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(57) ABSTRACT 

A virtual machine monitor (VMM) is included in a computer 
system that has a protected host operating system (HOS). A 
v irtual machine running al least one application via a v irtual 
operating system is connected to the VMM. Both the HOS 
and tbe VMM bave separate operating contexts and disjoint 
address spaces, but are botb co-resjdeot at system level. A 
driver that is downloadable into the HOS at system level 
forms a total context switch between the VMM and HOS 
coo texts. A user-level emulator accepts commands from tbe 
VMM via the system-level driver and processes these com­
mands as remote procedure calls. The emulator is able to 
issue bost operatjog system calls ancl tbereby access the 
physical system devices via the host o perating system. T he 
host operating system itself thus bandies execution of certain 
VMM instructions, such as accessing physical devices. 

21 Claims, 6 Drawing S heets 
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SYSTEM AND M ETHOD FOR 
VIRTUALIZING COMPUTER SYST EMS 

2 
instructions. The execution with reduced privileges gener­
ates traps, for example when tbe operating system attempts 
to issue a privileged instruction. The VMM tbus needs only 
to correct ly emulate the traps to allow lhe correct execution CROSS-REFERENCE TO RELATED 

APPLICKI'IONS 5 of the operating system io the virtual machine. 

This application claims priority from U.S. Provisional 
Patent Application No. 60/085,685, ''Virtual Machine 
Monitor", fi led May 15, 1998. 

As bardware became cheaper and operating systems more 
sophisticated, VMMs based oo direct execution began to 
lose tbeir appeal. Recently, however, they bave been pro­
posed to solve specific problems. For e xample, the Hyper-

BACKGROUND OF THE INVENTION 

1. Field of the Invent ion 

10 visor system provides fault-tolerance, as is described by T. 
C. Bressoud and F. 13. Schneider, in ''llypervisor-based fault 
tolerance," ACM T ransactions on Computer Systems 
(fOCS), Vol. 14. (1), February 1996; .ind io U.S. Pat. No. 
5,488,716 "Fault tolerant computer system with shadow This invention relates lo a computer architecture, includ­

ing a virtual machine mooiwr, and a related operating 
method that aUow virtualization of the resources of a mod- 15 

era computer system. 

2. Description of the Related An 

virtual processor," (Schneider, el al.). As another example, 
tbe Disco system runs commodity operating systems on 
scalable multiprocessors. See " Disco: Running Commodity 

The operating system plays a special role in today's 
personal computers and engineering work stations. Indeed, 
it is the only piece of software that is typically ordered at the 
same time the hardware itself is purchased. Of course, the 
customer can later change operating systems, upgrade to a 
newer version of the operating system, or even re-partition 
the bard drive to support multiple boots. lo all cases, 
however, a single operating system runs al any given time on 
tbe computer. As a resu lt, applications wri tten for different 
operat ing systems cannot run concurrently on the system. 

Operating Systems on Scalable Multiprocessors," E. 
Bugnion, S. Devine, K. Govil and M. Rosenblum, ACM 
Transactions on Computer Systems (TOCS), Vol. 15, No. 4, 

20 November 1997, pp. 412--447. 

Various solutioos have been proposed to solve tbis prob­
lem and eliminate this restriction. These include virtual 
machine monitors, machine simulators, application 
emul ators, operating system emulators, embedded operating 
systems, legacy virtual machine monitors, and boot manag­
ers. Each of these systems is described briefly below. 

Virtual machine monitors can also provide architectural 
compatibility between different processor architectures by 
using a technique known as ei ther ••binary emulation" or 
"binary translation." In these systems, lhe VMM cannot use 

25 direct execution since tbe virtual and underlying architec­
tures mismatch; rather, they must emulate the virtual archi­
tecture on top of the underlying one. This allows entire 
v irtual machines (opera ting systems and applicatioas) writ­
ten for a particular processor architecture lo ruo on lop of 

30 one another. For example, the IBM DAISY system bas 
recently been proposed to run PowerPC aod x86 systems oo 
top of a VLIW architecture. See, fo r example, K. Ebcioglu 
and E. R. Allman, " DAISY: Compilation for 100% Arcbi­
tectural Compatibility," Proceedings of the 24th loteroa-

Virtual Machine Monitors 35 liooa l Symposium oo Computer Archi1ec1ure, 1997. 

Ooe solution that was the subject of intense research in the 
late l960's and 1970's came 10 be known as the " virtual 
machine monitor" (VMM). See, for example, R. P. 
Goldberg, ''Survey of virtual machine research,'' rEEE 40 

Computer, Vol. 7, No. 6, 1974. During that time, moreover, 
IBM Corp. adopted a virtual macbioc monitor for use io its 
VM/370 system. 

Machine Simulators/Emu lators 

Machine simulators, also known as macbioe-emulators, 
run as application programs on top of an existing operating 
system. They emulate all the components of a given com­
puter system with enough accuracy lo run an operating 
system and its applications. Machine simulators arc ofte• 
used io research to study tbe performance of multiproces­
sors. See, for example, M. Rosenblum, et al., "Using tbe 

45 SimOS machine simulator to study complex computer 
systems," ACM Transactions o• Modeling aod Computer 
Simulation, Vol. 7, No. l , January 1997. They have also been 
used 10 simulate an Intel x86 machine as the ·'VirtualPC" or 

A virtual machine monitor is a tbio piece of software that 
runs directly oo top of the hardware and virtualizes all the 
resources o( the machine. Since the exported in terface is the 
same as the hardware interface of the machine, the operating 
system cannot determine the presence of the VMM. 
Consequently, when the hardware interface is compatible 

50 
witb tbc underlying hardware, tbe same operating system 
can run either on top of the virtual machine monitor or on lop 
of the raw hardware. 

"Rca lPC" products oo a PowerPC-bascd Apple Macintosh 
system. 

Machine simulators share binary emulation techniques 
with some VMMs sucb as DAJSY. They differeotiate them­
selves from VMMs, however, io tbat Ibey ruo on top of a 
host operating system. This has a number of advantages as Virtual machine monitors were popular at a time where 

hardware was scarce and operating systems were primitive. 
By virtualizing all the resources of the system, multiple 
independent operating systems could coexist on the same 
machine. For example, each user could have her own virtual 
macbine running a single-user operating system. 

55 they cao use U1e services provided by the operating system. 

The research io virtual macbioe monitors also led to tbc 60 

design of processor architectures that were particularly 
suitable for virtualizatioo. It allowed virtual machine moni­
tors to use a technique known as "direct execution," which 
simplifies the implementation of tbe monitor and improves 
performance. Witb direct execution, the VMM sets up the 65 

processor in a mode with reduced privileges so that the 
operating system caooot directly execute its privileged 

On the o ther band, these systems can also be somewhat 
constrained by the host operating system. For example, an 
operating system that provides protectioo never allows 
application programs to issue privileged iostructioos or 10 
change its address space directly. Tbcse co•straints typicaUy 
lead 10 significant overheads, especially when running oo 
top of operating systems that are prolectcd from applica-
tions. 

Application Emulators 

Like machine simulators, application emulators also run 
as an application program io order to provide compatibility 

Netflix, Inc. - Ex. 1012, Page 000009 
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across different processor architectures. Unlike machine 
simulators, however, they emulate application-level so(t­
ware and convert the application's system calls ioto direct 
calls illto the host operatillg system. These systems have 
been used in research for architectural studies, as well as to 5 
run legacy billaries wrillen for tbe 68000 architecture on 
newer PowerPC-based Macintosh systems. They have al5o 
been also been used to run x86 applications wrillen for 
Microsoft NT on Alpha workstations runoing Microsof1 NT. 

4 
Specifically, Microsoft's DOS virtual machine runs DOS in 
a virtual machine on top of Microsoft Windows and NT. As 
another example, tbc Erceware DOSEMU system runs DOS 
oo top of Lioux. 

Although these systems arc commonly referred to as a 
form of virtual macbioe monitor, they ruo either oo top of ao 
existing operating system, such as DOSEMU, or as part of 
an existing operating system such as Microsoft Windows 
and Microsoft NT. lo this respect, they are quite different 

JO from the true virtual machine monitors described above, and 
from tbc definition of the term ·' virtual machine monitor" 
applied to the invent ion described below. 

In all cases, the expected operating system matches the 
undcrlyillg one, wh·ich simplifies the implementation. Other 
systems such as the known lnsigna's SoftWindows use 
binary cmulatioo to ruo Windows applications and a modi­
fied version of tbe Windows operating system oo pla tforms 
other than PCs. At least two known systems allow MaciD- 15 

tosb applications to ruo oo other systems: tbe Executer runs 
them on Intel processors running Linux or Next and MAE 
runs them on top of the Unix operating system. 

Boot Managers 

Finally, boot managers such as tbe p ublic-domain LILO 
and the commercial System Commander facilitate changing 
operating systems by managing mullip le partitions on the 
hard drive. The user must, however, reboot the computer 10 

Operating System Emulators 

Opcratiog system (OS) emulators allow applications writ-

20 
change operating systems. Boot managers therefore do 001 
allow applications written for di.lforent operating systems lo 
coexist. Rather, they simply allow tbc user to reboot aoother 
operating system without having 10 reinstall it, that is, 
without having to remove tbc previous operating system. 

ten for one give• operating system application billary illter­
face (ABI) to ruo on another operating system. They trans­
late all system calls made by the application for the original 

25 operating system into a sequence, of system calls to the 
underlying operating system. ABI emulators are currently 
used to allow Uoix applications lo ruo on Wiodow NT (the 
Soflway Open NT emulato r) and to run applications written 
for Microsoft's operatillg systems oo public-domain oper-

30 
atiog systems (the Lioux WINE project). 

