
1111111111111111 IIIIII IIIII 11111 1111111111 11111 lllll lllll 111111111111111 1111111111 11111111
US 20040019672Al

(19) United States
(12) Patent Application Publication

Das ct al.
(10) Pub. No.: US 2004/0019672 Al
(43) Pub. Date: Jan. 29, 2004

(54) METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS

(76) inventors: Saumitrn Das, Santa Clara, CA (US);
Stepan Sokolov, Fremont, CA (US);
Bill ' Yuan-Chi' Chiu, El Monte, CA
(US)

Correspondence Address:
BEYER WEAVER & THOMAS LLP
P.O. BOX 778
BERKELEY, CA 94704-0778 (US)

(21) Appl. No.:

(22) Filed:

10/412,639

Apr. 10, 2003

Related U.S. Application Data

(60) Provisional application No. 60/371,659, filed oo Apr.
10, 2002. Provisional application No. 60/431,551,
fi led on Dec. S, 2002.

Publication Clas.5iticatioo

(51) Int. C l.7
••••.......... .••..•....• G06F 15/173; G06F 15/ 16

(52) U.S. C l. 709/223; 709/202

(57) ABSTRACT

A management system for a computer system is disclosed.
The computer system operates or includes various products
(e.g., software products) that cao be roaoagcd in a manage­
ment system or collectively by a group of management
systems. Typically, tbc management system operates on a
computer separate from the computer system being man­
aged. The management system can make use of a knowledge
base of causing symptoms for previously observed problems
at other sites or computer systems. In other words, tbe
knowledge base can built from and shared by different users
across different products to leverage knowledge that is
othcrwi5c disparate. The knowledge base typically grows
over time. The management system can use its ability to
request information from the computer system being man­
aged together with the knowledge base to infer a problem
root cause in the computer system being managed. The
computer system being managed can also request the man­
agement system to process its knowledge base for possible
problem cause analysis. The management system can also
continually identify persisting problem causing symptoms.

\oCo

10'2.-l

[0'2.-2.. 0

•
6

(04-1.

Netflix, Inc. - Ex. 1013, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 1 of 36 US 2004/0019672 Al

a
0

rn ----i
t'.l

t tf
~ 0
~ ;1.

\
"1
0 -

[U~ J-
C)

a
~~
~ 0
~ :z.

~7 ~
c:, • e Ll

iw
'2 f;

"1 4 2
l ~

c-1
0

~

' rJ
0 -

-
0)

LL

Netflix, Inc. - Ex. 1013, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 2 of 36 US 2004/0019672 Al

0
N

..;

,-J

Netflix, Inc. - Ex. 1013, Page 000003
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 3 of 36 US 2004/0019672 Al

[l 560 K~wLE:bGe .D-)PUT GUI"

L. 302

I 12£~ OOT~ C';UI.
I

l_ >0.1r

[AOL½\ tw l ~-C'2.. ,,..,_ ""'(olR. Gsu:c]
L

30<o
GUI

FlG . '3

I
~NOU)U;;;C)(s1;- fV'..f!,,.J,,..j A.GE12-

!/ 4oo

K~E:
KNQU.) Lc::DGE_ Co°'=

RUL.E-S I DE:f.S' -~ ,,.. -- . U)iYE:. ""

G,€:10E:~To'R..

4D4 402. 4tOS
i ,) :--1

\4Jev.)Lf::{¼r-tc:: ~E: ~c..l:D6t
Et.J.WO!i:.fl-/ pt.\ fOil..TE-ll./ t) p C 14.,"E-

'=:~ PoYL~n.. MAN"&E--(..
1)€ C,.C> 'O'c' '(I...

(

46'=>

'

Netflix, Inc. - Ex. 1013, Page 000004
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 4 of 36 US 2004/0019672 Al

Netflix, Inc. - Ex. 1013, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 5 of 36 US 2004/0019672 Al

... - .. J . ·- .. -W· ./=;-_ ·----······---·· ·- ----·-···
a_ ~ ~

. - ······-1-· -·~ -·- -o:; " - -··· ·-·- ·--------· ·---··-· .. •-·

:1: 1 z -t -···-··••-·· ... - , ··::z:· ···--.J-·- ··-·-··· · ·-····--·· , .. ·- .. .

~ r; x' :: 2
... .. h . f ... t . r· 1 . -. ·t

rJ·f . "3 ··· i' ·~· { . -~- ~
rl ... ~ G - IP ., . . ~ . ·- ---· I ,..,
\J) -~>'a._ f • t- +; \J J

·· ··----··- ··~ --- -· -J -JZ··· 0-J . . -~ ... -.... ··- '
. ·--- --- · ··-· - --·~· -· .. --- -- -·· -·-;> ·--··G;' _ .. i ... - U) ...

\!I t1 ::,- <(-
.. -... ·- ·-· ~ ·-· . -~ .. - . - .. \.L-.

·-r ·········· ~ ···oj'A_~--i · ·· - ..
. ' -~·--·-·· . ·-· _, t;; -- . --i3;..

C N . ~ - ~ ... r-·. ... -·
. - ... ". -· -·-··· · -- - ·-----r··-··· :-·-·· . . -·

~

Netflix, Inc. - Ex. 1013, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 6 of 36 US 2004/0019672 Al

~ -8
~
0

~
J) -I,

~
6

C
0 -v?

C. ~ 0

-t ~
\)) x
J \.!..J
)(

1 UJ "i' ~

~
Vl ?

.:> '2 h ...
.. -

VI
~

:)
\

1
s::
s:

-3
,. ". c.J ~

~
\J)

r;; ...
0) c.9 ~ fa-,~ -3 LL

~ v

Netflix, Inc. - Ex. 1013, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jru1. 29, 2004 Sheet 7 of 36 US 2004/0019672 Al

0
0
'9

~
UJ
J
:)
l,J
w :c u
\()

0
\.9

g]I
~ ~ ~
..,!) ~
~ t-l

i
'9

Netflix, Inc. - Ex. 1013, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 8 of 36 US 2004/0019672 Al

I
I

I
I
I
I
I
I
\
I
I

I
I
1

I
I

C

~
l -~ -

CP
C)
r
l

2 a.1
t~~ 8 lD .t

-

____ ___, ___ _

0 -r-
~

Ill

~ "~ JAi
~ ~c;;!5
~~5JJ
1A&1

i
~

Q ~
~ w uJ ~ _I

2 a ~ ~ t 2- -~ i

I

~ ~ \/l

Ll~~c;l

\. ~~it
1 2 J d.
\-- d ,;:! 0
1/) i \.1. <!

~

~t
~~ ;2
:z ,;t_

IJ.J ~

L I

I

:'--

-- - - - -

N
r-

<

\

I
lr----

1 \D
tt I

J

)

}

I

I

I
l

~'

- - i

Netflix, Inc. - Ex. 1013, Page 000009
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 9 of 36 US 2004/0019672 Al

Fl G~ 9>

Netflix, Inc. - Ex. 1013, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 10 of 36 US 2004/0019672 Al

FlG,-_9 p.

A6,iB

f< t0ou..) LE .DG E
Dc¼A A. I 0

A. 9oz.

J

Netflix, Inc. - Ex. 1013, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 11 of 36 US 2004/0019672 Al

f-[G. io

Netflix, Inc. - Ex. 1013, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 12 of 36 US 2004/0019672 Al

()
V)
a ___,,

~ cJ l/J

' ~ ~
~~u
~\LJ~

cJ~ i ~ C

+ tJ ---~[.......

. ~ ~ ~
~ 4 C[~~

~
v,
<:)

Netflix, Inc. - Ex. 1013, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 13 of 36 US 2004/0019672 Al

f lc.oo

~f'f,,)~D
, - mcouc...T -.. 1..

\

I_ \ 20'2..-(

µfl.1-,J~D,
-pnoDCX:...T

2.
., ' /\G~N--r -

~ l-Z.O • 2.-2
0

•

MwN:::,E:~
'Pn..ot:i\.X...T

- - N

I f\PP. AGENT l
I

ll'2.D4 J l_ ~ 2-0 '2..- (\

Netflix, Inc. - Ex. 1013, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 14 of 36 US 2004/0019672 Al

f 1~00

Pn.orcx::.cL ,._ l1!08-6-.. -• ~ ~u&-AGEl-Jl"" ~
~ -

(!.o I(.,\ MUJ..)\cJ,\"'t l olJ
_ ___,.

.1.. -
p.,\.ObUL.e:

'L l "3c:4-t

t:>/2.cTac...ot.. B \'30$-b
,... i-,, .sv 8 - AGE:1-.. rr - CIYMM\JfJ\C.AT\CN - - k>

MoOOLE: Mi'-&,~ 2.
~~T

:... -
l (3o4 -l • -

0

•
• •
•

1> rt.oic>C.CL- I"\ 110'8-M

- {'.mLW;µ.U~rlC:tl ,-.i..,-

,-.,..OW't.,.E; S~ -~NT - ~ ~

N <!.cM.W\l)~q.)
M.D"but.-E;,

L l3D2-
l "'3o4- - h

Fl G . l3

Netflix, Inc. - Ex. 1013, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 15 of 36 US 2004/0019672 Al

l4-08 14\0

'Sf~ilS Tl~L­
. AA) A-L-\.("-?; E-'R

f<ff,.l STtl-Y
1> ~ -\""~ '5-"{'t)--(j:

Fl G. l 4

• ,
•

)14oc

Netflix, Inc. - Ex. 1013, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 16 of 36 US 2004/0019672 Al

l

'St"P..'t"l 't,tl~\....

~~L-Y~~-R

E-\JE:l-JT
Fo""(L.t_,u 'A ~D UJ Cr
~t)D"Ut:

f ISOO

I

Netflix, Inc. - Ex. 1013, Page 000017
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan 29 2004 Sh t 17 f 36 . , ee . o

lboZ

D8Tl\Hv l..L~i oF 1-..i,C,OE~ \.).)rn-\t0
i'-l e:- S E-LE:ct"E-C, Not>E G.'Cl.OUf>

05'{""A.\tJ 1..-lST OE=- 00.-...\A.lµS
Lv ITu U.J Tl-\ E- S {;:l,ECX~D NoDe:

US 2004/0019672 Al

✓ U,oo

lbt o

£=l6- l'=,F\

Netflix, Inc. - Ex. 1013, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 18 of 36

0t3{"A.~0 U ST D~ S"UPP~EC>
~soun.c.1:::s

US 2004/0019672 Al

? 'r\.,o-Ct)<...,c A W~TC>W\ l~E-t> ~LE~
l5A.$ E Fort TNE: s~·LE:c..TE~ ~CE
13.f6E:t) etv -r-HE: .Sl?P-PO'fL1E-.b ~E-~~~
FoYL "tH c- s. ~ uec..~ I:::> N C>be-

s~ e-u:::iuL-E ~-rA Ac::.~u I S"J:""T,oiv

Fo'(c.. ~~&E: {'ZULES Wtn.t. \ "-l

THE- c..v.$;ro W\ l :c \::- t> "'WOu,.)~&E
'&-A.SE:.-~

Netflix, Inc. - Ex. 1013, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 19 of 36
US 2004/0019672 Al

J {~~o

.. t-oA i ·~·ua:vLE[)(:r,c e·~E·· f:-a'2. -~lt.clE~.,

..... -- ~uµ: ?:"~~ -~ - ~B.~I!o.~ ~ -":~•- ·· lb~"t-

oe~N-· U-ST-- O~-NODE-s·-·Wl"'n•t • ...,
,~e SEt.E-CTlcC t,Jo£>1:- C:r!tol..)'P

. J~b2

YE,
s~i..ed .. t:iciT l~~- -i\~a5r·· fvpi-

(~60

l)lS~<L usr OF
··s ~e·t> ~1'i t-i~ - · · ·- ·

Oe;f-All'J U!,T 0~

····· · · °tx)-MA.rtv..S'

Netflix, Inc. - Ex. 1013, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 20 of 36 US 2004/0019672 Al

t (;;igo

O~\f,.) U.ST Cr SUf>Ptstl."tle:~ 12.t~~c..~s
~flJt> l:>OMA-it-..) ve-nslot---)

FtG .

Netflix, Inc. - Ex. 1013, Page 000021
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 21 of 36 US 2004/0019672 Al

. ··- · ·· ···- ·· ··· ··· · · ··-·· - ·· ·- ······ _ - · · -...

"P~ A.. c,.Q~t.e~M L:c.~ .. - t.>oM.4. lt:v . f\.~ -
~~ES. L.t ~ T 13A-~E D ON f>-.Vf>.-, LA.BLE
. be>M~ft-:)S . (_,-~~- 't"f..lEY1t: ·vE"rtsro-tJs) . Al\Jt:> - ·- , .

1':-~~<::E.S _i~_i=-9 1. F~ ... RVU;;~ -~?t.2.T"
USL~ &or

ifs~-~~f~Jb-~Jt~-t~~~~~ ··-· '~14:
·- · ··Otv ~tJ-flP6'(2..TE-{) ·-DDM·A·\!0~----fl..~- ---~C-€-S·· · -.....

· ~Ct\t?tJVt;e · ·P-i!.TA - ,'liC;~·S·(Ttc,r,.;> · ··

~ -~ - 'e;,~~ --~~-~ -~ -.\~.L~ ~--·-- ­
C...U~tO"tl..A\.t~l> \<.tvOW U;-b(:s-E ~~S~

,. ,., , ••• • • .. •w••-•- ••• ~,., .,. • - - ••• "'•• • •• •- ••• o

F .. l .G . . \ <.a E;.

Netflix, Inc. - Ex. 1013, Page 000022
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 22 of 36

1100

US 2004/0019672 Al

~~TJ ;

t,02 -.....r :[f'.)\-rt~L-t "let:. ~""'< -PYl-~ - ~~A.~t:>
SUI?> - A.~ENTS FOl'L "'tl.!~ MA~'t"Ea.. ~~t-.)i

.J
DlSCbV eit P,..t.:J\(OTu'E:R ~1)8-A~t-Jt'~
Fort. Tl4'E: ,V...~~~t:::R. ~~T

(1~ ._r :tl.) \ n A. Ll 'l; E- -ntE- 1)f S COVE '2.te l)

5U'!:>- P....~~T.S.

