tl1e source disk, the deployed file system 
may not be able to take advantage of the additional space, 

55 since its meladata would assume that the disk bas a smaller 
capacity. 

Another disadvantage of a sector-based format is its inef­
ficiency. A disk may have a large number of free sectors, that 
is, sectors that arc not used as data or metadata, and thus have 
110 usefol content. These sectors may be scattered all over the 
disk. and may be difficult to identify because they generally 
cont.a in au undefined set of bytes. A free sector's coutent is 
undefined because the sector may have been used earlier as 
data or metadata, then released after a file or folder was 
deleted. Most file system drivers don't erase (i.e .. fill with 
zeros) freed sectors. A sector-based image format is therefore 
inefficient because it may include a disk's unused sectors. 

Disklmaging 
A disk image is a file that resides on a first computer and 

represents a snapshot of a second computer's disk. Image 
capn1re is the process of creating an image file from a com- 65 
puter's disk. A conunon disk imaging setup is to use two 
computers: a first computer with the disk being captured (the 

Netflix, Inc. - Ex. 1005, Page 000011 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
3 

Sparse Files 
A combination of two teclmologies- sparse files and disk 

scrubbing-can solve the inefficiency problem. A sparse 
image file, similarly to a flat image file, is a sector-level 
representation of a complete disk. When a sparse image is first 
created, it represents a disk of a fixed capacity and filled with 
zeros. i.e .. all sectors contain bytes witl1 value zero (or any 
other predetermined null vah1e). All sectors are said to be 
initially unallocated. A sparse file does not store the act11al 
contents of unaJ located sectors, since their content is known; 
it needs to store only information about which sectors are 
turnllocated. For example, a sparse file may use a bit vector to 
keep track of which sectors are UJ1alJocated, with the bit 
values O and J representing the unallocated and allocated 
states, respectively. A newly created image file could thus 
represent an empty disk of 512 sectors by using 512 bits, or 
512/8=64 bytes. 

4 
In stmm1ary, sector-based disk image formats are subject to 

two main limitations: the capacity matching problem, where 
the destination disk of deploy operation must be as large or 
larger than the source disk used to create the image, and the 

5 efficiency problem, where the image file may contain useless 
sectors, which unnecessarily increases its size and the time it 
takes to capture or deploy. 
File-Based Image Formats 

Unlike sector-based disk image fonuats, file-based formats 
10 store only file and folder information, not sectors. During a 

captme operation, tlle imaging system uses a file system 
driver to decode a somce disk's file system. This allows the 
imaging system to enumerate all existing files and folders, 

15 and then read their attributes and contents . All of this infer-
mation is copied and stored into a single image file using an 
internal layout that is ei ther publicly known, such as the ZIP 
or TAR format, or proprietary and thus only known to a 
particular imagiug system vendor. 

To deploy a file-based image to an uninitialized or dam-
aged destination disk, a file system driver is first used to 
format the disk in order to create an empty file system on it. 
The imaging system then reads the file and folder information 
from the image and uses the file system driver to re-create 

When a sector at a particular of:fset is writ1en with non-zero 
contents for the first time, the image file marks the sector 20 
offset as allocated in the bit vector and creates one sector's 
worth of data in the file to hold the sector's new contents. This 
causes the image file to grow by at least one sector; it may 
need to grow by slightly more than one sector because addi­
tional information may be needed in order to keep track of the 
sector's location within the file. The actual size of a sparse 
image file may thus be smaller tban the capacity of the disk 
that it represents if a large proportion of tlle disk's sectors 
remain unallocated. 

25 tllose files and folders in the destination file system. 
The file-based approach does not have tJ1e weaknesses 

affect ing the sector-based approach. First, the source and 
destination disks can have different capacities, as long as the 
destiuation disk has enough capacity to hold all the file and 

When a source disk is captured into an image file, using a 
sparse format can greatly reduce the size of tl1e file if free 
sectors in source disk were filled with zeroes. since the imag­
ing system would only need to mark those sectors as unallo­
cated i11 tbe file instead of copyi11g their actual co11tents. As 
explained earlier, free sectors cannot be assumed to contain 
zeroes, since a free sector may previously have been allocated 
as a data or metadata sector, and subsequently freed but not 
explicitly erased with zeroes. 

A common solution to tl1is problem is to n111 a software tool 
generally known as scrubber on the source disk prior to the 
capture operation. The typical scrubbing tool is an application 
that mus on the operating system of the source computer. Its 
purpose is to erase free sectors with zeroes. The operating 
system does not usually allow applications to write directly to 
sectors, and even if it did. the application wouldn't know 
which sectors are free; only tlle file system driver has that 
knowledge. 

1l1e scrubber achieves its goal by creating a temporary file 
and then growing it by filling it witll zeroes until the file 
system runs out of free disk space. The tool then deletes tlle 
file. This algorithm causes the file system driver to convert 
sectors that were free prior to the scrub operation to data 
sectors filled with zeroes. When the temporary file is deleted, 
tlle zeroed data sectors become free sectors, but their contents 
do not change. 

Subsequently. during the image capture operation. the disk 
imaging system discards sectors filled witll zeroes and does 
not store them in the sparse image file. Only the useful data is 
copied, thus keeping the image file's size to a minimum. 

ln practice, however, few in1aging systems employ tlle 
combination of scrubbing and sparse files. because it is gen­
erally unreasonable to require a userto run the scnibbing tool 
on the source computer. First, the tool must generally be run 
manually, making the overall disk imaging process difficult to 
automate from start to finish. Second, by using up all free disk 
space, the tool may negatively interfere with otl1er applica­
tions running on tlle operating system. 

30 folder content encoded in the image file. For example. if the 
source disk bas a capacity of IO Gigabytes, but only 4 
Gigabytes worth of files and folders are stored on it. the image 
could be deployed to a 5 Gigabyte destination disk. Second, 

35 
file-based images are efficielll since, by definition, they store 
only useful infomiation. 

171e biggest issue with the file-based approach is its reli­
ance on a file system driver, botl1 during captme and deploy­
meut operatiottS. A challenge in designing a file-based imag-

4o ing system is deciding which file system driver to use and bow 
to integrate it into the imaging process. Furthermore, many 
file system formats exist, so Lhat an imaging system may need 
to i1lteroperate witll more than one file system driver. 

One nantral choice is to use the file system driver included 
45 with the source computer's operating system. A computer's 

disk generally coma ins an operating system. Without an oper­
ating system. the computer could not fonction correctly. An 
operating system is a collection of programs and software 
modules tllat exist as files in a file system on the disk. One of 

50 those modules is a file system driver capable of decoding the 
disk's file system. When an operating system starts-a pro­
cess cal led booting- the operating system generally loads the 
file system driver into memory before most other drivers and 
modules. The file system driver is critical because it allows 

55 the operating system to load other modules from tbe file 
system, and to expose files to software applications. which are 
generally loaded last. 

Since the file system driver itself is a file on the file system, 
one may wonder how it could be extracted from the file 

60 system in the ftrst place, when no driver is loaded. Every type 
of operatiug system has a different way of addressing this 
issue. One possible solution is to store the sector offset cor­
responding to the beginning of tlle contents of driver file in a 
special sector not used by the file system. such as a master 

65 boot record (MBR). When the operating system first loads, it 
could use the services of the computer's BIOS (basic input/ 
output system) to read the sector offset from the special 

Netflix, Inc. - Ex. 1005, Page 000012 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
5 

sector, then load the driver file's contents into memory, and 
then execute the driver's code in order to decode the entire file 
system. 

In order to take advantage of the operating system's file 
system driver to perfom1 a capture operation, tbe imagiug 5 

client can be implemenred as an applicarion numing on the 
source computer. When rhe source computer is powered on 
and its operating system has finished loading, the imaging 
system i11itiates the image capture operation by starting tbe 

10 imaging cljent. The cUeuL first connects to !he imaging server 
over the network, and then uses the operating system's file 
API (application program.ming interface) to enltlllerate and 
read all existing files and folders, streaming !heir content over 

6 
If the secondary operating system includes a driver capable 

of decoding the source disk's file system. the imaging client 
can use the operating system's file AP] to read the disk's files. 
Otherwise. the client itself must include its own driver or 
software module in order to access the fife system. 

In a deployment operation, ilic destination computer is shut 
down. and then rebooted from the secondary operating sys­
tem, which includes the imaging client. The client then uses 
the secondary operating system's file system driver, or its own 
driver. to format the destination disk, thereby creating an 
empty file system. The client then reads the image file from 
the inlaging server, and re-creates the appropriate fi les and 
folders on the destination file system. 

When the deployment operation finishes. the secondary 
to !he imaging server. 
The Jssue of Open Files 

15 operating system shuts down the destination computer and 
reboots it from its disk. This time, the computer loads the 
operating system that was restored from the image. An issue that arises when nmning the imaging client on the 

operating system is tbat some files, sucb as operating system 
files, may be locked, i.e., inaccessible to applicarions. includ­
ing the imaging client. Orher files may be accessible but open 20 
by other applications, meaning their contents may be cached 
in memory and may change wru.le the imaging client copies 
the files. TI1c imaging system thus faces the risk of capruring 
an incomplete or cormpt set of files. 

It is thus difficult to image. or backup, a disk's files while 25 

active programs are accessing a subset of those files. One 
existing solution to the open files problem is to make au 
application provide an API to tile imaging or back11p system. 
The imaging system would use the special API to copy files 
opened by tl1e appl ication, instead of using the operating 30 
system' s s tandard file access API. The special APJ would be 
responsible for exposing the correct and up-to-dale contents 
of open files to the imaging system. This solution has been 
commonly implemented for database applications. The main 
drawback of the solution is that it is not general: files opened 35 

by applications that do not expose a special bacJ...'l.lp AP] 
cannot be reliably copied. 
Deploying to a New or Damaged Disk 

TI1e fi le-based imaging approach faces another issue. In a 
deployment operation, thedesti.nation computer's disk's con- 40 
tent may be uninitialized o r damaged. An existing operating 
system may thus not exist on the destination computer, wrucll 
means the imaging client cannot mn on it. Even if the desti­
nation computer bad a fonctional operating system, the disk 
imaging software user may want to overwrite it with tl1c 45 
operating system and files from the image; however, the exist­
ing operating system would not allow any application to 
overwrite existing operat ing system files. 
Offiine Disk Imaging 

Oflline disk imaging is a solution to the open files and the 50 

deployment issues described earlier. The idea is to mn a 
secondary operating system on the source computer or dcsti-
nat ion computer during imaging operations. Before a capt11re 
operation. ilie imaging system shuts down the source com­
puter, causing all software from its disk. including applica- 55 
tions and the primary operating system, to unload from 
memory. The imaging system then reboots the source com­
puter from the secondary operating system, whlch can be 
loaded from a floppy disk, a CD-ROM, or from the network 
using a protocol such as PXE (Preboot Execution Environ- 60 
ment). 

-n1e secondary operating system is self-sufficient, i.e., it 
does not need to read any files from the disk attached to the 
computer. and operates using only the computer's memory 
and processor. The secondary operating system includes and 65 
loads the imaging client. which can tl1en access the disk safely 
because no other programs arc accessing it. 

Choice of Secondary Operating System 
The secondary operating system chosen by an imaging 

system vendor has to meet strict size requirements, since it 
cannot rely on the computer's disk for storage- it must be 
capable of fonctiorung using only the computer's memory. It 
must also be small enough to fit 011 the boot medium, i.e., a 
floppy disk, a CD. or a memory image downloaded from the 
network. 

Another requirement the secondary operating system must 
generally meet is low licensing cost. since it is an additional 
software component that contributes to the overall cost of the 
product. Consequently, disk imaging system vendors tend to 
choose a low-cost or free (in terms of software licensing cost) 
operating system for the task. Typical choices include DOS 
(disk operating system) and Linux. 

Por these reasons, the chosen secondary operating system 
is usually not a general-purpose operating system, and is 
likely to be different from the operating system residing on 
the source computer's disk. 
The Issue of Proprietary File System Fom1ats 

Offiine disk imaging requires the secondary operating sys­
tem o r imaging client to supply a file system driver compat­
ible with the source disk's file system format. 

Proprietary file system fomtats pose a challenge to imaging 
system designers, since drivers compatible with a particular 
proprietary format may exist only on a limited set ofoperating 
systems and tend to be supplied by few vendors. generally 
one. lfthe source computer's disk is formatted witl1 a propri­
etary file system, the secondary operating system may not 
have a compatible driver. making the capture operation 
impossible. 

A rusk imaging system vendor bas three choices for solving 
thls problem. The first choice is to license a special-purpose 
operating system from the owner of the file system format, 
asstu11ing tl1at such an operating system exists and it meets 
o ther requirements, s11eh as footprint. 111e drawback of iliis 
approach is tl1e imaging system vendor may have to pay a 
higher license cost for tl1is operating system compared to 
other choices for operating system. 

The second choice is to license the specification to the 
proprietary format from the owner, and then develop a custom 
driver for the chosen secondary operating system. or a driver 
to be embedded in the inrnging client itself. Thls approach is 
also costly. since it includes both the cost of the license, and 
the coSt of developing new software. The file system fomiat 
owner may also choose not to allow any company to license 
tile format, wruch would make thls approach inlpossible. 

The third choice is to attempt to reverse-engineer the pro­
prietary .format, or to use a free file system driver that is based 
on reverse engineering. Por instance, the NTFS format is 

Netflix, Inc. - Ex. 1005, Page 000013 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
7 

proprietary and NTFS drivers are colllJllercially available 
only on operating systems made by Microsoft. An NTFS 
driver exists on Linux, a free operating system, and was 
developed by using both publicly available information and 
information collected from reverse engineering. Unfortu­
nately, reverse engiueeriug is inhereutly risk-y and uureliable, 
which explains why the Linux NTFS driver is still at au 
experimenta l stage and knowu to be unstable for certain file 
operations, such as writes. 
Contemporary Disk Imaging Systems 

Products such as Symantec Ghost and Powerquest Drive­
Jmage represent the curre.nt state of tl1e art in disk imaging 
systems. ·n1ey employ a file-based image format. allowing 
them not only to copy only the useful contents of disks but 
also to capture from and deploy to disks of different sizes. In 
order to work around the problem of open files, these systems 
use the ollline imaging method. The secondary operating 
system used tends to be based on DOS or Linux, since those 
operating systems tend to be lightweight. low cost, and easily 
customizable for disk imaging tasks. The imaging c lient used 
is generally a custom-developed program designed to run on 
the chosen secondary operating system. For instance. Syman­
tec Ghost uses DOS as the secondary operating system, and 
its imaging client. called GI-JOST.EXE, is a DOS program. 

Modern disk imaging systems generally support multiple 
file system formats. For example. Symantec Ghost supports 
EXT2, FAT. FAf32. and NTFS. the !alter two of which are 
proprietary. In order to access proprietary file systems, exist­
ing disk imaging systems include their own file system driver, 
or bu ild the functionality into the imaging client itself. For 
instance, the GHOST.EXE client contains code to decode the 
four different types of file system fon11ats supported by the 
product, including the proprietary ones. 

Whether or not the code 10 access proprietary file systems 
was developed based on reverse engineering, or from infor­
mation licensed from other companies, is information not 
publicly known. One fact is certain: supporting proprietary 
file system fonllats increases the cost of the developing disk 
imaging products and thus the cost of the product to end 
customers. 
Disk Image Ediring 

Contemporary disk imaging software sometimes includes 
a tool to browse the file and folders contained within an image 
file. Symantec's Ghost Explorer application. for example, 
allows a user to view files in an image through a graphical user 
interface: the user can also extract a file from the image and 
copy it onto the computer's native file system, or take an 
existing file from the file system and insert it into the image. 

The file-based image format used by the majority of con­
temporary imaging systems does not lend itself well to inter­
nal modifications after an image has been created. The reason 
for this is that most image formats used today favor compact­
ness over flexibility by tightly packing file and folderco111ents 
from the source disk into the image file. Sections of the image 
file may also be compressed to reduce the file's size even 
further. Modifying the contents of a file-based image may 
involve deleting files and adding new ones, potentially creat­
ing boles in the file. This phenomenon is called "fragmenta­
tion." 

Fragmentation increases file size and potentially reduces 
image deployment performance. since the imaging system 
may need to read multiple, non-contiguous areas of the image 
file in order to extract the correct sequence of files to expand 
onto the destination disk. To address this issue, a disk imaging 
product. such as Symantec Ghost. may provide a program to 
create a new image file from a modified and therefore frag­
mented image. Symantec Ghost calls this process "image 

8 
recompilation." Once au image is recompiled from a modified 
one, the modified one can be discarded. 

lo sunuuary, existing fi le-based disk image formats arc not 
well suited for content editing. Contemporary imaging soft-

s ware products provide tools for casual editing of a small 
number of files. More substanrial modifications may reduce 
an image's efficiency or perfom1ance. a problem sometimes 
alleviated by recompiling the image. 
Disk Image Identification and Tagging 

10 When a disk image is created. a user is required to give it a 
file name. This name usually identifies the contents of the 
source disk from which the image was captured. For example, 
it may contain words indicating the type of operating system, 

15 the computer name, etc. Multiple disk images are sometimes 
archived together on a disk or other storage medium, so that 
they can be used later for deployment to new or existing 
computers. When the numberofimages grows. managing this 
image library can become challenging. In particular, before a 

20 deployment operation, a user may want to search the image 
library for a disk image that satisfies specific requirements, 
such as an operating system type. an operating system ver­
sion, and possibly a number of software applica tions. 

If a disk imaging system included a program for assisting a 
25 user to search an image library, this program would have a 

difficult time performing an accurate search based solely on 
file names. The first reason is that file names are usually 
created by humans, and may be ambiguous or not accurately 
reflect the contents of an image. For example, au imaging 

30 containing a Windows 2000 operating system may be named 
"Bob's Windows 2000", or "Alice's Win2K computer." 

Second. file names arc inherently restric ted in length and 
cannot convey much information beyond basic computer 
identification. A disk imaging system could easily augment 

35 images with a set of standard attributes, such as computer 
name, network address, and opera ting system type. However, 
these attributes would still need to be manually entered by a 
user. and are thus subject to human error. 

Most importantly, there is an abundance of intricate infor-
40 mation co111ained in a disk image that is not commonly 

exposed by contemporary disk imaging systems. Since a disk 
image's ultimate purpose is to be deployed to a computer, it is 
important for a disk imagfog system administrator to reliably 
query the software configuration encapsulated in an image. in 

45 order to determine whether an image is the appropriate one 
for a specific deployment operation. 

For instance, operating systems and software applications 
consist of a multitude of files, many of which need to be 
frequently updated in order to fix bugs and security issues. 

so Before deploying an image to a computer, a disk imaging 
system's administrator may want to know whether the soft­
ware inside the image is up-to-date. 

l71e software configuration of an image may also contain 
settings that reflect a particular hardware configuration. 

55 When an operating system is installed on a source computer, 
the operating system creates a configuration comprising data 
files and driver files, which is compatible only with the source 
computer's specific hardware configuration. If an image cap­
tured from the source computer is deployed onto a computer 

60 with a different hardware configuration. the operating system 
may fail to boot on the destination computer. 

A disk imaging system's administrator thus bas to keep 
track of which hardware configurations are compatible with 
which images. Today, this burden is largely the administra-

65 tor's responsibility. When capturing a disk image, the admin­
istrator has to manually examine the source computer's hard­
ware configuration, and tag the image with this information, 

Netflix, Inc. - Ex. 1005, Page 000014 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
9 

either by giving it a specific name. attaching anributes to it, or 
by placing it in a folder with the appropriate name. 
Image Deployment Issues 

The hardware configuration issue described earlier under­
lines a well-known limitation of existing operating systems 
that affects disk imaging systems. When an operatiJJg system 

10 
computers. For instance, if a user wants to create an inlage of 
a computer numing Windows 2000 and a custom application, 
and 10 be able to deploy this inlage on both uniprocessor and 
multiprocessor computers, he would have to manually instal l 

5 the software on two different source computers. one unipro­
cessor and the other multiprocessor. The user would then have 
to create two separate images. one for each computer type. At 
deployment time, the user must select the image that is com-

is installed on a computer's disk, it generally becomes depen­
dent on that computer's hardware config1.1ration. If the disk is 
moved to a second computer, or an image captured from that 
disk is deployed to a second computer. the operating system 10 

may fail to boot or fonction correctly on the second computer. 

patible with the destinai ion computer. 
Another solution is 10 use additional software specifically 

designed to help the operating system cope with diverse hard­
ware configurations. Microsoft Sysprep is au example of such 
a software 1001. A user mus Sysprep on a Windows 2000 
computer before capturing an image of that computer. 

TIJe root cause of this problem is a set of opcratiog system 
files that are hardware-dependent and specifically configured 
for a particular type of hardware configuration. For example, 
in the Microsoft Windows 2000 operating system, the follow­
ing files arc hardware-dependent: 

I) TI1e operating system kernel. which forms the operating 
system's core program. There exist two versions of this file: 
one designed for u niprocessor (single processor) computers, 
and one for multiprocessor computers. 

2) The hardware abstraction layer (HAL) driver. There 
exist multiple versions ofrhis file. each one corresponding to 
a particular type of computer circuit board, sometimes called 
"chipset." For instance, there is a HAL for computers with a 
chipset supporting the Advanced Control and Power manage­
ment IJ1terface (ACPI), a nd one for computers without ACPI 
support. 

3) The disk controller driver. The disk controller allows the 
operating system to access the disk and therefore files on the 
disk Jn order to comnnmicate with the disk controller, the 
operating system requires a driver that is compatible w ith the 
computer's disk controller. 

4) Not only do the correct kernel and drivers need to be 
present, but they also have to be properly registered in one or 
more system configuration files. Windows 2000uses a central 
configuration file called the "registry." The registry contains 
thousands of entries containing software and system configu­
ration infonnation. Some of those entries specify the list of 
hardware devices that were detected when the operating sys­
tem was first installed, including the disk controller. Another 
registry entry specifies tbe correct driver for the disk control­
ler. 

A computer's processor, chipset and disk controller are 
essential to au operating system's booting process: they are 
therefore sometimes called "critical devices." When an oper­
ating system is installed on a computer, the installation pro­
cess also installs a permutation of files and registry entries 
that is compatible w ith the computer's critical devices. When 
a Windows 2000 disk is moved or imaged to a different 
computer. the operating system may fail to boot if the previ­
ously installed permutation is not compatible with the desti­
nation computer's critical devices. 
Existing Solutions to tbe Hardware Compatibility lssue 

Some operating systems are designed or can be configured 

15 Sysprep accepts a file specifying all of the possible disk 
controllers that a destination computer might use when the 
image is deployed in the future. The tool copies drivers for the 
speci fled devices to the file system. creates the corresponding 
registry entries, and fina lly shuts down the compt11er to pre-

20 pare it for omine disk capture. Wben a destination computer 
deployed from a Sysprep'ed image starts. the operating sys­
tem first detects the active disk controller. finds the matching 
entry that Sysprep created in the registry, and uses the entry to 
locate the correct driver. This solution works because mul-

25 tiple drivers can be present in the file system. but only the 
correct one is loaded. 

111e Sysprep approach has several limitations. First. it can 
handle changes only in the disk controller device. If the 
source and destination computer have different chipsets or 

30 processors, the operating system will not be able to start on 
the destination computer. The reason is for this is that the 
kernel and HAL arc the first operating system files to load into 
memory, and if they don't match the hardware, the operating 
system can crash before it has a cbauce to detect otberdevices 

35 or consult the registry. Sysprep cannot simply copy multiple 
versions of the HAL and kernel into the file system. since the 
operating system will use only the ones that are hard-coded 
with the predefined names. In other words, at boot time, there 
may be no way to select the correct kernel or f-IAL based on 

40 the hardware configuration. 
Second, a Sysprep 'eel image is compatible only with the set 

of devices specified at the time Sys prep was execllted on the 
source computer. When a new computer equipped with a new 
disk controller model is added to an organization. it may not 

45 be compatible with existing disk images. 
TI1ird , n uming Sysprep on a computer before capturing its 

image is a manual and error-prone operation that adds over­
bead a.ud complexity to the overall disk imaging process. 
Some contemporary disk inlagiug products, such as Syman-

50 tee Ghost Enterprise, include software to automate parts of 
the Sysprep process. However, they require a user to instal l 
special software on a computer before it can be Sysprep'ed 
ru1d captured. 
Image Customization 

to stan up on a diverse set of computer hardware configura- 55 
tions. For example. SysLinux. a variant of the Linux operat­
ing system, is capable of re-detecting a computer's hardware, 
including critical devices, on every boot. This allows it to 
select the correct kernel and drivers at nm-time. 

An image is often used to make multiple clones of a base 
computer. The approach is to capn1re an image from the base 
computer's disk, and then deploy the same image to multiple 
destination computers. Before the initial inlage is captured, 
the base computer is configured with an operating system and 

Other operating systems, such as Windows 2000, must 
boot using a specific kernel and HAL. which are identified by 
predefined names. A Windows 2000 file system may contain 
multiple versions of kernels and HALs, but only the ones 
named with the predefined names will be used to boot the 
operating system. 

A common but inelegant solution 10 the hardware compat­
ibility issue is to create one image file per family of similar 

60 common set of software applications that are required on al l 
clones. Any computer deployed from this image would 
inheri t the same set of software. 

Complller cloning faces a well-known issue: a clone gen­
era Uy requires a small setofuetwork parameters to be reset to 

65 values unique to the clone in order to fi.mction correctly on a 
network shared with the base computer and other clones. 
T hose parameters are generally stored on disk, and therefore 

Netflix, Inc. - Ex. 1005, Page 000015 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
11 

in the image. They may include a globally unique security ID, 
a computer name. and a network address. Two computers 
rum1ing with identical parameters may conflict wi th each 
other on a network. 

When a clone is deployed from ru1 image. it inheri ts the 
source computer's parameters. In order to avoid network 
conflicts. the parameters must be set to new values that are 
unique to the clone. 

1l1e Sysprep tool discussed earlier provides a limited sys­
tem parameter customization capability. When a source com­
puter is prepared with Sys prep before image capture. the tool 
copies a small program, called setup program, to the file 
system, and configures the operating system to run that setup 
program the next time the operating system boots. The tool 
also copies a data file containing instrnctions for the setup 
program. lbe tool then shuts down the operating system in 
preparation for an image capmrc operation. 

The resulting image represents a snapshot of the source 
computer just after running Sysprep but before the next sys­
tem boot. The data file contains new system parameter values 
to set on the next system boot. When a destination computer 
deployed from the image starts for the first time. the sen1p 
program reads the parameters from the data file, and changes 
the computer's parruneters based on those values. 

Ln order to set up eacb clone with a different set of parrun­
eters, a disk imaging system may use the image editing func­
tionality described earlier lo modify the contents of the data 
file in an image just before deploying it. The modifications 
can be used to change any of the system parameters. The new 
values to use can be provided by a user or be generated 
automatically by the imaging system using predefined rules. 
Virtualizcd Computer Systems 

1l1e advantages of vi rn1al machine technology have 
become widely recognized. Among these advantages is the 
ability to nm multiple virtual machines on a single host plat­
form. This makes betler use of the capacity of the hardware, 
while sti ll ensuring that each user enjoys the fean1res of a 
"complete," isolated computer. Depending on how it is imple­
mented, vinualization also provides greater security since it 
can isolate potentially unstable or unsafe software so that it 
cannot adversely aITect the hardware state or system files. 

12 
ally also included among the devices for obvious purposes. 
The host operating system (OS) 220 may be any known OS 
and will therefore have a ll typical components. 

Each VM 500 will have both virnial system hardware 501 
5 and guest system software 502. TI1e virtual system hardware 

typically includes at least ooe virtual CPU 510, virtual system 
memory 512, at least one virn1al disk 514, and one or more 
virn1al devices 540. Note that a disk- virn1al or physical- is 
also a "device." but is usually considered separately because 

10 of its essential role. All oftl1e vimial hardware components of 
the VM may be implemented in software using known tech­
niques to emulate tbe correspoodiJ1g physical componeots. 
The guest system software iocludes a guest operating system 
520 (which may simply be a copy ofa conventional operating 

15 system). and drivers 522 as needed for the various virtual 
devices540; in particular, adriverVDSK 524 will be included 
to manage access to the virtual disk 514. 

If the VM is properly designed, then it will not be apparent 
to the user that any applications 503 rum1u1g within the VM 

20 are running indirectly, that is, via the guest OS and virtual 
processor. Applications 503 mnning within the VM wiJl act 
just as they would if nm on a "real" computer, except for a 
decrease in mouing speed that wi ll be noticeable only in 
exceptionally time-critical applications. Executable files will 

25 be accessed by the guest OS 520 from the virtual disk or 
virtual memory. which will simply be port ions of t11e acn,a l 
physical disk or memory allocated to that VM. Once au appli­
cation is installed within the VM. the guest OS retrieves files 
from the virn1al disk just as if they had been pre-stored as the 

30 result of a conventional installation of tJ1e application. The 
design and operation ofvirniaJ machines is well known in the 
field of computer science. 

Some inlerface is usually required between a VM and the 
underlying bost platform (in particular, the CPU), wbicb is 

35 responsible for actually executing VM-issued instmctioos 
a11d transferring data to and from the actual memory 112 and 
storage devices 114. A common term for this interface is a 
"virtual machine monitor" (VMM). shown as component 
600. A VMM is usually a thin piece of software that runs 

40 directly on top of a host, or directly on the hardware, and 
virrualizes resources of the physical host machine. TI1e inter­
face exported to the VM is then the same as the hardware 
interface of the macb.ine ( or at least of some machine), so that 

See FIG. 1. As is well known in the field of computer 
science. a virtual machine (VM) is a software abstraction- a 
"virn1alization"-of an acn1al physical computer system. A 
virtual machine 500 is installed as a "guest" on a "host" 45 
hardware platfonn 100. Two configurations arc in general 
use- a "hosted" configuration, illustrated in FIG. I. in which 

t11e g11est OS cannot determine the presence of the VMM. 
Al though the VM (and thus the user of applications nm-

ning in the VM) cannot usually detect the presence of the 
VMM, the VMM and the VM may be viewed as together 
forming a single virt11a l computer. TI1ey a re shown in FlG. 1 
as separate components for the sake of clarity. There may be 

an existing, general-purpose operating system (OS) forms a 
"host" OS 220 that is used to perform certain l/0 operations: 
and a non-hosted configuration, illustrated in FIG. 2, in which 
a kernel customized to support virtual computers takes the 
place of t11c conventional operating system. 111c main com­
ponents o f these two configurations are outlined briefly 
below. This invention works with either configuration. 

As FIG. J shows, the hardware platform 100 includes one 
or more processors (CPUs) 110. system memory 112 (usually 
high-speed RAM), and at least one persistent, mass storage 
device, which will typically be a disk 114. The hardware 100 
will also include other convent ional mechanisms such as one 
or more conventional network coJlllection device(s) 172 
(such as a network adapter or network interface card­
"NJC") for transfer of data between the various components 
of the system and a bus or network. 

System software 200 includes the host operating system 
220, which will include drivers 222 as needed for various 
c01mected devices 400. The user's monitor and input devices 
such as a keyboard, mouse, trackball, touchpad, etc, arc usu-

50 several VMNMM pairs (virn1al computers) running on a 
common host: a single VM/VMM pair is shown in FIG. I for 
simplicity. 

Moreover. the various virt11alized hardware components 
such as the virn1al CPU(s) 510, the virt11al memory 512, the 

55 virnial disk 514, a11d the virtual device(s) 540 are shown as 
being part of the VM 500 for the sake of concepn1al simplic­
ity- in acn1al implementations these "components" are usu­
ally constmcts or emulations exported to the VM by the 
VMM, for example, as emulators 640. One advantage of such 

60 an arrangement is that the VMM may be sci up lo expose 
generic devices, which facilitates VM migration and hard­
ware plat form-independence. 

The configuration illustrated in FIG. I is used in t11e Work­
station products of VMware, Inc., of Palo Alto. Calif. In this 

65 configuration. the VMM 600 is co-resident at system level 
with the host operating system 220 such that both the VMM 
and the host OS can independently modify t11estaceofthe host 

Netflix, Inc. - Ex. 1005, Page 000016 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
13 

processor. However, the VMM calls into the host OS (sym­
bolized by the dashed. double-ended arrow) via a special one 

14 
redo log. Copy-on-write enables a virtual machine user to 
discard changes to a virtual disk in case tl1e chm1ges are 
temporary or contain accidental modifications to files. 

Redo logs may also be "chained" as a sequence of"delta" 
5 disks. each ofwhicb records writes to the virtual disk since a 

of the drivers 222 and a dedicated one of the user-level appli­
cations 300 to have the host OS perform certain 1/0 opera­
tions of behalf of the VM. ·n1e virtual computer in tl1is con­
figuration is tlms hosted i11 that it runs on an existing host 
hardware platform together with an existing host OS. A 
hosted virtualization system of the type illustrated in FlG. 1 is 
described in U.S. Pat. No. 6,496,847 (Bugnion, et al.. "Sys­
tem and Metl1od forVirtua lizingComputerSystems;' J 7 Dec. 10 

2002), which is incorporated here by reference. 
lo other implementations. a dedicated kernel takes the 

place of and perfonns the conventional functions of tl1e host 
OS, and vimial computers run on the kernel. FIG. 2 illustrates 
such a configuration, with a kernel 800 that serves as the 15 
system software for several VM/VMM pairs 200/300 . ... , 
200n/300n. Compared with a system in which VMMs run 
directly on tl1e hardware platfonn, use of a kernel offers 
improved performance for 1/0 operations and facili tates pro• 
vision of services that extend across multiple VMs (for 20 
exa111ple. for resource management). 