Uolike virtual machine monitors aod machille simulators, 
which are essentially iodependeo1 of the operating system, 
ABI emulators are intimately tied with the operating system 
!bat they are emulating. Operating system emulators differ 35 
from application emulators in that the applications are 
already compiled for the instruction set architecture of the 
target processor. The OS emulator does not need to worry 
about the execution of ihe applications, but rather only of the 
calls tbat ii makes lo the underlying operating system. 40 

Embedded Operating Systems 

General Shortcomings of the Prior Ari 

All of these known systems fail lo meet one or more of the 
following goals: 

1) 10 provide tbc advaotages offered by traditional virtual 
machine monitors, such as tbc ability to nm multiple 
arbitrary operating systems concurrently. 

2) to provide portability of tbe virtual machine monitor 
across a wide range of platforms; and 

3) to maximize performance by using the underlying 
hardware as much as possible. 

This invention provides a system that achieves these 
goals, as well as a related operatillg method. 

SUMMARY OF 'nlE INVENTION 

The invention virtualizes a computer 1ha1 includes a host 
processor, memory, and physical system devices. A conven­
tional operating system (referred 10 below as the "host 
operating system" or ·'HOS") is installed on tbe hardware. 

Emulatillg ao ABI at tbe user level is 001 ao opt ion if tbe 
goal is 10 provide additional guarantees 10 the applications 
that are oot provided by the host operating system. For 
example, 1be VenturCom RTX Real-Time subsystem 
embeds a real-time kernel within the Micrcsoft NT operating 
system. This effectively allows real-time processes 10 
co-exist with traditional NT processes within the same 
system. 

45 The computer is operationally divided in to a system level 
aod a user level and the computer accepts aod carries out a 
pre-determined set of privileged ins truction calls only from 
sub-systems at tbe system level. lbe invention provides at 
least one virtual machine monitor (VMM) Lhal is installed 10 

50 be co-resident with the host operating system al tbe system 
level. 

This co-existence requires tbc modification of the lowest 
levels of the operatillg system, that is, its Hardware Abstrac­
tion Layer (HAL). This allows the RTX system to first 
baoclle ail VO interrupts. This solution is tightly coupled 
with WiDdowsNT, sioce both eoviroomeots share the same 55 

address space and interrupts entry points. 

Legacy Virtual Machine Monitors 

Certain proces.5ors, most notably those with the Intel 60 

architecture, contain special execution modes that arc spe­
cifically designed 10 vinualize a given legacy uchi1ec1ure. 
This mode is designed to support the strict vir1ua1iza1ioo of 
the legacy architecture, but not of the existing architecture. 

A legacy virtual machine monitor consists of the appro- 65 

priate software support that allows running the legacy oper­
ating system usiog tbe special mode of tbc processor. 

lo the preferred cmbodimcat of the invention, a driver is 
downloaded iota and is resident in the host operating system. 
A bast operatillg system (HOS) context is then saved ill the 
driver. A corresponding vir!Ual machine monitor (VMM) 
co• tex1 is saved in the virtual machi•e mo• itor. Switching 
from the IIOS context to the VMM context is then carried 
out in the driver, whereas switching from Lhe VMM context 
10 the HOS comext is done in the virtual machine monitor. 
Tbe driver is.sues, in the HOS con1ex1, commands previously 
specified by the VMM. 

A predetermilled physical address space is assigned 10 the 
system memory, and virtual addressc.5 are converted into 
physical addresses of the memory's pl:nysical address space 
io a memory management unit (MMU). HOS context 
parameters are stored ia a first virtual address space in the 
host operating system aod VMM context parameters arc 
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stored in the virtual machine monitor in a second address 
space, which is disjoint from the first address space. The 
HOS aod VMM context parameters also represent different 
interrupt aod exception entry points for lbe host operating 
system aod the virtual machine monitor, respectively. s 
Switching between the HOS and VMM contexts is then 
carried out by selectively setting internal registers of the host 
processor to correspond to the I !OS and VMM context 
parameters, respectively. 

As a further feature of the invention, a device emulator is JO 
preferably installed 10 be operatively connected to the host 
operat ing system. The device emulator accepts commands 
stored in memory by the VMM via the driver and processing 
these commands. The emulator also issues host operating 
system calls and thereby accessing the physical system JS 

devices via the host operating system. 
At least one virtual machine is preferably installed at user 

level. The virtual machine includes at least one associated 
application and a virtual operating system, aod is operatively 
connected to the virtual machine monitor. An entire pro- 20 

grammable virrual address space of the computer is thereby 
made available to both the virtual machine and the virtual 
machine monitor. 

The emulator is preferably operatively connected as an 
application lo the host operating system. lo a preferred 25 

embodiment of the invention, the driver passes first instruc­
tion calls from the virtual machine monitor directly to Lhe 
host operating system, the system devices, and tbe 
processor, and passes second instru.ction calls from tbe 
virtual machine monitor, via the emulator, to tbe host 30 

operating system. Tbe driver al50 passes data to the virtual 
machine monitor in response to tbe first and second instruc­
tion calls received both via the emulator and directly from 
the system devices, the processor and the host operating 
system. The second iastruction calls are thereby executed 35 

directly in the host operating system. 
lo the preferred embodiment of the invention, the com­

mands processed in the driver in the l lOS context are 
processed as remote procedure calls. Similarly, the com- 40 
mands processed in the device emulator, via the driver, are 
also preferably processed as remote procedure calls. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram tbat illustrates tbe arcbitecture 

6 
DETAILED DESCRIPTION 

The invention is described below in sections for the sake 
of clarity. First, two conventional architectures arc described 
in order to make il easier to see the unique features of the 
i•veolioo by way of comparison. Then, tbe system accord­
ing to the invention is described as a whole. Finally, tbe main 
novel features of the invention are described incliviclually. 

Conventional Virtual Machine Monitor 
Architectures 

FIG. 1 illustrates the conventional system model that 
incorporates a virtual machine monitor (VMM). Tbe VMM 
100 in this known architecture directly accesses the system 
hardware 110. This hardware includes such known struc­
tures as the system processor (one or more) itself, its 
registers, associated memory devices, aoy memory manage­
ment unit MMU, 1/0 devices, any co-processors, and so on. 
One or more virtual machines 120a , 120b, ... , 120n 
communicate with the VMM 100. RutJning on each v irtual 
machine is a set of one or more application programs, which 
arc symbolized as circles witbin the respective blocks 130a, 
130b, ... , 130n. Examples of such an architecture capable 
of concurrently running ooe or many virtual machines 
include the VM/370 and DISCO systems mentioned above. 
Examples of such an architecture capable of running a single 
virlllal machine on any hardware system include the fBM 
DAISY and Hypervisor systems mentioned above. 

As FIG. 1 shows, the VMM 100 communicates directly 
witb tbe bardware llO and tbus is at system level. Each 
virtual macbioe 120a, 120b, .. . , 120n, wbicb consists of its 
operating system and associated applications, typically oper­
ates al user-level. When the VMM uses direct execution, the 
processor is set in user-mode or at least witb reduced 
privileges, so that the virtual machine cannot directly access 
the various privileged registers that control the operation of 
the hardware structure. Ratber, privileged instructions trap 
into tbe VMM. When the VMM uses binary translation, the 
VMM's well-known translation algorithm can guarantee 
that tbc virtual macbine never issues pdvilcgcd instructions. 
As a result, the virtual machine can be said to be executing 
at user-level, s ince it never accesses tbe privileged state of 
the processor independent of the setting of the proces.5or. 
Tbe separation between tbe system and user levels is indi­
cated in FIG. 1 by the clashed line 1000. of a conventional system that incorporates a virtual machine 45 

monitor. Because the VMM 100 in the conventional system shown 
in FIG. 1 can directly access the hardware 110, it is fast. On 
the other hand, because tbe VMM must be configured 

50 
according to the given hardware 110, it cannot be used in 
other systems. In otber words, performance is improved at 
the cost of less flexibili ty. 

FIG. 2 shows the architecture of a conventional system 
tbal incorporates a machine emulator/simulator. 

FIG. 3 is a block diagram that illustrates the high-level 
system architecture of a system that incorporates a system­
level virtual machine monitor (VMM) according to the 
invention that is also co-resident with a host operating 
system. 

FIG. 4 illustrates certain registers and tables used for 55 
handling exceptions in the invention. 

FlG. S is a block diagram that shows various exemplary 
emulation modules that may be incorporated into tbe VMM 
used in the invention. 

FIG. 6 illustrates one example of bow the system accord- 60 

iog to tbe invention enables an applicat ion designed to run 
on one operating system can efficiently access an external 
resource handled by a different, bost operating system, by 
means of the virtualization system according to the inven­
tion. 

FI.G. 7 is a block diagram of a second embodiment of the 
invention. 