{lt!B '-J
AC--tt VAi'e sr>4 i I 5 T C c...A L. A~AL)-J { cE:R

~ E:1'CI-\ 01=- "il4E- 60'3 - ~fc: tvT.S

(&-1~

Netflix, Inc. - Ex. 1013, Page 000023
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 23 of 36 US 2004/0019672 Al

s~, J

~ ~ -nl ~ l,\ c;" C.OT-J1v~cn0t-J wrr~
v--.-11 Sl-,u~ t\AA. s ,·e:a. f\6s~tJT

bl~C.O\Je{1.. AWLLGJU'"tOf\J 12.ESO<Jt2.c.E .5 ""\.., lis4-

I r,.JOil ,:.:y TI-IE- MA~TE::fL 4.6-E-NT
i----

0 ti:: $TATV~

I\ c...-n. V P..lE: ST~ Tl '$Tl CAL A~Jl.'L'(l ~'&;-fl. /'- \15-e

(e:r-Jb

F\G, i.1B

Netflix, Inc. - Ex. 1013, Page 000024
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application PubUcation Jan. 29, 2004 Sheet 24 of' 36 US 2004/0019672 Al

1800'\.

C!l------------f>t

le,\O

{2.Eil'tl E:V'f:. llf'D~TE- C:>

~p.c..TS Fon. fq,)£..E: ~

tJE.PE~>t,E:~T ~ i ~E:
"~~E:,1..TE:t> ~C...7"'

F lG, LBA

Netflix, Inc. - Ex. 1013, Page 000025
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 25 of 36 US 2004/0019672 Al

l8?...0

Pt&- l8 8

'·

S~L.EcT AU V~P~~

"FA.<:.,

' .

V'AAK~· L~C"::r E1Jrtl.'{ ,- · -l~"2..b
Wt Ttt f<_.l) LE- -U0 FOAA A. T/Ot-}

Netflix, Inc. - Ex. 1013, Page 000026
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 26 of 36 US 2004/0019672 Al

l'i to

Gte:u"=f\..ATE RtPo(rr F=~

T~Ct ~ETR.l l:VE-1) ~ D~TA

b~Ll VE:it -n.tE RE-fc(l...T USL#JG:­

Tu i::: t)E;rERJ,\.,\.llVE:~ R.E-f'OR.T
"b c: L.. l \/ te: l'l-Y M t::"t"!-,l ®

j l'loo

Netflix, Inc. - Ex. 1013, Page 000027
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application PubUcation Jan. 29, 2004 Sheet 27 of' 36 US 2004/0019672 Al

Slep 1 : SFT RULE NAME U

Choose o Rulo ruck

I default .:J

µp~ i~ the r-ul• 1-hme

eopRute

heel< beop 1 t usage u
greater ~hon 60~

•.

,·,

FIG. 20

.. :

1 yp·~ in a"nd ~ubmlt both,.a °Kule name a l"ld
de,cnpt';'r, which wdl be d·splayed here.

. ...

Netflix, Inc. - Ex. 1013, Page 000028
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication J an. 29, 2004 Sheet 28 of 36 US 2004/0019672 Al

~,., : -: '~ -·- -,~:~~-:-
flt_ep 2 : f .~n ligure Situ~_tioii(s)Q ; ·' ""

;.~ ..
• s1:11t;~l f:omo!1 1f1 fJ
l ivm J .J

. (...
• R.~le Name : H~~pRul ~- ~ f ., •

: ~ Rull! Desrr ipto r : ·check h~a p if u~d,)C

Note : fof Situ~tiord n the bonbin .•
s81e~ion,Jou ~ n.:Click t o':~•td Nevi .. ,··,

· s,tu.;uon' or 'Click to Oel"I" Sdected
• Situ·ation'. · • • -

. is _greater.~on 60~-b · • '

0

When thls ·happens ... tll_

i · ··. • • r ?r 1 ·: .ivrn_}te~plJ:.ed

S~I•~ Rol~u,ce(; I i° I instance•• EJ
jvm_lnstenceCounl ,<.:

f
·' flD•i•i :l'lil·l'41ffi;il · jvm_HeepGrowlh

jvm_ ThreodCount
ivm_ ThreadCPUUsoge
r:-m_M~etipSize

r -?;2 j-un_l•lai:HeaPSize

· I in~tance=• El ' ·· .
... ,l #i~)IIW·:t•foTaialwj . .

i The n d c.fi~e, ~ituati?t o~·-do this ... !.

t·. .,.:,_ .-:.,;.· _· . • .,-:_ ••l#l31M~l#414•1!J#--i•l•l·JMWI ~:.J -·- ·- - .. . '•

FIG. 21

~ptiq~s

."r Ch~ci; ~"o/f l.1..~e:o~~s. ~:
.. ~~~ ·;~¥-:·: :~f 5 1W1;1i1•iil•:>·.

Netflix, Inc. - Ex. 1013, Page 000029
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 29 of 36 US 2004/0019672 Al

·J • ..,, - ~

Step 3 : <,unri!JUrn CiJ~dilions(s)fl ·
.. -~ . ~ --=- .;

.} - . • ..J ...

'.,

~ult: ~iu_:.le : Heal)Rult:: • ;~· .,
:1Rulc O~s~riptor: Ch eck he.JP if USil90

_ ~11 greatcr __ than 60%

>J · - . wheo this h~ppens' ..• 6
.i.r,~

"' P!-H'l1Jrce·De::cription

. ,'-
., '

... ~.

Describe Condition W:ing
cesout:ce:s ' "·

0, -r:;;-c· - f-~ ••
fl - :?•

- _;-r_

~. ~~: tf ~ ...
} ~ ::

. -~
'

'··

•' .. · ..
.. .,;

FIG. 22

. .
-,. r 7r1: ·.~·nn_Ht:5pll!;-?:d

~ ~~nee•• _EJ ·-
i~ l/a•Jl•:l·l:t·1~1il=l;Ulj

r ?i,~)vm 'M<1x-H~-JPS1z~

1·inst~nce:.-;:J - ·

' optio~s

-=-~-

,._ .. -

· ~ Chccl< ~-,c,; i]E seconds _el

:E!tmbi!':
" I· · 1 . r.\ .·

',
;'
l_:_

'· t;

f

Netflix, Inc. - Ex. 1013, Page 000030
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 30 of 36 US 2004/0019672 Al

. Step 3 : configure Con,diliu11~(s')fl
• · ~ • ' • t . - ; ·'·. ~ ._.

. s
0

oloct oorr:~1~ 6
,_lt:]1ter _ lJ

Sele~ R!!sOun::iC(s fl
SearchEx ra,s,on '"'

·,.&1:mJ
" .

·.•'" ..

! .

FIG. 23

. Rul e Name :.HeapRule • ~· ,,
Rule De~crlptor-: Check hed~ if usa1,le
is great~r th>c,n" 6O,0.·0 • • -· •

When this ha~pens ~ .• D :

J ~i-3 C o11d1ti?n

I C<!ndition •

•·ij•Jli:Z·!:i·i2ii•/4;1J .
, .. '•, . -· !" - ' . ' :,

Th~n-d·e 'fine s1tuatio~ or do:thl:S :_; __

Netflix, Inc. - Ex. 1013, Page 000031
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 31 of 36 US 2004/0019672 Al

.,, •, • _T ______________ •.-

Step~ : Cqntig:~re. A~ ipns(s)fi'", • .
• :$:~ • - ..,..,)},.

\. - ~: J: ';
•~e-le·ct Oon\;),;, tl ·- •-: ,:1 f.
livTn EJ ... ' ,t•

~-e-lai t Re~curcel~) tf

..... ~;Rule Narn~ :fHe1i,1hile· . ; - ~- •

... . .RUie oeScriptor:"": check tieap if u,aoe·
-~ ,.· 11_ ore~tcr ~ha!' ~0%' - · · ·- •

jvm_ Threo.dSto.rtEvent
jvm_ T hreadEndEvent
· Exec tion r ?r I j,,fTI_Hear,~1~(;.d

. ; _ I instance•• .:] .

: ·.: l,;.,.;·jff•ffMjfj;lf.
P;s·cuJi·..;-'! Desfn h')n ··:·; •· '
;._;;;;;.:.;=.:..::;=;;;.;,c..c..:;.;.;....;.;... __ ;__-,, • r ;,,-l ;.;j im ..- 1'1~::.:HeapS)ze

,...,. .
. . ,,,

u.;

L ~-. j ,~~nce=• ~ -- . ·}

i . ~.. 11i'11iitfi•1t11i:1:•1
• I-

r ?i3 ConJ1t10~ ~J,

··_ j Cond1t1on•?rl > •.. ~ -­

. fiimmt·ffliil4MI . .,.

.-

--
; Th~~ define slt,11otion or do this - -._,. ;

FIG. 24

~ f"j ?ot jvn';_T~p·H~tll,,')bJects

· , ,~~ta~ce•• f:J· ·.
~ r•:1•1•1:1,11-,eiaiuWF ,·

r ?oi)~.m_Ailoc'r, ace .

• -. · I md-prelix•• i::] · ·
·· -.·,,i.,;i:t1-mlii1••I .

~

...

.. .

Netflix, Inc. - Ex. 1013, Page 000032
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 32 of 36 US 2004/0019672 Al

jvm_ TopHeopObjecis .. . ·-
~} r· ~ ,.~,,··

"""~." .. ,... ., ·:: ..
~ (

' .. ,

.. ·V
~ I• r-• .. -~ . ,...,

.:,. .

. . .. ' ...

. '

. ·>

.. .
. -~ ~

_,~r:~ ?rl Jvr,,_Hec1puse-d1-

. ' I instance•• B
~ ·,,4;,,,g:;;;e1a,:1:111 ·

: 1
~-=

r ' .. , .

. I'.';!'~ . . • ,: •

r 7r2 j'!r11_Md:-;.H~~tf$l/e

I ~nstance•· ~
·•#i•Hd:l·1·t1S1;1if,;I ·,

r ;,.._, Cnndth,>n

I Condition•?rl > .. ~
.---~---.....-

' i . .,__ - ·, ~

·," \ : hen d_~f-inc __ ~•~u~tion._or do thi~s .~-; •

.: I
·,,·.

l •

} Q 70 t ·1~m T~pH1>,,Jp6bJecis • -. :· •

.' I i~!~~CB:.. E.i - . ..
{i3•Jli;l•i•t•,fl:lif.ll!

r .·;,oz • jvm_j,lloc:.T,ao,

.• 'I in~·pr,ef,x:: ;:J

. .. ,·

. ~-• ~ .·11!!3!Jlf:M·t·folii:flll .. ~~ .~>-.---~~ - -' .. .
<:-.. ~- ... ~. << :-: i~ '• -~- •.

~;·· ~fi!•:l;-;4Ji-,.S•l;l~iE!t:@:'iJ
-' :: :; ' . t
,,._

Options- . ..
•t •. ;£. -:

FIG. 25

Netflix, Inc. - Ex. 1013, Page 000033
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application PubUcation Jan. 29, 2004 Sheet 33 of' 36 US 2004/0019672 Al

, .. ,u,n+M

Pole Fae~ . deloull
Step 2: Configure Situ.:itlon(s); : Create New Sltuatlon(s)

Cruma,n : SitubtiM,

pw 111 1~ ~ ~,tuation >lome

,Lowl,lemory

T t:: ma Othn tC1r for th "t1tuot1on
VH heap usage is h1~h.

FIG. 26

Rule· Nd111~ .: HeapRulc
Rufe Oescript ur: Check h cop 1f u s.Jgc
i• greater than 60 9:o

Type in arid Subn1it , ii Situation n 'Jmc- and
~n optionol descriptor, which w,11 be ~ddc4
lo S rtuotion Oomom ond w ill bo '11-cploye_c;I
under resource, select bo>o: of SiWatiori
dofl''htrn.

Netflix, Inc. - Ex. 1013, Page 000034
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 34 of 36 US 2004/0019672 Al

@: Netsupe ;::::=i.:::==:..:=.a;..;...::===:E.:::::::===:;--e·;,;;;;;r.:2:=;- · - ll!I~ l!!1

. <.. p
S"le,.._,. l?nrn~in·U

. I S1tuetion EJ .-
,_

!" S·eleci: Rls,wrrP(i;; ii 1 •

JVMLowMemo,y ;r

!.
:'~

ffi

Rul~ Pack· : .Jefault

~~ ., . r1:r ~ ~ ;··
Ruic ~amc :_H,eapRule-:: ~- .

' Ruh~-- o e~c.r iplU"r ; Check lh~~p 1f usage
iS1gl"eat er than 60_°'~ r

I \~ '..:. • • - • • • • • .,

\!/he,n ihl~ hap'?,e ns i:-~ ~

n .?rl j~1~1_l-eo~G~ed

=-_ h~ion~1;_-· t:l ·
14Hliil•l:t•]bf;jl3·41l

r ~j.2 j•1rr1_MC1Xti~J~•sizi?

, ..
_l

I instance•• t:J
f~Qlift·lf¥5wt:11#·N)

·~ -.
,_

' . ".-: , ..

·:-.·

~- ... 1-·

FIG. 27

,::

; r 7,:3. Conc!i~1on -

-l Condition•?rl > .. j ::'.J.
'rm.;u,Ellmili,

. .,

. ; ~
~ •·.

' •· ; .,;. . ~ - . . .
~: Then dcfi_ne situatio·n o~ ~~ this, ...

i
f .

Netflix, Inc. - Ex. 1013, Page 000035
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application PubUcation Jan. 29, 2004 Sheet 35 of' 36 US 2004/0019672 Al

i,,l•ct R,lePack I default f:.J

Rules Ill

Eng,no \>t;;tus : 1>.a;;.:1y

n deraule: H~ftoRule - Check heeo if u~oo~
reaeer : ho.n 60%

Uhcn _thi• happens •• •
Jvm_ :lel.lpUsed
jvm _~axlil!ap51 ze
Cundil.ton

l;Mlii;ll;IIWI

FIG. 28

"' ...
F
' I

'\

Netflix, Inc. - Ex. 1013, Page 000036
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Patent Application Publication Jan. 29, 2004 Sheet 36 of 36 US 2004/0019672 Al

~ ' Netsc~pe - Slil E'i

i

I-R-•Jl_e_ll_u_a_p_R~~-,~: -.(-R-ul~~~P.=r..k~d~o~f-•u_t_)_u_·ig-_g=e=,.=.d=,=o=,-.,-~-•-m-,-,,-, k-,-,o- •-, -n-o-n=V.=,,ed==,,,c-v- 06~!~6-, /-6-,-3,;-·

,.~;2002 · .

$Uutttion c-aused In,:
De>c,:-Chll!':ck t 113p 1t us:~O;C is r,1rca te.1· t.hur, oU"N. 11~.'u'-··s r,·K-.i15vrad:
jvm: :Jvrn_He~pll-:A11 fnr- msti,nre 23&0S fv~l,J~ 28 1St-(1(1)
J\--m: : jvm_M.;~Hecp~1:.:e fcr. insta_n~ ~3cl05 (v4A.I¢ cii 10880~)

1

1lcltons take n : ·

J i.>m::J\ll'll_ f nrHeapObjt"cts ,fo.,. ,nstant e 23S05:

l·~;mplo/,l %9,~ 513

1

~,mplet 4l1.2 ~14 ..

