J040019672A1

P

AR RN O
a9 United States

2 Patent Application Publication (i) Pub. No.: US 2004/0019672 Al
Das et al. (43) Pub. Date: Jan. 29, 2004

(549) METHOD AND SYSTEM FOR MANAGING 52) SR commumemmnraesmng 709/223; 709/202
COMPUTER SYSTEMS

(76) Inventors: Saumitra Das, Santa Clara, CA (US); (57) ABSTRACT

Stepan Sokolov, Fremont, CA (US);

Bill *Yuan-Chi” Chiu, El Monte, CA A management system for a computer system is disclosed.

(US) The computer system operates or includes various products
(e.g., software products) that can be managed in a manage-
ment system or collectively by a group of management
systems. Typically, the management system operaies on a
computer separate from the computer system being man-
aged. The management system can make use of a knowledge
base of causing symptoms for previously observed problems

Correspondence Address:

BEYER WEAVER & THOMAS LLP
P.O. BOX 778

BERKELEY, CA 94704-0778 (US)

(FLy apphiNe:: Hyiae at other sites or computer systems. In other words, the
(22) Filed: Apr. 10, 2003 knowledge base can built from and shared by different users
across different products 1o leverage knowledge that is

Related U.S. Application Data otherwise disparate. The knowledge base typically grows

over lime. The management system can use its abilily to

(60) Provisional application No. 60/371,659, filed on Apr. request information from the computer system being man-
10, 2002. Provisional application No. 60/431,551, aged together with the knowledge base to infer a problem

filed on Dec. 5, 2002. root cause in the computer system being managed. The
computer system being managed can also request the man-

Publication Classification agement system to process its knowledge base for possible

problem cause analysis. The management system can also

(5L LG s GO6F 15/173; GO6F 15/16 continually identify persisting problem causing symptoms.

{olo]

MANAGEMEIT
MANPGER
ERANAELOOLK
108 106

MANASED

10Z~-n NODE lod-n

Netflix, Inc. - Ex. 1013, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 1 of 36 US 2004/0019672 Al

MARNAGEMEIT

108

MANAGER

Netflix, Inc. - Ex. 1013, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 A1

Jan. 29,2004 Sheet 2 of 36

Patent Application Publication

g5

DWFUIINT
g TRMINVUS
VISV W

e =2

Y

&.M.NJ

—

ol LYK LGN

g2 =
b=talglaloatl

S\ =iy [

=70qow

¥

|

FI0QAW (e
20939

E Dia

=)
Q10N

NOILY

1cd

Qrz~d

Lo

Ve

S

QYNNI I LN

OOV "

2asSNaud
3=Q3700N

23O
39431009N3)

e

$

~& J0Q0W
o]

W21S hS

Netflix, Inc. - Ex. 1013, Page 000003

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication

Jan. 29,2004 Sheet 3 of 36 US 2004/0019672 A1
[
KNOWLEBGE IMPUT GUT 300
Lz
REPORT OUTPUT GUT
L 304
I' ADIA VD ISTRATOR GOT
“ 30 -
GUI
FLG. 2
[knowlepse maoAceER | - 4oo
KoL e Das
S CEDGE cobe
RULES / DEES, RaRE > To
- cobe KM
GENERATOR.
o2 409

4.
Eucon&':ﬂ- mf’aﬂ_TE-‘lZ./
4 M:.

g 4

Netflix, Inc. - Ex. 1013, Page 000004

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 4 of 36 US 2004/0019672 Al

ElG. SA

=
n

AcTwor)
RESOURCE S

Netflix, Inc. - Ex. 1013, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 5 of 36 US 2004/0019672 Al

e
|
¥
!
1
|

=i g
B ox N o))
T ? %’
B£. R
> .

i
il
te

A

|
B2TL
Jum
)
a o

o4

e Tum
lways)
Trace

TepHeagp O {;\)q.d'g ’

st
al?

F(ng

C
B W~
t B £
(\l
i

Netflix, Inc. - Ex. 1013, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 6 of 36 US 2004/0019672 Al

oRA Oool‘a)

]
L]

-

3

£

& Vi

¢ 9

0
’ =
Q)
T & 4
X i £
L D = 3
s s = L .
s 0 :O) A “a d
= S :;’:L 5 N
- L o
e 3 0 g ~

= iy

S 7 £ % 2. 3 Y &
£ L & = 3 Ll L
s 3 x 5 =
S+ o v 9
5 SN 1

O
MBI NG

% &
0

T&L
50
g6
]4

554 4 Ewall

P
5

Netflix, Inc. - Ex. 1013, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

o —_— _—
Patent Application Publication Jan, 29,2004 Sheet 7 of 36 US 2004/0019672 A1

ole)
i

MGMT.
INTEZEACE

Lo

SCHEDOLETR ‘

COMNTROULET.

INEERGLE
NGIVE
LG &

RoLE

EVALWWATO

TS
km

Netflix, Inc. - Ex. 1013, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29,2004 Sheet 8 of 36 US 2004/0019672 A1

Patent Application Publication

— — -

SUIIJVaAY
2lUSM3myy4
ACBRWMISTVOI Y

QUQNVIS

— —

pr
QL

MALIVAY
dWNS

—

|

| 20L

UIDY AN
21~ OV D181 16N
SOMNVWOO T

]

L YISO
2S1PIAINZ

d

A0
SIUYOSTY
I/ cvwmoq
[V NVAY

AV
8oL~ AOGTYS
VYW

—

@FJ

—

3 0aon
3vadn

3 ToN
QAINAYN

L.

b4,
s

S lgslell
RIS i oh ey
3aoy
QIIDYOIT W

— — —

_
_

- Ex. 1013, Page 000009

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Netflix, Inc.

Patent Application Publication Jan. 29, 2004 Sheet 9 of 36 US 2004/0019672 A1

f]

i 36
PRESEATATIAD ra
MANAG-ETL

Boz

[orwist
CONVERTER o .

REPORT
VI EW
T PONT WAODULE

FlG. B

Netflix, Inc. - Ex. 1013, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 10 of 36 US 2004/0019672 Al

FiG. 9A

fi6. 1R

Netflix, Inc. - Ex. 1013, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 11 of 36 US 2004/0019672 Al

S

loos

FIG. |LO

Netflix, Inc. - Ex. 1013, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 12 of 36 US 2004/0019672 Al

(‘\n& njri

2 2
¢
2 4\ \ 24 i
< 5 |
8 &

’)/ lpgo

A
W 2
.‘\‘§ N
3 éub Q¥
S Q—EE
33
| VA A8
gf{ -—13 e
a %
1
22
3) 4
g%
3«?‘ N
ke

bowmtiv 4
FAcr i

Netflix, Inc. - Ex. 1013, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29,2004 Sheet 13 of 36 US 2004/0019672 Al

‘)/ (200

MAOVAGED
PrODOCT
1.

Patent Application Publication

L\ 200-(

rMP«UPGE’b
> PILODUCST

~ 2

+—» AGENT | %

. \202-2

MARLAGED
PRLODUCT

i 1 N

APP, AGENT

T
L (204 / L (| 2&2 -0\

Flas L

Netflix, Inc. - Ex. 1013, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 14 of 36

;ESOO

US 2004/0019672 Al

EOUAMUINCATION [T
MOBULE l

13041

(308 -b
PRoTocol B
commoorenon [T~ SUB-AGELT

MODULE MASTER i e
o PGENT

LizoA-z

PRoTotol A 1208-m
- | COMMOMCATIEN

e A DIRCATLOD
MEBOLE |

\ 206

HG. \5

Netflix, Inc. - Ex. 1013, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Yatp icats - 3
Patent Application Publication Jan, 29,2004 Sheet 15 of 36 US 2004/0019672 A1

})/ (4ocT
1408 1410
P _ i
cnevuLen || FATSTAL
=
[| _——
REQLUEST -
= PROCESSOR. "
i
1 L 402
[Re GLSTY

U a0t

S

RECISTRY | \ 404
DTV STofE

{
P

FlG. |4

Netflix, Inc. - Ex. 1013, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 16 of 36 US 2004/0019672 A1

){ ISEO

STATISTLCAL
A ALY 2 &12

[50B

GET RESCORCE
MO BOLE

NIS'O'Z

SET oReENATION
MEDULE

A~ 5()4"‘

ENEUT
FeVLLV R D\ G
MODULE

- | SO0

Fle. s

Netflix, Inc. - Ex. 1013, Page 000017

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 17 of 36 US 2004/0019672 A1

léo2 LOAD KRNOW(EDGE BASE l

60O

604 DISCOUEVL B7P- PARTY MAVASEWMEST FRAMEWDRKS,

[é,b.é.fi OBTAINY LIST ©OF NODE GROULUPS \

‘—SELEC-T Finst (nisx) uoosm (o8

DBTAIL LISt OoF NODES WITHWY L6l o
THE SELECTED NODE GRDUP

MORE 6Ll
NoD&
GNruPS

Yes\ T
No

A

I
\e,w-"J ceLect EFinst (MexT) Nobe

6l S OBTALN) LLST OF DORAALNS
WITHIN THE SeELeETed ™Nobe

MoLE

NOBES
18 ? Aes

o

d&\j Fle. leA

Netflix, Inc. - Ex. 1013, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 18 of 36 US 2004/0019672 A1

Lset.ee.:r FLsST (NERT) DopA st lr\,{G:ZO

OBTAND UST oF SUPPME%/{Q-LZ

(626 | sELecT EinsT (NEXT) Mobe ‘

s §
ProbCE A (ODSTOMIRED KRKROWLEREE
BASE Forl TNE SELECTEN RODE
(68| BASED ot THE SUPPONTED RELUNLES
FovL THE sSELECTED NODE

(630 seE

NobES
° Yes
Mo

SCREDULE DATA Ac@U(ISIT\OND
(6372 Foar BASE RULES WITHIN
THE CUSTOMLZED KROWLEDGE

BASES
D FlG. (6B

Netflix, Inc. - Ex. 1013, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 19 of 36 US 2004/0019672 A1

(6So
o T

LOAD KLV LEDSE BMSE Fol RESOUNCES,
LRULE PACKS AMD CONHEGUATION INEO, H:Z;l

|

OBtAIR UST oF MobE GRSUPS N [oA

rseuac:r st (ut—m) NODE G-fLDU‘P

eSS

OBTAIN - LIST —OF —NoDES - WITH IN (L60
THE SELECTED NODE GRoUP

Fset-acr EINST CNEJ-‘-T) noDE e (A

tslat'mm—-'t;t&‘r SR AGENT TNPES oh) THE -ABDE - 68

®
DIScoVEL UST OF OGTAIN ST or | (674
BUPPGTED BomAps | = -~ Tl BomARINS
e s __ |
1616 l

FlG. 160

Netflix, Inc. - Ex. 1013, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 20 of 36 US 2004/0019672 A1

-

C‘SEL—ECT FIAST (NEeXT) bowmvﬂaso

OETAW) LIST of SUPPHNTED ReEsooicEs
AND bdBoWAALIL VENRSLON
L

(]2

(0

FlG. (6D

Netflix, Inc. - Ex. 1013, Page 000021
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 21 of 36 US 2004/0019672 Al

PebLoceE A COSToMAL=ERN DoAY, AV | .
RECONLES LIST BASED on FN/AWLABLE o FEAD:
DOMATLS CAUD TREL VELS(o0s) AND 777 1 '
reECoOMeEs IOFO, Foll RULES TOPUT .
usiny GGOI

——

PAODOCE A COSTOWAMRED KAOOWLEDLE Lo
BASE Fol THE SELECTED MNODES BASEDL

ON) SUPRETED -DOWARI S —AD —-RESDVTLLES

CECHEDULE DATA- ACROISITION - -
C Fow. BASE RULES LOGTRLS TE
COUSTOM\ ZRED '\‘-NOUDL.E-bGE 3&5{.

b8

FlLG. (& - . . .

