
I 1111111111111111 11111 lllll lllll 111111111111111 lllll 11111111111111111111111

(12) United States Patent
Bugnion et al.

(54) SYSTEM ANO METHOD FOR
VfRTUALl ZING COMPUTER SYSTEMS

(75) inventors: Edouard Bugnion, Menlo Park, CA
(US); Scott W. Devine, Palo Alto, CA
(US); Mendel Rosenblum, Stanford,
CA (US)

(73) Assignee: VMWare, .Inc., Palo Alto, CA (US)

(•) Notice: Subject to any djsclaimer, Lbe term of trus
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

(21) Appl. No.: 09/151,175

(22) Filed: Sep. 10, 1998

(60)

(51)
(52)

(58)

(56)

Re lated U.S. Application Data
Provisional application No. 60/085,685, filed on May 15,
J998.

Int. Cl.7
. G06F 9/54

U.S. Cl 709/1; 703/21; 703/23;
709/108; 709/321

Field of Search 709/310-321,
709/100-108; 717/ 122; 710/260-269; 703/21-28

References Cited

U.S. PATENT DOCUMENTS

4,253,J45 A
4,747,040 A
4,787,031 A
4,792,895 A
4,926,322 A
4,974,159 A
5,134,580 A
5,167,023 A
5,255,379 A
5,307,504 A

• 2/198l Goldberg 703/21
5/ 1988 Blanset e t al.

• t l/ 1988 Karger et al. 709/100
12/1988 Talloiao
5/ 1990 Stimac cl al.

ll/ l990 Hargrove et al.
7/ 1992 Bertram cl a l.

11/ 1992 de Nicolas et al.
10/ 1993 Melo

4/ 1994 Robinson el al.

0 0
0 0 0 0 r-329

300

DEVICE
EMULATOR

495

396

US00649684 7Bl

(10) Patent No.: US 6,496,847 Bl
Dec.17,2002 (45) Date of Patent:

5,440,710 A 8/1995 Richter el al.
5,488.716 A 1/ 1996 Schneider el al.
5,522,075 A 5/ 1996 Robinson el al.
5,553,291 A 9/1996 Tanaxa ct al.
5,652,869 A 7/ 1997 1-lcrdeg ct al.
5,652,872 A 7/ 1997 Richter e l al.
5,721.922 A 2/1998 Dingwall
5,832,205 A 11/1998 Kelly et aD.
6,289,396 Bl • 9/2001 Keller et al. 709/323
6,412,035 Bl • 6/2002 Webber 710/261

OTHER PUBLICATIONS

Hail, Judith S. and Robinson, Paul T. "Yirtualizing the VAX
Architecture", ACM. 1991 .*
Liedtke, Jochen. "Toward Real Microkeroels", Communi­
cations o[the ACM. Sep. 1996.*

(List continued on next page.)

Primary Examiner-St. John Courtenay, Ill
(74) Allorney, Agenl, or Firm-Jeffrey Slusher

(57) ABSTRACT

A virtual machine monitor (VMM) is included in a computer
system that has a protected host operating system (HOS). A
v irtual machine running al least one application via a v irtual
operating system is connected to the VMM. Both the HOS
and tbe VMM bave separate operating contexts and disjoint
address spaces, but are botb co-resjdeot at system level. A
driver that is downloadable into the HOS at system level
forms a total context switch between the VMM and HOS
coo texts. A user-level emulator accepts commands from tbe
VMM via the system-level driver and processes these com­
mands as remote procedure calls. The emulator is able to
issue bost operatjog system calls ancl tbereby access the
physical system devices via the host o perating system. T he
host operating system itself thus bandies execution of certain
VMM instructions, such as accessing physical devices.

21 Claims, 6 Drawing S heets

1 320 (398 322

00 0 i [§} 332

VM I VM !12

VOS i VOS USER

---- --'" 1-- ----+-
VMM • VMM SYSTEM

IINT7
~

I
I

362

..._ _ _ I _10';:-,TA_I _ ____ H_AR_o_w_A_RE _________ __Jr 110

\..400

Netflix, Inc. - Ex. 1012, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
Page 2

OTHER PUBLICATIONS

Goldberg, "Survey of Virtual Machine Research," Com­
puter, Jua. 1974, pp. 34-45.
Ebcioglu et al., '·Daisy: Dynamic Compilation for 100%
Architectural Compatibili ty" . IBM Research Report RC
20538, Aug. 5, I 996.
Bugaion et al., "Disco: Running Commodity Operating
Systems on Scalable Multiprocessors," ACM Trans. Com­
puter Systems, vol. 15, No. 4, Nov. 1997, pp. 412-447.

Bressoud et al. , "1-lypcrvisor- bascd Fault tolerance,"
SlGOPS '95, Dec. 1995, pp. 7-77.
Rosenblum ct al., " Using lhc SimOS Machine Simulator to
Study Complex Computer Systems," ACM Traas. Modeling
aacl Computer Simulatioa, vol. 7, No. 1, Jaa. 1997, pp.
78-103.
Creasy, "Tbe Origin of tbe VM/370 Time-Sharing System,"
IBM J. Res. Develop., vol. 25, No. 5, Sep. 1981.

* cited by examiner

Netflix, Inc. - Ex. 1012, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Dec. 17, 2002 Sheet 1 of 6 US 6,496,847 Bl

120a 120b 120n

130n
•••

USER
1000

__ J ____________ _ ~~--1--
100 VMM SYSTEM

110 '-4
,__ _____________ ____,J

HARDWARE

FIG. 1 (PRIOR ART)

0 °o ,---, __ 230

VM 220

110 '-i
..__ _____________ ____,J

HARDWARE

FIG. 2 (PRIOR ART)

Netflix, Inc. - Ex. 1012, Page 000003
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

0 0
0

O
 O

 O

r--3
29 30

0

DE
VI

CE

39
6

-
~D

O
 L

 -=
---L

~9.2
--_

 _t
EM

 U
LA

 TO
R

-

-
-

-
-

_
_

_
_

_
_

_
_

_
_

_
 J.

. _
_

_
_

_
 _

33
0

32
0

(
~

32

2

'

0
0

 0

I I I
33

2

••
•

VM

I
VM

37

2
I

VO
S

-
-
-
-
~

-
-

3
7

~
 I

38
2

:
-
-
-
_

J
~

~
L

-
~

1
j

M

SY
ST

EM

I
o

r-
--

--
--

--
--

--
-\

--
--

--
--

--
__

__
 :

I

3
4

0
_

..
..

IN
T

39
4

39
0

:
H

AN
D

LE
R

IN

T
•

•
•

49
5

H
AN

D
LE

R

r
­ lD

T
I--

-4
02

40
4

36
0

' I I I I ! I

I
I

C
3

5
2

I

ID
TR

H

A
R

D
W

AR
E

11
0

-
40

0
FI

G
. 3

d . f'J

~
 =

""'"

re
 =

""'"

0 ~

p I-
' ~" N
 g N

V
)
 =­ ~ ~ .. N

0 °'

~

0
0

~

~

\0

0
\

0
Q

 ,,.
.

t:d

j,
,.

O

Netflix, Inc. - Ex. 1012, Page 000004
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Dec. 17, 2002 Sheet 3 of 6 US 6,496,847 Bl

400

IOTA
¥ 420

0 1 2 13 14 20 21

- X

,It

ENTRY
POINT

FIG. 4

Netflix, Inc. - Ex. 1012, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent

0
C\J
I.{')

\......

Cf)
w
_J
::::,
0 0 0 -/ i-----., ~ -
z
0
I-
<(
_J

0
,-
1.{')

::::,
~
w

r w
(_)

C\J >
C\J w
LO 0

Dec. 17, 2002

z
0
I-
0..

0
co
('I')

\

Sheet 4 of 6

-.::t-

w -----
Vu,

0
X w

0
0
L.(')

)
I-z
w
~ ,,,,.---
CD z
w co O w
Cf)

,-
1-Z L.(')
::::, -
uCD
w Z
x W
w

w
CD w
_J

> C\J cc '---v ,-
0.. I.{')

::,
~ - ------ ~ ~ LC)

US 6,496,847 Bl

~
~
>

-.::t-
0
-.::t-

\

I- LO
0 .

(!)

LL

Netflix, Inc. - Ex. 1012, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

34
0

IR
Q

30
0

D
EV

IC
E

E
M

U
LA

T
O

R

-==
~) __

_ /
D

J
_

_
_

_
_

_
_

_
 _

:~
4s

__
__

 /_
~

__
 /

~ __
 ~~g

 _
C

 I
I L

~

F

: I ., _
__

__
__

__
 _

49
5

H
AN

D
LE

R

40
2

ID
T

 G
 G

*

ID
TR

39
6

40
0

FI
G

. 6

32
0

V
M

37
0

VO
S

36
0

V
M

M

M

39
5

-
+

-
.
_

L

H
A

N
D

LE
R

ID
T

H
AR

D
W

AR
E

11
0

d . r;,:
,
~

~

"""
'"
~
 =

"""
'"

t:::
I

~

p ~-
-l

N

0 8 0

0
 =­ ~ ~ U

l
0 e

- e 0
0

0-

.,

~

\0

0
\

00
 .. -..

.J

l:d

~

Netflix, Inc. - Ex. 1012, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Dec. 17, 2002 Sheet 6 of 6 US 6,496,847 Bl

I
O

o
0

700

392 ...______ J -

___ J ____ ~---------~---- ----

J•

J - -------~----- --- - ---i-------
1000 , , I" 394

380

340

HOS , , - - - - - -w - - - ~ - -
I
I
I
I
I
I

702 Ji
EM ULA TOR M~i-+--~~...i

I .,_ __ ___.

J

HARDWARE

_ 110

FIG. 7

VMM

~
360

Netflix, Inc. - Ex. 1012, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
1

SYSTEM AND M ETHOD FOR
VIRTUALIZING COMPUTER SYST EMS

2
instructions. The execution with reduced privileges gener­
ates traps, for example when tbe operating system attempts
to issue a privileged instruction. The VMM tbus needs only
to correct ly emulate the traps to allow lhe correct execution CROSS-REFERENCE TO RELATED

APPLICKI'IONS 5 of the operating system io the virtual machine.