Jjv in::j1i11n_AllocTt·dco for ini t~"iC<:i 23805:
I .
i Sin;:~~!!10 inJinO;za ·

' :s1mple1,1 •
· at ~1mplo.m?rinO:Z8

Simple I
.,t ~1mple .m..,1n():Z-O

,, . ..

FIG. 29

. -·;,

... = ,,

Netflix, Inc. - Ex. 1013, Page 000037
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit o[: (i) U.S.
Provisional Patent Application No. 60/371,659, filed Apr.
10, 2002, aod eotitled ·'METI-1OD AND SYSTEM FOR
MANAGING COMPUTER SYSTEMS," which is hereby
iocorporated by reference bereio; and (ii) U.S. Provisional
Patent Application No. 60/431,551, filed Dec. 5, 2002, aod
entitled " METHOD AND SYSTEM FOR MANAGING
COMPUTER SYSTEMS," which is hereby incorporated by
reference herein.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the lovention

[0003] The preseot ioveotion relates to computer systems
and, more particularly, to management of computer systems.

[0004] 2. Description of the Related Art

[0005] Today's computer systems, namely enterprise com­
puter systems, make use of a wide range of products. T he
products are ofteo applications, such as operatiog systems,
application servers, database servers, JAVA Virtual
Machines, etc. These computer systems often suffer from
network and system-related problems. Unfortunately, give•
the complex mixture of products concurrently used by such
computer systems, there is great difficultly in identifying and
isolating of application-related problems. Typically, when a
problem occurs on a computer system, it must first be
isolated to a particular computer system out of many dif­
ferent computer systems or to the network iotercoooect
among these systems and also to a particular application out
of many different applications used by the computer system.
However, conventionally speaking, isolatiog the problem is
dillicult, time consuming and requires a team of application
experts with different domain expertise. These experts are
expensive, and the resulting down time o(computer systems
is very expensive to enterprises.

[0006] Although management solutions have been devel­
oped, such solutions are dedicated to particular customers
and/or specific products. Monitoring systems arc able to
provide monitoring for events, but offer oo meaningful
management of non-catastrophic problems and prevention
of catastrophic problems. Hence, conventional managing
and monitoring solutions arc dedicated approaches that are
not generally usable across different computer systems using
combinations of products.

[0007] Thus, there is a need for improved management
systems that are able to elliciently manage computer systems
over a wide range of products.

SUMMARY OF THE INVENTION

[0008) Broadly speaking, the invention relates to a man­
agement system for a computer system. The computer
system operates or includes various products (e.g., software
products) that can be managed in a management system or
collectively by a group of management systems. Typically,
the management system operates on a computer separate
from the computer system being managed. Toe management

1
Jan. 29,2004

system ca• make use of a knowledge base of causing
symptoms for previously observed problems at other sites or
computer systems. In other words, the knowledge base can
built from aod shared by different users acros.s different
products 10 leverage knowledge that is otherwise disparate.
The knowledge base typically grows over time. The man­
agement system can use its abili ty to request information
from the computer system being managed together with tbc
knowledge base to infer a problem root cause in the com­
puter system being managed. The computer system being
managed can also request tbe management system to process
its knowle.:lge base for possible problem cause analysis. The
management system can also continually identify persisting
problem causing symptoms.

[0009] The invention can be implemented in numerous
ways including, as a method, system, apparatus, and com­
puter readable medium. Several embodiments of tbe inven­
tion are discussed below.

[0010] As a management system for a computer system,
one embodiment of the invention i ncludes at least: a plu­
rality of agents residing within managed nodes of a plurality
of different products used within the computer system, and
a manager for said management system. The manager is
operable across the different products.

[00ll] As a method for managing an enterprise computer
system, one embodiment of the invention includes at least
Lbe acts of: receiving a fact pertaining to a cooditioo of ooe
of a plurality of different products that are operating in the
enterprise computer system; asserting tbe fact with respect
to ao inference engine, the inference engine using rules
based on facts; retrieving updated facts from the inference
engine from those of the rules that are dependent on tbe fact
Lbal bas been asserted; and performing an action in view of
the updated facts.

[0012] As a method for isolating a root cause o(a software
problem in an enterprise computer system supporting a
plurality of software products, one embodiment of tbe
invention includes at least the acts of: forming a knowledge
base from causing symptoms and experienced problems
provided by a disparate group of contr ibutors; a•cl examin­
ing the knowledge base with respect to Lhe software problem
to isolate the cause of the software problem to one of tbe
software products.

[0013] Other aspects and advantages of the invention will
become apparent from the following detailed description,
taken io conjunction with the accompanying drawings,
illustrating by way of example the principles of the invcn­
Lioo.

BRIEF DESCRIP'11ON OF THE DRAWINGS

[0014] The present invention will be readily understood by
the following detai led description in conjunction with the
accompanying drawings, wherein like reference numerals
designate like structural elements, and in wbicb:

[0015] FlG. 1 is a block diagram of a management system
according to one embodin1ent of tile i11ventio•.

[0016) FlG. 2 is a block diagram of a manager for a
management system according 10 one embodiment of the
i•veotion.

Netflix, Inc. - Ex. 1013, Page 000038
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

[0017] ffIG. 3 is a block diagram of a GUI (Graphical
User Interface) according to one embodiment of the inven­
tion.

[0018) FIG. 4 is a block diagram of a knowledge manager
according to one embodiment of the invention.

[0019) FIC. SA is a diagram of a directed graph rcprc­
seotiog a knowledge base.

[0020] FIG. 58 represeots a small portion of koowledge
provided io a segmeot of a directed grapb (e.g., directed
graph).

[0021) F[G. SC reprcsc• ts a smalJ portion of knowledge
provided i• a segment a directed grapb (e.g., directed grapb).

[0022) FIG. 6 is a block diagram of a knowledge proces­
sor according to one embodiment of Lbe invention.

[0023] FIG. 7 is a block diagram of a ma• agcmcnt frame­
work interface according to one embodiment of the inven­
tion.

[0024] FIG. 8 is a block diagram of a report module
according to one embodiment of the ioventioo.

[0025] FIG. 9A is a diagram illustrating a knowledge base
according to one embodiment of tbe invention.

[0026) FIG. 98 is an architecture diagram for a rule pack
according to one embodiment of the iovenlioo.

[0027] FIG. 10 illustrates a relationship between facts,
rules aod actions.

[0028) FIG. 11 illustrates an object diagram for a repre­
sentative knowledge rcpreseotatioo.

[0029) FIG. U is a block diagram of the managed node
according to one embodiment of the ioveotioo.

[0030) FIG. 13 is a block diagram of an agen t according
to one embodiment of the invention.

[0031) FIG. 14 is a block diagram of a roaster agent
according to one embodiment of the invention.

[0032) FIG. 15 is a block diagram of a sub-agent accord­
ing to one embodiment of the invention.

[0033] FIGS. 16A and 168 are flow diagrams of manager
startup processing according to one embodiment of the
invent ion.

[0034] FIGS. 16C-16E are flow diagrams of manager
startup processing according to aootber embodiment of the
invention.

[0035] FIG. 17A is flow diagram of master agent startup
processing according 10 one embodiment of the invention.

[0036] FIG. 17B is a flow diagram of sub-agent startup
processing accordiog to one embodimcot of the inventioo.

[0037) FJGS. 18A and L8B arc flow d iagrams of trigger/
noLificatioo proccssiog according lo one embodiment of tbe
iavcntioo.

[0038] FIG. 19 is a now diagram of GUI report processing
according to ooe embodimeot of the inveotion.

[0039] FIGS. 20-29 arc screen sbots of a representative
Graphical User Interface (GUI) suitable for use with one
embodiment of tbc present iovcotioo.

2
Jan. 29,2004

DETAILED DESCRrP'TTON OF THE
INVENTION

[0040] The invention pertains to a management system for
a computer system (e.g., an enterprise computer system).
The computer system operates or includes various products
(e.g., software products) tbat can be m.aoaged in a manage­
meat system or collectively by a group of management
systems. Typically, tbe maoageroent system operates on a
computer separate from the computer system being man­
aged. The management system cao make use of a knowledge
base of causing symptoms for previously observed problems
at other sites or computer systems. In otber words, the
knowledge base can built from and sbared by diliereot users
across different products to leverage knowledge that is
otherwise disparate. The knowledge base typically grows
over time. The management system can use its ability to
request information from tbe computer system being man­
aged together with the knowledge base to infer a problem
root cause in the computer system being managed. Tbe
computer system being managed can also request the man­
agement system to process its knowledge base for possible
problem cause analysis. The management system can also
continually identify persistiog problem causing symptoms.

[0041] Embodiments of tbe ioventioo are discussed below
with reference to FIGS. 1-29. However, those skilled in the
art will readily appreciate tbat tbe detailed description give•
bereio witb respect to these figures is for cxplaoatory
purposes as tbe inveotion extends beyond tbese limited
embodiments.

[0042] FIG. 1 is a block diagram of a maoagcrncnt system
100 according 10 one embodiment of the invention. Tbe
managemcot system 100 serves to maoage a plurality of
managed nodes 102-1, 102-2, ... , 102-n. Each of the
managed nodes 102-1, 102-2, ... , 102-n respectively
includes an agent 104-1, 104-2, ... , L04-n. These agents
104 serve to monitor and manage products at the managed
nodes 102. lo one implcroentation, the agents 104 arc s taod
alone proces.scs operating in their own process space. In
aootbcr implemcntatio•, the ageots 104 are specific to
particular products being managed and reside at least par­
tially witbio tbe process space of tbe products being man­
aged. Tbc agents 104 can monitor and collect data pertainiog
to the products. Since tbe products can utilize an operating
system or network coupled 10 the managed nodes, the ageots
104 are also able to collect state information pertaining 10

tbe opera ting system or the network. In still another implc­
meotatioo, Lbe ageots 104 are ao embodiment of Simple
Network Management Protocol {SNMP) agents available
from third-parties or system veodors.

[0043] The ageots 104 cao be controlled to monitor spe­
cific information (e.g., resources) wfrh respect to user­
configurable specifics (e.g., anributes). The informatjon
(e.g., resources) being monitored can bavc zero or more
layers or depths of specifics (e.g., attributes). The moni tor­
ing of tbc inforroatioo can be dyoarnically oo-demaod or
periodically performed. Tbe ioformation being monitored
can be focused or limited to certain details as determined by
the user-configurable specifics (e.g., a tt ributes). For
example, the information being monitored can be focused or
Limited by certain levels/depths.

[0044] Optionally, the agents 104 can also be capable of
performiog certain statistical analysis oo tbc data collected

Netflix, Inc. - Ex. 1013, Page 000039
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

at the managed nodes. For example, the statistical analysis
on the data might penain to running average, standard
deviation, or historical maximum and minimum.

[0045) The management system 100 also includes a man­
agement framework 106. T he management framework 106
facilitates communications between the agents 104 for the
managed nodes 102 and the manager 108. For example,
different agents 104 can utilize different protocols (namely,
management protocols) to exchange information with the
management framework 106.

[0046) The management system 100 also includes a man­
ager 108. The manager 108 serves to manage the manage­
ment system 100. Consequently, the manager 108 can pro­
vide cross-products, cross-systems and multi-systems
management in a centrali7,.ed manner, such as for an enter­
prise network environment having multiple products or
applications which serve different types of requests. In an
enterprise network environment, the manager 108 has the
ability to manage the various systems therein and their
products and/or applications through a single entity. Geo­
graphically, these systems and products and/o r applications
can be centrally located or distributed locally or remotely
(even globally).

[0047] FIG. 2 is a block diagram of a manager 200 for a
management system according to one embodiment of the
invention. For example, the manager 200 illustrated in F(G.
2 can pertain to the manager 108 illustrated in FIG. 1.

[0048) The manager 200 includes a Graphical User Inter­
face (GUI) 202 that allows a user (e.g., an administrator) to
in teract with the manager 200 to provide user input. T he user
input can pertain to rules, resources or situations. In addi­
tion, the user input with the GUI 202 can pertain to admin­
istrative or configuration fonctioos for the manager 200 or
output information (e.g., reports, notifications, etc.) from ihe
manager 200. The input data is supplied from the GUI 202
to a knowledge manager 204. T he knowledge manager 204
confirms the validity of the rules, resources or situations and
then converts such rules, resources or situations in to a
formal being utilized for storage in a knowledge base 206.
In one implementation, the format pertains to meta-data
represented as JAVA properties. The knowledge base 206
stores the rules, resources and situations within lbe database
ia a compiled code format.

[0049] The manager 200 also includes a knowledge pro­
cessor 208. The knowledge processor 208 interacts with ihe
knowledge manager 204 10 process appropriate rules within
the knowledge base 206 in view of any relevant situations or
resources. lo processing lhe rules, the knowledge processor
208 often requests data from the agents 104 at the managed
nodes. Su.ch requests for data are initiated by the knowledge
processor 208 and performed by way of a data acquisition
unit 210 and a management framework in terface 212. T he
returned data from the agents 104 is returned to the knowl­
edge processor 208 via the data acquisition unit 210 and the
management framework interface 212. Wilb sucb monitored
data in hand, the knowledge processor 208 can evaluate the
relevant rules. Wben Lbe rules (evaluated by the knowledge
processor 208 in accordance with tbe monitored data
received from the agents 104) indicate tbat a problem exists,
then a variety of different actions can be performed. A
corrective action module 213 can be initiated to take cor­
rective action with respect to resources at tbe particular one

3
Jan. 29,2004

or more managed nodes tha t have beea identified as having
a problem. Further, if debugging is desired, a debug module
214 can also be activated 10 interact with the particular
managed nodes to capture system data thal can be uti lized in
debugging the part icular system problems.

[0050] The knowledge processor 208 can periodically, or
on a scheduled basis, perform certain o(the rules stored
within the knowledge base 206. The notification module 216
can also initiate tbe execution of certain rules when tbe
notificaLioo module 216 receives an indication from one of
the agents 104 via the management framework interface
212. Typically, the agents 104 would communicate with tbe
notification module 216 using a notification tbat would
specify a management condition that the agent 104 has sent
to the manager 200 via Lbe management framework 106.

[0051) In addition, the manager 200 also includes a report
module 218 that can take the data acqllired from the agents
104 as well as the results of the processed rules (including
debug da ta as appropriate) and generate a report for use by
tbe user or administrator. Typically, the repon module 218
and its generated repons can be accessed by the user or
administrator through the GUI 202. 'lbe manager 200 also
includes a log module 220 that can be used 10 store a log of
system conditions. The log of system conditions can be used
by the report modu le 218 to generate reports.