Netflix, Inc. - Ex. 1013, Page 000022
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 22 of 36 US 2004/0019672 A1
(oo
STANLL j

702 TOWTLALLZRE ANY P&~ CONRIGME D
SLB - AGENTS FOL THE MASTER ACENT

DiscovER ANY OHER qUB-AGENTS |
(7064 ForlL THE MASTER AGENDT

(7o TOITALLZE TRE TDISCoOVERED
SUBR. pGENST S ‘

Y

ACTtIVATE STATISTI(cAL ANALY(ZEIZ
Fol €ACH orF TRE SLVB-AGENTS

@

FI1G. TTA

(768

Netflix, Inc. - Ex. 1013, Page 000023
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 23 of 36 US 2004/0019672 A1

178<
START 5

ESTABUSH CoNNRCToN WITH | 1qeq
THE MASTER AGENT

DISCoVER APPLICATION RESOURCES (754

NOTIEY TUE MASTEL AcenT [11%6
O STATUS

AChWVATE STRTISTICAL Aum:n:;en_’kv Vig8

Fle:. 18

Netflix, Inc. - Ex. 1013, Page 000024
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 24 of 36 US 2004/0019672 A1

(860
N\

(802

© X

rASSE'GJI' FACT 1IN INFEREICE BRGAVE (BOG

MAKE LOG E:D'I'ﬂ.\?—\/“’ leocs

Bl0

’ &
RETLIEVE UPDRTE®
EACTS For RULE S

bEPENDENT o THE
ASSETED FACT

ElG, (A
\&\2.
|
_ DiscArRD DOSELESS
= { BACTS '213

©

Netflix, Inc. - Ex. 1013, Page 000025
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 25 of 36 US 2004/0019672 A1

8k
Y
SELECT AL OPPATED
Facr

¥
ACTiOoN

MAKE Loe 8oty -\ ieag
WITH RVLE T0) EOMMUATION

Fle. (818

Netflix, Inc. - Ex. 1013, Page 000026
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 26 of 36 US 2004/0019672 A1

S

l400

(902

1904 | RETRIEVE LOG bm:rpx\

GeEVENATE RePolll FEROAA

1% A ;e remicven oG DRTA

DETELMILE REPASRT DEUVEDT

L METHSD

DELIVERL THE REPOLT OSIVG

1940] TRE DETERMINED REPORT
DELWERY METHOD

D

FlG. \9

Netflix, Inc. - Ex. 1013, Page 000027
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 27 of 36 US 2004/0019672 A1

@uﬂelscape
@1 CEE htp ocalbos: BBUmstaso/Eo/Andex ind g [&s

Rule Managernent: Add New Ruléi:
Step 1 : SET RIULE NAME B

Choose a Rule'Pack
|de|au|l e

Typz i the Pule Name
Iﬁenpﬁula

Type i g Deswaiplur fr e Rule I Iype in and Sutmit both,.a Rule narne and
heck heap if usage is | ‘descnptor, which will be displayed hers.

greacer cthan 6n‘.l

(963 A 041) | Dooumen Dore (. 25ecs)

FIG. 20

Netflix, Inc. - Ex. 1013, Page 000028
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 28 of 36 US 2004/0019672 A1l

: = . : iRy y : Rule f’acif_ ¢ default” |
Step 2 : Gonligure Situgtion(s)H- ~ ° : W

Select Bam % | Rule Name : HeapRule ;
- : ~Hule Descriptor : Check heap ifusane
v : is greater than 60% 2
Nete: For Situation in the Dlonain :
selection, you can'Click to'Add New when this happens ..H
situation’ or ‘Click to Delele Selected :

* Situation'. t :

o] 5 [2r1 Jem_ Heaplsed

Selac: Rebource(s) B - _ Im

jwrn_InstanceCount 1 e s —irel T
jvm_HeapGrowth A
jvm_ThreadCount i Pl il s 2
jvm_ThreadCPUUsnce =} #rz. jum_MadHeapsize

ivm_MexHeapSize . T ||'n5[§nce=“ l:.l

e SR EOIT PARAMETER |

Resource: Description

Then define situation or da this ...

[DELETE SELECTED RESOURCES _

[![Jli.orgs
W' PROCEED:TO NEXT STEP :

T hisck évery [10seconds ¥

e (e 110

FIG. 21

Netflix, Inc. - Ex. 1013, Page 000029
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 29 of 36 US 2004/0019672 A1

. Neticape

step 3 : Conliyure Clm_dilinn:(‘;)ﬂ_'

Salact Domain
'Flte: :J

"-1—Ll Resource(s) B

Resaires: Drzsoription

.is greater than 60%

Describe Condition using
resources

< Cops 'j-:l'r._-.lv‘._a sHeahSiza

Then .de.:ﬁne situation‘or do this ...

Ruls Pack L -default

Rule Name : HeapRule
Rule Descriptor : Check heap if usaqe

When this happens ..H

Coarr irh Heapised

| instance="] -

[EDIT. PARAMETERY)

[instance== =]

[EDIT:PARAMETER

203 conditian

I Condition=_[=]

| EDIT Pa..nnETEc-

.JELE..TEDF ES QURCES |

I check dvery l"IU seconds 7]

FIG. 22

Netflix, Inc. - Ex. 1013, Page 000030

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 30 of 36 US 2004/0019672 Al

hitp./Aocalhost 8080/nstasolv/jsn/index. him!

Rule Managemen
e Rule Pack : default

. Step 3: Cc_mfil;"ll.ire Conditivns(s)8

Salact Domain B i Rule Name : HeapRule % i
= _I:] - | Rule pescriptor: Check heap if usage b
“ilter th | is greater than 60% i -

Select Resourcers) B
SearchExpression 2

| when this happens <_‘.ﬂ i

s Heapliged

[T ors Condiion

| Conditian= i

TR RN L

Then define situation or do this ...

|
il
|

| DELETESELECTEDRESOLRCES [JE

| Options
T check every I ‘I_!_]SECI:IndS ﬂ .

[SuEmiT |

FIG. 23

Netflix, Inc. - Ex. 1013, Page 000031
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 31 of 36 US 2004/0019672 Al

; [@ IT_HIpr.Mnc-a!-nsl.mﬁnst.?solvf.'sp}hdaxh!rnl

nnagéménf!-.ﬁdll-. e

: - : Rule Psck | defatlt
Step 4 : Configure Acticns(s)i : A
salact Cortian KT _l.lule Name ::Heépmlla' 3
|i\-"|1" ',‘i el iy - ! Rule Descriptor: Check heap ifusage
b * “is greater than 60%°
Selact Resourcels) W

: -]V‘_“ ThreadStanEvent “'When this happeas .8
pvm_ThreadEncEvent
jvm_Exception

I 20t iy HespUsed

jvn_TopHeapOhjects ; : | instance=* ¥|.

B EDIT PARAMETER

Fesource Dzsenphan |

I nstance= __}

['EDIT:PARAMETER:

i I_'I?r'.? Condition =
Condition=2r1 >_. x|

B ECIT PARAMETER |

Then define situation or do this ...

- a6t jvm TopHsapdbiects
[.nstam:a:‘ d §

8 ECIT PARAMETER 8

X ! I oz jern_AllocTrace
i
1

| inchprefic= F] -

| EDIT PARAMETER. I .

FIG. 24

Netflix, Inc. - Ex. 1013, Page 000032
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 32 of 36 US 2004/0019672 Al

hitp:/Aocalnost: 3080instasobe/isp/ndex himl

B S AR Mo

“Selod Pesourcels) BN : i g
When this happens i - |

jvm_ThreadStanEvent = i
" |ivm_ThresdEndEvan =)
jurn_Exception

jvn_TopHeopObjects

Fesource Desonption 1

!_?r? 1 _MazHeapSie

|ins:once=‘ =
|:EDIT:PARAMETER:

[2 2 Conditian

Condition=2r1 >... |

I

| Then .d_efino situation or do this ...

I__?nl jvmi_TopHeapOhjects

I instance=" :i

EDIT PARAMETER:

r')o? e AllocTrace

; [incl-prefoc=" =]

Options-

[check evary "Jn‘:" only lﬂ
'S &3 A" €T F) | DocumentiDone (0111 secs) SRR

FIG. 25

Netflix, Inc. - Ex. 1013, Page 000033
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 33 of 36 US 2004/0019672 A1

&) Netscape

+ Hitp:/ocabwst B0BMnstasolv/jsp/index himi

Rule Managements Add New Rule
j i ki = Rule Fack default
Step 2: Configure Situation(s):: Create New Situation(s)

Ciarnain ¢ Situation Fial A F Hule Name.: HeapRule
| Hule Descriptor : Check heap if usage

Type in the Situstion Name | iIs greater than 60%

|.JVMLOWamr.-ry

Type in and Subrn_ui' , a Situation name and
i . or the Sibsati | an optional descriptor, which will be added
Type in a Descriptor for the Situation to, Bituation Domain and will be displayed
) : il
VH heap usage i3 hich. under resource select box of Situatiop
| comain.

L@@ A& O[] Document:Done (1.38 secs)

FIG. 26

Netflix, Inc. - Ex. 1013, Page 000034
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication

& Netscape

Jan. 29,2004 Sheet 34 of 36 US 2004/0019672 Al

S.}ep 4 _:ICnnﬁguN?: Actigns(s)d

Salect Mamain B

.‘;-.olar.t Recaurels) B
JVMLowMemony "-I

ResoUrce Descriphion |

when this happens ... H

Then define situation or do'this-...

Rule Name : HeapRule -~ ; i
Rule Descriptor ; Check heap if usage
is greater than 60%

ors ivii_heapllsed

Iinstnncc =l
[orz jum_Markeapsize

[instance=""=]

— Fol IMlowMemaory.

: Elpliu_n.ﬁ

FIG. 27

Netflix, Inc. - Ex. 1013, Page 000035

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 35 of 36 US 2004/0019672 A1

|

}
L 0.0 @ Qo[rmrmm i “J@‘?'*J'“Q

Enging Status ; Ready
Selact RulePack def :
At *'t
H

Rules

efault: HeapRule - Check heap if usag= is [a
reater -han €0%
i-=' [When this happens ...
jvm_deapUsed

i' j\m‘_ﬂnxmapﬁj ze
Condition

LECTN CELETE 2] -

2 A ©F D] Document Done 017 soce), /| 0 o B R T A o)

FIG. 28

Netflix, Inc. - Ex. 1013, Page 000036
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29,2004 Sheet 36 of 36 US 2004/0019672 Al

I@ I"-:;h'lp'a‘a’l“l?lﬁﬂ!'IJ]D]JBJ-"nsIdsaI\lﬁspa"indexHud 5‘3] 2, ‘Search

B 1 = ' 1 X
’LH_E Management:(Report

HeapRule (RuleRack dafaut) triggared cn system unknown on Wed Mov 08 16: 16,34
g2

wation caused by:

Desc,: Chedk beap # usage-is greater
i vim_Heaplisad fre instance 236
Wt vm_MazHeapSize for instance 23305 (vadse 67 L0EBGS)

thar bU%. I/
5 (usie

Actions taken:

ywmizvm _InnHe.lebiectw.Frr nstance 255
mple$l 36936 513

Siplel 4112 514

sivm_Alloc Traco tor inzkasce 23805

at Simple mand): 28

1
‘Simplel .
at simple.maing)26

ESlmnleit
¢ at Simple.main{)izB

Simplel
at Simple.maing)26

|
| Simpledl

at Sipleanam])28
Simplel

at Simple.nvainjiZé

Simplel 3
i Simolefl 3

| SLEIVAT QT) | Dociment Done [0 3 secs) 1

FIG. 29

Netflix, Inc. - Ex. 1013, Page 000037
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of: (i) U.S.
Provisional Patent Application No. 60/371,659, filed Apr.
10, 2002, and entitled "METHOD AND SYSTEM FOR
MANAGING COMPUTER SYSTEMS,” which is hereby
incorporated by reference herein; and (ii) U.S. Provisional
Patent Application No. 60/431,551, filed Dec. 5, 2002, and
entitled *“METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS,” which is hereby incorporated by
reference herein.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to computer systems
and, more particularly, to management of computer systems.

[0004]

[0005] Today's computer systems, namely enterprise com-
puter systems, make use of a wide range of products. The
products are often applications, such as operating systems,
application servers, database servers, JAVA Virtual
Machines, etc. These computer systems often suffer from
network and system-related problems. Unfortunately, given
the complex mixture of products concurrently used by such
computer sysiems, there is great difficultly in identifying and
isolating of application-related problems. Typically, when a
problem oceurs on a computer system, it must first be
isolated to a particular computer system out of many dif-
ferent computer systems or to the network interconnect
among these systems and also to a particular application out
of many different applications used by the computer system.
However, conventionally speaking, isolating the problem is
difficult, time consuming and requires a team of application
experts with different domain expertise. These experts are
cxpensive, and the resulting down time of computer systems
is very expensive lo enterprises.

2. Description of the Related Art

[0006] Although management solutions have been devel-
oped, such solutions are dedicaied 1o particular customers
and/or specific products. Monitoring systems are able to
provide monitoring for events, but offer no meaningful
management of non-catastrophic problems and prevention
of catastrophic problems. Hence, conventional managing
and monitoring solutions are dedicated approaches that are
not generally usable across different computer systems using
combinations of products.

[0007] Thus, there is a need for improved management
systems that are able to efliciently manage computer systems
over a wide range of products.

SUMMARY OF THE INVENTION

[0008] Broadly speaking, the invention relates to a man-
agement system for a computer system. The computer
system operates or includes various products (e.g., software
products) that can be managed in a management system or
collectively by a group of management systems. Typically,
the management system operates on a compuler separate
from the computer system being managed. The management

Jan. 29, 2004

system can make use of a knowledge base of causing
symptoms for previously observed problems at other sites or
computer systems. In other words, the knowledge base can
built from and shared by different users across different
products to leverage knowledge that is otherwise disparate.
The knowledge base typically grows over time. The man-
agement system can use its ability to request information
from the computer system being managed together with the
knowledge base to infer a problem root cause in the com-
puter system being managed. The computer system being
managed can also request the management system Lo process
its knowledge base for possible problem cause analysis. The
management system can also continually identify persisting
problem causing symptoms.

