
The chart below illustrates infringement of the Sundar ’138 Patent by Defendant Netflix, Inc.’s (“Netflix”) cloud-based distributed
computing system, which relies on the Titus architecture, and which Netflix made and uses to power various aspects of Netflix’s
business, such as video streaming, recommendations, machine learning, big data, content encoding, studio technology, internal
engineering tools, and other Netflix workloads (the “Accused System”).

This chart is preliminary and based on information presently available to Plaintiff Avago Technologies International Sales Pte. Ltd.
(“Avago”). Netflix has yet to produce any documents or materials in this matter, or to provide any discovery relating to the accused
products, systems, and methods. Notably, Avago does not currently have access to the internal technical documentation and source
code associated with the Accused System. This infringement chart was therefore made without the benefit of these materials. Avago
expressly reserves the right to amend this infringement chart as additional documents, materials, and information becomes available to
Avago, including but not limited to the internal technical documentation and source code described above.

These contentions are not an admission of any kind, including with regard to claim construction, as claim construction proceedings
have not yet occurred. Avago expressly reserves the right to amend these contentions based on the outcome of those proceedings.
This claim chart is exemplary in nature, and merely designed to put Netflix on notice of Avago’s current infringement contentions.

Claim Language Contentions
1.p. A distributed computing
system comprising:

To the extent the Court determines this preamble is a limitation of the claim, the Accused System
includes a distributed computing system.

For example, Netflix developed and uses the Titus Container Management System (“Titus”) to
“provide[] scalable and reliable container execution and cloud-native integration with Amazon
AWS.”1 “Titus was built internally at Netflix and is used in production” by Netflix.2

As Netflix explains, “Titus powers critical aspects of the Netflix business, from video streaming,
recommendations, and machine learning, big data, content encoding, studio technology, internal
engineering tools, and other Netflix workloads.”3

1 See https://netflix.github.io/titus/.
2 Id.
3 https://netflixtechblog.com/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436.

Netflix, Inc. - Ex. 1022, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://netflix.github.io/titus/
https://netflixtechblog.com/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436

In Netflix’s words, “Titus offers a convenient model for managing compute resources.”4 Netflix
publications indicate that Netflix uses the Titus platform to launch and manage millions of
containers per week (if not more), and to host thousands of applications globally across tens of
thousands of virtual machines (if not more).5

Source: https://www.slideshare.net/aspyker/container-world-2018.

“Titus is a framework [that runs] on top of Apache Mesos, a cluster-management system that
brokers available resources across a fleet of machines. . . . Titus consists of a replicated leader-
elected scheduler called Titus Master.”6 According to Netflix, the Titus Master is responsible for

4 See https://medium.com/netflix-techblog/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436.
5 See id. (“…container use at Netflix has grown from thousands of containers launched per week to as many as three million containers launched per week in

April 2018. Titus hosts thousands of applications globally over seven regionally isolated stacks across tens of thousands of EC2 virtual machines.”).
6 https://netflix.github.io/titus/overview/.

Netflix, Inc. - Ex. 1022, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/container-world-2018
https://medium.com/netflix-techblog/titus-the-netflix-container-management-platform-is-now-open-source-f868c9fb5436
https://netflix.github.io/titus/overview/

persisting job and task information, scheduling tasks, and managing the pool of EC2 virtual machine
instances on which the Titus Agents execute in order to launch and run containerized applications.7

Source: https://www.slideshare.net/aspyker/netflix-and-containers-titus.

7 Id.

Netflix, Inc. - Ex. 1022, Page 000003
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/netflix-and-containers-titus

Source: https://netflix.github.io/titus/overview/.

For instance, Netflix developers explain that “Titus consists of a replicated, leader-elected scheduler
called Titus Master, which handles the placement of containers onto a large pool of EC2 virtual
machines called Titus Agents, which manage each container’s life cycle.”8

To the extent the Accused System relies on third-party cloud computing resources, such as Elastic
Computing virtual machine services (“EC2”) and Simple Storage Solutions data storage services
(“S3”) supplied by Amazon Web Services (“AWS”), Netflix still directs, controls, and directly
benefits from the infringing functionality described in this chart. For example, while Netflix utilizes
generic cloud computing resources purchased from AWS—which can be used for virtually any
computing task—Netflix developed, uses, configures, and controls the Titus software and other
software that runs on and controls the relevant operations of these generic computing resources.

8 https://queue.acm.org/detail.cfm?id=3158370.

Netflix, Inc. - Ex. 1022, Page 000004
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://netflix.github.io/titus/overview/
https://queue.acm.org/detail.cfm?id=3158370

1.a. a software image
repository comprising non-
transitory, computer-readable
media operable to store: (i) a
plurality of image instances
of a virtual machine manager
that is executable on a
plurality of application
nodes, wherein when
executed on the application
nodes, the image instances of
the virtual machine manager
provide a plurality of virtual
machines, each of the
plurality of virtual machines
operable to provide an
environment that emulates a
computer platform, and (ii) a
plurality of image instances
of a plurality of software
applications that are
executable on the plurality of
virtual machines; and

The Accused System includes a software image repository comprising non-transitory, computer-
readable media operable to store a plurality of image instances of a virtual machine manager that is
executable on a plurality of application nodes.

Source: https://www.slideshare.net/aspyker/cmp376-another-week-another-million-containers-on-

amazon-ec2.

For example, Netflix uses one or more S3 “cloud” servers, git repositories, and/or Docker registries
to store a plurality of Titus Agent image instances. The S3 “cloud” servers, git repositories, and
Docker registries operate on physical server hardware. Like all, or nearly all, modern computer
systems, the server hardware uses memory (non-transitory, computer-readable media) to store the
files and data its holds (in this case the repository and its contents).

As Netflix explains, the Titus Agent images may be configured for different CPU, GPU, and
memory configurations, such as “r3.8xl,” “p2.8xl,” and “m4.4xl” configurations.

Netflix, Inc. - Ex. 1022, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/cmp376-another-week-another-million-containers-on-amazon-ec2
https://www.slideshare.net/aspyker/cmp376-another-week-another-million-containers-on-amazon-ec2

We run a peak of 500 r3.8xl instances in support of our batch users. That represents
16,000 cores of compute with 120 TB of memory. We also added support for GPUs
as a resource type using p2.8xl instances to power deep learning with neural nets and
mini-batch. In the early part of 2017, our stream-processing-as-a-service team
decided to leverage Titus to enable simpler and faster cluster management for their
Flick based system. [. . .] These and other services use thousands of m4.4xl
instances.9

Netflix further explains that the Titus Master causes the Titus Agent image instances to be copied
from storage to a plurality of EC2 instances during a scaling operation.10

The Titus Master is responsible for persisting job and task information, scheduling
tasks, and managing the pool of EC2 Agents. [. . .] The Master schedules tasks onto
Agents with available resources and scales the pool of Titus Agents up or down in
response to demand.11

9 https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-3abfc096781b.
10 https://netflix.github.io/titus/overview/; see also, https://queue.acm.org/detail.cfm?id=3158370 (explaining that “Titus uses Fenzo, an extensible scheduler

library for Mesos frameworks . . . to assign[] tasks to resource offers presented by Mesos and support[] a variety of scheduling objectives that can be
configured and extended.”).

11 https://netflix.github.io/titus/overview/.

Netflix, Inc. - Ex. 1022, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-3abfc096781b
https://netflix.github.io/titus/overview/
https://queue.acm.org/detail.cfm?id=3158370
https://netflix.github.io/titus/overview/

Source: https://www.slideshare.net/aspyker/cmp376-another-week-another-million-containers-on-
amazon-ec2 (depicting Titus Agents executing on multiple “AWS Virtual Machines,” (EC2

servers)).

The Netflix system further includes the previously discussed plurality of image instances of a virtual
machine manager, wherein when executed on the application nodes, the image instances of the
virtual machine manager provide a plurality of virtual machines, each of the plurality of virtual
machines operable to provide an environment that emulates a computer platform.

For example, each Titus Agent image instance, when executed on an application node (e.g., an EC2
server) provides a Titus Agent virtual machine; hence, multiple Titus Agent image instances provide
a plurality of virtual machines.