Compared with the hosted deployment. a kernel may offer 
greater performance because it can be co-developed wi th tl1e 
YMM and be optimized for the characteristics of a workload 
consisting ofVMMs. The ESX Server product of VMware, 25 

Jnc., has such a configuration. A kernel-based vir11ialization 
system of the type illustrated in FlG. 2 is described in U.S. 
patent application Ser. No. 09/877,378 ("Computer Config11-
ration for Resource Management in Systems Including a Vir­
nial Machine"), which is also incorporated here by reference. 30 
Virtual Disks 

most recent preceding checkpoint. The first such delta disk 
thus records changes to the initial state of the vir11.1al disk: the 
second delta ctisk records writes after the first delta disk is 
checkpoimed: and so on. The vi rtual disk can then be "com­
mitted" to any cbeckpouited state by incorporating into it the 
writes recorded in all de lta disks up to mid includi11g the 
chosen c]1eckpoin1. 
Virtual Machines and Disk Imaging Software 

A powered-off (i.e., inactive) vimml machine generally 
comprises a configuration file that describes t:be VM's set of 
hardware devices, such as memory size and input/output 
ports, and a virt11al disk file. TI10se two files define a complete 
computer, and can be moved or copied from one host com­
puter 10 another. Vir111al machines can thus be viewed as 
mobile computers. totally encapsula ted and represented by a 
set of files. 

Virt11al disks and conventional disk images are similar in 
that they encapsulate the state of a computer's d isk. Cloning 
a virnial machine. however. is generally much easier than the 
equivalent image deployment operation on physical comput­
ers. 1n order to clone a virtual machine, a user needs simply to 
make copies of its configuration and virtual disk files. and 
place them on the host computer of choice. To power on and 
run the cloned virtual machine, aJJ that the host computer 
needs is to have the appropriate VMM software installed. 
Deployment Issues 

As mentioned above a virtual machine monitor exposes a 
set ofhardware devices, or virtual devices, to the guest. Those 
devices include a virtual disk controller and a virtual disk. A 
virtual disk usually exposes the same abstraction as a real 
disk. that is, a linear list of sectors; however, a VMM may 
choose to implement vir11.ial ctisks as reg11lar files on tbe host. 
Since a virt11al disk file represents the sector-by-sector co11-
tents of a disk. it is by definition a type of sector-based image 
file. 

Virtual machine cloning is subject to the same network 
parameter customization issue that affects disk imaging of 
physical computers. A virtual machine cloned from a base 

35 vimial machine may conflict with the base machine if its 
network parameters aren' t reset to new and unique values. 

Sparse Virtual Disks 
A VMM may implement a virnial disk using a sparse, 

sector-based image format. This design can keep virtual disk 
files small if the amount of data written to the disk is smaller 
than the disk's capacity. For instance. when a user creates a 
virtual machine. be is usually also allowed to specify the 
capacity of the virt1ial disk. TI1e VMM then defines this disk 
to be filled entirely with sectors containing all zeroes.A newly 
created sparse virtual ctisk file is thus smaJJ in size, regardless 
of its capacity. When the user nms the virtual machine and 
installs software in it, including a guest operating system. the 
v irtual disk file will grow in s ize, but only to the extent needed 
to hold the file system metadata and data generated by the 
guest. 
Copy-on-Write and Vndoable Disks 

Most existing virtual machine products, such as those sold 

Virtual machine cloning generally does not suffer from tbe 
hardware compatibility issue, since VMM software usually 
exposes a stable set of virtual hardware devices. In other 

40 words, the virtual hardware visible to a cloned VM is identical 
to that of the base YM as long as the virt1.ial macbineconfigu­
ration file-in addition to the virtual disk file- is copied 
du.ring tile cloning process. 

Tue hardware compatibility issue does a.rise. however, 
45 when a physical computer needs to be converted into a virtual 

machine, and vice-versa. This leads to a ctiscussion of the 
physical/virtual interoperability problem. 
Physical and Virtual Interoperability 

As vir11ial machine software grows in popularity, infonna-
50 lion technology (IT) professionals increasingly work in a 

computing environment involving both physical computers 
and v irrual machines. In particular. tl1ere is a need to easily 
convert phys ical compmers to virtual computers, and vice­
versa. Server consolidation is a context in which this conver-

55 sion capability is panicularly desirable. The idea behind 
server consolidation is to take multiple server computers and 
nm them as virt1ml machines on a single physical computer. 
The benefits of server consolidation include reduced hard-

by VMware, Inc., of Palo Alto, CaliJ., employ tile copy-on­
write technique to allow a vim1al machine to modify its 
virtual disk without ac11.1ally modifying its virtual disk file. 
When copy-on-write is enabled for a virt11al disk, modifica- 60 

tions to tile file are stored in a separate file. sometuues called 

ware costs. since only one physical computer is needed, and 
possibly reduced management costs. since the servers run on 
a centralized platform. 

a redo log. A redo log specifies which sector locations in the 
original disk were written and contains the modified contents 
for tl1ose locations. A redo log, combined with the original 
virtual ctisk it is derived from, represents a second, logical 65 
disk whose contents arc defined as theoriginaldisk's contents 
with the exception of the modified sectors specified in the 

ln order to implement server consolidation, an IT profes-
sional may want to migrate multiple existing physical server 
computers into vimial machines hosted on a single, more 
powerfol physical computer. Migration of an existing server 
is usually more attractive tl1an re-creating an equivalent com-
puter inside a virtual machine from scratch, since an existing 

Netflix, Inc. - Ex. 1005, Page 000017 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
15 

server already has a 11.mctioning software stack that was pre­
viously configured, tuned, and validated for the intended 
business mission. 

Unforn10ately, just like a real computer, a virnwl machine 
exposes a specific set of cri tical devices, including processor, 5 
chipset, and disk controller. ·n1ose virt11al devices don't have 
to-and usually don't- match the host computer's hardware. 
Consequently. physical-to-virn1al (P2V) migration is subject 

16 
lowest possible layer: the sector level. A sector-based format 
can faithfully back up and restore a disk's exact contents 
without the need to interpret file systems. Sector-based for-
mats suffer from two limitations: the disk capacity matching 
problem and the storage inefficiency problem. 

Contemporary disk imaging products generally use a file­
based image format, one that is optimized for storing file and 
folder contents. A file-based imaging system must be capable 
of decoding file systems in order to extract and store the to tbe same hardware compatibility issues that plague disk 

imaging systems. 10 useful contents ofa disk. 
One possible approach for making virtual machines easier 

to migrate to is to enhance a VMM to expose vir111al hardware 
that more closely resembles that of a typical physical com­
puter. However, implementing a new virn1al device in soft­
ware can require an expensive engineering effort. It can also t5 
be somewhat wastefol. since some features of a physical 
hardware device, such as the advanced power management 
capabilities of an ACPl chipset. may not be meaningful or 
usefol in the context of a virtual machine. 

Many modem disk imaging systems use the oflline imag­
ing method to so.Ive the open files problem. lu ofrJine imag­
ing, a computer that is the source or destination of an imaging 
operation must first be booted into a secondary operating 
system. During deployment, the secondary operating system 
ru1d ru1 imaging client module collaborate to format the des-
tination disk with an empty file system. and then copy files 
from the image to the disk. 

Support for a proprietary file system format increases the 
development cost of a file-based disk imaging system because 
the appropriate file system driver may be difficult to develop 
or expensive to license. 

In existing disk imaging systems, the burden of naming, 
tagging. and organizing disk images is largely left to users. A 
user usually identifies an image's contents and purpose based 
solely on the image's file name. Since names are short and 
human-defined. they are ambiguous. incomplete. and may 1101 
accurately reflect an image's contents. 

Disk imaging is often used as a cloning technology for 

Virtual-to-physical (Y2P) migration is another fom1 of 20 
conversion that an IT professional may want to perfonn. A 
common scenario that illustrates this is the development and 
test envirorunent. Virtual machines are a popular platform for 
developing and testing software applications because they 
provide the following benefits: the ability to roll back a test 25 

computer's state by using undoable disks; the ability to test 
software on multiple operating systems nnming in different 
virtual machines; and the ability to simulate a network of 
multiple machines using a single physical computer, using a 
VMM's virnial network capabilities. 30 rapid computer deployment. Image-based computer cloning 

faces two issues. First. there is the hardware compatibility 
issue. A disk image may contain a set of operating system 
drivers and configuration files that rely on a particular set of 
hardware devices. If the image is deployed onto a computer 

Once a complete software stack comprising an operating 
system and application is tested and val idated in a virtual 
machine, an IT professional may choose to move the stack 
into production by deploying it onto a physical computer to 
acllieve maximum performance. 
Running Disk Imaging Software Inside a Yirn1al Machine 

35 with different hardware, the operating system may fail to 
load. 

In order to solve the conversion and hardware compatibil-
ity problem between physical and virtual machines, it is pos­
sible to run a combination of existiog tools such as Sysprep 
and disk imaging software within virt11al machines. For 40 

example. in order to convert a physical computer into a virtual 
machille, a user might first run Sysprep on iJ1e physical com­
puter, shut it down, capture an image from the computer, and 
temporarily store the image ona second computer running the 
disk imaging server soJlware. ll1e user then creates a new 45 
virtual machine with an empty virtual disk, a11d then powers 
it on from a secondary operating system loaded from a virnial 
floppy disk or CD-ROM; this causes the disk imaging client to 
get loaded into the virt11al machine's memory. The imaging 
server then deploys the image to the client, which bas the side so 
effect of populating the virtual machine's virtual disk. 
Finally. when tJ1e image deployment process finishes. iJ1e 
virtual machine can restart from its own virtual disk, thereby 
loading its own operating system. 

When the client writes to what appears like a physical disk, 55 
it issues sector-level 1/0 requests to this disk. ·me virtual 
machine monitor that controls the virn1al machine intercepts 
those requests and translates them to reads and writes to the 
appropriate data areas within the virtual disk file. 

A first solut ion is to generate multiple variants of the same 
image. one for each family of computer hardware. This has 
the drawback of increasing the number of images a user 
would have to maintain, and thus the overall management 
complexity. A second solution is to nm a special tool in a 
source computer before image capture. This tool prepares the 
operating system to boot on a more diverse set of computers 
by pre-installing drivers and creating appropriate configura­
tion file entries. This solution bas multiple drawbacks. First, a 
user has to nm additional software on the source computer to 
prepare it. Second, the set ofall possible destination computer 
hardware configurations has to be kJ1own at preparation time. 
New computers and new hardware devices are frequently 
introduced into an organization. and may be incompatible 
with images capnired from older computers. 

Virt11al disks arc similar to disk images in that they encap-
sulate a disk's state. A mixed enviromnent comprising both 
physical and virtua l machines is a difficult one to manage 
because an IT administrator bas to maintain both disk images 
for physical computers. and vimial disks for virtual 
machines. Cloning virtual machines doesn't usually require 
disk imaging software, since a virt11al machine is encapsu­
lated by a virtual disk and a set of con.figurat ion fi les. which 

60 can be freely duplicated and copied. 
SUMMARY OF PRlOR ART 

Disk imaging technology enables backup and rapid 
deployment of computers. A disk image is an ordinary file 
that represents a snapshot of a disk's contents. Image file 
formars fa II into two broad types: sector-based, and file­
bascd. A sector-based image fomiat represents a disk at the 

Migration between physical and virtual machines. how­
ever, is a difficult and tin1e-co11suming task. First, conven­
tional disk images and virnial disks tend to differ in the way 
they internally represent disk contents. Consequently, con-

65 verting a disk image to a virtual disk usually requires n10.ning 
disk imaging software inside of a virtltal machine. Second, 
the set of hardware devices exposed by a vi rtual machine is 

Netflix, Inc. - Ex. 1005, Page 000018 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
17 18 

the same partitiolliug aud file system(s) as the simulated 
source disk and thus of the source disk. 

general I y different, a ud often simpler. than real physicaJ com­
puters. This increases the risk of a hardware incompatibiJity 
problem when deploying an existing image to a virtual 
machine, or when capturing an in1age from a virtual machine 
and then deploying it onto a physical computer. 

The imaging server then copies the files of at least one file 
system of the simulated source disk to the corresponding file 

5 system oftbe simulated destiuation disk. 
The prior art thus provides several diJTerent solutions to the 

problem of creating disk images, all of which suffer from 
limitations of their owu. What is ueeded is a solution that 
makes disk imaging possible but without these limitations, or 
least such that they are less acute. This invention provides 10 

such a solution. 

SUMMARY OF THE INVENTION 

·n1e invention provides a computer system aud a method of 
15 

operation for creating an image of a source disk of a source 
computer. in which contents of the source disk are arranged 
according to at least one source file system. The source disk 
may be in an unmodified, unprepared state; in other words, to 20 
caplllre an image of the source disk there is no need according 
to the invention to load any special software on the source 
disk itse lf, and it is not necessary to run a preparation tool on 
the source disk before the captme operation starts. 

TI1e contents of the source disk are extracted and a des ti- 25 

nation image is populated with the contents of the source disk 
such tha t tbe destination i1uage may have a different sector­
by-sector content than tbe source disk but a des tination file 
system logicalJy equivalent to tbe source file system. 

File system drivers (or analogous software) within the 30 
operating system of the server computer automaticaJly detect 

TI1e source disk may be a virrual disk or a physical disk, and 
the destination disk (image) may be either a physical disk or 
a virtual disk file. Moreover, the server computer aud the 
source computer may be the same computer. 

BRJEF DESCRJPTION OF THE DRAWINGS 

FlG. 1 illustrates the main components of a hosted virtual 
computer. 

FIG. 2 ilJustrates the main components of a virtuaJ com­
puter running on a dedicated kernel. 

FIG. 3 iJlustrates how disk imaging is done in the prior art. 
FIG. 4 shows the main components of a mechanism 

according to the invention for captwing disk images. 
PIG. 5 sbows tbe main components of a mechanism 

according to t he invention for deploying disk images. 
FIG. 6 is a block diagram of the various software modules 

and data stmcn1res used in a server computer to implement 
the various capture, deployment, reconfiguration, customiza­
tion. and other novel fealllres of the invention. 

FIG. 7 shows tbe way in which a Universal Computer 
Management System according to the invention uses a sec­
ondary software stack in a source computer to image a disk. 

FIG. 8 illustrates the arcbitecn1re of a typical virtual 
machine product as used in the invention, including certain 
files used by tJ1e Universal Computer Manageme nt System 
according to the invention. 

FIG. 9 illustrates certain featmes of a deployed software 
stack and alternative channels for commurucatiug with an 
agent installed within tbe stack. 

DETAILED DESCRJPTION 

In broadest terms, the invention is a system for creating, 

the file system(s) of disks mounted in the server computer. An 
imaging server mouing within the server computer creates a 
simulated source disk correspondillg to lJJc source disk and 
mounts tbe simuJated source disk in the server computer. The 35 

file system drivers tJ1en automatically detect tbe file system of 
the simulated source disk and therefore of the source disk and 
expose the file system to software running on tJ1e server 
computer. in particular, to other software modules, described 
below. 40 manipulating, and deploying computer disk images. The sys­

tem introduces several novel contributio ns to the field of 
computer disk imaging. These contributions are discussed in 
detail below. but are mentioned here by way ofan overview. 
Moreover, in the discussion of the various fean1res of tbe 

A network loopback driver intercepts sector-based I/0 
requests directed to the simulated source disk and retrieves 
the source disk data from the source disk according to the 
intercepted sector-based J/0 requests. A network adapter is 
preferably included to forward the sector-based 1/0 requests 
to the source computer and to receive from the course com­
puter the contellls of the l/0 requests. 

45 invention, some of the features of prior art solutions are 
reviewed so as to make it easier to contrast the invention with 
them. 

First, the invention employs a unified image file forma t for 
both physical computers and virtual machines. Employing 

An imaging client installed in the memory (note: not the 
disk) of the source computer. The imaging client comprises 
computer-executable instmctions for receiving any source 
disk I/0 requests issued from the server computer to the 
source computer; for directi11g the sector-based l/0 requests 

50 virtuaJ machine disks as a common image forma t enables the 
system reduces administration costs by reducing the number 
of files to manage, and providing the ability to migrate entire 
software stacks between physical computers and virtual 
machines with little or no user intervention. 

to the source disk, preferably via a secondary operating sys­
tem loaded in tbe source disk's memory; and for passing the 
retrieved source disk data to the server computer in response 55 
to the source disk 1/0 requests. 

During the deployment phase of the method according to 
the invention, a simulated destination disk is generated by 
moum ing the destination image in an uninitialized state in the 
server computer. A local loop back driver then intercepts sec- 60 

tor-based 1/0 requests directed to the simulated destination 
disk and retrieves partition and file system layout informal ion 
from the source disk. A local adapter comprising computer­
executable instructions is aJso preferably included for con­
verting the sector-based 1/0 requests to the simulated desti- 65 
nation disk into sector accesses within the destination image. 
A formatting module formals the destination image to have 

TI1e inveution's second novel contribution is its ability to 
automatically search, classify. tag, and organize images based 
on their intemaJ contents, and in particular the system con­
figuration of the software stack enclosed within the image. In 
contrast, existing solutions treat images as opaque boxes, 
requiring users to classify images by file name or with textual 
annotations. which leads to an in1precise and ambiguous way 
of orgallizing images. 

Third, the invention correctly aud automatically solves the 
hardware migration problem tiiat bas plagued existing disk 
imaging systems. Tbe problem arises from the fact that oper­
ating system software installs hardware-dependent drivers 
and configuration sellings on a computer's disk. When the 

Netflix, Inc. - Ex. 1005, Page 000019 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
19 

disk or an image of the disk is moved to another computer, the 
sof1ware may malfunction on the new computer because the 
underlying hardware configuration has changed. The inven­
tion solves the hardware migration problem by analyzing an 
image's system configuration, comparing it against the hard- 5 

ware configuration of a destination computer or virtual 
machine. and then making the necessary driver and configu­
ration changes within the image itself to allow the software to 
boot and function on the destination hardware, all of this 
without requiring the image to contain software specificalJy 10 

designed to facilitate the migration. 
A scaled-down, special purpose embodiment of the inven­

tion can exploit this hardware migration capability to provide 
a reliable physical-to-virtual (P2V) computer migration scr- 15 
vice. 111is utility first captures a virtual disk image from the 
physical computer, then reconfigures the software within the 
virtual disk to enable it to boot ina virtual machine. The utility 
makes no modifications to the physical computer. and is 
therefore safe and unintmsive. 17,is utility can also be con- 20 
figured to perform migrations between dissimilar virtual 
machines (V2V conversion). orto migrate virtual machines to 
physical computers (V2P). 

20 
Yet another novelty is the ability to automatically compare 

images against each other, and to produce delta files describ­
ing file dilTerences between two images. Deltas can be 
viewed, stored, and can be applied to existing images in order 
to create new ones. This allows the invention to be configured 
as an image or virtual machine factory. Based on a set of core 
template images. and a set of deltas. the image factory can 
create custom, pre-config11Ied and read-to-deploy images or 
virmal machines. 

The invent ion is a disk imaging system that employs a 
single, unified image file fonnat supporting both physical and 
virtual machines; the unified image 6.le fomJa t is preferably 
tbe sparse virtual disk. Using virtual disks as universal 
images. as in the preferred embodiment of the invention, 
provides many benefits. especially in a heterogeneous com­
puting environment consist ing of both physical and virtual 
machines. The invention can use any image file format, how­
ever, a lthough the sparse, sector-based image format is pre­
ferred because it allows for easy loop-back mounting (see 
below). Moreover, once a format is chosen, even if it does not 
start out as a virtual disk format. a virtuaJ machine product can 
be adapted using known methods so as to treat it and use it as 
a virtual disk. 
One lmage Format 

Using virtual disks as images allows physical and virtual 
machines to be converted between each otl1er direct ly, with­
out the need for a second, intermediate image file format. 
When a physical computer's disk is capmred and stored as a 
virn1al disk file, and the disk contains an operating system, the 

A key feamre of this P2Y utility is that it operates on an 
image of an unmodified physical computer; in other words, 25 

the physical computer's disk state is never modified for the 
purpose of P2V conversion. Existing P2V solutions, on the 
other hand. may require installing additional software on the 
physical computer, or altering its configmation before cap­
mring an image of it. 

A fourt.h novel contribution is in the area of image customi­
zation. and management of computers deployed from images. 
Exis ting disk imaging systems generally require users to pre­
pare images, i.e., install additional software inside of com­
puters before capturing images from them. Symantec Ghost 35 

and Microsoft ADS (automated deployment services) are 
examples of such existing systems. TI1e additional software, 
which generally consists of one or more agent programs, 
customizes a computer after it is deployed from an image, and 
allows a central server to remotely monitor and manage the 40 
computer. 

30 file can immediately be used as a virt·ual machine's primary 
disk, allowing the virtual machine to boot from the operating 
system. A virtual disk can also be used as a regular disk image 
for physical computers, i.e .. it can be archived. cataloged. 
then la ter deployed to one or multiple physical computers for 
backup/restore or cloning purposes. By reducing the number 
ofimage files. a unified image format greatly simplifies image 
management and reduces disk space requirements. 

Selecting virtual disks as a common image file fomrnt is not 
an obvious choice, s ince virtual disks use a sector-based 
format, and this type of format is known to have issues when 
used as a disk image format, as rhe discussion above on prior 
art explains. Not surprisingly, no contemporary disk imaging 
system uses virn1al disks as image files. The invention 
addresses and overcomes the traditional shortcomings of sec­
tor-based image files using the mechanisms described below 
in the section entitled "Overcoming Traditional Limitations 
of Sector-Based Image Formats." A description of those 
mechanisms fl!st requires an understanding of how the inven­
tion accesses and modifies a virtual disk's file contents. 

Moreover. in the specific case of Microsoft' s .,\DS. the 
image must be equipped or prepared with at least two soft­
ware components: Microsoft Sysprep. and the Microsoft 
Deployment Agent. 1l1is approach is intrusive because it 45 
requires users to install additional software that does not 
directly serve their interests: more fundamentally, it binds an 
image to a specific type and generation of agent software, 
which could render the image obsolete when newer genera­
tions of the software becomes avai lable. 50 Simplified Image Content Editing 

Tue invention, on the other hand. keeps the customization 
and management software separate from images. The inven­
tion automatically inserts the necessary software into a copy 
of the image just before deployment, thereby equipping the 
deployed image with the most optimal and up-to-date set of 55 
management software. Moreover, the invention is also able to 
upgrade the management software; in other words, even if the 
image already contains mgrnt software, the invention can 
overwrite it, replace it, upgrade it. etc. 

ln essence, the invention isolates the "business" function of 60 
a software stack from hardware dependencies and the soft­
ware mechanisms n~-eded to manage the stack. This allows it 
to restrict images to their intrinsic, useful content, from users' 
perspective. This approach reduces the number of images 
users have to manage. and ensures that they never become 65 
obsolete when new generations of hardware or management 
software arc introduced. 

An important advantage of a virtual disk. and in general of 
all sector-based image files, is that its file contents arc easily 
accessible to standard file manipulation software tools that 
are unaware of virtual disks or disk in1ages. As explained in 
the discussion on prior art, contemporary disk imaging sys­
tems generally require a user to use a specialized tool to 
access and modify the contents of a disk image file. For 
example, the Symantec Ghost imaging system requires a user 
to use an application called Ghost Explorer to transfer files 
between the image and the host operating system's file sys­
tem. Virtual disks, in contrast. lend themselves well to a 
mechanism called loop-back mounting, which enables a user 
to directly access files from the virtual disk using standard 
system commands, tools, or applications. 

Loop-back mounting is the process of taking a file and 
presenting it as a physical disk to the operating system. 111e 
operating system is fooled into detecting what appears to be 

Netflix, Inc. - Ex. 1005, Page 000020 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
21 

auotber physical disk, causing file system drivers within tbe 
operating system to attempt to detect and mount the file 
system(s ). if present, residing on the disk. A special loop-back 
driver, belonging to a family of drivers callee! storage class 
drivers, provides the loop-back mechanism by presenting the 5 
abstraction of a disk to the operating system. Whenever the 
operating system accesses a sector of tbe abstracted disk, the 
loop-back disk driver translates the sector request into a file 
access request to the file. The mapping between sector loca­
tions and their corresponding contents within the file are 10 

defined by the image's i11ternal format. A loop-back driver 
can access tbe file using a direct kemel-mode call, as does tbe 
known Piledisk driver, or by forwarding the request to a 
user-level program. which in nirns accesses the file using a 
system call. which is a method used, for example, by tbe 15 
known Proxy driver. 

Loop-back mounting of a file requires the file's internal 
format to expose a sector-level abstraction of a disk, since the 
operating system, and more precisely its file system drivers, 
a lways access a disk using a sector interface. A virnial disk, by 20 
defillition, always exposes a sector-level interface: therefore 
it is a natural match for loop-back mounting. 

TI1e invention includes a loop-back driver. combined with 
a user-level program, called the "adapter." to mount virt11al 
disks as real disks. Once a virn1al disk is loop-back mounted, 25 

the operating system scans the disk for any recognized file 
system formats. If the disk contains a file system recognized 
by any of a set of file system drivers registered with the 
operating system, the appropriate driver will mount the file 
system and expose it to all software hosted by the operating 30 
system. Since the file system motmted from a virtual disk is 
no difforcnt from a file system moWltcd from a physical disk, 
any user-level program using standard system calls can read 
and write files residing on the virtual disk. 

While loop-back technology in and of itself is not novel, 35 

tbe invention employs the technology to make virti.ial disks a 
viable file fomiat for disk imaging. Furthermore. the inven­
tion exploits this image content editing flexibility to achieve 
fi.mctionality not available in conventional imaging systems. 
The novel functionality spans two major areas: image analy- 40 
sis/classification, and image customization for deployment 
and hardware migration. 
Overcoming Limitations of Sector-Based Image Formats 

A virnial disk typically implements a sector-based image 
file format. When used in the context of disk imaging, sector- 45 
based files face two traditional problems: capacity matching 
and inetllcient storage of free sectors. 1n order to solve those 
problems, the invention uses a virtual disk not as a sector-by­
sector replica of a source disk, but rather as a different disk 
with a different sector-by-sector content and layout, but con- 50 

raining a file system equivalent to the one on the source disk. 
Two file systems on two separate disks arc said to be equiva­
lent if their file system fonnat is identical, they contain the 
same files and folders, tJ1e file contents and attributes are 
identical, and the structural relationship between files and 55 
folders is also identical. In other words, two equivalent file 
systems may have a different physical layout on disk, but tbey 
co11tain tbe same information. 

During an image capture process, a disk imaging system 
based on the file system equivalence approach copies files- 60 

not sectors- from the source disk to the destination image. 
This eliminates the capacity matching problem. since the 
source and destination disks can have diflerent capacities, as 
long as the destination is large enough to hold all of tbe 
source's files. 65 

TI1e efficiency problem is also eliminated as follows: 
Before the capture process begins, the imaging server creates 

22 
a destination image representing a disk containing all zeroes. 
Since the image is actually a sparse virtual disk file, its initial 
size is extremely small (almost zero, in fact). regardless of the 
chosen disk capacity. During the capntre process, a file sys­
tem driver or a file system encoder module creates the neces­
sary data and metadata sectors on the destination disk to 
represent a new file system that is equivalent to the source file 
system. Given that only usefol sectors are created during the 
process. the destination virtual disk's final size is minimal and 
optimal. since sectors that were not written during the process 
still contain all zeroes, and therefore aren't represented in the 
fina l file. 

'l11e following section on disk imaging operations 
describes in more detail how the invention achieves file sys­
tem equivalence. 
Disk Imaging Operations 

In order to create a file system on a destination disk that is 
equivalent to tbe one residing on the source disk, the invention 
must I) decode 1he source file system to read its properties 
and files; and 2) create and populate a file system oftbe same 
format on the destination image; in other words, encode the 
destination file system. 
Review of Existing Disk lmaging Methods 

Most existing imaging systems embed one or more file 
system decoders in the imaging client, allowing the cl ient to 
decode multiple file system formats. This allows the client lo 
read files from a supported source file system. and transmit 
their contents over the network to an imaging server. The 
imaging server then compacts and stores the file contents and 
properties into the destination image, typicaJly using a pro­
prietary file-based image format. 

FIG. 3 illustrates this process as practiced in the prior art. A 
source computer 1000 is eqtiipped with a source disk 1010 
containing a set of primary files 1012, including theopera1iog 
system's files and other files (including application files, data 
files. etc.). Under nooual condirions, the computer boots from 
this disk when it is powered on; in other words. the computer 
loads the primary operating system into memory and runs it. 
During an image captme operation. the source disk 1010 
represents the source disk. and the disk imaging system 
reboots the computer from an alternate medium, such as a 
floppy disk, CD, or memory image downloaded over the 
network using a mechanism like PXE (Preboot Execution 
Environment). 

111e reboot process loads an alternate set of software com­
prising a secondary operating system 1022 (again, such as a 
floppy disk, CD, or downloaded memory image) and an imag­
ing client 1300 into memory 1020. The imaging client 1300 
coL111ects to an imaging server 2100 in a server computer2000 
over a network 3000, accesses the primary disk's 1010 sectors 
through an API provided by the secondary operating system 
1022, decodes the sectors using a conventional file system 
decoder 1310. and transmits the disk information and file 
contents ro the imaging server 2100. The imaging server2100 
is an application hosted by a server operating system 2200 
mMing on the server computer 2000. 

As shown in FIG. 3, as with any other rnnniug OS, the files 
2013 making up the server OS file are stored on the server's 
primary disk 2010, but will be at least partly loaded in the 
memory 2020 of the server computer 2000 when tbe server 
OS is nulling. The imaging server 2100 then compacts the 
transmitted data in to an image file 2012 residing on one of the 
server computer's disks 2010. The internal layout of the 
image file may be proprietary to the imaging software vendor. 

The first drawback of the approach ilJustrated in FIG. 3 is 
that it adds complexity to the imaging client, since the client 
must contain the code and logic required for the decoding 

Netflix, Inc. - Ex. 1005, Page 000021 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
23 24 

(decoder 1310). As pointed out above in tbe discussion on 
prior art, the secondary operating system 1022 used by offiine 
disk imaging systems generally runs in an environment with 
restricted memory resources, so that any added complexity in 
the client can complicate its design or impact its performance. 5 

work loop-back adapter that translates sector requests to net­
work requests and sends them to an imaging client 1021. 

The adapter for l11e s imulated source disk 2210 fotwards 
the request over the network 3000 to the imaging client 1021 , 
which, as with the prior art imaging client 1300 (FIG. 3). is 
loaded in the memory 1020- not the disk 1010- of the 
source computer 1000. The imaging client 1021 then accesses 
the requested sector on the actual source disk 1010, through 
the secondary operating system 1022. Note that the imaging 
client 1021 in the invention contains no decoder. si11ce its only 
fllnction is to read and write sectors, and tocomnumicate their 
contents over the network. Note further that whatever infor­
mation the file system driver 2212 uses to access a sector on 
the simulated source disk 2210 will also access the corre-

TI1e second drawback has also been previously discussed: 
lf a source file system uses a proprietary format, it is chal­
lenging for the imaging software vendor to include the appro­
priate decoder or driver 1310. TI1is is partly because such a 
software module may not exist for the selected secondary 10 

operating system and partly because developing a custom one 
for i11clusion with the clieul can be costly- it requires either 
a reverse-engineering effort or paying a license fee to the file 
system format owner in order access the technical informa­
tion needed for the developing the moduJe. 
Disk Imaging According to the Invention 

15 sponding sector on the"reaJ," source disk 1010. since the one 
is just an image of the other. 

The invention's approach to image caprure is illustrated in 
FIG. 4. Using the loop-back mounting method. the imaging 
server 2101 makes the source computer's source disk 1010 
(i.e., the source disk) appear as a local disk from the server 20 
operating system's 2200 perspective: this local disk is 
referred to as "simulated source disk" 2210. 

During the image capture procedure. the source computer 
1000 will preferably not be allowed to nm any application 
other than the imaging client 1021 itself. To accomplish this, 
before a capture operation is begun, the source computer's 
primary software stack is shut down, and the source computer 
is rebooted into the secondary software stack consisting of the 
secondary OS 1022 and the imaging client 1021. During 
caplme. the imaging client 1021 is therefore the onJy program 
accessing the source disk 1010 (through the services of the 
secondary OS J022). Since the imaging client 1021 operates 
on behaJfoftbe current file system driver 2212 nullllog on the 
server computer 2000, the net result is the file system driver is 
the sole owner and controller of tbe source disk during a 

A loop-back driver 2211N presents (simulates plug-in of) 
the simulated source disk to the serveroperating system 2200, 
causing it to detect the disk and instmct each of a set of 25 

installed and registered fi le system drivers 2212 to inspect the 
disk to find any file system that it recognizes. Note that the 
simulated source disk will appear to the server OS 2200 as any 
other new disk device. sucb as a Firewire or USB external 
hard d isk that a user can hot-plug into a running computer. To 
the server OS, the simulated source disk will thus look like an 
actual physical device, and the OS will try to send IO requests 

30 capture operation. ·n1ere is therefore no coherence problem, 
that is, no risk that a source appl ication will change anything 
on the source disk in the midst of the capture operation. 

to it. 
IJ1 general. whenever a disk is presented to file system 

drivers, the OS first detennines the partitions of the disk from 
a data header stored on the disk (typically the first sector, 
called master boot record, or MBR). Each partition is a sub­
range of sectors. The OS then presents every partition to the 
registered file system drivers, allowing them 10 inspect the 
partition and detect a file system on the partition that they 
recognize. The detection and decoding of a file system gen­
erally requires reading a small number of sectors. not the 
entire partition. 

If any (note that more than one may be present) file system 
is detected, the corresponding file system driver will presents 
the file system to applications through a drive letter or a 
directory. When applications access flies, the file system 
driver will access only the necessary sectors to satisfy the 
application's request. The imaging server 2101 itself is an 
application, and bas the right to read aJl of the files from the 
file system. causing the file system driver to read all the useful 
sectors of the disk on behalf of the application. 

In other words, when the source disk 1010 is mounted, the 
appropriate file system driver detects and decodes the source 
file system(s) on behalf of applica tions. The imaging server 
2100 is one such application. and thus gets to "see" the source 
disk's files, albeit ouJy their high-level attributes and con­
tents. The imaging server 2100 will not know exactly what 
sectors on the source disk actually make up those files. One 
advantage of the invention is that it is not necessary for the 
imaging server 2100 to know l11is in order for an image of the 
source disk to be created with a (or the) file system(s) equiva­
lent to the file system(s) of the source disk. 

