

 -1-

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

––––––––––

BEFORE THE PATENT TRIAL AND APPEAL BOARD

––––––––––

NETFLIX, INC.,

Petitioner,

v.

AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LIMITED,

Patent Owner.

––––––––––

IPR2020-01582

U.S. Patent No. 8,572,138

––––––––––

PETITION FOR INTER PARTES REVIEW

OF U.S. PATENT NO. 8,572,138

 -2-

TABLE OF CONTENTS

EXHIBIT LIST .. 4

 BACKGROUND ... 5

 THE ’138 PATENT ... 7

 IDENTIFICATION OF CHALLENGE .. 8

 Statutory Grounds.. 8

 Relied-Upon Art .. 9

 U.S. Patent No. 7,577,722 (“Khandekar”) (Exhibit 1004) 9

 U.S. Patent No. 8,209,680 (“Le”) (Exhibit 1005) 10

 U.S. Patent No. 7,962,633 (“Sidebottom”) (Exhibit 1006) 10

 U.S. Patent Application Publication No. 2003/0036886

(“Stone”) (Exhibit 1007) ... 10

 Standing ... 11

 Discretionary Analysis for Review ... 11

 LEVEL OF ORDINARY SKILL .. 12

 CLAIM CONSTRUCTION .. 13

A. “a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual

machines” (Claim 1) .. 13

 CHALLENGED CLAIMS .. 13

A. Ground 1 (Khandekar) and Ground 2 (Khandekar in View of

Le) .. 13

1. Obviousness over Khandekar ... 14

 -3-

2. Motivation to Combine Khandekar and Le 16

3. Claim 1 .. 21

4. Claim 2 .. 60

5. Claim 3 .. 62

6. Claim 4 .. 62

7. Claim 5 .. 63

8. Claim 9 .. 64

9. Claim 19 .. 66

10. Claim 20 .. 71

11. Claim 21 .. 71

12. Claim 26 .. 71

B. Ground 3: Khandekar in View of Le and Sidebottom 74

1. Motivation to Combine ... 74

2. Claim 9 .. 77

3. Claim 10 .. 79

C. Ground 4: Khandekar in View of Le and Stone 80

1. Motivation to Combine ... 80

2. Claim 17 .. 83

 CONCLUSION .. 87

 MANDATORY NOTICES AND FEES ... 88

CLAIM APPENDIX .. 90

 -4-

EXHIBIT LIST

Exhibit No. Description

1001 U.S. Patent No. 8,572,138 (“the ‘138 patent”)

1002 Prosecution File History for the ’138 patent

1003 Declaration of Prashant Shenoy

1004 U.S. Patent No. 7,577,722 to Khandekar et al. (“Khandekar”)

1005 U.S. Patent No. 8,209,680 to Le et al. (“Le”)

1006 U.S. Patent No. 7,962,633 to Sidebottom et al. (“Sidebottom”)

1007 U.S. Patent Application Publication No. 2003/0036886 to Stone

(“Stone”)

1008 Khanna et al., Application Performance Management in

Virtualized Server Environments, NOMS 2006 (“Khanna”)

1009 Urgaonkar et al., Dynamic Provisioning of Multi-tier Internet

Applications, ICAC’05 (“Urgaonkar”)

1010 Excerpt of S. Russell, P. Norvig, Artificial Intelligence - A

Modern Approach (2d. ed. Prentice-Hall 2003) (“Russell”)

1011 Barham et al., Xen and the Art of Virtualization, SOSP ’03:

ACM Symposium on Operating Systems Principles, 164-177

(Oct., 2003)

1012 U.S. Patent No. 6,496,847 to Bugnion et al. (“Bugnion”)

1013 U.S. Patent Application Publication No. 2004/0019672 to Das et

al. (“Das”)

1014 U.S. Patent Application Publication No. 2007/0220246 to Powell

et al. (“Powell”)

1015 JP Patent Application Publication No. 2001-318797 to French

1016 English translation of JP Patent Application Publication No.

2001-318797 to French (“French”)

1017 Declaration of Sylvia D. Hall-Ellis

 -5-

 BACKGROUND

For decades, websites such as e-commerce sites, online retail stores, and

financial services sites, have been implemented with distributing computing

systems where applications are assigned to networked computers, also referred to

as servers, nodes, or hosts. Ex. 1003 ¶¶3-5. By the 1990s and early 2000s, it was

common for nodes to be organized into tiers, including web server, application,

and database tiers. See Ex. 1009 at 1, 3; Ex. 1007 ¶¶[0024]-[0039], Fig. 2, 1:

The multi-tier model facilitated monitoring, diagnosis, and automated

control, which helped meet service-level objectives (“SLOs”) by monitoring node

status and using automated processes were often used to respond to performance

 -6-

bottlenecks. See Ex. 1007 ¶¶[0037]-[0038]; Ex. 1009 at 3-4; Ex. 1003 ¶6. For

example, automation was used to deploy new application instances to nodes, which

allowed system capacity to scale with user demand. See, e.g., Ex. 1009 at 4-5;

Ex. 1007 ¶[0027]; Ex. 1003 ¶7.

By the 1990s and early 2000s, it was common for automated systems to use

knowledge-based systems, such as rules engines, to select an appropriate node

based on the monitored status of nodes. See Ex. 1013 ¶¶[0083]-[0084], [0163]-

[0164], FIGS, 5, 10; Ex. 1006, 3:44-58; Ex. 1001, 26:40-61; Ex. 1010 at 286. Such

systems and rule engines, including forward-chaining rule engines employing

algorithms such as LEAP or RETE, were known in the art and commonly used for

automated application deployment. See id. Ex. 1003 ¶¶8-9. To facilitate automated

deployment, application images were often stored in a repository, typically with a

database of available images and configurations. See, e.g., Ex. 1004, 12:13-23; Ex.

1003 ¶10.

It became common in the early 2000s, for distributed computing systems to

use virtual machines (“VM”) for existing tiered architectures and to automate their

deployment using rules engines. Id. ¶¶3-4. Virtualization allowed a physical server

to host multiple VMs, each running a virtual server. Id. ¶11.

A VM is a software abstraction (virtualization) of a physical machine. A

virtual machine monitor (“VMM”) ran on a physical machine and virtualized its

 -7-

resources for VMs. See Ex. 1004, 7:7-27. The VMM could suspend VMs by saving

the VM state to its VM image, which were easily copied, transferred, and resumed,

making them well-suited for the automated deployment and scaling of distributed

computing systems. Ex. 1003 ¶¶11-13.

Virtualization simplified the management of distributed computer systems

because the combination of an application running inside a VM could be saved

together as a VM image. It was common to store VM images in a repository, so

that the application could be easily deployed by copying the image from the

repository to a node and then resumed. See Ex. 1004, 17:30-50; Ex. 1003 ¶14.

 THE ’138 PATENT

The provisional application for the ’138 patent was filed in 2006.1

According to the ’138 patent, “[o]ne challenge with distributed computing systems

is the organization, deployment and administration of such a system within an

enterprise environment.” Ex. 1001, 1:26-33. The ’138 patent purports to solve this

challenge with “a distributed computing system that conforms to a multi-level,

hierarchical organizational model.” Id., 1:37-43. In embodiments, the tiers include

1 Petitioner takes no position on whether the ’138 patent is entitled to claim

priority to the provisional but uses 2006 for simplicity because all relied-upon art

predates 2006.

 -8-

“a web server tier … a business application tier … and a database tier …”

Ex. 1001, 13:27-56, FIG. 2.

The alleged invention also “includes a software image repository” that stores

image instances of virtual machine managers and software applications, and a

“control node that comprises an automation infrastructure to provide autonomic

deployment of the image instances…” Id., 2:15-30. The automation infrastructure

may use a “forward chaining” rule engine. Id., 22:20-62.

The ’138 patent recites virtual machines and rules engines but does not

purport to invent them. Its embodiments rely on commercially available software

and image formats from VMware (Ex. 1001, 32:59-64, 33:25-41) and incorporate

prior art papers on rules engines (id., 26:26-61).

The alleged invention was already known in the art, including VMware prior

art, which as explained above taught the claimed repository, automation, and

virtual machine limitations. See, e.g., supra §I; Ex. 1003 ¶¶18-19. The alleged

invention is nothing more than a combination of prior art elements according to

known methods to yield predictable results. Ex. 1003 ¶19.

 IDENTIFICATION OF CHALLENGE

 Statutory Grounds

Petitioner requests inter partes review and cancelation of the challenged

claims on the following grounds:

 -9-

Grounds Claims Statutory

Basis
Prior Art

1 1-5, 9, 19-21, and 26 § 103 Khandekar
2 1-5, 9, 19-21, and 26 § 103 Khandekar in view of Le
3 9, 10 § 103 Khandekar in view of Le and

Sidebottom
4 17 § 103 Khandekar in view of Le and Stone

 Relied-Upon Art2

 U.S. Patent No. 7,577,722 (“Khandekar”) (Exhibit 1004)

Khandekar is a VMware patent that teaches a repository, called a

provisioning server, for storing pre-configured, ready-to-deploy VM images, with

operating systems and applications installed, and then automatically deploying

those VM images to host computers. See, e.g., Ex. 1004, 9:26-27 (“The main

feature of the invention is a VM provisioning server…”), 4:30-35, 5:25-36, 10:15-

26, Abstract. “[A] VMM is typically included for each VM in order to act as its

software interface with the underlying host system.” Id., 13:17-35. Khandekar

teaches a “heuristics/rules engine” for automated deployment based on the

monitored status of the hosts. See id., 4:58-65, 10:27-43; Ex. 1003 ¶26.