Further, each Titus Agent operates to provide an environment that emulates a computer platform.
For example, each Titus Agent comprises virtual memory and processors, an operating system

Netflix, Inc. - Ex. 1022, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/cmp376-another-week-another-million-containers-on-amazon-ec2
https://www.slideshare.net/aspyker/cmp376-another-week-another-million-containers-on-amazon-ec2

(“OS”), and various other dependencies required to launch and manage software applications.12 For
example, an “r3.8xl” Titus Agent instance provides a virtual machine comprising 32 virtual CPUs
and 244 GB of memory13 and an “m4.4xl” Titus Agent instance provides a virtual machine
comprising 16 virtual CPUs and 64 GB of memory.14

The Accused System includes the software image repository previously discussed, further operable
to store a plurality of image instances of a plurality of software applications that are executable on
the plurality of virtual machines.

For example, Netflix uses S3 “cloud” servers and/or git repositories to host Docker registries
that store a curated set of container images that may be executed on the Titus Agents.15 As
Docker explains, a Docker registry is a “stateless, highly scalable server side application that
stores and lets you distribute Docker [container] images.”16 As Netflix explains:

We also added things to Docker. Some of the things we’ve done is we’ve curated a
set of base images . . . for people that are looking for a base Java image to start with
or a base Node image to start with, we have a curated set of images for that.17

12 Id. (“Titus Agents are responsible for setting up and running task containers and managing their lifecycle. The Agent sets up on host resources, such as storage
and networking resources, and launches the container using Docker.”).

13 See, e.g., https://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/.
14 See, e.g., https://aws.amazon.com/ec2/instance-types/.
15 https://www.infoq.com/presentations/netflix-titus-2018/; see also, https://netflix.github.io/titus/install/prereqs/ (explaining that Netflix “operate[s] a docker

registry based on Docker Distribution”); https://docs.docker.com/registry/ (explaining that companies, such as Netflix, may create a private registry to store
these container image instances, or they may use the public repository (“Docker Hub”) available through Docker’s website).

16 https://docs.docker.com/registry/.
17 https://www.infoq.com/presentations/netflix-titus-2018/.

Netflix, Inc. - Ex. 1022, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://aws.amazon.com/about-aws/whats-new/2014/04/10/r3-announcing-the-next-generation-of-amazon-ec2-memory-optimized-instances/
https://aws.amazon.com/ec2/instance-types/
https://www.infoq.com/presentations/netflix-titus-2018/
https://netflix.github.io/titus/install/prereqs/
https://docs.docker.com/registry/
https://docs.docker.com/registry/
https://www.infoq.com/presentations/netflix-titus-2018/

Source: https://www.slideshare.net/aspyker/netflix-and-containers-titus (depicting integration of
Docker image instances with S3 “cloud” server; red box added).

As Docker explains each container provides “everything needed to run an application: code,
runtime, system tools, system libraries and settings.”18 Netflix further explains that “[u]sing
containers, Titus runs any batch application letting the user specify exactly what application code
and dependencies are needed.”19

1.b. a control node that
comprises an automation
infrastructure to provide
autonomic deployment of the
plurality of image instances
of the virtual machine
manager on the application
nodes by causing the

The Netflix system includes a control node that comprises an automation infrastructure to provide
autonomic deployment of the plurality of image instances of the virtual machine manager on the
application nodes by causing the plurality of image instances of the virtual machine manager to be
copied from the software image repository to the application nodes.

18 https://www.docker.com/resources/what-container.
19 https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-3abfc096781b.

Netflix, Inc. - Ex. 1022, Page 000009
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/netflix-and-containers-titus
https://www.docker.com/resources/what-container
https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-3abfc096781b

plurality of image instances
of the virtual machine
manager to be copied from
the software image
repository to the application
nodes and to provide
autonomic deployment of the
plurality of image instances
of the software applications
on the virtual machines by
causing the plurality of
image instances of the
software applications to be
copied from the software
image repository to the
application nodes.

For example, the Titus framework employs an automation infrastructure known as a “Titus
Master.”20 As Netflix explains, the Titus Master is responsible for persisting job and task
information, scheduling tasks, and automatically scaling the pool of Titus Agents up and down in
response to demand.21 For example, the Titus Master “configures both the AWS Auto Scaling
policies and CloudWatch alarms for the service” and monitors performance metrics for both the
application and the container-level system metrics (e.g., CPU and memory usage) to determine
whether the policy thresholds are being breached.22 As Netflix explains:

As service apps running on Titus emit metrics, AWS analyzes the metrics to
determine whether CloudWatch alarm thresholds are being breached. If an alarm
threshold has been breached, AWS triggers the alarm’s associated scaling actions.
These actions result in calls to the configured API Gateway endpoints to adjust
instance counts. Titus responds to these calls by scaling up or down the Job
accordingly.23

In such a scaling operation, the Titus Master autonomically causes a plurality of Titus Agent images
to be deployed from Netflix’s S3 “cloud” servers, git repositories and/or Docker registries onto the
newly provisioned EC2 virtual machine instances.24

The Titus Master of the Netflix system additionally provides autonomic deployment of the plurality
of image instances of the software applications on the virtual machines by causing the plurality of
image instances of the software applications to be copied from the software image repository to the
application nodes.

20 The Titus Master is also known as the “Titus control plane.” See https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons,
at slide 12 (identifying the Titus control plane); see also, https://www.slideshare.net/aspyker/netflix-and-containers-titus, at slide 15 (identifying the Titus
Master).

21 https://netflix.github.io/titus/overview/ (As discussed supra at fn.10 and infra at claims 9, 11 and 12, the Netflix Titus Master employs an internally developed
scheduler known as “Fenzo” to carry out task scheduling and resource autoscaling operations).

22 https://netflixtechblog.com/auto-scaling-production-services-on-titus-1f3cd49f5cd7.
23 Id.
24 https://queue.acm.org/detail.cfm?id=3158370 (The Titus Master “handles the placement of containers onto a large pool of EC2 virtual machines called Titus

Agents, which manage each container’s life cycle.”).

Netflix, Inc. - Ex. 1022, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons
https://www.slideshare.net/aspyker/netflix-and-containers-titus
https://netflix.github.io/titus/overview/
https://netflixtechblog.com/auto-scaling-production-services-on-titus-1f3cd49f5cd7
https://queue.acm.org/detail.cfm?id=3158370

For example, as previously discussed, the Titus Master causes Titus Agents to be autonomically
scaled up or down in response to demand.25 The Titus Master then provides for the autonomic
deployment of the container image instances onto the Titus Agents virtual machines that are
executing on one or more EC2 instances. In Netflix’s words, the Titus Master “handles the
placement of containers onto a large pool of EC2 virtual machines called Titus Agents, which
manage each container’s life cycle.”26

4. The distributed computing
system of claim 1, wherein a
first image instance of the
plurality of image instances
of the plurality of software
applications comprises a
server application.

The Accused System provides the system of claim 1, as described above, which allegations are
incorporated by reference herein.

The Accused System also includes the distributed computing system of claim 1, wherein a first
image instance of the plurality of image instances of the plurality of software applications comprises
a server application.

For example, as previously discussed with regard to claim 1 (which is incorporated by reference
herein), the container image files execute on one or more Titus Agents. In so doing, the containers
enable an application capable of receiving and responding to requests received from the Titus
Master, as well as from other Titus containers and Netflix applications.

For instance, Netflix states, “Titus supports both service jobs that run ‘forever’ and batch jobs that
run ‘until done’.”27 As Netflix further explains, the Titus container platform enables “service to
service communication.”28 In Netflix’s words, “[w]e avoided reimplementing service discovery and
service load balancing. Instead we provided a full IP stack enabling containers to work with
existing Netflix service discovery and DNS (Route 53) based load balancing.”29

25 https://netflix.github.io/titus/overview/.
26 Id.
27 https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-3abfc096781b.
28 Id.
29 Id.

Netflix, Inc. - Ex. 1022, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://netflix.github.io/titus/overview/
https://netflixtechblog.com/the-evolution-of-container-usage-at-netflix-3abfc096781b

Source: https://www.infoq.com/presentations/netflix-titus-2018/ (explaining that Titus enables
service to service communication).