This application claims priority from U.S. Provisional
Patent Application No. 60/085,685, ''Virtual Machine
Monitor", fi led May 15, 1998.

As bardware became cheaper and operating systems more
sophisticated, VMMs based oo direct execution began to
lose tbeir appeal. Recently, however, they bave been pro­
posed to solve specific problems. For e xample, the Hyper-

BACKGROUND OF THE INVENTION

1. Field of the Invent ion

10 visor system provides fault-tolerance, as is described by T.
C. Bressoud and F. 13. Schneider, in ''llypervisor-based fault
tolerance," ACM T ransactions on Computer Systems
(fOCS), Vol. 14. (1), February 1996; .ind io U.S. Pat. No.
5,488,716 "Fault tolerant computer system with shadow This invention relates lo a computer architecture, includ­

ing a virtual machine mooiwr, and a related operating
method that aUow virtualization of the resources of a mod- 15

era computer system.

2. Description of the Related An

virtual processor," (Schneider, el al.). As another example,
tbe Disco system runs commodity operating systems on
scalable multiprocessors. See " Disco: Running Commodity

The operating system plays a special role in today's
personal computers and engineering work stations. Indeed,
it is the only piece of software that is typically ordered at the
same time the hardware itself is purchased. Of course, the
customer can later change operating systems, upgrade to a
newer version of the operating system, or even re-partition
the bard drive to support multiple boots. lo all cases,
however, a single operating system runs al any given time on
tbe computer. As a resu lt, applications wri tten for different
operat ing systems cannot run concurrently on the system.

Operating Systems on Scalable Multiprocessors," E.
Bugnion, S. Devine, K. Govil and M. Rosenblum, ACM
Transactions on Computer Systems (TOCS), Vol. 15, No. 4,

20 November 1997, pp. 412--447.

Various solutioos have been proposed to solve tbis prob­
lem and eliminate this restriction. These include virtual
machine monitors, machine simulators, application
emul ators, operating system emulators, embedded operating
systems, legacy virtual machine monitors, and boot manag­
ers. Each of these systems is described briefly below.

Virtual machine monitors can also provide architectural
compatibility between different processor architectures by
using a technique known as ei ther ••binary emulation" or
"binary translation." In these systems, lhe VMM cannot use

25 direct execution since tbe virtual and underlying architec­
tures mismatch; rather, they must emulate the virtual archi­
tecture on top of the underlying one. This allows entire
v irtual machines (opera ting systems and applicatioas) writ­
ten for a particular processor architecture lo ruo on lop of

30 one another. For example, the IBM DAISY system bas
recently been proposed to run PowerPC aod x86 systems oo
top of a VLIW architecture. See, fo r example, K. Ebcioglu
and E. R. Allman, " DAISY: Compilation for 100% Arcbi­
tectural Compatibility," Proceedings of the 24th loteroa-

Virtual Machine Monitors 35 liooa l Symposium oo Computer Archi1ec1ure, 1997.

Ooe solution that was the subject of intense research in the
late l960's and 1970's came 10 be known as the " virtual
machine monitor" (VMM). See, for example, R. P.
Goldberg, ''Survey of virtual machine research,'' rEEE 40

Computer, Vol. 7, No. 6, 1974. During that time, moreover,
IBM Corp. adopted a virtual macbioc monitor for use io its
VM/370 system.

Machine Simulators/Emu lators

Machine simulators, also known as macbioe-emulators,
run as application programs on top of an existing operating
system. They emulate all the components of a given com­
puter system with enough accuracy lo run an operating
system and its applications. Machine simulators arc ofte•
used io research to study tbe performance of multiproces­
sors. See, for example, M. Rosenblum, et al., "Using tbe

45 SimOS machine simulator to study complex computer
systems," ACM Transactions o• Modeling aod Computer
Simulation, Vol. 7, No. l , January 1997. They have also been
used 10 simulate an Intel x86 machine as the ·'VirtualPC" or

A virtual machine monitor is a tbio piece of software that
runs directly oo top of the hardware and virtualizes all the
resources o(the machine. Since the exported in terface is the
same as the hardware interface of the machine, the operating
system cannot determine the presence of the VMM.
Consequently, when the hardware interface is compatible

50
witb tbc underlying hardware, tbe same operating system
can run either on top of the virtual machine monitor or on lop
of the raw hardware.

"Rca lPC" products oo a PowerPC-bascd Apple Macintosh
system.

Machine simulators share binary emulation techniques
with some VMMs sucb as DAJSY. They differeotiate them­
selves from VMMs, however, io tbat Ibey ruo on top of a
host operating system. This has a number of advantages as Virtual machine monitors were popular at a time where

hardware was scarce and operating systems were primitive.
By virtualizing all the resources of the system, multiple
independent operating systems could coexist on the same
machine. For example, each user could have her own virtual
macbine running a single-user operating system.

55 they cao use U1e services provided by the operating system.

The research io virtual macbioe monitors also led to tbc 60

design of processor architectures that were particularly
suitable for virtualizatioo. It allowed virtual machine moni­
tors to use a technique known as "direct execution," which
simplifies the implementation of tbe monitor and improves
performance. Witb direct execution, the VMM sets up the 65

processor in a mode with reduced privileges so that the
operating system caooot directly execute its privileged

On the o ther band, these systems can also be somewhat
constrained by the host operating system. For example, an
operating system that provides protectioo never allows
application programs to issue privileged iostructioos or 10
change its address space directly. Tbcse co•straints typicaUy
lead 10 significant overheads, especially when running oo
top of operating systems that are prolectcd from applica-
tions.

Application Emulators

Like machine simulators, application emulators also run
as an application program io order to provide compatibility

Netflix, Inc. - Ex. 1012, Page 000009
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
3

across different processor architectures. Unlike machine
simulators, however, they emulate application-level so(t­
ware and convert the application's system calls ioto direct
calls illto the host operatillg system. These systems have
been used in research for architectural studies, as well as to 5
run legacy billaries wrillen for tbe 68000 architecture on
newer PowerPC-based Macintosh systems. They have al5o
been also been used to run x86 applications wrillen for
Microsoft NT on Alpha workstations runoing Microsof1 NT.

4
Specifically, Microsoft's DOS virtual machine runs DOS in
a virtual machine on top of Microsoft Windows and NT. As
another example, tbc Erceware DOSEMU system runs DOS
oo top of Lioux.

Although these systems arc commonly referred to as a
form of virtual macbioe monitor, they ruo either oo top of ao
existing operating system, such as DOSEMU, or as part of
an existing operating system such as Microsoft Windows
and Microsoft NT. lo this respect, they are quite different

JO from the true virtual machine monitors described above, and
from tbc definition of the term ·' virtual machine monitor"
applied to the invent ion described below.

In all cases, the expected operating system matches the
undcrlyillg one, wh·ich simplifies the implementation. Other
systems such as the known lnsigna's SoftWindows use
binary cmulatioo to ruo Windows applications and a modi­
fied version of tbe Windows operating system oo pla tforms
other than PCs. At least two known systems allow MaciD- 15

tosb applications to ruo oo other systems: tbe Executer runs
them on Intel processors running Linux or Next and MAE
runs them on top of the Unix operating system.

Boot Managers

Finally, boot managers such as tbe p ublic-domain LILO
and the commercial System Commander facilitate changing
operating systems by managing mullip le partitions on the
hard drive. The user must, however, reboot the computer 10

Operating System Emulators

Opcratiog system (OS) emulators allow applications writ-

20
change operating systems. Boot managers therefore do 001
allow applications written for di.lforent operating systems lo
coexist. Rather, they simply allow tbc user to reboot aoother
operating system without having 10 reinstall it, that is,
without having to remove tbc previous operating system.

ten for one give• operating system application billary illter­
face (ABI) to ruo on another operating system. They trans­
late all system calls made by the application for the original

25 operating system into a sequence, of system calls to the
underlying operating system. ABI emulators are currently
used to allow Uoix applications lo ruo on Wiodow NT (the
Soflway Open NT emulato r) and to run applications written
for Microsoft's operatillg systems oo public-domain oper-

30
atiog systems (the Lioux WINE project).

Uolike virtual machine monitors aod machille simulators,
which are essentially iodependeo1 of the operating system,
ABI emulators are intimately tied with the operating system
!bat they are emulating. Operating system emulators differ 35
from application emulators in that the applications are
already compiled for the instruction set architecture of the
target processor. The OS emulator does not need to worry
about the execution of ihe applications, but rather only of the
calls tbat ii makes lo the underlying operating system. 40

Embedded Operating Systems

General Shortcomings of the Prior Ari

All of these known systems fail lo meet one or more of the
following goals:

1) 10 provide tbc advaotages offered by traditional virtual
machine monitors, such as tbc ability to nm multiple
arbitrary operating systems concurrently.

2) to provide portability of tbe virtual machine monitor
across a wide range of platforms; and

3) to maximize performance by using the underlying
hardware as much as possible.

This invention provides a system that achieves these
goals, as well as a related operatillg method.

SUMMARY OF 'nlE INVENTION

The invention virtualizes a computer 1ha1 includes a host
processor, memory, and physical system devices. A conven­
tional operating system (referred 10 below as the "host
operating system" or ·'HOS") is installed on tbe hardware.

Emulatillg ao ABI at tbe user level is 001 ao opt ion if tbe
goal is 10 provide additional guarantees 10 the applications
that are oot provided by the host operating system. For
example, 1be VenturCom RTX Real-Time subsystem
embeds a real-time kernel within the Micrcsoft NT operating
system. This effectively allows real-time processes 10
co-exist with traditional NT processes within the same
system.