[0052) The manager 200 can also include a security mod­
ule 222, a registry 224 and a registry data store 226. The
security module 222 performs user authentication and autho­
rization. Also, to tbe extent encoding is u.sed, the security
module 222 also perform encoding or decoding (e.g.,
encryption or decryption) of information. The registry 224
and the registry data store 226 serve to serve and store
structured information respectively. In one implementation,
the registry data store 226 serves as the physical storage of
certain resource information, configuration information and
compiled knowledge information from the knowledge­
base206.

[0053] Still further, the manager 200 can include a noti­
fication system 228. The ootificalioo system 228 can use any
of a variety of different notification techniques to notify tbe
user or administrator that certain system conditions exist.
For example, the communication techniques can include
e lectronic mail, a pager message, a voice message or a
facsimile. Once notified, the notified user or administrator
can gain access to a report generated by the report module
218.

[0054) The debug module 214 is able to be advanta­
geously ini tiated when certain conditions exist within tbe
system. Such debugging can be referred to as "just-in-Lime"
debugging. This focuses the capture of data for debug
purposes to a constrained time period ia specific areas of
interest such that more relevant data is able to be captured.

[0055) FIG. 3 is a block diagram of a GUI 300 according
to one embodiment of tbe invention. The GUI 300 is, for
example, suitable for use as the GUT 202 illuslrated in FIG.
2.

[0056) The GUI 300 includes a knowledge input GUI 302,
a report output GUI 304, and aa administrator GUI 306. The
knowledge input GUT 302 provides a graphica.1 user inter­
face that facilitates interaction betweern a user (e.g., admin­
istrator) and a manager (e.g., the manager 200). Hence,

Netflix, Inc. - Ex. 1013, Page 000040
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

using the knowledge input GUI 302, the user or adminis­
trator can enter rules, resources or situations to be utilized by
the manager. The report output GUI 304 is a graphical user
interface that a !lows the user to access reports that have been
generated by a report module (e.g., the report module 218).
Typically, lhe report output GUI 304 would not only allow
initial access to such reports, but would also provide a means
for the user to acquire additional detailed information about
reported conditions. For example, the report output GUl 304
could enable a user to view a report on chosen criteria such
as case lD or a period of time. The administrator GUl 306
can allow tbe user lo configure or utilize the manager. For
example, tbe administrator GUI 306 can allow creation of
new or modifica tion to existing users and their access
passwords, specific information about managed nodes and
agents (including managed-node IP and port, agent name,
agent types), electronic mail server and user configuration.

[0057] F[G. 4 is a block diagram of a knowledge manager
400 according to one embodiment of the invention. Tbe
knowledge manager 400 is, for example, suitable for use as
the knowledge manager 204 illustrated in FlG. 2.

[0058] The knowledge manager 400 includes a knowledge
code generator 402. In particular, the knowledge code gen­
erator 402 receives ru les or definitions (namely, definitions
for resources or situations) and then generates and outputs
knowledge code to a knowledge processor, such as tbe
knowledge processor 208. In one implementation, the
knowledge code generator 402 can be considered a com­
piler, in that the rules or definitions are converted into a data
representation suitable for execution. The knowledge code
can be a program code or it can be a meta-language. In one
implementation, the knowledge code is executable by an
inference engine such as JESS. Additional information on
JESS is available at ·'hllp://herzberg.ca.sandia.gov/jess" as
an example.

[0059] The knowledge manager 400 also includes a
knowledge encoder/decoder 404, a koowlcclgc ·importer/
exporter 406 and a knowledge update manager 408. The
knowledge encoder/decoder 404 can perform encoding
wbcn storing knowledge to the knowledge base 206 or
decoding when retrieving knowledge from the koowledge
base 206. The knowledge importer/exporter 406 can import
knowledge from another knowledge base and can export
knowledge to another knowledge base. In general, the
knowledge update manager 408 serves to manually or
automatically update the knowledge base 206 witb addi­
tional sources of knowledge that are available and suitable.
In ooe embodiment, the knowledge update manager 408
operates to manage the general coherency of the knowledge
base 206 with respect to a central knowledge base. Typically,
1he knowledge base 206 sto red and utilized by the knowl­
edge manager 400 is only a relevant portion of tbe central
knowledge base for the environment tbat the knowledge
manager 400 operates.

[0060] FIG. SA is a diagram of a directed graph 500
representing a knowledge base. The knowledge base repre­
sented by the directed graph 500 is, for example, suitable for
use as the knowledge base 206 illustrated in FIG. 2. lbe
directed grapb 500 represents a pictorial view of the knowl­
edge code resulting from ru les, situa1 ioas and resources.

[0061] The directed graph 500 is typically structured to
include base resources at tbe top of the directed graph 500,

4
Jan. 29,2004

siniations/resources io a middle region of the directed graph
500, and act ions (action resources) at the bottom (or leaf
nodes) of the directed graph 500. lo particular, node 502
pertains to a base resource or resources and node 504
pertains to situation a•d/or resource. A relationship 506
between the nodes 502 and 504 is determined by the rule
being represented by the directional arrow between the
oodes 502 and 504. The situatioo/resource at oode 504 in
turn relates to another situat ion/resource at node 508. A
relationship 510 relates the nodes 504 and 508, namely, the
relatioosbip 510 is determined by tbe rule represented by tbe
directional arrow between tbe nodes 504 and 508. Tbe
situations/resources al nodes 504 and 508 together witb tbe
relationship 510 pertain to another rule. The situation/
resource at node 508 is further related 10 an action resource
at node 512. A relationship 514 between the situation/
resource at node 508 and the action resource at node 512 is
determined by still another rule, namely, an action rule.

[0062] Tbe knowledge base represented by the directed
graph 500 is flexible and extendible given the hierarchical
architecture of the directed graph 500. Hence, the knowl­
edge base is able lo grow over time to acid capabilities
without negatively affecting previously existing knowledge
within tbe knowledge base. Tbe kJ10wledge base is also able
to be divided or partitioned for different users, applications
or service plans. lo effect, as the knowledge base grows, tbe
directed grapb 500 representation grows to add more nodes,
such •odes representing siruations or resources as well as
relationships (i.e., rules) between nodes.

[0063] FIG. SB represents a small portion of knowledge
provided in a segment 520 of a directed graph (e.g., directed
graph 500). Tbe segment 520 includes nodes 522, 526, 530
and 534, and relationships 524, 528 and 532 . The node 522
pertains to a resource, namely, beap size of Java Virtual
Machine (NM) in use. The relationship 524 indicates that
when the •ode 522 is triggered, the node 526 is triggered.
The node 526 pertains to a resource, namely, maximum heap
size of JVM. l71e relationship 528 evaluates whether the
maximum heap s ize for NM is less than 1/0.8 percent the
heap size for JVM. When the relationship 528 is true, then
tbe node 530 is triggered to acquire a resource, namely,
TopHeapObjects fo r JVM, which is a debugging resource
that obtains the information about the objects that are
consuming the most amount of JVM heap. The specifics of
this resource include the resource consumption selected by
cumulative size or the number of objects, the count of tbe
distinct objects, tbc selection of objects by JAVA classes
they belong to are described by the all ributes of tbe resource.
1be relationship 532 then always causes the node 534 to
invoke a resource action, namely, initiating an allocation
trace for JVM. lbe specifics of this resource selectable by its
attributes can include but not limited to the clas.ses of objects
to trace, the time-period for tracing, and the depth of stack
to which to limit every trace.

[0064] FIG. SC represents a small portion of knowledge
provided in a segment 540 of a directed graph (e.g., directed
graph 500). The segment 540 includes nodes 542, 546, 550,
554 and 558, and relationships 544, 548, 552 and 556. The
node 542 pertains to a situation, namely, a J VM exception.
The relationship 544 causes the node 546 to invoke a filter
operation when the situation at node 542 is present. The fi lter
operation at node 546 is a search expression that searches the
JVM exception resource information received from agent

Netflix, Inc. - Ex. 1013, Page 000041
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

104 for an attribute ''ORA-00018" which represents a par­
ticular problem wi1h Oracle database, namely, tbc Oracle
database running out of database connections for tbe man­
aged JAVA application to use. When 1he search expression
is found, tbe relationship 548 causes the node 550 to trigger.
Al node 550, a resource for maximum users configured for
lbe Oracle database being used by the managed JAVA
application is obtained. Tiien, the relationship 552 deter­
mines wbe1ber the maximum users for tbe Oracle produc1 is
less lhan fifly (50) and, if so, the •ode 554 invokes an ac1ion,
namely, an email notification is sent. In addition, the rela­
tionship 556 always triggers the node 558 to acquire a
resource pertaining lo the number of connected users the
relevant Oracle database. The two mies, one rule repre­
sented by resources 542, 546, 550, 558 and the relationships
544, 548, 556, and the second rule represented by the
resources 550, 554 and the relationship 552 are two distinct
rules defined using GUT 202 at diJl'erent times and possibly
by different users and without needing lo know about lhe
existence of the second rule while defining the first one rule
and vice versa. The knowledgebase automatically links or
chains these rules through the commonality of the resources
(e.g., Oracle maximum configured users resource 550 in lhe
th is example.

[0065] FIG. 6 is a block diagram of a knowledge proces­
sor 600 according lo ooe embodiment of the invemion. The
knowledge processor 600 is, for example, suitable for use as
the knowledge processor 208 for 1be manager 200 illustrated
in FIG. 2.

[0066] The knowledge processor 600 includes a controller
602 that couples to a knowledge manager (e.g., tbe knowl­
edge manager 204). The controller 602 receives the knowl­
edge code Crom the knowledge manager and directs it to an
inference engine 604 10 process the knowledge code. la one
embodiment, the knowledge code is provided in an infer­
ence language sucb that the inference engine 604 is able to
execute the knowledge code.

(0067] ln executing tbe knowledge code, the inference
engine 604 will typically inform the controller 602 of the
particular data to be retrieved from tbe managed nodes via
the agents and the management framework interface. In this
regard, tbe controller 602 will request tbe data via a man­
agement interface to a management framework . The
returned data from the managed nodes is then re turned to the
controller 602 via the management interface 606. Alterna­
tively, in executing tbe knowledge code, exceptions (i.e.,
unexpected events) can be generated at the managed nodes
and pushed through the management interface 606 to the
controller 602. lo either case, tbe cootroller 602 tbeo for­
wards the returned data to the inference engine 604. At this
point, the inference engine 604 can continue 10 process the
knowledge code (e.g., rules). The inference engine 604 may
utilize a ru le evaluator 608 to as.sist witb evaluating the
relationships or rules defined by the knowledge code. The
rule evaluator 608 can perform not ooly tbe relationship
checking for rules but also data parsing. Ooce the knowledge
code has beeo executed, the inference engine 604 can inform
the controller 602 to have various operations performed.
'J11ese operations can include capturing of additional data
from tbe managed nodes, initiating debug operations, initi­
ating corrective actions, initiating logging of information, or
seoding of ootificatioos.

5
Jan. 29,2004

(0068] The knowledge processor 600 also cao include a
scheduler 610 . The scheduler 610 can be utilized by the
inference engine 604 or the controller 602 to schedule a
future action, sucb as the retrieval of data from the managed
nodes.

[0069] FIG. 7 is a block diagram of a management frame­
work interface 700 according to one embodiment of the
invention. The management framework interface 700 is, for
example, suitable for use as the management framework
interface 212 illustrated in FCC. 2.

[0070] Tbe maoagemeot framework interface 700
includes a SNMP adapter 702 and a standard management
framework adapter 704. The SNMP adapter 702 allows the
management framework interface 700 to communicate
using the SNMP protocol. The standard management frame­
work adapter 704 allows tbe management framework inter­
face 700 to communicate with any o ther communication
protocols tbat might be utilized by standard management
frameworks, such as other product managers aod the like.
Tbe management framework interface 700 also includes an
enterprise manager 706, a domain group manager 708, and
an available domain/resources module 710. During startup
of the management framework interface 700 (which is
typically associated with an enterprise), the enterprise man­
ager 706 will identify all groups within the enterprise. Theo,
the domain group manager 708 will operate to identify all
management nodes within each of the groups. Thereafter,
the available domain/ resources module 710 will identify all
domains and resources associated witb eacb of the identified
domains . I lence, the domains and resources for a given
enterprise are able to be identified at startup so that the other
components of a manager (e.g., the manager 200) are able to
make use of the available domains and resources witbio tbe
enterprise. For example, a GUI can have knowledge of su.cb
resources and domains for improved user interaction with
the manager, a.ad the knowledge processor can understand
which rules within the knowledge base 206 are pertinent to
the enterprise.

(0071] Tbe management framework interface 700 also
includes ao incoming notification manager 712. The incom­
ing notification manager 712 receives ootificatioos from tbe
agents within managed nodes. These ootificatioos cao per­
tain to events that have been monitored by the agents, such
as a system crash or the presence of a new resource. More
generally, these notifications can pertain to changes to
monitored da ta at the managed nodes by tile agents.

[0072] Tbe management framework interface 700 also
includes a managed oode administrator module 714. T he
managed oode administrator module 714 allows a user or
administrator to interact with the ma1:rngement framework
interface 700 to alter nodes or domains within tbe enterprise,
such as by adding new nodes or domains, updating domains,
reloading domains, etc.

[0073] Still further, the management framework interface
700 can also include a managed oode update module 716.
Tbe managed oode update module 716 cao discover man­
aged nodes and thus permits a manager to recognize and
receive status (e.g., active/ inactive) of the managed nodes.

[0074] FIG. 8 is a block diagram of a report module 800
according to ooe embodiment of the invention. TI1e report
module 800 is, for example, suitable for use as the report
module 218 illustrated in F[G. 2.