8. The distributed computing
system of claim 1, wherein
the control node maintains
the plurality of image
instances of the virtual
machine manager and the
plurality of image instances
of the plurality of software
applications as persistent or
non-persistent based on a
configuration.

The Accused System provides the system of claim 1, as described above, which allegations are
incorporated by reference herein.

The Accused System includes the distributed computing system of claim 1, wherein the control
node maintains the plurality of image instances of the virtual machine manager and the plurality of
image instances of the plurality of software applications as persistent or non-persistent based on a
configuration.

For example, as previously discussed with regard to claim 1 (which is incorporated herein by
reference), the Titus Master maintains a plurality of Titus Agent image instances and container
application image instances in one or more S3 “cloud” servers, git repositories, and/or Docker
registries. As the AWS documentation explains, S3 provides “persistent virtual disk storage similar
to a physical disk drive for files or other data that must persist longer than the lifetime of a single
EC2 instance.”30

30 https://d0.awsstatic.com/whitepapers/AWS%20Storage%20Services%20Whitepaper-v9.pdf.

Netflix, Inc. - Ex. 1022, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.infoq.com/presentations/netflix-titus-2018/
https://d0.awsstatic.com/whitepapers/AWS%20Storage%20Services%20Whitepaper-v9.pdf

As Netflix developers explain, the Titus system works in conjunction with the Apache Cassandra
software in order to store Titus Agent images and container images in persistent or non-persistent
memory.31 In Netflix’s words,

Titus consists of a replicated, leader-elected scheduler called Titus Master, which
handles the placement of containers onto a large pool of EC2 virtual machines called
Titus Agents, which manage each container’s life cycle. Zookeeper manages leader
election, and Cassandra persists the master’s data.32

Hence, the Titus system—specifically the Titus Master—utilizes Cassandra to persist the plurality
of Titus Agents image instances and container image instances (i.e., the “master’s data”).

Source: https://netflix.github.io/titus/overview/ (blue circle added).

31 https://queue.acm.org/detail.cfm?id=3158370; see also, https://en.wikipedia.org/wiki/Apache_Cassandra (Apache Cassandra is a “NoSQL database
management system designed to handle large amounts of data across many commodity servers, providing high availability with no single point of failure.
Cassandra offers robust support for clusters spanning multiple datacenters, with asynchronous masterless replication allowing low latency for all clients.).

32 https://netflix.github.io/titus/overview/ (emphasis added); see also, https://cassandra.apache.org/ (explaining that Netflix uses Cassandra to persist data across
its network and processes over 1 trillion requests per day).

Netflix, Inc. - Ex. 1022, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://netflix.github.io/titus/overview/
https://queue.acm.org/detail.cfm?id=3158370
https://en.wikipedia.org/wiki/Apache_Cassandra
https://netflix.github.io/titus/overview/
https://cassandra.apache.org/

9. The distributed computing
system of claim 1, wherein
the control node further
comprises one or more rule
engines that provide
autonomic deployment of the
software applications to the
virtual machines in
accordance with a set of one
or more rules.

The Accused System provides the system of claim 1, as described above, which allegations are
incorporated by reference herein.

The Accused System also includes the distributed computing system of claim 1, wherein the control
node further comprises one or more rule engines that provide autonomic deployment of the software
applications to the virtual machines in accordance with a set of one or more rules.

For example, as previously discussed with regard to claim 1 (which is incorporated by reference
herein), the Titus Master utilizes Fenzo, an extensible scheduler library for Mesos frameworks
developed by Netflix, to schedule job tasks (user requests to run a particular software application or
process) onto resources.33 As Netflix developers explain,

Titus uses Fenzo’s bin packing in conjunction with its agent autoscaling capabilities
to grow and shrink the agent pool dynamically as workload demands. . . . Fenzo
supports the concept of a fitness calculator, which allows the quality of the
scheduling decision to be tuned.34

Source: https://www.slideshare.net/aspyker/netflix-and-containers-titus (yellow box added).

33 https://queue.acm.org/detail.cfm?id=3158370.
34 Id (emphasis in original).

Netflix, Inc. - Ex. 1022, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/netflix-and-containers-titus
https://queue.acm.org/detail.cfm?id=3158370

As Netflix explains, the Fenzo scheduler implements various user-defined “constraints” in order to
select a resource on which to run a task.35 For instance, “[y]ou can tell the Fenzo scheduler the
circumstances under which it should perform autoscaling and what criteria it should use to make
autoscaling decisions.”36

Source: https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons.

For example, as depicted above, the Titus Master (via Fenzo) operating under normal conditions
may schedule containers onto Titus Agents using a “spread” algorithm in order to maximize
distribution of tasks across the entire network of Titus Agents.37

35 https://github.com/Netflix/Fenzo/wiki/Introduction.
36 Id.
37 https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons.

Netflix, Inc. - Ex. 1022, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons
https://github.com/Netflix/Fenzo/wiki/Introduction
https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons

Source: https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons.

As another example, during a failover event, the Titus Master (via Fenzo) may optionally implement
a “pack” algorithm to distribute tasks across Titus Agents more efficiently in exchange for certain
quality of service tradeoffs.38 As Netflix explains,

Fenzo adopts a strategy of scoring hosts for a task placement, with higher scores
indicating better ‘fitness.’ This scoring is performed by a fitness calculator plugin
that rates the fitness of a task on a given host. Fenzo includes some built-in plugins
that you can use for some common bin packing use cases. . . . In this way, Fenzo can
evaluate fitness on a subset of the hosts, until one is found with a good enough fitness
value. You can dynamically control the speed of task assignment and its trade off
with fitness optimization as needed by changing this ‘good enough’ function.39

38 Id.
39 https://github.com/Netflix/Fenzo/wiki/Introduction (emphasis in original).

Netflix, Inc. - Ex. 1022, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/InfoQ/disenchantment-netflix-titus-its-feisty-team-and-daemons
https://github.com/Netflix/Fenzo/wiki/Introduction

Thus, the Titus Master “fine-tune[s] how the Fenzo scheduler assigns tasks [i.e., containers] to
compatible hosts [Titus Agents] by using fitness calculators and constraints.”40

10. The distributed
computing system of claim
9, wherein the one or more
rule engines are forward-
chaining rule engines.

The Accused System provides the system of claim 9, as described above, which allegations are
incorporated by reference herein.

The Accused System also includes the distributed computing system of claim 9, wherein the one or
more rules engines are forward-chaining rules engines.

For example, as previously discussed with regard to claim 9 (which is incorporated by reference
herein), the Fenzo software comprises a forward-chaining rules engine. As previously explained,
Fenzo implements various user-selected, customizable constraints to select a resource on which to
run a task.41 As Netflix explains:

[Y]ou provide a function to Fenzo that determines if the fitness of a host is “good
enough.” If that function says that the fitness of the host is good enough, Fenzo will
stop its search for a more optimal host. . . . You may also apply certain constraints to
tasks, such that a host must meet these constraints before Fenzo will consider
assigning the task to that host. . . . If that host does meet all hard constraints, Fenzo
will then evaluate the soft constraints along with the fitness calculators. . . .42

As Netflix further explains, “frequently there are many hosts that meet these baseline
qualifications.”43 The Fenzo scheduler allows a framework (such as the Titus container
system) to fine-tune how tasks are assigned to compatible hosts using fitness calculators and
constraints. In Netflix’s words, “[i]t is also possible to combine multiple fitness calculators
and constraints into a single, weighted, task scheduling optimization strategy.”44

40 Id.
41 Id.
42 Id.
43 Id.
44 Id.

Netflix, Inc. - Ex. 1022, Page 000017
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

11. The distributed
computing system of claim
9, wherein the automation
infrastructure automatically
updates the one or more rules
engines to autonomically
control the deployment of
the software applications to
the application nodes in
accordance with a current
state of an application
matrix.

The Accused System provides the system of claim 9, as described above, which allegations are
incorporated by reference herein.