45 The computer is operationally divided in to a system level
aod a user level and the computer accepts aod carries out a
pre-determined set of privileged ins truction calls only from
sub-systems at tbe system level. lbe invention provides at
least one virtual machine monitor (VMM) Lhal is installed 10

50 be co-resident with the host operating system al tbe system
level.

This co-existence requires tbc modification of the lowest
levels of the operatillg system, that is, its Hardware Abstrac­
tion Layer (HAL). This allows the RTX system to first
baoclle ail VO interrupts. This solution is tightly coupled
with WiDdowsNT, sioce both eoviroomeots share the same 55

address space and interrupts entry points.

Legacy Virtual Machine Monitors

Certain proces.5ors, most notably those with the Intel 60

architecture, contain special execution modes that arc spe­
cifically designed 10 vinualize a given legacy uchi1ec1ure.
This mode is designed to support the strict vir1ua1iza1ioo of
the legacy architecture, but not of the existing architecture.

A legacy virtual machine monitor consists of the appro- 65

priate software support that allows running the legacy oper­
ating system usiog tbe special mode of tbc processor.

lo the preferred cmbodimcat of the invention, a driver is
downloaded iota and is resident in the host operating system.
A bast operatillg system (HOS) context is then saved ill the
driver. A corresponding vir!Ual machine monitor (VMM)
co• tex1 is saved in the virtual machi•e mo• itor. Switching
from the IIOS context to the VMM context is then carried
out in the driver, whereas switching from Lhe VMM context
10 the HOS comext is done in the virtual machine monitor.
Tbe driver is.sues, in the HOS con1ex1, commands previously
specified by the VMM.

A predetermilled physical address space is assigned 10 the
system memory, and virtual addressc.5 are converted into
physical addresses of the memory's pl:nysical address space
io a memory management unit (MMU). HOS context
parameters are stored ia a first virtual address space in the
host operating system aod VMM context parameters arc

Netflix, Inc. - Ex. 1012, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
5

stored in the virtual machine monitor in a second address
space, which is disjoint from the first address space. The
HOS aod VMM context parameters also represent different
interrupt aod exception entry points for lbe host operating
system aod the virtual machine monitor, respectively. s
Switching between the HOS and VMM contexts is then
carried out by selectively setting internal registers of the host
processor to correspond to the I !OS and VMM context
parameters, respectively.

As a further feature of the invention, a device emulator is JO
preferably installed 10 be operatively connected to the host
operat ing system. The device emulator accepts commands
stored in memory by the VMM via the driver and processing
these commands. The emulator also issues host operating
system calls and thereby accessing the physical system JS

devices via the host operating system.
At least one virtual machine is preferably installed at user

level. The virtual machine includes at least one associated
application and a virtual operating system, aod is operatively
connected to the virtual machine monitor. An entire pro- 20

grammable virrual address space of the computer is thereby
made available to both the virtual machine and the virtual
machine monitor.

The emulator is preferably operatively connected as an
application lo the host operating system. lo a preferred 25

embodiment of the invention, the driver passes first instruc­
tion calls from the virtual machine monitor directly to Lhe
host operating system, the system devices, and tbe
processor, and passes second instru.ction calls from tbe
virtual machine monitor, via the emulator, to tbe host 30

operating system. Tbe driver al50 passes data to the virtual
machine monitor in response to tbe first and second instruc­
tion calls received both via the emulator and directly from
the system devices, the processor and the host operating
system. The second iastruction calls are thereby executed 35

directly in the host operating system.
lo the preferred embodiment of the invention, the com­

mands processed in the driver in the l lOS context are
processed as remote procedure calls. Similarly, the com- 40
mands processed in the device emulator, via the driver, are
also preferably processed as remote procedure calls.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram tbat illustrates tbe arcbitecture

6
DETAILED DESCRIPTION

The invention is described below in sections for the sake
of clarity. First, two conventional architectures arc described
in order to make il easier to see the unique features of the
i•veolioo by way of comparison. Then, tbe system accord­
ing to the invention is described as a whole. Finally, tbe main
novel features of the invention are described incliviclually.

Conventional Virtual Machine Monitor
Architectures

FIG. 1 illustrates the conventional system model that
incorporates a virtual machine monitor (VMM). Tbe VMM
100 in this known architecture directly accesses the system
hardware 110. This hardware includes such known struc­
tures as the system processor (one or more) itself, its
registers, associated memory devices, aoy memory manage­
ment unit MMU, 1/0 devices, any co-processors, and so on.
One or more virtual machines 120a , 120b, ... , 120n
communicate with the VMM 100. RutJning on each v irtual
machine is a set of one or more application programs, which
arc symbolized as circles witbin the respective blocks 130a,
130b, ... , 130n. Examples of such an architecture capable
of concurrently running ooe or many virtual machines
include the VM/370 and DISCO systems mentioned above.
Examples of such an architecture capable of running a single
virlllal machine on any hardware system include the fBM
DAISY and Hypervisor systems mentioned above.

As FIG. 1 shows, the VMM 100 communicates directly
witb tbe bardware llO and tbus is at system level. Each
virtual macbioe 120a, 120b, .. . , 120n, wbicb consists of its
operating system and associated applications, typically oper­
ates al user-level. When the VMM uses direct execution, the
processor is set in user-mode or at least witb reduced
privileges, so that the virtual machine cannot directly access
the various privileged registers that control the operation of
the hardware structure. Ratber, privileged instructions trap
into tbe VMM. When the VMM uses binary translation, the
VMM's well-known translation algorithm can guarantee
that tbc virtual macbine never issues pdvilcgcd instructions.
As a result, the virtual machine can be said to be executing
at user-level, s ince it never accesses tbe privileged state of
the processor independent of the setting of the proces.5or.
Tbe separation between tbe system and user levels is indi­
cated in FIG. 1 by the clashed line 1000. of a conventional system that incorporates a virtual machine 45

monitor. Because the VMM 100 in the conventional system shown
in FIG. 1 can directly access the hardware 110, it is fast. On
the other hand, because tbe VMM must be configured

50
according to the given hardware 110, it cannot be used in
other systems. In otber words, performance is improved at
the cost of less flexibili ty.

FIG. 2 shows the architecture of a conventional system
tbal incorporates a machine emulator/simulator.

FIG. 3 is a block diagram that illustrates the high-level
system architecture of a system that incorporates a system­
level virtual machine monitor (VMM) according to the
invention that is also co-resident with a host operating
system.

FIG. 4 illustrates certain registers and tables used for 55
handling exceptions in the invention.

FlG. S is a block diagram that shows various exemplary
emulation modules that may be incorporated into tbe VMM
used in the invention.

FIG. 6 illustrates one example of bow the system accord- 60

iog to tbe invention enables an applicat ion designed to run
on one operating system can efficiently access an external
resource handled by a different, bost operating system, by
means of the virtualization system according to the inven­
tion.

FI.G. 7 is a block diagram of a second embodiment of the
invention.

65

Conventional Machine Emulator Architect11res

FIG. 2 illustrates the conventional system model that
incorporates a machine emulator 200, also known as a
machine simulator. A virtual machine 220 is co• aected Lo the
emulator 200. A set 230 of applications 1s associated with the
virtual machine 220. The device emulator 200 operates as an
interface fo r the virtual machine 220. llie machine emulator
200 doe.5 not directly acces.5 any of the hardware structures
110, but rather communicates its system needs via a host
operating system (HOS) 240 call. One example of sucb a
system is SimOS.

As FIG. 2 shows, only the host operating system and the
hardware itself operate at the system level. The machine
emuJator 200, including tbe virtual machine 220, and the

Netflix, Inc. - Ex. 1012, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
7 8

applications 230, all run al user level. As such, as far as the
host operating system 240 is concerned, the emulator 200 is
ootbing more tban aootber application. The emulator thus
uses the services of the HOS 240, wbich in turn manages
system resources. As in FIG. 1, the separation between the 5
system and user levels is indicated by the dasbed line 1000.
This allows greater flexibility, since the emulator is not tied

If the host operating system is, for example, some version of
Windows, with Intel-based hardware, Lben a Unix applica­
tion cannot oormalJy be expected to run on tbe system. This
invention makes this possible.

A5Sumc that tbe virtual machine 3.20 is designed as a
virtual Uoix system and that the applications 330 arc thus
Unix-based applications. The virtual machine 320 then will
also include a virtual operating system (VOS) 370, which
communicates with the "real," or "physical" system hard-

to any one hardware structure, but the inability to directly
control system resources makes this architecture slower than
the VMM structure shown in FIG. 1.

System Arcbitccturc According to the Joveotion

FIG. 3 shows tbe invention in its broadest terms: a
user-level device emulator 300 ru os on top of a protected
host operating system 340 and is combined with at least one
unconstrained, system-level virtual machine monitor
(VMM) 360. T he VMM 360 directly uses portions of the
hardware's 110 processor to execute an associated virtual
macbi.oe (VM) 320. Each component of tbe virtual computer
system is virtualized either by the device emulator 300, the
VMM 360, or some combination of both clements. The
VMM 360 preferably handles the virtualizatioo of the core
components of the virtual computer system such as the
processor and memory management unit, while the device
emulator 300 preferably virtualizes 1/0 devices.

ll1e use of a user-level device emulator 300 allows the
invent ion to meet the second goal stated above. The appli­
cation portion of the system takes care of all system-specific
emulation and relies oo the existing host operating system
340 to perform this emulation.

The use of a system-level virtual machine monitor 360
allows the ioveotioo to meet the third goal of maximal
performance. In order to make this possible, the invention
also provides ihat the VMM 360 can configure the processor
and its memory management unit (MMU) independently of
any constraints imposed by the host operating system­
failure to do so would prevent the VMM from se1L10g up the
processor and MMU so that the virtual machine 320 can
directly take advantage of them. The VMM according to the
invention alJows its associated vi rtual machine 320 to use as
many components of the hardware directly and safely as
pos.5ible given the processor architecture. For example, the
ability to use direct execution to run the virtual machine is
a fu.nction of the current state of the virtual processor.