Netflix, Inc. - Ex. 1013, Page 000042
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

[0075] Tbc report module 800 includes a presentation
manager 802, a format converter 804 and a report view
selector 806. The presentation manager 802 operates to
process tbe raw report daia provided by a log module (e.g.,
log module 220) in order to present an easily understood,
richly formaued report. Sucb a report migbt include asso­
ciated graphical components that a user can interact with
using a GUI (e.g., GUI 202) . Examples of graphical com­
ponents for use with such reports are buuons, pull-down
lists, etc. The formal converter 804 can convert the raw
report data into a format suit able for prioting and display.
Tbe report view selector 806 allows viewing of partial or
complete .log data/raw report data io diJforent ways as
selected using a GUI. Tbese views can, for example,
includes one or more of the following types of reports: (1)
Report Managed •odes wise--show report for the selected
managed node/process identifier only; (2) Report time
wise-show report for the last xyz hours (time desired by the
user), with the user having the option of choosing the
managed node be wants 10 view; (3) Report Rule wise­
show report for the selected rule that might be applicable for
number of .TVM instances; (4) Report Rule pack wise­
sbow report for all tbe rules fired under a particular rule
pack; (5) Report Last Fired Rules wise-show report for
rules fired after last re-start of the inference engine; (6)
Report Ruic Fired Frequency wise-sbow report for rules
fired as per selected fired frequency (e.g., useful to get
recurrence pattern of event occurrence); (7) Report Domain
wise--show report pertaining to a particular domain (e.g., if
a ru le is composed of multiple domains, ia that case tbis
report can show the rules including the selected domain.
e.g., JVM); (8) Report Resource wise-show report for all
rules including a particular resource under the domain,
e.g.,-jvm_Exception); (9) Report filter wise-show report
pertaining to niles having similar filter conditions; (10)
Report Day wise--show report for all events happened in a
day; (11) Report Refreshed Values wise-show next
refreshed state of the same report and highlights changed/
added records; (12) Report Case ID wise-show the report
based on problem case ideotifier (id); aod (13) Customized
Structure reports-allow user to select a combination of the
above or provide a report filter of their owo.

[0076) FIG. 9A is a diagram illustrating a knowledge base
900 according to one embodiment of tbe invention. The
knowledge base 900 is, for example, suitable for use as the
knowledge base 206 illustrated io FIG. 2 or tbe knowledge
base 500 illustrated in FlG. SA. The architecture for the
knowledge base 900 renders the knowledge base 900 well­
suited to be managed, deployed and scaled. Tbe knowledge
base 900 typically resides witbio a manager, such as the
manager 200 illustrated in FIG. 2. However, tbe knowledge
base 900 cao also be distributed between a manager aod
managed nodes, such that the processing load can be like­
wise distributed.

[0077) The knowledge base 900 includes one or more
knowledge domains and one or more nile packs. In particu­
lar, the knowledge base 900 illustrated in FlG. 9A includes
knowledge domain A 902, knowledge domain B 904 and
knowledge domain C 906. Through use of the nile packs,
these multiple knowledge domains 902, 904, and 906 can be
linked together so as to effectively operate to concurrently
cooperate with one another. A particular knowledge domain
is a software representation of know-how pertaining to a
specific field (or domain). The knowledge domains can be

6
Jan. 29,2004

physical domains and/or virtual domains. A physical domain
ofteo pertains 10 a particular managed product. A virtual
domain can pertain 10 a defined set of resources defined by
a user to achieve effective manageability.

[0078] The knowledge base 900 also includes rule packs
910 and 912. These rule packs (or knowledge rule packs) are
collect ions of rules (i.e., relationships between different
kinds of resources/situa tions). The purpose of the rule packs
is to collect the rules sucb that managemeol modification
and tracking of knowledge is made easier. By separatiog
knowledge into domains and nile packs, each koowledge
component can be individually tested as well as tested
together with other knowledge components. la other words,
each domain or rule pack is a logically separate piece of
knowledge which can be installed aod u •installed as desired.

[0079] FIG. 98 is an architecture diagram for a rule pack
914 according to one embodiment of the invention. The rule
pack 914 includes rules 916, facts 918 and funct ions 920.
The rule pack 914 depends on the facts 918 for its reasoning,
a set of facts that it generates, a set of functions 920 that it
calls upon, and a set of rules 916 that act to read and write
facts and perform the functions.

[0080] Wben a rule pack is installed, lbe system must keep
track of its ru les, functions, inputs and outputs so that a la rge
installed base of rule packs can be managed. Hence, ao
ind iv idual rule pack can be added lo or removed from tbe
knowledge base without adversely affecting the entire sys­
tem.

[0081] Further, two rule packs may operate on the same set
of shared facts. The two knowledge rule packs may also
generate a set of shared facts. These rule packs caa facilitate
the tracking of how a fact travels through various rule packs,
and how a fact may be generated by multiple rule packs. The
funct ions and rules of rule packs can also be more precisely
monitored by using tbe smaller s ized rn le packs. It is also
possible for one rule to exist in two or more rule packs.
Hence, when such two or more rule packs that share a rule
are merged into a k11owledge base, only one copy of tbe rule
aced exist within the knowledge base.

[0082] All expert system object manages the knowledge
base. For example, the expert system object can reset an
inference engine, load and unload rule packs or domains,
insert or retract run time facts, etc.

[0083] The knowledge representation utilized by the
present invention makes use of three major components:
facts, rules aod act ions. Collectively, these components are
utilized to perform the tasks of monitoring and managing a
computer resource, such as a JVM, an. operating system, a
network, database or applications.

[0084] FIG. 10 illustrates a relationship 1000 between
facts 1002, rules 1004 and actions 1006. According to the
relationship 1000, facts 1002 trigger roles 1004. Tbc rules
1004 that are triggered, cause the actions 1006. The actions
1006 then may cause additional facts to be added to the
repository of tbe facts 1002. A fact can be considered a
record of information. One example of a fact is the number
of threads running io a JYM. Another example of a fact is
an average load on a CPU. Ru.les are presented as " if-then"
statements. In one embodiment, the left-band side of the
"if-then" statement ca• have one or more pallems, and the
rigbt-baod side of the "if-tben" rule ,can contain a proce-

Netflix, Inc. - Ex. 1013, Page 000043
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

dural list of one or more actions. The patterns are used as
conditions to search for a fact io the repository of the facts
1002, and thus locate a rule that can be used to infer
something. The actions arc functions that perform a task. As
an example, the actions can be considered to be statements
tbat would otherwise be used in the body of a programming
language (e.g., JAVA or C programs). As another example,
the actions cao be used to obtain debug ioformation using a
resource.

[0085] The rules 1004 ca• be represented in JAVA Expert
Systems Sbell (JESS) and as a rule engine that drives tbese
rules. JESS offers a CLIPS-like language for specifying
inference rules, facts and functions. The relationship 1000
thus facilitates the creatioo of a da ta-driven koowledge base
tbat is well-suited for monitoring and managing computer
resources.

[0086] FIG. 11 illustrates ao object diagram 1050 for a
representative knowledge represen tation. 171e object dia­
gram 1050 includes a rule pack 1 inference object 1052 a•d
a mle pack 2 infere• ce object 1054. An inference object for
a ru le pack encompasses the rules written for that knowledge
domain(s) and a rules engine can tben read aod execute these
rules. A JESS package can be utilized to provide this
functionality. Surrounding eacb or the inference objects
1052 and 1054 are domain facts and domain actions.
Ahhougb tbe arrangement of the rule packs sbown in FCC.
11 is sucb tbat tbe rule packs pertain to a particular domain,
rule packs can also be arranged to pertain to multiple
domains.

[0087] The relationship between a domain fact and an
inference object is always an arrow pointing from the fact to
tbe ioference object, thereby denoting that facts are "driv­
ing" the rules inside the inference engine. The relationship
between the inference object and the actions are that of an
arrow pointing from the inference object 10ward the
action-meaning the inference rules "drive" tbe actions.
Between the two inference objects 1052 and 1054 arc facts
and actions that both inference objects 1052 and 1054
utilize. Jo effect, these infcreoce objects 1052 aod 1054 are
cooperative expert systems, namely, expert systems that
cooperate in a group by sharing some of their knowledge
with one aoother.

[0088] Facts can be used to represent the "stale" of an
expert system in small chunks. For example, a fact may
appear as " MAlN: :jvm- jvm_heapused (v ''3166032") (uid
"372244480") (instance "13219") (host uoknown)" Tbe
cootent of tbe fact indicates that io the curreot Java Virtual
Machine (JVM) on system ·'unknown" with instance or
process id 13219, the size of heap used is 3166032 bytes. lo
this example, uid, instance and host are some of the
allributes of the resource jvm_heapused belonging to lhe
domain jvm. The attributes of a resource that are not used for
comparisoo witb o ther resources, need not be i.ocluded io tbc
facts for the resource. Facts, as implemented by JESS, exist
i.osiclc tbc rules engioe. To add ao addit ional fact into tbe
rules engine, the ocw fact is injected into the infereoce
engine object. Tbc repository of facts cao be represeoted
hierarchically. The koowledge base cao, for example, be
sorted and transmitted as needed as a set of XML documents
or provided as shared distributed databases using LDAP or
as JAVA Properties files.

[0089] In the case of a cooperative expert system, access
to a shared set of facts is oceded. The facts can be logically

7
Jan. 29,2004

organized ioto separate domains. In one implemeotation, a
user may choose to organize shared knowledge into separate
knowledge rule packs, or alternatively, allow the same fact
definition to exL5I withio multiple rule packs. la the later
approach, the system can manage the consistency of tbe
facts usiog a verification process at tbe managed resource
node (in the form of capability requests) and at the knowl­
edge control module (io tbe form of defioitioa verifica tion).

[0090] The rules are used to map facts into actioos. Rules
are preferably domain-specific such that separate domains of
knowledge are tbus provided as modular and independent
rule sets. Hence, the modification of one domain of rules and
its internal facts would oot affect otber domains. Tbese
different ru le packs of rules interact with each other only
through shared facts.

[0091] An example o(a rule implemented using JESS is as
follows:

[0092] (Defrule defaul!-jvm-mcmory-leak-detect

(jvm-jvm_ heapused (v ?rl) (uid ?uid) (instance , instance) (host ?host))
(test (> ?rl 1000000)

(... some actions ...)
)

[0093] The "default-" prefix denotes the rnle pack tbe
rule belongs to. Since it is possible tbat memory leak can
exist for application or application server, utilizing separate
oame spaces for each ru le pack of rules allows separatioo of
these rules into different rule packs. Another advantage of
using separate name space for different ru le packs is that
JESS rules arc serializablc, meaniog lbat text rules cao be
encoded i nto binary form . Tbe ability to store mies in binary
form serves to protect the intellectual property encoded
within the rules.

[0094] Actions are procedura I statements to be executed.
The actions may reside on the right-haad side of rules in the
form of scripts or can be embedded as methods inside
programming objects (e.g., JAVA objects). lo the case of
scripts, the scripts are inference engine-dependent such that
different inference engines would utilize different scripts
because of the different languages utilized by the inference
engines. In tbc case of programmi.ng objects, tbc actions are
fuoctioos. For example, act ioos in JAVA ca a be implcmeoted
by registering lbem as new JESS fuoctions. Alternatively,
the functions could be packaged inside fact objects for
which such mies arc relevant. 1be fuoctions could in tum
request relevant resource values from the managed nodes
and assert the values obtained as facts into the inference
engine. Tbe fact objects (e.g., get values) represeot values
obtained from agents (e.g., using a scbeduler of an agent).

[0095] Giveo that actions can be complicated and not tied
to any particular facts, it is of1en more efficient to create a
global object for a domain and include the methods or
functions for actions therein such that every rule wilhio a
rule pack bas access 10 the actions.

[0096] Through the use of a modular design, the system
becomes easier to manage even when l bousaods of rules and
facts exist. By separating rules into rule packs and facts into

Netflix, Inc. - Ex. 1013, Page 000044
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

domains, and making it difficult for domains to in terfere
wilh one another, the experl system is effcclively divided
into smaller modular pieces. Addilionally, through use of
JESS's built-in watcb facility, the system can track those
rules that have fired and the order in which they have fired.
This watch facilily thus provides a limited tool for debug­
ging a knowledge sys1em. Groups of rules can be isolated for
inspect ion by luraing off olbcr rules. Rules ca11 be turned off
by deacLivating those inference objects from firing which are
not desired. If one were to desire to debug a sci of rules
relaled to one domain, such a set of ru les could be a,anually
grouped in10 a logical group (e.g., rule pack) and user of the
management system can usc GUI 202 to control the activa­
tion of each group. Using GUI 202, user can addilionally
con1rol ac1iva1ion of a single or a selected se1 of rules within
a rule pack.

[0097] Initialization scripts can be used 10 set up all the
components needed for a rule pack. The setup can operate to
create lhc inference object, load the rules, create initia l facts,
create action objects, and link all the objects together so tbat
they can inter-operate.

[0098] In the JESS/JAVA implementation, one inference
object may contain rules from one or more rule packs.
Outs·ide the inference object are objects that represent facts
and objects that encapsulate actions. Each inference object
is altached to a set of facts and actions. The rules engine
searches the facts for matches thal can trigger a rule to fire.
Once a rule is fired, one or more aclion objects being linked
thereto are invoked. Ac1ions can also be explici1ly linked by
usiag an initialization that involves JAVA object creation and
passing handles to these objects 10 appropriate JESS infer­
ence objcc1s.

[0099] One useful aspect of the ru le engine design is the
ability of the system 10 manage different combinations of
multiple products on multiple nodes using one set of rule
packs and one manager. This simplifies tbe distribution,
configuration and manageability of rule packs on per-user
basis. For example, tbe rules engine can have rule packs for
managed products JVM and Oracle Loaded, but one man­
aged node may nol have Oracle as tbe managed product. In
this case, naturally there will be no facts corresponding to
Oracle resources for tbe managed node asserted into the
inference engine and hence the rules using those Oracle
resources will not be active for the managed node without
Oracle as a managed product. Note 1hat the information
about the managed node is part of the fact representing any
Oracle resource.

[0100] Another useful aspect of the rules engine design is
tbe implicit chaining of rules by the inference engine. A user
of tbe system defines individual rules representing a problem
or diagnostic ·•cases". Tbe system combines these individual
rules based on the use of common facts representing
resources. For example, one rule can be, represented in a
meta-language, " IF Gvm- uncaught_exceplion AND fil­
ter---exception_is_ Oracle_ connections_ exhausted) 11-IEN
(get Oraclc-max_connections_configored)". A second rule
can be, represented in a meta-language, " IF (Oracle­
max_connections_configurecl<50) THEN (email dba)".
When the inference engine is running, if 1be jvm_uncaught
exception gets asserted into the inference engine and if !he
asser1ed fact con1ains tbe Oracle_ connections_ exhaus1ed
status, then the management system will obtain lbe Oracle-

8
Jan. 29,2004

max_conoections_configored resource from the same man­
aged node as described by the host at1ribute of the exception
resource. On request from 1be interface engine, tbe corre­
sponding fact will be asserted into the inference engine. Tbe
inference engine will now au1oma1ically de1ec1 tbe second
rule definition using the Oracle-max_connec1ions_con1ig­
ured resource and 1he second rule will au1oma1ically gel into
ac1ion. ii will cbeck if the facl value representing 1bc
Oracle- max_connection_configured resource is greater
than 50 and, if so, it will automatically send electronic 01ail
lo the dba.