The Netflix system also includes the distributed computing system of claim 9, wherein the
automation infrastructure automatically updates the one or more rules engines to autonomically
control the deployment of the software applications to the application nodes in accordance with a
current state of an application matrix.

For example, as previously discussed with regard to claim 9 (which is incorporated by reference
herein), the Fenzo scheduler autonomically controls the deployment of containers to Titus Agents
executing on a plurality of EC2 instances in accordance with a scheduling loop.

Source: https://github.com/Netflix/Fenzo/wiki (depicting a high-level overview of the scheduling
loop utilized by the Titus/Fenzo architecture in order to deploy containers to Titus Agents; grey box

labeled “Titus” added).

Titus

Netflix, Inc. - Ex. 1022, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki

As Netflix explains, the Fenzo scheduler applies a sequence of steps to create a scheduling loop.45
Netflix describes the “typical task scheduling loop” for Fenzo as comprising the following steps:

[Step 1] You get the latest resource offers from Mesos.
[Step 2] You create the list of tasks you want to assign.
[Step 3] You call the Fenzo task scheduler to assign tasks to hosts.
[Step 3.1] The task scheduler rejects any old, unused offers that have expired.
[Step 3.2] The task scheduler combines new and old offers to determine total

resource availability.
[Step 3.3] The task scheduler assigns tasks to hosts.
[Step 3.4] The task scheduler rejects any offers that remain unused and that have

expired.
[Step 3.5] The task scheduler (optionally) launches the autoscaling evaluator,

asynchronously.
[Step 3.6] The task scheduler returns a report on the task assignments.
[Step 4] You check this result for tasks that Fenzo was unable to assign and may

need to be reattempted.
[Step 5] You tell Mesos to launch any tasks that Fenzo has successfully assigned

to hosts.
[Step 6] You call Fenzo’s taskAssigner for each task that you launch.
[Step 7] If you choose to not launch the tasks that Fenzo assigned resources to

from a host, you will have to either reject the resource offers in the
assignment result for that host, or re-offer those resource offers to the
task scheduler again. Otherwise, those resource offers would be "leaked
out".

[Step 8] You return to the beginning and start this process again.46

45 https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks.
46 Id.

Netflix, Inc. - Ex. 1022, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks

Additionally, the Titus Master automatically updates the Fenzo scheduler by, for example,
collecting and providing to Fenzo utilization metrics for the existing host resources.47 For example,
the Fenzo scheduler may receive information regarding the number of CPU cores (CPUs), the
amount of disk space, memory, and/or network bandwidth for each resource that is known to it.48

Using this information, Fenzo can be configured to employ a different set of constraints when
determining where to run a particular software application.49 For instance, upon determining that a
certain resource allocation threshold has been breached (see, e.g., claim element 1.b., which is
incorporated by reference herein), Fenzo may employ different policies to achieve a desired
scheduling objective.50

As another example, the utilization metrics received from the Titus Master concerning the actual
state of the application nodes causes Fenzo to automatically scale the number of resources up or
down in accordance with an autoscale rule.51

12. The distributed
computing system of claim
1, wherein the control node
further comprises an
application matrix that
includes parameters for
controlling the deployment,
undeployment, and execution

The Accused System provides the system of claim 1, as described above, which allegations are
incorporated by reference herein.

The Netflix system also includes the distributed computing system of claim 1, wherein the control
node further comprises an application matrix that includes parameters for controlling the
deployment, undeployment, and execution of the software applications to the virtual machines
within the distributed computing system.

47 https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-the-amount-of-resources-currently-available-on-particular-hosts.
48 Id.
49 See, e.g., https://github.com/Netflix/Fenzo/wiki/Resource-Allocation-Limits (“You can restrict the amount of resources (CPU cores, disk space, memory, and

bandwidth) available to a group of tasks, such that a new task in that group will not be assigned even to an available and fit host if that task would cause the
group of tasks to exceed those resource limits.”).

50 Id.
51 See, e.g., https://github.com/Netflix/Fenzo/wiki/Autoscaling (explaining how to configure an autoscale rule that “[r]eturn[s] true if that host has sufficient

resources to be considered an idle but potentially-useful host” and “return false if that host will not be sufficient for the tasks assigned to this autoscale
group”).

Netflix, Inc. - Ex. 1022, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-the-amount-of-resources-currently-available-on-particular-hosts
https://github.com/Netflix/Fenzo/wiki/Resource-Allocation-Limits
https://github.com/Netflix/Fenzo/wiki/Autoscaling

of the software applications
to the virtual machines
within the distributed
computing system.

For example, as previously described with regard to claims 1, 9 and 11 (which are incorporated by
reference herein), the Titus Master, via the Fenzo scheduler, comprises a scheduling loop that
controls the execution of the containers on Titus Agents. As previously described, this scheduling
loop further includes autoscaling rules that control the deployment and undeployment of containers
to Titus Agents.52 As Netflix explains:

Your AutoScaler callback method takes as its parameter an object that implements
the AutoScaleAction interface. This object indicates whether your method is to scale
the cluster up or down.53

14. The distributed
computing system of claim
9, wherein the automation
infrastructure automatically
updates the one or more rules
engines to monitor the
execution of the software
applications when deployed
to the application nodes in
accordance with a current
state of the application
matrix.

The Accused System provides the system of claim 9, as described above, which allegations are
incorporated by reference herein.

The Netflix system includes the distributed computing system of claim 9, wherein the automation
infrastructure automatically updates the one or more rules engines to monitor the execution of the
software applications when deployed to the application nodes in accordance with a current state of
the application matrix.

For example, as previously described with regard to claims 9, 11 and 12 (which are incorporated by
reference herein), the Fenzo scheduler applies a sequence of steps to create a scheduling loop.54
This scheduling loop includes, among others, the step of assigning tasks to hosts based on a task
scheduling optimization strategy that includes multiple fitness calculators and/or constraints.55

As previously discussed with regard to claim 11, as part of the scheduling loop, the Titus Master
automatically updates the Fenzo scheduler by, for example, collecting and providing to Fenzo

52 https://github.com/Netflix/Fenzo/wiki/Autoscaling.
53 Id.; see also, https://queue.acm.org/detail.cfm?id=3158370 (“Titus uses Fenzo’s bin packing in conjunction with its agent autoscaling capabilities to grow and

shrink the agent pool dynamically as workload demands.”).
54 https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks.
55 Id.; see also, https://github.com/Netflix/Fenzo/wiki/Introduction.

Netflix, Inc. - Ex. 1022, Page 000021
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Autoscaling
https://queue.acm.org/detail.cfm?id=3158370
https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks
https://github.com/Netflix/Fenzo/wiki/Introduction

utilization metrics for the existing host resources.56 For instance, the Fenzo scheduler may receive
information regarding the number of CPU cores (CPUs), the amount of disk space, memory, and/or
network bandwidth for each resource that is known to it.57 This information is then used to update
the list of resource offers provided to the scheduler so that Fenzo may assign tasks in a manner that
best achieves the desired scheduling objective based on the updated state information.58

Source: https://github.com/Netflix/Fenzo/wiki (depicting how Mesos periodically provides an
updated list of resource offers that the Titus Master then provides to Fenzo; red box, grey box

labeled “Titus” added).

56 https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-the-amount-of-resources-currently-available-on-particular-hosts.
57 Id.
58 https://github.com/Netflix/Fenzo/wiki.

Titus

Netflix, Inc. - Ex. 1022, Page 000022
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki
https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-the-amount-of-resources-currently-available-on-particular-hosts
https://github.com/Netflix/Fenzo/wiki

15. The distributed
computing system of claim
1, wherein the automation
subsystem includes a rule
compiler that compiles rules
into one or more
discrimination networks.

The Accused System provides the system of claim 1, as described above, which allegations are
incorporated by reference herein.

The Accused System includes the distributed computing system of claim 1, wherein the automation
subsystem includes a rule compiler that compiles rules into one or more discrimination networks.