FIG. 3 shows two virtual machine moojtors 360, 362
installed in the system, each supporting a respective virtual
machi ne 320, 322. As will be made clearer in Lhe following
discussion, the system according to the invention makes it
pos.sible to include aoy number of VMM's in a given
implementation, limited only by available memory and
speed requirements, and to switch between the various
included VMM's. Two arc shown by way of example only.
Below, it is assumed merely for the sake of simplici ty that

JO ware via the VMM 360. Other applicat ions 332 running on
another virtual machine 322 will similarly run via a respec­
tive virtual operating system 372 and the associated VMM
362. Note that the invention allows running many different
types of applications on the same computer system, regard-

15 less of what the bost operating system is. Each application
is thus associated with its intended operating system, either
tbe host operating system 340 (applications 329), or witb a
respective virtual operating system 370, 372 associated in
turn with each respective VMM 320, 322.

20 FIG. 3 shows two virtual machine monitors 360, 362
installed in the system, each supporting a respective virtual
machine 320, 322. As will be made clearer in the following
discussion, the system accorcliog to the invention makes it
possible to include any number of VM Ms io a given

25
implementation, limited only by available memory and
speed requirements, and to switch between the various
included VM Ms. Two are shown by way of example only.
Below, it is assumed merely for the sake of s implicity that
the VMM 360 is the one actively ia operation on the system.

30
Any discussion of "the" VMM 360 or "the" virtual machine
322 thus applies equally to any other VMMs and VM.s
included in any given implemeotatioo of the invention.

This invention overcomes this limitation by providing
that the VMM 360 according to the invention is co-resident

35 with the existing protected operating system (the host oper­
ating system 340). The VMM runs iodepcodcntly of the host
operating system-it is in no way an extension of the
operating system, but rather operates with its own address
space and with itsowo interrupt and exception handlers. The

40 virtualization system also includes a device emulator 300
that runs as a user-level application oo top of the host
operating system 340. Because it operates as a typical
process running on top of the HOS, the device emulator 300
according to the invention can use standard operatiog system

45 calls 10 access physical devices 380 such as (but not limited
to) a disk drive.

The co-residency of the VMM and the HOS at system
level implies that both can independently configure the
hardware processor, and tha t the HOS reta ins all of its

50 function. This allows not only the device emulator 300 but
al50 other independent applications to operate ia the I IOS
co• text.

the VMM 360 is the one actively ia operation oo the system. 55

Any discussion of"the" VMM 360 or "the" virtual machine
322 thus applies equally to any other VMM's and VM's
included io any given implementation of the invention.

Jo actual implementations of the ioveotioo that include
more than one VMM, there is preferably a different user­
level device emulator for each VMM. This maintains the
functional and contextual separation of the dill'ereot VMM s
(described below), simplifies the design of each device
emulator, and allows for the greatest degree of flexibility and
portability of each VMM. The HOS can the• schedule tbe
VMMs, via their respective device emulators, just like it
schedules other user-level applications (such as applications
329). It is also possible, however, to include a single device
emulator to handle all VMMs, although tbis would greatly
impair or rule out the generality, flexibility, portabi lity and
simplicity provided by having dedicated device emulators.

A set of applications (symbolized by circles) is .indicated
in FIG. 3 by the block 329. This set of applications is 60

assumed to be designed to run " normally" via the existing
host operating system (HOS) 340. lo other words, the
applications 329 arc written for the HOS 340. Other
applications, however, may not be. For example, aa appli­
cation written to run on one of Microsoft's operating 65

systems, such as any of the Wi•dows systems, will not
normally run on the Unix operating system, and vice versa.

In order for the system-level VMM 360 to use this abi lity
of tbe user-level device emulator 300 to issue standard

Netflix, Inc. - Ex. 1012, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
9 10

drivers may issue. T be API 394 thus does not offer any
active protection to the operating system; rather eacb respec-
1ive device driver views the API 394 as a permissible sel of
operations that ii may perform lhal mighl al50 change the

operat ing system cal ls, some iaterface is required. Accord­
ing to the invention, this interface is provided by a driver
390, which is downloaded in10 or 01herwise installed or
included in the HOS 340. T he driver 3 90 also allows each
VMM to be loaded into the system and also implements a
switch (described further below) between the host operating
system context and the VMM context.

The illustrated, preferred architecture according io the
invention requires some minimal support from the host
operating system. For example, the host operating system
340 must support down-loadable device drivers (since lhe
driver 390 acts as one), and these must execute at the most
privileged level. Also, either the user-level process (such as
lhc device emulator 300) or the driver 390 must be able to
allocate certain pages of memory with the guarantee that the
operat ing system will not reclaim them. This fu•ctioaality,
known as " locking pages," is routinely used by conventional
device drivers and 1he requirement is therefore no practical
limitation to 1he general applicability of the invention.

5 stale of the operating system. Ooe example of a device
driver 394 requcs1 would be a request made by a disk driver
10 " lock" a certain oumber of given pages into memory wilh
the guarantee tbat the operating system will not use these
pages for other purposes unti l allowed 10 by the holder of 1he

10
lock. An example of a• API 394 to device drivers is 1he DDK
interface by Microsoft.

One of the unique features of the invention is that the
VMM 360 (which is al tbe system level) is able 10 issue wha1
are known as '· remote procedure calls" (RPC) to the device

15
emulator 300 (which is at the user level) via the driver 390,
which is loaded as a conventional device driver into 1be HOS

The concept of a "protected" operating system, that is, a 20
system in which only the host operating system is able to
issue instruction calls that will affect the privileged state, is
typically associated with an interface widely known as the
System Call Application Program Interface (API). A differ­
ent AP!, known as a Device Driver AP!, similarly provides

25
an interface between system-level device drivers and 1he
HOS. FIG. 3 shows both types of APls i• the system, which
arc symbolized by dotted Uncs and labeled 392 and 394,
respectively.

340. RPCs are a well-known programming technique, origi­
nally described in ·' Implemenling Remo1e Procedure Calls,"
A D. Birrell and B. J. Nelson, ACM Transac1ions on
Computer Systems, 2(1), pp. 39-59, 1984.

In the preferred embodiment of the invcn1ion shown in
FIG. 3, the principle function of the driver 390 is to acL as
a "gate" tbrough which the VMM can pas.5 procedure calls
10 1he emulator 300. The driver 390 can thus be coded
simply using well-known programmiog techniques. More
importantly, the driver 3 90 needs 10 be able 10 issue only a
very small number of device driver API 394 calls. This very
lhin interface between the driver 390 and the HOS 340
subs1antially simplifies the 1ask of porting the system
according 10 1bc invcntioo to a new bosl operating system.

One type of privilege register that is used in the invention
to enable the VMM to be co-resident with the HOS is the
register 1ba1 directs 1he processor to a table of addresses Lbat
point it to instructions Lo be executed u poo sensing any o(a
predetermined set of interrupts, which ooay be both hardware
and software. By way of example, in '!be widely prevalco1
l ate! x86 architectures, this privilege regis1er is known as tbe
" interrupt descriptor table register" (Il)TR), which is a
register within 1be bardware processor 110 itself, and which,

The AP! 392 is the interface exported by tbe HOS to its 30
appl ications. This API is normally a layer of software that
defines the set of services offered by the HOS to user-level
applications. On operating systems that provide protection,
API system calls are implemented by a secure mechanism
that allows transitions of the processor between user-level 35
mode and system-level mode. In such sys1ems, 1he API 392
itself checks whether calls from applica tions are
permissible, and prevents impermissible calls from reaching
and affecting the proper runni.ng of the host operating
system.

One example of a user API 392 reques1 would be a call
from an applicalioo whose execution requires a level of
privilege not granted Lo applications running al user level,
such as instruction calls tbat would alter certain important
registers used only by the processor for its internal control. 45
Ano1her caU 1hat would normally not be allowed would be

40 in the figures, is labeled 400. The corresponding 1able o(
addresses (the exception vector) for the respective interrupts
is known, accordingly, as 1he " interrupt descriptor table''
(IDT). As FIG. 3 illustrates, tbc HOS 340 includes IDT 402

an attempt by an application 10 directly control a disc, such

and the VMM 360 includes its owo parallel IDT 404.
Analogous registers and tables are found in other architec-
1ures; the 1..--ooventions and terminology commonly used io

as instructions directing the read head to a particular track
and sector, or that would alter necessary system files.
Examples of ao AP! 392 10 applica1ions include the POSIX 50
system for UNIX operating systems.

Intel x86 architectures are used in 1his description by way of
example only.

FIG. 4 illustrates the func1ion and s tructure of the IDTR
400 aod an IDT 420 io greater detail . The IDTR 400 is a
privilege register of the hardware processor in certain known
architectures. The address in this register in turn operates as
a pointer Lo tbe address in memory of an exception table or
" vector'' 402 (the ID'I). The HOS sets up the IDTR register

The AP! 394 is the interface exported by the HOS to its
downloadable device drivers. Note that downloadable
device drivers typically operate at the system level with the
same privileges as the HOS itself; otherwise, it would take
far too Jong for, for example, a modern driver 10 do its job
with proper synchronization. As such, 1hese device drivers
are "inside" the protective AP! 392 10 applications. Indeed,
Ibey arc 1ypically downloaded Lo become a functional part of
1hc host operating system itself. In these cases, the APl 394
i5 commonly not an actual body of programming code
within 1he operating system, bu1 rather is simply a conven­
tion followed by producers of device drivers. In FIG. 3, a
conventional device driver 382 is show• as the driver for the
external device 380.

lo other words, 1he API 394 is normally an agreed-upon
set of unprotected function calls that downloaded device

55 at system start-up; 01herwise, the system processor would
not know wha1 10 do if certain pre-defined "errors"
(exceptions) occur.

The exception vector 402 is, as is mentioned above, a
table Lhat points to the addresses of the respective entry

60 points lo be executed after the respective exceptions or
interrupts occur. l o FIG. 4, by way of example, the exception
vec1or includes links lo entry points for exceptions numbers
0, 1, 2, 13, 14, 20 and 21. (These numbers represent
exceptions that commonly occu r in Intel-based

65 architectures.) Although lhe establishment and operation of
these regis1ers and vec1ors is well known, consider the
following example.