[0009] The invention can be implemented in numerous
ways including, as a method, system, apparatus, and com-
puter readable medium. Several embodiments of the inven-
tion are discussed below.

[0010] As a management system for a computer system,
one embodiment of the invention includes at least: a plu-
rality of agents residing within managed nodes of a plurality
of different products used within the computer system, and
a manager for said management system. The manager is
operable across the different products.

[0011] As a method for managing an enterprise computer
system, one embodiment of the invention includes at least
the acts of: receiving a [act pertaining Lo a condition of one
of a plurality of different products that are operating in the
enterprise computer system; asserting the fact with respect
to an inference engine, the inference engine using rules
based on facts; retrieving updated facts from the inference
engine from those of the rules that are dependent on the fact
that has been asserted; and performing an action in view of
the updated facts.

[0012] As a method for isolating a root cause of a software
problem in an enterprise computer syslem supporting a
plurality of software products, one embodiment of the
invention includes at least the acts of: forming a knowledge
base from causing symptoms and experienced problems
provided by a disparate group of contributors; and examin-
ing the knowledge base with respect to the software problem
to isolate the cause of the software problem to one of the
software products.

[0013] Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken in conjunction with the accompanying drawings,
illustrating by way of example the principles of the inven-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The present invention will be readily understood by
the following detailed description in conjunction with the
accompanying drawings, wherein like reference numerals
designate like structural elements, and in which:

[0015] FIG. 1 is a block diagram of a management system
according to one embodiment of the invention.

[0016] FIG. 2 is a block diagram of a manager for a
management system according to one embodiment of the
invention.

Netflix, Inc. - Ex. 1013, Page 000038

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

[0017] FIG. 3 is a block diagram of a GUI (Graphical
User Interface) according to one embodiment of the inven-
tion.

[0018] FIG. 4 is a block diagram of a knowledge manager
according 1o one embodiment of the invention.

[0019] FIG. 5A is a diagram of a directed graph repre-
senting a knowledge base.

[0020] FIG. 5B represents a small portion of knowledge
provided in a segment of a directed graph (e.g., directed
graph).

[0021] FIG. 5C represents a small portion of knowledge
provided in a segment a directed graph (e.g., directed graph).
[0022] FIG. 6 is a block diagram of a knowledge proces-
sor according to one embodiment of the invention.

[0023] FIG. 7 is a block diagram of a management {rame-

work interface according to one embodiment of the inven-
tion.

[0024] FIG. 8 is a block diagram of a report module
according 1o one embodiment of the invention.

[0025] FIG. 9A is a diagram illustrating a knowledge base
according 1o one embodiment of the invention.

[0026] FIG. 9B is an architecture diagram for a rule pack
according to one embodiment of the invention.

[0027] FIG. 10 illustrates a relationship between facts,
rules and actions.

[0028] FIG. 11 illustrates an object diagram for a repre-
sentative knowledge representation.

[0029] FIG. 12 is a block diagram of the managed node
according to one embodiment of the invention.

[0030] FIG. 13 is a block diagram of an agent according
to one embodiment of the invention.

[0031] FIG. 14 is a block diagram of a master agent
according 1o one embodiment of the invention.

[0032] FIG. 15 is a block diagram of a sub-agent accord-
ing to one embodiment of the invention.

[0033] FIGS. 16A and 16B are flow diagrams of manager
starlup processing according to one embodiment of the
invention.
[0034] FIGS. 16C-16E are fow diagrams of manager
startup processing according to another embodiment of the
invention.

[0035] FIG. 17A is flow diagram of master agenl startup
processing according to one embodiment of the invention.
[0036] FIG. 17B is a llow diagram of sub-agent startup
processing according to one embodiment of the invention.
[0037] FIGS. 18A and 18B are flow diagrams of trigger/
notification processing according to one embodiment of the
invention.

[0038] FIG. 19 is a low diagram of GUI report processing
according 1o one embodiment of the invention.

[0039] FIGS. 20-29 are screen shots of a representative
Graphical User Interface (GUI) suitable for use with one
embodiment of the present invention.

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

DETAILED DESCRIPTION OF THE
INVENTION

[0040] The invention pertains to a management system for
a computer system (c.g., an enferprise computer system).
The computer system operates or includes various products
(e.g., software products) that can be managed in a manage-
ment system or collectively by a group of management
systems. Typically, the management system operales on a
compulter separate from the computer system being man-
aged. The management system can make use of a knowledge
base of causing symptoms for previously observed problems
al other sites or computer systems. In other words, the
knowledge base can built from and shared by different users
across different products to leverage knowledge that is
otherwise disparate. The knowledge base typically grows
over time. The management system can use ils ability to
request information from the computer system being man-
aged together with the knowledge base to infer a problem
root cause in the computer system being managed. The
compuier system being managed can also request the man-
agement system to process its knowledge base for possible
problem cause analysis. The management system can also
continually identify persisting problem causing symploms.

[0041] Embodiments of the invention are discussed below
with reference to FIGS. 1-29. However, those skilled in the
art will readily appreciate that the detailed description given
herein with respect to these figures is for explanatory
purposes as the invention extends beyond these limited
embodiments.

[0042] FIG. 1is a block diagram of a management system
100 according to one embodiment of the invention. The
management system 100 serves to manage a plurality of
managed nodes 102-1, 102-2, . . ., 102-n. Each ol the
managed nodes 102-1, 102-2, . . . , 102-n respectively
includes an agent 104-1, 104-2, . . ., 104-n. These agents
104 serve 1o monitor and manage products at the managed
nodes 102, In one implementation, the agents 104 are stand
alone processes operating in their own process space. In
another implementation, the agents 104 are specific fo
particular products being managed and reside at least par-
tially within the process space of the products being man-
aged. The agents 104 can monitor and collect data pertaining
1o the products. Since the products can utilize an operating
system or network coupled to the managed nodes, the agents
104 are also able to collect state information pertaining o
the operating system or the network. In still another imple-
mentation, the agents 104 are an embodiment of Simple
Network Management Protocol (SNMP) agents available
from third-parties or system vendors.

[0043] The agents 104 can be controlled to monitor spe-
cific information (e.g., resources) with respect lo user-
configurable specifics (e.g., altributes). The information
(e.g., resources) being monitored can have zero or more
layers or depths ol specifics (e.g., attributes). The monitor-
ing of the information can be dynamically on-demand or
periodically performed. The information being monitored
can be focused or limited to certain details as determined by
the user-configurable specifics (e.g., attributes). For
example, the information being monitored can be focused or
limited by certain levels/depths.

[0044] Optionally, the agents 104 can also be capable of
performing certain statistical analysis on the data collected

Netflix, Inc. - Ex. 1013, Page 000039

US 2004/0019672 Al

at the managed nodes. For example, the statistical analysis
on the data might pertain to running average, standard
deviation, or historical maximum and minimum.

[0045] The management system 100 also includes a man-
agement framework 106. The management framework 106
facilitates communications between the agents 104 for the
managed nodes 102 and the manager 108. For example,
different agents 104 can utilize different protocols (namely,
management protocols) to exchange information with the
management framework 106.

[0046] The management system 100 also includes a man-
ager 108. The manager 108 serves to manage the manage-
ment system 100. Consequently, the manager 108 can pro-
vide cross-products, cross-systems and multi-systems
managemenl in a centralized manner, such as for an enter-
prise network environment having multiple products or
applications which serve different types of requests. In an
enterprise network environment, the manager 108 has the
ability to manage the various systems therein and their
products and/or applications through a single entity. Geo-
graphically, these systems and products and/or applications
can be centrally located or distributed locally or remotely
(even globally).

[0047] FIG. 2 is a block diagram of a manager 200 for a
management system according to one embodiment of the
invention. For example, the manager 200 illustrated in FIG.
2 can pertain to the manager 108 illustrated in FIG. 1.

[0048] The manager 200 includes a Graphical User Inter-
face (GUI) 202 that allows a user (e.g., an administrator) to
interact with the manager 200 to provide user input. The user
input can pertain to rules, resources or situations. In addi-
tion, the user input with the GUI 202 can pertain to admin-
istrative or configuration functions for the manager 200 or
output information (e.g., reports, notifications, etc.) from the
manager 200. The input data is supplied from the GUI 202
to a knowledge manager 204. The knowledge manager 204
confirms the validity of the rules, resources or situations and
then converts such rules, resources or situations into a
format being utilized for storage in a knowledge base 206.
In one implementation, the formal pertains to meta-data
represented as JAVA properties. The knowledge base 206
stores the rules, resources and situations within the database
in a compiled code format.

[0049] The manager 200 also includes a knowledge pro-
cessor 208. The knowledge processor 208 interacts with the
knowledge manager 204 1o process appropriate rules within
the knowledge base 206 in view of any relevant situations or
resources. In processing the rules, the knowledge processor
208 often requests data from the agents 104 al the managed
nodes. Such requests for data are initiated by the knowledge
processor 208 and performed by way of a data acquisition
unit 210 and a management framework interface 212. The
returned data from the agents 104 is returned to the knowl-
edge processor 208 via the data acquisition unit 210 and the
management framework interface 212. With such monitored
data in hand, the knowledge processor 208 can cvaluate the
relevant rules. When the rules (evaluated by the knowledge
processor 208 in accordance with the monitored data
received from the agents 104) indicate that a problem exists,
then a variety of different actions can be performed. A
corrective action module 213 can be initiated 1o take cor-
rective action with respect to resources at the particular one

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

or more managed nodes that have been identified as having
a problem. Further, if debugging is desired, a debug module
214 can also be activated to interact with the particular
managed nodes to capture system data that can be utilized in
debugging the particular system problems.

[0050] The knowledge processor 208 can periodically, or
on a scheduled basis, perform certain of the rules stored
within the knowledge base 206. The notification module 216
can also initiate the execution of certain rules when the
notification module 216 receives an indication from one of
the agents 104 via the management framework interface
212. Typically, the agents 104 would communicate with the
notification module 216 using a notification that would
specify a management condition that the agent 104 has sent
to the manager 200 via the management framework 106.

[0051] In addition, the manager 200 also includes a report
module 218 that can take the data acquired from the agents
104 as well as the resulis of the processed rules (including
debug data as appropriate) and generate a report for use by
the user or administrator. Typically, the report module 218
and ils generated reports can be accessed by the user or
administrator through the GUI 202. The manager 200 also
includes a log module 220 that can be used to store a log of
system conditions. The log of system conditions can be used
by the report module 218 to generate reports.

[0052] The manager 200 can also include a security mod-
ule 222, a registry 224 and a registry data store 226. The
security module 222 performs user authentication and autho-
rization. Also, to the extent encoding is used, the security
module 222 also perform encoding or decoding (e.g.,
encryption or decryption) of information. The registry 224
and the registry data store 226 serve to serve and store
structured information respectively. In one implementation,
the registry data store 226 serves as the physical storage of
certain resource information, configuration information and
compiled knowledge information from the knowledge-
base206.

[0053] Still further, the manager 200 can include a noti-
fication system 228. The notification system 228 can use any
of a variety of different notification techniques to notify the
user or administrator that certain system conditions exisl.
For example, the communication techniques can include
electronic mail, a pager message, a voice message or a
facsimile. Once notified, the notified user or administrator
can gain access to a report generated by the report module
218.

[0054] The debug module 214 is able to be advanta-
geously initiated when certain conditions exist within the
system. Such debugging can be referred 1o as “just-in-time™
debugging. This focuses the capture of data for debug
purposes lo a constrained time period in specific areas of
interest such that more relevant data is able to be captured.

[0055] FIG. 3 is a block diagram of a GUI 300 according
to one embodiment of the invention. The GUI 300 is, for
example, suitable for use as the GUI 202 illustrated in FIG.
2.

[0056] The GUI 300 includes a knowledge input GUI 302,
a report output GUI 304, and an administrator GUI 306. The
knowledge input GUI 302 provides a graphical user inter-
face thal facilitates interaction between a user (e.g., admin-
istrator) and a manager (e.g., the manager 200). Hence,

Netflix, Inc. - Ex. 1013, Page 000040

US 2004/0019672 Al

using the knowledge input GUI 302, the user or adminis-
trator can enter rules, resources or situations to be utilized by
the manager. The report output GUI 304 is a graphical user
interface that allows the user to access reports that have been
generated by a report module (e.g., the report module 218).
Typically, the report output GUI 304 would not only allow
initial access to such reports, but would also provide a means
for the user to acquire additional detailed information about
reported conditions. For example, the report output GUT 304
could enable a user to view a report on chosen criteria such
as case ID or a period of time. The administrator GUI 306
can allow the user to configure or utilize the manager. For
example, the administrator GUI 306 can allow creation of
new or modification to existing users and their access
passwords, specific information about managed nodes and
agents (including managed-node IP and port, agent name,
agent types), clectronic mail server and user configuration.

[0057] FIG. 4 is a block diagram of a knowledge manager
400 according to one embodiment of the invention. The
knowledge manager 400 is, for example, suitable for use as
the knowledge manager 204 illustrated in FIG. 2.