For example, as previously described with regard to claim 9 (which is incorporated by reference
herein), the Fenzo scheduler compiles various fitness calculators and hard and/or soft constraints in
order to select a resource on which to run a task.59 In Netflix’s words, “[i]t is also possible to
combine multiple fitness calculators and constraints into a single, weighted, task scheduling
optimization strategy.”60

Further, Netflix explains that Fenzo’s scheduling strategy is compiled to avoid redundant tests
during rule execution. For example, Netflix states the following:

In this way, Fenzo can evaluate fitness on a subset of the hosts, until one is found
with a good enough fitness value. You can dynamically control the speed of task
assignment and its trade off with fitness optimization as needed by changing this
“good enough” function.

You may also apply certain constraints to tasks, such that a host must meet these
constraints before Fenzo will consider assigning the task to that host. Constraints
may be “hard” or “soft.” Fenzo evaluates the hard constraints first. If a host fails to
meet a hard constraint, Fenzo will not consider that host for the task. If that host
does meet all hard constraints, Fenzo will then evaluate the soft constraints along
with the fitness calculators: The fitness score for a host is an aggregation of the
results of the fitness calculators and the soft constraints.61

59 https://github.com/Netflix/Fenzo/wiki/Introduction.
60 Id.
61 Id. (italics in original).

Netflix, Inc. - Ex. 1022, Page 000023
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Introduction

Regarding how Fenzo avoids redundant tests, Netflix provides the following summary of the Fenzo
scheduling strategy as well as a fitness evaluator used in Titus:

Source: http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf.

Netflix, Inc. - Ex. 1022, Page 000024
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf

16.p. The distributed
computing system of claim
1, wherein the control node
further comprises:

To the extent the Court determines this preamble is a limitation of the claim, the Accused System
includes a distributed computing system.

See claim 1, as described above, which allegations are incorporated by reference herein.

16.a. a monitoring subsystem
that collects status data from
the application nodes and
communicates the status data
to the automation subsystem,
wherein the status data
represents an actual state for
the application nodes; and

The Accused System includes the distributed computing system of claim 1, wherein the control
node further comprises a monitoring subsystem that collects status data from the application nodes
and communicates the status data to the automation subsystem, wherein the status data represents an
actual state for the application nodes.

For example, as previously described with regard to claims 1 and 9 (which are incorporated by
reference herein), the Fenzo software comprises an automation subsystem wherein the Fenzo
scheduler autonomically assigns tasks to containers using a series of fitness calculators and/or
constraints. As discussed with regard to claim 11 (which is incorporated by reference herein),
Fenzo may dynamically respond to status information, such as resource utilization information,
collected from Titus Agents running on one or more EC2 instances.62

To do so, the Titus framework provides a “mesos agent” that collects and emits performance metrics
from the EC2 Titus Agent instances to the Titus Master.

62 See, e.g., https://github.com/Netflix/Fenzo/wiki/Autoscaling.

Netflix, Inc. - Ex. 1022, Page 000025
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Autoscaling

Source: https://www.slideshare.net/aspyker/netflix-and-containers-titus (yellow box added)

The Apache Mesos software documentation describes the interaction between the mesos agent and
the framework (i.e., the Titus Master) using the following figure and explanation.63

63 http://mesos.apache.org/documentation/latest/architecture/.

Netflix, Inc. - Ex. 1022, Page 000026
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/netflix-and-containers-titus
http://mesos.apache.org/documentation/latest/architecture/

Source: http://mesos.apache.org/documentation/latest/architecture/.

Consistent with this implementation, Netflix explains that the Titus Master receives the current
status information from the mesos agent and then communicates that information to the Fenzo

Netflix, Inc. - Ex. 1022, Page 000027
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://mesos.apache.org/documentation/latest/architecture/

scheduler using, for example, the resource allocation functions that are built into the Fenzo
scheduler.64 In Netflix’s words:

You can call your task scheduler’s getVmCurrentStates() method to get a list of
VirtualMachineCurrentState objects, one for each host that is known to the task
scheduler. Each of these objects has a getCurrAvailableResources() method that
returns an object that implements the VirtualMachineLease interface.65

Source: https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-
to-a-task (depicting functions or “methods” that the Fenzo scheduler may use to retrieve metrics

regarding the actual state information for the EC2 instances).

16.b. a business logic tier
that provides expected state
data to the automation
subsystem, wherein the
expected state data
represents an expected state
for the application nodes,

The Accused System includes the distributed computing system of claim 1, wherein the control
node further comprises a business logic tier that provides expected state data to the automation
subsystem, wherein the expected state data represents an expected state for the application nodes.

For example, the Fenzo scheduler includes a “shortfall evaluator” that works in conjunction with
autoscaler methods—previously discussed with regard to claims 11 and 12 (which are incorporated

64 https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task.
65 Id.

Netflix, Inc. - Ex. 1022, Page 000028
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task
https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task
https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task

by reference herein)—to “ensure there will be enough hosts [e.g., EC2 instances or application
nodes] up and running to be able to accept all of the incoming tasks.”66

As Netflix explains:

The resource shortfall analysis attempts to estimate the number of hosts required to
satisfy the pending workload. This complements the rules based scale up during
demand surges. Fenzo’s autoscaling also complements predictive autoscaling
systems.67

The shortfall analysis uses information about EC2 instance utilization metrics, task assignment
failures, and pending tasks to make a prediction regarding the resource demands for EC2 instances.
As Netflix explains, Fenzo “evaluates task assignment failures and assesses pending tasks to make
an estimate of whether, and which, additional resources will be needed.”68

As another example, Netflix utilizes the concept of “tiers” and “capacity groups” to enable Fenzo to
optimize scheduling with respect to expected states. As Netflix developers explain, “applications
running in EC2 VMs have become accustomed to AWS’s concept of Reserved Instances that
guarantee VM capacity if purchased in advance.”69 These concepts of tiers and capacity groups
“enable a more consistent concept of capacity between VMs and containers” and “allow[]
applications to make tradeoffs between cost (setting aside possibly unused agent resources for an
application) and reliable task execution (ensuring an application cannot be starved by another).”70

For instance, Titus utilizes a “critical” and “flexible” tier. The critical tier “enables Titus to launch
containers immediately, without having to wait for EC2 to provision a VM. This tier optimizes
around launch latency at the expense of running more VMs than the application may require at the

66 https://github.com/Netflix/Fenzo/wiki/Autoscaling.
67 https://netflixtechblog.com/fenzo-oss-scheduler-for-apache-mesos-frameworks-5c340e77e543.
68 https://github.com/Netflix/Fenzo/wiki/Building-Your-Scheduler.
69 https://queue.acm.org/detail.cfm?id=3158370.
70 Id.

Netflix, Inc. - Ex. 1022, Page 000029
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Autoscaling
https://netflixtechblog.com/fenzo-oss-scheduler-for-apache-mesos-frameworks-5c340e77e543
https://github.com/Netflix/Fenzo/wiki/Building-Your-Scheduler
https://queue.acm.org/detail.cfm?id=3158370

moment.”71 By contrast, the flexible tier “provisions only enough agent VMs to handle the current
workload (though it does keep a small headroom of idle instances to avoid overly aggressive scale-
up and down).”72

Source: https://queue.acm.org/detail.cfm?id=3158370.

In addition, Netflix utilizes a concept it refers to as capacity groups. As Netflix explains,
“[c]apacity groups are a logical concept on top of each tier that guarantee an application or set of
applications some amount of dedicated capacity.”73 As depicted below, these capacity groups may
include, for example, a minimum cluster size (guaranteed capacity), an expected or desired cluster
size, and a maximum cluster size.74 The Fenzo scheduler in turn assigns tasks to hosts and

71 Id.
72 Id.
73 Id.
74 See http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf.

Netflix, Inc. - Ex. 1022, Page 000030
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://queue.acm.org/detail.cfm?id=3158370
http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf

optionally conducts scale-up or down operations based on the specified capacity groups in order to
achieve a desired scheduling objective such as optimizing throughput for batch jobs and start latency
for service jobs.

Source: http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf (depicting Netflix’s
concept of “tiers” and “capacity groups” as implemented in the Titus/Fenzo architecture).

Netflix, Inc. - Ex. 1022, Page 000031
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf

Source: http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf (depicting Netflix’s
concept of “tiers” and “capacity groups” as implemented in the Titus/Fenzo architecture).