When one of the file system drivers accesses a sector from 
the simula ted source disk. the loop-back driver 2211N inter­
cepts this I/0 request (for the sector) and foiwards it to a 
user-level program called an "adapter" 2310, which is a net-

Because the secondary software stack is loaded into 
memory J 020, the capture operation according to the iiweu-

35 tion allows tbe source disk to remain in an unmodified state 
(no special imaging software need be loaded on it at any time) 
and therefore remain reliably stable throughout the capture 
operation. Moreover, no special preparation (such as is 
needed when using Microsoft Sysprep) of the source disk is 

40 required. 
·n1e communication between the adapter 2310 and the 

imaging client 1021 requires a protocol for sending sector­
level requests and responses over a network transport, such as 
TCP or UDP. This can be a custom-designed private protocol 

45 known only to ihe disk imaging vendor, or it can be a pub­
lished protocol. such as iSCSl (]11temet SCSI) and NBD 
(network block device). Such protocols were generally devel­
oped for purposes other than disk imaging. For example, 
iSCSl was designed to connect centrally managed disks to 

50 distributed, diskJess computers, and usually requires the com­
puters to be equipped with an iSCSJ adapter card. NBD is an 
experimental protocol designed to equip a computer with a 
logical disk that consists of multiple network disks providing 
redundancy or additional perfomiance, using a standard such 

55 as IWD. Regardless of their original purpose, these known 
protocols fundamentally achieve the same thing: transfer disk 
requests and contents over a standard network transport, such 
as TCP, and the invention can leverage these protocols by 
implemcnring them in the imaging client 1021 and the 

60 adapter 2310. 
Ifa file system on the simulated source disk is recognized 

by one of the server operating system's 2200 registered file 
system drivers 2212, then it is mounted and exposed to aJ l 
software rnnuing on the server 2000. (More l11an one file 

65 system may be present on the source disk and be detected by 
the drivers.) ·n1is allows the imaging server 2101 to retrieve 
information abom the source disk, and most importantly. to 

Netflix, Inc. - Ex. 1005, Page 000022 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
25 

read its files and directories; thls takes care of the decoding 
side of the image capture problem. 

26 
to partition the destinatioo disk. Once the disk 2230 is parti­
tioned. each partition can be individually fonuatted using a 
formatting module 2231 such as the Windows 2000 fonnat 
utility: this creates an empty file system with the correct file 
system forma t on the destination disk 2230. 

Finally, the imaging server 2 I 01 can populate the image 
2015 by copying files and directories from the source file 
system(s) to their corresponwug destination file system(s). 
Note that Lhe imaging server2l 00 copies files from the source 

By using Lhe server OS's 2200 file AP! (such as Read File 
and WrileFile in a Windows environment), the imag,ing server 
thus indirectly causes the file system driver(s) to decode the 5 
metadata of the source files 1012, and read the contents of the 
source files themselves, which has the side effect that the file 
system drivers read useful sectors from the source disk. Those 
reads are serviced by the loopback driver 2211N and then the 
in1aging client 1021. to file system to the destination file system. but in an indirect 

way: The driver 2211L (also the driver 2211N) aod adapters 
2310, 2314 work at the sector level, which is how actual disk 
1/0 is performed. These components do not know where 

The remaining issue is how to populate the destination 
image. Recall tl1at the invention preferably uses sparse vi_r111al 
disks as images. A virt11al disk- which itself is preferably 
implemented as a single file, as explained above----represents 
sectors. not files. so in order for it to hold a destination file 15 

useful sectors are, and they do not know bow to create a file 
system. However. they work on behalf of the file system 
driver 2212, which does know exactly how sectors are orga-system equivalent to the source file system, the virtual disk 

must be fom1aued and populated by a file system encoder that 
tmderstands the formal of the source file system. This encoder 
is the same file system driver 2212 used to decode 1be source 
file system. 

The invention first creates the destination image as a virnial 
disk with a capacity identical or larger than the source disk. A 
newly created virtual disk's sectors arc preferably all initial­
ized to contain zeroes. The initial file is therefore very small 
regardless of the chosen capacity, since the file containing the 
virtual wsk preferably uses a sparse format. Jn order to 
encode a new file system on the image. the iuveution (io 
particular, the imaging server or a component such as one of 
the file system drivers. or some other operating system com­
ponent) n1otmts the destination image in loop-back mode, 
thereby making the image (the virlllal disk) appear as a simu­
lated local destination disk 2230. The destination disk 2230 is 
uninitialized, and therefore cootaiJlS 110 f11e systems initially. 

Wbeo the server operating system 2200 or a file system 
driver 2212 accesses a sector on the simulated destination 
disk 2230, a second instance of the loop-back driver 2211L 
intercepts the access aod forwards it to a second instance of 
the adapter program 2314. 'Ille adapter 2314 translates the 
sector-level access to an access to the image file 2015, and 
reads or writes tbe appropriate data area io the image 2015, 
i.e., the virtual disk. 

The caplllre process can then proceed as follows: The 
imaging server 2101 uses the operating system's disk man­
agement AP! to partition the destination disk 2230. and then 
uses a conventional disk formaning utility 2231 to create a file 
system of the same format as the source file system. 

As is known in the art of system-level programming, a 
physical disk cao be "partitioned." i.e. , divided. into several 
slices, or logical disks. Each partition is usually a co111iguous 
range of sectors and a partition can contain a file system if it 
is formaned. A disk can thus contain multiple partitions. and 
therefore, file systems. Each file system can be of a different 
type. For instance. a disk containing four partitions can have 
one FAT, two NTFS, and ooe EXT2 (Linux) fi le system. lfthe 
source disk 1010 contains multiple file systems, the imaging 
system inspects the location and size of each of the source 
partitions. It then re-creates similar partitions with roughly 
the same size and locations on the simulated destination disk 
2230, then fom1ats each of the destination partitions wi th the 
same file system type as its counterpart on the source disk. 
Partitioning and formatting are performed by using the server 
OS's AP] or disk utilities. Once the destination file systems 
are created. they are ready to be populated with files copied 
from the source. 

nized on a disk (source or destination/v irlllal) for the purpose 
of representing files . The local adapter 2314 therefore stores 
those sectors into the image file 2015 such that the stored 

20 sectors consist of both metadata and file contents. which, 
together, form a file system with contents equivalent to that 
found i11 the source disk. 

When the file copy phase completes, tbe imaging server 
2101 dismounts the two simulated disks 2210, 2230. causing 

25 the operating system to think they have been unplugged from 
the server computer. The imaging server 2101 then unloads 
the two adapters 2310. 2314 and the two loop-back driver 
instances 2211N, 221JL from memory 2020. 

The final virt11al disk file thus coutains a file system equiva-
30 lent to the one residing on the source disk. By creating and 

populating new files on the destination disk (the virtual disk 
file) using the same OS API. tl1c imag.ing server 2100 indj­
rect ly causes the file system driver to create new metadata and 
new sectors on the destination disk, which causes sectors lo be 

35 written on the destination disk, which the loopback driver 
2211Land local adapter2314 translate into data writes within 
the destination vimial disk file. 

1l1e adapters 2310, 2314 and t11e two loop-back driver 
instances 2211N, 221.IL are of course modules of computer 

40 code (instructions and data as needed) that may be stored on 
the server computer's primary disk 2010 and loaded into the 
memory 2020 for execution when needed. Skilled program­
mers will know bow to create these progran1 modules given 
this description of their function and cooperation. The file 

45 system driver(s) 2212 are assumed to be a feature of the 
existing operating system, whose primary files 2011 are also 
normally stored on the server disk 2010, along with other 
application files 2014, and are loaded into memory when the 
server computer is booted. The simulated disks 2210. 2230 

50 are simply memory or disk regions created for temporary use 
as described above. 
Image Deployment 

The invention's image deployment process is illustrated in 
FIG. 5 and is symmetrical to the novel image captwe process 

55 described above. First, the user selects a stored disk image 
2015 (more than one may of course be stored) using any 
conventional method. The imaging server 2101 then mollllts 
the user-selected image in loop-back mode in order to preseot 
it as a simulated source disk 2210 to the server operating 

60 system 2200. The adapters 2310, 2314 and the file system 
drivers 2212 will perform the same functions as for image 
capture, but io the reverse di rection. 

For example, on the Windows 2000 operating system, the 65 
imaging server 2101 can use a system call named Devicelo­
Control() and a flag named IOCTL_DlSK_SET_LAYOUT 

The destination computer 1500 reboots and loads into its 
memory 1520 a secondary operating system 1522 with the 
imaging client 1521. The imaging server 2101 then mollllts 
the destination computer's disk 1510 in loop-back mode. and 
presents it as a simulated destination disk 2230 to the server 

Netflix, Inc. - Ex. 1005, Page 000023 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
27 

operating system 2200. Next, the imaging server leverages 
the server operating system's APls and utilities to partition, 
then format, the destination disk 2230, destroying whatever 
partitions. fl.le systems, data, etc .. that was previously present 
on it. Finally. the imaging server copies files and directories 5 
from the source file system to the destination file system, 
dismounts the two simulated disks 2210, 2230, and reboots 
the destination computer 1500 to allow it to load the new 
operating system deployed from the image 2015. 

28 
arbitrary changes to an image's file contents. Since a file 
system driver 2212 exposes a file system's files and directo­
ries to all software running on the server operating system, the 
imaging server can leverage a wealth of file manipulation 
tools included with the operating system 2200 10 perform an 
arbitrarily complex analysis or manipulation offl les within an 

Discussion 
1l1e invention's approach to disk imaging provides several 

advantages over existing methods. Tbe first observation is 
that the imaging software does not need to include a file 
system decoder, since the one provided by the server operat­
ing system is used to perform the decoding. This significantly 
simplifies the imaging client component and reduces its 
memo1y footprint. Not only does this reduce the imaging 
software vendor's development costs, it also allows the imag­
ing client to nm on extremely lightweight secondary operat­
ing systems. 

image. This capabili ty is enables fonctionality not available in 
existing disk imaging systems. The functionality faJJs into the 
areas of configuration analysis. image reconfiguration. and 

10 image customization, alJ of which are discussed in detai l in 
the following sections. 
Alternate Image Capture and Deployment Methods 

1l1e invention does not require the image ca p111re to employ 

15 the loop-back based method described above. Jf the disk 
imaging software understands the file system format of a 
source computer's disk, it can include a file system decoder in 
the imaging client and a file system encoder in the imaging 
server, allowing it to stream fi le data (instead of sector data) 

20 directly over the network, and populate the destination image 
directly from the data. This is the traditional disk image 
capn1re method used in the prior art. 

A second significant advantage is in the handling of the 
proprietary file systems. As explained earlier. in order to 
support a proprietary file system format, a disk imaging soft­
ware vendor that employs existing methods must either 
reverse engineer the forma t, or pay a license fee to access the 25 

technical infonnation required for developing the decoder. 
TI1e invention is not subject to this problem if the operating 

system selected for hosting the imaging server includes a file 
system driver that understands the proprietary format. File 
system fom1ats that arc directly supported by a server opcr- 30 
a ting system are referred to as native fonnats. For instance, if 
an imaging server were designed to mu on a Microsoft oper­
ating system, such as Windows 2000or Windows XP. it would 
be able to decode any file system using 01JeofMicrosoft's file 
system formats, including NTFS, FAT32, and FAT, all of 35 

which are proprietary. 
In the case that a source disk uses a non-native file system 

format, i.e., one that is not understood by the operating system 
host ing the imaging server, a disk imaging software vendor 
employing the invention's methods has several choices, 40 
depending on whether the file system format is proprietary.] f 
the format is public, i.e., non-proprietary, the vendor can 
develop its own custom file system driver and register it with 
the operating system when the imaging server software is 
installed. 45 

The invention, however. employs the loop-back mecha­
nism for other image manipulation tasks, such as content 
analysis, reconfiguration. P2V. V2P. delta images. and cus­
tomization. as subsequent paragraphs will explain. It is thus 
particularly couvenient and therefore preferred for the inven­
tion to leverage this same mechanism for image capture and 
deployment operations as well: as mentioned earlier. this 
approach provides significant benefits, such as simplifying 
the disk imaging client by not requiring it to include a file 
system decoder (such as decoder 1310 in FIG. 3). and allow­
ing the imaging software to handle certain proprietary file 
systems despite not knowing their internal format. 

171e foantres of the invention relating to image manipula­
tion may therefore be implemented so as to be completely 
independent of the disk imaging (capmre and deployment) 
aspects of the invention described above. Indeed, if all that is 
desired is to implement the image mat1ipulation features of 
the invention, then it would be possible to use any in1age 
capture mechanism, including those found in the prior art. 
Simplified Image Management Using Static Configuration 
Analysis 

As explained in the discussion on prior art. a disk image is 
a snapshot of a computer's disk state. This state comprises 
files and programs, and may contain the operating system 
itself. The disk state of a computer contains an abundance of 
information not only about the software and data residing 011 

If the non-native file system format is proprietary, it is most 
likely owned by a tbird-party vendor different from the one 
who developed the server operating system. lfthis third-party 
vendor provided a commercial file system driver for that 
format and for the selected server operating system, the imag­
ing software vendorcou.ld license the right to distribute a copy 
of that driver with the imaging software, and register the 
driver at installation time. The licensing cost for distributing 

50 the disk. but also the computer's hardware characteristics. 

a binary version of a program, such as a driver, is generally 
much lower then the licensing cost for accessing technical 
information. such as a file system format specification or the 
source code of a program. 

lfthere exists no commercial file system driver for a non­
native and proprietary file system format, then the imaging 
vendor can either choose not to support the fonuat or to 
support the format by developing a custom driver based on 
licensed technical information or on reverse-engineered 
information. 

Another important advantage derived from the invention's 
approach lo disk imaging is that by accessing file systems 
through a driver, not only can the imaging server 2101 per­
form image capture and deploy operations, it can also make 

This information is generally called the computer's system 
configuration and can contain the following components: 
software config11ration, hardware configmation, and i1rf om1a-
1io11 pertaining to both hardware and software, called binding 

55 information. 
Software Configuration 

The exact sof1ware config11ration of a computer can be 
determined by analyzing the files residing on an image of the 
computer's disk, since programs are stored as files and their 

60 settings are also stored in files. File ins pection can reveal not 
only the number and type of programs installed. but also their 
versions. Detecting the versions of the files that make up a 
software program or module is essent.ial for determining 
whether the software is up-to-date. Users often update their 

65 software program files regularly in order to acquire bug fixes. 
especially security fixes, and potentially new ftmctionality. 
The operating system itself is a set of program and configu-

Netflix, Inc. - Ex. 1005, Page 000024 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
29 

ration files; therefore a file analysis ofa disk image containing 
an operating system can detem1ine the operating system type, 
version, and settings. 
Hardware Configmation 

Surprisingly. inspecting the files of a disk image captured 5 
from a source computer can reveal information about the 
computer's hardware configuration. This information can be 
determined even without access to the source computer's 
hardware. '171e reason is simple: when an operating system is 
installed on a computer, it generally creates a database of 10 

hardware devices that it detects, and stores that database in a 
set of files on the computer's primary disk (i.e .. the one 
containing tl1e operating system). For example, tl1e Windows 
2000 operating system stores information about detected 
devices in a registry file; this information includes each 15 
device's model number, vendor identifier, serial number. and 
even what bus slot or port the device is plugged into. 

A computer's critical devices, such as llle chipset and pro­
cessor. can also be detem1iued by inspecting the files the 
operating system chose 10 install. For instance. the Windows 20 
2000 operating system requires a key program file, called 
kernel, to be installed on disk. This file is identified with a 
predefined name, e.g., "ntoskrul.exe". There exist al least two 
variants of this file: one designed for uniprocessor computers. 
and one designed for multiprocessors. The two variants are 25 

stored as distinct files with different names on the operating 
system's installation medium (sucb as a CD or service pack). 
When Windows 2000 is installed ou a computer, tlle installer 
copies the kernel variant appropriate for llle computer's type 
to the disk, and renames the file to the predefined name. A 30 
configuration analysis tool could thus perfom1 a byte-level 
comparison of the kernel installed in a disk image against the 
two known variants from the installation medium in order to 
determine whether the source computer is a multiprocessor or 

30 
the image and disallow the operation in case of incompatibil­
ity. Second, when a user queries !lie imaging system for a set 
of destination computers eligible for deployment from a 
specified image. the invention can use !lie inlage's hardware 
configuration to constrain the eligible set to those computers 
compatible with the configuration. 

The invention is also capable of modifying an image's 
contents at deployment time in order to make it compatible 
with a destination computer's hardware configuration. 
Knowledge of tlle image's existing hardware configuration 
helps the imaging system deten11iue the minimal set of 
changes requi.red to make an image compatible with a pa.r­
ticular destination hardware configuration. The section Sim­
plified Hardware Migration Using Image Customization 
below discusses this in more detail. 
Binding Information 

Finally, a computer's configuration can contain i11forma-
tion about how a hardware device is prograU1111ed. or used, by 
software. For example, a network interface card (N1C), gen­
erally identified by a unique hardware address (e.g., an Eth­
ernet MAC address). can be assigned software attributes 
including a set ofnetwork protocols, a set of protocol settings. 
such as IP and default gateway address, and possibly a soft­
ware identifier, such as "ethO". H1is hardware-to-software 
mapping infon11ation is sometimes called a "binding." Bind­
ing configuration is essential in ensuring that a computer 
deployed from an image will fouction correctly 011 a network. 

For instance, consider a source computer acting as a secu­
rity firewall between two networks. The computer may have 
two NlCs: one with software identifier "ethO", connected to 
tlle public network, and another witll identifier "ethl " and 
connected to a private network. Suppose the computer's fire­
wall program is configured to receive packets from "ethO". to 
filter tbem. and to forward a subset oftbose packets 10 "etbl". 

a uniprocessor. 
Alternatively, the tool could use digital signatmes, such as 

those computed using the well-known MDS algorithm, to 
compare files. instead of doing byte-by-byte comparison. 
This approach would involve precomputing signatures for all 
known variants of the file and storillg !lie signarures in a 
database file or embedding them in the tool program itself. Ai 
analysis time, the tool would need to compute only the 
installed file's signature. then compare against the known 
signatures. 

35 Also suppose mat the physical NICs mapped to "ethO" and 
"ethl" are a 3COM 3c5O9B with hardware address OO-O1 -O2-
03-O4-O5, and an Intel Pro I 00 willl hardware address 1 0-1 1-
12-13-14-15, respectively. 

II may not be obvious why ex1racting a hardware configu­
ration from an image would be usefol. After all. users gener­
ally care only about a computer's software and data files, 
since software solves business problems and data files contain 
information. A computer's hardware's only purpose is to 
support software and store data. Knowledge of the number 
and specific type of devices associated with a computer may 
thus seem unnecessary in the co111ext of disk imaging, espe­
cially considering that a disk image should ideally be deploy­
able onto any computer, regardless of the source computer's 
hardware configuration. 

As explained above. however. a disk image tulfortunately 
has dependencies on the source computer's hardware con­
figuration. which is an undesirable consequence of how most 
operating systems are designed and configured. This may 
cause software, especially the operating system itself, to mal­
function if the image is deployed onto a computer with a 
different hardware coufigmatiou. 

The invention uses the hardware configuration from au 
image to alleviate the above problem in two ways. First. the 
invention can automatically check at deployment time 
whether a selected destination computer has a hardware con­
figuration compatible with the configuration extracted from 

A user may want to clone the firewall computer in order to 
40 secure another network pair. More precisely, the user might 

capture an image of the firewall computer, and then deploy it 
onto another computer collllected to two networks NetA and 
NetB using two NICs named NICa and NICb, respectively. 
Assume that the user's intention is to filter content from NetA 

45 to NetB. The rwo destination NI Cs are likely to have different 
hardware addresses from their counterpart NICs in the origi­
nal firewall computer, since they are physically distinct. lfthe 
image were deployed to the destination computer without 
modifications, tlle firewall software may not function cor-

50 rectly, since mere is no guarantee mat the operating system 
will map NICa to the "ethO" identifier and map NICb to 
"ethl ". lb.is problem usually stems from tl1e fact that the 
operating system deployed on tl1e destination computer will 
detect the new NIC for tl1e first time and create a new binding 

55 for it. Tl1is binding's attributes may get initial ized with undes­
ired or unpredictable values. 

A disk imaging system capable of accessing and manipu­
lating an image's binding configuration can solve this prob­
lem; the disk imaging system according to the invention has 

60 this capability. First, it can detennine tl1e number of NJC 
bindings and each binding's settings. With knowledge of the 
destination computer's hardware configuration, detected 
eitller automatically, using known routines, or from user 
input, the imaging system could adapt the image's bindings to 

65 me destination computer's network hardware. In the current 
example. ilic imaging system could modify the 3COM 
3c5O98-to-"etl1O" binding to become NICa-to-"ethO". The 

Netflix, Inc. - Ex. 1005, Page 000025 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
31 

exact change needed depends on the operating system and 
how the binding is stored on disk; this could be achieved, for 
example, by replacing the 3Com N1C's hardware address 
with N1Ca's hardware address in the binding file. Once the 
image is modified and deployed. the operating system nm­
ning 011 the desti1Jation computer will correctly map NJ Ca to 
"eth0", allowing the firewall software to read packets from 
the correct network. 

The above example describes a scenario in which a desti­
nation physical computer with the necessary hardware (at 
least two NTCs, in this case) is known to exist, allowing a 
deployment operation from a specific image to succeed. The 
ability to extract and mru1ipulate binding information is even 
more useful and powerful when the destination computer is a 
virtual machine. Given that a virll.tal machine's hardware is 
implemented in software, its hardware configuration is gen­
erally defined in a file that the virtual machine monitor reads 
before powering on the virtual machine. 11tis file defines, 
among other rbings, the number of N1Cs lo assign to the 
virtual machi1Je. Adding or removing a virtual NlC is thus a 
simple matter of editing of few lines in a virtual machine 
configuration file. 

As a disk imaging system that supports virtual machines 
and is capable of manipulating binding information. the 
invention can create a custom-made virtual machine on the fly 
that meets the binding requirements of a selected image. For 
iJJStance, when asked to deploy a particular image to a new 
virtual machine, the invention can read the image's binding 
information, and then create a virtual machine with the 
required number of N1Cs. ]n addition, the invention can 
reconfigure the bindings in the deployed virtual disk to adapt 
them to the hardware characteristics of the virtual NJ Cs, as 
explained earlier. 
Static vs. Dyuamic Configuration Analysis and Manipulation 

Configuration extraction by analyzing a computer's files is 
not new and has been implemented in various ways in the 
prior art. What distinguishes the invention from the prior art is 
its ability to extract the configuration from image files, 
whereas existing con.figuration analysis software operates on 
a live computer. i.e., one that is powered-on and mnning an 
active operating system. The existing approach generally 
requires mouing an analysis application, usually a user-level 
program, on top of a live computer's operating system; this 
approach is called dynaulic configuration extraction. 

One of the invention's novel contributions is static configu­
ration extraction and manipulation. that is, extracting system 
configuration from a static image fi le, analyzing it. and 
optionally modifying the configuration in an automated way. 
While the dynantic extraction approach provides benefits 
under certain usage scenarios, such as the ability to determine 
a Jive computer's co1ifig11ration without the need to power it 
off, the static extraction approach o1Jers sig11ifica11t advan­
tages in the context ofa disk imaging framework. 

32 
flexibility. Previous paragraphs have already explained the 
importru1ce of system configuration extraction and manipu­
lation in a disk imaging system. The following discussion 
compares a hypothetical contemporary d isk imaging system, 

5 referred to as the " reference system." which uses dynamic 
extraction, against the invention, which uses the static extrac­
tion approach. 
Loop-Back Mounting 

171e preferred embodiment of the aspect of the invention 
10 that relates to disk image capture and deployment uses the 

known loop-back mounting mecha1tism. The preferred loop­
back mecbmlism may be provided in different ways. For 
example, skilled system-level programmers will kJ1ow how to 
design and implement the loop-back drivers used in tile pre-

15 ferred embodiment of the invention. Alternatively, if a loop­
back capability is provided by the server OS itself, tJ1en the 
invention may use it instead. For example, the Microsoft ADS 
provides the imgmount tool to loop-back-mount Microsoft 
Windows' own image files (called .sdi files). The invention 

20 could thus leverage the imgmount tool to add image mru1ipu­
lation capabilities to Microsoft ADS that ADS does not pro­
vide. For example. the in1gmount tool allows a user to view 
files and folders oftJ1e file system contained in the image file, 
but ADS does not provide such novel features of this inven-

25 tion such as automatic image content analysis, P2VN2P, or 
automatic management software insertion or upgrade capa­
bility (described below). 
Image Capn1re 

The discussion on prior art previously explained that static 
30 disk imaging is the safest image capture method because it 

shuts down all software residing on a disk and reboots the 
source computer before capturing an image from that disk. 
Both the reference system and the invention employ oftline 
disk imaging. although ibe reference system uses dynamic 

35 extraction and the invention is able to use static extraction 
techniques. 

Since it is a dynamic extraction solution, the reference 
system is incapable of extracting con.fig11ration infomiation 
from the final image; it must 1herefore do it before the capture 

40 operation by running a special prog.ram on ihe source com­
puter, before rebooting the compu1er. Reliance on this pro­
gram, generally known as an "agent," leads to several issues. 
First, the agent has to be installed on the source computer 
beforehand. This leads to au increased management burden 

45 on users, since all of an organization's computers considered 
for image capture must have this agent installed. It is also 
intrusive: A computer adntinistrator may be reluctant to 
install additional software on a business-critical computer for 
the sole purpose of allowing a disk imaging system to extract 

50 the computer 's configuration information. In the world of 
computer management, restricting the number of programs 
installed on a computer generally leads to bener system sta­
bility and reduced exposure to software bugs, viruses, and 
security vulnerabilities. 

TI1e second issue affecting the agent is the problem of open 
files. Recall that on a live computer with an active operating 
system, user-level programs may be forbidden from access­
ing certain files. Even if the agent were allowed to open a file, 
the contents of tbe file might not be up-to-date if another 

While some existing disk imaging systems a llow a user to 
inspect the file contents tl1rough a specialized utility (such as 55 
Symru1lec's Ghost Explorer) oran image loop-back mounting 
utility sintilar to Microsoft's imgmount, none of those sys­
tems automatically extracts and analyzes derives the image's 
internal system configuratio n for the purpose of automatic 
image organiza1io11, searching, or pre-deployment reconfigu­
ration. 

60 program is simultaneously accessing it. The agent thus faces 
the risk of extracting incomplete or inaccurate configuration 
information. Recall that a disk imaging system serves two primary pur­

poses: backup/restore. and computer cloning. Desirable char­
acteristics for a disk imaging system typically include mini­
ntizing resource consumption, non-intrusiveness, providing a 
framework for easi ly organizing ru1d managing images. 
reducing human intervention and error (i.e., automation), and 

The invention's static configuration extraction method 
does not suffer from the above problems. First. it is not intru-

65 sive: since no agent is required, the source computer's disk is 
never modified. Moreover. tJ1e co1ifiguration is extracted by 
reading a stable copy of the source computer's files after the 

Netflix, Inc. - Ex. 1005, Page 000026 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
33 

computer's operating system was shutdown, resulting in 
accurate and consistent configuration information. 
Image Organization 

34 
out-of-date. Note that the imaging system is also free to cache 
the information locally in memory or temporary files for 
quicker access. 

Another advantage the invention has overt be prior art is the 
5 ability to extract only the configuration information needed 

for a particular task. The disk imaging system could use this 
on-demand extraction capability to quickly classify and cata­
log images based on high-level con.fig1iration information 
such as operating system type and version, and tbeu extract 

A user of a disk imaging system may need to store and 
orga11ize a potentially large nwuber ofimages. lt is natural to 
organjzc images by content or system configuration. For 
instance, aU images contami.ng the same operating system 
type could be stored in the same folderoron the same storage 
server. Images might fi.1rther be classified by hardware con­
figuration; for instance, images captured from uniprocessor 
computers might be kept separate from those captured from 
multiprocessor systems. A system that organizes images by 
system con.fig11ration can also provide advanced search capa­
bilities. For instance, before deploying an iniage to a multi­
processorcomputer, a user might want to query the system for 15 
all images compatible with multiprocessor hardware. 

IO more detailed information later in order to satisfy more com­
plex operations such user-defined search queries and pre­
deployment image reconfigurations. 

Many contemporary disk imaging systems rely on an 
image's file name or user-defined attribt11es to describe its 
contents or configuration. As pointed out in the discussion on 
prior art, relying 011 user-defu1ed names or attributes for 20 
image tagging is ambiguous and error-prone. As a result. a 
recent trend in disk imaging systems is to provide automated 
mechanisms for determining an image's configuration. and to 
classify images based on that information. 

As noted above, existing disk imaging systems that also 25 

support system configuration analysis employ dynamic con­
figuration extraction. which implies that they use au agent to 
compute the source computer's configuration before captur­
ing an image. ThissolutionistbeoneiUustrated in FIG. 3. The 
agent then sends the information over to the imaging server 30 
2100, which stores it in memory or in a file. Once the image 
is captured and stored on the imaging server computer, the 
imaging server must associate the previously collected con­
figuration with the final image file 2015. I ftbe configuration 
is stored as a file, the imaging server must associate the file 35 

with the image by creating a folder and by placing both files 
in the fo lder, or by storing the association in a separate data­
base. Another possibility is to embed the information inside 
the image file. This could be achieved, for example, by 
enhancing the image file's internal format to accommodate an 40 
additional data section for storing collflguration infom1a1ion. 

The above approach is subject to several issues. First, keep­
ing an image's configuration information in a file separate 
from the image file itself increases the probability oftbe two 
files becoming unsynchronized. If, for example, a user modi- 45 
fies the file contents of an image file, she may intentionally or 
accideutally modify the image's system configuration with­
out the disk imaging system's knowledge; the associated 
con.figuration information file may thus become out-of-date. 

The second issue stems from the different types and detail 50 

levels of system configuration information. Some infomia­
tion, such as the operating system version, can be extracted 
quickly by inspecting a small set of program or data files. 
Other information, such as the complete list of installed soft­
ware components, including their versions and patch levels, 55 
or the complete hardware configuration. may require a more 
complex and time-consuming analysis. A disk imaging sys­
tem that extracts system configuration information at image 
capture time thus faces a dilemma: extract all possible con­
figuratio n data up front for a high mu-time cost, or extract 60 
only minimal information, with the risk that specific configu­
ration information needed later, after image creation, may 1101 
be available. 

Summary of Invention's Contributions to lmage Manage­
ment 

The invention is the first disk imaging system to perfonn 
system con.figuration extractioo directly from image files. 
This static extraction method bas many advantages over the 
prior art. First, no additional software needs to be installed on 
a source computer prior to image capture the system is 
non-intrnsive. Since the source computer's disk is never 
modified before or during the capture process. iufonnation 
technology administrators and users are more likely to accept 
and embrace tlus type of imaging system. 

Second. configuration information is always derived from 
the current contents of ao image file, and therefore can never 
get out of date. By eliminating redundant information and the 
need for separate files, this capability ensures the data integ­
rity of image files and their associated information. 

The invention takes advantage of on-demand config11ration 
to compute the minimal and optimal set of infonnation 
needed to perform a selected task. A significant feature that 
this capability enables is the automatic analysis, classifica-
tion, and cataloging ofllllprepared, Ulllllodified images based 
on arbitmry system configuration parameters. The invention 
can thus take random images from various sources, and auto­
matically organize them in a useful way for users. 111e clas­
sification is unambiguous, since it is based on an exact analy-
sis of configuration information contained in image files, not 
user-defined names or tags. On-demand configuration extrac-
tion also provides users with flexible and powerful image 
search functionality, based on user-specified criteria. 
Simplified Hardware Migration Using lmage Reconfigura­
tion 

Thediscussionofthe prior art above introduced two impor­
tant issues in image deployment: hardware compatibility and 
customization of clones. While solutions to both exist, they 
are incomplete and subject to constraints. The invention sim­
plifies or eliminates those difficulties, while providing new 
functionality and flexibility that is difficult to achieve with 
existing mechanisms. 
Review of the Hardware Migration Problem 

As explained above, when software- especially the oper­
ating system- is installed on a computer. it becomes custom­
ized and dependent upon the underlying hardware. The 
dependencies are reflected in the choice of program files 
installed and a number of configuration settings stored in data 
files. 

In order for an opemting system to boot correctly on a 
particular computer, its installed programs, drivers. and sys­
tem configuration files must match or must be compatible 
with the computer's hardware configuration. Once again, the 
Windows 2000 operating system is a good illustration of Those issues do not affect the invention, since it extracts 

information directly from image files. In other words. con­
figuration infonnation is always derived from an image, but it 
never needs to be stored scpararely and thus can never get 

65 those concepts. The components critical in the Windows 2000 
boot process are the kernel, the IJAL Q1ardware abstraction 
layer) module, a disk driver, and a set of configuration settings 

Netflix, Inc. - Ex. 1005, Page 000027 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
35 

stored i11 a data file called the registry. The next discussion 
reviews the Windows 2000 boot process and the resulting 
hardware migration issues. 

There are multiple variants of the kernel and the HAL, each 
one specific to a particular type of hardware component. 5 
There exist at least four variants oft he Windows 2000 kernel: 
one designed for multiprocessor computers, one for unipro­
cessor computers, one for multiprocessor computers with 
Physical Address Extensions (PAE), and one for uniproces­
sors with PAE. Similarly, there exist at least two variants of 10 
the HAL: one for ACPl-capable chipsets and one for non­
ACPl-capable cb.ipsets. An installed Wii1dows 2000 must 
have one file designated as the active kernel and another 
designated as the active HAL. By convention, those files are 
identified with predefined and hard-coded names. The Win- 15 
dows 2000 boot process relies on the active kernel and HAL 
to be named "ntoskrnl.exe" and "hal.dll", respectively. Other 
variants of the kernel and HAL may exist on the file system, 
bui they must be assigned different names (a file system 
requires file names to be w1ique within a folder), and as such 20 
they are ignored during the boot process. In other words, 
Windows 2000 does not have the ability to select a particular 
variant of the kernel or HAL at boot time; it must load t11e files 
wit11 the predefined names. 