[0058] The knowledge manager 400 includes a knowledge
code generator 402. In particular, the knowledge code gen-
erator 402 receives rules or definitions (namely, definitions
for resources or situations) and then generates and outputs
knowledge code to a knowledge processor, such as the
knowledge processor 208. In one implementation, the
knowledge code generator 402 can be considered a com-
piler, in that the rules or definitions are converted into a data
representation suitable for execution. The knowledge code
can be a program code or it can be a meta-language. In one
implementation, the knowledge code is exccutable by an
inference engine such as JESS. Additional information on
JESS is available at “http://herzberg.ca.sandia.gov/jess” as
an example.

[0059] The knowledge manager 400 also includes a
knowledge encoder/decoder 404, a knowledge importer/
exporter 406 and a knowledge update manager 408. The
knowledge encoder/decoder 404 can perform encoding
when storing knowledge to the knowledge base 206 or
decoding when retrieving knowledge from the knowledge
base 206. The knowledge importer/exporter 406 can import
knowledge from another knowledge base and can exporl
knowledge to another knowledge base. In general, the
knowledge update manager 408 serves to manually or
automatically update the knowledge base 206 with addi-
tional sources of knowledge that are available and suitable.
In one embodiment, the knowledge update manager 408
operates 1o manage the general coherency of the knowledge
base 206 with respect o a central knowledge base. Typically,
the knowledge base 206 stored and utilized by the knowl-
edge manager 400 is only a relevant portion of the central
knowledge base for the environment that the knowledge
manager 400 operates.

[0060] FIG. 5A is a diagram of a directed graph 500
representing a knowledge base. The knowledge base repre-
sented by the directed graph 500 is, for example, suitable for
use as the knowledge base 206 illusirated in FIG. 2. The
directed graph 500 represents a pictorial view ol the knowl-
edge code resulting {rom rules, situations and resources.

[0061] The directed graph 500 is typically structured to
include base resources at the top of the directed graph 500,

Jan. 29, 2004

situations/resources in a middle region of the directed graph
500, and actions (action resources) at the bottom (or leaf
nodes) of the directed graph 500. In particular, node 502
pertains to a base resource or resources and node 504
pertains to situation and/or resource. A relationship 506
between the nodes 502 and 504 is determined by the rule
being represented by the directional arrow between the
nodes 502 and 504. The situation/resource at node 504 in
turn relates to another situation/resource at node 508. A
relationship 510 relates the nodes 504 and 508, namely, the
relationship 510 is determined by the rule represented by the
directional arrow between the nodes 504 and 508. The
situations/resources at nodes 504 and 508 together with the
relationship 510 pertain to another rule. The situation/
resource al node 508 is further related to an action resource
at node 512. A relationship 514 between the situation/
resource al node 508 and the action resource at node 512 is
determined by still another rule, namely, an action rule.

[0062] The knowledge base represented by the directed
graph 500 is flexible and extendible given the hierarchical
architecture of the directed graph 500. Hence, the knowl-
edge base is able to grow over time to add capabilities
without negatively affecting previously existing knowledge
within the knowledge base. The knowledge base is also able
1o be divided or partitioned for different users, applications
or service plans. In effect, as the knowledge base grows, the
directed graph 500 representation grows to add more nodes,
such nodes representing sifuations or resources as well as
relationships (i.e., rules) between nodes.

[0063] FIG. 5B represents a small portion of knowledge
provided in a segment 520 of a directed graph (e.g., direcied
graph 500). The segment 520 includes nodes 522, 526, 530
and 534, and relationships 524, 528 and 532. The node 522
pertains to a resource, namely, heap size of Java Virtual
Machine (JVM) in use. The relationship 524 indicates that
when the node 522 is triggered, the node 526 is triggered.
The node 526 pertains to a resource, namely, maximum heap
size of JVM. The relationship 528 evaluates whether the
maximum heap size for JVM is less than 1/0.8 percent the
heap size for JVM. When the relationship 528 is true, then
the node 530 is triggered to acquire a resource, namely,
TopHeapObjects for JVM, which is a debugging resource
that obtains the information about the objects that are
consuming the most amount of JVM heap. The specifics of
this resource include the resource consumption selected by
cumulative size or the number of objects, the count of the
distinct objects, the selection of objects by JAVA classes
they belong to are described by the attributes of the resource.
The relationship 532 then always causes the node 534 to
invoke a resource action, nmamely, initiating an allocation
trace for JVM. The specifics of this resource selectable by its
attributes can include but not limited to the classes of objects
1o trace, the time-period for tracing, and the depth of stack
to which to limit every trace.

[0064] FIG. 5C represents a small portion of knowledge
provided in a segment 540 of a directed graph (e.g., directed
graph 500). The segment 540 includes nodes 542, 546, 550,
554 and 558, and relationships 544, 548, 552 and 556. The
node 542 pertains to a situation, namely, a JVM exception.
The relationship 544 causes the node 546 to invoke a filter
operation when the situation at node 542 is present. The filter
operation at node 546 is a search expression that scarches the
JVM exception resource information received from agent

Netflix, Inc. - Ex. 1013, Page 000041

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

104 for an attribute “ORA-00018" which represents a par-
ticular problem with Oracle database, namely, the Oracle
database running out of database connections for the man-
aged JAVA application 1o use. When the search expression
is found, the relationship 548 causes the node 550 to trigger.
Al node 550, a resource for maximum users configured for
the Oracle database being used by the managed JAVA
application is obtained. Then, the relationship 552 deter-
mines whether the maximum users for the Oracle product is
less than fifty (50) and, if so, the node 554 invokes an action,
namely, an email notification is sent. In addition, the rela-
tionship 556 always triggers the node 558 to acquire a
resource pertaining to the number of connected users the
relevant Oracle database. The two rules, one rule repre-
sented by resources 542, 546, 550, 558 and the relationships
544, 548, 556, and the second rule represented by the
resources 550, 554 and the relationship 552 are two distinct
rules defined using GUI 202 at different times and possibly
by different users and without needing to know about the
existence of the second rule while defining the first one rule
and vice versa. The knowledgebase automatically links or
chains these rules through the commonality of the resources
(e.g., Oracle maximum configured users resource 550 in the
this example.

[0065] FIG. 6 is a block diagram of a knowledge proces-
sor 600 according to one embodiment of the invention. The
knowledge processor 600 is, for example, suitable for use as
the knowledge processor 208 for the manager 200 illustrated
in FIG. 2.

[0066] The knowledge processor 600 includes a controller
602 that couples to a knowledge manager (e.g., the knowl-
edge manager 204). The controller 602 receives the knowl-
edge code from the knowledge manager and directs il 10 an
inference engine 604 to process the knowledge code. In one
embodiment, the knowledge code is provided in an infer-
ence language such that the inference engine 604 is able to
execute the knowledge code.

[0067] In executing the knowledge code, the inference
engine 604 will typically inform the controller 602 of the
particular data to be retrieved from the managed nodes via
the agents and the management framework interface. In this
regard, the controller 602 will request the data via a man-
agement interface to a management framework. The
returned data from the managed nodes is then returned to the
controller 602 via the management interface 606. Allerna-
tively, in executing the knowledge code, exceptions (i.e.,
unexpected events) can be generated at the managed nodes
and pushed through the management interface 606 to the
controller 602. In either case, the controller 602 then for-
wards the returned data to the inference engine 604. At this
point, the inference engine 604 can continue o process the
knowledge code (e.g., rules). The inference engine 604 may
utilize a rule evaluator 608 to assist with evaluating the
relationships or rules defined by the knowledge code. The
rule evaluator 608 can perform not only the relationship
checking for rules but also data parsing. Once the knowledge
code has been executed, the inference engine 604 can inform
the controller 602 to have various operations performed.
These operations can include capturing ol additional data
from the managed nodes, initiating debug operations, initi-
ating corrective actions, initiating logging ol information, or
sending of notifications.

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

[0068] The knowledge processor 600 also can include a
scheduler 610, The scheduler 610 can be utilized by the
inference engine 604 or the controller 602 to schedule a
future action, such as the retrieval of data from the managed
nodes.

[0069] FIG. 7 is a block diagram of a management frame-
work interface 700 according to one embodiment of the
invention. The management framework interface 700 is, for
example, suitable for use as the management framework
interface 212 illustrated in FIG. 2.

[0070] The management framework interface 700
includes a SNMP adapter 702 and a standard management
framework adapter 704. The SNMP adapter 702 allows the
management framework interface 700 to communicate
using the SNMP protocol. The standard management frame-
work adapter 704 allows the management framework inter-
face 700 to communicate with any other communication
protocols that might be utilized by standard management
frameworks, such as other product managers and the like.
The management framework interface 700 also includes an
enterprise manager 706, a domain group manager 708, and
an available domain/resources module 710. During startup
of the management framework interface 700 (which is
typically associated with an enterprise), the enterprise man-
ager 706 will identify all groups within the enterprise. Then,
the domain group manager 708 will operate to identify all
management nodes within each of the groups. Thereafter,
the available domain/resources module 710 will identify all
domains and resources associated with each of the identified
domains. Hence, the domains and resources for a given
enterprise are able 1o be identified at startup so that the other
components of a manager (e.g., the manager 200) are able to
make use of the available domains and resources within the
enterprise. For example, a GUI can have knowledge of such
resources and domains for improved user interaction with
the manager, and the knowledge processor can understand
which rules within the knowledge base 206 are pertinent to
the enterprise.

[0071] The management framework interface 700 also
includes an incoming notification manager 712. The incom-
ing nolification manager 712 receives notifications from the
agents within managed nodes. These notifications can per-
lain to events that have been monitored by the agents, such
as a system crash or the presence of a new resource. More
generally, these notifications can pertain to changes to
monitored data at the managed nodes by the agents.

[0072] The management framework interface 700 also
includes a managed node administrator module 714. The
managed node administrator module 714 allows a user or
administrator to interact with the management framework
interface 700 to alter nodes or domains within the enterprise,
such as by adding new nodes or domains, updating domains,
reloading domains, ete.

[0073] Still further, the management framework interface
700 can also include a managed node update module 716.
The managed node update module 716 can discover man-
aged nodes and thus permits a manager o recognize and
receive slatus (e.g., active/inactive) of the managed nodes.
[0074] FIG. 8 is a block diagram of a report module 800
according to one embodiment of the invention. The report
module 800 is, for example, suitable for use as the report
module 218 illustrated in FIG. 2.

Netflix, Inc. - Ex. 1013, Page 000042

US 2004/0019672 Al

[0075] The report module 800 includes a presentation
manager 802, a format converter 804 and a report view
selector 806. The presentation manager 802 operates 1o
process the raw report data provided by a log module (e.g.,
log module 220) in order 1o present an easily understood,
richly formatied report. Such a report might include asso-
ciated graphical components that a user can interact with
using a GUI (e.g., GUI 202). Examples of graphical com-
ponents for use with such reports are buttons, pull-down
lists, etc. The format converter 804 can convert the raw
report data into a format suitable for printing and display.
The report view selector 806 allows viewing of partial or
complete log data/raw report data in different ways as
selected using a GUIL These views can, for example,
includes one or more of the following types of reports: (1)
Report Managed nodes wise—show report for the selected
managed node/process identifier only; (2) Report time
wise—show report for the last xyz hours (time desired by the
user), with the user having the option of choosing the
managed node he wants to view; (3) Report Rule wise—
show report for the selected rule that might be applicable for
number of JVM instances; (4) Report Rule pack wise
show report for all the rules fired under a particular rule
pack; (5) Report Last Fired Rules wise—show report for
rules fired after last re-start ol the inference engine; (6)
Report Rule Fired Frequency wise—show report for rules
fired as per selected fired frequency (e.g., useful to get
recurrence pattern of event occurrence); (7) Report Domain
wise—show report pertaining to a particular domain (e.g., if
a rule is composed of multiple domains, in that case this
report can show the rules including the selected domain.
e.g., JVM); (8) Report Resource wise—show report for all
rules including a particular resource under the domain,
e.g.,—jvm_Exception); (9) Report filter wise—show report
pertaining to rules having similar filter conditions; (10)
Report Day wise—show report for all events happened in a
day; (11) Report Refreshed Values wise—show next
refreshed state of the same report and highlights changed/
added records; (12) Report Case ID wise—show the report
based on problem case identifier (id); and (13) Customized
Structure reports—allow user to select a combination of the
above or provide a report filter of their own.

[0076] FIG.9A is a diagram illustrating a knowledge base
900 according to one embodiment of the invention. The
knowledge base 900 is, for example, suitable for use as the
knowledge base 206 illustrated in FIG. 2 or the knowledge
base 500 illustrated in FIG. 5A. The architecture for the
knowledge base 900 renders the knowledge base 900 well-
suited to be managed, deployed and scaled. The knowledge
base 900 typically resides within a manager, such as the
manager 200 illustrated in FIG. 2. However, the knowledge
base 900 can also be distributed between a manager and
managed nodes, such that the processing load can be like-
wise distributed.