Khandekar was filed on April 5, 2002 and issued August 18, 2009.

Khandekar is prior art under §102(e).

2 Pre-AIA 35 U.S.C. §102 applies. MPEP §2159.02.

 -10-

 U.S. Patent No. 8,209,680 (“Le”) (Exhibit 1005)

Le is a VMware patent that teaches techniques for managing distributed

networks of physical computers and virtual machines. See, e.g., Ex. 1005, 59:29-

36. Le teaches using VMware software and techniques for capturing, configuring

and deploying images. See, e.g., id., Abstract; Ex. 1003 ¶28.

Le was filed on June 30, 2003, claims priority to a provisional application

filed April 11, 2003, and issued June 12, 2012. Le is prior art under §102(e).

 U.S. Patent No. 7,962,633 (“Sidebottom”) (Exhibit 1006)

Sidebottom teaches a rules engine that applies a forward-chaining rules

algorithm to monitored events on a network. See Ex. 1006, 9:36-45; Ex. 1003 ¶30.

Sidebottom was filed on October 13, 2005 and issued June 14, 2011.

Sidebottom is prior art under §102(e).

 U.S. Patent Application Publication No. 2003/0036886

(“Stone”) (Exhibit 1007)

Stone teaches organizing nodes into tiers and monitoring events based on

those tiers, so that automated agents may take action if needed. See, e.g., Ex. 1007

¶[0040], Abstract, FIG. 2:

 -11-

Stone was published February 2003 and is prior art under §102(b).

 Standing

Petitioners certify that Petitioners are not barred or estopped from requesting

this inter partes review and that the ’138 patent is eligible for IPR.

 Discretionary Analysis for Review

There is no basis for discretionary denial of institution. None of the relied-

upon art was considered during prosecution. Ex. 1003 ¶24. Nor is any reference

substantially the same as those evaluated during prosecution. This is the only IPR

ever filed against the ’138 patent. No scheduling conference has been held, no

claim construction briefing scheduled, nor any Markman hearing or trial date set.

 -12-

Also, N.D. of California courts have been willing to stay cases upon the institution

of IPRs against the asserted patents.

 LEVEL OF ORDINARY SKILL

A person of ordinary skill in the art (“POSITA”) of the ’138 patent would

have had a bachelor’s degree in electrical engineering, computer science, or a

similar field with at least two years of experience in distributed computing systems

or a person with a master’s degree in electrical engineering, computer science, or a

similar field with a specialization in distributed computing systems. Ex. 1003

¶¶33-34. A person with less formal education but more relevant practical

experience may also meet this standard. Id. A POSITA in 2006 with the above

level of skill would have had the knowledge and skills necessary to:

• Create a distributed computing system with a network of computing

devices/servers;

• Use virtualized computing systems, including the use of commercially

available software from VMware such as ESX and GSX software;

• Create images of physical and virtual machines, including images that

include VMMs, operating systems, and applications;

• Use rules engines and other knowledge-based systems to automatically

deploy images to the nodes of a distributed computing system;

 -13-

• Implement multi-tier applications and web services on distributed

computer systems; and

• Implement systems to monitor the status and state of distributed

computer systems.

Ex. 1003 ¶35.

 CLAIM CONSTRUCTION

A. “a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual

machines” (Claim 1)

A POSITA would have understood this term is satisfied by, but not limited

to, a plurality of virtual disk image files. Dependent claim 2 specifies that “the

image instances of the plurality of software applications comprise virtual disk

image files.” A teaching sufficient to satisfy claim 2 must also be sufficient to

satisfy claim 1. Id. ¶38.

In some embodiments, the virtual disk image files include an OS and

application data. See Ex. 1001, 33:25-30, 33:55-67, 5:12-22, 5:40-56. To the extent

it is argued that this is required, it is taught by the prior art as explained below. Ex.

1003 ¶¶39-40.

 CHALLENGED CLAIMS

A. Ground 1 (Khandekar) and Ground 2 (Khandekar in View of Le)

Khandekar renders the challenged claims obvious. Ex. 1003 ¶42. Le

reinforces Khandekar’s teachings with implementation details regarding VMware

 -14-

software, the ratio of VMMs to VMs, and disk imaging techniques. Ex. 1003 ¶42.

Le’s teachings complement Khandekar’s, and the combination further renders the

challenged claims obvious. Id. ¶43.

1. Obviousness over Khandekar

While Khandekar describes aspects of its teachings in terms of

“embodiments,” a POSITA would have understood, or at least found it obvious,

that Khandekar’s teachings, as described for Grounds 1 and 2, are meant to be used

together because they describe complementary aspects of the invention. Ex. 1003

¶44. For example, Khandekar’s Summary of the Invention describes “pre-built”

and “custom-built” VMs as embodiments (see Ex. 1004, 4:36-47), but the detailed

description teaches both options are implemented in the provisioning server, along

with a third option for instantly-deployable VMs, and presented as choices to the

user (see id., 9:10-25); Ex. 1003 ¶45.

As another example, Khandekar teaches using its heuristics/rules engine

together with VM provisioning because it is “another aspect” of the preferred

embodiment. Ex. 1004, 4:58-65. This is illustrated in Figure 2, which teaches using

many features of Khandekar’s teachings together in the provisioning server, even

though those features may be labelled as “embodiments” in other parts of the

specification. See id., Fig. 2:

 -15-

Ex. 1003 ¶¶46-47. A POSITA would have had a reasonable expectation of success

when applying Khandekar’s teachings because Khandekar’s specification and

Figure 2 teach their combined use. Id. ¶50.

Khandekar teaches using VMMs, and a POSITA would have been motivated

to use Khandekar’s VMM teachings with the provisioning server because the

provisioning server and the hosts include VMs, which require a VMM to run. This

would have been obvious from basic virtualization knowledge and Khandekar’s

teachings. See supra §I; Ex. 1004, 7:7-27, Fig. 1; Ex. 1003 ¶48. Khandekar also

teaches “provisioning more than one computer at a time” (Ex. 1004, 23:1-20),

 -16-

which a POSITA would have been motivated to do because Web applications were

common for distributed VM systems. Ex. 1003 ¶49.

2. Motivation to Combine Khandekar and Le

Khandekar teaches a provisioning server with a repository of VM images

that automatically deploys those images to hosts using a heuristics/rules engine.

See, e.g., Ex. 1004, 4:30-35, 4:58-65, 10:27-43, Abstract. Khandekar teaches

deploying a VMM along with the VM image. See, e.g., id., 8:36-44, 13:17-35 (“a

VMM is typically included for each VM in order to act as its software interface

with the underlying host system”). Le reinforces Khandekar’s teachings with

implementation details regarding, for example, the ratio of VMMs to VMs,

VMware software, and disk imaging techniques. Ex. 1003 ¶52.

 Khandekar explains that VMMs supported multiple VMs. See Ex. 1004,

7:28-38. While Khandekar teaches potential advantages to using one VM per

VMM, a POSITA would have also found it obvious to use a single VMM to

manage multiple VMs. Ex. 1003 ¶52. Khandekar was filed in 2002. By 2006, it

was common to use multiple VMs per VMM, including with VMware ESX

software. See Ex. 1011 at 1, 5, FIG. 1. This is confirmed by VMware patent Le,

which teaches a single VMM hosting multiple VMs. See Ex. 1005, 65:43-66:10,

FIG. 8; Ex. 1003 ¶53.

 -17-

A POSITA in 2006 would have been motivated to apply Le’s teachings to

Khandekar, such that each VMM hosts multiple VMs, because it would be easier

to scale a large number of VMs on a single physical server, reducing overhead,

simplifying resource management, and facilitating consolidation. See Ex. 1005,

46:58-47:14, 18:6-19:23; Ex. 1008, FIG. 1; Ex. 1003 ¶¶53-54. Furthermore,

Khandekar and Le were VMware patents with overlapping inventors—Khandekar

was a named inventor for the Le patent, and vice versa. See Ex. 1005; Ex. 1004. A

POSITA would have understood that Le reflects an updated view of the state of the

art for hosting VMs on a VMM, including updated functionality in VMware’s

commercial ESX software. See Ex. 1005, 65:43-50, 65:65-66:10, FIG. 8; Ex. 1004,

7:28-38; Ex. 1003 ¶¶55-56.