16.c. wherein one or more
rule engines analyze the
status data from the
monitoring subsystem and
apply a set of rules to
produce action requests to
the business logic tier to
control the application nodes
to reduce any difference

Finally, the Accused System includes the distributed computing system of claim 1, wherein one or
more rule engines analyze the status data from the monitoring subsystem and apply a set of rules to
produce action requests to the business logic tier to control the application nodes to reduce any
difference between the actual state and the expected state.

As described above, the Fenzo scheduler analyzes EC2 instance status data that is generated by the
mesos agent to determine the actual state of the EC2 instances.75 The Fenzo scheduler then
executes a shortfall analysis based on, for example, current utilization of the EC2 instances and
pending, unassigned job requests, to determine the anticipated resource demands.76 After
completing these steps, the Fenzo scheduler applies autoscaling rules to scale the cluster up or down

75 See claim element 16.a., supra.
76 See claim element 16.b., supra.

Netflix, Inc. - Ex. 1022, Page 000032
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf

between the actual state and
the expected state.

in order to minimize differences between the actual utilization of the EC2 instances and the output
of the shortfall evaluation. As Netflix explains:

By default, Fenzo evaluates task assignment failures and assesses pending tasks to
make an estimate of whether, and which, additional resources will be needed. This is
useful for determining how to scale up resources.77

Said differently, “Fenzo regulates autoscaling . . . by also applying Fenzo’s resource shortfall
evaluation to estimate resource needs based on the current task workload, and trigger a scale-up
action when Fenzo believes resources are wanting.”78

In addition, as described infra at claim 17 (which is incorporated by reference herein), Fenzo uses
threshold based autoscaling, which reduces any difference between an actual state and an expected
state. As Netflix explains:

Thresholds based autoscaling lets users specify rules per host group (e.g., EC2 Auto
Scaling Group, ASG) being used in the cluster. For example, there may be one ASG
created for compute intensive workloads using one EC2 instance type, and another
for network intensive workloads. Each rule helps maintain a configured number of
idle hosts available for launching new jobs quickly.79

77 https://github.com/Netflix/Fenzo/wiki/Building-Your-Scheduler.
78 https://github.com/Netflix/Fenzo/wiki/Autoscaling.
79 https://netflixtechblog.com/fenzo-oss-scheduler-for-apache-mesos-frameworks-5c340e77e543.

Netflix, Inc. - Ex. 1022, Page 000033
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Building-Your-Scheduler
https://github.com/Netflix/Fenzo/wiki/Autoscaling
https://netflixtechblog.com/fenzo-oss-scheduler-for-apache-mesos-frameworks-5c340e77e543

Source: http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf.

As another example, the Fenzo scheduler compares predefined resource capacity groups—such as
the desired cluster size—with EC2 instance data received from the mesos agent in order to
determine the optimal scheduling strategy.80 Based on this evaluation, the Fenzo scheduler assigns
tasks to resources based on a series of fitness calculators and constraints in order to minimize any
difference between the actual resource capacity and the desired resource capacity.

17. The distributed
computing system of claim
1, wherein the application
nodes are organized into
tiers, and wherein status data
is collected based on the
tiers.

The Accused System provides the system of claim 1, as described above, which allegations are
incorporated by reference herein.

The Accused System also includes the distributed computing system of claim 1, wherein the
application nodes are organized into tiers, and wherein status data is collected based on the tiers.

80 http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf.

Netflix, Inc. - Ex. 1022, Page 000034
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf
http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf

For example, in addition to autoscaling methods based on a resource shortfall analysis, the
Titus/Fenzo architecture utilizes “thresholds based” autoscaling, which collects status information
and applies constraints according to the designated tier of each EC2 instance. As Netflix explains:

Thresholds based autoscaling lets users specify rules per host group (e.g., EC2 Auto
Scaling Group, ASG) being used in the cluster. For example, there may be one ASG
created for compute intensive workloads using one EC2 instance type, and another
for network intensive workloads. Each rule helps maintain a configured number of
idle hosts available for launching new jobs quickly.81

As previously discussed with regard to claim element 16.b. (which is incorporated by reference
herein), the Titus system utilizes the concepts of “tiers” and “capacity groups” to organize EC2
instances into separate business logic tiers.

Source: https://queue.acm.org/detail.cfm?id=3158370.

81 https://netflixtechblog.com/fenzo-oss-scheduler-for-apache-mesos-frameworks-5c340e77e543.

Netflix, Inc. - Ex. 1022, Page 000035
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://queue.acm.org/detail.cfm?id=3158370
https://netflixtechblog.com/fenzo-oss-scheduler-for-apache-mesos-frameworks-5c340e77e543

By dividing hosts into groups, Netflix explains that Fenzo is able to “apply a different autoscale rule
to each group.”82

82 https://github.com/Netflix/Fenzo/wiki/Autoscaling.

Netflix, Inc. - Ex. 1022, Page 000036
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Autoscaling

Source: http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf.

Thus, using the shortfall analysis method described above with regard to claim 16 (which is
incorporated by reference herein), Fenzo separately collects actual and expected status data for the
EC2 instances in the critical and flexible tiers as well as for EC2 instances in each capacity group.

19.p. A method comprising: To the extent the Court determines this preamble is a limitation of the claim, the Accused System
practices a method.

See claim 1, as described above, which allegations are incorporated by reference herein.

19.a. storing a plurality of
image instances of a virtual
machine manager that is
executable on a plurality of
application nodes in a
distributed computing
system, wherein the image

See claim element 1.a., as described above, which allegations are incorporated by reference herein.

Netflix, Inc. - Ex. 1022, Page 000037
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://platformlab.stanford.edu/Seminar%20Talks/Netflix_seminar.pdf

instances of the virtual
machine manager provide a
plurality of virtual machines,
each virtual machine
operable to provide an
environment that emulates a
computer platform;

19.b. storing a plurality of
image instances of a plurality
of software applications that
are executable on the
plurality of virtual machines;

See claim element 1.a., as described above, which allegations are incorporated by reference herein.

19.c. executing a rules
engine to perform operations
to autonomically deploy the
image instances of the virtual
machine manager on the
application nodes by causing
the image instances of the
virtual machine manager to
be copied to the application
nodes; and

The Accused System also practices the step of executing a rules engine to perform operations to
autonomically deploy the image instances of the virtual machine manager on the application nodes
by causing the image instances of the virtual machine manager to be copied to the application nodes.

For example, as previously discussed with regard to claim 1 (which is incorporated by reference
herein), the Titus Master causes image instances of the Titus Agent to be deployed from the S3
“cloud” servers, git repositories, and/or Docker registries to the EC2 instances. To achieve this, the
Titus Master utilizes Fenzo, as previously discussed with regard to claim 12 (which is incorporated
by reference herein), to scale up resources thereby causing image instances of a Titus Agent to be
copied to one or more EC2 instances. As Netflix explains:

You can tell Fenzo how, and under what conditions, it should scale the number of
available hosts up or down. . . . Your AutoScaler callback method takes as its
parameter an object that implements the AutoScaleAction interface. This object
indicates whether your method is to scale the cluster up or down.83

83 Id.; see also, https://queue.acm.org/detail.cfm?id=3158370 (“Titus uses Fenzo’s bin packing in conjunction with its agent autoscaling capabilities to grow and
shrink the agent pool dynamically as workload demands.”).

Netflix, Inc. - Ex. 1022, Page 000038
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://queue.acm.org/detail.cfm?id=3158370

See also claim 11 and claim element 16.c., as described above, which allegations are incorporated
by reference herein (further describing the Fenzo autoscaling features).

19.d. executing the rules
engine to perform operations
to autonomically deploy the
image instances of the
software applications on the
virtual machines by causing
the image instances of the
software applications to be
copied to the application
nodes.

The Accused System also practices the step of executing the rules engine to perform operations to
autonomically deploy the image instances of the software applications on the virtual machines by
causing the image instances of the software applications to be copied to the application nodes.