[0077] The knowledge base 900 includes one or more
knowledge domains and one or more rule packs. In particu-
lar, the knowledge base 900 illustrated in FIG. 9A includes
knowledge domain A 902, knowledge domain B 904 and
knowledge domain C 906. Through use of the rule packs,
these multiple knowledge domains 902, 904, and 906 can be
linked together so as to effectively operate to concurrently
cooperate with one another. A particular knowledge domain
is a software representation ol know-how pertaining 1o a
specific field (or domain). The knowledge domains can be

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

physical domains and/or virtual domains. A physical domain
often pertains to a particular managed product. A virtual
domain can pertain 1o a defined set of resources defined by
a user to achieve effective manageability.

[0078] The knowledge base 900 also includes rule packs
910 and 912. These rule packs (or knowledge rule packs) are
collections of rules (i.e., relationships between different
kinds of resources/situations). The purpose of the rule packs
is 1o collect the rules such that management modification
and tracking of knowledge is made casier. By separating
knowledge into domains and rule packs, each knowledge
component can be individually tested as well as tested
together with other knowledge components. In other words,
cach domain or rule pack is a logically separate piece of
knowledge which can be installed and uninstalled as desired.

[0079] FIG. 9B is an architecture diagram for a rule pack
914 according to one embodiment of the invention. The rule
pack 914 includes rules 916, facts 918 and functions 920.
The rule pack 914 depends on the facts 918 for ils reasoning,
a sel of facts that it generates, a set of [unctions 920 that it
calls upon, and a set of rules 916 that act to read and write
facts and perform the functions.

[0080] When a rule pack is installed, the system must keep
track of its rules, functions, inputs and outputs so that a large
installed base of rule packs can be managed. Hence, an
individual rule pack can be added to or removed from the
knowledge base without adversely affecting the entire sys-
tem.

[0081] Further, two rule packs may operate on the same set
of shared facts. The two knowledge rule packs may also
generate a set of shared facts. These rule packs can facilitate
the tracking of how a fact travels through various rule packs,
and how a [act may be generated by multiple rule packs. The
functions and rules of rule packs can also be more precisely
monitored by using the smaller sized rule packs. It is also
possible for one rule to exist in two or more rule packs.
Hence, when such two or more rule packs that share a rule
are merged into a knowledge base, only one copy of the rule
need exist within the knowledge base.

[0082] An expert system object manages the knowledge
base. For example, the expert system object can reset an
inference engine, load and unload rule packs or domains,
insert or retract runtime facts, etc.

[0083] The knowledge representation utilized by the
present invention makes use of three major components:
facts, rules and actions. Collectively, these components are
utilized to perform the tasks of monitoring and managing a
computer resource, such as a JVM, an operating system, a
network, database or applications.

[0084] FIG. 10 illustrates a relationship 1000 between
facts 1002, rules 1004 and actions 1006. According 1o the
relationship 1000, facts 1002 trigger rules 1004. The rules
1004 that are triggered, cause the actions 1006. The actions
1006 then may cause additional facts to be added 1o the
repository of the facts 1002, A fact can be considered a
record of information. One example of a fact is the number
of threads running in a JVM. Another example of a fact is
an average load on a CPU. Rules are presented as “if—then™
statements. In one embodiment, the left-hand side of the
“if—then” statement can have one or more patterns, and the
right-hand side of the “if—then” rule can contain a proce-

Netflix, Inc. - Ex. 1013, Page 000043

US 2004/0019672 Al

dural list of one or more actions. The patterns are used as
conditions to search for a fact in the repository of the facts
1002, and thus locate a rule that can be used 1o infer
something. The actions are functions that perform a task. As
an example, the actions can be considered 1o be statements
that would otherwise be used in the body of a programming
language (e.g., JAVA or C programs). As another example,
the actions can be used to obtain debug information using a
resource.

[0085] The rules 1004 can be represented in JAVA Expert
Systems Shell (JESS) and as a rule engine that drives these
rules. JESS offers a CLIPS-like language for specifying
inference rules, facts and functions. The relationship 1000
thus facilitates the creation of a data-driven knowledge base
that 1s well-suited for monitoring and managing computer
TES0Urces.,

[0086] FIG. 11 illustrates an object diagram 1050 for a
representative knowledge representation. The object dia-
gram 1050 includes a rule pack 1 inference object 1052 and
a rule pack 2 inference object 1054. An inference object for
arule pack encompasses the rules written for that knowledge
domain(s) and a rules engine can then read and execulte these
rules. A JESS package can be utilized 1o provide this
functionality. Surrounding each of the inference objects
1052 and 1054 are domain facts and domain actions.
Although the arrangement of the rule packs shown in FIG.
11 is such that the rule packs pertain to a particular domain,
rule packs can also be arranged to pertain to multiple
domains.

[0087] The relationship between a domain fact and an
inference object is always an arrow pointing from the fact to
the inference object, thereby denoting that facts are “driv-
ing” the rules inside the inference engine. The relationship
between the inference object and the actions are that of an
arrow pointing from the inference object toward the
action—meaning the inference rules “drive” the actions.
Between the two inference objects 1052 and 1054 are facts
and actions that both inference objects 1052 and 1054
utilize. In effect, these inference objects 1052 and 1054 are
cooperalive experl systems, namely, experl systems that
cooperate in a group by sharing some of their knowledge
with one another.

[0088] Facts can be used to represent the “state™ of an
expert system in small chunks. For example, a fact may
appear as “MAIN::;jvm—jvm_heapused (v “31660327) (uid
“372244480™) (instance *13219") (host unknown)” The
content of the fact indicates that in the current Java Virtual
Machine (JVM) on system “unknown™ with instance or
process id 13219, the size of heap used is 3166032 bytes. In
this example, uid, instance and host are some of the
attributes of the resource jvm_heapused belonging to the
domain jvm. The atiributes of a resource that are not used for
comparison with other resources, need not be included in the
facts for the resource. Facts, as implemented by JESS, exist
inside the rules engine. To add an additional fact into the
rules engine, the new fact is injected into the inference
engine object. The repository of facts can be represented
hierarchically. The knowledge base can, for example, be
sorted and transmitted as needed as a set of XML documents
or provided as shared distributed databases using LDAP or
as JAVA Properties files.

[0089] In the case of a cooperative expert system, access
to a shared set of facts is needed. The facts can be logically

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

organized into separate domains. In one implementation, a
user may choose to organize shared knowledge into separate
knowledge rule packs, or alternatively, allow the same fact
definition to exist within multiple rule packs. In the later
approach, the system can manage the consistency of the
facts using a verification process al the managed resource
node (in the form of capability requests) and at the knowl-
edge control module (in the form of definition verification).

[0090] The rules are used to map facts into actions. Rules
are preferably domain-specific such that separate domains of
knowledge are thus provided as modular and independent
rule sets. Henee, the modification of one domain of rules and
its internal facts would not affect other domains. These
different rule packs of rules interact with each other only
through shared facts.

[0091] Anexample of a rule implemented using JESS is as
follows:

[0092] (Defrule default-jvm-memory-leak-detect

(jym-jvm__heapused (v 7r1) (uid ?uid) (instance ?instance) (host Thost))
(test (> 7rl1 1000000)

-3

{...some actions...)

)

[0093] The “default—" prefix denotes the rule pack the
rule belongs to. Since it is possible that memory leak can
exist for application or application server, utilizing separate
name spaces for each rule pack of rules allows separation of
these rules into different rule packs. Another advantage of
using separale name space for different rule packs is that
JESS rules are serializable, meaning that text rules can be
encoded into binary form. The ability to store rules in binary
form serves to protect the intellectual property encoded
within the rules.

[0094] Actions are procedural statements to be executed.
The actions may reside on the right-hand side of rules in the
form of scripts or can be embedded as methods inside
programming objects (e.g., JAVA objects). In the case of
scripts, the scripts are inference engine-dependent such that
different inference engines would utilize different scripts
because of the different languages utilized by the inference
engines. In the case of programming objects, the actions are
functions. For example, actions in JAVA can be implemented
by registering them as new JESS functions. Alternatively,
the functions could be packaged inside fact objects for
which such rules are relevant. The functions could in turn
request relevant resource values from the managed nodes
and assert the values obtained as facts into the inference
engine. The fact objects (e.g., get values) represent values
obtained from agents (¢.g., using a scheduler of an agent).

[0095] Given that actions can be complicated and not tied
to any particular facts, it is often more cfficient 1o create a
global object for a domain and include the methods or
functions for actions therein such that every rule within a
rule pack has access to the actions.

[0096] Through the use of a modular design, the system
becomes easier to manage even when thousands of rules and
facts exist. By separating rules into rule packs and facts into

Netflix, Inc. - Ex. 1013, Page 000044

US 2004/0019672 Al

domains, and making it difficult for domains to interfere
with one another, the expert system is effectively divided
into smaller modular pieces. Additionally, through use of
JESS’s built-in watch facility, the system can track those
rules that have fired and the order in which they have fired.
This watch facility thus provides a limited tool for debug-
ging a knowledge system. Groups of rules can be isolated for
inspection by turning off other rules. Rules can be turned off
by deactivating those inference objects from firing which are
not desired. If one were to desire to debug a set of rules
related to one domain, such a set of rules could be manually
grouped into a logical group (e.g., rule pack) and vser of the
management system can use GUI 202 to control the activa-
tion of each group. Using GUI 202, user can additionally
control activation of a single or a selected set of rules within
a rule pack.

[0097] Initialization scripts can be used to set up all the
components needed [or a rule pack. The setup can operate to
create the inference object, load the rules, create initial facts,
create action objects, and link all the objects together so that
they can inter-operate.

[0098] In the JESS/JAVA implementation, one inference
object may contain rules from one or more rule packs.
Outside the inference object are objects that represent facts
and objects that encapsulate actions. Each inference object
is attached to a set of facts and actions. The rules engine
searches the facts for matches that can trigger a rule to fire.
Once a rule is fired, one or more action objects being linked
thereto are invoked. Actions can also be explicitly linked by
using an initialization that involves JAVA object creation and
passing handles to these objects to appropriate JESS infer-
ence objects.

[0099] One useful aspect of the rule engine design is the
ability of the system to manage different combinations of
multiple products on multiple nodes using one set of rule
packs and one manager. This simplifies the distribution,
configuration and manageability of rule packs on per-user
basis. For example, the rules engine can have rule packs for
managed products JVM and Oracle loaded, but one man-
aged node may not have Oracle as the managed product. In
this case, naturally there will be no facts corresponding to
Oracle resources [or the managed node asserted into the
inference engine and hence the rules using those Oracle
resources will not be active for the managed node without
Oracle as a managed product. Note that the information
about the managed node is part of the fact representing any
Oracle resource.

[0100] Another useful aspect of the rules engine design is
the implicit chaining of rules by the inference engine. A user
of the system defines individual rules representing a problem
or diagnostic “cases”. The system combines these individual
rules based on the use of common facis representing
resources. For example, one rule can be, represented in a
meta-language, “IF (jvm—uncaught_exception AND fil-
ter—exception_is_Oracle_connections_exhausted) THEN
(get Oracle—max_connections_configured)”. A second rule
can be, represented in a meta-language, “IF (Oracle—
max_connections_configured<50) THEN (email dba)”.
When the inference engine is running, if the jvm_uncaught
exception gets asserted into the inference engine and if the
asserted fact contains the Oracle_connections_exhausied
status, then the management system will obtain the Oracle—

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

max_connections_configured resource from the same man-
aged node as described by the host attribute of the exception
resource. On request from the interface engine, the corre-
sponding fact will be asserted into the inference engine. The
inference engine will now automatically detect the second
rule definition using the Oracle—max_connections_config-
ured resource and the second rule will automatically get into
action. It will check if the fact value representing the
Oracle—max_connection_configured resource is greater
than 50 and, if so, it will automatically send electronic mail
to the dba.

[0101] FIG. 12 is a block diagram of the managed node
1200 according to one embodiment of the invention. The
managed node 1200 1s, for example, suitable for use as one
or more of the managed nodes 102 illustrated in FIG. 1.

[0102] The managed node includes a plurality of different
managed products 1202, In particular, the managed node
1200 includes managed products 1202-1, 1202-2, . . .,
1202-n. These managed products 1202 are software prod-
ucts that form part of the system being managed by a
management system. The managed products can vary
widely depending upon implementation. As examples, the
managed products can pertain to a Solaris operating system,
an Oracle database, or a JAVA application.

[0103] The managed node 1200 also includes an agent
1204. The agent 1204 couples 1o each of the managed
products 1202. The agent 1204 also couples to a manager
(e.g., the manager 108 illustrated in FIG. 1) via the man-
agement framework 106. In general, the agent 1204 can
interact with the managed products 1202 such that the
managed products 1202 can be monitored and possibly
controlled by the management system via the agent 1204,

[0104] Additionally, in one embodiment, one or more of
the managed products 1202 can include an application agent
1206. For example, as shown in FIG. 12, the managed
product N 1202-n includes the application agent 1206. Here,
the application agent 1206 resides within the process space
of the managed product N 1202-n (and thus out of the
process space of the agent 1204). The application agent 1206
can render the managed product N 1202-n more manageable
by the agent 1204, For example, the application agent 1206
can enable any JAVA application to be managed. The
capabilitics of the application agent 1206 can be further
enhanced by the user adding application code 1o the appli-
cation agent conforming to the Application Programming
Interfaces (API) provided by the application agent 1206.
This methodology provides a convenient means for the user
to add his/her application specific information such that it
becomes available as resources to the rest of the manage-
menl system.