Netflix, Inc. - Ex. 1012, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
11

Assume that a memory page fault is pre-defined lo be
exception aumber 14, and that the proces.sor has just sensed

12
HOS contexts is symbolized the vertical line 396. Similarly,
each VMM included in the system functions separately,
iodcpeodeotly and protected from all other VMMs. This
separation is symbolized in FIG. 3 by the dash-dolled line

a page fau lt. The system, that is, the hardware processor, will
first address tbe lDTR 400, which will return the address ia
physical memory of the position in tbe exception vector 402
for exception number 14. This memory position will in tum
point to the corresponding entry point, which is the address

s 398.

of the fi rst iastrnction the processor is to execute after the
corresponding exception (here, a page fault) occurs. In short,
th is strncture tells the processor where to get its next 10
i.ostruction whenever certain pre-defined ooo-staodard coo­
ditioos (roughly, " faults") occur.

Refer again to FIG. 3. Tbe programming code that con­
tai.ns the instructions 10 be carried out upon occurrence of an
exception or interrupt is known as ao interrupt handler. 15

According to the invention, each VMM 360 also includes a
dedicated interrupt handler 395, which is a virtualization of
the interrupt handler for the corresponding virtual machine
320, and is also a parallel to the interrupt baadler 495 of the
host operating system 340. 20

According 10 the invention, an IDT is set up in each
virtual machine monitor. These ID1s include the exception
vectors and entry points for their respective virtual
machines. In other words, the system according to the
invention is also able 10 virtualize exception-handling as part 25

of its to tal context-switching operation.

Total Switch

Second, the HOS 340 and VMM 360 have disjoint
address spaces. Tbe VMM can therefore take over the e ntire
programmable virtual address space and is not limited by the
address space of the host operating system. The VMM in
turn will make this complete address space available 10 the
virtual machine 320. As a result, execution on the virtual
machine can directly use the memory management unit
(M MU), which is included along with the processor in the
given computer hardware 110. According to tbe invention,
the VMM configures all the in ternal registers of the proces­
sor to match the requirements of the virtual machine, with no
restrictions imposed by tbe host operating system. For
example on a segmented architecture, the virtual machine
can directly use the hardware segments.

Another consequence of the invention's use of the total
switch is that the HOS 340 and the VMM 360 have different
interrupt and exception entry points. T he VMM completely
takes over the machine and only voluntarily relinquishes
control to the l lOS.

A lthough t he two con texts-VMM- and HOS­
controUed-are independent of each o ther, they preferably
cooperate for the allocation of machine resources. For
example, the VMM preferably does not manage 1/0 devices.

The switch between the host operating system 340 context
and the (that is, each) VMM 360 context requires more than
a conventional context switch, such as the one implemented
by operating systems to time-share processes. lbe switch
used in the preferred embodiment of Lhe invention is referred
to and described below as a "total processor switch" or,
simply, a "total switch" since it saves and restores all lhe
registers, segments, floating-point registers, and control reg­
isters of the processor included in the givea computer
hardware 110. Any available memory space may be used to
save th is information, and actual storage and retrieval may
be accomplished using any known technique. The total
switch also changes the address space so Lhal the host
operat ing system's address space does not need 10 be
mapped into the VMM's address space. As a result, the
VMM bas tbe ability to freely manage all the address space
of the system while executing in its own context. Finally, the
switch changes the interrupt dispa tch entry points, since the
VMM according lO the invention handles directly all excep­
tions and interrupts that occur while executing in the VMM
context. The total switch preferably first saves the stale
before sett ing it according to the target context in order to
facilitate the inverse operation.

30
This greatly simplifies its design and implementation and
improves its portability. Furthermore, preferably neither the
VMM nor the virtual machine directly accesses 1/0 devices.
Rather, the VMM uses an RPC to call the driver 390 in the
HOS or tbe emulator 300 in tbe user-level proces.s to initiate

lbe use of the total switch bas significant consequences
for the system. First, the host operating system (HOS) 340

35
1/0 requests.

Additionally, the VMM preferably redirects all I/0 inter­
rupts to the HOS. The VMM then calls the driver 390 in
order to emulate the interrnpl in the HOS context. The
preferred interrupt-handling mechanism is described in

40 greater detail below in connection with Lhe discussion of
FIG. 6. On ti mer interrupts, the driver 390 not only emulates
the interrupt, but it also returns to t:he execution of the
user-level process. This return path allows the scheduler of
the HOS to schedule another proces.5. As a result , tbe virtual

45 macbine uses a fair share of Lbe processor according to the
priority of the user-level device emulator 300.

As yet another example of the preferred VMM-J-IOS
cooperation, the VMM and the virtual machine access only
the physical memory pages that have been allocated and

so locked down io memory by eitber the device emula tor 300
or the driver 390. The VMM can the• allocate a memory
page by calling back ioto tbe HOS context. la th is example,
the VMM defers to the HOS the managemeot of the physical
memory resources. As an example of their cooperation, tbe

55 VMM may release back to the HOS certain of the memory
resources that are currently being used by the virtual
machine 320 or the VMM.

is tota lly unaware of tbe existence of the VMM--only the
driver 390, wbicb implements lhe HOS side of the total
switch, is aware. In other words, although the HOS and
VMM are co-resident, both at the system level, their
contexts, using this invention, can be completely separate,
i•clependeat, aad protected from each other. Consequently, 60

no modifications arc needed 10 the HOS, not even at its
lowest Hardware Abstraction Layer (HAL). Here, ·'context"
refers to the state that is set and restored during the total
switch, for example, the s tate of the address space, the
general-purpose registers, floating-poin ter registers, privi- 65

leged registers, interrupt vectors and hardware exception
vectors. In FIG. 3, this separation between tbe VMM and

Structure of the VMM

In general, the invention does not require the VMM 360
to be of any particular type. Indeed, this Ls one of tbc
advantages of the invention. As long as the VMM incorpo­
rates the ability to access the user-level emulator 300 via the
system-level driver 390, and lo handle interrupts as
described below, then any known VMM design may be used
with in the invention. Nonetheless, by way of example, FIG.
5 illustrates tbe bigb-level orgaoizatioa of a VMM in order

Netflix, Inc. - Ex. 1012, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
13

to make clearer bow such a VMM works. As FIG. 5
illustrates, in addition Lo the components shown in FIG. 3,
tbe VMM 360 includes an execution engine 500 and a set of
emulation modules 510.

14
In general, there is no way for the system to transfer

coatrol directly from the VMM to the HOS, since they
operate in different contexts, with disjoint address spaces.
Recall that a "coatext" includes lbe state of all virtual

l11crc are two main known types of execution engines in
a VMM: binary translation and direct execution. Tbe con­
cepts ''binary translation" and ''direct execution" are known
ia the field of computer system, as are techniques to design
and operate the corresponding execution engines. Both
engines rely on the same emulation modules 510, which
emulate the various components of the virtual mach'ine 320
(FIG. 3). The execution engine handles internally the com­
ponents of the processor architecture that arc not affected by
tbe virrualization. These include, for example, all arithmetic
and logical operations issued by the virtual machine.

5 address space, as well as the set of registers (including
privilege registers), with all hardware exception and entry
points. Nonetbeless, tbere roust be some mechanism that
allows the system to operate in the VMM context when
needed, wbile still allowing it to revert to the BOS context,

10 for example, to allow a differeat VMM to be active.

The resett ing of tbe IDTR 400 as part of the total switch
is required since the HOS and the VM M are co-resident but
operate in disjoint address spaces-an interrupt vector entry
point specified in one context would be meaningless in the

Any coove• 1ional execution engine design may be imple­
mented in the invention. For example, prior systems such as
VM/370, DISCO, and Hypervisor are based exclusively on
direct-execution tccboiqucs, aad prior systems sucb as
DAISY are based exclusively on binary translat ion tech­
niques. This invention is iadcpeadcot of tbe choice of the
execution engine.

15 other context. The changing of tbe IDTR during the total
switch has al least two advantages: First, the HOS
(specifically, its in terrupt bancllers) does not need to be
modified to accommodate the VM M------exceptions that occur
while the VMM is executing will be processed directly by

20 VMM-specific handlers. Second, this separation also leads
to a substantial performance advantage, as the VMM con­
sists of customized, low-overhead handlers without any
operating system overhead. Tue emulation modules 510 are selected using known

design methods to be specific to the virtualized architecture.
Examples of some common modules are illustrated in FIG. 25

5. For example, a privileged instruction emulation module
512 emulates the privileged instruct-ions issued by the virtual
machine 320 (FIG. 3) in a safe manner, that is, so that the
effects of tbc emulation remain constrained to the virtual
machine. This caa also be ensured using known design 30

methods.
As is mentioned above, the VMM 3 60 has its own set of

interrupt vectors 404, which are separate from but parallel

In order to realize these advantages, the VMM and VM
according to the inveation share the same address space, and
the IDT is stored as a part of the VM M's portion of the
address space. To uaderstaad how the invention accom­
plishes this, aote that device drivers-such as the inven­
tion's ''Trojan Horse" driver 390-even in most protected
systems operate at the same privilege level as tbc HOS itself
and can set the lDTR and LDT. According to Lhe inveatioo,

tbe interrupt vectors 402 of tbe host operating system.
According to tbc invention, some exceptions are bandied
internally by the VMM, wbile others are forwarded to the
virtual operating system (VOS 370-sec FIG. 3) running in

therefore, the IDT 404 for the virtual machine monitor 360
(that is, for eacb VMM) is loaded by tbe driver 390 into the
VMM's address space, with entry points into the VMM

35 itself.

the virtual machine. The forwarding is implemented ia any
known manner by aa exception emulation module 514, 40
which emulates the trap architecture of the virtual machine.
For example, wbea the virtual rnacbine takes a page fault
trap, the VMM sometimes bandies the trap internally, that is,
without modifying aay of tbe virtual machine's state;
sometimes, however, the VMM emulates in software lbe

45
effect of tbe hardware trap in the virtual machine.