Additionally, Le teaches implementation details of image creation and

management for distributed computing and virtual machine systems. A POSITA

would have naturally looked to other patents by the same company and inventors

to implement and improve upon Khandekar’s teachings. Ex. 1003 ¶57. Le’s

imaging teachings address two functions raised by Khandekar: they allow a VMM

to be provided from the provisioning server to hosts, and they allow the

provisioning server to know the characteristics of the host, so that an appropriate

VMM image can be provided. Id. ¶59.

 -18-

For example, Khandekar teaches that the provisioning server may provide a

VMM along with a VM to a host computer. See, e.g., Ex. 1004, 13:17-35. Le

teaches imaging techniques that a POSITA would have been motivated to use for

this purpose. Le teaches techniques for imaging the hard disk of a remote computer

to deploy a cloned image with an operating system (which would include a Type 1

VMM) and applications (which would include a Type 2 VMM). See, e.g., Ex.

1005, 2:19-21, 15:63-65, 16:29-30, 54:14-21, 1:64-3:13; infra §VI.A.3[1c], [1f].

Le therefore teaches a mechanism for deploying VMMs to remote computers,

which is useful in a variety of common scenarios in distributed computing

including (a) installing a VMM onto a computer that does not currently support

virtual machines, (b) initializing a new host that is connected to the network, and

(c) reimaging a host that is not functioning properly. See Ex. 1005, Figs. 3-5,

37:36-49; Ex. 1003 ¶58. A POSITA would have been motivated to apply prior art

imaging solutions taught by Le, as well as the teachings of Le’s embodiments.3 Ex.

1003 ¶61.

3 Le provides general teachings regarding VMs and imaging, and it also

provides “exemplifying embodiments of the invention” including a “Universal

Computer Management System (UCMS).” See Ex. 1005, 59:9-27. Since the

UCMS embodies the principles of Le’s invention, it elaborates on Le’s other

teachings and a POSITA would have been motivated to combine Le’s UCMS

 -19-

Furthermore, Khandekar provides express motivation to apply a solution for

determining “the characteristics of the host on which the VM is to be installed”

(Ex. 1004, 13:17-35), and Le teaches such a solution. Le’s imaging client includes

functionality that allows a central repository to determine the hardware

characteristics of the remote computer. See Ex. 1005, 70:13-35 (“… The

registration process causes the imaging client 1021 running from the secondary

stack 4100 to analyze the computer’s hardware configuration and transmit it

over the network 3000 to the UCMS server 2101….”).4 A POSITA would have

been motivated to combine Khandekar and Le because of the synergies described

above. Ex. 1003 ¶59.

Le also teaches features of commercially available VMM software such as

VMware ESX and GSX. See Ex. 1005, 65:65-66:10. A POSITA would have been

motivated to use VMware software, including ESX server and known features such

as Le’s teaching of virtual machine monitors and managers, to implement

Khandekar’s teachings. See Ex. 1004, 13:17-35; Ex. 1005, 65:58-64, 66:11-19,

teachings with related teachings elsewhere in Le’s specification. Ex. 1003 ¶63. A

POSITA would have been motivated to apply Le’s UCMS teachings related to

virtual machines and imaging to Khandekar’s provisioning server, which plays an

analogous role as a central repository, with similar functionality. See Ex. 1005,

65:20-33; Ex. 1003 ¶63.

4 All emphasis added unless stated otherwise.

 -20-

13:22-30; Ex. 1003 ¶62. Khandekar teaches that VM images are created (see, e.g.,

Ex. 1004, 9:10-25, FIG. 7) and a POSITA would have naturally looked to Le for

additional details on how to create and store images. See Ex. 1005, 60:64-61:8,

18:6-9, 44:58-48:55; Ex. 1003 ¶62.

The prior art provides additional teaching, suggestion, and motivation to

combine Khandekar with Le, using VMM images to provide a VMM to host

computers. Several prior art references teach loading a VMM (hypervisor) using a

VMM image. See Ex. 1014 ¶[0062] (“The hypervisor also may be loaded first or

part of an OS-virtual machine manager image. It may be essentially part of a

firmware image.”); Ex. 1016 ¶¶[0049], [0043] (“The subsequent steps in the

installation procedure of a fixed system remain essentially the same … The

bootable core and the virtual machine manager image must be installed in a secure

partition.”); Ex. 1003 ¶60.

A POSITA would have had a reasonable expectation of success because

Khandekar and Le contain compatible and complementary teachings. Both

references are VMware patents directed to complementary aspects of virtual

machine systems. Khandekar teaches using a VMM, and Le teaches VMware

software for that purpose. Furthermore, Le’s disk imaging teachings were well-

known by 2006, and it would have been well within the level of ordinary skill to

apply them. See supra §IV; Ex. 1003 ¶64.

 -21-

3. Claim 1

1[a]. A distributed computing system comprising:

Khandekar teaches or suggests a distributed computing system with “a

network of cooperating VMs … deployed on respective physical host platforms.”

Ex. 1004, 5:9-13, 23:1-20. “In the preferred embodiment of the invention …

hosting is preferably provided using a bank or ‘farm’ of servers, each forming one

of the hosts.” Id., 12:40-50, 4:58-5:8, 4:30-35, 23:26-51, 23:54-24:27, Abstract,

FIG. 7, FIG. 2:

Ex. 1003 ¶¶67-68. Therefore, Khandekar renders [1a] obvious. Ex. 1003 ¶¶66-

69.

 -22-

Ground 2: The Combination with Le Further Renders [1a] Obvious.

Le’s teachings complement and elaborate on Khandekar’s, further rendering

this limitation obvious. See §VI.A.2; Ex. 1003 ¶¶70-73. Le teaches a distributed

computing system including a UCMS that plays an analogous role to Khandekar’s

provisioning server.5 See Ex. 1005, 59:29-36 (“The UCMS manages a set of

physical computers and virtual machines residing on a network…”), 53:45-57,

60:19-28.

[1b] a software image repository comprising non-transitory, computer-

readable media operable to store:

Khandekar teaches or suggests this limitation. Ex. 1003 ¶¶74-77. For

example, Khandekar teaches a “provisioning server” that acts as a software image

repository to store various images, e.g., as discussed below for [1c]-[1e]. See, e.g.,

Ex. 1004, 4:36-41 (“… a plurality of pre-configured VMs having different

configurations are pre-stored.”), 11:36-49 (“[A]pplications may be stored in

respective libraries …”), 23:28-51, 23:54-24:27, FIG. 2:

5 See supra n. 3.

 -23-

Ex. 1003 ¶74.

The provisioning server includes several libraries/repositories for software

images, including 830 (VM staging repository), 840 (instantly-deployable VM

repository), and 850 (applications library). See Ex. 1004, 11:21-25, 11:50-58,

16:43-63, 18:14-23, 18:56-19:2. A POSITA would have found it obvious to store

VMM images in a single repository in the provisioning server because Khandekar

teaches storing VMs there, and a corresponding VMM is included and installed

together for each VM. See infra §VIII.A.3[1c]; Ex. 1004, 8:36-44, 13:17-35; Ex.

1003 ¶75. The provisioning server acts as a “central repository” with images of

virtual machines and applications, including a database of related information. See

Ex. 1004, 18:1-42; Ex. 1003 ¶76.

 -24-

Khandekar teaches using standard computer components, which obviously

would have included hard disks. See Ex. 1004, 9:26-32. A POSITA would have

found it obvious to store image instances in non-transitory, computer-readable

media such as hard drives. Ex. 1003 ¶77.

Ground 2: The Combination with Le Further Renders [1b] Obvious.

Le’s teachings complement and elaborate on Khandekar’s, further rendering

this limitation obvious. See §VI.A.2; Ex. 1003 ¶¶78-80. For example, Le teaches a

software image repository (e.g., server computer 2000 that includes server disk

2010 and template images 4020) comprising non-transitory, computer-readable

media operable to store the image instances (e.g., image file 2015, template images

4020) discussed for limitation [1c] and [1e] below. See Ex. 1005, 25:34-41, 26:6-

22, 26:63-27:9, 66:66-67:29, FIGS. 4-6:

 -25-

 -26-

Le teaches the use of hard disks. See Ex. 1005, Figs. 4-6, 26:38-51, 63:20-

34, 60:64-61:8; Ex. 1003 ¶79.

[1c] (i) a plurality of image instances of a virtual machine manager that is

executable on a plurality of application nodes,

Khandekar teaches or suggests this limitation. Ex. 1003 ¶¶81-94. First,

Khandekar teaches a virtual machine manager (e.g., “VMM”) that is executable on

a plurality of application nodes (e.g., hosts). See Ex. 1004, 4:66-5:8 (“… a virtual

machine-to-hardware interface, such as a virtual machine monitor (VMM), is

installed on each of a plurality of hardware hosts.”). “A VMM is usually a thin

piece of software that runs directly on top of the host and virtualizes all, or at least

 -27-

some of the resources of the machine, or at least of some machine.” Id., 7:7-27,

13:17-35; Ex. 1003 ¶81.