[0105] FIG. 13 is a block diagram of an agent 1300
according to one embodiment of the invention. The agent
1300 is, for example, suitable for use as the agent 1204
illustrated in FIG. 12.

[0106] The agent 1300 includes a master agent 1302 that
couples to a plurality of sub-agents 1304, In particular, the
agent 1300 utilizes N sub-agents 1304-1, 1304-2, . . . |
1304-n. Each of the sub-agents 1304-1, 1304-2, . . ., 1304-n
respectively communicates with the managed products
1202-1, 1202-2, . . . , 1202-n shown in FIG. 12. The master
agent 1302 thus interacts with the various managed products

Netflix, Inc. - Ex. 1013, Page 000045

US 2004/0019672 Al

1202 through the appropriate one of the sub-agents 1304.
The master agent 1302 includes the resources that are shared
by the sub-agents 1304. These shared resources are dis-
cussed in additional detail below with respect to FIG. 14.
The master agent 1302 also provides an Application Pro-
gramming Interfaces (API) that can be used by the user to
wrile a sub-agent that can interact with a managed product
for which a sub-agent is not provided by the management
product. Using this API, the user-written sub-agent can
make available the managed product specific information as
resources to the rest of the management product including
the master agent 1302 and the manager 108.

[0107] The agent 1300 also includes a communication
module 1306. The communication module 1306 allows the
agent 1300 to communicate with a management framework
(and thus a manager) through a variety of diflerent protocols.
In other words, the communication module 1306 allows the
agent 1300 to interface with other portions of a management
system over different protocol layers. These communication
protocols can be standardized, general purpose protocols
(such as SNMP), or product-specific protocols (such as
HPOV-SPI from Hewletti-Packard Company) or various
other proprietary protocols. Hence, the communication
module 1306 includes one or more protocol communication
modules 1308. In particular, as illustrated in FIG. 13, the
communication module 1306 can include protocol commu-
nication modules 1308-a, 1308-b, . . ., 1308-m. The protocol
A communication module 1308-a interfaces to a communi-
cation network that utilizes protocol A. The protocol B
communication module 1308-b interfaces with a communi-
cation network that utilizes protocol B. The protocol M
communication module 1308-m interfaces with a commu-
nication network that utilizes protocol M.

[0108] FIG. 14 is a block diagram of a master agent 1400
according to one embodiment of the invention. The master

agent 1400 is, for example, suitable for use as the master
agent 1302 illustrated in FIG. 13.

[0109] The master agent 1400 includes a request processor
1402 that receives a request [rom the communication mod-
ule 1306. The request is destined for one of the managed
products 1202, Hence, the request processor 1402 operates
to route an incoming request lo the appropriate one of the
sub-agents 1304 associated with the appropriale managed
product 1202. Besides routing a request to the appropriate
sub-agent 1304, the request processor 1402 can also perform
additional operations, such as routing return responses from
the sub-agents 1304 to the communication module 1306
(namely, the particular protocol communication module
1308 that is appropriate for use in returning the response to
the balance of the management system, i.¢., the manager).

[0110] The master agent 1400 typically includes a registry
1404 that stores registry data in a registry data store 1406.
The registry 1404 manages lists which track the sub-agents
1304 that are available for use in processing requests for
notification to the sub-agents 1304 or the protocol commu-
nication modules 1308. These lists that are maintained by
the registry 1404 are stored as registry data in the registry
data store 1406. Hence, the registry 1404 is the hub of the
master agent 1400 for all traffic and interactions for other
system components carried out at the agent 1300. The
functionality provided by the registry 1404 includes (1) a
mechanism for sub-agent registration, initialization, and

Jan. 29, 2004

dynamic configuration; (2) a communication framework for
the sub-agent’s interaction with the manager node through
different communication modules present at the agent; (3) a
notification mechanism for asynchronous notification deliv-
ery from the monitored systems and applications to the
communication modules and the manager node; and (4) a
sub-agent naming service so that sub-agents can be
addressed by using simple, human-readable identifiers. The
registry 1404 also acts as an interface between the commu-
nication modules 1308 so that the communication modules
1308 are able to configure registered sub-agents and receive
asynchronous notifications from the registered sub-agents.

[0111] The master agent 1400 also includes a scheduler
1408 and statistical analyzer 1410. The scheduler 1408 can
be utilized to schedule requests in the future to be processed
by the request processor 1402. The statistical analyzer 1410
can be utilized to process (or at least pre-process) the
response data being returned from the managed product
1202 before some or all data is returned to the manager.
Hence, by having the master agent 1400 perform certain
statistical analysis at the statistical analvzer 1410, the pro-
cessing load on the manager can be distributed to the master
agents.

[0112] Each of the sub-agents 1304 can be a pluggable
component enclosing monitoring and control functionality
pertinent 1o a single system or application. The sub-agents
1304 are known to the managed products through the
registry 1404, In other words, each of the sub-agents 1304
is registered and initialized by the registry 1404 before it can
receive requests and send out information about the man-
aged product it monitors. The principal task of the sub-agent
1304 is to interact with the managed product (¢.g., system/
application) it controls or monitors. The sub-agent 1304
serves to hide much interaction detail from the rest of the
agent 1300 and provides only a few entry points for request
into the information.

[0113] The different protocols supported by the commu-
nication module 1306 allow the communication module
1306 to be dynamically extended to support additional
protocols. As a particular protocol communication module
1308 is initialized, the registry 1404 within the master agent
1400 is informed of the particular protocol communication
module 1308 so that asynchronous notifications from the
managed objects can be received and passed to the manager
via the particular protocol communication module 1308.

[0114] The communication module 1306 receives requests
from a manager through the protocol supported by the
particular protocol communication module 1308 that imple-
ments and forwards such requests to the appropriate sub-
agent 1304 corresponding to the appropriate managed node.
The registry 1404 within the master agent 1400 is utilized to
forward the request from the protocol communication mod-
ule 1308 and the sub-agents 1304.

[0115] In addition, the protocol communication module
1308 also provides a callback for the sub-agents 1304 such
that notifications are able to be received from the managed
product and sent back to the manager. If such callbacks are
not provided, the notifications will be ignored by the sub-
agents 1304 and, thus, no error will be reported to the
manager. Hence, each of the protocol communication mod-
ules 1308 can be configured to handle or not handle notifi-
cations as desired by any particular implementation.

Netflix, Inc. - Ex. 1013, Page 000046

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

[0116] FIG. 15 is a block diagram of a sub-agent 1500
according 1o one embodiment of the invention. The sub-
agent 1500 is, for example, suitable for use as any of the
sub-agents 1304 illustrated in FIG. 13.

[0117] The sub-agent 1500 includes a get resource module
1502, a set operation module 1504, and an event forwarding
module 1506. The get resource module 1502 interacts with
a managed product to obtain resources being monitored by
the managed product. The set operation module 1504 inter-
acts with the managed produet to set or control its operation.
The event forwarding module 1506 operates to forward
events that have occurred on the managed product to the
manager. In addition, the sub-agent 1500 can further include
a statistical analyzer 1508. The statistical analyzer 1508 can
operate to perform statistical processing on raw dala pro-
vided by a managed product at the sub-agent level. Hence,
although the master agent 1400 may include the statistical
analyzer 1410, the presence of statistical analyzer 1508 in
cach of the sub-agents 1500 allows further distribution of the
processing load for statistical analysis of raw data.

[0118] FIGS. 16A and 16B arc flow diagrams of manager
startup processing 1600 according to one embodiment of the
invention. The manager startup processing 1600 initially
loads 1602 a knowledge base. The manager is, for example,
the manager 200 illustrated in FIG. 2 and includes a
knowledge base, such as the knowledge base 206 illustrated
in FIG. 2. Once the knowledge base is loaded 1602,
third-party management frameworks are discovered 1604. In
one implementation, a management framework interface,
such as the management framework interface 212 illustrated
in FIG. 2, is utilized to identify and establish an interface to
all available third-party management frameworks. Next, a
list of node groups is obtained 1606. In one implementation,
the list of node groups is retrieved by the management
framework interface.

[0119] Next, a first node group is selected 1608 from the
list of node groups. For the selected node group, a list of
nodes within the selected node group is obtained 1610. A
decision 1612 then determines whether there are more node
groups to be processed. When the decision 1612 determines
that there are more node groups to be processed, then the
manager startup processing 1600 returns to repeat the opera-
tions 1608 and 1610 for a next node group. When the
decision 1612 determines that there are no more node groups
1o be processed, all the nodes within each of the node groups
have thus been obtained.

[0120] At this point, processing is performed on each of
the nodes. A first node [rom the various nodes that have been
obtained is selected 1614. Then, a list of domains within the
selected node is obtained 1616. A decision 1618 then deter-
mines whether there are more nodes to be processed. When
the decision 1618 determines that there are more nodes 1o be
processed, then the manager startup processing 1600 returns
to repeat the operations 1614 and 1616 for a next node.

[0121] On the other hand, when the decision 1618 deter-
mines that there are no more nodes to be processed, then
processing can be performed for each of the domains. At this
point, the manager startup processing 1600 performs pro-
cessing on each of the domains that have been obtained. In
this regard, a first domain is selected 1620. Then, a list of
supported resources is obtained 1622 for the selected
domain. A decision 1624 then determines whether all of the

Jan. 29, 2004

domains that have been identified have been processed.
When the decision 1624 determines that there are additional
domains 10 be processed, the manager startup processing
1600 returns to repeat the operations 1620 and 1622 for a
next domain such that each domain can be similarly pro-
cessed.

[0122] Next, processing is performed with respect to each
of the nodes. At this point, a first node is selected 1626.
Then, a customized knowledge base is produced 1628 for
the selected node based on the supported resources for the
sclected node. In other words, the generalized knowledge
base that is loaded 1602 is customized at operation 1628
such that a customized knowledge base is provided for each
node that is active or present within the system being
managed. A decision 1630 then determines whether there are
more nodes to be processed. When the decision 1630
determines that there are more nodes 1o be processed, then
the manager startup processing 1600 returns to repeat the
operations 1626 and 1628 for a next node. Alternatively,
when the decision 1630 determines that there are no more
nodes 1o be processed, then data acquisition for those base
rules within the customized knowledge bases can be sched-
uled 1632. Once the data acquisition has been scheduled
1632, the manager startup processing 1600 is complete and
ends.

[0123] FIGS. 16C-16E are flow diagrams of manager
startup processing 1650 according to another embodiment of
the invention. The manager startup processing 1650 initially
loads 1652 a knowledge base with resources, rule packs and
configuration information. The manager is, for example, the
manager 200 illustrated in FIG. 2 and includes a knowledge
base, such as the knowledge base 206 illustrated in FIG. 2.
Once the knowledge base is loaded 1652, a list of node
groups is obtained 1654.

[0124] A decision 1656 then determines whether there are
any node groups 1o be processed. When the decision 1656
determines that there are node groups to be processed, then
a first node group is selected 1658. Then, a list of nodes
within the selected node group is obtained 1660.

[0125] Next, a decision 1662 determines whether there are
any nodes in the selected node group that are to be pro-
cessed. When the decision 1662 determines that there are
nodes within the selected node group to be processed, then
a first node is selected 1664. Then, for the selected node, a
list of agent types on the selected node is obtained 1668.

[0126] A decision 1670 then determines whether there are
any agent types to be processed. When the decision 1670
determines that there are agent types to be processed, a first
agent type is selected 1671. Then, for the selected agent
type, a decision 1672 determines whether there is any third
party framework adapter. When the decision 1672 deter-
mines that there is no third party framework adapter, then a
list of domains is obtained 1674. On the other hand, when
the decision 1672 determines that there is a third party
framework adapter, then a list of supported domains is
discovered 1676. Here, the resulting list of supported
domains includes information about product(s) supported by
the third party adapter. The concept of domain in this case
is adapter-specific. For example, for SNMP adapter, all
resources supported by the SNMP master agent on a man-
aged node can be considered belonging to a domain. Another
concept of domain for SNMP adapter can correspond to the

Netflix, Inc. - Ex. 1013, Page 000047

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

resources supported by every SNMP sub-agent on the man-
aged node communicating with the SNMP master agent

[0127] TFollowing the operations 1674 and 1676, a deci-
sion 1678 determines whether there are any domains within
the selected agent type. When the decision 1678 determines
that there are domains, then a first domain is selected 1680.
Then, a list of supported resources and domain version are
obtained 1682. Next, a decision 1684 determines whether
there are more domains within the selected agent type. When
the decision 1684 determines that there are more domains,
then the manager startup processing 1650 returns to repeat
the operation 1680 and subsequent operations so that a next
domain can be similarly processed.