65 

Conventional Machine Emulator Architect11res 

FIG. 2 illustrates the conventional system model that 
incorporates a machine emulator 200, also known as a 
machine simulator. A virtual machine 220 is co• aected Lo the 
emulator 200. A set 230 of applications 1s associated with the 
virtual machine 220. The device emulator 200 operates as an 
interface fo r the virtual machine 220. llie machine emulator 
200 doe.5 not directly acces.5 any of the hardware structures 
110, but rather communicates its system needs via a host 
operating system (HOS) 240 call. One example of sucb a 
system is SimOS. 

As FIG. 2 shows, only the host operating system and the 
hardware itself operate at the system level. The machine 
emuJator 200, including tbe virtual machine 220, and the 
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applications 230, all run al user level. As such, as far as the 
host operating system 240 is concerned, the emulator 200 is 
ootbing more tban aootber application. The emulator thus 
uses the services of the HOS 240, wbich in turn manages 
system resources. As in FIG. 1, the separation between the 5 
system and user levels is indicated by the dasbed line 1000. 
This allows greater flexibility, since the emulator is not tied 

If the host operating system is, for example, some version of 
Windows, with Intel-based hardware, Lben a Unix applica­
tion cannot oormalJy be expected to run on tbe system. This 
invention makes this possible. 

A5Sumc that tbe virtual machine 3.20 is designed as a 
virtual Uoix system and that the applications 330 arc thus 
Unix-based applications. The virtual machine 320 then will 
also include a virtual operating system (VOS) 370, which 
communicates with the "real," or "physical" system hard-

to any one hardware structure, but the inability to directly 
control system resources makes this architecture slower than 
the VMM structure shown in FIG. 1. 

System Arcbitccturc According to the Joveotion 

FIG. 3 shows tbe invention in its broadest terms: a 
user-level device emulator 300 ru os on top of a protected 
host operating system 340 and is combined with at least one 
unconstrained, system-level virtual machine monitor 
(VMM) 360. T he VMM 360 directly uses portions of the 
hardware's 110 processor to execute an associated virtual 
macbi.oe (VM) 320. Each component of tbe virtual computer 
system is virtualized either by the device emulator 300, the 
VMM 360, or some combination of both clements. The 
VMM 360 preferably handles the virtualizatioo of the core 
components of the virtual computer system such as the 
processor and memory management unit, while the device 
emulator 300 preferably virtualizes 1/0 devices. 

ll1e use of a user-level device emulator 300 allows the 
invent ion to meet the second goal stated above. The appli­
cation portion of the system takes care of all system-specific 
emulation and relies oo the existing host operating system 
340 to perform this emulation. 

The use of a system-level virtual machine monitor 360 
allows the ioveotioo to meet the third goal of maximal 
performance. In order to make this possible, the invention 
also provides ihat the VMM 360 can configure the processor 
and its memory management unit (MMU) independently of 
any constraints imposed by the host operating system­
failure to do so would prevent the VMM from se1L10g up the 
processor and MMU so that the virtual machine 320 can 
directly take advantage of them. The VMM according to the 
invention alJows its associated vi rtual machine 320 to use as 
many components of the hardware directly and safely as 
pos.5ible given the processor architecture. For example, the 
ability to use direct execution to run the virtual machine is 
a fu.nction of the current state of the virtual processor. 

FIG. 3 shows two virtual machine moojtors 360, 362 
installed in the system, each supporting a respective virtual 
machi ne 320, 322. As will be made clearer in Lhe following 
discussion, the system according to the invention makes it 
pos.sible to include aoy number of VMM's in a given 
implementation, limited only by available memory and 
speed requirements, and to switch between the various 
included VMM's. Two arc shown by way of example only. 
Below, it is assumed merely for the sake of simplici ty that 

JO ware via the VMM 360. Other applicat ions 332 running on 
another virtual machine 322 will similarly run via a respec­
tive virtual operating system 372 and the associated VMM 
362. Note that the invention allows running many different 
types of applications on the same computer system, regard-

15 less of what the bost operating system is. Each application 
is thus associated with its intended operating system, either 
tbe host operating system 340 (applications 329), or witb a 
respective virtual operating system 370, 372 associated in 
turn with each respective VMM 320, 322. 

20 FIG. 3 shows two virtual machine monitors 360, 362 
installed in the system, each supporting a respective virtual 
machine 320, 322. As will be made clearer in the following 
discussion, the system accorcliog to the invention makes it 
possible to include any number of VM Ms io a given 

25 
implementation, limited only by available memory and 
speed requirements, and to switch between the various 
included VM Ms. Two are shown by way of example only. 
Below, it is assumed merely for the sake of s implicity that 
the VMM 360 is the one actively ia operation on the system. 

30 
Any discussion of "the" VMM 360 or "the" virtual machine 
322 thus applies equally to any other VMMs and VM.s 
included in any given implemeotatioo of the invention. 

This invention overcomes this limitation by providing 
that the VMM 360 according to the invention is co-resident 

35 with the existing protected operating system (the host oper­
ating system 340). The VMM runs iodepcodcntly of the host 
operating system-it is in no way an extension of the 
operating system, but rather operates with its own address 
space and with itsowo interrupt and exception handlers. The 

40 virtualization system also includes a device emulator 300 
that runs as a user-level application oo top of the host 
operating system 340. Because it operates as a typical 
process running on top of the HOS, the device emulator 300 
according to the invention can use standard operatiog system 

45 calls 10 access physical devices 380 such as (but not limited 
to) a disk drive. 

The co-residency of the VMM and the HOS at system 
level implies that both can independently configure the 
hardware processor, and tha t the HOS reta ins all of its 

50 function. This allows not only the device emulator 300 but 
al50 other independent applications to operate ia the I IOS 
co• text. 

the VMM 360 is the one actively ia operation oo the system. 55 

Any discussion of"the" VMM 360 or "the" virtual machine 
322 thus applies equally to any other VMM's and VM's 
included io any given implementation of the invention. 

Jo actual implementations of the ioveotioo that include 
more than one VMM, there is preferably a different user­
level device emulator for each VMM. This maintains the 
functional and contextual separation of the dill'ereot VMM s 
(described below), simplifies the design of each device 
emulator, and allows for the greatest degree of flexibility and 
portability of each VMM. The HOS can the• schedule tbe 
VMMs, via their respective device emulators, just like it 
schedules other user-level applications (such as applications 
329). It is also possible, however, to include a single device 
emulator to handle all VMMs, although tbis would greatly 
impair or rule out the generality, flexibility, portabi lity and 
simplicity provided by having dedicated device emulators. 

A set of applications (symbolized by circles) is .indicated 
in FIG. 3 by the block 329. This set of applications is 60 

assumed to be designed to run " normally" via the existing 
host operating system (HOS) 340. lo other words, the 
applications 329 arc written for the HOS 340. Other 
applications, however, may not be. For example, aa appli­
cation written to run on one of Microsoft's operating 65 

systems, such as any of the Wi•dows systems, will not 
normally run on the Unix operating system, and vice versa. 

In order for the system-level VMM 360 to use this abi lity 
of tbe user-level device emulator 300 to issue standard 
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drivers may issue. T be API 394 thus does not offer any 
active protection to the operating system; rather eacb respec-
1ive device driver views the API 394 as a permissible sel of 
operations that ii may perform lhal mighl al50 change the 

operat ing system cal ls, some iaterface is required. Accord­
ing to the invention, this interface is provided by a driver 
390, which is downloaded in10 or 01herwise installed or 
included in the HOS 340. T he driver 3 90 also allows each 
VMM to be loaded into the system and also implements a 
switch (described further below) between the host operating 
system context and the VMM context. 

The illustrated, preferred architecture according io the 
invention requires some minimal support from the host 
operating system. For example, the host operating system 
340 must support down-loadable device drivers (since lhe 
driver 390 acts as one), and these must execute at the most 
privileged level. Also, either the user-level process (such as 
lhc device emulator 300) or the driver 390 must be able to 
allocate certain pages of memory with the guarantee that the 
operat ing system will not reclaim them. This fu•ctioaality, 
known as " locking pages," is routinely used by conventional 
device drivers and 1he requirement is therefore no practical 
limitation to 1he general applicability of the invention. 

5 stale of the operating system. Ooe example of a device 
driver 394 requcs1 would be a request made by a disk driver 
10 " lock" a certain oumber of given pages into memory wilh 
the guarantee tbat the operating system will not use these 
pages for other purposes unti l allowed 10 by the holder of 1he 

10 
lock. An example of a• API 394 to device drivers is 1he DDK 
interface by Microsoft. 

One of the unique features of the invention is that the 
VMM 360 (which is al tbe system level) is able 10 issue wha1 
are known as '· remote procedure calls" (RPC) to the device 

15 
emulator 300 (which is at the user level) via the driver 390, 
which is loaded as a conventional device driver into 1be HOS 

The concept of a "protected" operating system, that is, a 20 
system in which only the host operating system is able to 
issue instruction calls that will affect the privileged state, is 
typically associated with an interface widely known as the 
System Call Application Program Interface (API). A differ­
ent AP!, known as a Device Driver AP!, similarly provides 

25 
an interface between system-level device drivers and 1he 
HOS. FIG. 3 shows both types of APls i• the system, which 
arc symbolized by dotted Uncs and labeled 392 and 394, 
respectively. 