Once the active kernel and HAL are loaded into memory, 25 

the operating system loads a set of critical drivers into 
memory. The set is specified by configuration settings in the 
registry file. One of the critical drivers is the disk driver, 
because it allows the operating system to access the comput­
er's disk in order to complete the boot process. As described 30 
in the discussion on prior art, t11e boot process generally uses 
the computer's 810S to load the kernel, the HAL. the registry 
file, and the cri tical drivers from disk into memory. llus 
solves the cbickeu-and-egg problem of reading disk data 
before the appropriate disk driver is activated. Note, however, 35 
that a BIOS generally has lintited functionality and perfor­
mance, and is thus used to load only a small set of files during 
the boot process before ilic operating system can take over. 

36 
of the image, SysPrep can populate the source computer with 
additional disk drivers and the corresponding registry entries. 
A user specifies the list of additional drivers and registry keys 
to the tool using a file. 

ll1ere are several issues with the system preparation solu­
tion. First, a user must have the foresight to prepare a com­
puter before capn1ring its image in order to make the image 
easier to deploy onto diverse hardware platforms: tlus adds an 
admitustrative burden on t11e user or administrator. Managed 
images would fall into two broad categories: those that are 
prepared and those that aren't. Take, for instance. an image 
captwed from a sourcecoi:uputcrpurely for backup purposes. 
Such an image is intended to be restored back onto the same 
computer in order to recover from accidental disk data cor­
ruption. There is therefore no apparent need for preparing it 
for fumre deployment onto other computers. However, if the 
source computer is stolen or irreparably damaged, its admin­
istrator may not be able to find a replacement computer that 
bas the exact same hardware configuration. This situa tion is 
especially common if the damaged computer were au old, 
obsolete model no longer in production. If no compatible 
computer can be found, the bacJ...7.1p image may become use­
less, potentially resulting in data loss or requiring time-con­
sw11ing work to recover the image's data. 

Second. as t11e discuss ion on prior art explains, system 
preparation forces a user to predict at1d specify all possible 
destination hardware configurations at preparation time. 
Since new computer hardware is constantly produced and 
introduced into the market. it is impossible for an IT admin­
istrator to build prepared images that are guaranteed to be 
compatible with future generations of computers. Many disk 
images may tlrns become obsolete over time. forcing the 
admirustrator to periodically prepare a computer with an up­
to-da1e set of hardware configuraiioJJs and subs1itutit1g the 
resulting image for obsolete ones. 

Third, system preparation handles only one of the three 
dimensions oftbe device compatibility problem. In the case 
of the SysPrep tool for Windows 2000. a prepared image can 
be deployed to multiple computers t11at use different disk 
controllers; however. it cannot be deployed 10 a computer 
with a processor or chipset configuration different from the 
source computer's. The explanation is that Wtndows 2000 
can select among multiple disk drivers at run-tin1e and choose 
the one compatible with the underlying computer's disk con-

Unlike the kernel and t11c HAL, Windows 2000 can load 
muliiple, disti11c1 disk drivers, since the reg.istry can specify 40 
an arbitrary, but usually small (for reduced memory con­
sumption), set of critical drivers lo be loaded at boot time. 
Each disk driver bas a different file uame. If one of the drivers 
supports the disk on which the operating system resides. ilie 
operating system can successfully mount the disk's file sys­
tem, allowing it to load the hundreds of remaining system and 
application files iu order to complete the boot process. 

45 trailer, as long as the driver is registered in the registry; 
however, as described earlie r, Windows 2000 must boot from 
one pre-selected active kernel and one pre-selected active 
HAL; in other words, a Windows 2000 image can support 
only one exact combination of a particular processor configu-

In summary, in order for Windows 2000 to boot correctly 
on a computer, four conditions must be met: the active kernel 
must be compatible with the computer' s processor configu­
ration; the active HAL must be compatible with the comput­
er's chipset; a disk driver compatible with t11e operating sys­
tem's primary disk must exist on the file system; and the 
driver must be registered in t11e registry file. 

A disk image captured from a source computer contains an 
active kernel. an active HAL, drivers, and a registry, and thus 
encodes the operating system's dependencies on the source 
hardware. After the image is deployed to a destination com­
puter, the operating system will not boot successfully 0 11 the 
new computer unless the four requirements stated above are 
satisfied. 
The System Preparation Method and its Shortcomings 

A common solution to the hardware migration problem 
that the prior art provides is called "system preparation." As 
au illustration, a tool called SysPrep can prepare a Windows 
2000 computer for image capture. To reduce the odds of 
hardware incompatibility issues during fut11re deployments 

so ration and a particular chlpset. Since there at least four vari ­
ants of the Windows 2000 kernel and two variants of the HAL, 
in order to support t11e w idest variety of destination computers 
an administrator would have to create eight different versions 
of the same image, each captured from a distinct computer 

55 with the required hardware configuration permutation. 
The fourth weakness affecting system preparation is the 

poor handling of hardware differences in devices that are not 
critical to the boot process, but important to the destination 
computer's flinctionality. NlC bindings are the most common 

60 example: a user may have to manually reconfigure 3 deployed 
computer's NlC bindings to ensure that it operates correctly 
ou the network. 
Hardware Migration According to the Invention 

As previously described, the invention can extract configu-
65 ration information from unmodified disk images for identifi­

cation, classification. archival. and advanced search pur­
poses. 1t is a lso capable of modifying an image's 

Netflix, Inc. - Ex. 1005, Page 000028 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
37 

configuration- a process called "reconfig11ratio11"- in order 
38 

administrator would boot tile computer from the provided 
CD. ll1e program then dcten11ines the computer's hardware 
configuration and generates a unique identifier for the com­
puter, possibly based-once again-on one of the N1Cs' 

to resolve deploy-time issues. One of those issues is precisely 
the hardware compatibility problem. The following discus­
sion describes in detail the components and mechanisms the 
invention uses to address the general hardware migration 
problem. Next, the special cases of physical-to-virtual (P2V) 
and virtual-to-physical (V2P) migration will be described. 

5 hardware address. The program could then send this infom1a­
tion to the imaging server over the network, or save it on a 
removable medium, such as a floppy disk, allowing the 
administrator to walk over to the computer nmn.ing the imag­
ing server and manually register the computer using the saved 

TI1e invention's overall solution to the problem can be 
stated as follows: just before an image is deployed. the disk 
iniaging system analyzes the iniage's system configuration, 
then looks up or determines the destination computer's hard­
ware configuration, and then determines the necessary con­
figuration changes to the image to make it compatible with the 
destination hardware. The configuration changes may involve 
modifying specific entries in data files. installing or replacing 15 
program files, or a combinat ion of both. 

10 information. 
Computer and configuration pre-registration allows the 

invention to look up a destination computer's exact hardware 
con.figuration prior to an image deploy operation. based on 
the computer's identity. The invention also supports an alter­
native to the pre-registration approach: The imaging server 
could automatically determine a destination computer's hard-

The invention does not require an image to be prepared. lt 
can thus solve the hardware migration problem for a wide 
range of existing images, even those originally created with­
out the hardware migration issue in mind, such as backup 20 

ware configuration by, for instance, downloading and nimling 
the configuration collection program using PXE (or other 
software with analogous functionality) just before a deploy 
operation. TI1e advantage of Ll1is approach is that no registra­
tion database is needed. One shortcoming is the potential for images. 

Destination Configuration Lookup 
A destination computer's hardware configuration can be 

determined by using one of several mechanisms provided by 
the existing art. The first approach is to require all eligible 
destination computers to be pre-registered in a database man­
aged by the disk imaging system. Several existing disk imag­
ing systems and computer management software frameworks 
implement this approach. When a computer is first registered, 
its hardware configuration is stored in the database along with 
the computer's identification i11Jon11ation. lt is common to 
identify a computer by the universally unique hardware 
address ofoneofits N1Cs; for example, a computer connected 
to the network lb.rough an Ethernet NIC can be identified by 
the N1C's Ethernet MAC (media access control) address. 

A computer can be registered automatically when it is 
added to the network. For example, the PXE (pre-boot execu­
tion environment) standard specifies a mech,u1ism for auto­
matically initializing a new. bare-metal computer when it first 
appears on tbe network. The tenn "bare-metal" signifies that 
the computer's hard disk contains uninitialized data. and 
therefore is not bootable. Assuming that the computer is 
con.figured to boot from the PXE mechanism (typically a 
user-settable option in the computer's BIOS setup software), 
it will search for a PXE server on U1e network after powering 
on. I f a PXE server is present. the server can download an 
arbitrary program over the network into the computer's 
memory. TI1e computerexecutes the program once it is down­
loaded. 

lower deployment perfonnance. due to the added overhead of 
the configuration analysis on every deploy operation. Another 
possible problem is the imaging server may not be prepared-

25 o r set up- to reconfigure the image to comply with the 
detected hardware configuration. As is described below, the 
reconfiguration process for a specific target configuration 
may require a specific set of files. If the imaging server 
encounters a hardware config11ration that it has never detected 

30 before. it is possible for some required files to be missing. The 
pre-registration method. in contrast. al lows the imaging 
server to dctcnninc at registration time whether a particular 
hardware configuration can be supported. At deployment 
time, the server can quickly query the database 4004 to check 

35 if reconfiguration for the selected destination computer is 
possible, and if not, locate and obtain the missing files. 

It might be useful for the database to hold separate records 
for computers and hardware configlll'ations. This could 
reduce the database's size requirements if multiple registered 

40 computers bad the same hardware configuration; in this situ­
ation, each of the computer records would contain a link. or 
pointer, to a single hardware configuration record. Keeping 
separate records for configurations is also usefi.11 when the 
destination computer is a dynamically created virtual 

45 machine. Unlike a physical computer. a virtual machine can 
be created on the fly, and therefore may not be registered. TI1c 
hardware configuration of a virtual machine is generally con­
stant and known ahead of lime and can thus be pre-registered. 

See FJG. 6. A disk imaging system can use the PXE mecha- 50 

nism to automatically register a computer by including a PXE 
server 4002. When a computer appears on the network. U1c 
disk imaging system's PXE server 4002 downloads a pro­
gram specifically designed to analyze the computer's con­
figuration and communicate it back to the imaging server. Jf 55 
the computer is already registered, i.e .. its identifier is present 

This allows the imaging server to detemtine the correct con­
figuration changes to an image, if needed, before deploying it 
to a virtual machine. Tilis is discussed in more detail in the 
section below entitled Physical to Virtual Conversion. 

While the idea ofkeeping track of computer configurations 
using a database is not new in and of itself, the invention's 
novel contributiou is to employ such a database for validating, 
author izing and then executing disk image deployment opera-

in the imaging server's registration database 4004, the com­
puter is left in a stand-by state, ready for futme deployment 
operations; otherwise, the imaging server creates a new entry 
in the database 4004, L11c downloaded program then scans the 60 
computer's hardware configuration and sends the infom1a­
lion to the server, and the server stores the information in the 
new database entry. 

A computer can a lso be registered manually. A disk imag­
ing system could, for example, provide users with a bootable 65 
CD-ROM containing a hardware configuration detection pro­
gram. In order to register a new bare-metal computer, an 

tions. 
Reconfiguration 

The reconfiguration process modifies an image's system 
configuration to make it compatible with a selected destina­
tion hardware configuration. The specific reconfiguration 
operations are dependent on the type of operating system 
within the image. the operating system's patch level. and the 
destination hardware configuration. 

Tue operating system type and patch level are components 
of an image's system configuration: U1ey can Urns be deter­
mined by using the sta tic configuration extraction mechanism 

Netflix, Inc. - Ex. 1005, Page 000029 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
39 40 

described earlier. Both can be determined by inspecting spe­
cific fi les or entries within files. For instance, most operating 
systems developed by Microsoft are identified by a registry 
entry called 
[-IKEY LOCAL_MACBINE\Software\Microsoft\ Windows 5 

ACPJ variam w ith. version 401: the installed kernel would be 
the multiprocessor variant wit11 version 60; and 
NTDLL.DLL, which is hardware-iDdependent, would be at 
version 701. In order lo reconfigure the files for a non-ACPI, 
uniprocessor destination computer, the invention first 
replaces tbe kernel with the uniprocessor variant wit11 version N·ncurrcntVersion: distinct values of th.is entry indicate 

whether the operating system is Windows NT, Windows 
2000, or Windows XP. 

A patch level indicates how up-lo-date an operating system 
is with respect lo bug fixes and/or functionality upgrades. An 
operating system vendor such as Microsoft periodically 
releases a set of patches, sometimes cal led "service packs," iu 
order to provide bug fixes and possibly ftmclionalily upgrades 
for a specific operating system type. A patch contains updated 
versions of system files. Each system file has a version uum­
ber; an updated file usually has a version higher than the one 
ii replaces. A patch does not normally update all of an oper­
ating system's files but rather onJy the ones that need repair or 
upgrade. The lem1 "patch level" generally describes the cur­
rent file stare of an operating system as a fooction of the most 
recently applied set of patches. 

For a system file with multiple variants, such as the Win­
dows 2000 HAL or kernel , a patch updates the file onJy if ii 
contains an updated version for the currently installed variant 
of that file. To illustrate this concept, Table l shows hypo­
thetica l system file versions as a fouction of patch levels; 
patch level O represents the base operating system before any 
patches are installed; NTDLL.DLL is a system library used 
by applications and is not hardware-dependent. If the operat­
ing system is installed on a non-ACP] u1J.iproccssorcomputer, 
upgrading to patch level l involves updatiog the kernel from 
version 500 to SOI and the system library NTDLL.DLL from 
vers ion 700 lo 701; however. the HAL is not updated. because 
there is no Dew versioD of the DOn-ACPJ variaDt in patch level 
1. If the computer were equipped with an ACPI cb.ipset, the 
HAL would have been updated, since the original active HAL 
would have been the ACPJ variant w ith version 400 and it 
would have been updated to version 401. 

TABLE I 

KER- KER· 
HAL.OLL NEL.EXE NEL.EXE 

(non- HAL.DLL (Uni- (Multi-
ACPI) (ACPI) processor) processor) NTDLL.DLL 

Patch 300 400 500 600 700 
level 0 
l'lllch 300 401 SOI 601 701 
level I 
P31ch 300 402 501 602 701 
level 2 

In order to reconFigurc 3n in1age to support a different 
hardware configuration, the invemion first detenuines the 
image's current patch level by analyzing its system configu­
ration. Some operating systems such as Windows 2000 record 
the latest patch level in a registry entry; the patch level can 
a lso be determined by inspecting the versions of installed 
system files. 

The reconfiguration process replaces each hardware-de­
pendent file with a substit111e. which is the variant that is 
compatible with the destination hardware. This raises the 
issue: What is the correct versioD of the variant to use as the 
substitute? The correct version is the one that is the most 
up-to-date for the current patch level. In the nmning example. 
suppose that the image was captured from an operating sys­
tem at patch level I installed on a multiprocessor computer 
with ACPJ-capablc chipscl. The installed HAL would be the 

501. It should nol use version 500, because that version cor­
responds to the older patch level O and would possibly lead to 
an unstable operating system because system files from the 

1 o same patch level may have dependencies between each other. 
For instance, the installed NTDLL.DLL at version 701, 
which does not need to be replaced because it is hardware­
independent, may depend on a feature or behavior available in 
versions 501 and 601 of the kernel, but not versions 500 and 

15 600. The invention nex1replaces theACPI HAL, version 40 I , 
with thenon-ACPI HAL variant wit11 version 300, since patch 
level I docs not supply a new version of the non-ACPJ HAL. 

In addition to the HAL and the kernel, the invention also 
installs a disk driver compatible with the destination's disk 

20 controller and creates the corresponding entry in t11e registry. 
There may be multiple versions of the driver and so the 
invention substitutes the correct version based on the image's 
current patch level. 

The invention's reconfiguration capability is not limited to 
25 devices that arc critical to the boot process. JI can also recon­

Figure 3n image to accept and set up a non-critical device, 
such as a NIC, that did Dot exist in the original source com­
puter but that is present in the destination computer. While 
NlC set-up. especially bindiDg set-up (refer to the discussion 

30 above on hardware configurat ions), is not critical to tl1e boot 
process. it is essential to ensuring the destination computer's 
correct operation on a network. Reconfiguration of non-criti­
cal devices OD Windows 2000 generally involves installing 
tbe associated driver, creating one or more registry enLries 

35 and, in the case of NICs, creating or modifying binding set­
tings in order to ensure the NlC is wired to the correct network 
and set up with the correct parameters (such as JP address). 
FileCaehe 

·me invention's reconfiguration mechanism will usually 

45 

50 

40 require substilllte files to be supplied from an external source, 
since the file variants or versions required for a particular 
reconfiguration on an image may not be present in the image. 
This is because when au operating system is installed on a 
computer from a distribution medium. such as a CD, only the 
variants requirnd for t11e computer's hardware configuration 
are copied from the medium 10 the computer's disk. While 
base versions of all system file variants come from the origi­
nal operating system distribution medium, updated versions 
typically come from patches and service packs that can be 
freely downJoaded from tbe Internet. 

In order to ensure that the appropriate files are present 
when needed for a particular reconfiguration, the invention 
preferably includes and manages a repository, called a "file 
cache." 4010 of operating system installalion media. service 

55 packs and patches. This repository may be initially empty 
when the imaging server is first installed and configured 011 a 
server computer. When a destination computer or destination 
hardware coDfiguration is first registered in the database 
4004, the invention detcm1ines whether the cache 4010 con-

60 tains the substitute files necessary for a reconfiguration opera­
tion targeted for that hardware configuration. lf a required file 
is missing, the in1aging server can request the user to supply 
the appropriate file container 4012, i.e., a CD, a service pack, 
or a patch, depending on the versions needed. The file con-

65 tainer4012 is then inserted into the cache 4010. 
Alternatively, containers 4012 can be located and inserted 

into the cache at deployment time. An advantage of tl1is 

Netflix, Inc. - Ex. 1005, Page 000030 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
41 42 

Fornmately, this information is generally available for free 
on the Internet. for most operating systems. For instance, the 
file version history for Windows 2000 patches is documented 
in numerous public pages on Microsoft's technical support 

approach is that the image's patch level is known at deploy­
ment time, allowing the reconfiguration mechanism lo limit 
the set of required containers to a service pack or a set of 
patches specific to the image's patch level. In contrast, filling 
the cache at configuration registration time would involve 
locating and obtaining the union of all containers required for 
all possible patch levels and for all supported operating sys­
tems. 

5 web site. There even exists a global file in XML forma t- the 
Microsoft Security file mssecure.xrnJ ( )-that contains infor­
mation for every Windows patch ever released. This informa­
tion contains, among other things. the files updated by a patch 

If a required substitute file is contained in a CD, the user bas and their respective versions. 
The invention's imaging server component 2101. using 

mechanisms fami liar to skilled programmers, can gather rel­
evant version information from various Internet sources and 
tben compile that infonnation into a local database tailored 
for the reconfiguration process. Periodically. the Internet 

the option of converting the CD to an CD image file, typically 10 

using the ISO9660 standard. Existing CD software tools. 
such as Virtual CD, can "mount" a CD image to make it 
appear as a real CD to the operating system hosting the 
imaging server. Storing CDs as JSO9660 images in the cache 
4010 allows the disk imaging server to automate the extrac­
tion of files from a CD at reconfiguration time; in contrast, not 
using images would a require a user to manually insert a CD 
into the server computer's physical drive whenever a recon­
figuration operation needs it. 

15 sources are consulted and the local database is updated in case 
new patches have been released. Alternat ively. the imaging 
system's vendor can compile and maintain this database and 
make it avai.lable to all imaging systems from the same vendor 
through a public computer-lo-computer service. A disk imag-

The invention can automatically locate and download 
missing patches and service packs, since they are available 011 

the llltemet: the mechanisms needed for automated down­
loading of patches and service packs are well known and are 
used by many common programs, such as anti-vims pro­
grams. Patches and service packs usually employ a well­
known file archival fonuat. such as the Microsoft Cabinet 
(CAB) standard. The imaging server can thus use publicly 
available software tools or libraries to automatically extract 
files from those containers. 

20 ing system from that vendor would thus only need to periodi­
cally check for a new version of this database using the 
service and then download it into a locally cached copy if 
needed; this approach would reduce U1e disk iniaging's com­
plexity by not requiring it to perfonn the data gathering and 

25 compilation work. 
Image Modification Using Copy-on-Write 

Reconfiguring an image implies modifying its file con­
tents. With any disk imaging system, images are archived in 
one or multiple user-specified locations. such as hard disks. 

30 networked disks, or CD-ROMs. When an image needs to be 
reconfigured prior to being deployed, it may not be acceptable 
or possible 10 modify tbe archived copy. For instance. an 
administrator may write-protect all archived images to pro­
tect them from accidenta l damage. Modificatiou is also 

ll is common for the Internet location of a particular service 
pack or patch to change over time. since operating system 
vendors periodically reorganize their Internet pages. The 
invention provides two mechanisms for addressing this issue; 
first, if an operating system vendor publishes an internet­
based patch locator service that exposes a well-known com­
puter-to-computer messaging interface, such as SOAP 
(simple object access protocol), the imaging server could 
automatically obtain the cttrrcnt location for a desired patch 
using this service. If no such service exists, an imaging soft­
ware vendor ca11 publish and maintain its ow11 locator service 40 
for patches provided by the operating system vendor. 111 this 
scenario, the imaging software vendor periodically monitors 
operating system vendors' patch locations and whenever a 
location changes. the imaging software vendor updates its 
own database of patch-to-location mappings. TI1is database is 45 
exposed to all imaging servers from the same vendor using a 
computer-to-computer Internet interface. An imaging server 
is thus guaranteed to have access to the most current patch 
locations by always connecting to the imaging vendor 's loca­
tor service. 

Once a container is inserted into the file cache 4010. it 
remains in the cache for an arbitrary amollllt of time. On a 
subsequent complller o r configuration registration operation, 

35 impossible if the image is stored oua read-only medium, such 
as a CD-ROM or DVD-ROM. 

Even if modification of an archived image were possible 
and allowed, it may not be desirable. Suppose, for instance, 
that a user wishes to deploy a particular image to three des­
tination computers, each with a different hardware configu­
ration and thus requiring three disrinct reconfiguration opera-
tions. If the image were allowed to be modified, the three 
reconfiguration operations would need to occur sequentially, 
since simultaneous modifications of the same set of files 
could lead to disastrous results. 

TI1e invention provides an elegant solution to the image 
modification problem. Given that its images are in fact virtual 
disks, the iLwention can safely reconfigure 3n image wit bout 
modifying the virt11al disk file by using the copy-on-write 

50 method. When copy-on-write is enabled for a virtual disk, 
modifications to the file are stored in a separate file. so111e­
times called redo log. A redo log specifics which sector loca­
tions in the original disk were written and contains the modi-

no further insertion is necessary if all of the required substi­
lllte files are present in containers 4012 already in the file 55 
cache. The imaging server 2101 implements the policy defin­
ing the conditions under which containers are deleted from 
the cache; control parameters of this policy, such as the maxi­
mum cache si1..e, can be user-configurable. 

fied contents for those locations. 
A redo log, combined with the original vinual disk it is 

derived from. represents a second. logical disk whose con­
tents are defined as the original disk's contents with the 
exception of the modified sectors specified in the redo log. 
When the invention's imaging server component reconfig-

Version Database 
In order to determine the correct versions of substitute files 

lo use in a reconfiguration operation, the invention needs to 
access a matrix similar to Table 1 from the prior example . 
Specifically. the reconfiguration process needs to know all 
versions of all variants of hardware-dependent system files 
for every existing patch level and for each supported operat­
ing system. 

60 ures an image, it puts the image in copy-on-write mode and 
then makes the necessary changes, resulting in the creation of 
a temporary redo log. The final contents of the resultant 
logical disk are then deployed to the destination computer. 
When deployment comple tes. the temporary redo log is 

65 deleted. 
111is approach also al lows simultaneous reconfiguration 

operations on the same image, since a diffcrem redo log is 

Netflix, Inc. - Ex. 1005, Page 000031 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
43 

created for each reconfiguration session, resulting iu multiple 
logical disks that don't interfere with each other. 
Direct Modification of Destination Disk 

44 
it is by definition a template image, ready for archival or for 
deployment to another physical machine, or to a virtual 
machine. 
Deploying a Template Image to a Virtual Machine 

A template image can be deployed to a vim1al machine 
using this general procedure: I) use conventional vimial 
machine software to create a virttia1 machine config11ration 
file describing a new virtual machine with no virtual disk; 2) 
if reconfiguration is required, 111odify the template image 

As an alternative to the coy-on-write technique described 
above for modifying images, ihe destination disk could also 5 

be modified directly: Instead of modifying a local copy of the 
image (through the redo-log mechanism) and then deploying 
the modified copy it to the destination physical disk, the 
alternative is to deploy the uruuodified image to the destina­
tion disk. The destination disk could be either a physical disk 

10 using copy-on-write, producing a new logical image repre­
senting the modified image; 3) make a copy of t11e logical 
image, producing a new, fol l-size clone of the 1:nodif:led 
image; 4) al'lacb the clone as a primary disk to the virtual 
machine: and 5) destroy the logical disk by deleting the redo 

or a virtual disk file, in cases where the destination computer 
is a virtual machine running on a virtual machine host. The 
destination disk can then be loop-back-moumed. using the 
procedures described above. TI1is will make the destination 
disk appear as a simulated local disk on the server host, 
allowing the imaging server lo modify the disk's files in order 
to reconfigure it. 

15 log produced by the copy-on-write process. At the end of this 
procedure. t11e cloned image is attached to a virtual machine 
and therefore it is an active image. 

Two different possibilities must be handled: J) the desti­
nation disk is a physical disk directly attached to a destination 
computer: and 2) the destination disk is a virtual disk file 
residing on a file system of a destination virtual machine host 
computer. Case 2) is d iscussed below under the heading 
"Deploying a template image to a virtual machine." 

The reconfiguration in step 2 is required if the template 
image was originally captmed from a physical disk. It is not 

20 required i fit came from a source virtual machine and both the 
source and destination virtual machines have the same hard-
ware config11rarion. 

The procedure is slightly different if the virtual machine is 
to be hosted on a physical compmer different from the server 
computer hosting the iniaging server. 1 n this scenario, instead 
of making a local copy of the logical disk, the imaging server 
transfers the contents of the logical image over a network to 
the destination virtual machine host and then destroys the 
logical image. 

Instead of using t11ecopy-on-write technique, it would also 
be possible to make a full copy oft11e unmodified virnial disk. 
lf the destination host is the same as t11c server host. tl1cn the 
copy will reside on the server host and be directly accessible 
by the imaging server. The imaging server then loop-back 

Ln case l ), if the image is deployed by loop-back-mounting 25 

the destination disk (using an imaging client on the destina­
tion computer), which is the preferred embodiment, then the 
modifications for reconfiguration can be made directly on the 
destination files after they are copied from the source. but 
before closing the network connection. ln this case, recon- 30 
figuration is a simple additional step in the overall deploy­
ment operation. If the image is deployed using a traditional 
disk imaging method that does not use loop-back-mounting, 
tbeD a separate loop-back mount step is oeeded after the 
image is deployed. 35 mounts the destination virtual disk, making it appear as a 

simulated destination disk. modifies its contents direc tly for 
reconfiguration purposes, then urunounts it. 

Image States 
In the invention's disk imaging framework. an image can 

be created using one of two met11ods. The first and most 
straightforward method is to use a virn1al machine to create an 
image. This procedure comprises the following steps: I) use 40 
virtual machine software to create a virttial machine with an 
empty virtual disk: 2) power on the virtual machine and then 
install an operating system and a desired set of software 
applications inside the virtual machine; 3) shutdown all soft­
ware and then power ofI the vimial machine. When an oper- 45 
ating system is installed in a vim1al machine. an installer 
program first creates a file system on the v irttial disk and then 
populates it with files. Once installation is complete and the 
virtual machine is powered off, the resulting virtual disk can 
be detached from the virtual machine and used as an image for 50 

archival and foture deployment. Such an image is said to be a 
template image, one or 111ore ofwhicb 111ay be stored as files 
4020 in t11e server computer. 

A virtual disk that is attached to a virtual machine should 
not be treated as a template image, because if the virtual 55 
machine were powered on. software running inside of the 
virtual machine could modify the virtual disk, thereby mak­
ing the image's contents unstable. For this reason, the inven­
tion calls an attached vim1al disk an active image. 

The second method for creating an image is to perform a 60 
capn1re operation from a physical machine's disk. It is com­
mon for the physical disk to have been previously populated 
with an operating system and a desired set of software ( or else 
there would be no point in trying to capture an image from it). 
The virtual disk resulting from the capture operation repre- 65 
sents a copy of the sou.rec computer's physical disk. S ince the 
new virtual disk is not initially allached to a virtual machine, 

1f the destination host is another computer, then the desti ­
nation file may be copied over the network to t11e destination 
host. Once copied, the imaging server loop-back mounts the 
destination virtual disk file using a network com1ectfon and 
the same network protocol used to communicate with the 
imaging client responsible for image captme/deploy to or 
from a physical disk. The difference in this case is that a 
different imaging client will be used on t11e destinat ion virtual 
machine host- this modified imaging client will communi-
cate using tbe same network protocol as the standard imaging 
client 1021. but instead of accessing a physical disk, it trans­
lates the sector requests sent by the imaging server into file 
accesses within the destination virn1a1 disk file. Once the 
destination disk appears as a simulated local disk, the imaging 
server can modify its contents for reconfiguration purposes, 
ru1d then m1mount t11e disk and close the network cormecrion 
when it's finished. The general system implementation of 
such an al ternative mechanism will employ substantially the 
same components and configuration as are described above in 
other contexts. 
Physical to Virtual (P2V) Conversion 

Jn a computing environment that includes both physical 
and virtual machines, a common need is to convert physical 
computers to vimial machines. This is capability is required, 
for example, to consolidate multiple existing physical com­
puters into an equivalent set of virtual machines running on a 
single physical box. A physical-to-virt11al (P2V) conversion 
ofa physical computer is generally defined as migrating the 
physical computer's disk state. which includes its operating 
system, software applications and data, into a virtual disk, 

Netflix, Inc. - Ex. 1005, Page 000032 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
45 

with minimal user intervention. "The resulting virtual disk can 
be attached to a virtual machine, which can then boot the 
migrated operating system and run the migrated software, 
resulting in a system functionally equivalent to the physical 
computer. The migration comprises two steps: J) the disk 
imaging step copies disk data from the physical disk to the 
virtual disk; and 2) the reconfiguration step reconfigures the 
migrated operating system to make it compatible with the 
virlllal machine's hardware configuration. 

Performing a P2V conversion using solutions available in 
the prior art is cumbersome, unreliable, time-consuming and 
error-pro1Je. 11Je first issue is that existing disk imaging sys­
tems do 1101 directly support v irn1al disks as image flies. partly 
because disk ioJagfag and virn1al machine software products 
have evolved independently and partly because many disk 
imaging systems may use a file-based image file format, as 
opposed to the sector-based format required by virmal 
machines. Consequently, in order to create and populate a 
virtual disk with contents from a physical disk, a user must 
manually create a virtual disk using virtual machi.ne software 
and then attach it to a virt1ial machine and then nm a disk 
imaging client software in the virnial machine. From the disk 
imaging software's perspective. the disk device visible from 
within the virtual computer appears similar to any real physi­
cal disk and can thus be initialized and populated using stan­
dard sector-level input/output operations; the virtual machine 
monitor then translates the sector operations into fi le opera­
tions as specified by the virn1al disk's internal file format. 

46 
machine (that is why it needs reconfiguration in the first 
place), the only solution a user has for modifying the virtual 
disk's file contents is to altach it as a second virtual disk lo an 
exis6ng. already functional virn1al machine, hereafter 

5 referred to as "helper" virt1ial machine. The helper virtual 
machine's first virl11al disk contains a fonctional operating 
system capable of recognizing the file system on the second 
virn1al disk. Once the second disk is attached and the helper 
virmal machine is powered on, the user can access and modify 

10 files residing on the second disk from within the helper virtual 
machine. Once the desired changes are made, the user shuts 
down the helper virtual machi.ne and tl1en detaches the recon­
figured disk. 

Not only is manual reconfiguration time-consuming, due 
15 to the helper virtual machine requirement and the need to 

configure it with an extra disk, but it is also extremely error­
pronc, leading to unpredictable results. For instance, a user 
may not know which file variants lo substitute. Furthermore, 
even if the correct file variants are used, the user may mislak-

20 enly substitute rl1e wrong file versions with respect to the 
migrated disk's current patch level. possibly leading to 
unstable operating system behavior in the destination virtual 
machine. Another disadvantage of using a helper virtual 
machine is its high cost in rerms of processing power and 

25 memory consLllllplion. Helper virmal machines thus place a 
heavy load on the computer hosting the imaging server. pos­
sibly interfering with other software running at the same time. 
This also makes it difficult to perform multiple simultaneous 
P2V conversions on a given inlaging server computer. 

ln summary, rl1e prior art does not provide a reliable or 
efficient mechanism for performing P2V conversions. The 
invention, on the other hand, naturally supports P2V conver­
sion as a special case of the general hardware migration 
problem. First of all , the invention'scboice of virtual disks as 

When using standard disk ioJaging software. the ioJaging 
step may therefore require the following actions; I) run the 30 
disk imaging client on the physical computer, possibly after 
rebooting it (if the disk imaging system uses the offiine disk 
imaging method); 2) execute a capture operation lo create an 
image fi le on aJJ intenuediate computer hosting tbe imaging 
server; and 3) create a new virtual machine with an empty 
virtual disk, then run the imaging client in the virn1al machine 

35 a universal image fi le fonuat disk naturally takes care of the 
imaging step: Once a physical computer is rebooted and starts 
running the inlaging client, the client can copy the computer's 
disk data directly to a virtual disk on the imaging server 
computer: there is no need to run a second client inside of a 

to deploy the image from the intermediate computer onto the 
virtual disk; when the deployment operation completes, 
power off the virtual machine and then archive or use the 
populated virtual disk. Some disk imaging products, such as 
Symantec Ghost, have the option of directly imaging from a 
source disk to a destination disk without creating an interme­
diate ioJage file. lfthis option is available, action (2) can be 
eliminated and the disk data can be copied directly between 
two imaging clients, one running on the physical computer 
and one in the virtual machine. The above procedure requires 
many manual steps and is consequently time-consuming and 
difficult to automate. 