The provisioning server stores a plurality of image instances of VMs. See

infra §VIII.A.3[1e]. Khandekar teaches including a corresponding VMM with each

VM. See Ex. 1004, 13:17-35:

As is mentioned above, a VMM is typically included for

each VM in order to act as its software interface with the

underlying host system. In the preferred embodiment of

the invention, a VMM is already pre-installed on each host

… It would also be possible, however, for a

corresponding VMM to be included along with each

staged VM, as long as the characteristics of the host on

which the VM is to be installed are known.

When the provisioning server provides a VM to a host, it may also include a VMM

together with the VM. See id., 8:36-44 (“… when a VM is installed on a host, then

a corresponding VMM is either already installed on the host, or is included and

installed together with the VM.”); Ex. 1003 ¶82.

Since VM images are stored in the provisioning server, a POSITA would

have found it obvious to likewise store a plurality of VMM images in the

provisioning server so they may be deployed together to hosts, as taught by

Khandekar. See Ex. 1004, 8:36-44, 13:17-35. Doing so would have allowed the

hosts to be remotely initialized with VMM software and configured to support

 -28-

virtual machines, facilitating Khandekar’s goal of automated, flexible deployment

of VMs to hosts. See id., 4:30-35; Ex. 1003 ¶83. This removes the need to

manually install VMMs on hosts, which is advantageous with a large number of

hosts. See id.

Furthermore, it would have been obvious to store a plurality of VMM

images to account for the different characteristics of the hosts, which can have

different software and hardware configurations. See Ex. 1004, 8:20-36, 6:13-22.

Khandekar teaches that a VMM may be provided to a host “as long as the

characteristics of the host on which the VM is to be installed are known.” Id.,

13:17-35. Thus, a POSITA would have found it obvious to store a plurality of

VMM images to accommodate different software and hardware configurations;

this was common in the art. Moreover, it would have been obvious to include at

least two VMM images: an image for Type 1 hypervisors, and another for Type 2

hypervisors, because Khandekar teaches both options for the VMM. See id., 7:7-

27. Since Khandekar teaches that the provisioning server acts as a repository for

storing VM images (see id., 4:36-41, 11:21-25, 16:43-63), a POSITA would have

found it obvious for the provisioning server to also store VMM images so that it

can provide the VMMs together with VMs to hosts, as taught by Khandekar. See

id., 8:36-44, 13:17-35; Ex. 1003 ¶48. Khandekar teaches that the provisioning

server includes a database and several libraries; therefore, Khandekar teaches or

 -29-

suggests that the provisioning server includes storage infrastructure, and a POSITA

would have found it obvious and been motivated to store VMM images in the

provisioning server for deployment. Ex. 1003 ¶84.

Application Nodes. Khandekar teaches application nodes in the form of

“hosts.” See Ex. 1004, 5:25-36, 5:52-58, 12:40-50, 10:27-43, FIG. 2. A POSITA

would have found it obvious that Khandekar’s hosts satisfy the claimed application

nodes because the hosts are computing devices that form the computing nodes of

the distributed computing system. Ex. 1003 ¶87.

This is confirmed by the ’138 patent, which explains that “application

nodes” are “computing nodes.” See Ex. 1001, 3:59-64, 4:26-24, FIG. 1:

 -30-

“Within distributed computing system 10, a computing node refers to the physical

computing device.” Ex. 1001, 3:65-4:5, 1:16-25; Ex. 1003 ¶86.

Virtual Machine Manager. Khandekar’s “virtual machine monitor”

satisfies the claimed “virtual machine manager” because the references use their

respective terms to refer to the same functionality. Ex. 1003 ¶81. In the prior art,

the term “virtual machine manager” was often used to refer to a virtual machine

monitor. See, e.g., Ex. 1014 ¶[0029] (“further note that as used herein, virtual

 -31-

machine monitor and virtual machine manager, as well as VMM, can be

considered equivalent”); Ex. 1003 ¶88.

Khandekar and the ’138 patent use these terms to refer to the same

functionality, e.g., the software that manages a VM. Compare Ex. 1001, FIG. 24

with Ex. 1004, FIG. 1.

Ex. 1001, FIG. 24

Ex. 1004, FIG. 1

Ex. 1003 ¶89.

The ’138 patent explains that a virtual machine manager is a software

program that is capable of managing one or more virtual machines, for example

“an instance of VMWare ESX software.” See Ex. 1001, 32:59-33:24; Ex. 1003

¶90.

Khandekar, a VMware patent, teaches that a virtual machine monitor

manages the execution of virtual machines. See, e.g., Ex. 1004, 6:62-7:27; Ex.

 -32-

1003 ¶91. A POSITA would have found it obvious to use known VMM software,

including VMware ESX software. Ex. 1003 ¶¶92-93.

Ground 2: The Combination with Le Provides an Alternative Basis for the

“Virtual Machine Manager”

The phrase “virtual machine manager” did not have a universal definition in

the art. Ex. 1003 ¶95. The ’138 patent uses the term to refer to a virtual machine

monitor, which is taught by Khandekar. See Ex. 1001, 32:59-67 (“… a virtual

machine manager is a software program that is capable of managing one or more

virtual machines. …”). Le confirms this, teaching that the virtual machine monitor

controls and manages VMs by managing their interactions with the host’s physical

resources. See Ex. 1005, 65:65-66:2 (“When a virtual machine is powered on, a

virtual machine monitor program 6300 controls it and manages the interactions

between the software … running inside of the virtual machine and the host’s

physical resources, such as hardware devices.”); Ex. 1003 ¶97.

To the extent it is argued otherwise, Le expressly teaches a virtual machine

“manager” (see §VI.A.2; Ex. 1003 ¶¶95-98), using the phrase to refer to other

aspects of the system, including creating, destroying, and maintaining VM files on

the host. See Ex. 1005, 66:11-32 (“The virtual machine manager 6200 is typically

also responsible for creating, destroying and maintaining virtual machine files

residing on the host 6000. …”), 67:20-32, 66:48-64, 67:9-19; Ex. 1003 ¶96.

 -33-

Moreover, Le is a VMware patent that teaches the use of VMware software

including “VMware ESX Server” (see Ex. 1005, 65:65-66:10, 13:22-30)—the

same software the ’138 patent relies on for a virtual machine manager. See Ex.

1001, 32:62-64. Therefore, Le teaches the claimed “virtual machine manager,” and

the combination of Khandekar and Le teaches a virtual machine manager that is

executable on a plurality of application nodes (e.g., virtual machine host 6000). See

§VI.A.2; Ex. 1005, FIG. 8:

Ex. 1003 ¶98.

 -34-

Ground 2: Khandekar in View of Le Provides an Additional Basis for the

Plurality of Image Instances of a Virtual Machine Manager

Le provides additional disk image teachings that complement and elaborate

on Khandekar’s teachings, further rendering it obvious for a plurality of VMM

images to be stored in the provisioning server. See supra §VI.A.2; Ex. 1003 ¶¶99-

111. As explained above, Khandekar teaches the provisioning server providing

VMMs to hosts. Le teaches imaging techniques that facilitate the remote

deployment of software onto host machines, techniques which a POSITA would

have found obvious to use for deploying VMM images. Ex. 1003 ¶99.

Le teaches “us[ing] disk imaging to quickly provision a bare-metal computer

on the network with a complete software stack consisting of an operating system

and a set of core applications.” Ex. 1005, 54:14-21, 15:63-65, 16:29-30, 8:10-23,

22:32-44, 67:31-40. “Before the initial image is captured, the base computer is

configured with an operating system and common set of software applications that

are required on all clones. Any computer deployed from this image would inherit

the same set of software.” Id., 10:55-62; Ex. 1003 ¶¶100-101.

VMMs acted as an OS (Type 1, such as ESX) or ran as a software

application on top of a separate OS (Type 2, such as GSX). See Ex. 1004, 7:7-14;

Ex. 1005, 13:5-21, 66:2-10. Therefore, a POSITA would have found it obvious to

use disk imaging techniques to install a VMM onto a host computer because disk

imaging techniques allowed rapid deployment of disk images—including the

 -35-

operating system and software applications such as Type 1 and Type 2 VMMs,

respectively—onto remote computers over a network. See Ex. 1005, 15:63-65,

16:29-30. It would have been obvious to use images of VMware ESX and GSX

software to initialize hosts. Ex. 1003 ¶102.

The use of VMM images in this manner was known in the art. See, e.g.,

Ex. 1014 ¶[0062] (“The hypervisor also may be loaded first or part of an OS-

virtual machine manager image. It may be essentially part of a firmware image.”);

Ex. 1016 ¶¶[0049], [0043]. Thus, the prior art includes teachings, suggestions, and

motivations to combine Khandekar and Le as described above, using a plurality of

VMM images to practice Khandekar’s teachings. Ex. 1003 ¶103.