340. RPCs are a well-known programming technique, origi­
nally described in ·' Implemenling Remo1e Procedure Calls," 
A D. Birrell and B. J. Nelson, ACM Transac1ions on 
Computer Systems, 2(1), pp. 39-59, 1984. 

In the preferred embodiment of the invcn1ion shown in 
FIG. 3, the principle function of the driver 390 is to acL as 
a "gate" tbrough which the VMM can pas.5 procedure calls 
10 1he emulator 300. The driver 390 can thus be coded 
simply using well-known programmiog techniques. More 
importantly, the driver 3 90 needs 10 be able 10 issue only a 
very small number of device driver API 394 calls. This very 
lhin interface between the driver 390 and the HOS 340 
subs1antially simplifies the 1ask of porting the system 
according 10 1bc invcntioo to a new bosl operating system. 

One type of privilege register that is used in the invention 
to enable the VMM to be co-resident with the HOS is the 
register 1ba1 directs 1he processor to a table of addresses Lbat 
point it to instructions Lo be executed u poo sensing any o( a 
predetermined set of interrupts, which ooay be both hardware 
and software. By way of example, in '!be widely prevalco1 
l ate! x86 architectures, this privilege regis1er is known as tbe 
" interrupt descriptor table register" (Il)TR), which is a 
register within 1be bardware processor 110 itself, and which, 

The AP! 392 is the interface exported by tbe HOS to its 30 
appl ications. This API is normally a layer of software that 
defines the set of services offered by the HOS to user-level 
applications. On operating systems that provide protection, 
API system calls are implemented by a secure mechanism 
that allows transitions of the processor between user-level 35 
mode and system-level mode. In such sys1ems, 1he API 392 
itself checks whether calls from applica tions are 
permissible, and prevents impermissible calls from reaching 
and affecting the proper runni.ng of the host operating 
system. 

One example of a user API 392 reques1 would be a call 
from an applicalioo whose execution requires a level of 
privilege not granted Lo applications running al user level, 
such as instruction calls tbat would alter certain important 
registers used only by the processor for its internal control. 45 
Ano1her caU 1hat would normally not be allowed would be 

40 in the figures, is labeled 400. The corresponding 1able o( 
addresses (the exception vector) for the respective interrupts 
is known, accordingly, as 1he " interrupt descriptor table'' 
(IDT). As FIG. 3 illustrates, tbc HOS 340 includes IDT 402 

an attempt by an application 10 directly control a disc, such 

and the VMM 360 includes its owo parallel IDT 404. 
Analogous registers and tables are found in other architec-
1ures; the 1..--ooventions and terminology commonly used io 

as instructions directing the read head to a particular track 
and sector, or that would alter necessary system files. 
Examples of ao AP! 392 10 applica1ions include the POSIX 50 
system for UNIX operating systems. 

Intel x86 architectures are used in 1his description by way of 
example only. 

FIG. 4 illustrates the func1ion and s tructure of the IDTR 
400 aod an IDT 420 io greater detail . The IDTR 400 is a 
privilege register of the hardware processor in certain known 
architectures. The address in this register in turn operates as 
a pointer Lo tbe address in memory of an exception table or 
" vector'' 402 (the ID'I). The HOS sets up the IDTR register 

The AP! 394 is the interface exported by the HOS to its 
downloadable device drivers. Note that downloadable 
device drivers typically operate at the system level with the 
same privileges as the HOS itself; otherwise, it would take 
far too Jong for, for example, a modern driver 10 do its job 
with proper synchronization. As such, 1hese device drivers 
are "inside" the protective AP! 392 10 applications. Indeed, 
Ibey arc 1ypically downloaded Lo become a functional part of 
1hc host operating system itself. In these cases, the APl 394 
i5 commonly not an actual body of programming code 
within 1he operating system, bu1 rather is simply a conven­
tion followed by producers of device drivers. In FIG. 3, a 
conventional device driver 382 is show• as the driver for the 
external device 380. 

lo other words, 1he API 394 is normally an agreed-upon 
set of unprotected function calls that downloaded device 

55 at system start-up; 01herwise, the system processor would 
not know wha1 10 do if certain pre-defined "errors" 
(exceptions) occur. 

The exception vector 402 is, as is mentioned above, a 
table Lhat points to the addresses of the respective entry 

60 points lo be executed after the respective exceptions or 
interrupts occur. l o FIG. 4, by way of example, the exception 
vec1or includes links lo entry points for exceptions numbers 
0, 1, 2, 13, 14, 20 and 21. (These numbers represent 
exceptions that commonly occu r in Intel-based 

65 architectures.) Although lhe establishment and operation of 
these regis1ers and vec1ors is well known, consider the 
following example. 
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Assume that a memory page fault is pre-defined lo be 
exception aumber 14, and that the proces.sor has just sensed 

12 
HOS contexts is symbolized the vertical line 396. Similarly, 
each VMM included in the system functions separately, 
iodcpeodeotly and protected from all other VMMs. This 
separation is symbolized in FIG. 3 by the dash-dolled line 

a page fau lt. The system, that is, the hardware processor, will 
first address tbe lDTR 400, which will return the address ia 
physical memory of the position in tbe exception vector 402 
for exception number 14. This memory position will in tum 
point to the corresponding entry point, which is the address 

s 398. 

of the fi rst iastrnction the processor is to execute after the 
corresponding exception (here, a page fault) occurs. In short, 
th is strncture tells the processor where to get its next 10 
i.ostruction whenever certain pre-defined ooo-staodard coo­
ditioos (roughly, " faults") occur. 

Refer again to FIG. 3. Tbe programming code that con­
tai.ns the instructions 10 be carried out upon occurrence of an 
exception or interrupt is known as ao interrupt handler. 15 

According to the invention, each VMM 360 also includes a 
dedicated interrupt handler 395, which is a virtualization of 
the interrupt handler for the corresponding virtual machine 
320, and is also a parallel to the interrupt baadler 495 of the 
host operating system 340. 20 

According 10 the invention, an IDT is set up in each 
virtual machine monitor. These ID1s include the exception 
vectors and entry points for their respective virtual 
machines. In other words, the system according to the 
invention is also able 10 virtualize exception-handling as part 25 

of its to tal context-switching operation. 

Total Switch 

Second, the HOS 340 and VMM 360 have disjoint 
address spaces. Tbe VMM can therefore take over the e ntire 
programmable virtual address space and is not limited by the 
address space of the host operating system. The VMM in 
turn will make this complete address space available 10 the 
virtual machine 320. As a result, execution on the virtual 
machine can directly use the memory management unit 
(M MU), which is included along with the processor in the 
given computer hardware 110. According to tbe invention, 
the VMM configures all the in ternal registers of the proces­
sor to match the requirements of the virtual machine, with no 
restrictions imposed by tbe host operating system. For 
example on a segmented architecture, the virtual machine 
can directly use the hardware segments. 

Another consequence of the invention's use of the total 
switch is that the HOS 340 and the VMM 360 have different 
interrupt and exception entry points. T he VMM completely 
takes over the machine and only voluntarily relinquishes 
control to the l lOS. 

A lthough t he two con texts-VMM- and HOS­
controUed-are independent of each o ther, they preferably 
cooperate for the allocation of machine resources. For 
example, the VMM preferably does not manage 1/0 devices. 

The switch between the host operating system 340 context 
and the (that is, each) VMM 360 context requires more than 
a conventional context switch, such as the one implemented 
by operating systems to time-share processes. lbe switch 
used in the preferred embodiment of Lhe invention is referred 
to and described below as a "total processor switch" or, 
simply, a "total switch" since it saves and restores all lhe 
registers, segments, floating-point registers, and control reg­
isters of the processor included in the givea computer 
hardware 110. Any available memory space may be used to 
save th is information, and actual storage and retrieval may 
be accomplished using any known technique. The total 
switch also changes the address space so Lhal the host 
operat ing system's address space does not need 10 be 
mapped into the VMM's address space. As a result, the 
VMM bas tbe ability to freely manage all the address space 
of the system while executing in its own context. Finally, the 
switch changes the interrupt dispa tch entry points, since the 
VMM according lO the invention handles directly all excep­
tions and interrupts that occur while executing in the VMM 
context. The total switch preferably first saves the stale 
before sett ing it according to the target context in order to 
facilitate the inverse operation. 

30 
This greatly simplifies its design and implementation and 
improves its portability. Furthermore, preferably neither the 
VMM nor the virtual machine directly accesses 1/0 devices. 
Rather, the VMM uses an RPC to call the driver 390 in the 
HOS or tbe emulator 300 in tbe user-level proces.s to initiate 

lbe use of the total switch bas significant consequences 
for the system. First, the host operating system (HOS) 340 

35 
1/0 requests. 

Additionally, the VMM preferably redirects all I/0 inter­
rupts to the HOS. The VMM then calls the driver 390 in 
order to emulate the interrnpl in the HOS context. The 
preferred interrupt-handling mechanism is described in 

40 greater detail below in connection with Lhe discussion of 
FIG. 6. On ti mer interrupts, the driver 390 not only emulates 
the interrupt, but it also returns to t:he execution of the 
user-level process. This return path allows the scheduler of 
the HOS to schedule another proces.5. As a result , tbe virtual 

45 macbine uses a fair share of Lbe processor according to the 
priority of the user-level device emulator 300. 