40 virtual machine in order to populate the virtual disk. Secoud, 
the invention's imaging server can mount a virtual disk in 
loop-back mode, thereby giving it direct access to the virn1al 
disk's files through the server operating system, without the 
need for a helper virlltal machine. Finally. if the virtual com-

45 puter's hardware configuration is registered, the invention has 
the exact knowledge required to select the correct variants and 
versions of substitute files to use during the reconfiguration 
process. 

The second issue is the difficulty of the reconfiguration 
process. In order for a migrated operating system to boot 50 

correctly in a virnial machine, the kernel, HAL. disk driver 
and registry may all need to be reconfigured, since a virtual 
machine's hardware configuration may be significantly dif­
ferent from a physical computer's. No existing software can 
safely perfonn all of tbe necessary reconfigurations. As 55 
explained on numerous occasions above. performing a sys­
tem preparation on the physical computer can solve part of the 
problem, but not the general problem, since system prepara­
tion can only solve issues related to the disk driver. TI1e other 
problem with system preparation is U1e fact that it requires 60 
modifying the physical computer by installing additional 
software on it, something that an lT administrator may find 
unacceptably intrusive and risky. 

In order to complete parts of the reconfiguration process 
not handled by system preparation, a user may try to manually 65 
substitute system files such as the HAL and rl1e kernel. Given 
that a migrated virtual d isk may 1101 be bootable in a virt11al 

The hardware configuration of virn1al machines, unlike 
that of physical computers, typically does not change very 
often over tinle. This is in fact one of the key advantages of 
using virlllal machines: By presenting a stable hardware plat­
form to rl1e software contained within it, a virt11al machine is 
highly portable ,md mobile across multiple physical host 
computers with diverse hardware configurations. A virtual 
machine thus isolates its software from the variations in the 
underlying physical hardware. 

On rare occasions, a vendor of vimial machine software 
may decide lo change the virlllal hardware configuration 
exposed by a new generation of products. The most common 
reason for changing the virt1.1al hardware configuration is to 
upgrade it with more modern hardware features in order to 
enable new fimctionality for software running inside of vir­
tual machines. The family of virtual machine software prod­
ucts from VMware, Inc .. illustrates this: VMware Worksta­
tion. versions 3.2 and earlier, VMware GSX Server. versions 
2.5 and earlier, and VMware ESX Server, versions 1.5.2 and 

Netflix, Inc. - Ex. 1005, Page 000033 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
47 

earlier, despite being distincl products, all expose an identical 
virtual hardware configuration, one that is uniprocessor, uses 
a non-ACPJ chipset and is equipped with a BusLogic SCSJ 
disk controller. VMware Workstation 4.0 and VMware ESX 
Server 2.0 are products from a new generation that expose a 
new virtual hardware configuration that is equipped witb 
multiprocessor capability, an ACPI-enabled chipset and a 
new LSI Logic SCSI disk controller. The multiprocessor 
upgrade allows soflwru·e 10 take advantage of multiple physi­
cal processors for better performance a11d scalability and the 
ACPI upgrade provides advanced power management capa­
bilities 10 tbe operating system rnlllling inside a vi.rtual 
machine, such as the ability 10 au10111atically power olT the 
virtual computer. 

The invention can take advantage of the small number of 
virtual hardware configurations by including pre-registered 
configurations for known virtual machine products. saving 
users the need to register those configurations. For example, 
in order 10 support VMware virtual machines, the invention 
would need 10 include tbe hardware configurations corre­
spondillg to the two virn1al machille generations mentioned 
above. Whe11 a user wishes to convert a physical computer to 
a VMware virtual machine, she would select ei ther the Work­
station 3.2/GSX Server 2.5/ESX Server 1.5.2 configuration. 
or tbe Workstation 4.0/ESX Server 2.0 config1.1ration. In the 
foture, wben a new virt118l machine generation is introduced, 
the associated hardware configuratiou can easily be regis­
tered in the database of disk imagi11g system according to the 
invention. 

The idea of pre-registered virt1.18l hardware configurations 
enables the development of a special-purpose P2V software 
tool 111111 is a specialization of the general invention. This tool 
would be configured to perform P2Y conversions exclusively, 
as opposed to being a general-purpose disk imaging system. 
There is no need for a deployment step, since the image 
capn1re process creates a vir111al disk that is already in a 
format usable by a virl1lal machine. The tool would reconfig­
ure the image immediately after it is created, allowing it to be 
used immediately in a virtual machine. Configurations for an 
arbitrary, predefined set of virtual machine types, or ge11era­
tions, would be preregistered within rhe tool, with optional 
support for registering new configuratioDS. With this tool the 
disk imaging vendor would be able to sell a low-cost. simple­
to-use product that targets the P2V segment of the market. 
Given the explanation of the other featLtres of this invention, 
skilled programmers will be able to design such a tool. 

To recapitulate, the invelllion's approacb to solving the 
P2Y problem presents significant advantages over the prior 
art. Since virn13J disks are treated as image files, converting a 
physical clisk to a virt1ial disk is a one-step process that does 
not require rnnuing disk imaging software inside of the vim1al 
macl1ine and docs not involve an intem1ediate image file: this 
leads to a s treamlined and easy-to-use imaging step for users. 
Furthennore, the invention's configuration registration data­
base 4004. including its version database, and its abil ity to 
directly modify a vir111al disk's files enable it to perform the 
reconfiguration step in a reliable and automated way, without 
user intervention and without the need for a helper virtual 
machine. The invention 's reconfiguration mechanism 
handles all of the file changes required for solving the hard­
ware migration problem: it handles not only disk drivers and 
registry entries, but also critical system files such as the HAL 
a11d kernel, whereas existing solutioDS. such as system prepa­
ration, only solve the disk driver aspect of the problem. 
Finally. the invention's P2V process is 11on-intrusive because 
it does not require a system preparatiou step o n a source 
machine prior to conversion, implying that a source comput-

48 
er's disk state does not need to be modified for the sole 
purpose of P2V conversion: this makes the invention's 
approach to P2Y much safer and attractive to users, compared 
to existing solutioDS. 

5 Deploying a Template Image to a Physical Machine 
TI1e general procedure for deploying a template image to a 

physical computer on the network was described in detai l 
earlier and can be surumarized as follows: 1) identify the 
selected destination computer; 2) look up the destination 

10 hardwareconfiguraiion from thedatabase4004; 3)optionaJly 
reconfigure the image using copy-on-write mode, producing 
a temporary logical disk representing the modified version of 
the image; 4) use the oflline-disk imaging method described 

15 above to boot the destination computer from a secondary 
operating system n111.ning an imaging client; 5) deploy the 
logical disk to !lie destination computer's d isk over the net­
work; 6) delete the redo log used by the temporary logical 
disk; and 7) reboot the destination computer. At the end oft he 

20 procedure, the destination computer's disk contains a copy of 
the image's disk contents. The destination computer ca11 then 
boot independently from its deployed operating system. The 
reconfiguration step is required only if the destination com­
puter has a hardware configuration incompatible with the 

25 template image's configuration. 
As before (see tbe paragrapb under the heading "Direct 

modification of destination disk"), it would instead be pos­
sible to deploy the unmodified image to the destination disk 
and then modify it directly for reconfiguration purposes. This 

30 would eliminate tl1c need for the copy-on-wri te approach. 
Virtual to Physical (V2P) Conversion 

When a template image 4020 originally created from a 
virtual machine is deployed to a physical computer. this is a 
case of virtual-to-physical (Y2P) conversion. V2P couver-

35 sioDS are common in test-and-development environments. In 
this environment, virtual machines are used to develop and 
test software and business applications. The flexibility and 
resource efficiency of vir11.1a l machines generally make them 
ananractive platform for developing and validating software. 

40 The computing environment formed by au operating system, 
several layers of applications a nd their data is sometimes 
called a software stack. Once a software stack is fuJJy tested in 
a virtual machine, an IT administrator may wish to deploy the 
stack onto a physical machine in order to productize it. A 

45 possible reason for choosing a physical computer over a vir­
tual machine for running a production software stack is a 
performance advantage of physical Liardware. 

TI1e invention naturally supports V2P conversions using 
the general image deployment framework. It doesn't matter 

50 whether a template image 4020 comes from a virtual machine 
or a physical computer- it undergoes the same process when 
deployed to a destination physical computer. TI1is process 
may include a reconfiguration step ifthedestination hardware 
configuration is dissin1ilar to Lbat of tbe source computer, 

55 physical or virti,al. 
Summary oflnvention's Contributions to Solving the Hard­
ware Migration Problem 

TI1e invention completely solves the hardware migration 
problem because it has the ability to make arbitrarily complex 

60 changes to an image's system configuration. By not requiring 
images to be system-prepared in order to qualify for hardware 
migration, the invention reduces tbe number of images to 
manage. thereby reducing management complexity. This 
property also contributes to users' perception of the invention 

65 as a safe and non-intrusive imaging system, since a source 
computer's disk state docs not need to be modified fort he sole 
purpose of imaging. 

Netflix, Inc. - Ex. 1005, Page 000034 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
49 

Tliree sources of information gujde the invention's image 
reconfiguration process: the image's initial system configu­
ration, determined using I.he static configuration extraction 
method; I.he destination computer's hardware configuration, 
looked up from a configuration or computer registration data- 5 
base or dyuamically determined; and a version database con­
taining information about system file variants, versions and 
patch levels. The invention locates substit111e files needed for 
the reconfiguration process, for example, from the lntemet, 
and caches them locally using the file cache 4010 for 10 

enhanced perfom1ance. 
11Je configuration/computer registration database 4004 

can be dynamically updated to support new hardware con­
figurations. This protects existing images from obsolescence, 
since they can always be reconfigured to run on computer 15 
hardware that did not exist when the images were created. ·n1e 
vers ion database 4016 can also be updated. allowing the 
reconfiguration process to keep current with patch releases by 
operating system vendors. 

1l1e i.nvention's hardware migration framework oa111rally 20 
supports conversions between physical computers and virnial 
machlnes. In particular. the invention makes P2V conversions 
reliable and easy to automate when compared to prior solu­
tions. Considering that virtual machine hardware configura­
tions are few and tend to change very little overtime. a vendor 25 

has the option to sell a simplified and restricted implementa­
tion of the invention as a low-cost, easy-to-use tool exclu­
sively targeted at P2V conversions. Thls tool converts a physi-
cal disk to a virtual disk and then correctly reconfigures the 
virtual disk, all in one step. The resulting virn1al disk can then 30 
be used as the basis for a virtual machine that is an exact clone 
of the physical computer. 
Simplified Software Provisioning Using on-Demand lmage 
Customization 

50 
tions generally require an image to be system-prepared, i.e., a 
user must install specialized software on a source machine 
before capt11ring an image from that computer. For Windows 
2000 operating systems, Sysprep is, once again, a commonly 
used tool to satisJy both reconfiguration and customization 
needs. A user must first run Sysprep on a source computer to 
prepare it and then capture an image of the machlne. Sysprep 
installs a boot-time agent program on the computer's disk 
before shutting it down. The captured image thus comains the 
boot-time agent. When a clone computer deployed from this 
image boots for the first time, the agent searches for a cus-
tonuzation parameters file named sysprep. inj, first on the 
computer's floppy drive and next on the computer's hard disk. 
The file contains values for configuration settings requiring 
customization. For example. the file could contain a new 
computer name. a domain name and a set of N.IC parameters. 

Providing the customization parameters file on a floppy 
disk is usually not a practical solution in large computing 
environments, siJ1ce it requires a user lo custom-edit the file 
with values relevant for a particular clone and then place the 
file on a floppy disk and then manually insert the disk into the 
clone's floppy drive after the image is deployed but before the 
computer reboots. 

A better alternative is to read the file directly from the 
computer's primary hard disk. There is, however, a dilemma: 
Since the destination computer's hard disk is overwritten with 
the image' s contents at deploy time, the file must be present in 
the image in order to exjst on the final hard disk. Thls implies 
that all clones deployed from thls image would inherit the 
same customization parameters file and would thus be con­
figured with the same network identity scnings when they 
boot for the first time after the deployment phase completes; 
there would thus be no custonuzation at a ll. 

ln o rde r to solve this problem. contemporary disk imaging 
The discussion on prior art introduced the second major 

issue pertaining to image deployment: the customization of 
clones. When an image is deployed to one or multiple com­
puters, virtual or physical, the deployed computers become 
clones of the original source computer that produced the 
image. Cloning is useful for quickly provisioning a complete 
software stack consisting of an operating system and a com­
mon set of software. However, each clone generally requires 
some reconfiguration to make it unique and fonctional, espe­
cially when connected to a network shared with other clones. 
This reconfiguration process is similar to the reconfiguration 
process for solving the hardware migration problem. To dis­
tinguish the two, this type of reconfig11ration is referred to 
below as a customization process. 

35 systems attempt to modify the parameters file with settings 
unique for each deployed computer. There exjst two 
approaches: 1) modify the file inside the image just before the 
image is deployed to a part icular destination computer; and 2) 
modify the file on the destination disk after deployment com-

Customization is commonJy used to reconFig11re 3 clone's 
network identity parameters. The parameters can include a 
globally unique computer ID (such as the one used by Win­
dows NT/2000 systems), a computer name, network domain 
membership settings and network addresses and sertings 
(such as IP addresses) for one or multiple N1Cs belonging to 
a clone. 

Customization can also be used to install additional soft -
ware. I I is common to configure 3 template image with a core 
set of software applications that most clones are expected to 
need. Non-core applications, that is, those that might be 
needed by some clones but not others, are generally not 
placed in the template image in order to minimize the image's 
size; instead, they can be selectively installed on a per-clone 
basis, using customization. 

The prior art's mechanislllS for handling customization are 
simjlar to its approach for handling the hardware migratfou 
problem and thereby suffer from similar shortcomings. In 
order to qualify for deploy-time customization, existing solu-

40 pletes, but before the boot-time agent nms. 
Most existing disk imaging systems are incapable of 

implementing the first approach for two reasons. First. modi­
fying an image may be impossible iJ it is write-protected. or 
stored on a read-only medium. The only work-around for this 

45 problem is to create a copy of the image and store it ou a 
writable location, such as a temporary directory on the imag­
ing server computer's hard disk. lo practice. however. an 
image can be several hundreds of megabytes in size and 
making a local copy just for the purpose of modifyiJ1g one file 

50 rarely makes sense. Second, even if image modification were 
allowed, it may negatively affect the image's efficiency: as the 
discussion on prior art explains, most existing disk imaging 
systems employ a file-based image format and modifying an 
iniage of that format leads to fragmentation, thereby making 

55 the image's internal data layout sub-optimal. 
Existing disk imaging solutions therefore tend to imple­

ment the second approach: modify the customization param­
eters file not in the image, but on a destination hard disk after 
it is deployed from the image. In order to achieve this, they 

60 require the image and hence I.he source computer's hard disk, 
to contain a second agent program specific to the disk imaging 
system. The second agent remains dormant until the destina­
tion computer reboots after being deployed from the image; it 
is designed to run before the boot-time agent installed by 

65 Sys prep. When the second agent mus. it contacts the imaging 
server over the network. obtains the customization param­
eters specific to tl1c destination computer and then writes the 

Netflix, Inc. - Ex. 1005, Page 000035 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
51 52 

Furthermore, an image does not need to be system-pre­
pared at all to be customizable using the invention. If a user 
chooses to use the customization capabilities of a familiar 
system-preparation tool, such as Sysprep, the invention can 

parameters into the parameters file residing on the deployed 
disk. In Microsoft's ADS framework. the second agent is 
called the Microsoft Deployment Agent. Finally, the boot­
time agent mus and reconfigures the computer's network 
ideotity using the parameters specified in the file. 
Shortcomings of Existing Image Customization Solurions 

5 automatically insert the tool's fi les (typically a boot-time 
agent, a customization parameters file and some registry 
entries to activate the boot-time agent at t:he next system 
reboot) into an unprepared image just prior to deployment. 

TI1e image custornization solution as described above has 
several shortcomings. From a user's perspective, the solution 
represents an additional administra tive burden because it 
requires plannin.g. Not only do source computers need to be IO 

prepared with a tool like Sys prep, but they also need to have 
an additional agent installed. the one provided by the disk 
imaging product. Some disk imaging systems, such as Ghost, 
simplify the preparation step slightly by providing an instal- 15 
lation tool that perfonus both tasks: rnn the system prepara­
tion tool , thereby installing the boot-time agent and creating 
the parameters fiJe and then install t:he additional imaging 
agelll. An image that was created without cloning in mind, 
such as one used for backup purposes, can never take on a new 20 
role as a customizable image for producing clones. 

The second shortcoming is that once an image is system­
prepared and equipped w ith the additional agent, the customi­
zation capabilities available at deploy time are restricted to 
t:he capabilities of tl1e installed agents and are difficult to 25 

upgrade. As an example, there have been multiple versions of 
the Sys prep tool. with each new version providing more pow­
erful customization features than the previous version. Ver­
sion 1.1. for instance, added disk driver reconfiguration capa­
bilities. An image created with version 1.0 of the tool would 30 
thus not have the driver reconfiguration capability. ln theory, 
it is possible for a user to use a disk image-editing utility. such 
as Symantec's Ghost Explorer, to manually upgrade indi­
vidual files installed by such tools: however, th.is would be 
error-prone and again the modification may fragment the 35 

image. For tlus reason. in practice. users simply discard obso­
lete images and create new ones using newer versions of 
preparation and imaging tools, resulting in increased admin­
istrative overhead. 

The tool simply needs to be registered with the invention's 
imaging server. A user can register a system preparation tool 
by specifying the location of the tool's package container, 
such as a Microsoft Cabinet file or a sel !'-extracting a.re hive; 
tbe imaging server then stores the location in its internal 
database. 

Wben a user decides to deploy an image and specifies that 
the image is to be customized using the registered tool. the 
imaging server locates the container, extracts its files, depos­
its the files and registry entries into a modified copy of the 
image, modifies the network parameters file with values 
muque to the destination computer and then deploys the 
image. In other words, the invention can simultaneously pre-
pare and customize an image at deployment time; this tech­
nique is referred to as on-demand custonuzation. 

On-demand customization is powerful because it allows 
plain, unprepared disk images 10 be deployed using the most 
advanced system preparation and customization tools avail­
able. When a newer version of a tool is released. a user can 
upgrade the imaging server's customization capabilities sim­
ply by registering the newer version. Since system prepara-
tion and customization software is kept separate from images, 
images can never become obsolete in terms of their deploy-
ment capabilities. 

Rather than simply accept the custonuzation parameters of 
a standard tool, it would instead. or in addition, also be pos­
sible to include a database 4017 of custonuzation mies. The 
mies included will of course depend on the needs of a given 
implementation of the invention. and on the preferences of the 
user. ·n1e database 4017, and the manner in which its rules are 
applied. can be determined by skilled programmers using 

l-low the ltwention Simplifies Customization 40 known methods. 
TI1e invention treats image customization as no different 

from image reconfiguration. An image does not need to have 
any software pre-installed in order to qualify for deploy-time 
custonuzation. The invention's automated image content 
modification framework allows arbitrarily complex changes 45 
to be made to an image prior to its deployment. TI1e inven­
tion's images are sector-based virn1al disks, therefore they 
aren't subject to frag111e111ation and can be easily modified 
with limited loss ofintemal data layout efficiency. This allows 
an image to be customized on the imaging server computer 50 

just before it is deployed. AdditionaJly, with the copy-on­
write method, write-protected images can be modified at wi ll 
with virtually no storage overheads because modifications are 
small and are stored in temporary redo log files . This implies 
that ifan image is already sys tem-prepared with a tool similar 55 
to Sysprep. it can be customized without requiring an addi­
tional agent, since the iniaging server can modify t:he cus­
tomization parameters file inside the image before deploying 
the image. 

The above-mentioned alternative (see the paragraph under 60 

the heading "Direct modification of destination disk"). to the 
copy-on-write teclmique may a lso be used in this context: the 
invention can also deploy the image and then modify the 
destination disk directly before rebooting the destination 
computer. This would allow the invention to install or upgrade 65 
any needed agent software, or perfom1 the c ustomizations. 
directly, without requiring any agent software. 

Finally, since system preparation and customization t0ols 
essentially modify files to achieve their objectives, a disk 
imaging system that employs the invention's metl1ods and 
mechanisms can completely subsume those tools by making 
all required changes itself a t deployment time. This enables 
the development of a new generation of disk inrnging system, 
one that can automatically handle all aspects of image recon­
figuration and customization without peripheral tools and one 
that can be upgraded to perform arbitrarily complex and 
powerful transformations on images. 
Advanced Configuration Management 

111e Simplified Image Management Using Static Configu­
ration Analysis section above i111 roduced the concept of a 
computer's software configuration. A computer's software 
configuration is an inventory o f all software components 
installed on the computer: it can include the operating system 
type, the operating system's version and patch level, a list of 
installed applications, software senings such as registry 
entries, and the versions of all software program files. 

Modem software programs are complex and can comprise 
hlllldreds, or even thousands of file components. such as 
executable files, libraries, drivers and plug-ins. Software ven­
dors frequently upgrade components in order to fix bugs, 
security vulnerabilities and to provide added functionality to 
their software products. New versions of software compo­
nents are gcneraily made available to customers through 
patches. A patch is a general teru1 for a program or package 

Netflix, Inc. - Ex. 1005, Page 000036 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
53 

containing updated versions of files belonging to one or mul­
tiple software products. Patches can be distributed from Inter­
net web pages. or on physical media such as CD-ROMs. 
Configuration Management Tools in the Existing Art 

Configuration management is an increasingly important 
field in the area of computer and software management. Con­
figuration management generally describes die process of 
enumerating, analyzing and possibly updating or repairing a 
computer's software configuration. An important responsi­
bility of configuration management tools is to report the ver­
sions of all components of a particular program, such as an 
operating system or an application and to determine whether 
the software is out-of-date or misconfigured. 

A program file generally contains an internal sub-element 
called the "version" field. 171e first step in a configuration 
analysis ofa program is to enwnerate its components and then 
inspect the version of each component. Tue enumeration 
allows a configuration management tool to detem1ine 
whether a component is missing, in order to detect potential 
software failures. For instance, if a word processing applica­
tion is missing a spelJ-checking libraiy, the application may 
initially appear to function correctly, but then subsequently 
fail when a user chooses to check a document's spelling. 

Version analysis allows Lhe tool to detect whether an appli­
cation is up-lo-date with respect to the latest bug fixes and 
security fixes for that application. The tool can achieve this by 
keeping track of each component's latest version, as pub­
lished by the application's vendor and then comparing the 
published version against the installed version. Version analy­
sis can also detect iftl1e versions of installed components are 
consistent witl1 each other. Consider. for example, an appli­
cation comprising two components A and B, both initially al 
version I . 1 f for any reason A is upgraded 10 version 2. but B 
stays at version I, the application may misbehave if version 2 
of component A is incompatible with version I of component 
B. 

In addit ion to alerting users of software misconfiguration 
issues or missing patch problems. some configuration tools 
have the ability to fix the problems. For example, a configu­
ration management tool can offer an administrato r the oppor­
tltnity to upgrade a program to bring it up-to-date with respect 
to the most current patches, or to repair a misconfigltration 
problem. 

Several existing configuration management systems allow 

54 
reference, the software can update it by upgrading, repairi.ng 
and installing files on the comptller. 
Configuration Management and Disk Imaging 

Several existing configuration management frameworks 
5 include disk-imaging capabilities. Conversely, many disk 

imaging systems have evolved to include configuration man­
agement capabilities. Symantec's Ghost software. for 
instance, evolved from a pure disk imaging tool into a com­
plete software suite capable of monitoring and controlling 

10 client computers deployed from images. The term "computer 
management system" is used here to describe generic soft­
ware providing both configuration management and disk 
imaging functions. 

A computer management system can use disk imaging to 
15 quickly provision a bare-metal computer on the network with 

a complete software stack consisting of an operating system 
and a set of core applications. The resulting cloned computer 
can then be farther customized and personalized using the 
customization techniques described earlier. A single template 

20 image. or a small sel of core template images, is used to create 
clones. 

A computer management system generally consolidates 
the functions of the configuration managemcm server and the 
disk imaging server into one combined server application. 

25 The configuration management agent and the disk imaging 
client, on the other hand, are usually kept separate because the 
disk imaging client is designed to nJU from within the sec­
ondary operating system used during oflline disk imaging, 
whereas the configuration management agent is designed to 

30 run on the primary operating system of the software stacks 
being imaged. 

A configuration management agent nuu1iug on au actively 
managed computer can, however. initiate disk imaging tasks. 
For instance, iJ an administrator decides to capture an image 

35 from a managed computer, the configuration management 
server can send a message over the network to the agent 
running on the computer. instmcting it to rebootthe computer 
into a secondary operating system containing the imaging 
client in order to begin the capture operation. A managed 

40 computer can also be redeployed, that is, overwritten with a 
new image, using !he same process. In this scenario, after the 
reboot. the imaging client overwrites the computer's hard 
disk wiili the contents ofd1e deployed image and then reboots 
die computer again. After the second reboot, the computer 

45 nms a new software stack that may be completely different 
from the one installed before the first reboot. In order for the an administrator to monitor and manage multiple computers 

nmning on a n.etwork. Such a framework generally includes a 
server software component running on a centralized server 
computer and a client, generally called agent. rnnning on each 
managed computer. An agent monitors its computer's soft- 50 

ware configuration and ilien reports it to the server over die 
network. The server can thus maintain an inventory of man­
aged computers and the software configmation of each man­
aged computer. In addition to monitoring capabilit ies. the 
server can also update or repair a computer's software con- 55 
figuration through the computer's agent. It can also install 
new software applications using the agent. 

configuration management system to maintain control of the 
newly deployed software stack, the new stack- and therefore 
the in1age- must contain a pre-installed configuration man­
agement agent. 
Configuration Deltas 

When a configuration management tool compares a com­
puter's software configuration against a reference configura­
tion from another computer, or one described by a file. the tool 
can store a description of the configuration differences in a 
difference file generally known as a delta. In addition to a 
description of configuration changes, a delta file also contains 
the acn1al file and registry entry contents that make up the 
differences between tl1e two configurat ions. 

Several existing configuration management systems also 
allow an administrator to register a reference computer wid1 a 
standardized software configuration and then implement a 60 

policy that checks whether client computers comply with the 
standard configmation. The software can Urns detect and 
report computers that diverge from the standard. It can also 
report the specific discrepancies between a divergent com­
puter and the reference computer, such as missing files, unau- 65 
thorized files, out-of-date versions and misconfigured rcgis-
lJ)' entries. If a computer's configuration diverges from the 

Configuration deltas are a popular mechanism for automat­
ing application installations. A user generally runs a program, 
called an installer, to install a software application. An appli­
cation' s installer is typically included with the application's 
distribution medium or package. An installer makes changes 
to a computer's file system in order to install, register and 
activate an appl ication. The changes generally involve copy­
ing files from tl1e d istribution medium to the computer's file 

Netflix, Inc. - Ex. 1005, Page 000037 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
55 

system and then modifying config11ration files, such as creat­
ing registry entries. Since the installation of an application 
modifies a computer's software configmation, it can be 
expressed by a delta. 

56 
image, a config11ration management system must first deploy 
the image onto a computer. tl1en boot the computer, then rLUl 
a configuration management client on the computer in order 
to extract the information and then transfor the infonnation 
back to the co11.figuration management server. 

The section Simplified Jmage Management Using Static 
Configuration Analysis previously Ullderliued one of the 
invention's novelties: the ability to extract and analyze the 
system configuration of static images. Two novel functional­
ities enabled by this capability were discussed: l) the auto­
matic analysis, classification and organization of images, 
based on tl1eirderivcd configuration; and 2) simplified image 
reconfiguration for solving the hardware migration problem, 
guided by configmation information derived from an image 
being deployed. 

'Ille current section introduces additional ftmctionalities 
enabled by static configuration extraction: the abil ity to com­
pute configuration differences between images and to apply 
differences io exisring images to create new ones. 

Several existing stand-alone utilities, such as Microsoft's 5 
SysDilJ, take advantage of deltas to allow a user to automate 
the insta1lation of an arbitrary application. Those tools are 
generally used as follows: a user first selects a model com­
puter that does not contain the desired software application. 
The user then nms the tool once to take a snapshot of the 10 

computer's configuration. The user then installs a selected 
application by numing its .insta!Jer. Ouce .installation fiu.ishes 
and the appl ication is ready to be used, the user nms the tool 
again. This time, the tool takes a snapshot ofthe final state of 
the computer's configuration and then compares it against the 15 
initial snapshot. producing a difference file, i.e., a delta. Files 
and registry keys that did 1101 exist initially but are prese111 in 
the final state arc included in the delta. The user can then 
archive the delta. The model computer used to create the delta 
can be discarded, or reused for a different purpose. 20 Image Deltas 

When the user wishes to install the application on another 
computer. he or she rnns the tool in "playback" mode on that 
computer. Wl1en the tool mns iJ1 playback mode, it reads a 
user-selected delta fi le and applies the file and registry differ­
ences specified in tl1e file to the computer. The tool thus 25 

applies a set of co11fig11ration changes that is equ ivalent to 
rnnning the original application installer. 

Delta technology is particularly valuable when included 
with computer management imaging systems. because it 
enables a fonn of image customization that can reduce the 30 
munber of images ru1 administrator has to mrurnge. Consider, 
for example. an administrator creating disk images for mul­
tiple corporate departments, each with varyi11g sof1ware 
needs. Suppose that each image had include at least an oper­
ating system aJ1d a combination of zero to three optional 35 

software applications hypothetically named A, B and C. 
Assuming that it is UJ1acceptable for a deployed computer to 
include an application that is not needed for the target depart­
ment (possibly due to software licensing issues). the admin­
istrator would have to create up to eight permutations (110 40 

applications, A. 8 , C, A+B, A+C, B+C, A+B+C) oft he image 
to satisfy the varying needs of each department. 

The administrator could use a delta-capable computer 
management system to reduce the management problem to 
exactly one image-one that· contains just tl1e operating sys- 45 
tem and the configuration management agent- and three 
separate delta files, one for eacb oft be three applications. The 
administrator would then set up the management system to 
customize each deployed computer with only the applications 
appropriate for the computer's intended department. The 50 

computer management system would typically incorporate 
the delta technology as follows: when a computer deployed 
from the standardized image reboots for the first time. the 
configuration management agent runs and receives customi­
zation instructions from tJ1e server. Those instmctions include 55 
a list of zero or more applications to install. depending on the 
computer's identity and department; the server then transmits 
the delta file contents for each of the specified applications 
and the agent applies the specified configuration changes. In 
sLUnmary. delta-based appl ication i11stallation technology 60 

would improve management efficiency from eight image files 
to four files (one image and three deltas) in this example. 
The Invention's Contribution to Configuration Management 

An important limitation of existing config11.ration manage­
ment systems is their inability to extract, analyze or modify 65 
the configuration of d isk images. In other words. in order to 
analyze the software configuration embedded within an 

Since the invention can automatically extract configuration 
information from static images. it can easily compute the 
configuration difJcrences between two images, producing a 
configuration delta. This document uses the term image delta 
to describe this type of delta. A set of image deltas is shown in 
FIG. 6 as the files 4014. Ao image delta is functionally equiva-
lent to the configuration delta that existing configuration 
management tools can produce. Tue only difference is the 
way it is produced: An image delta is computed by taking the 
difference between two static images, whereas a configura­
tion delta is produced by taking the di lference between ru1 
initial and a final configur<1tion state ofa live computer. Exist­
ing co11.figuration and computer management systems are 
incapable of producing image deltas. 

Just like a configuration delta, an image delta can be 
viewed, edited and even applied to an image. This section 
discusses the benefits of image delta viewing and inspection. 
111e following section, Image Factory, describes the novel 
fonctiooality enabled by tJ1eability to apply deltas to images. 

A user can view the contents of an image delia in order to 
inspect the differences between two images. 111is image com­
parison ability is useful in several scenarios. Consider an 1T 
group that manages a large number of disk images. many of 
tJ1em created by users from distinct corporate departments. 
Each image represents a pennutation of an operating system, 
operating system patches, applications ru1d application 
patches. A particular image's installed applications tend to be 
useful only to a particular department, such as an accounting 
application for computers belonging to a finance department. 
In order to reduce the number of images and thus support 
costs, the IT group may decide to enforce a policy that 
requires all supported images to have a particular operating 
system at a particular patch level, to have a set of required 
applications (such as a vims scanner) and to exclude a set of 
forbidden software (such as games). 

Equipped with a disk imaging system employing the inven­
tion's mechanisms, an IT administrator could take advantage 
of the system's configuration extraction and image classifi­
cation capabilities to sort images by their operating system 
and application configuration, in order to detect those tl1at do 
not meet the support requirements. 

It may be easier, however, for the administrator to create a 
reference image containing the supported operating system, 
operating system patches and required applications and then 
write a script that uses the invention's image delta capability 
to compute tJ1e differences of each image re lative to tl1e ref-
erence image. Once the deltas are stored in files, another 

Netflix, Inc. - Ex. 1005, Page 000038 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
57 

script cau process the fi les in order to identify images that 
differ in unsupported ways. such as lacking one of the 
requi.red applications. 

Image deltas are also valuable for troubleshooting a virt1ial 
machine imported from a physical computer through the P2V 5 
conversion process. A physical machine's operating system 
may contain software, such as third-party drivers, that mis­
behave when mnningon virtual hardware, possibly leading to 
system failures. One example is the Windows NT operating 
system and drivers designed for that operating system. Win- 10 
dows NT is not a plug-and-play operating system. which 
means that an instal led driver may load even if the hardware 
device it controls is no longer p resent. A well-designed driver 
normally checks for the presence of its device and then deac­
tivates itself if the device is not found. A poorly designed 15 
driver may assume that its device is always present and 
attempt to communicate with it, possibly crashing the oper­
ating system. 