[0101] FIG. 12 is a block diagram of the managed node
1200 according to one embodinlent of the invention. The
managed node 1200 is, for example, suitable for use as o ne
or more of lhe managed nodes 102 illustrated in FrG. 1.

[0102] The managed node includes a plurality of differenl
managed products 1202. In particular, the managed node
1200 includes managed products 12@2-l , 1202-2, . . . ,
1202-n. These managed products 1202 are software prod­
ucts that form part of the system being managed by a
management system. Tbe managed products can vary
widely depending upon implementation. As examples, the
managed products can pertain 10 a Solaris operating system,
an Oracle database, or a JAVA applicat ion.

[0103] The managed node 1200 also includes an agent
1204. Tbe agent 1204 couples to each of the managed
products 1202. The agent 1204 also couples 10 a manager
(e.g., the manager 108 illustrated in FIG. 1) via the man­
agement framework 106. In general, the agent 1204 can
interact witb tbe managed products 1202 such 1bat tbe
managed products 1202 can be monitored and possibly
controlled by the management system via the agent 1204.

[0104] Additionally, in one embodimenl, one or more o(
1be managed produc1s 1202 can include an applica1ion agent
1206. For example, as shown in F[G. 12, the managed
product N L202-n includes the application agent 1206. Here,
1bc application agent L206 resides wit bin the process space
of the managed product N 1202-n (a•d thus out of tbe
process space of tbe agent 1204). The application agent 1206
can render tbe managed product N 1202-n more manageable
by the agent 1204. For example, the application agent 1206
can enable any JAVA applica1ion to be managed. The
capabilities of lhe application agent 1206 can be further
enhanced by the user adding application code 10 the appli­
cation agent conforming lo the Application Programming
l nlcrfaces (AP!) provided by lhe application agent 1206.
This methodology provides a conve•ieot means for tbe user
to add his/her application specific information such 1bat it
becomes available as resources to the rest of tbe manage­
menl system.

[0105] FIG . 13 is a block diagram or an agenl 1300
according to one ea,bodiment of the invention. The agent
1300 is, for example, suitable for use as lbe agent L204
il.lustrated in FIG. 12.

[0106] The agent 1300 includes a master agent 1302 1hat
couples 10 a plurality of sub-agents 1304. Jo particular, 1be
agent 1300 utilizes N sub-agents 1304-1, 1304-2, . .. ,
1304-n. Each of 1he sub-agents 1304-1, 1304-2, ... , 1304-n
respectively communicates w ith the managed products
1202-1, L202-2, ... , 1202-n shown in FIG. 12. The master
agent 1302 thus interacts with the various managed products

Netflix, Inc. - Ex. 1013, Page 000045
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

1202 tbrougb the appropriate ooe of tbe sub-ageots 1304.
The master agent 1302 includes the resources that are shared
by the sub-ageots 1304. These shared resources are dis­
cussed in additio•al detail below with respect lo F[G. 14.
The master agent 1302 also provides a• Application Pro­
gramming l• terfaces (AP!) that ca• be used by the user to
write a sub-age• t Iha! can interact with a managed product
for which a sub-agent is not provided by the management
product. Using this AP!, the user-wrillen sub-agent can
make available the managed product specific information as
resources lo tbe rest of tbe management product locluding
tbe master age• t 1302 and tbe rna•ager 108.

[0107] The agent 1300 also includes a communication
module 1306. The communicatio• module 1306 allows the
agent 1300 to communicate with a management framework
(a•d thus a ma•ager) througb a variety o[di[ere• t protocols.
In other words, the communication module 1306 allows the
agent 1300 to interface with other portions of a management
system over different protocol layers. These communication
protocols ca• be standardized, ge•eral purpose protocols
(sucb as SNMP), or product-specific protocols (such as
HPOY-SPI from I-lewlell-Packard Company) or various
other proprietary protocols. Hence, the communication
module 1306 includes one or more protocol communication
modules 1308. In particular, as illust rated in FIG. 13, lhe
communication module 1306 can include protocol commu­
• ication modules 1308 -a, 1308-b, . . . , 1308-111. Tbe protocol
A communication module 1308-a interfaces to a communi­
cation network that utilizes protocol A. The protocol B
communication module 1308-b interfaces with a communi­
cation network that util izes protocol B. The protocol M
communicatioo module 1308-111 interfaces witb a commu­
•icatio• network tbat utilizes protocol M.

[0108) FIG. 14 is a block diagram o[a master agent 1400
according to one embodime• t of tbe inve• tion. The master
agent 1400 is, for example, sui table for use as the master
agent 1302 illustrated in FIG. 13.

[0109) Tbe master agent 1400 includes a request processor
1402 that receives a request from the comrounicatio• mod­
ule 1306. The request is destined for ooe of tbe managed
products U02. Hence, the request processor 1402 operates
10 route an incoming request Lo tbe appropriate o•e of lbe
sub-agents 1304 associated with the appropriate managed
product 1202. Besides routing a request to the appropriate
sub-agent 1304, !be request processor 1402 can also perform
additional operations, sucb as routi•g return responses from
tbe sub-agents 1304 to tbe communication module 1306
(namely, tbe particular protocol communication module
1308 that is appropriate for use in returning the response to
1be bala•ce of the management system, i.e., the ma• ager).

[0ll0] The master agent 1400 typically i•cludes a registry
1404 that stores registry data in a registry data store 1406.
The registry 1404 manages lists which track the sub-agents
1304 that are available for use in processing requests for
notification to tbe sub-agents 1304 or the protocol commu­
nication modules 1308. Tbcse lists tbat are maintained by
the registry 1404 are stored as registry data in Lbe registry
data store 1406. Hence, tbe registry 1404 is the bub of the
master agent 1400 for all 1raffic and iateractio•s for other
system components carried out al the agent 1300. The
funclionality provided by the registry 1404 includes (l) a
mechanism for sub-ageot registration, i• itializatioo, aod

9
Jan. 29,2004

dynamic coofiguratioo; (2) a commuoicatioo framework for
the sub-agen1's interaction with the manager node through
different communicatioo modules present at tbe agent; (3) a
notification mechanism for asynchronous notification deliv­
ery from tbe monitored systems and applications to the
comrounicatio• modules and !be manager • ode; a• d (4) a
sub-agent naming service so that sub-agents can be
addressed by using simple, bu man-readable identifiers. Tbe
registry 1404 also acts as an interface between the commu­
nication modules 1308 so that tbe communication modules
1308 are able to cooJJgure registered sub-agents and receive
asynchronous • otificatio•s from !be registered sub-agents.

[0111) Tbe master age• t 1400 also includes a scbeduler
1408 and statistical analyzer 1410. The scheduler 1408 can
be utilized lo scbedule requests io the future to be processed
by the request processor 1402. The stalis1ical analyzer 1410
can be utilized to process (or at least pre-process) the
response data being returned from the managed product
1202 before some or all data is returned to tbe manager.
Hence, by having the master agent 1400 perform certain
statistical aoalysis al the statistical analyzer 1410, the pro­
cessi•g load on the manager can be distributed to the master
agents.

[0lU] Each of the sub-agents 1304 can be a pluggable
component enclosing monitoring and control (unct ionality
pertinent to a single system or applica Lion. The sub-age• ts
1304 arc known to the managed products tbrough the
registry 1404. In otber words, each of tbe sub-agents 1304
is registered and initialized by the registry 1404 before it ca•
receive requests and send out information about the man­
aged product it monitors. The principal task of tbe sub-agent
1304 is lo interact with tbc managed product (e.g., system/
application) it controls or monitors. The sub-agent 1304
serves to hicle much interaction detail from the rest of !be
agent 1300 and provides only a few en1ry points for request
into the i• formatio•.

[0113] The different protocols supported by the commu­
nication module 1306 allow the communication moduJe
1306 lo be dynamically extended to support additional
protocols. As a particular protocol communication module
1308 is init ialized, the registry 1404 witbi• tbe master age• t
1400 is informed of the particular protocol communication
module 1308 so that asy•chronous •otifications from the
managed objects ca• be received and passed to the manager
via the particular protocol communica1ion module 1308.

[0114) The communication module 1306 receives requests
from a manager through the protocol supported by the
particular protocol commu•ication module 1308 lbat imple­
ments and forwards such requests to the appropriate sub­
agent 1304 corresponding to !be appropriate managed node.
The registry .1404 within the master agent 1400 is utilized to
forward the request from the protocol communication mod­
ule 1308 and the sub-agents 1304.

[0115] In addition, the protocol communication moduJe
1308 also provides a callback for tbc sub-age• ts 1304 sucb
tbat notifications are able to be received from tbe managed
product a•d scot back to the manager. If such callbacks are
not provided, the notifications will be ignored by the sub­
agents 1304 and, thus, no error will be reported to the
manager. Hence, each of tbe protocol communication mod­
ules 1308 can be configured to handle or not ba•dle •otif:i­
catioos as desired by aoy panicu lar implementation.

Netflix, Inc. - Ex. 1013, Page 000046
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

[0116] FIG. 15 is a block diagram of a sub-agent 1500
according to one embodimeoi of the inventioo. Tbe sub­
ageot 1500 is, for example, suitable for use as any of the
sub-agents 1304 illustrated in H G. 13.

[Oil 7] The sub-agent 1500 includes a get resource module
1502, a set operation module 1504, and an event forwarding
module 1506. The get resource module 1502 interacts with
a managed product to obtain resources being monitored by
the managed product. T he set operation module 1504 inter­
acts with the managed product to set or control its operation.
The event forwarding module 1506 operates to forward
events that have occurred on the managed product to the
manager. In addition, the sub-agent 1500 can f-urther include
a s tatistical analyzer 1508. The statistical analyzer 1508 can
operate to perform statistical processing on raw data pro­
vided by a managed product at the sub-agent level. Hence,
although the master agent 1400 may include the s tatL5tical
analyzer 1410, the presence of statL5tical analyzer 1508 in
each oftbe sub-agents 1500 allows further distribution oflbe
processing load for s tatistical analysis of raw data.

[0118) F[GS. 16A and 16B are flow diagrams of manager
startup processing 1600 according to one embodiment of the
inveniion. The manager s tartup processing 1600 initially
loads 1602 a knowledge base. The manager is, for example,
the manager 200 illustrated io FrG. 2 and includes a
knowledge base, such as the knowledge base 206 illustrated
io FIG. 2. Once the knowledge base is loaded 1602,
third-party management frameworks are discovered 1604. Lo
one implementation, a management framework interface,
such as the management framework interface 212 illustrated
in FIG. 2, is utilized to identify and establish an interface to
aJJ available third-party management frameworks. Next, a
lis t of node groups is obtained 1606. In one implementation,
the list of oocle groups is retrieved by the management
framework interface.

[Oll9] Next, a first node group is selected 1608 from the
list of node groups. For the selected node group, a list of
nodes within Lhe selected node group is obtained 1610. A
decision 1612 then determines whether there are more node
groups to be processed. When the decision 1612 determines
tbat there are more •ode groups lo be processed, the• lhe
manager s tartup processing 1600 returns to repeat the opera­
tions 1608 and 1610 for a next node group. When the
decision 1612 determines that there are no more node groups
to be processed, all the nodes within each of the node groups
bavc thus been obtained.

[0120) At tbis point, processing is performed on each of
tbc nodes. A first node from the various nodes that have been
obtained is selected 1614. Then, a list of domains within the
selected node is obtained 1616. A decision 1618 then deter­
mines whether there are more nodes to be processed. When
the decision 1618 determines that there are more nodes to be
processed, tbcn tbe manager startup processing 1600 returns
to repeat the operations 1614 and 1616 for a next node.

[0121) Oo the o ther hand, when the decL5ion 1618 deter­
mines that there are no more nodes to be processed, then
processing ca• be performed for eacb o(the domains. At tbis
point, the manager starnip processing 1600 performs pro­
cessing o• each of the domains that bave been obtained. In
this regard, a first domain is selected 1620. Then, a lis t of
supported resources is obtained l622 for the selected
domain. A decision 1624 then determines whether aJI of the

10
Jan. 29,2004

domains that have been identified have been processed.
W hen the decision 1624 determines that there are additional
domains to be processed, Lbe manager startup processing
1600 returns to repeat the operations 1620 and 1622 for a
next domain such that each domain can be similarly pro­
cessed.

[0122] Next, processing is performed wi th respect 10 each
of the nodes. At this point, a first node is selected 1626.
Theo, a customized knowledge base i.s produced 1628 for
the selected node based oo the suppor1ed resources for tbe
selected node. In other words, the generalized knowledge
base that is loaded 1602 is customized at operation 1628
such that a customized knowledge base is provided for each
node that is active or present with in tbe system being
managed. A decision 1630 then determines whether there are
more nodes to be processed. When the decision L630
determines that there arc more nodes to be processed, then
tbe manager startup processing 1600 returns to repeat the
operations 1626 and 1628 for a next node. Alternatively,
when the decision 1630 determines tha t there are oo more
nodes to be processed, the• data acquisition for U10se base
rules witbio the customized knowledge bases can be sched­
uled 1632. Once the data acquisition bas been scheduled
1632, the manager s tartup processing J.600 is complete and
ends.

[0123) FIGS. 16C-16E are flow diagrams of manager
startup processing 1650 according to anotber embodiment of
the inveotion. 1be manager s tartup processing 1650 initially
loads 1652 a knowledge base with resources, rule packs and
configuration information. '!be manager is, for example, the
manager 200 illustrated in FIG. 2 and includes a knowledge
base, sucb as the knowledge base 206 illustrated in FIG. 2.
O nce the knowledge base is loaded 1652, a list of node
groups is obtained 1654.

[0124) A decision 1656 the• determioes whether there are
any node g roups to be processed. When the decision l656
determines that there are node groups to be processed, then
a first node group is selected 1658. Then, a list of nodes
within the selected node group is obtained 1660.

[0125) Next, a decision 1662 determines whether there are
any nodes in the selected node group that arc to be pro­
cessed. When the decision 1662 determines that there are
nodes within the selected node group Lo be processed, tben
a first node is selected 1664. Then, for the selected node, a
list of agent types on the selected node is obtained 1668.