The applications 330 (FIG. 3) running on the virtual
machine 320 will also "expect" to be able to cause other
instruction calls to the type o[architecture they are designed
to run on. Consequently, the VMM 360 will typically 50
include modules to emulate these common features of a
computer system. lo the illustrated example, emu latioa
modules arc shown for a memory management uait 516,
memory segment descriptor tables 518, and 1/0 devices 520.

Emulation of elev-ices is preferably divided into two ss
components. Device emulation that does 001 require inter­
action with the physical devices of the system may remain
as part of the VMM, as a VMM device emulation module
522, wbich may be designed io any known maoncr. Device
emulations that do require sucb interaction arc hanclled as 60

described above by the user-level device emulator 300.
As is mentioned above, tbe HOS 340 is allowed, accord­

ing to tbe inveotioo, to manage resources sucb as the
memory and devices, and to retain most of its normal
Cu.nclions and privileges, su.cb as CPU scheduling. This is so 65

even tbough the HOS and the VMM are both at the system
level.

For example, on an Ln tel x86, if the memory mappings
between tbe HOS and a VMM were to be completely
disjoint, that is, if they had completely distinct contexts, then
there would be no way for the proccs.5or to get back on the
instruct-ion path in the other context once it got out of it. To
overcome tbis, tbc invention provides for a cross page in the
memory, which is a page ia memory that is identical,
beginning at tbe same linear address, in botb (or, for multiple
VMMs, all) coatcxts. Tbe cros.s pa.ge cootaios known
instruction sequences (specific to the given hardware
processor) 1ha1 change the addres.s space and direct the
processor to its next instruction. This cross page only needs
to be mapped temporari ly in tbe VMM context's address
space, just before the total switch 10 ihe IIOS, and just after
the control returns to the VMM. The VMM uses known
techniques to first save the mapping lha I exists at the address
of the cross page before mapping the cross page. Tbe inverse
operation restores the mapping before resuming the execu­
tion of the virtual machine.

Note that the VMM caanoi simply operate in the HOS
context- it is necessary for the VMM Lo get essentially
complete control of the system; otherwise, the HOS might
begin to carry out its own procedures .ind defeat tbc entire
reason for having a VMM. This invention makes this pos­
sible through implcmeatatioa of tbe concept of "co­
residency," whicb means not only that both the HOS aod
VMM are present at tbe system level, but also that each is
able to operate with complete functionality, wi th fo lly main­
tained but completely separate contexts.

Several di[ereoces between the invention and known
systems cao oow be appreciated. For example, most coo-

Netflix, Inc. - Ex. 1012, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
15

vent ional virtual machine monitors and emulators are mono­
lilhic. In other words, mosl known YMM run without a host
operating system (sucb as tbe VMM/370, Hypervisor,
DISCO a•d DA1SY systems), and most macbine emulators
run entirely at user-level (sucb as tbe SimOS system). 5

16
co-resident witb tbe l lOS at the system level, is able to
communicate witb tbe user-level emulalor via the low-level
driver 390, which is downloaded ioto tbe HOS.

The invention also-differs significantly from macbine
emulators for the MacOS, such as the Virtual PC and RealPC
systems. The inventors believe, for example, that these
systems are also monolithic. l n any case, bowever, the
MacOS is an operating system tbat does not offer any JO
protection and does not clearly separate application code
from system code.

Example of YM Device Request witb lbtal Context
Switching

Refer now to FIG. 6, in which the main components of
FIG. 3 are reproduced, but in which instruction and control
paths are illustrated. FIG. 6 also provides an example of tbe
cooperation between tbe co-resident e• tfries (HOS 340 and
YMM 360) with respect to 1/0 devices such as a disk 380.

Referring to FIG. 6, consider as an example the interac-
A5 for tbe Disco system, it re-uses some of tbe known

Silicon Graphics' lRlX device drivers. A modified version
of IRIX initializes the machine and tben loads lbc Disco 15

tion tbat occurs wben tbe virtual machine YM 320 initiates
a disk UO request. Tbe VMM intercepts tbe 1/0 commands
issued by tbe VM's 320 virtual operating system 370
(illustrated as path A). At this point, tbe YM 320 " believes" YMM, which then takes over the machine. Unlike tbe

co-resident system according to the invention, the Disco
YMM manages both the processor and the main memory of
the machine. It returns to the IRIX context only to call the
low-level device-specific drivers. Unlike this invention, the
DISCO system docs not rely on a user-level device emulator,
nor oo the HOS to manage resources Moreover, unlike !bis
invention, the modified version of HUX cannot be used as a
general-purpose operating system, since it does no t control
resources.

ll1e legacy virtual machine monitors from M icrosoft are
in tegrated as pan of Windows95 and Wiodows NT. 171e
implementation of this legacy VMM in general is tightly
integrated with the operating system. In contrast, the imple­
mentation according to the invention is portable, requires
only a simple extension (the driver 390) of tbe operating
system (which can even be uninstalled when unused) and
supports a full VMM.

it is issuing a command to the external 1/0 device; in fact,
however, the request is passed to the YMM 360, in
particular, lo an 1/0 emulation module 520 (FIG. 5) included

20 in the VMM.

25

The VMM 360 then sets a ll parameters required for tbe
1/0 request and initiates tbe request by passing it via the
driver 390 (path B) 10 the user-level device emulator 300
(path C). lbe parameters will be predelermined according lo
convention, and form the arguments of the RPC.

The device emuJator 300 then uses the API 392 offered by
the HOS 340 to emulate the 1/0 request, that is, lo read or
write the disk sectors from the corresponding virtua l disks

30 380. Tbe call lo tbe API is sbowo as path D, wbicb call is
passed in tbe conventional manner (path E) to the appropri­
ate device driver 382 within the HOS 340. To complete tbe
operation, the 1-1OS will in certain cases request an 1/0
operation from the corresponding physical device 380 (path

35 F). lbc Linux DOSEMU system is a legacy 8086 YMM tbat
runs DOS on top of the Linux opera ting system; IL is
implemented partially al user-level, and uses an Imel x86-
specific system call of Linux to set up the processor in the
v-8086 mode. This system calls re turns to the user-level
YMM on every exception that occurs while the processor is 40
ia v-8086 mode. The system-level component of DOSEMU
runs as an integral part of the DOS operating system.

When the physical device 380 completes its operation, for
example, retrieving a requested porlioa of a file, it typically
interrupts the processor by issuing an external interrupt
request (IRQ). Using an IRQ, the much faster central
processing unit (CPU) system does 001 •eed to suspend
other operations while waiting for the s lower 1/0 device Lo
complete its task. Rather, the IRQ acts as a " ready" signal
from the 1/0 device. At this point (unless interrupts are
present ly masked), the hardware processor dispatches to tbc

In sum, unlike existing architectures, tbis invcntioa, in its
preferred embodiment, is built around a three-component
system (user-level device emulator 300, driver 3 90, and
co-resident virtual machine moni tor 360) that runs even on
a processor with a protected host operat ing system 310.
Examples of such protected operating systems include
UNlX and Microsoft NT. These operating systems all
clearly separate user-level applications from the operating
system by running appl ica tions in user mode. Furthermore,
tbe invention includes the total switch, wbich saves and
restores all tbe processor's state data, including the privi­
leged registers, disjoint address spaces, and the interrupt
dispatch table. T be use of the total switch is the primary
feature of the invention that enables tbe novel concept of
co-residence between a host operating system and a YMM.

Note that tbe YMM and tbe device emulator may be
coded and implemented using known techniques. A5 is
discussed above, emulators and YMMs are known. Other
than as described below, this invention does not rea late to
tbe design of tbe YMM and device emulator as sucb, since
tbese will vary according to tbe machine in wbicb the
invent ion is to be incorporated; indeed, according to the
invent ion, differen t YMMs may be co-resident in the same
computer. Rather, one of the principal points of novelty of
tbe invention is tbe maoner in wbicb tbe YMM, wbicb is

45 interrupt vector specified by the IDT. If tbe processor is
currently executing in tbe 1-IOS tota l context, tbcn tbe
processor dispatches to the LDT 402 olf the HOS 340 (path
G). TL then processes tbe interrupt in the conventional
maaner, accessing the IDT 402, Lo get the corresponding

so entry point in the handler (path H), wbicb then pas.5es
conventional signals such as acknowledgement and transfer
initiation sig•als to tbe device driver 382 (patb J). The
device driver 382 tben begins transfer of the requested data
to the device emulator 300 (pa th K), whicb in tum passes tbe

55 data via the driver 390 (path L) to the VMM 360 (path M).
The YMM then transfers the requested data to tbe YM 320
(path N) as if it were the 1/0 device itself. The data is thus
passed back along the reverse path and is made available to
tbe originally calling application, wbich will never " know"

60 that the actual memory access took place in a different
cootext.

If the processor is currently executiog in the VMM total
context, tben the YMM interrupt band1er 395 intercepts tbe
lRQ (path G) and performs an RPC to the driver 390, which

65 then emulates (by executing a• appropriate conventional
instruction sequence) the external interrupt in the HOS (path
P). Effectively, tbe HOS 340 handles the interruption as

Netflix, Inc. - Ex. 1012, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
17 18

and " locked down" in memory with tbe guarantee that the
HOS will not attempt to reclaim them to use them for
another purpose.