Since the invention treats virtual disks as images, a user can 
use the image delta capability to detenuine the software con- 20 
figuration differences between a maJfonctioning i_mported 
virtual disk and a reference virt11al disk produced by installing 
an identical operating system at the same patch level inside of 
a virtual machine. Driver files are typically registered using 
registry entries ru1d therefore any registry ru1d file differences 25 

revealed by the delta may indicate the presence of third-party 
drivers that are not needed in a virtual environment. The user 
cau then deactivate those potentially harmfoJ drivers by delet­
ing their corresponding registry entries in the i_mported 

58 
server cannot transmit customization instnictions and delta 
files to a disconnected remote computer deployed from the 
base image. 

In contrast, the ability to apply deltas directly to a static 
image enables the invention to implement a form of on­
demand "image factory." From a small number of base tem­
plate i_mages and (augn1ented) delta files, the invention can 
derive an almost infinite number of tailor-made, ready-to-use 
disk images. An image produced through this process is thus 
configured with custom network identity parameters and 
equipped with an arbitrary number of applications. Such 
images can be temporary, i.e., they exist just Jong enough for 
a deployment operation to complete. or they can be stamped 
onto a physical media for shipping. 
S=ary oflnvention's Novel Contributions 

'Ille invention is the firs t computer management system to 
seamlessly blend physical computers and virmal machines. It 
achieves this first by employing virt1ial disks as a common 
image file format for all imaging tasks and secondly by auto­
matically reconfiguring images to support dissimilar destina­
tion hardware configurations at deployment time. 

Tue invention is also the first computer management sys-
tem capable of extracting system configuration infonnation 
from static images. allowing it to automatically classify, tag, 
organize and search images. Existing solutions, on the other 
hand, can extract this information only from live computers, 
using one or multiple agent software programs. Ju order to 
organize images, those systems either rely on user-defined 
image tags or attributes, which is ambig1.1ous and error-prone. 

image. 
Image Factory 

One of the several novelties the invcnrion introduces is the 
ability lo apply aD image delta directly to a static image, 
producing a new image. nus stems from the invention's 
ability to make arbitrarily complex changes to static images, 
such as the ones required for image reconfiguration and cus­
tomization. 

30 or they rely on a complex and intrusive configuration extrac­
tion process that involves running a pre-installed agent on a 
computer prior to capturing it8 image. 

Sirnilarly, the invention can apply arbitrarily complex 
manipulations ai1d transfonnations to a static image's cou-

Image delta applicat ion can be used tocustomizean image 
before it is deployed to a computer. This approach has several 
advantages over the traditional approach that relies 011 a con­
figuration management agent to apply deltas to a computer 
after it has been deployed from au image. The first advantage 

35 tents. Not onJy does this enable functionality such as recon­
figuration for diverse hardware platforms. it also allows wide 
image customization freedom without the need for peripheral 
system preparation tools or computer customization agents. 

By separating images from the tools that manipulate them, 
40 the invention allows users to focus on the usefol contents of 

is the abili ty to apply deltas directly to static images, without 
the need for a special agent to be instalJed in the i_mage. As 
previously explained, requiring 110 additional disk-imaging or 45 
configuration management-specific software to be installed 
in images leads 10 a less intrusive and thus acceptable, com­
puter management system from an administrator's perspec­
tive. 

The second advantage overthe agent-based approach is the 50 

ability to create ready-to -go, pre-packaged i_mages that are 
already customized with additional applications. Recall that 
the agem-based approach to image deployment requires a 
post-reboot dialog between a computer management server 
and an agent nmning on the deployed computer. The server 55 
uses this communication to transfer customization i11strnc­
tions to the agent and the delta files to apply. Consider, how­
ever, a siniation where there is no network between the server 
a nd destination computer. As an example, consider an IT 
administrator working at a compru1y's headquarters ru1d who 60 
wants to create a customized image built from one base oper­
ating system image and a set of applications stored as delta 
files. The final image is to be burned on a physical distribution 
medium, such as a CD-ROM and shipped overseas to a 
remote branch office that does not have a network connection 65 
to the headquarters. 111e lack of a shared network defeats the 
agent-based architecture, since the computer management 

images, such as business applications and databases and frees 
them from the administrative burden traditionally required 
for making images suitable for deployment and customiza­
tion. 

An additional novel contribution is the ability to compare 
images against each other and to store image differences in 
delta files. Colllemporary computer management systems do 
not have this capability: they can only compute the delta 
between a live computer and a reference computer or con­
figuration description file. Image deltas are useful notonJy for 
comparing images, possibly for troubleshooting reasons. but 
also for manufacturing new images by applying deltas to 
existing template images. 'lllis enables the invention to pro­
duce pre-configured and pre-customized images that are 
ready to be shipped and deployed to remote, possibly discon­
nected. computing environments. 

A speciaJized, special-purpose embodiment of the inven­
tion can serve as physical-to-migration (P2V) conversion 
too l. ll1is tool imports a n unmodified physical computer into 
a virtual disk image, analyzes its system configuration and 
then performs the necessruy reconfiguration to allow a virtual 
machine to mn from the image. In contrast, the prior art 
provides no reliable or u11-intrnsive way to convert physical 
computers to virt11al machines, due to the challenges posed by 
the hardware migration problem. 

171e invention's reliance o n a server computer's native file 
system drivers to decode and encode file systems during disk 

Netflix, Inc. - Ex. 1005, Page 000039 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
59 60 

imaging operations significantly simplifies the imaging client 
component, leading to lower development cost for the com­
puter management software vendor. Furthenuore, the use of 
file system drivers increases the computer management sys­
tem's chances of supporting proprietary file systems. since 5 
the system can decode and access any proprietary format that 
the server operating system natively supports. 

systems is tile only one that natively supports NTFS, a widely 
used proprietary file system fonnat. In order to support addi­
tional fi le system formats that are not natively provided, the 
UCMS server may include and register additional file system 
drivers 2252. 

Tbe heart oflhe UCMS server is lbe imaging server 2101, 
which is a program that runs all fue time; such a program is 
often called a service, or daemon. The imaging server service 
coordinates all UCMS operations and manages the resources EXEMPLJFYING EMBODIMENTS OF THE 

INVENTION 

11Je following sections d.iscuss two embodiments of tile 
novel concepts and methods previously described. The first 
major section describes an embodiment of a universal com­
puter management system that handles the interactions 
between images, physical computers and virtual machines. 

The second major section describes a physical-to-virtltal 
(P2V) conversion tool. The tool is a purpose-specific special­
ization of the general universal computer management sys­
tem. 
Universal Computer Management System 

The invention provides a Universal Computer Manage­
ment System (UCMS), which is an enhanced disk imaging 
system for both physical computers and virt1ial machines. In 
addi tion to disk image capture and deployment capabilities. 
the system also provides image organization, search, recon­
figuration, customization. comparison and manufacturing 
fonctionality. 

The UCMS manages a set of physical computers and vir­
nial machines residing on a network. ln order to be included 
in the managed set, a physical computer needs to be registered 
with the UCMS. ln order to be included in the managed set, a 
virtual machine must reside on a physical computer, equipped 
with virt1.ial machine software; this computer is called a vir­
t11al machine host and it must be registered with the UCMS in 
order for its vim1aJ machines to be included in tile managed 
set. 

l11e core component of the UCMS is U1e UCMS server 
software 2101, which is installed on a server computer 2000. 
The UCMS server 2101 manages the files used by the UCMS, 
maintains sever'dl databases 1bar keep lrack of lbe files and 
managed computers and coordinates all disk imaging tasks. 
sucb as capmre. deployment, reconfiguration and customiza­
tion. 

During an image cap1ure or deploy operation. a managed 
physical computer temporarily runs a secondary software 
stack 4100 consisting of a secondary operating system and an 
imagi11g client program. ln contrast, a virtual machine 
involved in capmre or deploy operation does not need to run 
tile secondary stack, since an image file is already in a form 
suitable for direct use by a virtual machine; therefore, captur­
ing or deploying a virt11al machine simply involves copying 
files between the UCMS server comptller and a virtual 
machine host computer. 
Server Subcomponents 

The subcomponents making up the UCMS server software 
are illustrated in FIG. 6. The software is instalJed on a server 
operating system 2200 running 011 a server computer 2000. A 
vendor could design the UCMS to rnn on multiple types of 
operating systems. In practice, U1e vendor will lend to design 
the UCMS server to ruu on an operating system U1at includes 
native file system drivers 2250 for the widest possible range 
of file system formats, especially proprietary formats; this 
helps maxinlize the number offiJe system formats supported 
during disk imaging operations. For iustance, it is at present 
advantageous to design the UCMS to nm on a Windows-class 
operating sysrem, since the Windows family of operating 

to involved in U1e operations. such as substitute system files, 
images and deltas. 
Databases and Files 

'l11e imaging server uses multiple databases to provide 
permanent and stable storage for the data critical to the opera-

t 5 lion of the UCMS. Typically, a database management system 
(not shown) manages the databases and the actual data store 
files can reside on separate storage devices, such as network 
file servers. 

The registration database 4004 keeps track of computers 
20 that are managed by 1be UCMS. They include physical com­

puters. virtual machine hosts and the virtual machines present 
on each host. 1l1e database 4004 also contains the hardware 
configurations of each registered physical computer and vir­
tual machine. Hardware configurations that are conunon to 

25 multiple computers are also registered as separate entries. In 
particular, the database keeps track of a ll virtual hardware 
configurations for all the virtual machine software products 
tllat it supports. 

The database also associates a deployment state with every 
30 known computer. 171e deployment state can have one of the 

following values: unregistered, dormant, deployed and tran­
sitioning. A computer that was detected by the UCMS but not 
yet registered is set to the unregistered state. A computer is in 
tl1e dormant state if the contents of its primary disk are unde-

35 fined; such a computer cannot function until it is deployed 
from an image. A computer is in tbe deployed state if its disk 
is known to have been deployed from an image containing a 
valid software stack. A computer is in U1e transitioning state if 
it is the subject of an imaging capture or deployment opera-

40 tion. The section Physical Computer Control discusses the 
use of those s tates in greater derail. 

The version database4016 stores iliehistory of the versions 
and variants of substitute system files required during image 
reconfiguration operations. The database 4016 maintains 

45 separate history and file information set for every operating 
system that the UCMS supports and can manage. For 
example. if tbe UCMS supports image deployments of soft­
ware stacks containing either Windows 2000 or Linux, the 
version database would contains two sub-databases: one for 

50 critical Windows 2000 system files, such as tile kernel, HAL 
and certain drivers and one for si.nlilar files belonging to the 
Linux operating system. 

When the VCMS server product is installed on a server 
computer,an iilitial versiondatabaseoffileversions known at 

55 product release time is also installed. The database can be 
updated later in order to integrate infonnation about new file 
versions (e.g., from operating system patches), or to support 
new operating systems. In the former case, the imaging server 
can periodically com1ect to multiple lnternet servers in order 

60 to collect information about the latest patches and can update 
tl1e version database in case a newly released patch contains 
new versions of one or more system files involved in a recon­
figuration process. 

The resource database 4005, which may be included as part 
65 of ilie registration database 4004, contains and tracks infor­

mation concerning U1e locations of files used as raw materials 
in UCMS tasks, such as image reconfiguration and deploy-

Netflix, Inc. - Ex. 1005, Page 000040 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
61 62 

ment. These files include the template image files 4020, the 
file containers 4012 from the file cache 4010 and any delta 
files 4014 produced by compari11g images. The file containers 
4012 and delta files 4014 are preferably act11ally stored in the 
file cache 4010, while the template images 4020 can be stored 5 

in one or multiple locations accessible by the imaging server; 
those locations can include a local disk or a networked file 

The switch service 4200 tbe11 sends a request to the loop­
back driver2211N to create a simulated local disk object (the 
simulated source disk 2210) and to present it to the server 
operating system 2200. The driver 2211N then returns a com­
mun.ication chaimel fort he simulated disk to the service 4200. 
' f11e service 4200 then joins the channel from the driver to the 
cha1u1el from the adapter. 

server. 
1l1e file cache 4010 stores the file containers 4012 that 

contain substit,lle system files used during hardware recon­
figuration operations. When a new hardware con.figuration is 
registered, either by registering a new physical computer or 
by registering a new virtual hardwarecon.fig11ration, the imag­
ing server 2101 consults both the version and the resource 
databases 4016, 4005 to detennine whether the set of substi­
tute files needed to reconFigure 3n image to support the new 
hardware con.figuration is present ill the cache 4010. If some 
files are missing. the imaging server can prompt a user to 
download the containers contaiDing the missing files from the 
Internet and into the cache, or it can choose to download them 
directly ifit can automatically determine the Internet location 
of the required containers. 
Loop-Back Subcomponents 

See both FIG. 4 and FIG. 6. Before the UCMS can inspect 
or edit the contents ofan image fileortheconteDtsofa remote 
physical d.isk, it performs a loop-back mount of that object. 
i.e., it maps the image or the disk to a simulated local d.isk. 
Recall the description of this process given above. When the 
simulated local disk appears and a file system driver recog­
nizes a file system rcsid.ing on the disk, the driver maps the file 
system onto a locally accessible directory path. allowing all 
soJ1ware nirnJ.ing on the operating system, including the 
imaging server, to access the file system. 

The UCMS subcomponents participating in the loop-back 
mount process are a loop-back disk driver 2211 (which may 
comprise multiple instances of the same driver, such as the 
network and local loop-back drivers 2211N, 2211 L in FIG. 
4); a loop-back switch service 4200; two loop-back soliware 
modules, one called the "local (or 'virt11al d.isk') loop-back 
adapter" 2314 and the other called the "network loop-back 
adapter" 2310; and optionally a set of additional file system 
drivers 2252 that understand file system formats not natively 
supported by the operating system. 

The loop-back mow11 ing procedure for an image or remote 
physical disk comprises the following steps: The imaging 
server 2101 first sends a mount request to the switch service 
4200. Tiie request contains infom1a1ion identifying the object 
to be mounted and the location of the object. If the object is an 
image file, its location is expressed as a file path; if the object 
is a remote physical disk, the location includes a network 
address identifying the remote computer and a name identi­
fying the physical hard disk to mount (the computer may have 
more than one bard disk attached). An example of a possible 
remote disk name format could be: /dev/sda@l 92.J 68.0. 138: 
7000: this string identifies the object as the disk named /dev/ 
sda exposed by an imaging client listening to TCP port 7000 
on the computer at IP address 192. 168.0.138. 

When the opera! ing system or one of its file system drivers 
accesses a set of sectors belonging to the simulated disk, the 

10 loop-back driver 2211 N receives the access and forwards itto 
the appropriate adapter through the joined channel. If the 
simulated disk is mapped to an in1age, the local (or "virntal 
disk") loop-back adapter 2314 translates the sector request 

15 into a file request and accesses the appropriate data arca(s) 
representing the sectors within the virtual disk file, using a 
server operating system APL If the simulated disk is mapped 
to a remote physical disk (such as source d.isk 1010 of the 
source computer 1000), the network loop-back adapter 2310 

20 forwards the access request over the network 3000 to the 
imaging client 1021; the client then performs the read or write 
access on the acnial physical disk through a standard APl 
provided by the secondary operating system running 1022 on 
the remote computer. Jn the case of a write access, the adapter 

25 transm.its the written data to the client 1021; in the case of a 
read access. the client 1021 reads da ta from the physical disk 
1010 and then transmits it to the adapter 2310. which finally 
forwards the data to the server operating system 2200 or file 
system driver. 

30 Physical Computer Control Subcomponents 
ll1e UCMS server may optionally include the PXE server 

4002 and an image file containing a UCMS secondary soft­
ware stack 4100. TI1e image file can be downloaded into the 
memory of a PXE-enabled physical computer during the 

35 reboot process required by a d.isk imaging task involving that 
computer. If a computer does not have a PXE-compliant NIC, 
the UCMS secondary software stack ca11 be loaded from a CD 
instead. TI1e following section, Physical Computer Control, 
explains this process in greater detail. 

40 Physical Computer CoDtrol 
See also FIG. 7, in wbicb the source computer 1000-

labeled the "physical computer"- is shown in somewhat 
more detail than in FIG. 4. The physical computer 1000 
managed by the UCMS according to the invention must pos-

45 sess at least one source disk 1010. Under normal operation, 
the computer boots from this source disk 1010, i.e., loads the 
software stack residing ou the source disk into memory 1020, 
and ruJlS this software. During a disk imaging operation, 
however. the computer must reboot into the UCMS secondary 

50 software stack 4100 loaded from a secondary medium. Like 
most contemporary offline disk imaging systems, the UCMS 
secondary software stack 4100 according to the invention can 
be distribmed in two forms: a CD (as illustrated in FJG. 7), 
which a user must manually insert into the computer's CD-

55 ROM drive before the reboot, or a memory image down­
loaded from the imaging server 2101 directly into the com­
puter's memory at boot time, using a preboot protocol such as 
PXE. The use of PXE is described in more detail in the 

TI1e switch service 4200 forwards the request 10 the local 
adapter 2314 if the object is an image file, or to the network 60 
adapter 2310 if the object is a remote disk. The appropriate 
adapter then attempts to open the object. lf the object is a 
remote disk. the network adapter 2310 attempts to connect to 

discussion above on the imaging server. 
First Reboot 

There are several ways to boot or reboot a physical com­
puter, depending on its current power state. lf the computer is 
powered off, the act of powering on causes the computer to 
start the boot process. A user can manually power on a pow­
ered off computer. Software numing on a second computer, 
such as the UCMS imaging server 2101 miming on a server 
computer 2000, can also remotely poweron the firs t computer 

an imaging client 1021 nmn.ing on the source computer 1000 
at the specified network address. If the object is successfully 65 
opened, then the local or network adapter returns a commu­
nication cha1rnel for the object to the switch service 4200. 

Netflix, Inc. - Ex. 1005, Page 000041 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
63 

by sending a signal over the network to the computer's NJC, 
using a protocol such as wake-on-LAN (WoL). 

If the computer is already powered on and is mnning a 
ftmctional primary software stack 5100, the loaded operating 
system (part oft he primary software stack) must be instmcted 5 
to reboot the machine. A user can do this manually through 
the operating system's user interface, or a software program 
can do this automatically through the operating system's APL 
lfthc software stack contains a UCMS agent (which may be 
designed and installed using known techniques). the UCMS 10 

imaging server 2101 can send a message to the agent. 
instructing it to automatically reboot tbe computer using the 
operating system APL The section Deployed Software Stack 
describes in greater detail the role of a UCMS ageot and bow 
it can be deposited into au image before deploying the image. 15 

If the computer is powered on but in a dysfunctional state, 
such as a stuck state resulting from a severe software failure. 
reboot iog the computer generally requires a user to press the 
computer's reset button. 

When a computer boots or reboots normally, the BIOS, 20 
included as part ofits physical hardware 5100. determines the 
device to boot from. i.e .. the device that provides the software 
stack lo be loaded into memory. A B10S generally exposes a 
user-definable boot order. i.e., a precedence ntle for finding 
the first valid boot device. A physical computer participating 25 

in the VCMS is preferably configured with the following boot 
order: 1) attempt to boot from the CD-ROM drive if it con­
tains a bootable CD; 2) attempt lo boot from a PXE memory 
image if the NJC can find a PXE server on the network; and 3) 
attempt to boot from the primary hard disk This configura- 30 
tion allows physical computers to boot from their primary 
disk under normal conditions. while giving the UCMS or an 
individual user the abi li ty lo override the boot device by 
supplyiug a boor CD or a PXE memory image. 

64 
If the computer is registered but its deployment state is 

dormant. it also remains on standby. A computer can become 
dormant when it is first registered. A previously deployed 
computer can also enter the dormant state if the UCMS 
administrator decides to re-use (i.e .. redeploy) the computer 
in order to take on a new role. 

If the computer is registered and in the deployed state. the 
server 2101 instmcts the client 1021 to execute a code 
sequence (which skilled progralillllers will know how to 
design) causing the computer to reboot from its source disk 
1010, thereby loading the primary software stack 5100 into 
memory 1020 aud nmning it. This process removes the sec­
ondary software stack 4100, including the imaging client 
1021, from the computer's memory. The code sequence is 
used to bypass the BIOS 5202 during the reboot. Note that if 
the client 1021 triggered a nonnal boot sequence instead, the 
BIOS 5202 would reboot the computer using the PXE 
method, possibly resulting in an infinite loop. 

If the computer is registered and in the transitioning 
deployment state, this means ir was rebooted for the purpose 
of initiating a disk imaging operation. In this siniation, the 
imaging client receives an incoming connection request from 
the server computer's network loop-back adapter. Once the 
connection is made, the imaging client may have up to two 
network com1ections with tbe server computer 2000: one with 
the imaging server 2101 and one with the network loop-back 
adapter 2310. An implementation may consolidate the two 
connections into one by having the imaging server and 
adapter share a sing.le connection, with the server relaying 
messages from the adapter over the shared connection. 
lmagc Capture and Deployment Process 

Once the connection with the network loop-back adapter 
2310 is established, the imaging client 1021 awaits and ser-

Rebooting from a CD 35 vices disk requests made by the loop-back adapter running on 
the server 2000. The protocol chosen for transmitting disk 
requests over a network connection is implementation-de­
pendent. It could be a universally known protocol. such as 

As mentioned earlier, user intervention is required if the 
UCMS provides the secondary stack 4100 on a CD. lf the 
computer is already mnninga functional software stack 5100 
loaded from the source disk 1010. the user must use the 
operating system's user interface to reboot the computer. If 40 
the computer is powered off, the user must power it on to 
begin the boot process. 
Rebooting from a PXE Memory lmage 

lfthe VCMS server is equipped with a PXE server. it can 
provide the secondary so11ware stack in the fom1 of a memory 45 
image. When a managed computer tmdergoes the normal 
boot process, its Bl OS 5202 attempts to find a PXE server on 
the network using its NIC. ·n1e PXE server automatically 
collllects to the computer and downloads the secondary soft­
ware stack 4100 into the computer's memory 1020. Tue com- 50 

puter 1000 then boots from the downloaded stack. 
Standby State 

Regardless of the boot method, alter the secondary soft­
ware stack4100 provided by the UCMS finishes loading iu to 
memory 1020, the imaging client J 021 program eventually 55 
starts rnn.oing. The client first analyzes the computer's hard­
ware configuration, sends the configuration and the comput­
er's identity information (especially the NJC's unique hard­
ware address) to the imaging server 2101 and then awaits 
further instructions from the server. 60 

If the imaging se.rver 2101 does not find the computer's 
identity in Lbe registration database 4004, it adds the com­
puter to the list of discovered but unregistered computers and 
alerts the imaging server's administrator of the presence of 
the new computer. Tue computer is left powered-on, with the 65 
imaging client 1021 indefinitely awaiting further instruc­
tions. In this situation, the computer is said to be on standby. 

iSCSl, ora custom-designed protocol that is proprietary to the 
UCMS's vendor. The chosen protocol should generally sup­
port the following types of requests. 

One request type ren1rns the list of physical disks attached 
to the physical computer and includes the properties of each 
disk. such as the disk type. capacity. manufacn1rer name and 
model number. A second request type selects one of those 
disks as the target for subsequent 1/0 operations. Finally, the 
remaining request types are l/O requests on the selected disk; 
an 1/0 request specifies a transfer direction (read/write) and a 
range of sectors. Ou a read request, the imaging client reads 
the requested range of sectors from the selected disk, then 
sends the data over the network to the remote loop-back 
adapter. 

l71e imaging client 1021 thus exposes the selected disk to 
the server computer 2000 and allows the server's file system 
drivers 2250, 2252 to make arbitrary l/O accesses to the disk. 
During an image capnire operation. the majority of accesses 
are reads, whereas during an image deploy operation they are 
mostly writes. 
Alternate unage Capn,re and Deployment Method 

The preferred mechanism for image capn1re and deploy­
ment is to make the remote physical disk 1010 appear as a 
local disk usiug the loop-back mounting mechanism 
described above However, the invention may also employ the 
traditional disk imaging approach from the prior art, that is, 
the method that relies on both the imaging client and imaging 
server 10 include a set of fi le system decoder/encoders. In th.is 
design, the imaging software perfonns all the fi le decoding, 

Netflix, Inc. - Ex. 1005, Page 000042 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
65 

streaming, packing, and unpacking; the server operating sys­
tem's file system drivers arc never involved. 

66 

Even when the traditional approach is used, the loop-back 
components are still needed, since the invention uses them to 
extract and analyze system configuration from images for 5 
classification and search purposes, and 10 manipulate image 
contents for reconfiguration and customization purposes 
prior to deployment operations. 

ware-running inside of the virt11al machine and the host's 
physical resources. such as hardware devices. Some virtual 
machine products, such as VMware GSX Server and Connec-
tix Virt11aJ Server, access the host's physical resources 
through the services of an industry-standard host operating 
system 6400 such as Linux or Windows; other products. like 
VMware ESX Server. include a virtual machine monitor 6300 
and system-level kernel capable of managing physical 
resources directly without the need for a host operating sys­
tem. 

Second Reboot 
When the disk imaging operation completes. tbe imaging 10 

server 2101 closes the comiect ion between the imaging client 
1021 and the network loop-back adapter 2310 and tben sends 

The virtual machinemanager6200 is typically also respon­
sible for creating, destroying and mai111aiuiJ1g virtual 
machine files residing on the host 6000. It may use a local 
registration database file 6210 to keep track of the virtual 
machines hosted on Uie computer. In order to integrate with 
the UCMS, the virtual machine monitor 6300 must expose a 

a final message over the remaining connection to instruct the 
imaging client 1021 to reboot the computer from its source 
disk 1010. In the case theprimarydiskhasjust been deployed 15 
from an image. U1c imaging server may set the computer's 
deployment state to deployed in the registration database. 
which indicates that computer is operational and ready to 
assume its intended role. 

network interface to the UCMS imaging server 2101 and this 
interface needs to expose a mininmm set of required service 
functions. 

Virtual Machine Control 20 
The UCMS can manage virtual machines in addition to 

physical computers. using a common set of image files. An 
implementation of the UCMS may, but need 001, include 
virtual machine teclmology. If a user requires virtual machine 
functionality, the VCMS can provide its own virtual machine 25 

software components, or interface with existing virtual 
machine products and integrate their virtual machines into the 
framework of managed computers. This modular design 
allows a vendor ofUCMS software to provide multiple con­
figurations of the product. each targeting a differen t set of 30 
users. This section discusses the requirements a virtual 
machine product must meet in order to integrate with the 

The first function returns the set virtual machines regis­
tered on the host 6000 and the properties of each virtual 
machine. such as its current power state and the contents ofits 
configuration file. 1l1e second ftmction copies a virtual 
machine configuration file and a virtual disk from the UCMS 
server computer 2000 to the host 6000 and causes the virtual 
machine monitor to register the new virt11al machine on the 
host. The third fonctiou performs a virt11a l machine copy in 
the reverse process, i.e., the ftrnction copies a virtual disk and 
description file from the host to the imaging server computer. 
The fourth function a llows the UCMS to perform power 
operations on a virlllal machine. such as power-on, power-olT 
and reset. 

UCMS. 
1l1e architecture of a typical vi rtual macl1ine product as 

used in the invention is illustrated in FIG. 8 . As explained in 
conjunction with Figures V and K, one or multiple virt1ial 
macllines are hosted on a physical host computer, commonly 
called a virtual machine host 6000. A virtll31 machine (VM) 
generally comprises one configmation file, which describes 
U1e v.irtual machine's nm-time device configuration, such as 
memory size, and at least one virtual disk file, which is also an 
image file from the UCMS framework's perspective. 

In FIG. 8, two virtual machines are shown, one of which 
(virtual machine 1, shown as component 6010) is illustrated 
as being powered on and the other of which (virtual machine 
2, shown as component 6020) is illustrated as being powered 
off. Tbe virtual machines 6010 and 6020 are shown as having 
respective configuration files 6011, 6021 and image files 
6012. 6022. Any number of virtual machines may be loaded 
onto Uie host 6000, limited only by the capacity of the host. 

The UCMS can uniquely identify a virtual machine on a 
particular host using one of two approaches. The first 
approach is to identify a virtual machine by U1e file path of its 
configuration file. For instance. the paths /vms/johu/ 
myWiudows2000.cfg and /vms/mary/myWindows2000.cfg 
identify two distinct virtual machines, despite the configura­
tion file names (myWindows2000.cfg) being identical. 

The second approach is to give each virtual machine a 
globally w1ique ID, for example, a large random number. In 
this case. a virtual machine manager 6200 located in the host 
can use standard teclmiques to associate an ID with a virtual 
machine by storing the ID in the virtual machine's configu­
ration file, or by storing a mapping between the ID and the 
config11ration file in a local database. 

When a virt11al machine is powered on, a vir11ial machine 
monitor program 6300 controls it and manages the interac­
tions between the software- commonly called "guest" soft-

lmage Deployment Overview 
When the UCMS according 10 the invention deploys an 

35 image to a virt11al machine, a useroftbe UCMS, or the UCMS 
itself, specifies a destination virtual machine host 6000 and a 
destination vimml machine on that host identified either by a 
configuration file paU1 or unique ID. If the destination virtual 
machine does not exist initially. then the imaging server inter-

40 acts with the virtual machine manager 6200 in any known 
mam1er in order to copy the image and a virtual machine 
configlliation file to the host. (Note that a VMM typically 
controls only active, powered-on virlllal machines.) The cop­
ied image becomes the active image 6012. or vir11ial disk. for 

45 the newly created virtual machine. The imaging server 2101 
also registers the virt11al machine in its registration database 
4004 and sets its deployment state to deployed. 

Jf the destination virtual macl1ine exists, i.e .. a virtual 
machine wi th a duplicate configuration file paili or ID exists 

50 on the host, then the vir111al machine manager 6200 destroys 
Uie existing files and replaces them with the ones copied from 
the imaging server 2101. 

Once a virtual machine is successfully deployed from a 
template image 4020, the virtual machine manager 6200 may 

55 optionally power it on (such as v irtual machine 6010); this 
would mimic the results of a deployment to a physical com­
puter, since a physical computer typically reboots and 
becomes operational once it bas been deployed from au 
image. The imaging server, or the user that requested the 

60 deploy-to-virtual machine operation. may also choose to have 
the destination virtual machine remain powered off (such as 
virtual machine 6020), with the option of powering ii on al a 
later time using the virn,al machine manager's fourth inter­
face function. 

65 lnlage Capture Overview 
A user may want 10 create a template image 4020 from a 

virtual machine's virtual disk. 1l1e process for captming an 

Netflix, Inc. - Ex. 1005, Page 000043 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
67 

image from a virtual machine is similar to the deployment 
case. with the main di fterence being that virtual machine files 
are copied from the virtual machine manager 6200 to the 
imaging server 2101. U- the source (virt11al) machine is cur­
rently powered on when the manager 6200 receives the image 5 
capture request. it first needs to be powered off to ensure that 
its virtual disk's contents are stable during the network copy 
process. 

68 
physical computer case. Most virtual machine software prod­
ucts allow a virtual NJC to be bridged to a physical network. 

Second, if the virt11al machine's NIC is not bridged, or if 
the virtual machine is not configured with a virt1ial NIC, then 
there will usually be aDother communication charu1el avail­
able: Most virtual machine sofiware products implement a 

The virt11al machine monitor can power off a rnru1ing vir­
tual machine through one of two methods: I) if the virtual 
machine is mnning a software stack that contains a UCMS 
agent 7300, then tbc user (via tbe imaging server) or the 
imaging server itself can send a message to tbe UCMS agent, 
via the VM manager 6200 and the VMM 6300, to request the 
guest operating system to shut itself down and power-off the 
virtual machine hardware; and 2) if the UCMS agent is not 
present. om of service, or the software stack has experienced 

"backdoor" charmel 7401 between a virtual machine monitor 
and g11est software rullning inside of the virt1ral machine. This 
chaooel is typically implemented by equippiDg the virtual 

to machine hardware with a special virtual device. By interact­
ing with this virtual device, the agent can communicate with 
che virtual machine monitor and. through message relaying, 
any external program rnnning on the host compmer. The 

a failure. then the imaging server can instruct the VMM to 
forcefully power off the virtual machine. 

15 imaging server may take advantage of such a backdoor chan­
nel 7401 by connecting to the host's virtual machine monitor 
6300 through the physical network aDd then sending mes­
sages lo the agent 7300 through the virtual machine manager 
6200 a11d the virt11al machiue monitor 6300, over the back-

Duriug the copy phase, tJ1e imaging server 2101 tempo­
rarily sets the virtual machine's deployment state to transi­
tioning in order to prevent a user from accidentally powering 

20 door cha1mel 7401. 

it on. The state is restored to its initial value once tJ1e capture 
operation completes. 

When the copy phase completes, the resulting copy of the 25 

active image 6012. i.e., the source virtual machi11e's virtual 
disk file, becomes a template image 4020 on the UCMS 
server computer 2000, since it is not attached to any virrnal 
machine. 

In additioD to responding to conrrol commands. the agem 
7300 can also report status and system performance informa­
tion to the imaging server 2101. allowing the UCMS to detect 
the presence of the agent and to monitor the deployed com­
puter' s health. Before attempting to remotely control a 
deployed computer, for example to illitiate a disk imagiDg 

Deployed Software Stack 
UCMS users and, in particular, a UCMS administra tor, 

decide how many images 4020 to maintain 011 the UCMS 
server 2000, what to put ill images and what images to deploy 
o nto specific computers. A typical image encapsulates the 
software stack, as illustrated in FIG. 9. Furthermore, FIG. 9 35 

shows a destination computer whose primary disk 7110 was 
deployed from the image. The stack 7100 contains an arbi­
trary operating system 7200, and application software 7111 
including one or more soliware applications 7114 and an 
arbitrary set of data files (not show11). 

operation, tbe imagiDg server 2101 must therefore check for 
the presence of the UCMS agent 7300 on that computer by 
attempting to communicate with it over one of the known 

JO channels. If the agent is Dot preseDt or cannot be reached, the 
inmging server can alert the UCMS administrator that the 
deployed computer might be misconfigured and might have 
to be manually rebooted. 