[0126) A decision 1670 tbeo determioes whether there are
any agent types to be processed. Wben the decision 1670
cle termioes that there are agen t types to be processed, a first
agent type is selected 1671. Then, for the selected agent
type, a decision 1672 determines whether there is any third
party framework adapter. When the decision 1672 deter­
mines that there is no third party framework adapter, then a
list of domains is obtained 1674. On t'he other hand, when
the decision 1672 determines that th.ere is a third party
framework adapter, tben a list of supported domains is
discovered 1676. Herc, tbe resulting list of supported
domains includes information about product(s) supported by
the third party adapter. Tbe concept of domain in this case
is adapter-specific. For example, for S NMP adapter, all
resources supported by the SNMP master agent oo a man­
aged node can be considered belonging 10 a domain. Another
coocept of domain for SNMP adapter can correspond to the

Netflix, Inc. - Ex. 1013, Page 000047
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

resources supported by every SNMP sub-agent on lbe man­
aged node communicating witb tbe SNMP master agent

[0127] Following Lhe operations 1674 and 1676, a deci­
sion 1678 determines wbelber tbere arc any domains wilbin
tbe selected agent type. Wben the decision 1678 determines
tbat there are domains, tbeo a first domain is selected 1680.
Tben, a list of supported resources and domain version are
obtained 1682. Next, a decision 1684 determines wbetber
there are more do01ains within the selected agent type. When
tbe decision 1684 determines tbat tbere arc more domains,
then the manager startup processing 1650 returns to repeat
tbe operation 1680 and subsequent operations so tbat a next
domain can be similarly processed.

[0128] Alternatively, when the decisioo 1684 determines
that there arc no more domains within the selected agent
type to be processed, as well as directly following the
decision 1678 when there arc no domains to be processed,
a decision 1686 determines whether there are more agent
types to be processed. When the decision 1686 determines
that there arc more agent types lo be processed, then the
manager startup processing 1650 returns to repeat the opera­
tion 1671 and subsequent operations so tbat a next agent
type can be similarly processed.

[0U9] On tbe o ther hand, when the decision 1686 deter­
mines that tbere are DO more agent types to be processed, or
directly following tbe decision 1670 when there are no agent
types to be processed, a decision 1688 determines whether
tbere are more nodes to be processed. Wben tbe decision
1688 determines that there are more nodes to be processed,
theo the manager startup processing 1650 returns to repeat
tbe operation 1664 and subsequent operations so tbat a next
node can be similarly processed.

[0130] Alternatively, when the decision 1688 determines
tbat tbere are no more nodes to be processed, or directly
following the decision 1662 when there are no nodes, a
decision 1690 determines whether there are more node
groups lo be processed. Wben the decision 1690 determines
1bat there arc more node groups to be processed, tbc man­
ager startup processing 1650 returns to repeat tbc operation
1658 and subsequent operations so tbal a next node group
can be similarly processed.

[0131] On the o ther hand, when the decision 1690 deter­
mines tbat tbere are oo more node groups to be processed,
or directly fol.lowing tbe decision 1656 when there are no
node groups, a customized domain and resources list is
produced 1692 based on available domains (and their ver­
sions) and resources information for rules input. Then, a
customized knowledge base is produced 1694 for the
selected nodes based on supported domains and resources.

[0132] A reference resource list can be created using Lhc
most-up-to-date versioo of eacb domain type. The reference
resource list is used in rule definitions. For example, a JVM
domain list of resources obtained from one maoaged node
may be larger in number tban the list of resources oblaioed
for tbe JVM domain from a different managed node. This is
possible because of enhaoeemeol of ageol U04 over time.
The reference resource list contains the maximal set of
domains and resources from the latest version of al.I the
knowledge domains by name/ type. This enables user to
define rules for the most complete manageability of the user
environment 100 (e.g., using one GUI).

11
Jan. 29,2004

[0133] Next, a decision 1696 determines whetber a knowl­
edge processor bas been selected to run. Tbc decision 1696
enables user to start the management system for develop­
ment and testing of rules and also, lo setup all the managed
nodes and select a set rule packs and rules prior to running
the knowledge processor. The decision 1696 can be facili­
tated by a GUI. When the decision 169,6 determines that the
knowledge proces.sor is to be run, then data acquisition for
those base rules within the customized knowledge base can
be scheduled 1698. Alternatively, when the decision l 696
determines that the knowledge processor is not selected to
run, tben tbe operation 1696 can be bypassed. Following lbe
operation 1696, or its being bypassed, tbe manager startup
processing 1600 is complete and ends.

[0134] FIG. 17A is flow diagram of master agent s tartup
processing 1700 according to one embodiment o[the inven­
tion. A managed node includes an agen t to assist the man­
agement system in monitoring and managing the managed
node. Jo one embodiment, the agent includes a master agent
and a plurality of sub-agents. Hence, lbe master agent
startup processing 1700 pertains to stanup processing that is
performed by a master agent. The master agent is, for
example, the master agen t 1302 illustrated in FIG. 13.

[0135] The master agent startup processing 1700 initial­
izes L 702 any pre-configured sub-agents for the master
agent. Hence, any standard sub-agents for the master agent
are initialized 1702. Then, Lhe presence of any other sub­
agents for the master agent are discovered 1704.11:Jcse o ther
sub-agents can be either in-process process or out-of-pro­
cess. An in-process sub-agent would operate in the same
process as the master ageat. On ibe otber band, an out-of­
process sub-agent would operate in a separate proccs.s from
that of the master agent. After the any other sub-agents are
discovered 1704, the discovered sub-agents are initialized
1706. A statistical analyzer can Lheo be activated 1708 for
each of tbe sub-agents. Tbe statistical analyzers provide the
statistics collection for the resources being monitored by tbe
respective sub-agents. Followiog the operation 1708, tbe
master agent startup processing 1700 is complete and ends.

[0136] FlG. 17B is a flow diagram of sub-agent s tartup
processing 1750 according lo one embodiment of tbe inven­
tion. The sub-agent startup processing 1750 is performed by
a sub-agent. For example, the sub-agent can be one of the
sub-agents 1304 illustrated in FIG. 13.

[0137] The sub-agent startup processing 1750 initially
establishes 1752 a connection witb the master ageol. The
connection is an interface or a cornmuoication link between
the master agent and tbe sub-agent. Application resources
are then discovered 1754.]1:Je application resources are
those resources that are available Crom an application mooi­
tored by the sub-agent. The application resou.rces can also
include user-defined resources, e.g., usiog an APL Next, the
master agent is notified 1756 of the status of the sub-agent.
The s tatus for the sub-agent can include various types of
information. For example, the status of the sub-agent might
include the resources that arc avai.lablc from the sub-agent,
details about the version or operability of the sub-agen t, etc.
Next, a statistical analyzer can be ac1ivated 1758 for the
sub-agent. Tbe statistical analyzer a llows tbe sub-agent lo
perform s ta tistical analysis on resource information avail­
able from tbe sub-ageot. Following tbe operation 1758, the
sub-ageot startup processing 1750 is complete aod cods. It

Netflix, Inc. - Ex. 1013, Page 000048
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

should, however, be recognized tbat the sub-agent's startup
proccssi11g 1750 is performed for each of the sub-agents
associated with the master agent.

[0138) FIGS. 18A and 188 arc flow diagrams of trigger/
notification processing 1800 according to one embodiment
of the invention. The trigger/ notification processing 1800 is,
for example, performed by a manager, such as tbc manager
108 illustrated in FIG. 1. Jo particular, the trigger/ notifica­
tion processing 1800 operates to trigger processing so that
management information can be recorded and utilized,
including initiation of notifications as appropriate.

[0139) The trigger/notification processing 1800 begins
with a decision 1802 that determines whether a new fact bas
bee• asserted. When the decision 1802 determines that a
new fact has not been asserted, then a decision 1804
determines whether a notification has been received. Here,
tbc notifications could arrive from managed nodes. Wben
the decision 1804 determines that a notifica tion has not been
received, then tbe triggcr/notification processing 1800
returns to repeat the decision 1802. Once the decision 1802
determines that a new fact bas been asserted or when the
decision .1804 determines tha t a notification bas been
received, then a fact is asserted 1806 io the inference eogioe.
The .inference engine then processes the fact in the manager.
For example, in the case of the manager 200 illustrated in
FIG. 2, the inference engine is implemented by the knowl­
edge processor 208. Next, a log entry is made 1808 into a
log. The log entry indicates at least that tbc fact was as.serted
.1806.
[0140) Next, updated facts are retrieved 1810 for one or
more rules that are dependent upon the asserted fact. Hence,
the inference engine receives the asserted fact and deter­
mines which of the rules arc dependent upon the as.serted
fact, and then for such rules, requests updated facts so that
the rules c.1n be fully and completely processed using
up-to-date infomrntion.

[014.1) foUowing the operation 1810, a decision 18.12
determines whether the trigger/notification processing 1800
should stop. When the dccisioo 1812 determines that tbe
trigger/notification processing 1800 should stop, then those
facts no longer needed arc discarded 1813. Following the
operation 1813, the trigger/no tification processing 1800 is
complete and cods. For example, a user might terminate the
operation of the manager and thus end the trigger/notifica­
tion proccs.5ing 1800.
[0142) Alternatively, when the decision 1812 determines
tbat tbe trigger/notification proces.5ing 1800 should not stop,
tben additional processing is performed depending upo• the
type of resource. For example, the resource or the rule being
processed can signal for data acquisition, corrective action
or debug operations. I• particul ar, a decision 1814 deter­
mines whether data acquisition is requested. When the
decision 1814 determines that data acquisition has been
requested, then ao updated fact is selected 1816. On tbe
other hand, when the decision 1814 determines that data
acquisition is not being requested, then a decision 1818
determines whether corrective action is indicated. For
example, a rule within the knowledge base can request a
corrective action be performed. lo any case, wbeo the
decision 1818 determines that a corrective action has been
requested, tbeo the corrective action is performed 1820.
[0143) Alternatively, wben the decision 1818 determines
that a corrective action is not being requested, then a

12
Jan. 29,2004

decision 1822 determines whether debug data is being
requested. W hen the decision 1822 determines that debug
data is requested, then debug data is obtained .1824.

[0144] Alternatively, wben the decision 1822 determines
that debug data is not being requested, then a decision .1828
determines whether a user-defined situation bas occurred.
When the decis ion 1828 determines that a user-defined
situation has occurred, then an action .1830 is take• noting
the occurrence of the user-defined situat ion.

[0145) Following a•y on the opcratioos 1816, 1820, 1824,
1830 or the decision 1828 when a user-defined situation is
not present, a log entry is made 1826 into the log. The log
emry indicates tbe firing of tbe rule along with tbe specifics
of the resources (including their values) on the left-hand­
side (or " if'' part of the rule). Following the logging opera­
tion 1826, the trigger/notification proces.5ing 1800 returns to
repeat the operation 1806 and subsequent operations so that
additional facts can be as.5crted and similarly processed.

[0146] Additionally, a user of the management system
may interact with a Graphical User Interface (GUI) to
request a report. The report provides information to tbe user
about the management state of the one or more managed
products within the enterprise or computer system being
monitored.

[0147) FIG. 19 is a flow diagram of GUI report processing
1900 according to one embodiment of the invention. Tbc
GUI report processing 1900 is, for example, performed by a
manager. For example, tbc manager ca• be the manager 200
illustrated in FIG. 2.

[0148) The GUI report processing 1900 can begin with a
decision 1902 that determines whether a report bas been
requested. Wben tbe deci5io• 1902 determines that a report
has not yet bee• requested, the GlJl report processing .1900
awaits such a request. Jo other words, the GUJ report
processing 1900 can be considered to be invoked once a
report request has been received. In any case, wben tbc
decision 1902 determines that a report request has been
received, then log data is retrieved 1904. For example, with
respect to the manager 200 illustrated in FIG. 2, the log data
can be retrieved 1904 from tbe log module 220. After tbe log
data is retrieved .1904, a report is generated .1906 from the
retrieved Jog data.

[0149) The report might indicate the various facts and
rules that have been utilized by the management system over
a period of time. For example, a report might specify those
of the rules that were '·fired" and for each such rules, when
it "fired," wby it •'fired," and action (if any) taken. Addi­
tionally, a report might include dcta iL5 on the actions taken
aod related values. Still further, if one of tbe actions taken is
a debug action, then the report might also include debug
data. A report can also be ta rgeted or selective in its content
based on criteria. For example, a repon cao be limited with
respect to one or more of a certain Lime range, an event,
exceptions, domains a•d/or rule packs.

[0150) Once the re1>ort bas been generated .1906, a report
delivery method is determined 1908. Here, tbe report deliv­
ery method can be pre-configured by a• administrator of tbe
management system to deliver reports to certain individuals
or locations automatically. For example, the report can be
delivered in tbe form of a notification that ca• be carried out
using a pager, a voice mail, a voice synthesized telephone

Netflix, Inc. - Ex. 1013, Page 000049
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

call, a facsimile, etc. Once the report delivery method bas
been determined 1908, the report is delivered 1910 using tbe
determined report delivery metbod. It sbould be understood
tbat tbe report delivery metbod ca• vary depending upon the
nature of the report. For example, urgent reports can utilize
one or more delivery methods tha t are more likely to reach
the recipient immediately, such as a page or a mobile
telephone cal l. Hence, tbe report can be delivered io a
variety of dill'ereat ways depending upon the application,
circumstances and configurarion of the management system.
Followiog tbe delivery 1910 of the report, tbc GUI report
processing 1900 is complete and ends.

[0151] FIGS. 20-29 are screen shots of a representative
Graphical User Interface (GUI) suitable for use with one
embodiment of the preseat invention. Tbese screen shots
detail how to create and maintain rules using the GUI.

[0152] How to Build a Rule Using Resources

[0153] To add (create) a rule, a user would access an Add
New Ruic page, such as shown in FIG. 20. Herc, the user
would perform the first step of four steps to follow in order
to add a new rule. Namely, the user would enter a name and
description for the ru le and select a rule pack it belongs to.
Upon pressing a Submit button, the process proceeds to tbe
next step where you define the situation or the lefi-hand side
of a ru le, i.e. tbe cooditi.oos under wbicb the rule will fi re . Or,
ia other words, a Ust of situations and events (When this
bappeos . . .) which lead to the actions specified under the
"Theo define situation or do th is ... " header, wbicb is
referred to as the right-band side of tile rule. Predicates of tile
left-band s ide are called antecedents and elements of tbe
right-hand side are called consequents.

[0154] As shown in FIG. 21, to build the Iefl-band side of
a rule, first choose a knowledge domain from a Domains list
on the left side of the screen. After a domain is selected from
the list the selection box below will be show all resources of
that domain. There are two kinds of domains, physical and
special (or virtual). A physical domain represents a collec­
tion of resources pertaining to a software component or an
entire software product, for instaoce the Java Virtual
Machine, as opposed to a special, or virtual domain. A
special domain represents a set of resources, which aren't
associated with any "physical" knowledge domain. Instead
such resources are used by the manager as building blocks
to express conditions of the le[1-band side or form actions on
the right-hand side of a rule. In the representative rule being
built, both a physical domain resource and a virtual domain
resource arc used. First, select the jvm domain from the list
of domains aod two resources of tbat domain to tile rigbt­
hand side of the rule (sec FIG. 21).