[0128] Alternatively, when the decision 1684 determines
that there are no more domains within the selected agent
type to be processed, as well as directly following the
decision 1678 when there are no domains to be processed,
a decision 1686 determines whether there are more agent
tvpes to be processed. When the decision 1686 determines
that there arc more agent types to be processed, then the
manager slartup processing 1650 returns to repeal the opera-
tion 1671 and subsequent operations so that a next agent
type can be similarly processed.

[0129] On the other hand, when the decision 1686 deter-
mines that there are no more agent types to be processed, or
directly following the decision 1670 when there are no agent
types to be processed, a decision 1688 determines whether
there are more nodes to be processed. When the decision
1688 determines that there are more nodes 1o be processed,
then the manager startup processing 1650 returns to repeat
the operation 1664 and subsequent operations so thal a next
node can be similarly processed.

[0130] Alternatively, when the decision 1688 determines
that there are no more nodes to be processed, or directly
following the decision 1662 when there are no nodes, a
decision 1690 determines whether there are more node
groups to be processed. When the decision 1690 determines
that there are more node groups to be processed, the man-
ager startup processing 1650 returns to repeat the operation
1658 and subsequent operations so that a next node group
can be similarly processed.

[0131] On the other hand, when the decision 1690 deter-
mines that there are no more node groups o be processed,
or directly following the decision 1656 when there are no
node groups, a customized domain and resources list is
produced 1692 based on available domains (and their ver-
sions) and resources information for rules input. Then, a
customized knowledge base is produced 1694 for the
selected nodes based on supported domains and resources,

[0132] A reference resource list can be created using the
most-up-to-date version of each domain type. The reference
resource list is used in rule definitions. For example, a JVM
domain list of resources obtained from one managed node
may be larger in number than the list of resources obtained
for the JVM domain from a different managed node. This is
possible because of enhancement of agent 1204 over time.
The reference resource list contains the maximal set of
domains and resources from the latest version of all the
knowledge domains by name/type. This enables user to
define rules for the most complete manageability of the user
environment 100 (e.g., using one GUI).

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

[0133] Next, a decision 1696 determines whether a knowl-
edge processor has been selected to run. The decision 1696
enables user 1o start the management system for develop-
ment and testing of rules and also, to setup all the managed
nodes and select a set rule packs and rules prior to running
the knowledge processor. The decision 1696 can be facili-
tated by a GUIL. When the decision 1696 determines that the
knowledge processor is (o be run, then dala acquisition for
those base rules within the customized knowledge base can
be scheduled 1698. Aliernatively, when the decision 1696
determines that the knowledge processor is not selected to
run, then the operation 1696 can be bypassed. Following the
operation 1696, or its being bypassed, the manager startup
processing 1600 is complete and ends.

[0134] FIG. 17A is How diagram of master agent startup
processing 1700 according to one embodiment of the inven-
tion. A managed node includes an agent to assist the man-
agement system in monitoring and managing the managed
node. In one embodiment, the agent includes a master agent
and a plurality of sub-agents. Hence, the master agent
startup processing 1700 pertains to startup processing that is
performed by a master agenl. The master agent is, for
example, the master agent 1302 illustrated in FIG. 13.

[0135] The master agent startup processing 1700 initial-
izes 1702 any pre-configured sub-agents for the master
agent. Hence, any standard sub-agents for the master agent
are initialized 1702. Then, the presence of any other sub-
agents for the master agent are discovered 1704. These other
sub-agents can be either in-process process or out-of-pro-
cess. An in-process sub-agent would operate in the same
process as the master agent. On the other hand, an out-of-
process sub-agent would operate in a separate process from
that of the master agent. After the any other sub-agents are
discovered 1704, the discovered sub-agents are initialized
1706. A slatistical analyzer can then be activated 1708 for
cach of the sub-agents. The statistical analyzers provide the
statistics collection for the resources being monitored by the
respective sub-agents. Following the operation 1708, the
master agent startup processing 1700 is complete and ends.

[0136] FIG. 17B is a flow diagram of sub-agent startup
processing 1750 according to one embodiment of the inven-
tion. The sub-agent startup processing 1750 is performed by
a sub-agent. For example, the sub-agent can be one of the

sub-agents 1304 illustrated in FIG. 13.

[0137] The sub-agent startup processing 1750 initially
establishes 1752 a connection with the master agent. The
connection is an interface or a communication link between
the master agent and the sub-agent. Application resources
are then discovered 1754, The application resources are
those resources that are available from an application moni-
tored by the sub-agent. The application resources can also
include user-defined resources, e.g., using an APL Next, the
master agent is notified 1756 of the status of the sub-agent.
The status for the sub-agent can include various types of
information. For example, the status of the sub-agent might
include the resources that are available from the sub-agent,
details about the version or operability of the sub-agent, etc.
Next, a statistical analyzer can be activated 1758 for the
sub-agent. The statistical analyzer allows the sub-agent to
perform statistical analysis on resource information avail-
able from the sub-agent. Following the operation 1758, the
sub-agent startup processing 1750 is complete and ends. It

Netflix, Inc. - Ex. 1013, Page 000048

US 2004/0019672 Al

should, however, be recognized that the sub-agent’s startup
processing 1750 is performed for each of the sub-agents
associated with the master agent.

[0138] FIGS. 18A and 18B are flow diagrams of trigger/
notification processing 1800 according to one embodiment
of the invention. The trigger/notification processing 1800 is,
for example, performed by a manager, such as the manager
108 illustrated in FI1G. 1. In particular, the trigger/notifica-
tion processing 1800 operates to trigger processing so that
management information can be recorded and utilized,
including initiation of notifications as appropriale.

[0139] The trigger/notification processing 1800 begins
with a decision 1802 that determines whether a new fact has
been asserted. When the decision 1802 determines that a
new fact has not been asserted, then a decision 1804
determines whether a notification has been received. Here,
the notifications could arrive from managed nodes. When
the decision 1804 determines that a notification has not been
received, then the trigger/notification processing 1800
returns to repeat the decision 1802, Once the decision 1802
determines that a new fact has been asserted or when the
decision 1804 determines thal a notification has been
received, then a fact is asserted 1806 in the inference engine.
The inference engine then processes the fact in the manager.
For example, in the case of the manager 200 illustrated in
FIG. 2, the inference engine is implemented by the knowl-
edge processor 208. Nexl, a log entry is made 1808 into a
log. The log entry indicates at least that the fact was asserted
1806.

[0140] Next, updated facts are retrieved 1810 for one or
more rules that are dependent upon the asserted fact. Hence,
the inference engine receives the asserted fact and deter-
mines which of the rules are dependent upon the asserted
[act, and then for such rules, requests updated lacts so that
the rules can be fully and completely processed using
up-to-date information.

[0141] TFollowing the operation 1810, a decision 1812
determines whether the trigger/notification processing 1800
should stop. When the decision 1812 determines that the
trigger/notification processing 1800 should stop, then those
facts no longer needed are discarded 1813, Following the
operation 1813, the trigger/notification processing 1800 is
complete and ends. For example, a user might terminate the
operation of the manager and thus end the trigger/notifica-
tion processing 1800.

[0142] Alternatively, when the decision 1812 determines
that the trigger/notification processing 1800 should not stop,
then additional processing is performed depending upon the
type of resource. For example, the resource or the rule being
processed can signal for data acquisition, corrective action
or debug operations. In particular, a decision 1814 deter-
mines whether data acquisition is requested. When the
decision 1814 determines that data acquisition has been
requested, then an updated fact is selected 1816. On the
other hand, when the decision 1814 determines that data
acquisition is not being requested, then a decision 1818
determines whether corrective action is indicated. For
example, a rule within the knowledge base can request a
corrective action be performed. In any case, when the
decision 1818 determines that a corrective action has been
requested, then the corrective action is performed 1820,

[0143] Alternatively, when the decision 1818 determines
that a corrective action is not being requested, then a

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

decision 1822 determines whether debug data is being
requested. When the decision 1822 determines that debug
data is requested, then debug data is obtained 1824,

[0144] Alternatively, when the decision 1822 determines
that debug data is not being requested, then a decision 1828
determines whether a user-defined situation has occurred.
When the decision 1828 determines that a user-defined
situation has occurred, then an action 1830 is taken noting
the occurrence of the user-defined situation.

[0145] Following any on the operations 1816, 1820, 1824,
1830 or the decision 1828 when a user-defined situation is
not present, a log entry is made 1826 into the log. The log
entry indicates the firing of the rule along with the specifics
of the resources (including their values) on the left-hand-
side (or “if” part of the rule). Following the logging opera-
tion 1826, the trigger/notification processing 1800 returns to
repeat the operation 1806 and subsequent operations so that
additional facts can be asserted and similarly processed.

[0146] Additionally, a user of the management system
may interact with a Graphical User Interface (GUI) to
request a report. The report provides information to the user
aboul the management state of the one or more managed
products within the enterprise or computer system being
monitored.

[0147] FIG. 19 is a flow diagram of GUI report processing
1900 according to one embodiment of the invention. The
GUI report processing 1900 is, for example, performed by a
manager. For example, the manager can be the manager 200
illustrated in FIG. 2.

[0148] The GUI report processing 1900 can begin with a
decision 1902 that determines whether a report has been
requested. When the decision 1902 determines that a report
has not yet been requested, the GUI report processing 1900
awails such a request. In other words, the GUI report
processing 1900 can be considered to be invoked once a
report request has been received. In any case, when the
decision 1902 determines that a report request has been
received, then log data is retrieved 1904, For example, with
respect to the manager 200 illustrated in FIG. 2, the log data
can be retrieved 1904 from the log module 220. After the log
data is retrieved 1904, a report is generated 1906 from the
retrieved log data.

[0149] The report might indicate the various facts and
rules that have been utilized by the management system over
a period of time. For example, a report might specify those
of the rules that were “fired” and for each such rules, when
it “fired,” why it “fired,” and action (if any) taken. Addi-
tionally, a report might include details on the actions taken
and related values. Still further, if one of the actions taken is
a debug action, then the report might also include debug
data. A report can also be targeted or selective in its content
based on criteria. For example, a report can be limited with
respect to one or more of a certain time range, an event,
exceptions, domains and/or rule packs.

[0150] Once the report has been generated 1906, a report
delivery method is determined 1908. Here, the report deliv-
ery method can be pre-configured by an administrator of the
management system to deliver reports to cerlain individuals
or locations automatically. For example, the report can be
delivered in the form of a notification that can be carried out
using a pager, a voice mail, a voice synthesized telephone

Netflix, Inc. - Ex. 1013, Page 000049

US 2004/0019672 Al

call, a facsimile, etc. Once the report delivery method has
been determined 1908, the report is delivered 1910 using the
determined report delivery method. It should be understood
that the report delivery method can vary depending upon the
nature of the report. For example, urgent reports can utilize
one or more delivery methods that are more likely to reach
the recipient immediately, such as a page or a mobile
telephone call. Hence, the report can be delivered in a
variety of different ways depending upon the application,
circumstances and configuration of the management system.
Following the delivery 1910 of the report, the GUI report
processing 1900 is complete and ends.

[0151] FIGS. 20-29 are screen shots of a representative
Graphical User Interface (GUI) suitable for use with one
embodiment of the present invention. These screen shots
detail how to create and maintain rules using the GUL

[0152]

[0153] To add (create) a rule, a user would access an Add
New Rule page, such as shown in FIG. 20. Here, the user
would perform the first step of four steps to follow in order
to add a new rule. Namely, the user would enter a name and
deseription for the rule and select a rule pack it belongs to.
Upon pressing a Submit button, the process proceeds to the
next step where you define the situation or the left-hand side
of a rule, i.e. the conditions under which the rule will fire. Or,
in other words, a list of situations and events (When this
happens . . .) which lead to the actions specified under the
“Then define situation or do this . . . ™ header, which is
referred to as the right-hand side of the rule. Predicates of the
left-hand side are called antecedents and elements of the
right-hand side are called consequents.

[0154] As shown in FIG. 21, to build the left-hand side of
a rule, first choose a knowledge domain from a Domains list
on the left side of the screen. After a domain is selected from
the list the selection box below will be show all resources of
that domain. There are two kinds of domains, physical and
special (or virtual). A physical domain represents a collec-
tion of resources pertaining 1o a software component or an
entire software product, for instance the Java Virtual
Machine, as opposed to a special, or virtual domain. A
special domain represents a set of resources, which aren’t
associated with any “physical” knowledge domain. Instead
such resources are used by the manager as building blocks
to express conditions of the left-hand side or form actions on
the right-hand side of a rule. In the representative rule being
built, both a physical domain resource and a virtual domain
resource are used. First, select the jvm domain from the list
of domains and two resources of that domain to the right-
hand side of the rule (see FIG. 21).