Le further teaches storing a plurality of such images (e.g., image file 2015,

template images 4020) in a server computer (e.g., server computer 2000 that

includes server disk 2010 and template images 4020), which acts as a central

repository analogous to the provisioning server in Khandekar. See Ex. 1005, 26:53-

62 (“… a stored disk image 2015 (more than one may of course be stored)”), 26:6-

22, 26:53-57, 54:14-21 (“A single template image, or a small set of core template

images, is used to create clones.”), 66:66-67:8, 67:25-20, FIGS. 4-5, FIG. 6

(“TEMPLATE IMAGES 4020”), FIG. 9, 67:31-40 (“UCMS users and, in

particular, a UCMS administrator, decide how many images 4020 to maintain on

the UCMS server 2000…”); Ex. 1003 ¶104. Le teaches a “Universal Computer

 -36-

Management System (UCMS),” (Ex. 1005, 59:21-27), which is analogous to

Khandekar’s provisioning server and manages and deploys images to virtual

machines and physical computers. See Ex. 1005, 65:20-33; supra §VI.A.2; Ex.

1003 ¶105.

A POSITA would have been motivated to follow Le’s teachings because

storing a plurality of images would account for different computer hardware and

software platforms for the host computers, as explained above. Ex. 1003 ¶105.

Khandekar teaches consideration of host characteristics when providing a VMM.

See Ex. 1004, 13:17-35, 8:20-36, 6:13-22. Le reinforces the obviousness of this

approach, explaining that it was common to “to create one image file per family of

similar computers.” See Ex. 1005, 9:66-10:9, 16:29-41. Le teaches this was

commonly used despite being potentially inelegant, which was often the case for

real-world engineering solutions. See id.; Ex. 1003 ¶106.

Additionally, Le teaches using a Type 1 VMM (VMware ESX) and Type 2

VMM (VMware GSX). See Ex. 1005, 66:2-10. Thus, it would have been obvious

for the provisioning server to store at least two VMM images, for GSX and ESX

software. Ex. 1003 ¶107.

While Le discusses various challenges and solutions for the details of disk

imaging, those details are beyond the scope of the challenged claims and would not

detract from the obviousness or motivation of combining Khandekar and Le. See

 -37-

§VIII.A.2. A POSITA would also have found it obvious to use prior art solutions

to fit the needs of particular projects. Ex. 1003 ¶¶108-110.

[1d] wherein when executed on the applications nodes, the image instances

of the virtual machine manager provide a plurality of virtual

machines, each of the plurality of virtual machine operable to provide

an environment that emulates a computer platform, and

Khandekar renders this limitation obvious. Ex. 1003 ¶¶112-116. First,

Khandekar teaches or suggests that, when executed on the applications nodes (e.g.,

hosts), the image instances of the virtual machine manager (e.g., VMM, for

example labelled 500-1 “VMM” through 500-n “VMMn” in Fig. 1) are executed

on the host computer and provide a plurality of virtual machines (e.g., labelled

300-1 “VM” through 300-n “VMn”). See Ex. 1004, Fig. 1:

 -38-

Ex. 1003 ¶112.

“FIG. 1 shows the main components of a computer system that includes one

or more virtual machines (VMs). The illustrated system includes an underlying

system hardware platform 100, system software 200, and a plurality of virtual

machines (VMs) 300-1, …, 300-n that run on the system software 200; the

hardware platform 100 and the system software 200 thus form a ‘host’ for the

VMs.” Ex. 1004, 5:51-58, 13:17-35, 7:7-27; Ex. 1003 ¶113.

 -39-

To the extent PO contends [1d] requires that each image instance of a VMM

provides a plurality of virtual machines, Khandekar teaches this. Khandekar

teaches that commercial VMware products allow computers “to load and run

multiple VMs.” Ex. 1004, 13:17-35. Khandekar teaches “[i]t would also be

possible to use a single VMM to act as the interface to all VMs…” Id., 7:28-38.

Khandekar notes potential difficulty switching between VM contexts if different

guest operating systems are used. See id. Nonetheless, by 2006 using multiple VMs

for each VMM was common because of its known advantages and support in

commercial software such as VMware software. Ex. 1003 ¶¶52-54. A POSITA

would have been motivated to do so. Id. ¶114.

Khandekar further teaches or suggests each of the plurality of virtual

machines (VMs) is operable to provide an environment that emulates a computer

platform. See Ex. 1004, 7:39-47 (“… the VM is structured and performs as a

complete ‘real’ computer system, …”), 6:23-43:

As is well known in computer science, a virtual machine (VM), which

is sometimes also referred to as a “virtual computer,” is a software

abstraction—a “virtualization”—of an actual physical computer

system. … each VM will typically include one or more virtual CPUs

310 (VPROC), … virtual system memory 312 (VMEM), a virtual disk

314 (VDISK), optional virtual peripheral devices 340 (VDEVICES)

and drivers 322 (DRVS) for handling the virtual devices 340, all of

 -40-

which are implemented in software to emulate the corresponding

components of an actual computer. …

Id., 6:44-61; Ex. 1003 ¶115.

Ground 2: The Combination with Le Further Renders [1d] Obvious.

To the extent PO contends that each image instance of a VMM must provide

a plurality of virtual machines, the combination of Khandekar and Le further

renders this obvious. See §VI.A.2; Ex. 1003 ¶¶117-121. For example, Le teaches a

single virtual machine monitor and a single virtual machine manager that support a

plurality of virtual machines on a host. See Ex. 1005, FIG. 8:

“[T]wo virtual machines 6010 and 6020 are shown” but “[a]ny number of virtual

machines may be loaded onto the host …” Ex. 1005, 65:43-50; Ex. 1003 ¶118.

 -41-

This was a feature of commercially available software from VMware and others.

See Ex. 1005, 65:65-66:10; Ex. 1011 at 1, 5, FIG. 1; Ex. 1016 ¶[0076]. Khandekar

and Le teach a conventional usage of VMM/VM software, and a POSITA would

have been motivated to combine those teachings. Ex. 1003 ¶119.

Le further teaches that each VM provides an environment that emulates a

computer platform. See Ex. 1005, 65:65-66:10, 66:11-32; supra §VIII.A.3[1c]; Ex.

1003 ¶119.

[1e] (ii) a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual machines;

and

Khandekar teaches or suggests this limitation. See e.g., Ex. 1004, 18:56-

19:2, 10:15-26, 14:4-18; Ex. 1003 ¶¶122-139. Limitation [1e] may be satisfied by a

plurality of virtual disk image files (see §V.A), which Khandekar teaches three

ways: with pre-built, custom-built, and instantly-deployable VMs. Khandekar

presents the user with three choices for storing and deploying image instances. See

Ex. 1004, 9:10-25:

… The invention provides the user with three choices:

1) Clone an existing, pre-built model VM and configure a few

parameters, such as host name, IP address, etc.

 -42-

2) Install an operating system and/or one or more applications to a

VM created from scratch and then configure them. Such a VM is

referred to below as a “custom-built” VM.

3) Instantly provision a VM by resuming it from a suspended state.

Such a VM is referred to below as a an “instant-deploy” VM.

See §VI.A.1, §VI.A.3[1g]; Ex. 1003 ¶125.

Each teaching independently renders limitation [1e] obvious by teaching a

plurality of virtual disk image files. For pre-built and instantly-deployable VMs,

Khandekar teaches that each virtual disk image file includes an operating system

and application data. Ex. 1003 ¶123. To the extent PO contends the software

applications are somehow distinct from the virtual disk image file, Khandekar

teaches custom-built VMs where application images (installation files) are stored

in an application library and copied to hosts. Id. ¶124.

(1) Pre-Built, Staged VMs. Khandekar teaches that its provisioning server

includes a plurality of images of pre-built VMs that are stored in a repository (e.g.,

library 830). See Ex. 1004, 10:27-29 (“a library 830 of staged VMs”), 16:43-63,

18:16-23 (“Staging VMs: This data structure is required for provisioning pre-built

or custom-built VMs and contains … [l]ocation of the VM in the VM staging

repository 830.”), 22:17-22, 23:54-24:27, FIGS. 2-3; Ex. 1003 ¶126.

Pre-built VMs include a virtual disk image file, for example as indicated by

the 832 “disk” in Figure 3. See Ex. 1004, FIG. 3:

 -43-

See also Ex. 1004, 15:62-16:12, 16:21-29.; Ex. 1003 ¶127. Pre-built VMs also

include operating systems and application data installed. See, e.g., Ex. 1004, 15:40-

16:12 (“… pre-built VMs will be stored with their operating systems and

applications installed … In the first step, a model VM is created and the necessary

OS and applications are installed in it.”), 5:25-36, 14:19-25, 18:16-23, 10:15-26,

8:50-55, FIG. 3; Ex. 1003 ¶¶126, 129.

A “VM Staging” process is used to create new VM images, including for

pre-built, custom-built, and instantly-deployable VMs, which are then shut down

and stored in a library and database for future deployment. See Ex. 1004, 15:29-40,

16:43-52; Ex. 1003 ¶128. The staged VMs each include virtual disk image files

along with configuration files and supporting configuration and launch

components. See Ex. 1004, 16:47-63 (“For each VM, the data sets kept in the VM

 -44-

staging server 830 are illustrated in FIG. 3 and are as follows: … 2) VM disk files

832. …”); Ex. 1003 ¶¶127, 129.

Khandekar teaches that “any number of deployable VMs may be staged.”