In the example of the processor, the YMM must bound the

tbougb the processor were previously executing in the
downloadable driver 390 wben ii in fact occurred while
executing in lbe YMM total coatex1-as is discussed above,
tbe driver 390 sets the interrupt vectors to those of the VMM
context. 5 time that it executes in its total cootext by an amount

corresponding to the scheduling granularity. For example,
by performing an RPC to the user-level device emulator 300
with some knowo bounded rate, the VMM volu.atarily
releases the processor, allowing the I IOS to schedule other

Recall that, upon sensing the IRQ signal (via a predeter­
mined pin) from the device 380, lhe hardware processor
accesses the interru pl descriptor table register IDTR 400 10
get the address of the IDT to be used for handling the
in terrupt. The IDTR can be set by routines at system level
such as the YMM (via the driver 390) or by the HOS itself.
According to the invention, interrupts that occur when
running in the context of the VMM are handled by interrupt
handlers in tbe VMM. Similarly, all interrupts that occur
while executing in the HOS context are handled by existing 15

interrupt handlers in the I !OS. The operation of the total
context switch in this invention is tbus symmetrical.

As part of the total switch, 1be IDTR is changed to point
to the IDT of the current sub-system {here: HOS or VMM).
The total switch routine uses known techniques lo ensure
that no interrupts occur during the switch.

This example is another illustration of how the VMM
according lo the invention is able to remain completely
"invisible" to the HOS by " biding'· behind tbe driver 390. lo
effect, by emulating the interruption wbeo the system is in
the VMM context, the IIOS handles the 1/0 request as
normal, but the system is prevented from reentering the HOS
context until the driver 390 reestablishes it through resetting
the IDT to that of the HOS context. la other words, in the
VMM context, interrupts are handled according to the IDT
404 in the VMM (path G), although the hardware will
continue to act as if the interrupt had beea bandied via the
IDT 402 in the HOS (path G).

lbc invention is 110! restricted to use in architectures in
which a register such as the IDTR 400 is incorporated into

JO applications running on the HOS, or other VMMs. ' lliis
voluntary release of lbe processor can be implementing by
performing an RPC on every external timer interrupt. Since
the HOS programs the timer interrupts, it dictates their
frequency.

In tbe preferred embodiment of the invention discussed
below, the driver 390 acts as a simple "gate" to pass calls
from the VMM 360 10 the device emuJator 300, as well as
implementing the context switch. The driver 390 can there­
fore be made very simple. In one working implementation of

20 the invention, for example, the device emulator 300 com­
prised around 30,000 lines of programming code and the
VMM 360 needed about 55,000 lines of code. The driver,
however, required less than 2,000 lines of code. This con­
figuration leads • 01 only to simplicity, but it also improves

25 portability and generality of the system-according to the
invemion. It is not, however, the onl y possible embodiment
of the invention.

In this working implementation, the VMM is capable of

30
running all major operating systems (Microsoft DOS, Win­
dows 3.1, Windows 95, Windows 98, Windows NT, Linux,
and Unix) for the Intel x86 architecture in a virtual machine.
The implementation also contains versions of the device
emulator and the driver for two distinct host operatiag

35
systems: Windows NT aod Lioux. As an illustrative example
of the indepeadence of the HOS aod the VMM, tbe identical
VMM is capable of co-residency with either a Windows NT
or a Linux HOS.

tbe hardware processor, or in which sucb a register can be
accessed and changed by software. For example, in certain
architectures, the address of tbe CDT is bard-wired in tbe
processor or is otherwise assumed to be constant. In these
cases the predetermined address is the equivalent of the
IDTR described above, but is inaccessible to the driver or
the VMM. In such architectures, the invention implements
interrupt forwarding nol by selectively setting and changing
the lDTR, but rather by storing the contems of the previ- 45
ously "active" IDT aod thea writing tbe currently "active"
IDT al the predetermined address.

FIG. 7 illustrates a second embodiment of the i•vention,

40 and is lo be compared wi th the first embodiment shown in
FIG. 3. Features common to bolh embodiments have the
same reference •umbers in the two figures. In this secood
embodiment, the VMM and HOS still co-exist at the system
level, with dilfereot contex1s, but instead of a relative large
emulator 300 and a minimal driver 390, the second embodi­
ment includes a very small sheU application 700 at the user
level, and incorporates the device emulator 702 in the HOS
340 itself. lo essence, the emulator 702 is a combination of
the driver 390 and the emulator 300; the shell 700 does
nothing more than initiate calls, from its user level, to tbe
HOS 340.

Note that because the I-IOS 340 actually manages tbe
resource (ia this case, the device 380), it can do so at its full
normal speed, in its own cootext, and that both the VMM so
and the IIOS can opera le at the faster system level. The HOS
views the emulator 300 as just another device with a driver,
albeit one tha t uses up a very large amount of time (since lhe
VMM calls pass through it). Indeed, the emulator 300 uses
so much time that the HOS itself is effectively turned into 55

the slave of the emulator (and thus VMM) as long as the
VMM is active, that is, as long as the system is operating in
the VMM context.

To the extent that the HOS allows calls that cross the
driver API 394, then the system-level emulator 702 may be
designed to take advantage of this possibility to speed up the
system by reducing the number of necessary crossings o(the
applica tion API 392. This potential increase in speed,
however, has its costs. First, the code that must be down­
loaded into the HOS becomes much larger and more com­
plex. Second, the system is much less portable and general, The co-residence of a HOS and a VMM does not require

any modification of the HOS, but it does require some
cooperation with 1be VMM. Specifically, the HOS must
retain the ability to manage the resources of the system,
including the scheduling of the processor(s), aod the allo­
cation of the memory. In tbe example of memory, the VMM
must access o nly pages of memory that the HOS has
allocated 10 either its corresponding device emulator 300
processor or the driver 3 90. Tbesc pages must be allocated

60 since it is much more closely tied to tbe part icular HOS.
In the preferred emboclimeots of the invention, the driver

390 is downloaded into the HOS 340. 1nis provides for the
greatest possible flexibility, portability and generality, but it
is not s trictly necessary according to the invention. Instead,

65 the driver 390 may be pre-loaded into or even made an
integral part of the IIOS. This might be desirable, for
example, if the producers of the HOS expect their customers

Netflix, Inc. - Ex. 1012, Page 000017
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
19

to want to use th is invention to run one or more VMMs al
system level, co-resident with tbe HOS.

Refer once again to FIG. 6. Using the total swi tch
according to the invention, the IDTR 400 can be set by the
system-Jcvel driver 3 90 to point to tbe IDT of any VMM, or 5

of the HOS. Note, however, that because of the complete
contextual separation o[the HOS and the VMM, the VMM
can be replaced by any other system-level component that is
not a VMM as long as it maintains the same cooperation
with the HOS that the VMM has. The total switch according JO
to the invention can be used to implement interrupt forward­
ing even to sub-systems other than virtual machine moni­
tors. lo other words, path G could lead to any sub-system or
system-level component, not just to a VMM. For example,
tbe invention could be used to run specialized or application- 15

specific operating systems at system level, or to run appli­
cations tha t need to configure the hardware processor in
particular ways.

We claim:
1. A virtualization system for a computer, in which 20

tbc computer includes a bost processor, wbicb bas a
processor s tate, physical system devices, and a host
operating system (HOS), and

the computer is operationally divided into a system level
and a user level, 25

the HOS is at the system level,

the host processor accepting and carrying out a pre­
determined set of privileged instruction calls only from
sub-systems at the system level, tbe virtualization sys- 30
tern comprising:
at least one virtual machine monitor (VMM) also at the

system level,
both the VMM and the HOS thus being able to inde­

pendently issue both privileged and non-privileged 35
instructions for execu lion by the processor and to
independently modify tbe processor state.

2. A virtualization system as defined in claim l , further
comprising:

a driver that is resident in the host operating system, in 40

which:

the host operating system bas a host operating system
(HOS) context;

each virtual macbine monitor bas a corresponding virtual
machine monitor (VMM) context; 45

the driver forms a first context-switching means for
saving the HOS context and for switching from the
HOS context to the VMM context;

the virtual machine monitor includes a second context-
50

switching meaos for saving the VMM context and for
switching from the VMM context to the HOS context;
and

the driver further forms a means for accepting commands
from the VMM and for processing the accepted com- 55
mands in the HOS context.

3 . A virtualization system as defined io claim 2, further
comprising:

a memory haviog a predetermined physical address space
and a memory management unit (M MU) that converts 60

virtual addresses into physical addresses of the memo­
ry's physical address space;

in wbicb:
the host operating system has a first address space, in

which HOS context parameters are stored; 65

the virtual machine-monitor has a second address
space, in wbicb VMM context parameters are stored;

20
the first and second address spaces are disjoint , with the

HOS and VMM context parameters representing
different interrupt and cxccptio11 entry points for tbc
host operating system and the v irtual machine
monitor, respectively; and

the first context-switching means is further provided for
switching between the HOS and VMM contexts by
selectively setting internal registers of the host pro­
cessor 10 correspond to the HOS and VMM context
parameters, respectively.

4. A virtua lization system as defined in claim 3, further
comprising:

a device emulator at user level and operatively connected
to the host operating system, in which:

the device emulator forms user-level processing means:
for accepting commands from tbe VMM via tbe driver

and for; processing these commands; and
for is.suing host operating system calls and for thereby

accessing the physical system devices via the host
operating system.

5. A virlualization system as defined in claim 4, further
comprising:

at least one virtual machine at user Bevel that includes at
least one associa ted application aad a virtual operating
system, and that is operatively connected to the v irtual
machine monitor, an entire programmable virtual
address space of the computer thereby being available
to both the vi rtual machine and the virtual machine
monitor.

6. A virtualization system as defined in claim 2, in which
the driver is loaded in to the host operating system after
installation of the HOS in the computer.

7. A virtua lization system as defined in claim 1, further
comprising:

a driver that is resident in tbe host operating system;
an emulator at user level and operatively connected as an

application to the host operating system;
in which:

the driver fo rms a system-level means for passing:
first instruction calls Crom the virtual machine moni­

tor d irectly to the host operating system, the
system devices, aod the processor;

second instruction calls from the virtual machine
monitor, via tbe emulator, to tbe host operating
system, the host operating system itself thereby
handling execution of the sec,ond instruction calls;
and

data to the virtual machine monitor in response to the
ftrst and second instruction cal.ls received botb via
the emulator and directly from the system devices,
the proces.sor and the host operating system.