As yet another example of the preferred VMM-J-IOS 
cooperation, the VMM and the virtual machine access only 
the physical memory pages that have been allocated and 

so locked down io memory by eitber the device emula tor 300 
or the driver 390. The VMM can the• allocate a memory 
page by calling back ioto tbe HOS context. la th is example, 
the VMM defers to the HOS the managemeot of the physical 
memory resources. As an example of their cooperation, tbe 

55 VMM may release back to the HOS certain of the memory 
resources that are currently being used by the virtual 
machine 320 or the VMM. 

is tota lly unaware of tbe existence of the VMM--only the 
driver 390, wbicb implements lhe HOS side of the total 
switch, is aware. In other words, although the HOS and 
VMM are co-resident, both at the system level, their 
contexts, using this invention, can be completely separate, 
i•clependeat, aad protected from each other. Consequently, 60 

no modifications arc needed 10 the HOS, not even at its 
lowest Hardware Abstraction Layer (HAL). Here, ·'context" 
refers to the state that is set and restored during the total 
switch, for example, the s tate of the address space, the 
general-purpose registers, floating-poin ter registers, privi- 65 

leged registers, interrupt vectors and hardware exception 
vectors. In FIG. 3, this separation between tbe VMM and 

Structure of the VMM 

In general, the invention does not require the VMM 360 
to be of any particular type. Indeed, this Ls one of tbc 
advantages of the invention. As long as the VMM incorpo­
rates the ability to access the user-level emulator 300 via the 
system-level driver 390, and lo handle interrupts as 
described below, then any known VMM design may be used 
with in the invention. Nonetheless, by way of example, FIG. 
5 illustrates tbe bigb-level orgaoizatioa of a VMM in order 
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to make clearer bow such a VMM works. As FIG. 5 
illustrates, in addition Lo the components shown in FIG. 3, 
tbe VMM 360 includes an execution engine 500 and a set of 
emulation modules 510. 

14 
In general, there is no way for the system to transfer 

coatrol directly from the VMM to the HOS, since they 
operate in different contexts, with disjoint address spaces. 
Recall that a "coatext" includes lbe state of all virtual 

l11crc are two main known types of execution engines in 
a VMM: binary translation and direct execution. Tbe con­
cepts ''binary translation" and ''direct execution" are known 
ia the field of computer system, as are techniques to design 
and operate the corresponding execution engines. Both 
engines rely on the same emulation modules 510, which 
emulate the various components of the virtual mach'ine 320 
(FIG. 3). The execution engine handles internally the com­
ponents of the processor architecture that arc not affected by 
tbe virrualization. These include, for example, all arithmetic 
and logical operations issued by the virtual machine. 

5 address space, as well as the set of registers (including 
privilege registers), with all hardware exception and entry 
points. Nonetbeless, tbere roust be some mechanism that 
allows the system to operate in the VMM context when 
needed, wbile still allowing it to revert to the BOS context, 

10 for example, to allow a differeat VMM to be active. 

The resett ing of tbe IDTR 400 as part of the total switch 
is required since the HOS and the VM M are co-resident but 
operate in disjoint address spaces-an interrupt vector entry 
point specified in one context would be meaningless in the 

Any coove• 1ional execution engine design may be imple­
mented in the invention. For example, prior systems such as 
VM/370, DISCO, and Hypervisor are based exclusively on 
direct-execution tccboiqucs, aad prior systems sucb as 
DAISY are based exclusively on binary translat ion tech­
niques. This invention is iadcpeadcot of tbe choice of the 
execution engine. 

15 other context. The changing of tbe IDTR during the total 
switch has al least two advantages: First, the HOS 
(specifically, its in terrupt bancllers) does not need to be 
modified to accommodate the VM M------exceptions that occur 
while the VMM is executing will be processed directly by 

20 VMM-specific handlers. Second, this separation also leads 
to a substantial performance advantage, as the VMM con­
sists of customized, low-overhead handlers without any 
operating system overhead. Tue emulation modules 510 are selected using known 

design methods to be specific to the virtualized architecture. 
Examples of some common modules are illustrated in FIG. 25 

5. For example, a privileged instruction emulation module 
512 emulates the privileged instruct-ions issued by the virtual 
machine 320 (FIG. 3) in a safe manner, that is, so that the 
effects of tbc emulation remain constrained to the virtual 
machine. This caa also be ensured using known design 30 

methods. 
As is mentioned above, the VMM 3 60 has its own set of 

interrupt vectors 404, which are separate from but parallel 

In order to realize these advantages, the VMM and VM 
according to the inveation share the same address space, and 
the IDT is stored as a part of the VM M's portion of the 
address space. To uaderstaad how the invention accom­
plishes this, aote that device drivers-such as the inven­
tion's ''Trojan Horse" driver 390-even in most protected 
systems operate at the same privilege level as tbc HOS itself 
and can set the lDTR and LDT. According to Lhe inveatioo, 

tbe interrupt vectors 402 of tbe host operating system. 
According to tbc invention, some exceptions are bandied 
internally by the VMM, wbile others are forwarded to the 
virtual operating system (VOS 370-sec FIG. 3) running in 

therefore, the IDT 404 for the virtual machine monitor 360 
(that is, for eacb VMM) is loaded by tbe driver 390 into the 
VMM's address space, with entry points into the VMM 

35 itself. 

the virtual machine. The forwarding is implemented ia any 
known manner by aa exception emulation module 514, 40 
which emulates the trap architecture of the virtual machine. 
For example, wbea the virtual rnacbine takes a page fault 
trap, the VMM sometimes bandies the trap internally, that is, 
without modifying aay of tbe virtual machine's state; 
sometimes, however, the VMM emulates in software lbe 

45 
effect of tbe hardware trap in the virtual machine. 

The applications 330 (FIG. 3) running on the virtual 
machine 320 will also "expect" to be able to cause other 
instruction calls to the type o[ architecture they are designed 
to run on. Consequently, the VMM 360 will typically 50 
include modules to emulate these common features of a 
computer system. lo the illustrated example, emu latioa 
modules arc shown for a memory management uait 516, 
memory segment descriptor tables 518, and 1/0 devices 520. 

Emulation of elev-ices is preferably divided into two ss 
components. Device emulation that does 001 require inter­
action with the physical devices of the system may remain 
as part of the VMM, as a VMM device emulation module 
522, wbich may be designed io any known maoncr. Device 
emulations that do require sucb interaction arc hanclled as 60 

described above by the user-level device emulator 300. 
As is mentioned above, tbe HOS 340 is allowed, accord­

ing to tbe inveotioo, to manage resources sucb as the 
memory and devices, and to retain most of its normal 
Cu.nclions and privileges, su.cb as CPU scheduling. This is so 65 

even tbough the HOS and the VMM are both at the system 
level. 

For example, on an Ln tel x86, if the memory mappings 
between tbe HOS and a VMM were to be completely 
disjoint, that is, if they had completely distinct contexts, then 
there would be no way for the proccs.5or to get back on the 
instruct-ion path in the other context once it got out of it. To 
overcome tbis, tbc invention provides for a cross page in the 
memory, which is a page ia memory that is identical, 
beginning at tbe same linear address, in botb (or, for multiple 
VMMs, all) coatcxts. Tbe cros.s pa.ge cootaios known 
instruction sequences (specific to the given hardware 
processor) 1ha1 change the addres.s space and direct the 
processor to its next instruction. This cross page only needs 
to be mapped temporari ly in tbe VMM context's address 
space, just before the total switch 10 ihe IIOS, and just after 
the control returns to the VMM. The VMM uses known 
techniques to first save the mapping lha I exists at the address 
of the cross page before mapping the cross page. Tbe inverse 
operation restores the mapping before resuming the execu­
tion of the virtual machine. 

Note that the VMM caanoi simply operate in the HOS 
context- it is necessary for the VMM Lo get essentially 
complete control of the system; otherwise, the HOS might 
begin to carry out its own procedures .ind defeat tbc entire 
reason for having a VMM. This invention makes this pos­
sible through implcmeatatioa of tbe concept of "co­
residency," whicb means not only that both the HOS aod 
VMM are present at tbe system level, but also that each is 
able to operate with complete functionality, wi th fo lly main­
tained but completely separate contexts. 

Several di[ereoces between the invention and known 
systems cao oow be appreciated. For example, most coo-
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vent ional virtual machine monitors and emulators are mono­
lilhic. In other words, mosl known YMM run without a host 
operating system (sucb as tbe VMM/370, Hypervisor, 
DISCO a•d DA1SY systems), and most macbine emulators 
run entirely at user-level (sucb as tbe SimOS system). 5 

16 
co-resident witb tbe l lOS at the system level, is able to 
communicate witb tbe user-level emulalor via the low-level 
driver 390, which is downloaded ioto tbe HOS. 

The invention also-differs significantly from macbine 
emulators for the MacOS, such as the Virtual PC and RealPC 
systems. The inventors believe, for example, that these 
systems are also monolithic. l n any case, bowever, the 
MacOS is an operating system tbat does not offer any JO 
protection and does not clearly separate application code 
from system code. 