[0155] Once we have selected all tile resources used to
define the situation, the --proceed 10 next step" bu1too is
selected. The next step is where relationships between tbe
selected resources and/or tbcir thresholds arc set to configure
the condition for the rule to lire. Now, add a condition to the
left-band side of the rule. Tbis condition basically states that
whco the amount of heap memory currently in use is greater
than a certain percentage of the maximum beap memory
available, the rule sbould fire. la order to add a condition to
the left-band side of a rule, choose the Filter special domain.
As shown ia FIG. 22, one of the domain resources in the
selection box wi ll be Condition. The user just selects "Con­
dition" and clicks the add button.

13
Jan. 29,2004

[0156] Next, aa Edit Parameter button for tbc condition is
selected and tbe desired condi tion expression e ntered. Here,
the condition expression shown emered in FIG. 23 binds the
two JVM resources. Tbe condition is typically defined as an
expression. A simple example of a condition expression is
(a>b).

[0157] Let us look at detail how we came up w ith the
condition expression in F[G. 23. Please refer to FIG. 22 for
better illustration. Under the "When this happens ... "
header oote that there are tbree distioct entries ooe below the
other as follows

?rt
11'2
?r3

jv!ll_ HeapUsed
jvm MaxHeapSize
Condition

[0158] Here ?r 1, '?r2 and '/r3 are resource variable names
assigned by the system to the resources jvm_l-leapUsed,
jvm_MaxHeapSize and Condition resources respectively.
This is to facilitate tile defin ilion of the condition expression
using the resource variable names only. A simplified
example of a condition expression using resource '?rl is
(?rl>l000OO0), which sta tes that the rule is considered true
(or, gets ''fired") in case jvm_HcapUs·ed exceeds 1000000
bytes or l MB. Note that, in this expression ?rl and 1000000
are operands and > is a comparator operator in between the
two operands.

[0159] In the condition expression ?rl>(?r2*060) in FIG.
23, the condition states that the rule is considered to be true
if JVM heap being currently used Gvm_HcapUscd), '?rl, is
greater tbao 60% o((or 0.60 times) the maximum allowed
beap size Gvm_ MaxHeapSi.ze), ?r2.

[0160] Now, as the left-hand side of the rule has been built,
let us specify using the Configure Action(s) page shown in
Fl G. 24 to indicate what we want the system to do when tbe
condition becomes true. let's request the system produce a
report oo the class whose objects occupy most of the JVM
heap and request a report on objects of the classes thus
ideoti.fied are allocated oo the beap during tbc foUowiag 15
seconds.

[0161] Setting Up a Rule for Auto-Diagnostics

[0162] In order to test the rule that bas been created (and
also make sure that all components of the products arc
iostalled properly and communicate with cacb other), tbe
manager should be set so that it coasiders the rule when the
rule evaluation eogine is started. Every rule can be coo.fig­
ured in a flexible way. For instance, it cao be set to be tested
every 10 seconds, or every minute, or every hour. If you
want a trial run of the rule as you ruo tile engine, select a
special option on the list of possible intervals, "once only,"
can be chosen. The testing interval cao be set oa tile same
Rule Editing page as shown in FIG. 25.

[0163] Chaining of Rules

[0164] The rule shown io FIG. 24 is a rule that defines
conditions for aa abnormal situation. If the defiacd situatioa
occurs, the system is requested to take one or more actions.
Jo this representative example, the actions are the two
request for jvm l bpHeapObjects and jvm AllocTrace on
tbc rigbt-haod side of tbe rule, under the ··Then define

Netflix, Inc. - Ex. 1013, Page 000050
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

situa1io• or do tbis . . . " bcader. This kind of rule is useful,
but its capabilities arc limited. If instead of taking actioo
rigbt there in the rule, a situation is defined, theo a• otber rule
can be built so that it gets triggered wbeo ibis situation has
bee• e•couotered. Througb Ibis mecbaoisru, rules cao be
chained and hierarchies, or trees, of ru !es can be built.

[0165] For example, for this rule 10 be turned into a rule
tbat ca• potentiaUy be cbafoed to other rules, a oew situation
has to be defined, see FIG. 26. T he situation can tbcn be
added to the rule as a consequent, see FIG. 27.

[0166) Tbereafter, as desired, anotber rule or a set of rules
cao be defined witb JVMLowMemory as tbe antecedent and
tbc system will automatically cbain these rules, i.e., the set
of rules defined with JVMLowMemory on the left-hand side
of the rule, will lire when the situation in FIG. 27 is declared
in the modified rule in FIG. 24.

[0167] Editing Rules

[0168) A previously defined (added) rule can be edited. To
edit an existing rule, go to tbe Ru le Management page, sucb
as shown in FIG. 28, select an existing rule and click on the
Edit button.

[0169] Starting and Stopping the Rule Engine

[0170] After a rule or a chain of rules has been created the
system is ready to monitor the software on tbc managed
•odes. I• order to initiate this proces.s, from tbc Rule
Ma• agemeot page, start the rule eogioe by clicking on the
(Rc)Start Engine button. If tbc rules cogioc bas lo be
stopped, press the S top Engine bunoa in the Rule Manage­
ment page. If any of tbe rules were edited or new rules were
added and you want these changes to take effect, tbe
(Re)Start Engine bultoo in the Rule Management page bas
to be pressed. This will cause tbe engine to stop, automati­
cally pick up any changes that bave been made, and restart.

[0171] Note that every time the manager process is started,
the Ruic Eogioc status can be Ready. The current status of
lhe engine is d isplayed in the lop righl hand corner in !be
Ruic Management page. For the rules to be fired according
to time and condition set in its definition, tbe (Re)Start
Engine bunoo in tbe Rule Management page needs to be
pressed explicitly. This changes the s tatus of Rule Engine
from Ready to Running. You bave to do tbis every-time you
acid or make changes to rules and want 1he Rule Engine 10
pick up the additions/changes. As the engine gets into the
running state, ii checks resource values of the rules set up for
periodic checking. lo case all conditions on tbe left-band
side of such rule become valid, the engine will proceed with
tbe actions on tbe on the right-hand side of the rule, after
which the rule will become blocked for as long as the
conditions are valjd. Then, the rule will be marked active
again. All ac1ivities of tbe engine in respect to rule /iring and
subsequen1 actions are reflected on the Repon page. T he
page can be accessed through the Report button on the Rule
Management page, such as shown in FIG. 28.

[0172) Report

[0173) 1be Report page for our example above, with heap
usage reduced to l % and allocation tracing time reduced to
5 seconds, is shown in FIG. 29. The Report page has several
functional bunons wbieb arc self-descriptive: a Refresh
bunon is used for updates of tbe page so ii reflects the latest
rcpon information, a Clear bu non will render tbe report page

14
Jan. 29,2004

empty, a Mail bunoo will allow the report to be sent via
e-mail aod the Done button wi.11 take you back to 1he main
page, tbe Rule Management page.

[0174) Tbe sample report sbowo in FIG. 29 is a result of
running of the rule defined and shown io FIG. 24 . The report
reflects all important events associa t,ed with the system
having run with the rule being activated for diagnostics. The
first line of the report indica tes tbat rule JVMHeap was fired
and for what system the conditions of the rule became true
and wbeo it happened. Tbeo values of tbe resources on tbe
left -hand side of the rule, which led to the rule being
triggered are show• . Under tbe Actions taken header the
resources of tbe rigbt-hancl side are shown. First, the list of
the classes whose objects take up mosl of the space on the
JVM heap is requested. Filters excluding aU standard classes
(java.*, javax.•) are applied so that only two classes appear
on the list. Tbis is because the applicat ion run by our JVM
is truly simple. Tbe sccood actioo is a LS second allocation
trace report for objects of the classes found on the top heap
objects list. Under jvm_AllocTracc you can see all alloca­
tions of objects of tbe two classes. Each allocation trace
shows where, in wbat method of what class, it took place. I t
also shows the line number in the source code for that class,
if available (sucb would be available w hen the source code
was compiled wi thou t disabling the debugging information
generation).

[0175) The invention can be implemented in software,
hardware, or a combination of hardware and software. The
invention can also be embodied as computer readable code
on a computer readable medium. The computer readable
medium is any data s torage device tha t can s tore data which
can be thereafter be read by a computer system. Examples
of the computer readable medium include read-only
memory, random-access memory, CD-ROMs, magnetic
tape, optical data storage devices, carrier waves. The com­
puter readable medium can also be distributed over a net­
work coupled computer systems so that the computer read­
able code is s tored and executed in a d istributed fash ion.

[0176) The many features and advaotagcs of the present
invention are apparent from the wriuen description, and
thus, it is intended by tbe appeoclecl claims to cover all sucb
features and advan1ages of the inveotion. Further, since
numerous moclillcatioos and changes will readily occur to
those skilled in Lhe art, i t is not desired lo Limit the invention
to the exact constructjon and operation as illustrated aad
described. I-Ieace, all suitable modifications aod equivalents
may be resorted 10 as fa lling with in the scope o(the
invention.

Wbat is claimed is:
1. /\ management system for at least one computer sys­

tem, comprising:

a plurality of agents residing within managed nodes of a
plurality of different products used within the computer
system; and

a manager for said management system, said manager
being operable across the differeot products.

2. A management system as recited in claim 1, wherein
said management system further comprises a knowledge
base.

Netflix, Inc. - Ex. 1013, Page 000051
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

3. A management system as recited in claim 2,

wherein a plurality of different users across multiple
organizations contribute to the information within said
knowledge base, and

wherein said knowledge based is shared and used by a
plurality of different organizations to manage their
computer systems, the differen t organiza tions having
the same or different product config11rations o• their
computer systems.

4. A management system as recited i• claim 2, wherein
said knowledge base is updated by contributions from other
users, and an update to said knowledge base is distributed to
said manager via the Internet.

5. A management system as recited in claim 2, wherein
said knowledge base contains information pertainiog to the
different products.

6. A management system as recited io claim 5, wbereio the
information pertaining to the different products includes at
least rules.

7. A management system as recited in claim 6, wherein
said manager fonher comprises an inference engine that
evaluate the rules.

8. A managemeot system as recited in claim 2, wherein the
information in said knowledge base is described using
tbresbolds on resource ioformatfon.

9. A management system as recited in claim 2, wherein tbe
information in said knowledge base is described using
thresholds oo resource information and relationships
between resource infom1ation from the different products.

10. A management system as recited in claim 2, wherein
tbe information in said knowledge base is provided tllereto
by a plurality of different persons located at different posi­
tions.

11. A management system as recited in claim 10, wherein
the difiereot persons provide the information to said knowl­
edge base through use of graphical user interfaces.

U. A rnaoagerneot system as recited in claim 2, wberein
said agents provide said manager with only symptom infor­
mation tbat is relevant to that identified within tbe knowl­
edge base as a possible known causing symptom for previ­
ously observed problems.

13. /\ management system as recited in claim 12, wherein
each of the different products being managed bas at least one
application component, and

wherein the symptom information pertains to resource
information form the application compooenl of the
dill'ereot products.

14. A management system as recited in claim 1, wherein
said manager determines which of at least ooe of the
different products a problem arises.

15. A management system as recited io claim 14, wherein
after said manager determines which of at least one of the
different products tbe problem arises, initiates a reporting
and/or corrective actioo.

16. A management system as recited in claim 1, wherein
said management system performs just-in-time or near real­
time diagnosis of which of al least ooe of the dill'erent
products a problem arises or is likely to arise.

17. A management system a5 recited io claim 1, wberein
said management system operates on a separate computer
that is conoccted to tbe computer system beiog managed.

15
Jan. 29,2004

18. A management system as recited in claim 1, wherein
said maoagemeol system is for a plurality of computer
systems, and

wherein said manager is central and operable across the
different products on the different computer systems.

19. A management system as recited in claim 1, wherein
said knowledge base is updated by con1ributions from other
users, and an update to said koowledge base is distributed to
said manager through knowledge data files.

20. A management system in claim 1, wherein the man­
aged nodes can be managed by more than one of said
management systems.

21. A method for managing an enterprise computer sys­
tem, said method comprising:

receiving a fact pertaining to a condi tion of one of a
plurality of different products that are operating i• the
enterprise computer system;

asserting the fact with respect to an inference engine, the
inference engine using rules based on facts;

retrieving updated facts from the inference engine from
those of the rules that are dependent on the fact that bas
been asserted; and

performiog an action in view of the updated facts.
22. A method as recited in claim 21, wherein the action in

at least ooc of a corrective action or a debug data acquisitioo.
23. A method as recited in claim 22, wherein the correc­

tive action or the debug action further asserts at least one fact
with respect to the inference engine.

24. A method as recited in claim 21, wherein said method
furlber comprises:

making a log entry.
25. A method as recited in clam 24, wherein said method

further comprises:

retrieving log data from the log e ntry; and

generating a report from the log data.
26. A method as recited io claim 25, wherein said method

further compri'>es:

determining a report delivery method; and

delivering tbe report using the determined report delivery
method.

27. A method as recited in claim 21, w herein the inference
engine obtains resource information from the different prod­
ucts to process rules based on at least one fact already
asserted.

28. A method as recited in claim 21, wherein the ditrerent
products send resource information to the inference eogioe
to process rules Iha t depend on at least o ne fact represent:i ag
the resource information.

29. A method for isolating a root cause of a software
problem to an enterprise coniputer system supporting a
plura lity o(software products, said method comprising:

forming a knowledge base from causing symptoms and
experienced problems provided by a disparate group of
contributors; and

examining the knowledge base witb respect lo the soft­
ware problem to isolate the cause o(the software
problem to one of the software products.

Netflix, Inc. - Ex. 1013, Page 000052
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 2004/0019672 Al

30. A mctbod as recited in claim 29, wbercin tbc knowl­
edge base C-Urtber includes corrective actions for certain
software problems.

31. A metbod as recited in claim 30, wherein said method
forther comprises:

automatically performing a correction operation to
attempt correction of the software problem, the correc­
tion operation being as.,;ociated witb one of the correc-

16
Jan. 29,2004

tive actions witbia tbe knowledge base tbat is suitable
for use wi th the software problem.

32. A method as recited in claim 29, wherein the causing
symptoms pertain to resources of the software products.

33. A method as recited in claim 29, wherein a repeating
symptom cause can be ignored till after the cause ceases to
exist at least once.

* * * * *

Netflix, Inc. - Ex. 1013, Page 000053
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