8. A virtualization system as defined in claim 1, in which:
tbc host operating system bas a host operating system

(HOS) context;
each virtual machine monitor has a corresponding virtual

machine monitor (VMM) context;
further comprising:
driver/emulator means tbat Ls resident in the bost operat­

ing system for saving tbe HOS context and for switch­
ing from the HOS context to the VMM context;

a user-level shell application for initiating the instruction
calls in tbe HOS;

the vi rtual machine monitor including VMM-based
context-switching means for saving tbe VMM context
and for switching from tbe VMM context to the IIOS
context;

Netflix, Inc. - Ex. 1012, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
21

the driver/emulator means being provided for accepting
commands from the VMM and for processing the
accepted commands in the HOS cootext.

9. A virtualization system for a computer, in which
tbe computer includes a host processor, wbicb bas a s

processor state, physical system devices, aod a bost
operating system (HOS), and

the computer is operationally divided into a system level
and a user level,

the HOS is at the system level,
the host processor accepting aod carryi.ag out a pre­

determined set of privileged instruction calls only from
sub-systems at tbe system level, tbe virtualizatioo sys­
tem comprising:

10

at least one virtual machine monitor (VMM) also at tbe 15

system level,
both the VMM and the llOS thus being able to inde­

pendently issue both privileged and non-privileged
instructions for execution by the processor and to
independently modify the processor state;

a driver that is loaded into and resident in the host
operating system;

20

22
for accepting commands from the VMM via the

driver and for processing these commands; and
for issuing host operating system calls aod for

thereby accessing the physical system devices
via tbe bost operating system.

10. A method for virtualizing a computer, where
tbe compuler includes a host processor, which has a

processor state, physical system devices, and a host
operat ing system (HOS), and

tbe computer is operationally divided into a system level
and a user .level,

the HOS is at the system level,
the host processor accepting and carrying out a pre­

delermined set of privileged instruction calls only from
sub-systems at the system level, tbe virtualizalion
method comprising the following steps:
installing at least one virtual machine monitor (VMM)

at the system level,
bolh the VMM and the HOS thus being able to inde­

pendently issue both privileged and non-privileged
instructions for execution by the processor and to
independently modify tbe processor state. a memory having a predetermined physical address

space aod a memory management unit (MMU) that
converts virtual addresses into physical addres.ses of
the memory's physical address space;

11. A virtualization method as definccl in claim 10, further

25
comprising tbe following steps:

a device emulator at user level and operatively con­
nected to the host operating system;

at least one virtual machine at user level that includes
al least one associated application and a virtual 30

operating system, and that is operalively connected
to the virtual machine monitor, an entire program­
mable virtual address space of the computer thereby
being available to both the virtual machine and the
virtual machine monitor;

in whjcb:
the host operating system has a host operating sys­

tem (HOS) context;
each virtual machine monitor has a corresponding

virtual machine monitor (VMM) context;
the driver forms a first context-switching means for

saving the 110S context and for switching from
the HOS conlcxt to 1bc VMM context;

the virtual machine monitor includes a second

35

40

conlext-switehing means for saving the VMM 45

context and for switching from the VMM context
to tbe HOS context;

the driver further forms a means for accepting com­
mands from the VMM and for processing the
accepted commands in the 1-10S context;

tbe host operating system bas a first address space, in
which HOS context parameters are stored;

t be virtual machine monitor bas a second address
space, in wbjcb VMM cootext parameters are
stored;

tbe first and second address spaces are disjoint, with
the HOS and VMM context parameters represent­
ing different interrupt and exception eotry points
for Lbe host operaling system and the virtual
machine monitor, respectively;

tbe first context-switching means is furlber provided
for switching between tbe HOS and VMM con­
texts by selectively setting internal regi<;ters of the
host processor to correspond to tbe HOS and
VMM context parameters, respectively; and

the device emulator forms user-level processing
means:

50

55

60

65

installing a driver to be resident in tbe host operating
system;

saving in the driver a host operating system (HOS)
context;

saving in the virtual machine moni.tor a corresponding
virtual machine monitor (VMM) context;

switching from Lbe HOS context to the VMM context in
the driver;

switching from tbe VMM context 10 the HOS context in
the virtual machine monitor; and

in the driver, processing in the I-10S context commands
issued by the virtual machine monitor.

12. A virtualiza tion method as defined in claim ll, further
comprising tbe following steps:

assigning to a memory a predetermined physical address
space;

converting virtual addresses into physical addresses of lbe
memory's physical address space in a memory man­
agement uni t (MMU);

storing HOS context parameters in a first virtual address
space in the host operating system and storing VMM
context parameters tbe virlual machine monitor in a
second virtual address space, which is disjoint from lhe
first virtual address space, tbe HOS and VMM context
parameters representing different interrupt aod excep­
tion entry points for the host operating system and the
virtual machine monitor, respectively; and

switching between the HOS and VMM contexts by selec­
tively sell ing internal registers of tbe host processor to
correspond to tbe I-IOS and VMM context parameters,
respective! y.

13. A virtualiza tion method as defined in c laim 12, further
comprising the following steps:

installing a device emulator at user level to be operatively
connected to the hosl opcraliog system; and

in the device emulator,
accepting commaods from the VMM via tbe driver aod

processing these commands; and
is.5uing host operat ing system calls and thereby access­

ing the physical system devices via the host operat­
ing system.

Netflix, Inc. - Ex. 1012, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,496,847 Bl
23

14. A virtualization system as defined in claim 13, further
comprising the following steps:

installing at least one virtual machine at user level that
includes at least one associated application and a virtual
operat ing system, aod that is operatively coonectccl to 5

the virtual machine monitor, ao entire programmable
virtual address space of the computer thereby being
available to both the virtual macrune and the virtual
machine monitor.

15. A virtualization method as defined in claim 13, in JO
which tbc step of processing commands in the device
emu.lator via the driver comprises processing the commands
as remote procedure cal Is.

16. A virtualizatioo method as clefioed in claim 11, in
whicb tbe step of processing commands in tbe driver in l.be 15

BOS context comprises processing the commands as remote
procedure calls.

17. A virtualization method as clefinecl in claim 10, further
comprising the following steps:

loading a system-level driver into the host operating 20

system;

installing ao emulator at user level to be operatively
connected as an application to the host operating sys-
tern;

in the driver, passing:
first instruction calls from the virtual machine monitor

directly lo the host operating system, the system
devices, and tbc processor;

25

secood instruction calls from the v irtual macbine 30
monitor, via tbe emulator, lo the host operating
system;

data to the virtual machine monitor in response to the
first and second instruction calls received both via
the emulator and directly from the system devices, 35
tile processor and the host operating system; and

executing the second instruction calls directly in the
host operating system.

18. In a computer system that bas a hardware processor
including an interrupt table pointer register and an operating 40
system (OS), which includes a first interrupt vecto r table and
a first set of stale parameters, and a sub-system, w hich
includes a second interrupt table vector, a second set of state
parameters, and is contextually separated from the OS, a
method for enabling interrupt handling in the sub-system 45
comprising tbe following steps:

installing a system-level driver into l.be operating system;

in an OS context, accessing the interrupt table pointer
regis ter from the driver and setting the in1errupl table
pointer register to point to the first interrupl 1able 50

vector, and s toring the second set of state parameters,
whereby interrupts arc rou1ed for handling lo the OS;
and

in a sub-system context, accessing the interrupt table
pointer register from the driver and setting 1he interrupt 55

table pointer register to point to the second interrupt
tab le vector, and storing the first set of slate parameters,
whereby the in terrupts are routed for handling to lhe
sub-system.

19. A method as in claim 18, in which the interrupts 60

comprise internal and external interrupts, the external inter­
rupts being generated by external devices, ihe method fur­
l.her comprising tbe following step:

24
in the sub-system context, handl ing external interrupts by

restoring the OS context by restoring the first state
parameters, and forwarding the external interrupts for
processing by the OS.

20. A virtualization system for a computer, in which

tbe computer includes a host processor, which bas a
processor state, physical system devices, and a host
operating system (HOS); and

lhe computer is operationally d ivided into a system level
and a user level;

1he HOS is at the system level and has a host operating
system (HOS) context;

tbe host processor accepting and carrying out a pre­
determinecl set of privileged instruction calls only from
sub-systems a t the system level;

the virtualization system comprising:
at least one virtual machine monitor (VMM) that bas a

VMM context and is also at the system level, botb
the VMM and tbc HOS being able to iodepeodeotly
issue both privilegecl a•d non-p rivileged instructions
for execution by the processor and thus to iodepcn­
dently modify tbe processor state;

a first context-swi tching means for saving the HOS
context and for switchlng from tile HOS context to
the VM M context;

a second context-switching means, included in the
VMM, for saving the YMM comext and for switch­
ing from the YMM coatext lo the HOS context; and

means for accepting commands from l.be YMM and for
processing the accepted commands in the HOS con­
text.

21. A vir1ualization system for a computer, io which

the computer includes a host processor, which has a
processor state, physical system devices, and a host
operating system (HOS); and

the computer is operationally divided into a system level
and a user level;

1he HOS is at the system level and bas a host operatiog
system (HOS) context;

lhc bost processor acceptiog and carrying out a pre­
determined set of privileged instruction calls o•ly from
sub-systems at the system level;

the virtualization system comprising:
at least one virtual machine monitor (VMM) 1hat has a

YMM context and is also at the syscem level, both
the YMM and the HOS being able to indcpende• tly
is.sue both privilegecl and non-privileged instructions
for execution by the processor and thus to iodcpcn­
dently modify the processor state;

a driver that is resident in the host operating system, the
driver forming a first context-swi1ching means for
saving the HOS context, for switching from the HOS
context to the VMM context, and for accepting
commands from 1he VMM and for processing the
acccptecl commands in the l lOS context; and

a second context-switching means, included within the
YMM, for saving the VMM co1Jtcxt and for switch­
ing from the YMM context to 'the HOS context.

* * * * *

Netflix, Inc. - Ex. 1012, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