Ex. 1004, 15:46-50. A POSITA would have been motivated to follow this teaching

by staging a plurality of VM images in the “VM staging repository 830” because

doing so would have increased the speed and efficiency in which VMs can be

deployed—particularly for frequently deployed VMs. Ex. 1003 ¶130. This is a

preferred embodiment of Khandekar. See Ex. 1004, 4:36-47 (“In a preferred

embodiment of the invention, a plurality of pre-configured VMs having different

configurations are pre-stored…”), FIG. 7. Furthermore, it would have been

obvious to keep staged VMs for a period of time after they have been deployed, so

they are readily accessible if requested again. Ex. 1003 ¶130.

(2) Custom-Built VMs. Custom-built VMs are also staged using the process

described above but may have additional applications installed. See Ex. 1004,

15:29-17:29. Custom-built VMs include VM disk files that are stored in the

provisioning server and copied to hosts when deployed. See id., 16:43-17:13. For

custom-built VMs, the virtual disk image only includes the operating system. See

id., 15:41-46.

Application images (application installation files) are stored in the

provisioning server’s application library and copied to hosts. See id., 19:20-20:30

 -45-

(explaining the “application install software is copied to the temporary usage area”

which “will reside on the host server where the VM is being deployed.”), 23:28-51,

21:25-64, 4:42-51; Ex. 1003 ¶132.

Thus, Khandekar teaches images of software applications stored in an

applications library 850 that are executable on VMs. See e.g., Ex. 1004, 18:56-19:2

(“The applications library 850 is a repository of the software and data needed to

install an application 856 in a VM. Since the applications are installed by the

provisioning engine 810 during deployment phase (see below), they are installed

unattended, that is, without any human intervention.”), 10:27-42, 11:50-58 (“…

library 850 … contain[s] code for any collection of the myriad of existing

applications, from web servers, database servers, spreadsheets and word-

processing programs, to games and browsers.”), 12:13-23, FIG. 5:

Ex. 1003 ¶131. Khandekar teaches “stor[ing] in the library 850 different copies of

applications, with different settings for the different possible operating systems,

 -46-

different copies of operating systems configured for different processors, etc.” Ex.

1004, 12:13-23; Ex. 1003 ¶138.

Khandekar teaches that “any number of deployable VMs may be staged.”

Ex. 1004, 15:46-50. Thus, a POSITA would have been motivated to stage a

plurality of VM images in the “VM staging repository 830” to increase the speed

and efficiency in which VMs can be deployed—particularly for a set of frequently

requested configurations. For example, it would have been obvious to keep staged

VMs for a period, so they are readily accessible if they are requested again,

avoiding the need to re-build custom VMs that are frequently requested. Ex. 1003

¶133.

(3) Instantly-Deployable VMs. Unlike the other approaches, instantly-

deployable VMs are suspended and resumed in a fully-booted state. See Ex. 1004,

17:30-50; Ex. 1003 ¶135. “[T]hese ready-to-deploy VMs … are created as follows.

First, a new VM is created according to the steps outlined above in the section on

VM Staging.” Ex. 1004, 17:30-50. “In the first step, a model VM is created and

the necessary OS and applications are installed in it.” Id., 15:49-52; Ex. 1003

¶134.

As discussed above, the staging process creates a VM with “VM disk files

832” and various configuration and software files/modules. See Ex. 1004, 16:43-

 -47-

63. Therefore, instantly-deployable VMs include a virtual disk image file with an

operating system and application data. Ex. 1003 ¶134.

Khandekar teaches that images of instantly-deployable VMs are stored in the

“instantly-deployable VMs repository 840.” Ex. 1004, 18:1-15, 14:4-18, 18:6-15,

FIGS. 2, 4. Therefore, Khandekar teaches or suggests that the provisioning server

stores a plurality of instantly-deployable VMs. Ex. 1003 ¶136.

Other Limitations in [1e]. Khandekar teaches the image instances of a

plurality of software applications that are executable on the plurality of virtual

machines. As explained above, each pre-built, custom-built, and instantly-

deployable VM includes a virtual disk image file with an OS and applications that

are executable on the virtual machines. See Ex. 1004, 6:43-56; Ex. 1003 ¶137.

[1f] a control node that comprises an automation infrastructure to provide

autonomic deployment of the plurality of image instances of the

virtual machine manager on the application nodes by causing the

plurality of image instances of the virtual machine manager to be

copied from the software image repository to the application nodes

and

Khandekar teaches or suggests a control node (e.g., “provisioning server”)

that comprises an automation infrastructure (e.g., “provisioning engine,”

“heuristics/rules engine,” and supporting functionality in the provisioning server)

 -48-

to provide autonomic6 deployment of the plurality of image instances of the virtual

machine manager (e.g., VMM) on the application nodes (e.g., “hosts”) by causing

the plurality of image instances of the virtual machine manager to be copied from

the software image repository to the application nodes. See, e.g., Ex. 1004, 5:25-36

(“The invention enables users to configure, deploy and get access to substantially

‘customized’ computer systems … with no need for human intervention.”), 9:9-25,

23:54-24:27, FIG 2:

6 The ’138 patent uses “autonomic” and “automatic” to refer to automated

processes that do not require human intervention. See, e.g., Ex. 1001, 8:13-23,

35:58-67, 7:5-16, 20:4-6; Ex. 1003, n.3.

 -49-

Ex. 1003 ¶¶140-147.

Khandekar’s provisioning server is a node in the network that controls the

automated deployment of VMM and VM images from the provisioning server’s

software image repository (see §VI.A.3[1b]-[1e]) to hosts. See, e.g., Ex. 1004,

5:25-36, 9:9-25, 23:28-51, FIGS. 2, 7. For example, Khandekar teaches selecting

“one of the pre-configured VMs, which is then automatically prepared for

deployment.” Id., 4:36-41; Ex. 1003 ¶141. Image deployment is automatic. After a

request is made, a heuristics engine “applies heuristics/rules to select the most

appropriate VM from a library 830 of staged VMs.” Ex. 1004, 10:27-42. “At least

one host computer 1000, 1001 is made available to the provisioning server, and the

heuristics engine 880 also selects which host machine 1000, 1001 is most

appropriate to provision and deploy the VM on.” Id. “[T]here is a plurality of

physical hosts on which VMs can be deployed. … the status of the hosts is

monitored and the host on which a configured VM is to be deployed is selected

heuristically.” Id., 4:58-65; see also §VIII.A.3[1g]; Ex. 1005, 68:21-24 (teaching

monitoring status and performance information); Ex. 1003 ¶¶141-142.

A POSITA would have found it obvious to autonomically deploy image

instances of VMMs from the provisioning server to the hosts because Khandekar

teaches (1) automatic deployment of VM images, and (2) providing a VMM

together with the VM. See Ex. 1004, 4:36-41, 4:58-65, 10:27-42, 8:36-44 (“…

 -50-

when a VM is installed on a host, then a corresponding VMM is either already

installed on the host, or is included and installed together with the VM.”), 13:17-

35; see supra §VI.A.1, §VI.A.2, §VI.A.3[1c] (explaining motivation to apply this

teaching); Ex. 1003 ¶¶143-144. Therefore, it would have been obvious based on

Khandekar’s teachings that the provisioning server is a control node within the

network that includes an automation infrastructure to provide autonomic

deployment of the plurality of image instances of the virtual machine manager on

the application nodes. Ex. 1003 ¶144.

Khandekar teaches that the autonomic deployment of images is

accomplished by copying the image from the provisioning server’s repository to

the host computer without human intervention. See e.g., Ex. 1004, 18:56-19:2,

5:25-36, 4:36-41. This includes copying VM images, as explained below (see

§VI.A.3[1g]) and a VMM that “is included and installed together with the VM.”

(see Ex. 1004, 8:36-44, 13:25-28). Since the VMM is included with the VM, it

obviously is copied along with the VM to the host computer. Ex. 1003 ¶145. This

conventional usage of VMM images was known and used in the art. See, e.g.,

Ex. 1014 ¶[0062]; Ex. 1016 ¶¶[0049], [0043]; Ex. 1003 ¶145.

Claim 1 recites “autonomic deployment” but does not recite autonomic

requests for VMs. Nonetheless, Khandekar teaches both, explaining that a user

may be “any person or entity” but “could also be a software application or tool”

 -51-

(Ex. 1004, 9:49-52) that “interact[s] with the provisioning server using a well-

defined programmatic interface (API), which may be designed in a known

manner.” Id., 9:56-59, 22:53-67. Khandekar teaches autonomic requests from

software applications, and a POSITA would have been motivated to apply these

teachings because it increases automation in a well-known manner. See id. And

Khandekar provides express motivation by explaining the benefits of automation

for testing environments. See id., 22:53-67; Ex. 1003 ¶146.

Ground 2: Khandekar in View of Le Further Renders [1f] Obvious

Khandekar teaches autonomic deployment of VM and VMM images, as

explained above for Ground 1. Le provides additional desk imaging teachings that

complement and elaborate on Khandekar’s teachings with techniques for copying

images from a repository to remote computers, further rendering this limitation

obvious. Ex. 1003 ¶¶148-154.