As described in the discussion on prior art, coDtemporary 
computer management systems also use agents 10 remotely 
monitor and control managed cot1-1puters; the UC MS agent 
7300 serves the same purpose within the UCMS management 
framework. An importaDt differeDce, as the paragraph Image 

4o Customization will reveal, is that UCMS users don't have 10 

bear the burden of imtalliDg and admiuistra tiDg the agent in 
image files; rather, the UCMS image customization mecha­
nisms can automatically insert the agent into all image before 

In order to take advantage of the UCMS' automated man­
agemeDt capabilities, the stack 7100 may also contain a com­
puter control agent program 7300, which is referred to as the 
UCMS agent 7300 for simplicity. The agent 7300 allows the 
UCMS server 2000 to monitor and control the deployed com- 45 
puter 7000. As discussed in the Physical Computer Control 
and Virt11al MachiDe Control sections, the UCMS call auto­
matically initiate a disk imaging operation on a computer that 
was previously deployed :from an image, if the computer is 
powered-on and is running the UCMS agent. 

deployment. 
·image Organization and Management 

Before a template image 4030 can be archived or used, a 
user must first register it in the resource database 4004 usiDg 
a console user interface 2700 included ill the UC MS server; 
the interface 2700 may be desigued using any knowD meth-

In order to initiate a disk imaging operation, the UCMS 
imaging server 2101 instructs the agent 7300 ro reboot the 
com put er 7000, i fl he computer is physical, or to shu I it down, 

so ods. The resource database maintains oDe record per regis­
tered template image. An image record contains the location 
of the in1age file and a number of attributes for tJ1e image. 
Some o f those attributes can be user-defilled ammtations, 
such as textual comments explaining what the inmge con­
tains. Other attributes characterize various aspects of the 
image' s system configuration 7210. which may include oper-
ating system type, version and elements of the hardware 
configuration. Recall that despite the fact that an image is Dot 
a computer, it does reflect a certain hardware configuration, 

if the computer 7000 is a virtual machine. The server has 
several ways of communicating with the agent. U' the com- 55 
puter is physical. then it must be coooected to the network 
3000 and reachable from the UCMS server computer 2000; in 
this situatioD the imaging server 2101 and the agent commu­
nicate using a private protocol over a standard network trans­
port protocol. such as TCP/lP. 

If the computer is a virlllal machine running on a host 
computer. then server call commullicate with the agent using 
one of two channels. First. if the virtual machine is equipped 
with a virtual NIC and the virtual NIC is bridged with one of 
the host' s physical NICs, then the imaging server 2101 call 65 
comimmicalc with the agenc 7300 using the same network­
basedcommunications cha1mel(s) 7400 and methods as in the 

60 based on the operating system files 1012 that were installed 
on the source computer 1000 from which the image was 
captured. 

Uruike computer management solutious found in the prior 
art. the UCMS can automatically compute the system con­
figuration-related attributes of an image. based on the image's 
contents. ln fact. since those attributes can always be deter-
mined amomatically, they don't really need to exist sepa-

Netflix, Inc. - Ex. 1005, Page 000044 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
69 

rarely from the image. The reason an image record may con­
tain such attributes is caching, which speeds up look-ups on 
frequently read attributes. 

Certain attributes of an image, such as operating system 
type. version and patch level are so commonly looked up that 5 
the UCMS may pre-compute and cache them in the record 
when the image is registered. This allows a UCMS user to 
perform fast image browsing or searching based on com­
monly referenced attributes. Whenever a template image's 
contents change. possibly through reconfiguration. customi- 10 

zation, or manual editing by a user. the UCMS may recom­
pute the cotm11only used anributes and store them in the 
database entry for the image. 

When a user browses registered template images 4020 
using the UCMS user interface (Ul) 2700, the Ul may offer 15 
several possible views of the templates. For example, the Ul 
could sort images by opcrat ing system type, patch level. The 

70 
other well-known Wiudows 2000 AP] :ftmctions. Once the 
desired information is retrieved, tl1e UCMS calls RegUn­
LoadKey( ) to tmload the hive from the server opernting 
system's active registry and then dismounts the image file. 
image Reconfiguration and Deployment 

Image reconfiguration is the process of updating an 
image's operating system files to make it compatible with a 
destination hardware configuration. The UCMS detects hard­
ware compatibility issues by comparing an image's system 
configuration against the hardware configuration of a desti­
nation computer prior to a deployment operation. 
Deploying to Physical Computers 

In order to become registered with the UCMS, a new physi­
cal computer must first boot into the UCMS secondary soft­
ware stack 4100. allowing the UCMS server 2101 to detect 
the computer and to add a record for it in U1e registration 
database 4004 (sec Physical Computer Control). ·n1c UCMS 
user interface 2700 can display the list of detected but unreg­
istered computers. Through this user interface, a UCMS user 

set of system configuration-related attributes needed for those 
views tend to be the ones that the UCMS pre-computes and 
caches in the database entries. 20 o r administrator can then register any unregistered computer. 

Similarly. the Ul may offer advanced image search capa­
bilities. based on arbitrary attributes. Images can be searched 
based on user-defined attributes, such as textual annotations, 
or configuration-related attributes that the UCMS predefmes 
and can automatically extract. Jn this case, users' search 25 

patterns influence how frequently each attribute type is 
accessed. 

The registration process causes the imaging client 1021 
nmning from the secondary stack 4100 to analyze the com­
puter's hardware configttration and transmit it over the net­
work 3000 to the UCMS server 2101. The server then creates 
a second type of record, called hardware configuration 
record, in the registration database and stores the transmitted 
hardware configuration information in the record. unless a 
record describing the same hardware configuration already 
exists. 

Attributes are thus computed and cached on-demand. 
When a configuration-related attribute of an image needs to 
be read but is not cached in the image's database record, the 30 
UCMS server performs a temporary loop-back mount of the 
image file, allowing it to access the image's file system 
through the mapped simulated local disk. Some attributes can 

171c server tl1en adds to the computer record a pointer to the 
configuration record. In the case multiple computers are 
equipped with the same hardware. their corresponding com­
puter records would all point lo the same configuration 
record, resulting in space savings for the registration data­
base. 

be determined dirt.'Ctly by inspecting the external character­
istics of certain files. For example, the uniprocessor-versus- 35 

multiprocessor attribute of an image's hardware configura­
tion can be determined by examining the name and type of the 
installed kernel file. 

1l1e server ihen checks the resource database 4005 to see if 
the file cache 4010 has the necessary substin1te system files 
needed to reconFigure 3ny image to support the particular 
hardware con.figuration. For instance, consider the registra-Determining other allributes may require the UCMS to 

inspect the iutemal contents of a file. For instance. the Linux 
operating system stores most of its con.figuration settings in 
text files. most of them under the /etc/d irectory. The UCMS 
could, for example, analyze tl1e contents of the /etc/services 
file to determine the set of network services that the operating 
system embedded in the image supports . 

Some operating systems, such as Windows 2000, store 
certain system sett ings in binary flies whose internal data 
format is proprietary, that is, not directly accessible to soft­
ware that does not understand the format. Fornmately, if the 
server operating system provides an AP] to decode such a file, 
the UCMS server can use that API to access the meaningful 
contents within the binary fi le. For instance, Wi.ndows 2000 
stores most configuration settings in a ser of binary files called 
registry hives. When the server operating system starts up, it 
loads its hives into the tree-like memory struct·ttre universally 
known as the registry. Consequently, although the Windows 
registry is sometimes referred to as a file, in actuality it is 
made up of multiple, independent hive files. 

If the UCMS server software is installed on a Windows 
2000 server operating system, it can read a hive belonging to 

40 tion ofa new computer equipped with 2 processors, an ACPI­
enabled cbipset. a BusLogic SCSI disk contro ller and a 3Com 
3c509 N]C. lfthe UCMS supported images containing only 
one of two specific operating system types, such as Linux or 
Windows, it would need to verify that the file cache 4010 can 

45 supply the necessary Linux and Windows operating system 
files that are compatible with the devices specified in the 
hardware configuration. 1l1e number and types of files vary 
dependi11g on the operating system type, but they would gen­
erally have to include a multiprocessor-capable kernel file, 

50 possibly a HAL file (on Windows), a driver for the BusLogic 
controller and a driver for the 3Com NIC. 

If some files arc missing, the UCMS server can alert users 
of the situation, either by displaying a message tl1rough the 
user interface 2700, or by logging an alert in an event da tabase 

55 that users can inspect at a later time. The server 2101 would 
also set a flag in the computer entry indicating that a recon­
figuration for that hardware configuration may not be pos­
sible because of unresolved file dependencies. 

When a user notices tl1e alert, be may instruct the UCMS to 
60 resolve tl1e missing flle issue immediately. Substitute system 

files are generally packaged in container files , such as 
patches, installer programs and service packs and therefore 
resolving the issue genera.Uy involves inserting missing con­
tainer files into tl1e UCMS file cache 4010. 

a Windows 2000 image using the following procedure: The 
UCMS first maps the image to a sinrnlated local (source) disk 
2210 using loop-back mounting as described above and then 
invokes an AP] fonction called RegLoadKey( ) to load the 
hive from the simulated disk into a temporary subtree within 65 
the server operating system's registry and then accesses tl1e 
desired registry entries under the temporary subtree using 

Tue UCMS can handle the resolution process in several 
ways. An implementation may simply display a list of 
descriptions of missing containers and re ly on the user to 

Netflix, Inc. - Ex. 1005, Page 000045 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
71 

manually locate the containers on the lnteruet, download 
them and then insen them into the file cache through the 
UCMS user interface. A more advanced implementation may 
have a built-in database of common Internet download sites 
and attempt to automatically locate and download the coo- 5 
tainers from these sites. This approach might fail; since oper­
ating system vendors frequently change the address of their 
patch and driver download sites. An even more advanced 
implementation oftJ1e UCMS might connect to a well-known 
and constant Jnternet address maintained by the UCMS ven- to 
dor itself; a patch and driver locator service would run al this 
address and wou.ld refer tbc UCMS to the most current down­
load locations. The service itself could rely on a location 
database that the UCMS vendor would periodically update, 
thus ensuring that the site location information is always 15 
current. 

A user may also ignore the alen and decide 10 resolve fllc 
cache dependencies later, at image deployment time. When a 
user instrncrs the UCMS to deploy an image to a registered 
physical computer 7000, the VCMS server first determines 20 
the hardware configllfation-related attributes of the image. 
Recall that despite the fact that an image is not a computer. its 
installed operating system files reflect a cenain hardware 
configuration. more specifically, the configuration of the 
source computer from which the image was captured. The 25 

attributes of interest generally comprise the processor con­
figuration. tbe chipsel type, the disk controller and possibly 
the NIC types. 

Some of those attributes may already have been cached and 
stored in the resource database 4005 record for the image. If 30 
some required anributes are not cached in the image record, 
tbc UCMS extracts 1hc missing information from the image 
lile by using the loop-back mount procedure previously 
described ill Image Organization aDd MaDagemen1. 

Once the hardware configuration information for the image 35 

is known. the UCMS server compares it against the destina­
tion computer's hardware coufiguration. lftbey match. then 
the image can be deployed without modification, unless the 
user requests certain customizations to be performed. 

If the configurations do not match, then a reconfig1.1ration is 40 
necessary. TI1e UCMS determines the variants and versions of 
the substitute system files that need to be copied to the image. 
based on the image's current system configuration and the 
UCMS's version database. The method for determining the 
correct substitute file set from the version database was 45 
described in detail in the Reco11figuration paragraph of the 
Simplified 1-lardwareMigration usinglmage Reconfiguration 
seci-ioD above. 

The UCMS server 2101 then checks the resource database 
4005 to determine whether the file cache 4010 has the file 50 

containers 4012 that contain the variants and versions of the 
required substitute files. In the case some containers are sti ll 
missing, then the user is a lened and the image deployment 
process cannot proceed until the file cache dependencies are 
satisfied. 55 

Assuming that the file cache is able to supply the required 
substitute files, the UCMS server reconfigures the image's 
contents as follows. It first locks the image file, preventing 
anyone or any other program from modifyingordcleting it. lt 
then preferably enables copy-on-write for the image. thus 60 

protecting the image by storing all modifications to tempo­
rary redo log. The server then perfonns a loop-back mount of 
the image. allowing it to access the image's contents through 
the mapped simulated source disk. It then replaces the appro­
priate operating system files with substitute files extracted 65 
from containers in the file cache. The reconfiguration process 
may also require modiJying some operating system configu-

72 
ration files in the image, such as text files and registry hives. 
Registry hive entries can be accessed and edited using the 
method described in the section "Image Organization and 
Management:• 

ll1e final step is to actually deploy the modified image to 
thedesti;iation computer. The destination computer must first 
boot. or reboot into the UCMS secondary software stack 
4100. lf the computer is currently powered-on and rull1ling 
the UCMS agent 7300, the UCMS server sends a message to 
the agent, instructing it to reboot the computer into the sec­
ondary stack. If the UCMS server is equipped with a PXE 
server 4002, it can down.load the stack over the network into 
tbe computer's memory during the reboot process. 

TI1e UCMS then connects to the imaging client included in 
the secondary stack. Once the connection is established, the 
server perfomis a loop-back mount of the remote physical 
disk 1010, thereby mapping it 10 a simulated destination disk 
2230. T he UCMS server then uses tbe server operating sys­
tem's A Pl or disk utility programs 10 partition and format the 
simulated destination disk with the same layoul and file sys­
tem format as the simulated source disk. It then copies all Jiles 
and folders from the source to the destination. 

When the deployment operation completes, the UCMS 
server dismounts t11e source and destination disks. then 
instructs the imaging client io reboot the destination com­
puter from its newly deployed physical disk. Finally, the 
server destroys the temporary redo log aud unlocks the image 
file. 

As in other contexts described above, there is an alternative 
to modifying the template virtual disk (using copy-on-write/ 
redo-log) and IJ1en copying the modified version to the desti­
nation host: Instead. the UCMS can copy the unmodified 
template lo the destination hos t, and then perfonu a loop-back 
mom1t of the remote copy, making it appear as a simulated 
local destination disk. This then allows the imaging server to 
make the desired modifications directly. 
Deploying to Virtual Machines 

ll1e general procedure for deploying an image to a virtual 
machine is mostly similar to that for a physical machine. This 
section describes t11e few differences. 

Unlike a physical machine, a destination virtual machine 
may not initially exist and therefore may not have a record in 
the registration database 4004. This is. in fact, one of the 
benefits ofvirn1al machine technology: Virtual computers can 
be created on the fly, as needed. 

What does need to be registered is the destination virtual 
machine host 6000 on which the vir111al machine is to be 
created. The registration database 4004 therefore contai11s a 
record for every virtual machine host that participates in the 
UCMS framework. A host record contains a description of the 
virn1al machine software installed on that host. It also con­
tains one or more pointers to hardware configuration records 
describing t11e various vinual hardware device sets that the 
host's virt1.1al machine software can implement. 

Some virtual machine products support exactly one type of 
vir111al hardware configuration. For instance. VMware GSX 
Server 2.0 implements a virtual hardware configuration con­
sisting of a single processor, a non-A.CPI cbipset, one or more 
BusLogic SCSI controllers and one or mullipleAMD PcNET 
N1Cs. OIJ1er v in1ial machine products may implement more 
than one configuration. For example, VMware ESX Server 
2.0 supports the older GSX Server 2.0-style configuration 
(for compatibility) and a new configuration comprising up to 
two processors, anACPI-enab led chip set and one or more LSI 
Logic SCSI controllers. 

When a user registers a virtual machine host, he may manu­
ally specify the type of virtual machine product nurning on 

Netflix, Inc. - Ex. 1005, Page 000046 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
73 

the host, or the UCMS server can automatically attempt to 
detect the product type and version by probing the virtual 
machine monitor 6300 program mnning on the host. This is 
possible because a virtual machine monitor 6300 generally 
exposes a network interface exporting multiple API functions 
and one of !hose functions typically returns a product type, 
version and description. 

When a host is successfolly registered, the UCMS server 
adds the corresponding host record and hardware configura­
tion records to the registration database 4004. The simplest 
way to enable a UCMS to determine the correct hardware 
configurations for a particular virtual machine product is to 
equip it with a pre-built table of supported products and a set 
of pre-created configuration records for all of the virtual 
hardware configurations supported by each product. 

74 
zation were described under the Simplified Sotiware Provi­
sioning Using On-Demand Image Customizat.ion section 
above. 

The greatest difference between the UCMS's approach to 
5 customization and the prior art is the ability to customize any 

image without requiring the image to be prepared in any way; 
in other words, the image does not need to contain any pre­
installed software for the specific purpose of customization. 

Existing computer management systems require images to 
to contain a pre-installed agent in order allow the systems to 

control computers deployed from those images. The UCMS 
agent serves tl1e same purpose, i.e., it allows the UCMS server 
to control physical computers and virtual machines deployed 

15 from UCMS images. The UCMS agent. however. docs not 
need to be pre-installed in images at tl1e time the images arc 
created; rather the UCMS server can automatically deposit 
the agent into an image just prior to deployment. 

When a user requests the UCMS to deploy an image to a 
virtual machine, the user specifies a destination host and an 
identifier fora destination virtual machineou that host, which 
could be a numerical ID or file path. The UCMS server 
determines the set of virtual hardware configurations sup­
ported by the virtual machine software installed ou the host 
and may give the user a choice in case there is more than one 
configuration. An alternative is to a lways select a default 
configuration in the case of multiple configurations. The 25 

UCMS can also allow the user to equip the virtual machine 
with additional non-critical devices, such as NlCs and con­
figure other device settings, such memory amount. 

By separating customization and management software 
20 from images, the UCMS mecba1lism according to the i11ven­

tiou ensures that images never become obsolete. since they 
can always be upgraded to the latest customization or man­
agement technology at deployment time, not at image ere-
ation time. 
Customization Process 

Customization generally involves modifying an image's 
software configuration at deployment time with setti11gs spe­
cific to the destination computer. The settings could include a 
computer name, a globally unique security identifier. a net­
work domain membership and network parameters (such as 
IP address and protocols) for each of the computer's NICs. 

Once the virtual machine's hardware configuration is 
selected and tl1e non-crit ical devices are specified and quan- 30 
tified, the UCMS server checks if tl1c image requires recon­
figuration, based on its current system configuration. If a 
reconfiguration is required, it is validated and processed in the 
exact same way as in tl1e physical computercase.1l1e remain­
ing steps of the deployment process differ slightly from the 35 

physical computer case, as described below. 
First, it is possible that the virtual machi11e host 6000 and 

the UCMS server 2000 computer are in fact the same com­
puter; it is thus possible to install the UCMS server 2101 and 
a virtual machine software product on tl1e same computer. ID 40 
this case. the UCMS server can simply make a local copy the 
reconfig11red image and that copy becomes the final active 
image associated with the destination vimial machine. 

If the destination host is a remote computer. then the 
UCMS server opens a connection witl1 the virn1al machine 45 
manager 6200 nmning on tliat host and then copies the con­
tents of the reconfigmed image over the network to the host. 

Another difference with the phys ical computer case is that 

The UCMS customizes an image just after the reconfigu-
ration step (if required), while the image is still mapped to a 
simulated disk, but before it is deployed to a desti11atio11 
physical computer or copied to a destination virt11al machine 
host. The UCMS supports two mechanisms for making the 
software config11ration changes involved in customization: l) 
use an existing customization tool from the prior art: or 2) 
make direct chzmgcs in the image. 
Configuration Change Using Existing Cusiomization Tools 

A UCMS user may choose to use an existing customization 
tool because she is familiar with the tool. In this case. the 
UCMS mechanism according to the invention simply makes 
it easier to use the tool with images. Ou Windows operating 
systems, rhe Sysprep tool is one oftl1e most conunon image 
customization tools. A user normally mns Sysprep 011 a 
source computer before capturing an image from the com­
puter. At deployment time. a config11ration parameters file 
named Sysprep.inf, which is provided on a floppy disk or the destination virtual machine does not need to boot into a 

secondary software stack 4100. since the virtual machine may 
not exist initially anyway and, more fundamentally, the 
UCMS treats virtual disks as images; therefore, an imaging 
client 1021 is never needed for imaging to and from virtual 
machines. 

50 automatically created and edited by a configuration manage­
ment agent. supplies the customization settings specific to the 
destination computer. 

Note that either the copy-on-write or tbe alternative direct­
modification technique (both discussed above) may be used 
here as well. 
Image Customization 

In addi tion to reconfiguration. another reason for modify­
ing an image prior to deployment is customization. The cus­
tomization process generally makes small changes to an 
image to tailor it for a particular destination computer. Cus­
tomization could involve changing a software stack's com­
puter identity, reconfiguring its network bindings, or install­
ing software not present in the image. The concept of iulage 
customization was first introduced above in the discussion on 
prior art and the invention's novel contributions to customi-

As previously described, when Sysprep mns on a sow-ce 
computer. it deposits a boot-time customization agent called 

55 elsetup.exe onto the computer's file system and modifies a 
few registry entries to cause the agent to nm at the next 
operating system boot. When an image captured from the 
source computer is deployed onto a destination computer and 
the destination computer boots from the deployed disk for the 

60 first time. clsetup.exe nms once and customizes tl1e computer 
using the settings specified by the sysprep.inf file. 

If a UCMS administra tor chooses to use a familiar tool 
such as Sysprep to perform customizations, the UCMS can 
greatly siulplify the process by automatically inserting the 

65 boot-time agent. creating the registry entries and creating a 
customized version of tl1e configuration settings file inside 
tlle image just before deploying it. 

Netflix, Inc. - Ex. 1005, Page 000047 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
75 

The UCMS uses a customization script to implement cus­
tomization via an external tool. The customization script, 
whose design will be obvious to skilled progranuners. is a 
small program written in a high-level language (such as Perl 

76 
Config11ra1ion Change Using Direct lmage Changes 

ll1e alternative to external customization tools is to use a 

or Visual Basic) that can access UCMS resources, such as the 5 

Hie cache 4010 contents and the various UCMS databases and 

customization script that perforn1s all the necessary software 
configuration changes directly in the image, without the need 
for a specific tool and, more fundamentally, wi thout the need 
to insert a pre-boot agent such as Sysprep's clsetup.exe pro-

access the contents of a mapped simulated disk 2230 prior to 
image deployment. When the script executes inside the 
UCMS server environment. the script accesses the image and 
the UCMS resources through a ScriptingAPI provided by the 
UCMS software. Th.is AP] exposes a set of UCMS-specific 
services and can be provided in the form of a dynamic link 
library (DLL) or other software component type. 

A customization script typically resides on the server com­
puter 2000 on which the UC MS server software is installed. 
Before a script can be selected to nm at image deployment 
time, it must first be registered with the UCMS's resource 
database 4005. lf the script requires access to certain files, 
such as t.be binary files belonging to a specific customization 
tool. the files also need to be present on the server computer 
and registered in the resource database 4005. 

An implementation of the UCMS product may include 
pre-created and pre-registered scripts that can customize an 
inrnge using a well-known external customization tool. For 
example. a UCMS product may include a script that custom­
izes an image using Sysprep. Before that script can mn. 
however, the UCMS administrator must first download the 
Sysprep distribution package from the lnternet. store it in a 
location accessible from the server computer and register it in 
the resource database 4004 using t.he UCMS user interface 
2700. Tbc user may also instruct the UCMS to store the 
package in the file cache 4010, which might make it easier to 
ma Dage since it would reside with other CODtainers 4012 used 
during image deployment. 

An image deployment operation can thus specify a cus­
tomization script to nm and a set of customization settings to 
use as input to the script. 1 r a user manually starts a deploy­
ment operation, he has the opportunity to select the script and 
the settings. along with o ther information required for the 
deployment, such as a virtual machine host 6000, in case the 
destination computer is a virtual machine. 

Tue UCMS can also automate certain aspects, or all 
aspects. of an image customization and deployment opera­
tion. For example. a user could instruct the UCMS to schedule 
the deployment of a selected image onto any computer 
belonging to a pre-defined cluster of destination computers, at 
a certain date and time. When the UCMS actually performs 
the deployment. it may automatically select a destination 
computer. a customization script and a set of customization 
settings for the operation. Tue destination computer could be 
selected in such a way to balance the workload among the 
cluster; the script could be pre-selected: and the c ustomiza­
tion settings could be generated in such a way to ensure tbat 
the destination computer would have a unique network iden­
tity. To ensure uniqueness. the UCMS could. for instance. 
generate a random computer name and configure the destina­
tion computer's NlC to dynamically obtain a unique JP 
address using the known Df-lC P protocol. 

gram into an image. This is possible because prior to deploy­
ment, the UCMS server performs a loop-back mount of the 
image to deploy. allowing the UCMS and any customization 

to script, to make arbitrarily complex changes to the image's 
contenrs. A customization could thus add and modify any file 
or registry entry in an image. Tue changes preferably always 
take place while the image is Jocked and in copy-on-write 

15 mode. so that the original template image is never modified. 
In summary. by separating customization and management 

mechanisms from images and by implementing the customi­
zation process using scripts. the UCMS enables unprec­
edented power and flexibility in the image customization and 

20 deployment process. 
UCMS Agent Insertion 

Tue UCMS server 2101 preferably takes advantage of the 
imagccustomiwtion step to insert the UCMS agent 7300 into 
the deployed image. The UCMS agent a llows the UCMS to 

25 remotely monitor and control a computer deployed from an 
image, as explained in Deployed Software Stack. 

A UCMS administrator may want to insert additional 
agents to allow another configuration management software 
system to monitor and manage deployed computers. He may 

30 easily add this capability by supplying an addit ional customi­
zation script to run at image customization time. This script 
could, among other tliings. insert an additional agent and any 
olher progrJms or files deemed useful. 

35 

1mage Deltas and Image Factory 
The UCMS user interface 2700 allows a user to compute 

the file differences (deltas 4014) between two template 
images. Tue differences are computed by comparing files and 
folders belonging to each of the images. When a user instrncts 
the UCMS to perfonn an image comparison, he typically 

40 selects a top-level folder to compare. Tbe UCMS is then 
responsible for perfonning a pair-wise comparison of every 
file under the same folder from each oftbe two images. If the 
folder contains subfolders. then the UCMS recursively com­
pares files from the subfolders as well. lfthe user specifies the 

45 file system's root folder, then the lJCMS compares the entire 
file system tree. 

Before file comparison can be performed, the UCMS 
server software first maps the two user-selected template 
images to two simulated local disks. using the loop-back 

50 mount method described above. lt can then access the rel ­
evant files through the iniages' mounted file systems. 
File Comparison Process 

When the UC MS finds a particular file in a particular 
subfolder on the second image, it first checks if the file also 

55 exists in the first image under the same subfolder. Jf the file 
does not exist. the UCMS creates a difference record in 
memory indicating that the file bas been added in the second 
image. If a file with the same name also exists in the first 
image, tl1c UCMS compares the two files to check whether 

60 they are equal. Two files are equal if their external attributes­
such as name. size and version- are identical and their con­
tents are also identical. Tbe UCMS can easily inspect the 
files' attributes and binary contents using the server operating 

Customization scripts can be modified and added to the 
UCMS. which ensures that the UCMS can always be 
upgraded to support the lates t image customization tools. 
This, combined with the fact that the tools need not be (and 
preferably are not) present in template images, since scripts 
can automatica lly insert them at deployment time, ensures 65 
that images don't become obsolete when new tools. or newer 
vers ions of tools, become available in the market. 

system's file APL 
lf a file exists in both images but the two instances are 

found to be different, the UCMS first creates a difference 
record to reflect the existence of a discrepancy for the file. The 

Netflix, Inc. - Ex. 1005, Page 000048 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
77 

record contains tbe file's path name and specifies tbe aspect of 
the file (i.e., attribute or contents) that differs between the two 
instances. 

lfthe instances differ in their content and their internal file 
format is known to tl1e UCMS and the file is relevant from a 5 
system COilfiguration perspective, then the UCMS can option­
ally compare ilie internal contents of the two instances in 
order to find inclividual differences within sub-elements of the 
file. 

78 
from the first image, then the difference record for the file 
would contain a sub-record. This sub-record would in tum 
comain a description of the difference (such as the line num-
ber) and a copy ofilieactual line of text that was added in the 
second instance. 

lfa file from the second image is absent in the first image, 
the resulting file difference record conta ins an embedded 
copy of the entire file itself, including its attributes and ful l 
contents. 

When the comparison operation completes, the UCMS 
saves the difference records from memory into a delta file. A 
user can then add the delta file to the file cache through the 
UCMS user interface, which causes ilie UCMS to register the 

15 delta in its resource database. 

For example. consider the comparison of tlle /e tc directory 1 o 
between two images containing the Linux operating system. 
After mapping the two images to simulated disks, tbe UCMS 
can easily detect that the images contain a Linux operating 
system, based on the images' file system format and ilie 
presence of well-known system files, such as the Linux ker­
nel, in well-known locations. By convention, Linux stores 
most of its system collfiguration settings in a set of text files 
tmder the /etc directory; the /etc/services file, which contains 

An implementation of the UCMS may support multiple 
delta file formats. A delta resulting from an image comparison 
is typically created by ilie UCMS. since the UCMS is the only 
disk imaging system in existence capable of taking the dif­
ference betwee1l images. Such a delta may be internally rep­
resented using a proprietary file format known only to the 

a list of exported network services, is an example of such a 
file. The UCMS could thus automatically recognize that /etc/ 20 
services is a system configuration file. lf the two instances' 
contents differ, the UCMS can perform a textual, line-by-line 
comparison between the instances. This would allow the 
UCMS to detect. for example, that the second image's 
instance bas an additional line, specifying a new network 25 

service 1101 exported by the operating system residing on the 
first image. 

Similarly, when comparing two images containing a Win­
dows operating system. ilie UCMS can automatically recog­
nize the presence o.f registry hive files based on the ir well- 30 
known path (they tend to reside in the 
%systcmroot%\systcm32\config folder) and compare indi­
vidual registry entries between the two images. Unlike text 
files. registry hives use a proprietary binary file fonnat. For-
11mately, as previously described in Image Organization and 35 

Management, in the case the UCMS does not have direct 
knowledge of the internal hive format. it can still decode the 
contents of hive files using the server operating system's 
registry APL 

When a UCMS finds differences in individual sub-ele- 40 
ments of a system configuration file. such as text lines in a 
Linux configuration file, or registry entries in a Windows hive 
file, it augments the file difference record with one sub-record 
for each differing sub-element. 

UCMS vendor. On the other hand. the UCMS may allow 
other types of deltas 4014 to be added to the file cache 4010 
and registered. This may include deltas produced by existing 
tools that employ a before-and-after-snapshot approach to 
differencing. sucb as SysdifT (see the Advanced Config11ra-
1ion Management section). 

When a delta is added to the file cache and registered, the 
UCMS creates a record for it in the resource database 4005. 
Preferably, one of the record 's elements describes the file 
format. When a user registers a delta created by an external 
tool, the UCMS attempts to automatically determine the del­
ta's file fonnal type by inspecting the delta's file extension, or 
byscauniug the file's first few bytes insearcb ofa well-known 
file header signantre. If ilie UCMS fails to determine the 
delta's format. it may require the user to manually specify the 
format through the user interface. 
Image Factory 

From the UCMS user interface 2700. a user can create a 
new template image from an existing template image 4020 
and a selected delta 4014 using the following process: 171e 
UCMS first makes a copy ofilie image and registers the copy 
in the resource database 4005. The new image is then mapped 
to a local disk using loop-back mmmting. giving the UCMS 

45 full access to the image's files. TI1e UCMS t11en opens the 
user-selected delta file and inspects the delta's difference 
records. Tbe way the difference records are represented in tbe 
delta file is dependent on the delta's internal file fomiat. The 

When the comparison operation completes. the UCMS 
user interface can display the detected differences, based on 
tlle difference records that the UCMS created in memory. A 
user can thus view which files were added, deleted, or modi­
fied in ilie second image, relative to the first image. Further­
more, for system collfiguration files that changed, ilie user can 50 

view the individual sub-elements that changed, such as reg­
istry entries. 
Deltas 

When a user instructs the UCMS to compare two images, 
he can optionally make the UCMS generate a delta file 4014 55 
representing the changes from the first image to the second 
image. As previously described in the Advanced Config11ra­
tion Management section ofth.e Overview oflnvention chap-
ter, a delta file contains not only a description of file differ­
ences, but also the data content making up the differences. 60 

TI1is allows the invention to create a new image by applying a 
delta lo an existing image. 

When the delta option is selected. the UCMS augments 
each file and sub-element difference record representing ilie 
addition ofnew data with a copy ofilie added data itself. For 65 
example. if the /etc/services file instance from a second Linux 
image contained an additional line not present in the instance 

UCMS detemtines the delta' s file fom1at from the delta's 
resource database record; knowledge of the format allows the 
UCMS to correctly decode and interpret ilie delta's difference 
records. 

l71e UCMS then applies the changes described by the 
delta's difference records lo the new image's file system. This 
process can involve copying new files and creating or modi­
fying sub-elements of files. such as text lines or registry hive 
entries. When the process completes, the UCMS dismounts 
the modified image. 

The new image does not have to be a template image. The 
UCMS also al lows deltas lo be applied as part of image 
customization. In fact, customization scripts that take advan­
tage of the UCMS ScriptingAPI can apply deltas. Tbe UCMS 
can thus reconfigure, customize and apply a delta to an image 
before deploying it. 

Scripts that take advantage of the UCMS's Scripting API 
aren't required to nm at customization time. In fact , a user­
dcfu1t.'Cl script can use theAPl to control the UCMS and access 

Netflix, Inc. - Ex. 1005, Page 000049 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
79 

its databases, files and loop-back mount capabilities in order 
to perfonn arbitrarily advanced operations on images. 