For example, as previously discussed with regard to claim 1 (which is incorporated by reference
herein), the Titus Master causes containers to be autonomically deployed from the S3 “cloud”
servers, git repositories, and/or Docker registries to Titus Agents running on one or more EC2
instances. To achieve this result, the Titus Master utilizes Fenzo, as previously discussed with
regard to claim 9 (which is incorporated by reference herein), to schedule job tasks (user requests to
run a particular software application or process) onto resources.84

As Netflix explains, the Fenzo scheduler implements various user-defined “constraints” in order to
select a resource on which to run a task.85 For instance, “[y]ou can tell the Fenzo scheduler the
circumstances under which it should perform autoscaling and what criteria it should use to make
autoscaling decisions.”86 Fenzo uses these constraints to evaluate the job criteria and autonomically
deploy tasks (i.e., a software application to run) to containers.87 Thus, the Titus Master, through
Fenzo, causes the autonomic deployment of containers by copying container image instances to the
Titus Agents that are executing on the EC2 instances.

22.p. The method of claim
19,

To the extent the Court determines this preamble is a limitation of the claim, the Accused System
practices a method.

See claim 19, as described above, which allegations are incorporated by reference herein.

84 https://queue.acm.org/detail.cfm?id=3158370.
85 https://github.com/Netflix/Fenzo/wiki/Introduction.
86 Id.
87 https://github.com/Netflix/Fenzo/wiki (“Fenzo schedules resources to tasks by using a variety of possible scheduling objectives such as bin packing, balancing

across resource abstractions (such as AWS availability zones or data center racks), and resource affinity.”).

Netflix, Inc. - Ex. 1022, Page 000039
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://queue.acm.org/detail.cfm?id=3158370
https://github.com/Netflix/Fenzo/wiki/Introduction
https://github.com/Netflix/Fenzo/wiki

22.a. further comprising
generating an application
matrix that specifies data for
controlling the deployment
of the software applications
within the distributed
computing system; and

The Accused System practices the method of claim 19, further comprising the step of generating an
application matrix that specifies data for controlling the deployment of the software applications
within the distributed computing system.

For example, as previously discussed with regard to claim 11 (which is incorporated by reference
herein), the Fenzo software generates a scheduling loop that specifies data for controlling the
deployment of containers to Titus Agents executing on EC2 instances.

Source: https://github.com/Netflix/Fenzo/wiki (depicting a high-level overview of the scheduling
loop utilized by the Titus/Fenzo architecture in order to deploy containers to Titus Agents; grey box

labeled “Titus” added).

Titus

Netflix, Inc. - Ex. 1022, Page 000040
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki

As Netflix explains, the Fenzo scheduler applies a sequence of steps to create a scheduling loop.88
Netflix describes the “typical task scheduling loop” for Fenzo as comprising the following steps:

[Step 1] You get the latest resource offers from Mesos.
[Step 2] You create the list of tasks you want to assign.
[Step 3] You call the Fenzo task scheduler to assign tasks to hosts.
[Step 3.1] The task scheduler rejects any old, unused offers that have expired.
[Step 3.2] The task scheduler combines new and old offers to determine total

resource availability.
[Step 3.3] The task scheduler assigns tasks to hosts.
[Step 3.4] The task scheduler rejects any offers that remain unused and that have

expired.
[Step 3.5] The task scheduler (optionally) launches the autoscaling evaluator,

asynchronously.
[Step 3.6] The task scheduler returns a report on the task assignments.
[Step 4] You check this result for tasks that Fenzo was unable to assign and may

need to be reattempted.
[Step 5] You tell Mesos to launch any tasks that Fenzo has successfully assigned

to hosts.
[Step 6] You call Fenzo’s taskAssigner for each task that you launch.
[Step 7] If you choose to not launch the tasks that Fenzo assigned resources to

from a host, you will have to either reject the resource offers in the
assignment result for that host, or re-offer those resource offers to the
task scheduler again. Otherwise, those resource offers would be "leaked
out".

[Step 8] You return to the beginning and start this process again.89

As seen above, this scheduling loop specifies various data—for example, “total resource
availability” (Step 3.2), “autoscaling evaluator” (Step 3.5), and task assignment “report[s]” (Step

88 https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks.
89 Id.

Netflix, Inc. - Ex. 1022, Page 000041
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks

3.6)—that are used to control the autonomic deployment (Step 5) of containers to Titus Agents
executing on EC2 instances.

See also claim 11, as described above, which allegations are incorporated by reference herein.

22.b. wherein performing
operations to provide
autonomic control comprises
providing autonomic control
over the deployment,
undeployment, and execution
of the software applications
on the virtual machines
within the distributed
computing system in
accordance with parameters
of the application matrix.

The Accused System practices the method of claim 19, further comprising the step wherein
performing operations to provide autonomic control comprises providing autonomic control over the
deployment, undeployment, and execution of the software applications on the virtual machines
within the distributed computing system in accordance with parameters of the application matrix.

For example, as previously described with regard to claims 1, 9, and 11 (which are incorporated by
reference herein), the Titus Master, via the Fenzo scheduler comprises a scheduling loop that
controls the execution of the containers onto Titus Agents. As previously described, this scheduling
loop further includes autoscaling rules that control the deployment and undeployment of container
images to containers.90 As Netflix explains:

Your AutoScaler callback method takes as its parameter an object that implements
the AutoScaleAction interface. This object indicates whether your method is to scale
the cluster up or down.91

See also claim 12, as described above, which allegations are incorporated by reference herein.

23.p. The method of claim
19, wherein performing
operations to autonomically
deploy the image instances
of the software applications

To the extent the Court determines this preamble is a limitation of the claim, the Accused System
practices a method.

See claim 19, as described above, which allegations are incorporated by reference herein.

90 https://github.com/Netflix/Fenzo/wiki/Autoscaling; see also, https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks (“[Step 3.5] The task scheduler
(optionally) launches the autoscaling evaluator, asynchronously”).

91 Id.; see also, https://queue.acm.org/detail.cfm?id=3158370 (“Titus uses Fenzo’s bin packing in conjunction with its agent autoscaling capabilities to grow and
shrink the agent pool dynamically as workload demands.”).

Netflix, Inc. - Ex. 1022, Page 000042
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Autoscaling
https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks
https://queue.acm.org/detail.cfm?id=3158370

on the virtual machines
comprises:

23.a. receiving status data
for the distributed computing
system, wherein the status
data represents an actual
state of the application
nodes;

The Accused System practices the method of claim 19, further including the step of receiving status
data for the distributed computing system, wherein the status data represents an actual state of the
application nodes.

For example, as previously described with regard to claim element 16.a. (which is incorporated by
reference herein), the Titus framework provides a “mesos agent” that collects and emits
performance metrics from the EC2 Titus Agent instances to the Titus Master.

Source: https://www.slideshare.net/aspyker/netflix-and-containers-titus (yellow box added)

The Apache Mesos documentation describes the interaction between the mesos agent and the
framework (i.e., the Titus Master) using the following figure and explanation.92

92 http://mesos.apache.org/documentation/latest/architecture/.

Netflix, Inc. - Ex. 1022, Page 000043
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://www.slideshare.net/aspyker/netflix-and-containers-titus
http://mesos.apache.org/documentation/latest/architecture/

Source: http://mesos.apache.org/documentation/latest/architecture/.

Netflix, Inc. - Ex. 1022, Page 000044
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

http://mesos.apache.org/documentation/latest/architecture/

Consistent with this implementation, Netflix explains that the Titus Master receives the current
status information from the mesos agent and then communicates that information to the Fenzo
scheduler using, for example, the resource allocation functions that are built into the Fenzo
scheduler.93 In Netflix’s words:

You can call your task scheduler’s getVmCurrentStates() method to get a list of
VirtualMachineCurrentState objects, one for each host that is known to the task
scheduler. Each of these objects has a getCurrAvailableResources() method that
returns an object that implements the VirtualMachineLease interface.94

Source: https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-
to-a-task (depicting functions or “methods” that the Fenzo scheduler may use to retrieve metrics

regarding the actual state information for the EC2 instances).

See also claim element 16.a., as described above, which allegations are incorporated by reference
herein.

93 https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task.
94 Id.