Example of YM Device Request witb lbtal Context 
Switching 

Refer now to FIG. 6, in which the main components of 
FIG. 3 are reproduced, but in which instruction and control 
paths are illustrated. FIG. 6 also provides an example of tbe 
cooperation between tbe co-resident e• tfries (HOS 340 and 
YMM 360) with respect to 1/0 devices such as a disk 380. 

Referring to FIG. 6, consider as an example the interac-
A5 for tbe Disco system, it re-uses some of tbe known 

Silicon Graphics' lRlX device drivers. A modified version 
of IRIX initializes the machine and tben loads lbc Disco 15 

tion tbat occurs wben tbe virtual machine YM 320 initiates 
a disk UO request. Tbe VMM intercepts tbe 1/0 commands 
issued by tbe VM's 320 virtual operating system 370 
(illustrated as path A). At this point, tbe YM 320 " believes" YMM, which then takes over the machine. Unlike tbe 

co-resident system according to the invention, the Disco 
YMM manages both the processor and the main memory of 
the machine. It returns to the IRIX context only to call the 
low-level device-specific drivers. Unlike this invention, the 
DISCO system docs not rely on a user-level device emulator, 
nor oo the HOS to manage resources Moreover, unlike !bis 
invention, the modified version of HUX cannot be used as a 
general-purpose operating system, since it does no t control 
resources. 

ll1e legacy virtual machine monitors from M icrosoft are 
in tegrated as pan of Windows95 and Wiodows NT. 171e 
implementation of this legacy VMM in general is tightly 
integrated with the operating system. In contrast, the imple­
mentation according to the invention is portable, requires 
only a simple extension (the driver 390) of tbe operating 
system (which can even be uninstalled when unused) and 
supports a full VMM. 

it is issuing a command to the external 1/0 device; in fact, 
however, the request is passed to the YMM 360, in 
particular, lo an 1/0 emulation module 520 (FIG. 5) included 

20 in the VMM. 

25 

The VMM 360 then sets a ll parameters required for tbe 
1/0 request and initiates tbe request by passing it via the 
driver 390 (path B) 10 the user-level device emulator 300 
(path C). lbe parameters will be predelermined according lo 
convention, and form the arguments of the RPC. 

The device emuJator 300 then uses the API 392 offered by 
the HOS 340 to emulate the 1/0 request, that is, lo read or 
write the disk sectors from the corresponding virtua l disks 

30 380. Tbe call lo tbe API is sbowo as path D, wbicb call is 
passed in tbe conventional manner (path E) to the appropri­
ate device driver 382 within the HOS 340. To complete tbe 
operation, the 1-1OS will in certain cases request an 1/0 
operation from the corresponding physical device 380 (path 

35 F). lbc Linux DOSEMU system is a legacy 8086 YMM tbat 
runs DOS on top of the Linux opera ting system; IL is 
implemented partially al user-level, and uses an Imel x86-
specific system call of Linux to set up the processor in the 
v-8086 mode. This system calls re turns to the user-level 
YMM on every exception that occurs while the processor is 40 
ia v-8086 mode. The system-level component of DOSEMU 
runs as an integral part of the DOS operating system. 

When the physical device 380 completes its operation, for 
example, retrieving a requested porlioa of a file, it typically 
interrupts the processor by issuing an external interrupt 
request (IRQ). Using an IRQ, the much faster central 
processing unit (CPU) system does 001 •eed to suspend 
other operations while waiting for the s lower 1/0 device Lo 
complete its task. Rather, the IRQ acts as a " ready" signal 
from the 1/0 device. At this point (unless interrupts are 
present ly masked), the hardware processor dispatches to tbc 

In sum, unlike existing architectures, tbis invcntioa, in its 
preferred embodiment, is built around a three-component 
system (user-level device emulator 300, driver 3 90, and 
co-resident virtual machine moni tor 360) that runs even on 
a processor with a protected host operat ing system 310. 
Examples of such protected operating systems include 
UNlX and Microsoft NT. These operating systems all 
clearly separate user-level applications from the operating 
system by running appl ica tions in user mode. Furthermore, 
tbe invention includes the total switch, wbich saves and 
restores all tbe processor's state data, including the privi­
leged registers, disjoint address spaces, and the interrupt 
dispatch table. T be use of the total switch is the primary 
feature of the invention that enables tbe novel concept of 
co-residence between a host operating system and a YMM. 

Note that tbe YMM and tbe device emulator may be 
coded and implemented using known techniques. A5 is 
discussed above, emulators and YMMs are known. Other 
than as described below, this invention does not rea late to 
tbe design of tbe YMM and device emulator as sucb, since 
tbese will vary according to tbe machine in wbicb the 
invent ion is to be incorporated; indeed, according to the 
invent ion, differen t YMMs may be co-resident in the same 
computer. Rather, one of the principal points of novelty of 
tbe invention is tbe maoner in wbicb tbe YMM, wbicb is 

45 interrupt vector specified by the IDT. If tbe processor is 
currently executing in tbe 1-IOS tota l context, tbcn tbe 
processor dispatches to the LDT 402 olf the HOS 340 (path 
G). TL then processes tbe interrupt in the conventional 
maaner, accessing the IDT 402, Lo get the corresponding 

so entry point in the handler (path H), wbicb then pas.5es 
conventional signals such as acknowledgement and transfer 
initiation sig•als to tbe device driver 382 (patb J). The 
device driver 382 tben begins transfer of the requested data 
to the device emulator 300 (pa th K), whicb in tum passes tbe 

55 data via the driver 390 (path L) to the VMM 360 (path M). 
The YMM then transfers the requested data to tbe YM 320 
(path N) as if it were the 1/0 device itself. The data is thus 
passed back along the reverse path and is made available to 
tbe originally calling application, wbich will never " know" 

60 that the actual memory access took place in a different 
cootext. 

If the processor is currently executiog in the VMM total 
context, tben the YMM interrupt band1er 395 intercepts tbe 
lRQ (path G) and performs an RPC to the driver 390, which 

65 then emulates (by executing a• appropriate conventional 
instruction sequence) the external interrupt in the HOS (path 
P). Effectively, tbe HOS 340 handles the interruption as 
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and " locked down" in memory with tbe guarantee that the 
HOS will not attempt to reclaim them to use them for 
another purpose. 

In the example of the processor, the YMM must bound the 

tbougb the processor were previously executing in the 
downloadable driver 390 wben ii in fact occurred while 
executing in lbe YMM total coatex1-as is discussed above, 
tbe driver 390 sets the interrupt vectors to those of the VMM 
context. 5 time that it executes in its total cootext by an amount 

corresponding to the scheduling granularity. For example, 
by performing an RPC to the user-level device emulator 300 
with some knowo bounded rate, the VMM volu.atarily 
releases the processor, allowing the I IOS to schedule other 

Recall that, upon sensing the IRQ signal (via a predeter­
mined pin) from the device 380, lhe hardware processor 
accesses the interru pl descriptor table register IDTR 400 10 
get the address of the IDT to be used for handling the 
in terrupt. The IDTR can be set by routines at system level 
such as the YMM (via the driver 390) or by the HOS itself. 
According to the invention, interrupts that occur when 
running in the context of the VMM are handled by interrupt 
handlers in tbe VMM. Similarly, all interrupts that occur 
while executing in the HOS context are handled by existing 15 

interrupt handlers in the I !OS. The operation of the total 
context switch in this invention is tbus symmetrical. 

As part of the total switch, 1be IDTR is changed to point 
to the IDT of the current sub-system {here: HOS or VMM). 
The total switch routine uses known techniques lo ensure 
that no interrupts occur during the switch. 

This example is another illustration of how the VMM 
according lo the invention is able to remain completely 
"invisible" to the HOS by " biding'· behind tbe driver 390. lo 
effect, by emulating the interruption wbeo the system is in 
the VMM context, the IIOS handles the 1/0 request as 
normal, but the system is prevented from reentering the HOS 
context until the driver 390 reestablishes it through resetting 
the IDT to that of the HOS context. la other words, in the 
VMM context, interrupts are handled according to the IDT 
404 in the VMM (path G), although the hardware will 
continue to act as if the interrupt had beea bandied via the 
IDT 402 in the HOS (path G). 

lbc invention is 110! restricted to use in architectures in 
which a register such as the IDTR 400 is incorporated into 

JO applications running on the HOS, or other VMMs. ' lliis 
voluntary release of lbe processor can be implementing by 
performing an RPC on every external timer interrupt. Since 
the HOS programs the timer interrupts, it dictates their 
frequency. 

In tbe preferred embodiment of the invention discussed 
below, the driver 390 acts as a simple "gate" to pass calls 
from the VMM 360 10 the device emuJator 300, as well as 
implementing the context switch. The driver 390 can there­
fore be made very simple. In one working implementation of 

20 the invention, for example, the device emulator 300 com­
prised around 30,000 lines of programming code and the 
VMM 360 needed about 55,000 lines of code. The driver, 
however, required less than 2,000 lines of code. This con­
figuration leads • 01 only to simplicity, but it also improves 

25 portability and generality of the system-according to the 
invemion. It is not, however, the onl y possible embodiment 
of the invention. 