For example, an administrator may develop a set of scripts 
to add image factory capabilities to the UCMS. An image 
factory is a framework that can take a set of template images 5 
a nd a set of deltas and generate a large pemrntation of new 
images. A script withln the image factory framework can 
automatically package a newly generated image and copy it to 

80 
such as the mapping between system files (such as kernel, 
HAL, drivers and registry entries) and critical hardware 
devices. Furthermore , the complication introduced by file 
variants, file versions and operating system patch levels sig-
11.ificaotly increase the risk of error. as explained in the Sim­
plified Hardware Migration Using Image Reconfiguration 
section. 

a distribution medium, or send it over the network for ai1other 
organization to further enhance the image or deploy it. 

1l1e image factory concept can be used to create ready-to­
run virtual machines that are pre-packaged on a distribution 
medium of c hoice. For example. a software consulting com­
pany that specializes in tailor-made virtual machlnes could 
use the UCMS to produce application-specific virt11al 15 
machines based on customer specifications and ship those 
virtual machines on DVDs. A possible set-up is to have a few 
template images containing an operating system and a core 

The same section also discussed how existing tools, such as 
Sysprep, could solve part of the problem. Those tools suffer 

to from two main drawbacks, however. First, they require the 
source machine to be "prepared" by installing special soft­
ware on it. This may be unacceptable to users who want to 
convert a physical computer without modifying the comput-

set of common software programs. In addition, !he company 
develops a library of deltas, with each delta describing the 20 
instalJation ofa specific business software application. When 
a customer places an order for a virtual machine, the customer 
specifics the operating system, a desired set of applications 
and a set of customization senings, such as a computer name, 
network parameters and a domain membership. The software 25 

company can then run a custom script that creates and cus­
tomizes a new image from a template image. the set of deltas 
corresponding to the selected applications and the specified 
customization settings. Once the final image is created. the 
script can create a vit1t1al machine configuration file and 30 
attach the image to that file. Fi11ally. the script ca11 burn the 
two fi les onto a DVD and transfer the DVD to an order­
fi.1Jfillment department for shipping. 
Physical to Virtual Conversion Utility 

The invention's Universal Computer Management System 35 

previously described is a general framework for manipulating 
images and transparently transferring them between physical 
computers and virtual machines. It is possible, however. for a 
UCMS software vendor to develop a scaled-down and spe­
cialized version of the UCMS for the specific purpose of 40 
solving the physical-to-virtual (P2V) conversion problem. 

As virt1Ja1 machlne technology becomes more pervasive. 
lT users tend to demand a tool for easily converting an exist­
ing, functional physical computer to a virtual machiJ1e. As 
described in the discussion on prior art, there exist many uses 45 
of a such a tool. one of them being the consolidation of 
multiple physical computers onto a single virtual machine 
host computer, possibly resulting in reduced management 
costs and more efficient hardware utilization. 

Historically, P2V conversions have been hampered by two 50 

obstacles: I) the physical format difference between physical 
disk devices and virtual disk files; and 2) the hardware con­
figuration differences between a physical compmer and a 
virtl1a1 machine. The first obstacle can be overcome by run­
ning a traditional disk imaging tool inside of a virtual 55 
machine, in which case the virtual machine monitor translates 
the tool's sector-level disk accesses to file accesses to the 
virtual machine's virnJal disk file. Unfortunately, this is a 
slow, ted.ious process that involves configuring and nllllling a 
temporary virtual machine, which generally has to be done 60 

manually and is thus difficult to automate. 
·n1e second obstacle is the most challenging one to over­

come and it has kept P2V conversion out of reach for most 
existing users. Solving the hardware compatibility problem 
for P2V, which is a special case of the general hardware 65 
migration problem between any two computers. requires a 
thorough knowledge of advanced operati11g system concepts 

er's state in any way. in order to prevent any accidental data 
com1ption, or to eliminate the risk of intr0ducing harmful 
software (such as computer viruses) on the computer. Second, 
those tools solve only a subset of the general hardware migra­
tion problem. Sysprep, for example, cannot 111.igrate a soft-
ware stack between two computers with dissimilar chipset or 
processor configurations. 

Tue UCMS provides a reliable foundation for solving the 
P2V problem. l t uses virtual disks as images and therefore it 
can nantrally and automatically convert physical disks to 
virtual disk files with little user invention. Its system con.figu­
ration analysis and editing capabilities. combined with its 
version database and the substitute system files from its file 
cache, also enable it to correctly reconFig11re 3 virtual disk's 
contents to make the disk bootable on a selected virtual 
machine product. 

ll1e VCMS. however, can be too complex and costly for 
users that just need a simple tool for pcrfonning P2V conver­
sions. The following paragraphs describe a scaled-down 
embodiment of the UCMS for the specific purpose of per­
forming P2V conversions. 
Overview of the P2V Utility 

1l1e P2V Utility is a simplified. scaled-down embodiment 
of the UCMS. lt allows a user to convert one ormultipledisks 
from a physical computer into the same number of virtual 
disks. The vir111al disk that co111ai11s the operating system is 
then automatically reconfigured ro support the hardware con-
figuration of the selected virtual machlne software product. 

Tue P2V Utility package consists of two components: a 
Boot CD containing a UCMS secondary software stack 4100, 
which comprises a S<.'Condary operating system and an imag­
ing client program 1021 and an application component. called 
P2V application, which runs on an operating system residing 
on a host computer. 

In addition to the P2V software. the host computer can also 
host the destination virtual machine software. in which case a 
converted virtual disk can immediately be used in a virt11al 
machine. lf the virtual machine software is installed on a 
different compmer. the user may need to transfer the virtual 
disk to tliat computer before it can be used with a virtual 
machine. 
Application Component 

The P2V application is a restricted implementation of the 
UCMS server 2000. Jt is equipped with many subcomponents 
also found in the UCMS server 2000: a file cache 4010, a 
version database 4016, an optional but preferred registration 
database 4004. a resource database 4005, loop-back mount 
components (the loop-back driver 2211, switch 4200, and tbe 
two adapters 2310, 2314) and an imaging server 2101. Other 
subcomponents, such as the PXE server 4002, the registration 
database 4004, the UCMS user interface 2700 and advanced 
features such as image deltas 4014 may not be needed. 111e 
user-visible portion of the P2V application is the imaging 

Netflix, Inc. - Ex. 1005, Page 000050 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
81 

server 2101 itself; the server in this case thus provides the user 
interface and coordinates the conversion process. 

Even though many UCMS server subcomponents are 
found in the P2V Application. the P2V versions of those 
subcomponents can be scaled down to the level of function- 5 
a lily needed for P2V conversions. For example, the registra­
tion database 4040 can be simplified to bold only hardware 
configuration records for a small set ofvirtlial machine prod­
ucts tliat the utility supports; it does not need 10 hold physical 
computer or virtual machine host registration records. Simi- 10 

larly, the file cache 4010 can be simplified to handle only 
substitute files needed for the reconfiguration process, but not 
general image customization. 

On the other hand, a vendor may equip a more advanced 
version of the P2V Utility product with image customization 15 

capabilities, allowing a physical computer to be converted 
and customized in one step. Software vendors using UCMS 
technology to develop and sell a P2V Utility product line tlms 
have the flexibility to configure the subcomponents lo attain a 
desired balance between ease-of-use and functionality. This 20 
allows the vendors to sell multiple versions of the product, 
each targeting a specific market segment with its own price 
level and feature sci. 
Conversion Process 

TI1e P2V conversion process is simply a specialized ver- 25 

sioo of the general UCMS imagecapllire process. See FIG. 7 
once again. In order to initiate a conversion task, a user 
reboots the chosen physical computer from the Boot CD 
4100, causing the imaging client 1021 to load and run on the 
compute r 1000. The client detects t11e computer's hardware 30 
5200 and then lets the user bind a temporary network address 
to one of the computer's NlCs 5204. The user can select a 
hard-coded address, such as a fixed TCP/IP address, or can 
choose to have the address automatically assigued by another 
computer on the network, such as a DHCP server. The client 35 

then displays the NIC's address on the screen and then awaits 
a connection request by the P2V application. 

l11e user then starts the P2V application on the host com­
puter. causing the imaging server 2101 to load and its user 
interface (U1) to appear. The Ul can be strnctwed as a 40 

sequence of screens, conunonly called a Wizard. T he first 
screen may ask the user to enter the network address of the 
physical computer. for example. 

When transitioning to the next screen, the application con­
nects to tbe imaging client 1021 and retrieves the list of 45 

physical d isks (of which only the source disk 1010 is shown, 
for simplicity) attached to the computer 1000. The applica­
tion can be designed to convert a single disk at a time, or entire 
group of disks. For each physical disk to be converted, the Ul 
prompts the user to enter a file name and path for the desti- 50 

nation virtl1al disk file. The file can reside on disk local to the 
host computer or a network-mapped d irectory from anotJ1er 
computer or storage server. 

82 
instance, a disk containing a Windows operating system gen­
erally consists of at least one disk partition marked active and 
that partition holds a file system containing a boot.ini file 
specifying the location of the operating system, expressed as 
a pat11 name to a system fo lder. The P2V application could 
determine the system folder from the boot.ini file and then 
inspect the system files and registry hives under that folder to 
determine the operating system's system configuration, 
including type, version, patch level and hardware configura­
tion. 

If a known and supported operating system is found on the 
source disk, the P2V application must reconfigure the desti­
nation disk after the file copy phase completes, in order to 
make the disk boo table in a virtual machine. Before copying 
files, however, the application must ensure that reconfigura­
tion is possible. 

As a scaled down version of the UCMS server, the P2V 
application naturally uses the UCMS's approach for prepar­
ing and validating a system reconfiguration. First, a destina­
tion hardware configuration must be selected from the appli-
cation's built-in registration database 4004. If the application 
supports one unique vi rtual machine soHware product, then 
its registration database would contain exactly one record 
describing ilie virtual hardware configuration implemented 
by that virtual machine software. 

If tbe application supports more than one virll1a] machine 
product, or multiple versions (i.e., generations) of the same 
product. then multiple records would exist, each one describ­
ing a different virt1ial hardware configuration. ln this situa­
tion, the application's Ul may ask the user to select the desired 
destination virtual machine product from a list of choices. 

Once the destination hardware configuration is known. the 
applicatiou analyzes both tlJe source disk's system configu­
ration and ilie destination hardware configuration and then 
looks up information from the version database 4016 in order 
to determine the set of substitute system files required by the 
reconfiguration process. 

If the file cache 4010 does 1101 contain the necessary sub­
stitute files or file containers 4012, then the application can 
prompt the user to download the required patch, service pack, 
or system file from the Internet into a specified location in the 
cache. A more advanced implementation of the application 
could attempt to automatically download the needed files or 
containers from known Internet locations. 

Once the file cache dependencies arc satisfied, the appli­
cation proceeds with the file copy phase. Next. the application 
then reconfig11res the operating system files on the destination 
disk using the substitute files and fmally dismounts the 
remote physical disk and the destination virtual disk. 

The application can optionally create a virtl1al configura­
tion file defining a new virtual machine and attach the virtual 
disk to t11e configuration file. TI1e result would be a complete 
and ready-to-use virtl1al machine. 

Jn summary. the P2V Uti lity leverages the UCMS's meth-
ods and subcomponents to implement a reliable, yet easy-to­
use tool for converting a physical machine to a virtual 
machine. The utility automatically handles the format con­
version between physical disks and virt11al disk files. More-

1l1e per-disk conversion process then proceeds using the 
same sequence as a UCMS image capture operation: the P2V 55 
application maps the remote physical disk to a simulated local 
source disk (through the network loop-back adapter 4220), 
creates a blank virtual disk file, maps the virtual disk to a 
simulated local dest ination disk (tlirough the local loop-back 
adapter 2314 and then formats t11e destination disk with ilie 
same partition layout and file system fomiat as the source 
disk. 

60 over, its reconfiguration process is reliable and correct 
because it is based on an exact knowledge of the source and 
destination configurations and uses a version database to 
determine the correct types and versions of substitute system 
files to use. Unlike existing solutions, the P2V Utility is 

Before populating the destination disk with files from the 
source disk, the application first checks whether the source 
disk contains an operating system. The application can detect 
the presence of an operating system by checking for the 
presence of specific files installed by an operating system. For 

65 non-intrusive and risk-free, since it never modifies physical 
disks; all rt.-configuration changes are performed on the vir­
tual d isks produced by the conversion process. 

Netflix, Inc. - Ex. 1005, Page 000051 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
83 84 

Detection oflncompatible Software 
The software stack installed on a physical computer's pri­

mary disk may contain programs. such as drivers, that mis­
behave when transplanted onto another computer. A manu­
facturer-specific driver could for example, assume that the 5 
computer contains a hardware device that is specific to that 
computer, i.e., not found on computers from other manufac­
turers. For instance, some existing Compaq personal comput-

In this scenario, the P2V application can directly open the 
source virtual disk and map it to a simulated source disk, 
using the local loop-back adapter that understands the source 
virn,al disk's format. The source disk is said to be accessed in 
direct file mode, which means that the source disk is a file, not 
a remote physical disk. Direct file mode requires the source 
virtual machine to be powered o:IT. thus preventing it from 
modifying the source virtual disk while the P2V application 
accesses it. Note that the Boot CD is not needed. since the 
P2V appUcation can access the source disk directly. 

ers ship with a pre-installed software stack that includes an 
operating system and a set of hardware monitoring programs 10 

that work only with Compaq hardware. If the software stack 
were migrated to another computer, or a virtual machine, in 

Toe application then creates, maps and initializes the des­
tination virtual disk in the usual way, using the second local 
loop-back adapter. The image capmre and reconfig11ration 
process than proceeds normally. At the end of the conversion 
process. the two virtual disk files are dismounted. 

the case of a P2V conversion. then the hardware-dependent 
program could cause the software stack to fail in various ways 
on the new computer, possibly resulting in serious system 15 
crashes. 

The P2V application can a11emp1 to detect such incompat­
ible software by examining a convened virmal disk's files and 
system configuration. Drivers and software applications are 
generally registered in a central configuration file, such as a 20 
Windows registry hive. or they can reside at welJ-known 
locations in the file system. such as /bin, /usr/sbin. /usr/bin 
and /lib/modules under Linux. 

2) If the P2V Utility has a local loop-back adapter for the 
destination vir111al disk format, but not the source format, then 
a solution still exists. -n1is solution is identical to the tradi­
tional P2V scenario, with the exception that physical com­
puter is acmally the source vimiaJ machine. 

Toe user first has to power on the source virtual machine 
using the source virtual macl:tinc product and configure the 
virmal machine to boot from the Boot. The v irn1al machine's The application can thus scan a convened virt11al disk for 

software that is either unknown to the application, or known 
to be incompatible with the selected destination virtual 
machine hardware.1ue appl ication can display a list of such 
detected programs in the U1 and give the user the option of 
disabling or removing some of those potentialJy hannfu1 pro-
grams. 
Virtual to Virtual (V2V) Conversions 

The P2V Utility can be used. or extended, to convert a 
virtual machine from a first virtual machine software product 

25 NJCalso has to be bridged to a network accessible by the host 
computer nmning the P2V applicatioD. The imaging client 
eve11t11ally loads and mus from within the source virtual 
machine's memory and communicates with the P2V applica­
tion component over the bridged network. Toe imaging client 

30 thus accesses the source virtual disk indirectly through the 
secondary opcraring system and tbe source virtual machine 
software is responsible for translating the operating system's 
sector-level accesses to the appropriate file accesses within 

to a virtual i:uacliiDe designed for another vi rtual macl:tine 
product. Toe utility can also perform a sin:tilar conversion that 35 

n:tigrates a virtual machine between two vir111al hardware 
generations and thus configurations. belonging to the same 
virtual machine product family. For instance. a user may want 

the source virtual disk. 
3) If the P2V application has a local loop-back adapter for 

the source virmal disk format, but nor the destination format, 
then the solution is more complex and requires some expla­
nation: 

to convert an existing uniprocessor/non-ACPJ virtual 
macl:tine designed for VMware Workstation 3.0 to a multi­
processor/ ACPI virtua l machine for VMware ESX Server 
2.0. At least two issues may need to be resolved in virtual-to­
virtual (V2V) conversions, however: hardware config11ration 
differences and virtual disk format differences. 

The P2VN2V Utility can namrally handle the hardware 
configuration differences using the reconfiguration process. 
As long as the registration database 4004 has a record describ­
ing the destination virtual hardware configuration and the file 
cache 4010 can supply the required substilllle files. the utility 
can correctly reconfigure the final virt1.1a l disk to make it 
bootable in the destination virtual machine. 

This leads to a discussion of the virtual disk fonuat issue. If 
the source and destination virmal macl:tine products use a 
different virt11al disk file format, then the conversion process 
must translate the disk contents between the two fom1ats. 
There are several factors that detenuine the best format con­
version solution, resulting in four different situations. 

I) If the vendor of the P2V Utility bas access to the speci­
fication for both fom1ats. it can simply inc lude additional 
local loop-back adapters with the application component, one 
per supported virtual disk format. Recall that when a virtual 
disk file is mapped to a simulated local disk using loop-back 
mounting. a local loop-back adapter translates the host oper­
ating system's sector-level accesses to the appropriate file 
accesses in the virmal disk file. Multiple local adapters could 
thus allow the utility to manipulate multiple virtual disks of 
different fom1ats. 

·me P2V application can open the source disk in direct file 
40 mode, since it has a local loop-back adapter that understands 

the source format. However, it cannot create a vi rtual disk of 
the destination format directly. The solution requires the P2V 
application to implement one additional fean1re, that is. the 
ability to select an actual physical disk as the destination disk 

45 instead of a virtua l disk mapped ro a simulated destinarion 
disk. Tilis type of selection is called direct device mode, 
because it causes the application to copy data to a disk device 
directly attached to the computer during the imaging process. 
The following discussion describes the conversion process 

50 using direct device mode. 
First. the source vimml machine must remain powered off, 

so that the P2V application can safely open and mmmt the 
source vir111al disk file. The file must also reside on a shared 
directory that can be accessed by other computers on the 

55 network. 
Second. the P2V application must rnn from within a tem­

porary virmaJ machine, called virtual host computer, using 
virmal machine software of the destination type. Toe virn,al 
host must be configured with a bridged NJC and two virtual 

60 disks: a primary disk with a so fl ware stack containing a host 
operating system and the P2V application and a second, 
empty virtual disk to serve as the destination disk. The virtual 
host must also be powered 011. 

From within the virtual host, the user first maps the shared 
65 network folder containing the source vimml disk and then 

starts the P2V application. The user instructs the application 
to use the source virtual disk as the input to the conversion 

Netflix, Inc. - Ex. 1005, Page 000052 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
85 

operation; this causes the application to open the source vir-
111al disk in direct file mode and map to a simulated source 
disk. 

86 
on a computer for the purpose of deploying that computer's 
image onto other computers that may have a dissimilar disk 
controller. A user could run Sysprep in the source virtual 
machine and ilien power it oIT and ilien use the P2VN2P The user then specifies that l11e output of ilie conversion 

process is the second physical disk. using the direct device 
method. Since the destination disk is already a real disk from 
the virtuaJ host's perspective, the P2VN2V application does 
not need to perfom1 any loop-back mounting. 

5 U ti lity to deploy the virt11al disk to a physical computer. 
The P2VN2P Utility can actually make the process sim­

pler by automatically performing an image reconfig1mllion 
that minlics the effects of Sys prep. Specifically. the applica­
tion component of the utility can read a user-supplied Syspre-The image capture and reconfiguration process then pro­

ceeds nonnally. When the application formats and populates 
the destination disk, the operating system numing inside the 
virtual host writes to the disk at the sector level. thinking 1J1at 
it is a physical disk. In actuality, the disk is a truly a virtual 
disk and it is the destination virtual machine software that 
translates the sector operations into the appropriate file 
accesses in the destination virtual disk format. 

10 p.inf file and l11en automatically install the specified drivers 
and create the necessary registry entries in a local copy of the 
image before deploying it. The appl ication thus follows the 
UCMS 's philosophy of separating reconfiguration and man­
agement software from images, a philosophy that provides 

Once the conversion process completes. the P2V applica­
tion needs onJy to dismount ilie source virtual disk, since the 
destination disk appears to be "real" and never had 10 be 
loop-back mounted. The user finally shuts down the virtual 
host and then detaches its second virtual disk. This disk can 
then be used in a stand-alone destination virtual machine 
representing a copy of the source virtual machine. 

15 more flexibility and is less intrusive than existing solutions. In 
this specific scenario, the reconfiguration changes are per­
formed on a copy of the source virtual disk and more specifi­
cally, a redo log of the source virtual disk. Once the conver­
sion process is complete, the redo log can be discarded, which 

20 implies that the source virtual disk is never modified. 
Whal is claimed is: 
1 . A method for creating an image of a source disk of a first 

computer on a destination disk of a second computer that 
includes an operating system a nd file system software, the 

25 method comprising: 
4) The final scenario is when the P2V application does not 

have the appropriate local loop-back adapters for either the 
source or destination virtual disk fom1a1s. The solution for 
this situation is a combination of 2) and 3): run the source 
virtual machine from the Boot CD and run the P2V applica­
tion inside of a virtuaJ host using the destination virtual 
machine software. The two virn1al machines must be able to 30 
communicate over a bridged or virtual network. The source 
disk is accessed normally, i.e .. through the network, using the 
network loop-back adapter. while the destination disk is 
accessed io direct device mode. 
Virmal to Physical (V2P) Conversions 

The P2V Utility can be used or extended to perform a 
conversion in the reverse direction. i.e., from a vimial 
machine 10 a physical computer, using the following process. 

A user first reboots the destination physical computer from 

35 

the Boot CD and then uses the P2V appl ication to connect to 40 

the imaging client and initiate a V2P (virmal to physical) 
conversion process. This situation is identicaJ to the P2V 
process, with the difference being that the vim1al disk is 
mapped to the simulated source disk, while the remote physi-
cal disk is mapped to the simulated destination disk; also, the 45 

disk imaging operation is technically a deployment, not a 
capture. 

Another difference is that the destination hardware con­
fig11ration is the configuration of the physical computer, 
which may not be known (i.e., not present in the registration 50 

database) before the conversion process. 
There are two solutions for solving the destination hard­

ware configuration issue. First, l11e P2V application can 
instruct the i.nJaging client to analyze tlJe computer's hard­
ware configuration and send it to the host for analysis. TI1is is 55 
similar to the physical computer registration process within 
the UCMS framework. 

The second solution is for the P2V application to ignore the 
hardware configuration problem and shift part of the recon­
figuratio n responsibility to the user. This is a reasonable solu- 60 

tion if the virtual machine's hardware configuration is mostly 
identical to that of the physical computer. Ju particu lar. if the 
two computers have similar processors and chipsets. but dif­
ferent disk controllers, ilien the user can use an external tool, 
such as Sys prep, to solve the disk controller mismatch. Recall 65 
that Sysprep can pre-install a set of disk drivers specified in a 
Sysprep.inf file and create the corresponding registry entries 

mounting in the second computer. a simulated source disk 
corresponding to the source disk of the first computer 
such that the simulated source disk is accessible by the 
operating system in the second computer as a locaJ disk, 
the file system software within the second computer 
detecting a file system of the motu11ed simulated source 
disk, exposing the file system 10 the software running on 
the second computer. and issuing sector-based 1/0 
requests toward the simula ted source disk; 

intercepting sector-based l/0 requests directed to the simu­
lated source disk and retrieving source disk data from the 
source disk according to the intercepted sector-based 
1/0 requests such that contents of the source disk in the 
first computer are extracted at the sector level and sys­
tem software in the first computer need not detect the file 
system of the source disk; 

creating a destination image as a vir111al disk; and 
populating the destination image in l11e destination disk of 

the second computer with the contents of the source disk 
such that the destination image has a different sector-by­
scctor content than 111e source disk but a destination file 
system logically equivalent to tbe source file system. 

2. The met bod as in clairu 1. further comprising: 
populating the destination image with extracted contents of 

the source disk in which the destination image has fiJes, 
attributes, and structural relationships between files 
identical to files associated wiili the source disk. 

3. The method as in claim 2. further comprising: 
mounting the destination image in an uninitialized state in 

the second computer as a s imulated destination disk: 
intercepting sector-based l/0 requests directed to the simu­

lated destination disk and directing the contents of the 
intercepted sector-based 1/0 req11ests to the destination 
image; 

retrieving partition and file system layout information from 
the source disk: 

formatting the simulated destination disk to have the san1e 
partitioning and file system as the simulated source disk 
and thus of the source disk; and 

copying files of at least one file system of the simulated 
sourced isk to the corresponding file system oft he si mu­
lated destination disk. 

Netflix, Inc. - Ex. 1005, Page 000053 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 Bl 
87 

4. The method as in claim 3, forther comprising: 
converting the intercepted sector-based 1/0 requests to the 

simulated destination disk into sector accesses with.in 
the destination image. 

5. The method as in claim 3, wherein the first computer is 5 
a physical computer and the source disk is a physical disk 
associated with the physical computer. 

6. The method as in claim 3. wherein the virtual disk is a 
sparse virnial disk having a predetem1ined capacity and ini­
tial secror contents with null values. 

7. The method as in claim 3, wherein the source disk is a 
source virtual disk. 

8. T11e method as in claim 7 , wherein the dest ination disk is 
a physical disk. 

10 

9. The method as in clainl 3. wherein the source disk is a 15 
first virtual disk associated with a first virn1al computer and 
the destination disk is a second virtual disk associated with a 
second virrual compurer. 

10. The method as in claim 3. wherein the first computer is 
the same as the second computer. 

11. The method as in c lainl 1, further comprising forward­
ing the intercepted sector-based I/0 requests to the first com­
puter over a network. 

20 

12. The method as in claim 1. wherein the source disk is 
associated with the first computer that has a memory, further 25 

comprising: 

88 
accessible by the operating system of the second com­
puter, such U1at sector-based 1/0 requests di rected to the 
simulated destination disk are intercepted and converted 
into sector accesses within the destinat ion inlage; 

retrieving partition and file system layout information from 
the source disk in the first computer; 

fonna tting the simulated destination image to have the 
same partitioning and file system(s) as the simulated 
source disk, which has the same partitioning and file 
system(s) as the source disk in the first computer; and 

populating the destination image in the destination disk of 
U1e second computer with the contents of the source disk 
such that the destination image has a different sector-by­
scctor content tl1an the source disk but a destination file 
system logically equivalent to tl1e source file system. 

17. The method of claim 16, further comprising: 
loading an imaging client program into a memory of the 

first computer; 
passing the intercepted sector-based J/0 requests to the 

inlaging client program, the imaging client program 
directing the intercepted sector-based 1/0 requests to the 
source disk; and 

mediating, by the operating system of the second com­
puter, sector-based 1/0 requests between the inlaging 
client program and the source disk. 

loading an imaging client program in the memory of the 
first computer, the inlaging client progran1 not being 
resident on the source disk: and 

passing the intercepted sector-based l/0 requests to the 
imaging client program, the imaging client program 
directing the intercepted sector-based l/0 requests to the 
source disk. 

18.Asystem forcreatingan imageofasourcediskofa first 
computer with contents arranged according to at least one file 
system on a destination disk of a second computer, the system 

30 comprising: 

13. TI1e method as in claim 12. further comprising: 
loading a secondary operating system in the memory of the 35 

firs t computer, the secondary operating system not being 
present on the source disk and mediating 1/0 requests 
between the imaging client program and the source disk. 

14. T11emethod as in c laim 1, wherein the simulated source 
disk is a file presented to the operali11g system of the second 40 
computer as a physical disk. 

15. The method as in clainl 1, wherein the source disk in the 
first computer need not be modified prior to mounting the 
simulated source disk in the second computer. 

16. A method for creating an image of a source disk of a 45 
first computer on a destination disk of a second computer that 
includes an operating system and file system software, the 
method comprising: 

mounting in the second computer. a simulated source disk 
corresponding to the source disk of the first computer 50 

such that the simulated source disk is accessible by the 
operating system int.he second computer as a local disk, 
the file system software within the second computer 
detecting a file system of the mounted simulated source 
disk, exposing the file system to the software running on 55 
the second computer. and issuing sector-based 1/0 
requests toward the simulated source disk; 

intercepting sector-based I/0 requests directed to the simu­
lated source disk and retrieving source disk data from the 
source disk according to U1e intercepted sector-based 60 
I/0 requests such that contents of the source disk in the 
firs t computer are extracted at the sector level and sys­
tem software in the first computer need not detect the file 
system of the source disk; 

creating a destination in1age as a virtual disk; 
mounting the destination image in au uninitialized state in 

the second computer as a simulated destination disk 

65 

a first computer having the source disk; and 
a second computer having a memory w ith an operating 

system, file system software, and a destination disk and 
including computer-executable instmctions for: 

creating a simulated source disk with a representation of 
information stored on the source disk in the firsi com-
puter; 

mounting the simulated source disk in tl1c second computer 
such that the simulated source disk is accessible by the 
operating system in the second computer as a local disk, 
the memory of the second computer further including 
file system software to detect a file system of the simu­
lated source disk, to expose the file system to the soft• 
ware nm.ning on the second computer. and to issue sec­
tor-based 1/0 requests toward the simulated source disk; 

intercepting sector-based l/0 requests directed to the simu­
lated source disk and retrieving source disk data from the 
source disk according to the intercepted sector-based 
l/0 requests such that contents of the source disk in the 
first computer are extracted at the sector level and sys­
tem software in the first computer need not detect the file 
system of the source disk; 

creating a destination image as a vir111al disk; and 
populating the destination image i11 the destination disk of 

the second computer with the contents of the source disk 
such that the destination image has a different sector-by­
sector content than the source disk but a destination file 
system logically equivalent to the source file system. 

19. The system as in claim JS. farther comprising: 
a network adapter, residing in the memory of tl1c second 

computer, to forward the intercepted sector-based 1/0 
requests to the first computer. 

20. The system as in claim 19. further comprising: 
a memory within the first computer; and 
an inlaging client program instalJed in the memory of the 

first computer, the imaging client program comprising 
computer-executable instructions for: 

Netflix, Inc. - Ex. 1005, Page 000054 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 8,209,680 BI 
89 

receiving any source disk 1/0 requests issued from the 
second complller to the first computer: 

directing the imercepted sector-based 1/0 requests to the 
source disk: and 

passing the reuieved source disk data to the second com- 5 

puter in response to the source disk 1/0 requests. 
21. The system as in claim 18. further comprising: 
an imaging server program installed in the memory of the 

~ond computer. the imaging server program co mpris­
~g computer-executable inslntctions for generating a to 
simulated dest ination disk in response to the second 
computer motmting the destination image. the memory 
of the ~ccond computer further includes a local loop­
back dnver. a local adapter. and a forma11ing module. tJ1e 
local loop-back driver comprising computer-ex'-'CUtable ts 
ii~stnictions for_ intercepting sector-based 1/0 requests 
d1re~t_ed to the simulated destination disk and retrieving 
part111011 and file system layout information from the 
source disk. the local adapter comprising computer-ex­
ecutable instrnctions for converting the intercepted sec- 20 

tor-based 1/0 requests to the simulated destination d isk 
into sector_acccsses within the destination image. and 
the fomtattrng module comprising computer-executable 
iostnictions for fom1a1tiog the destination image to have 
the same partitioning and file system(s) as the simulated 25 

source disk and thus of the source disk, wherein the 
imaging server program further comprising computer­
executable i11s1nictions for copying files of at least one 
file system of the simulated source disk 10 the corre­
sponding file system of the simulated destination disk. 30 

22. The system as in claim 21, wherein the source disk is a 
virtual disk. 

23. The system as in claim 22. wherein the destination disk 
is a physical disk. 

24.171e system as in claim 2 1. wherein the first computer is 35 

a physical computer and the source d isk is a physical d isk 
associated with the physical computer. 

25.A system for creating an imageofa source disk ofa first 
computer. wl1ich has a memory and in which contents of the 
source disk are arranged according 10 at least one source file 40 

system, the system comprising: 
a second computer including an operating system. file sys­

tem software. a processor. and a memory coupled to tJie 
processor configured to provide the processor with com­
puter-executable instntctions for: 

90 
mounting in the second computer. a simulated source disk 

corresponding to the s011rce disk of the first computer 
such that tbe simulated source disk is accessible by the 
operating system in tJ1e second computer as a local disk. 
the fil_e system software within the second computer 
detecung a file sys1em of the mounted simulated source 
disk, exposing the file system to the software nmning on 
the second computer. and issuing sector-based 1/0 
requests toward tJte simulated source disk: 

intercepting sector-based 1/0 requests directed 10 the simu­
lated source disk and retrieving source disk data from tbe 
source disk according 10 the intercepted sector-based 
1/0 requests such that contents of the source disk in 1he 
first compuler are extracted at the sector level and sys­
tem software in the first computer need not detect the file 
system of the source disk; 

creating a destination image as a virtual disk: 
mollllting the destination image in an uninitialized state in 

tlle second compu1er as a simulated destination disk 
accessible by the operating system of the second com­
puter, such tJiat sector-based J/0 requests directed 10 the 
simulated destination disk are intercepted and converted 
into sector accesses wi1J1in the destinat ion image; 

retrieving partition and file system layout information from 
the source disk in tlle first computer; 

fonnaning the simulated destination image to have the 
same partit ioning and file system(s) as the simulated 
source disk, which has the same partitioning and file 
syste~(s) as the source disk in the first computer. and 

populatmg the destination image in the destination disk of 
the second computer with the contents of the source disk 
such that the destination image has a di ffcrcnl scctor-by­
sector content than the source disk but a destination file 
system logically equivalent to the source file sys1em. 

26. The system of claim 25, further comprising: 
an imaging c lient program installed in the memory of the 

first computer. the imaging client program comprising 
computer-executable instructions for: 

receiving any source disk 1/0 requests issued from the 
second computer to the first computer. 

directing the intercepted sector-based 1/0 requests 10 the 
source disk; and 

passing ilie retrieved source disk data to the second com­
puter in response to the source disk 1/0 requests. 

• • * • • 

Netflix, Inc. - Ex. 1005, Page 000055 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)