Netflix, Inc. - Ex. 1022, Page 000045
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task
https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task
https://github.com/Netflix/Fenzo/wiki/Insights#how-to-learn-which-resources-are-assigned-to-a-task

23.b. processing the status
data with rules in a set of
rule engines to determine
operations for reducing any
difference between an
expected state and the actual
state of the application
nodes; and

The Accused System practices the method of claim 19, further including the step of processing the
status data with rules in a set of rule engines to determine operations for reducing any difference
between an expected state and the actual state of the application nodes.

For example, as previously described with regard to claim elements 16.c. and 23.a. (which are
incorporated by reference herein), the Fenzo scheduler analyzes EC2 instance status data that is
generated by the metrics agent to determine the actual state of the EC2 instances.95 The Fenzo
scheduler then executes a shortfall analysis based on, for example, current utilization of the EC2
instances and pending, unassigned job requests, to determine the anticipated resource demands.96
After completing these steps, the Fenzo scheduler applies autoscaling rules to scale the cluster up or
down in order to minimize differences between the actual utilization of the EC2 instances and the
output of the shortfall evaluation. As Netflix explains:

By default, Fenzo evaluates task assignment failures and assesses pending tasks to
make an estimate of whether, and which, additional resources will be needed. This is
useful for determining how to scale up resources.97

Said differently, “Fenzo regulates autoscaling . . . by also applying Fenzo’s resource shortfall
evaluation to estimate resource needs based on the current task workload, and trigger a scale-up
action when Fenzo believes resources are wanting.”98

See claims 19 and claim element 16.c., as described above, which allegations are incorporated by
reference herein.

23.c. performing the
operations to provide
autonomic control over the

The Accused System practices the method of claim 19, further including the step of performing the
operations to provide autonomic control over the deployment of the software applications on the
virtual machines within the distributed computing system in accordance with the rules.

95 See, e.g., claim element 23.a. supra.
96 See claim element 16.b., supra.
97 https://github.com/Netflix/Fenzo/wiki/Building-Your-Scheduler.
98 https://github.com/Netflix/Fenzo/wiki/Autoscaling.

Netflix, Inc. - Ex. 1022, Page 000046
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Building-Your-Scheduler
https://github.com/Netflix/Fenzo/wiki/Autoscaling

deployment of the software
applications on the virtual
machines within the
distributed computing
system in accordance with
the rules.

For example, as previously discussed with regard to claim element 19.d. (which allegations are
incorporated by reference herein), the Titus Master—through the Fenzo software—performs
operations that cause containers to be autonomically deployed from Netflix’s S3 “cloud” servers, git
repositories, and/or Docker registries to Titus Agents in accordance with constraints applied by the
Fenzo scheduler.

As Netflix explains, the Fenzo scheduler implements various user-defined “constraints” in order to
select a resource on which to run a task.99 For instance, “[y]ou can tell the Fenzo scheduler the
circumstances under which it should perform autoscaling and what criteria it should use to make
autoscaling decisions.”100 Fenzo uses these constraints to evaluate the job criteria and
autonomically deploy tasks (i.e., a software application to run) to Titus Agents.101 Thus, the Titus
Master, through Fenzo, performs operations to cause the autonomic deployment of containers to
Titus Agents executing on one or more EC2 instances.

24. The method of claim 19,
further comprising accessing
parameters of an application
matrix and determining one
or more rules for use in
autonomically controlling
the deployment of the
software applications on the
virtual machines.

The Accused System performs the method of claim 19, as described above, which allegations are
incorporated by reference herein.

The Accused System practices the method of claim 19, further comprising accessing parameters of
an application matrix and determining one or more rules for use in autonomically controlling the
deployment of the software applications on the virtual machines.

For example, as previously described with regard to claim 12 (which allegations are incorporated by
reference herein), the Titus Master, via the Fenzo scheduler comprises a scheduling loop that
controls the deployment of containers to Titus Agents. As previously described, this scheduling

99 https://github.com/Netflix/Fenzo/wiki/Introduction.
100 Id.
101 https://github.com/Netflix/Fenzo/wiki (“Fenzo schedules resources to tasks by using a variety of possible scheduling objectives such as bin packing, balancing

across resource abstractions (such as AWS availability zones or data center racks), and resource affinity.”).

Netflix, Inc. - Ex. 1022, Page 000047
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Introduction
https://github.com/Netflix/Fenzo/wiki

loop further includes autoscaling rules that Fenzo accesses to autonomically control the deployment
and undeployment of containers to Titus Agents.102 As Netflix explains:

Your AutoScaler callback method takes as its parameter an object that implements
the AutoScaleAction interface. This object indicates whether your method is to scale
the cluster up or down.103

25. The method of claim 24,
further comprising
processing the one or more
rules with a plurality of
forward-chaining rule
engines that compile the one
or more rules into one or
more discrimination
networks.

The Accused System performs the method of claim 24, as described above, which allegations are
incorporated by reference herein.

See claims 9, 10, and claim element 16.a., as described above, which allegations are incorporated by
reference herein.

26.p. A non-transitory,
computer-readable medium
comprising instructions
stored thereon, that when
executed by a programmable
processor:

To the extent the Court determines this preamble is a limitation of the claim, the Accused System
includes a non-transitory computer-readable medium comprising instructions stored thereon and
executable by a programmable processor.

For example, the Titus/Fenzo software executes on “cloud” servers Netflix purchases from AWS.
See, e.g., claim element 1.p., supra (which allegations are incorporated by reference herein). Like
all, or nearly all, modern computer systems, these servers execute the Titus/Fenzo software, and any
other software associated with the Accused System (instructions), by storing it in computer memory
(a non-transitory computer-readable medium) and executing it using one or more programmable
processors.

102 https://github.com/Netflix/Fenzo/wiki/Autoscaling; see also, https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks (“[Step 3.5] The task scheduler
(optionally) launches the autoscaling evaluator, asynchronously”).

103 Id.; see also, https://queue.acm.org/detail.cfm?id=3158370 (“Titus uses Fenzo’s bin packing in conjunction with its agent autoscaling capabilities to grow and
shrink the agent pool dynamically as workload demands.”).

Netflix, Inc. - Ex. 1022, Page 000048
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://github.com/Netflix/Fenzo/wiki/Autoscaling
https://github.com/Netflix/Fenzo/wiki/Scheduling-Tasks
https://queue.acm.org/detail.cfm?id=3158370

For instance, when running the Titus/Fenzo system, Netflix specifies the number of virtual
processors (vCPUs) that will run on each virtual machine instance.104 Whenever a new instance is
created—such as during a scale up operation—the Titus/Fenzo framework allocates additional
vCPUs for that resource.105

Further, the virtual computing resources utilized by Netflix within the Accused System ultimately
run on physical servers. These physical servers, like all or nearly all modern computer systems,
utilize physical processors to execute the software running on those servers, including Netflix’s
Titus and Fenzo software.

See claim 1, as described above, which allegations are incorporated by reference herein.

26.a. store a plurality of
image instances of a virtual
machine manager that is
executable on a plurality of
application nodes in a
distributed computing
system, wherein the image
instances of the virtual
machine manager provide a
plurality of virtual machines,
each virtual machine
operable to provide an
environment that emulates a
computer platform;

See claim element 19.a., as described above, which allegations are incorporated by reference herein.

26.b. store a plurality of
image instances of a plurality

See claim element 19.b., as described above, which allegations are incorporated by reference herein.

104 See https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html (explaining that AWS users must specify desired CPU and vCPU
options whenever launching a new instance).

105 Id.

Netflix, Inc. - Ex. 1022, Page 000049
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

of software applications that
are executable on the
plurality of virtual machines;

26.c. perform operations to
autonomically deploy the
image instances of the virtual
machine manager on the
application nodes by causing
the image instances of the
virtual machine manager to
be copied to the application
nodes; and

See claim element 19.c., as described above, which allegations are incorporated by reference herein.

26.d. perform operations to
autonomically deploy the
image instances of the
software applications on the
virtual machines by causing
the image instances of the
software applications to be
copied to the application
nodes.

See claim element 19.d., as described above, which allegations are incorporated by reference herein.

Netflix, Inc. - Ex. 1022, Page 000050
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