In this working implementation, the VMM is capable of 

30 
running all major operating systems (Microsoft DOS, Win­
dows 3.1, Windows 95, Windows 98, Windows NT, Linux, 
and Unix) for the Intel x86 architecture in a virtual machine. 
The implementation also contains versions of the device 
emulator and the driver for two distinct host operatiag 

35 
systems: Windows NT aod Lioux. As an illustrative example 
of the indepeadence of the HOS aod the VMM, tbe identical 
VMM is capable of co-residency with either a Windows NT 
or a Linux HOS. 

tbe hardware processor, or in which sucb a register can be 
accessed and changed by software. For example, in certain 
architectures, the address of tbe CDT is bard-wired in tbe 
processor or is otherwise assumed to be constant. In these 
cases the predetermined address is the equivalent of the 
IDTR described above, but is inaccessible to the driver or 
the VMM. In such architectures, the invention implements 
interrupt forwarding nol by selectively setting and changing 
the lDTR, but rather by storing the contems of the previ- 45 
ously "active" IDT aod thea writing tbe currently "active" 
IDT al the predetermined address. 

FIG. 7 illustrates a second embodiment of the i•vention, 

40 and is lo be compared wi th the first embodiment shown in 
FIG. 3. Features common to bolh embodiments have the 
same reference •umbers in the two figures. In this secood 
embodiment, the VMM and HOS still co-exist at the system 
level, with dilfereot contex1s, but instead of a relative large 
emulator 300 and a minimal driver 390, the second embodi­
ment includes a very small sheU application 700 at the user 
level, and incorporates the device emulator 702 in the HOS 
340 itself. lo essence, the emulator 702 is a combination of 
the driver 390 and the emulator 300; the shell 700 does 
nothing more than initiate calls, from its user level, to tbe 
HOS 340. 

Note that because the I-IOS 340 actually manages tbe 
resource (ia this case, the device 380), it can do so at its full 
normal speed, in its own cootext, and that both the VMM so 
and the IIOS can opera le at the faster system level. The HOS 
views the emulator 300 as just another device with a driver, 
albeit one tha t uses up a very large amount of time (since lhe 
VMM calls pass through it). Indeed, the emulator 300 uses 
so much time that the HOS itself is effectively turned into 55 

the slave of the emulator (and thus VMM) as long as the 
VMM is active, that is, as long as the system is operating in 
the VMM context. 

To the extent that the HOS allows calls that cross the 
driver API 394, then the system-level emulator 702 may be 
designed to take advantage of this possibility to speed up the 
system by reducing the number of necessary crossings o( the 
applica tion API 392. This potential increase in speed, 
however, has its costs. First, the code that must be down­
loaded into the HOS becomes much larger and more com­
plex. Second, the system is much less portable and general, The co-residence of a HOS and a VMM does not require 

any modification of the HOS, but it does require some 
cooperation with 1be VMM. Specifically, the HOS must 
retain the ability to manage the resources of the system, 
including the scheduling of the processor(s), aod the allo­
cation of the memory. In tbe example of memory, the VMM 
must access o nly pages of memory that the HOS has 
allocated 10 either its corresponding device emulator 300 
processor or the driver 3 90. Tbesc pages must be allocated 

60 since it is much more closely tied to tbe part icular HOS. 
In the preferred emboclimeots of the invention, the driver 

390 is downloaded into the HOS 340. 1nis provides for the 
greatest possible flexibility, portability and generality, but it 
is not s trictly necessary according to the invention. Instead, 

65 the driver 390 may be pre-loaded into or even made an 
integral part of the IIOS. This might be desirable, for 
example, if the producers of the HOS expect their customers 
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to want to use th is invention to run one or more VMMs al 
system level, co-resident with tbe HOS. 

Refer once again to FIG. 6. Using the total swi tch 
according to the invention, the IDTR 400 can be set by the 
system-Jcvel driver 3 90 to point to tbe IDT of any VMM, or 5 

of the HOS. Note, however, that because of the complete 
contextual separation o[ the HOS and the VMM, the VMM 
can be replaced by any other system-level component that is 
not a VMM as long as it maintains the same cooperation 
with the HOS that the VMM has. The total switch according JO 
to the invention can be used to implement interrupt forward­
ing even to sub-systems other than virtual machine moni­
tors. lo other words, path G could lead to any sub-system or 
system-level component, not just to a VMM. For example, 
tbe invention could be used to run specialized or application- 15 

specific operating systems at system level, or to run appli­
cations tha t need to configure the hardware processor in 
particular ways. 

We claim: 
1. A virtualization system for a computer, in which 20 

tbc computer includes a bost processor, wbicb bas a 
processor s tate, physical system devices, and a host 
operating system (HOS), and 

the computer is operationally divided into a system level 
and a user level, 25 

the HOS is at the system level, 

the host processor accepting and carrying out a pre­
determined set of privileged instruction calls only from 
sub-systems at the system level, tbe virtualization sys- 30 
tern comprising: 
at least one virtual machine monitor (VMM) also at the 

system level, 
both the VMM and the HOS thus being able to inde­

pendently issue both privileged and non-privileged 35 
instructions for execu lion by the processor and to 
independently modify tbe processor state. 

2. A virtualization system as defined in claim l , further 
comprising: 

a driver that is resident in the host operating system, in 40 

which: 

the host operating system bas a host operating system 
(HOS) context; 

each virtual macbine monitor bas a corresponding virtual 
machine monitor (VMM) context; 45 

the driver forms a first context-switching means for 
saving the HOS context and for switching from the 
HOS context to the VMM context; 

the virtual machine monitor includes a second context-
50 

switching meaos for saving the VMM context and for 
switching from the VMM context to the HOS context; 
and 

the driver further forms a means for accepting commands 
from the VMM and for processing the accepted com- 55 
mands in the HOS context. 

3 . A virtualization system as defined io claim 2, further 
comprising: 

a memory haviog a predetermined physical address space 
and a memory management unit (M MU) that converts 60 

virtual addresses into physical addresses of the memo­
ry's physical address space; 

in wbicb: 
the host operating system has a first address space, in 

which HOS context parameters are stored; 65 

the virtual machine-monitor has a second address 
space, in wbicb VMM context parameters are stored; 

20 
the first and second address spaces are disjoint , with the 

HOS and VMM context parameters representing 
different interrupt and cxccptio11 entry points for tbc 
host operating system and the v irtual machine 
monitor, respectively; and 

the first context-switching means is further provided for 
switching between the HOS and VMM contexts by 
selectively setting internal registers of the host pro­
cessor 10 correspond to the HOS and VMM context 
parameters, respectively. 

4. A virtua lization system as defined in claim 3, further 
comprising: 

a device emulator at user level and operatively connected 
to the host operating system, in which: 

the device emulator forms user-level processing means: 
for accepting commands from tbe VMM via tbe driver 

and for; processing these commands; and 
for is.suing host operating system calls and for thereby 

accessing the physical system devices via the host 
operating system. 

5. A virlualization system as defined in claim 4, further 
comprising: 

at least one virtual machine at user Bevel that includes at 
least one associa ted application aad a virtual operating 
system, and that is operatively connected to the v irtual 
machine monitor, an entire programmable virtual 
address space of the computer thereby being available 
to both the vi rtual machine and the virtual machine 
monitor. 

6. A virtualization system as defined in claim 2, in which 
the driver is loaded in to the host operating system after 
installation of the HOS in the computer. 

7. A virtua lization system as defined in claim 1, further 
comprising: 

a driver that is resident in tbe host operating system; 
an emulator at user level and operatively connected as an 

application to the host operating system; 
in which: 

the driver fo rms a system-level means for passing: 
first instruction calls Crom the virtual machine moni­

tor d irectly to the host operating system, the 
system devices, aod the processor; 

second instruction calls from the virtual machine 
monitor, via tbe emulator, to tbe host operating 
system, the host operating system itself thereby 
handling execution of the sec,ond instruction calls; 
and 

data to the virtual machine monitor in response to the 
ftrst and second instruction cal.ls received botb via 
the emulator and directly from the system devices, 
the proces.sor and the host operating system. 

8. A virtualization system as defined in claim 1, in which: 
tbc host operating system bas a host operating system 

(HOS) context; 
each virtual machine monitor has a corresponding virtual 

machine monitor (VMM) context; 
further comprising: 
driver/emulator means tbat Ls resident in the bost operat­

ing system for saving tbe HOS context and for switch­
ing from the HOS context to the VMM context; 

a user-level shell application for initiating the instruction 
calls in tbe HOS; 

the vi rtual machine monitor including VMM-based 
context-switching means for saving tbe VMM context 
and for switching from tbe VMM context to the IIOS 
context; 

Netflix, Inc. - Ex. 1012, Page 000018 
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)



US 6,496,847 Bl 
21 

the driver/emulator means being provided for accepting 
commands from the VMM and for processing the 
accepted commands in the HOS cootext. 

9. A virtualization system for a computer, in which 
tbe computer includes a host processor, wbicb bas a s 

processor state, physical system devices, aod a bost 
operating system (HOS), and 

the computer is operationally divided into a system level 
and a user level, 

the HOS is at the system level, 
the host processor accepting aod carryi.ag out a pre­

determined set of privileged instruction calls only from 
sub-systems at tbe system level, tbe virtualizatioo sys­
tem comprising: 

10 

at least one virtual machine monitor (VMM) also at tbe 15 

system level, 
both the VMM and the llOS thus being able to inde­

pendently issue both privileged and non-privileged 
instructions for execution by the processor and to 
independently modify the processor state; 

a driver that is loaded into and resident in the host 
operating system; 

20 

22 
for accepting commands from the VMM via the 

driver and for processing these commands; and 
for issuing host operating system calls aod for 

thereby accessing the physical system devices 
via tbe bost operating system. 