[0155] Once we have selected all the resources used to
define the situation, the “proceed 1o next step” butlon is
selected. The next step is where relationships between the
selected resources and/or their thresholds are set to configure
the condition for the rule to fire. Now, add a condition to the
left-hand side of the rule. This condition basically states that
when the amount of heap memory currently in use is greater
than a certain percentage of the maximum heap memory
available, the rule should fire. In order to add a condition to
the left-hand side of a rule, choose the Filter special domain.
As shown in FIG. 22, one of the domain resources in the
selection box will be Condition. The user just selects “Con-
dition” and clicks the add button.

How to Build a Rule Using Resources

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

[0156] Next, an Edit Parameter button for the condition is
selected and the desired condition expression entered. Here,
the condition expression shown entered in FIG. 23 binds the
two JVM resources. The condition is typically defined as an
expression. A simple example of a condition expression is
(a=h).

[0157] Let us look at detail how we came up with the
condition expression in FIG. 23. Please refer to FIG. 22 for
better illustration. Under the “When this happens . . . "
header note that there are three distinet entries one below the
other as follows

1 jvm_HeapUsed
2 jvm_MaxHeapSize
3 Condition

[0158] Here ?rl1, ?r2 and ?r3 are resource variable names
assigned by the system 1o the resources jvm_HeapUsed,
jvm_MaxHeapSize and Condition resources respectively.
This is to facilitate the definition of the condition expression
using the resource variable names only. A simplified
example of a condition expression using resource 7rl is
(?r1>1000000), which states that the rule is considered true
(or, gets “fired”) in case jvm_HeapUsed exceeds 1000000
bytes or 1 MB. Note that, in this expression ?rl and 1000000
are operands and > is a comparator operator in between the
two operands.

[0159] In the condition expression 7r1>(?r2*060) in FIG.
23, the condition siates that the rule is considered (o be true
if JVM heap being currently used (jvm_HeapUsed), 7rl, is
greater than 60% of (or 0.60 times) the maximum allowed
heap size (jvm_MaxHeapSize), 7r2.

[0160] Now, as the left-hand side of the rule has been built,
let us specify using the Configure Action(s) page shown in
FIG. 24 to indicate what we want the system to do when the
condition becomes true. Let’s request the system produce a
report on the class whose objects occupy most of the JVM
heap and request a report on objects of the classes thus
identified are allocated on the heap during the following 15
seconds.

[0161] Setting Up a Rule for Auto-Diagnostics

[0162] In order to test the rule that has been created (and
also make sure that all components of the products are
installed properly and communicate with cach other), the
manager should be st so that it considers the rule when the
rule evaluation engine is started. Every rule can be config-
ured in a flexible way. For instance, it can be set to be tested
every 10 seconds, or every minute, or every hour. If you
want a trial run of the rule as you run the engine, sclect a
special option on the list of possible intervals, “once only,”
can be chosen. The testing interval can be set on the same
Rule Editing page as shown in FIG. 25.

[0163] Chaining of Rules

[0164] The rule shown in FIG. 24 is a rule that defines
conditions for an abnormal situation. If the defined situation
oceurs, the system is requested 1o take one or more actions.
In this representative example, the actions are the two
request for jvm_TopHeapObjects and jvm_AllocTrace on
the right-hand side of the rule, under the “Then define

Netflix, Inc. - Ex. 1013, Page 000050

US 2004/0019672 Al

situation or do this . . . " header. This kind of rule is useful,
but its capabilitics are limited. If instead of taking action
right there in the rule, a situation is defined, then another rule
can be built so that it gets triggered when this situation has
been encountered. Through this mechanism, rules can be
chained and hierarchies, or trees, of rules can be built.

[0165] For example, for this rule to be turned into a rule
that can potentially be chained to other rules, a new situation
has to be defined, see FIG. 26. The situation can then be
added to the rule as a consequent, see FIG. 27.

[0166] Thereafter, as desired, another rule or a set of rules
can be defined with JVMLowMemory as the antecedent and
the system will automatically chain these rules, i.c., the set
of rules defined with JVMLowMemory on the left-hand side
of the rule, will fire when the situation in FIG. 27 is declared
in the modified rule in FIG. 24.

[0167] Editing Rules

[0168] A previously defined (added) rule can be edited. To
edit an existing rule, go to the Rule Management page, such
as shown in FIG. 28, select an existing rule and click on the
Edit button.

[0169] Starting and Stopping the Rule Engine

[0170] After a rule or a chain of rules has been created the
system is ready to monitor the software on the managed
nodes. In order to initiate this process, from the Rule
Management page, start the rule engine by clicking on the
(Re)Start Engine button. It the rules engine has to be
stopped, press the Stop Engine button in the Rule Manage-
meni page. If any ol the rules were edited or new rules were
added and you want these changes to take cffect. the
(Re)Start Engine button in the Rule Management page has
to be pressed. This will cause the engine to stop, automati-
cally pick up any changes that have been made, and restart.

[0171] Note that every time the manager process is started,
the Rule Engine status can be Ready. The current status of
the engine is displayed in the top right hand corner in the
Rule Management page. For the rules to be fired according
to time and condition set in its definition, the (Re)Start
Engine button in the Rule Management page needs to be
pressed explicitly. This changes the status of Rule Engine
from Ready to Running. You have to do this every-time you
add or make changes to rules and want the Rule Engine to
pick up the additions/changes. As the engine gels into the
running state, it checks resource values of the rules set up for
periodic checking. In case all conditions on the left-hand
side of such rule become valid, the engine will proceed with
the actions on the on the right-hand side of the rule, after
which the rule will become blocked for as long as the
conditions are valid. Then, the rule will be marked active
again. All activities of the engine in respect to rule firing and
subsequent actions are reflected on the Report page. The
page can be accessed through the Report button on the Rule
Management page, such as shown in FIG. 28.

[0172]

[0173] The Report page for our example above, with heap
usage reduced to 1% and allocation tracing time reduced to
5 seconds, is shown in FIG. 29. The Report page has several
functional buttons which are self-descriptive: a Refresh
button is used for updates of the page so it reflects the latest
report information, a Clear button will render the report page

Report

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Jan. 29, 2004

cmpty, a Mail button will allow the report to be sent via
¢-mail and the Done button will take you back to the main
page, the Rule Management page.

[0174] The sample report shown in FIG. 29 is a result of
running of the rule defined and shown in FIG. 24. The report
reflects all important events associated with the system
having run with the rule being activated for diagnostics. The
first line ol the report indicates that rule JVMHeap was fired
and for what system the conditions of the rule became true
and when it happened. Then values of the resources on the
left-hand side of the rule, which led to the rule being
triggered are shown. Under the Actions taken header the
resources of the right-hand side are shown. First, the list of
the classes whose objects take up most of the space on the
JVM heap is requested. Filters excluding all standard classes
(java.*, javax.*) are applied so that only two classes appear
on the list. This is because the application run by our J'VM
is truly simple. The second action is a 15 second allocation
trace report for objects of the classes found on the top heap
objects list. Under jvm_AllocTrace you can see all alloca-
tions of objects of the two classes. Each allocation trace
shows where, in what method of what class, it took place. It
also shows the line number in the source code for that class,
if available (such would be available when the source code
was compiled without disabling the debugging information
generation).

[0175] The invention can be implemented in software,
hardware, or a combination of hardware and software. The
invention can also be embodied as computer readable code
on a computer readable medium. The computer readable
medium is any data storage device that can store data which
can be thereafter be read by a computer system. Examples
of the computer readable medium include read-only
memory, random-access memory, CD-ROMs, magnetic
tape, optical data storage devices, carrier waves. The com-
puter readable medium can also be distributed over a net-
work coupled computer systems so that the computer read-
able code is stored and executed in a distributed [ashion.

[0176] The many features and advantages of the present
invention are apparent from the written description, and
thus, it is intended by the appended claims to cover all such
features and advantages of the invention. Further, since
numerous modifications and changes will readily oceur to
those skilled in the art, it is not desired to limit the invention
to the exact construction and operation as illustrated and
described. Hence, all suitable modifications and equivalents
may be resorted to as [alling within the scope of the
invention.

What is claimed is:
1. A management system for at least one compuler sys-
tem, comprising:

a plurality of agents residing within managed nodes of a
plurality of different products used within the computer
system; and

a manager for said management system, said manager
being operable across the different products.

2. A management system as recited in claim 1, wherein
said management system further comprises a knowledge
base.

Netflix, Inc. - Ex. 1013, Page 000051

US 2004/0019672 Al

3. A management system as recited in claim 2,

wherein a plurality of different users across multiple
organizations contribute 1o the information within said
knowledge base, and

wherein said knowledge based is shared and used by a
plurality of different organizations 1o manage their
computer systems, the different organizations having
the same or different product configurations on their
compuler systems.

4. A management system as recited in claim 2, wherein
said knowledge base is updated by contributions from other
users, and an update 1o said knowledge base is distributed to
said manager via the Internet.

5. A management system as recited in claim 2, wherein
said knowledge base contains information pertaining to the
difterent products.

6. A management system as recited in claim 5, wherein the
information pertaining to the different products includes at
least rules.

7. A management system as recited in claim 6, wherein
said manager further comprises an inference engine that
evaluate the rules.

8. A management system as recited in claim 2, wherein the
information in said knowledge base is described using
thresholds on resource information.

9. A management system as recited in claim 2, wherein the
information in said knowledge base is described using
thresholds on resource information and relationships
between resource information from the different products.

10. A management system as recited in claim 2, wherein
the information in said knowledge base is provided thereto
by a plurality of different persons located at different posi-
tions.

11. A management system as recited in claim 10, wherein
the different persons provide the information to said knowl-
edge base through use ol graphical user interfaces.

12. A management system as recited in claim 2, wherein
said agents provide said manager with only symptom infor-
mation that is relevani to that identified within the knowl-
cdge base as a possible known causing symptom for previ-
ously observed problems.

13. A management system as recited in claim 12, wherein
cach of the different products being managed has at least one
application component, and

wherein the symptom information pertains to resource
information form the application component of the
different products.

14. A management system as recited in claim 1, wherein
said manager determines which of at least one of the
dilterent products a problem arises.

15. A management system as recited in claim 14, wherein
after said manager determines which of at least one of the
different products the problem arises, initiates a reporting
and/or corrective action.

16. A management system as recited in claim 1, wherein
said management system performs just-in-lime or near real-
time diagnosis of which of at least one of the different
products a problem arises or is likely to arise.

17. A management system as recited in claim 1, wherein
said management system operales on a separale computer
that is connected to the computer system being managed.,

Jan. 29, 2004

18. A management system as recited in claim 1, wherein
said management system is for a plurality of computer
systems, and

wherein said manager is central and operable across the

different products on the different computer systems.

19. A management system as recited in claim 1, wherein
said knowledge base is updated by contributions from other
users, and an update to said knowledge base is distributed to
said manager through knowledge data files.

20. A management system in claim 1, wherein the man-
aged nodes can be managed by more than one of said
management systems.

21. A method for managing an enterprise computer sys-
tem, said method comprising:

receiving a fact pertaining to a condition of one of a
plurality of different products that are operating in the
enterprise computer system;

asserting the fact with respect to an inference engine, the
inference engine using rules based on facts;

retrieving updated facts from the inference engine from
those of the rules that are dependent on the fact that has
been asserted; and

performing an action in view of the updated facts.

22. Amethod as recited in claim 21, wherein the action in
at least one of a corrective action or a debug data acquisition.

23. A method as recited in claim 22, wherein the correc-
tive action or the debug action further asserts at least one fact
with respect to the inference engine.

24. A method as recited in claim 21, wherein said method
further comprises:

making a log entry.
25, A method as recited in clam 24, wherein said method
further comprises:

retrieving log data from the log entry; and

generating a report from the log data.
26. A method as recited in claim 25, wherein said method
further comprises:

determining a report delivery method; and

delivering the report using the determined report delivery

method.

27. Amethod as recited in claim 21, wherein the inference
engine obtains resource information from the different prod-
ucts to process rules based on al least one fact already
asserted.

28. Amethod as recited in claim 21, wherein the different
products send resource information to the inference engine
1o process rules that depend on at least one fact representing
the resource information.

29. A method for isolating a root cause of a software
problem in an enterprise computer system supporling a
plurality of software products, said method comprising:

forming a knowledge base from causing symptoms and
experienced problems provided by a disparate group of
contributors; and

examining the knowledge base with respect to the soft-
ware problem to isolate the cause of the software
problem to one of the software products.

Netflix, Inc. - Ex. 1013, Page 000052

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

30. A method as recited in claim 29, wherein the knowl-
cdge base further includes corrective actions for certain
software problems.

31. A method as recited in claim 30, wherein said method
further comprises:

automatically performing a correction operation to
attempt correction of the software problem, the correc-
tion operation being associated with one of the correc-

Jan. 29, 2004

tive actions within the knowledge base that is suitable
for use with the software problem.
32. A method as recited in claim 29, wherein the causing
symptoms pertain to resources of the software products,
33. A method as recited in claim 29, wherein a repeating
symptom cause can be ignored (il after the cause ceases (o
exist at least once.

Netflix, Inc. - Ex. 1013, Page 000053

IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