As explained previously, a POSITA would have found it obvious to use Le’s

disk imaging teachings to provide VMMs from the provisioning server to hosts.

See §VI.A.2, §VI.A.3[1c]. Disk images include the operating system and software

applications, which would include Type 1 and 2 VMMs, respectively. See, e.g., Ex.

1005, 8:10-23, 10:55-62, 22:32-44; Ex. 1003 ¶149.

 -52-

Le teaches that disk imaging was conventionally used to clone, i.e., copy, an

image of a computer, including OS and applications, onto other machines. See,

e.g., Ex. 1005, 2:19-21, 54:14-21, 10:55-62:

An image is often used to make multiple clones of a base computer.

The approach is to capture an image from the base computer’s disk,

and then deploy the same image to multiple destination computers.

Before the initial image is captured, the base computer is configured

with an operating system and common set of software applications

that are required on all clones. Any computer deployed from this

image would inherit the same set of software.

Ex. 1003 ¶150.

Le teaches techniques for copying images from a central repository to

remote destination computers. See Ex. 1005, FIGS. 3-5:

 -53-

 -54-

Le describes the process of creating an image and explains that deployment

is the inverse process whereby an image is copied to the destination computer. See

Ex. 1005, 26:52-27:9 (“…the imaging server copies files and directories from the

source file system to the destination file system…”), 72:14-22 (“… It then copies

all files and folders from the source to the destination.”), 20:25-37, FIG. 9; infra

§VI.A.3[1g]; Ex. 1003 ¶151.

Le teaches a central repository, called the UCMS, deploying images to

virtual machines and physical computers. See Ex. 1005, 65:20-33, 59:29-36. To

guide deployment to physical computers, the UCMS includes functionality that

analyzes the hardware configuration of new computers (see id., 70:12-35), which a

POSITA would have been motivated to use to address Khandekar’s teaching that

 -55-

host characteristics should be determined before sending a VMM (see Ex. 1004,

13:17-35). Thus, it would have been obvious for the provisioning server to deploy

VMM images to physical computers and VM images for virtual machines, using

the hardware configuration of the host computer to guide the automation process

and send an appropriate image to the host computer. See Ex. 1005, 65:20-33,

59:29-36, 70:12-35; Ex. 1003 ¶¶152-153.

[1g] to provide autonomic deployment of the plurality of image instances

of the software applications on the virtual machines by causing the

plurality of image instances of the software applications to be copied

from the software image repository to the application nodes.

Khandekar teaches or suggests a control node (e.g., “provisioning server”)

that comprises an automation infrastructure (e.g., “provisioning engine,”

“heuristics/rules engine,” and supporting functionality in the provisioning server)

to provide autonomic deployment of the plurality of image instances of the

software applications on the virtual machines by causing the plurality of image

instances of the software applications to be copied from the software image

repository to the application nodes (e.g., hosts). See Ex. 1004, 23:54-24:27, FIGS.

2, 7:

 -56-

See supra §§VI.A.3VIII.A.3[1e]-[1f]; Ex. 1003 ¶¶155-163.

Khandekar’s provisioning server is a node in the network that controls the

automated deployment of VM images from the provisioning server’s repository to

host computers. See supra §VI.A.3[1f]; Ex. 1004, 4:36-41, 4:58-65, 10:27-42. The

 -57-

autonomic deployment process was described above. See §VI.A.3[1f]. For

example, “a VM is automatically deployed onto the compatible physical host

platform by copying the staged VM to the compatible physical host platform.” See

id., 23:28-51 (discussing Fig. 7), 5:25-36 (without human intervention); Ex. 1003

¶156.

Khandekar provides additional details for deploying image instances of pre-

built, custom, and instantly-deployable VMs; each is sufficient by itself to render

this limitation obvious. See Ex. 1004, 9:10-25; supra §VIII.A.3[1e]. Khandekar’s

general teachings for deploying VMs apply to all three approaches. Ex. 1003 ¶157.

(1) Pre-Built, Staged VMs. Khandekar teaches copying pre-built VMs, with

OS and applications installed, from the VM staging repository (library 830) to

hosts that are automatically selected by a heuristics engine. See Ex. 1004, 9:15-25,

16:42-63, 15:40-16:12, 10:15-26; supra §VI.A.3[1e]. For staged VMs, Khandekar

teaches that “‘[d]eployment’ is the step of taking a staged VM, copying it to a host

machine and letting it configure with a new identity.” Ex. 1004, 8:64-67, 9:1-3.

Khandekar teaches that VMs are deployed “from a library 830 of staged VMs” to a

“host computer” that the heuristics engine 880 determines is most appropriate. Id.,

10:27-42; Ex. 1003 ¶158.

Knowledge-based systems for autonomically deploying applications were

well-known in the art. Khandekar explains that “[t]he system designer will be able

 -58-

to determine which heuristics/rules to implement in the heuristics engine 880 using

known design criteria.” Ex. 1004, 10:35-42. This includes “[k]nown expert

systems, ‘intelligent assistants,’ and other knowledge-based systems and

engines…” Id.; Ex. 1003 ¶159.

(2) Custom-Built VMs. Custom-built VMs are also staged and are therefore

copied to host computers as explained above. Ex. 1003 ¶160. Custom-built VMs

may have additional applications, where installation images of those applications

are copied from the applications library to the host and installed at the host. See

Ex. 1004, 18:56-19:2 (“The applications library 850 is a repository of the software

and data needed to install an application 856 in a VM.”); Ex. 1003 ¶160.

The heuristics engine automatically determines a host for deployment; then

the VM files, including its VM disk files with operating system and application

installation software, are copied from the provisioning server to the host. See Ex.

1004, 21:25-64:

…

2) Call the heuristics engine 880, to determine the VM’s

hardware configuration and the host to deploy on.

…

7) For each application selected by the user, create the

custom answer file 864 and the application installation

software 862 using the process described above in the

“Application Library” section.

 -59-

8) Copy the VM’s config file and the disk files to the host.

…

Ex. 1003 ¶160. The application installation images are copied to the host and then

installed at the end of the process. See Ex. 1004, 4:42-51, 23:54-24:27, 23:28-51

(“…The automatically deploying includes installing an additional application in

the deployed VM if the additional application … [is] not pre-installed in the staged

VM.”); Ex. 1003 ¶161.

(3) Instantly Deployable VMs. Khandekar teaches copying fully-

configured, instantly-deployable VMs, with pre-installed OS and software

applications, from the instantly-deployable VMs repository (library 840) to host

computers that are automatically selected by a heuristics engine. See Ex. 1004,

14:4-18 (“A brief description of the operating system, service pack and set of

applications installed in each instantly deployable VM is preferably also included

… the heuristics engine 880 applies the heuristics and rules to determine the best

host, and provisions the VM on that host.”), 11:20-35:

According to an alternative “instant-deployment”

embodiment of the invention, the user selects one of a

plurality of fully configured VMs, which are stored in a

library 840 of instant deployment VMs and are kept in a

suspended state until deployed. The provisioning server

then selects an appropriate host 1000, 1001 on which to

provision the VM, copies the necessary data on that host,

 -60-

and resumes the execution of the VM on the new host. …

Since the host servers have to have a hardware

configuration identical to that where the VM was

suspended, the heuristics engine will select the appropriate

host server to deploy the VM on.

See also Ex. 1004, 21:65-22:13 (copying, e.g., the “suspend-to-disk image file 844

to the host.”); Ex. 1003 ¶162.

4. Claim 2

2. The distributed computing system of claim 1, wherein the image

instances of the plurality of software applications comprise virtual

disk image files.

For Grounds 1 and 2, Khandekar teaches or suggests the additional

limitation of claim 2, wherein the image instances of the plurality of software

applications comprise virtual disk image files (e.g., “VM disk file 832,” “virtual

disk file 841”); Ex. 1003 ¶¶164-169.

For staged VMs, including pre-built and custom built VMs, Khandekar

teaches the staged VMs include “VM disk files.” See Ex. 1004, 16:47-63 (“For

each VM, the data sets kept in the VM staging server 830 are illustrated in FIG. 3

and are as follows: … 2) VM disk files 832. …”), FIG. 3 (showing “DISK” 832):

 -61-

Ex. 1003 ¶166.

Instantly-deployable VMs include a “virtual disk file 841.” Ex. 1004, 16:43-

63, 17:30-50, FIG. 4:

Ex. 1003 ¶167.

A POSITA would have found it obvious that Khandekar teaches the claimed

virtual disk image files because the ’138 patent relies on VMware software for its

embodiments, and Khandekar is a VMware patent. The ’138 patent states that “if

virtual machine manager 402 is an instance of VMWare ESX, virtual machine disk

 -62-

image files 408 may be specially captured .vmdk files.” Ex. 1001, 33:25-41. The

VMware VMDK format is short for “Virtual Machine Disk.” Ex. 1003 ¶168.

Therefore, it would have been obvious that Khandekar’s teachings include the

virtual machine disk image files used in VMware products, which are used by the

embodiments of the ’138 patent. Id.