10. A method for virtualizing a computer, where 
tbe compuler includes a host processor, which has a 

processor state, physical system devices, and a host 
operat ing system (HOS), and 

tbe computer is operationally divided into a system level 
and a user .level, 

the HOS is at the system level, 
the host processor accepting and carrying out a pre­

delermined set of privileged instruction calls only from 
sub-systems at the system level, tbe virtualizalion 
method comprising the following steps: 
installing at least one virtual machine monitor (VMM) 

at the system level, 
bolh the VMM and the HOS thus being able to inde­

pendently issue both privileged and non-privileged 
instructions for execution by the processor and to 
independently modify tbe processor state. a memory having a predetermined physical address 

space aod a memory management unit (MMU) that 
converts virtual addresses into physical addres.ses of 
the memory's physical address space; 

11. A virtualization method as definccl in claim 10, further 

25 
comprising tbe following steps: 

a device emulator at user level and operatively con­
nected to the host operating system; 

at least one virtual machine at user level that includes 
al least one associated application and a virtual 30 

operating system, and that is operalively connected 
to the virtual machine monitor, an entire program­
mable virtual address space of the computer thereby 
being available to both the virtual machine and the 
virtual machine monitor; 

in whjcb: 
the host operating system has a host operating sys­

tem (HOS) context; 
each virtual machine monitor has a corresponding 

virtual machine monitor (VMM) context; 
the driver forms a first context-switching means for 

saving the 110S context and for switching from 
the HOS conlcxt to 1bc VMM context; 

the virtual machine monitor includes a second 

35 

40 

conlext-switehing means for saving the VMM 45 

context and for switching from the VMM context 
to tbe HOS context; 

the driver further forms a means for accepting com­
mands from the VMM and for processing the 
accepted commands in the 1-10S context; 

tbe host operating system bas a first address space, in 
which HOS context parameters are stored; 

t be virtual machine monitor bas a second address 
space, in wbjcb VMM cootext parameters are 
stored; 

tbe first and second address spaces are disjoint, with 
the HOS and VMM context parameters represent­
ing different interrupt and exception eotry points 
for Lbe host operaling system and the virtual 
machine monitor, respectively; 

tbe first context-switching means is furlber provided 
for switching between tbe HOS and VMM con­
texts by selectively setting internal regi<;ters of the 
host processor to correspond to tbe HOS and 
VMM context parameters, respectively; and 

the device emulator forms user-level processing 
means: 

50 

55 

60 

65 

installing a driver to be resident in tbe host operating 
system; 

saving in the driver a host operating system ( HOS) 
context; 

saving in the virtual machine moni.tor a corresponding 
virtual machine monitor (VMM) context; 

switching from Lbe HOS context to the VMM context in 
the driver; 

switching from tbe VMM context 10 the HOS context in 
the virtual machine monitor; and 

in the driver, processing in the I-10S context commands 
issued by the virtual machine monitor. 

12. A virtualiza tion method as defined in claim ll, further 
comprising tbe following steps: 

assigning to a memory a predetermined physical address 
space; 

converting virtual addresses into physical addresses of lbe 
memory's physical address space in a memory man­
agement uni t (MMU); 

storing HOS context parameters in a first virtual address 
space in the host operating system and storing VMM 
context parameters tbe virlual machine monitor in a 
second virtual address space, which is disjoint from lhe 
first virtual address space, tbe HOS and VMM context 
parameters representing different interrupt aod excep­
tion entry points for the host operating system and the 
virtual machine monitor, respectively; and 

switching between the HOS and VMM contexts by selec­
tively sell ing internal registers of tbe host processor to 
correspond to tbe I-IOS and VMM context parameters, 
respective! y. 

13. A virtualiza tion method as defined in c laim 12, further 
comprising the following steps: 

installing a device emulator at user level to be operatively 
connected to the hosl opcraliog system; and 

in the device emulator, 
accepting commaods from the VMM via tbe driver aod 

processing these commands; and 
is.5uing host operat ing system calls and thereby access­

ing the physical system devices via the host operat­
ing system. 
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14. A virtualization system as defined in claim 13, further 
comprising the following steps: 

installing at least one virtual machine at user level that 
includes at least one associated application and a virtual 
operat ing system, aod that is operatively coonectccl to 5 

the virtual machine monitor, ao entire programmable 
virtual address space of the computer thereby being 
available to both the virtual macrune and the virtual 
machine monitor. 

15. A virtualization method as defined in claim 13, in JO 
which tbc step of processing commands in the device 
emu.lator via the driver comprises processing the commands 
as remote procedure cal Is. 

16. A virtualizatioo method as clefioed in claim 11, in 
whicb tbe step of processing commands in tbe driver in l.be 15 

BOS context comprises processing the commands as remote 
procedure calls. 

17. A virtualization method as clefinecl in claim 10, further 
comprising the following steps: 

loading a system-level driver into the host operating 20 

system; 

installing ao emulator at user level to be operatively 
connected as an application to the host operating sys-
tern; 

in the driver, passing: 
first instruction calls from the virtual machine monitor 

directly lo the host operating system, the system 
devices, and tbc processor; 

25 

secood instruction calls from the v irtual macbine 30 
monitor, via tbe emulator, lo the host operating 
system; 

data to the virtual machine monitor in response to the 
first and second instruction calls received both via 
the emulator and directly from the system devices, 35 
tile processor and the host operating system; and 

executing the second instruction calls directly in the 
host operating system. 

18. In a computer system that bas a hardware processor 
including an interrupt table pointer register and an operating 40 
system (OS), which includes a first interrupt vecto r table and 
a first set of stale parameters, and a sub-system, w hich 
includes a second interrupt table vector, a second set of state 
parameters, and is contextually separated from the OS, a 
method for enabling interrupt handling in the sub-system 45 
comprising tbe following steps: 

installing a system-level driver into l.be operating system; 

in an OS context, accessing the interrupt table pointer 
regis ter from the driver and setting the in1errupl table 
pointer register to point to the first interrupl 1able 50 

vector, and s toring the second set of state parameters, 
whereby interrupts arc rou1ed for handling lo the OS; 
and 

in a sub-system context, accessing the interrupt table 
pointer register from the driver and setting 1he interrupt 55 

table pointer register to point to the second interrupt 
tab le vector, and storing the first set of slate parameters, 
whereby the in terrupts are routed for handling to lhe 
sub-system. 

19. A method as in claim 18, in which the interrupts 60 

comprise internal and external interrupts, the external inter­
rupts being generated by external devices, ihe method fur­
l.her comprising tbe following step: 

24 
in the sub-system context, handl ing external interrupts by 

restoring the OS context by restoring the first state 
parameters, and forwarding the external interrupts for 
processing by the OS. 

20. A virtualization system for a computer, in which 

tbe computer includes a host processor, which bas a 
processor state, physical system devices, and a host 
operating system (HOS); and 

lhe computer is operationally d ivided into a system level 
and a user level; 

1he HOS is at the system level and has a host operating 
system ( HOS) context; 

tbe host processor accepting and carrying out a pre­
determinecl set of privileged instruction calls only from 
sub-systems a t the system level; 

the virtualization system comprising: 
at least one virtual machine monitor (VMM) that bas a 

VMM context and is also at the system level, botb 
the VMM and tbc HOS being able to iodepeodeotly 
issue both privilegecl a•d non-p rivileged instructions 
for execution by the processor and thus to iodepcn­
dently modify tbe processor state; 

a first context-swi tching means for saving the HOS 
context and for switchlng from tile HOS context to 
the VM M context; 

a second context-switching means, included in the 
VMM, for saving the YMM comext and for switch­
ing from the YMM coatext lo the HOS context; and 

means for accepting commands from l.be YMM and for 
processing the accepted commands in the HOS con­
text. 

21. A vir1ualization system for a computer, io which 

the computer includes a host processor, which has a 
processor state, physical system devices, and a host 
operating system (HOS); and 

the computer is operationally divided into a system level 
and a user level; 

1he HOS is at the system level and bas a host operatiog 
system (HOS) context; 

lhc bost processor acceptiog and carrying out a pre­
determined set of privileged instruction calls o•ly from 
sub-systems at the system level; 

the virtualization system comprising: 
at least one virtual machine monitor (VMM) 1hat has a 

YMM context and is also at the syscem level, both 
the YMM and the HOS being able to indcpende• tly 
is.sue both privilegecl and non-privileged instructions 
for execution by the processor and thus to iodcpcn­
dently modify the processor state; 

a driver that is resident in the host operating system, the 
driver forming a first context-swi1ching means for 
saving the HOS context, for switching from the HOS 
context to the VMM context, and for accepting 
commands from 1he VMM and for processing the 
acccptecl commands in the l lOS context; and 

a second context-switching means, included within the 
YMM, for saving the VMM co1Jtcxt and for switch­
ing from the YMM context to 'the HOS context. 

* * * * * 
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