5. Claim 3

3. The distributed computing system of claim 1, wherein a first image

instance of the plurality of image instances of the plurality of software

applications comprises an operating system.

For Grounds 1 and 2, Khandekar teaches or suggests the additional

limitation of claim 3. See Ex. 1004, 10:15-26, 14:4-18, 11:36-49 (teaching

“operating systems such as Linux Red Hat, Windows 2000, Windows Me, etc.”);

Ex. 1003 ¶¶170-175. Khandekar teaches pre-built, custom-built, and instantly-

deployable VMs. As explained for claim 1, each approach includes a virtual disk

image with an operating system installed. See §VIII.A.3[1e]; Ex. 1004, 9:10-25;

Ex. 1003 ¶¶171-175.

6. Claim 4

4. The distributed computing system of claim 1, wherein a first image

instance of the plurality of image instances of the plurality of software

applications comprises a server application.

For both Grounds 1 and 2, Khandekar teaches or suggests the additional

limitation of claim 4, including server applications such as a web server and

 -63-

database server. See Ex. 1004, 11:50-58 (“… library 850 … contain[s] code for

any collection of the myriad of existing applications, from web servers, database

servers … to games and browsers.”), 12:24-39 (“For example, a user could

indicate that he wants the system according to the invention to build a (virtual) web

server running a Window OS”). Therefore, Khandekar’s teachings satisfy this

limitation. Ex. 1003 ¶¶176-179.

This is confirmed by the ’138 patent, which includes an embodiment where

the server application is a web server (Microsoft Internet Information Server). See

Ex. 1001, 33:11-24; Ex. 1003 ¶178.

7. Claim 5

5. The distributed computing system of claim 1, wherein a first one of

the virtual machines provides an environment that emulates an x86

platform.

For both Grounds 1 and 2, Khandekar teaches or suggests the additional

limitation of claim 5. Ex. 1003 ¶¶180-183. For example, Khandekar teaches the

Linux Red Hat, Windows 2000, and Windows Me operating systems. See supra

§VIII.A.5; Ex. 1004, 11:36-49. These operating systems typically ran on x86

platforms—indeed, x86 was the primary target platform for Windows 2000 and

Windows Me. Ex. 1003 ¶182. The x86 platform was the predominant computing

platform at the time, and VMware’s ESX and GSX software emulated x86

 -64-

platforms. Id.; see also Ex. 1004 13:17-35 (“Several products are available from

VMware”). Thus, Khandekar renders claim 5 obvious. Ex. 1003 ¶¶182-183.

Ground 2: The Combination with Le Further Renders Claim 5 Obvious.

Le provides additional teachings on implementation details that render claim

5 obvious. See §VI.A.2; Ex. 1003 ¶¶184-186. Le teaches support for x86 virtual

machines as described in Bugnion, which it incorporates by reference. See

Ex. 1005, 12:63-13:11; Ex. 1012, 18:28-38 (teaching “Intel x86 architecture in a

virtual machine”); Ex. 1003 ¶¶185-186.

8. Claim 9

9. The distributed computing system of claim 1, wherein the control

node further comprises one or more rule engines that provide

autonomic deployment of the software applications to the virtual

machines in accordance with a set of one or more rules.

For both Grounds 1 and 2, Khandekar teaches or suggests the additional

limitation of claim 9, wherein the control node (e.g., “provisioning server”) further

comprises one or more rule engines (e.g., heuristics/rules engine) that provide

autonomic deployment of the software applications to the virtual machines in

accordance with a set of one or more rules. See, e.g., Ex. 1004, 10:27-42:

… the heuristics engine 880 also selects which host machine 1000,

1001 is most appropriate to provision and deploy the VM on. … The

system designer will be able to determine which heuristics/rules to

implement in the heuristics engine 880 using known design criteria.

 -65-

Known expert systems, “intelligent assistants,” and other knowledge-

based systems and engines that can be embedded in other products

and loaded with domain knowledge may be included in the heuristics

engine 880 to implement the various decision functions.

See also id., 20:31-62, 11:11-19, 12:24-39, 14:4-18, 14:35-49, FIG 2; Ex. 1003

¶¶187-193.

Khandekar teaches the use of rules and “knowledge-based systems and

engines,” which were known in the art to include rules engines. See Ex. 1004,

10:27-42; Ex. 1003 ¶188. For example, Khandekar teaches monitoring the status of

hosts, with the heuristics engine providing autonomic deployment by applying

rules based on the monitored status. See Ex. 1004, 4:58-65 (“… the status of the

hosts is monitored and the host on which a configured VM is to be deployed is

selected heuristically…”), 23:54-24:27, 12:57-13:8:

Information about the current state of the different hosts is preferably

input dynamically into a database or other data structure in the

heuristics engine 880. … The heuristics engine may then also

efficiently direct deployment and migration in order to balance the

load on the different available hosts, for example by deploying a

selected, staged VM to the host whose processor currently has the

most available cycles.

As an example, Khandekar teaches monitoring whether a host is overloaded

beyond a threshold. See id., 13:44-56 (“Hosts can be monitored for load and if the

load crosses a threshold …”); Ex. 1003 ¶190.

 -66-

Khandekar teaches the use of known rules engines and applies rules based

on whether host servers are overloaded. Therefore, Khandekar’s teachings render

this claim limitation obvious. Ex. 1003 ¶¶189-192.

This is confirmed by the ’138 patent, which does not purport to invent a

rules engine and relies on rules engines that were known in the art. See Ex. 1001,

26:45-61. Like Khandekar, the ’138 patent looks to whether a server status is

“overloaded” and then takes action accordingly with its rules engine. See id.,

25:60-26:25; Ex. 1003 ¶¶189-191.

9. Claim 19

19[a]. A method comprising:

Khandekar renders [19a] obvious. See Ex. 1004, 4:30-35 (“a method and

system implementation…”), 23:1-20, 4:30-35, 23:26-51, FIG. 7; Ex. 1003 ¶¶194-

197. Khandekar teaches various steps and algorithms performed by its provisioning

server, as explained for claim 1. See §VI.A.3.

Ground 2 (Le)

Le further teaches a method. See §VI.A.2; Ex. 1003 ¶¶198. For example, Le

teaches an “Image Capture and Deployment Method.” See, e.g., Ex. 1005, 59:21-

37, 64:59, 65:21-33. Le teaches various steps and algorithms, as explained for

claim 1. See §VI.A.3; Ex. 1003 ¶199.

 -67-

[19b] …

Limitation [19b] is similar to [1c], with overlapping language shown in

green below:

The analysis from [1c] applies here and renders this shared language obvious. See

§VI.A.3[1c]; Ex. 1003 ¶200.

Limitation [19b] also recites “storing” the plurality of image instances “in a

distributed computing system.” Khandekar alone (Ground 1), and in combination

with Le (Ground 2), teach a distributed computing system (see §VI.A.3[1a])

comprising a software image repository for storing the plurality of image instances

recited in [1c] (see §VI.A.3[1b], [1c], [1e]). That analysis applies here, rendering

this limitation obvious. Ex. 1003 ¶¶201-202.

[19c] wherein the image instances of the virtual machine manager provide a

plurality of virtual machines, each virtual machine operable to

provide an environment that emulates a computer platform;

Limitation [19c] is encompassed by [1d]. That analysis applies here,

rendering this limitation obvious. See §VIII.A.3[1d]. Ex. 1003 ¶203.

 -68-

[19d] storing a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual machines;

Limitation [19d] is identical to limitation [1e] except [19d] further requires

“storing.” The analysis from [1e] applies here, rendering this [19d] obvious. See

§VIII.A.3[1e]; Ex. 1003 ¶204.

Regarding “storing,” that limitation is taught by Khandekar alone (Ground

1), and in combination with Le (Ground 2), which teach a software image

repository for storing the plurality of image instances recited in limitation [1e]. See

§VIII.A.3[1b], [1e]. That analysis applies here, rendering this limitation obvious.

Ex. 1003 ¶¶205-206.

[19e] …

Limitation [19e] is similar to [1f], with overlapping language shown in green

below:

 -69-

Ex. 1003 ¶207. The analysis from [1f] applies here and renders this shared

language obvious. See §VI.A.3[1f]. Claim 19’s omission of “plurality of” and

“from the software image repository” does not materially alter this analysis

because, while this part of [19e] might be broader than the corresponding part of

[1f], it is still satisfied by teachings that render [1f] obvious. Ex. 1003 ¶208.

Regarding the first portion of [19e], Khandekar teaches or suggests a control

node that comprises an automation infrastructure (e.g., “heuristics/rules engine”) to

provide autonomic deployment of the plurality of image instances of the virtual

machine manager on the application nodes, as explained for [1f]. See

§VIII.A.3[1f]. That analysis applies here. Therefore, Khandekar renders obvious

the step of executing a rules engine (e.g., the “heuristics/rules engine”) to perform

operations to autonomically deploy the “image instances…” recited in the

remainder of the claim. See id.; Ex. 1003 ¶¶209-210.

[19f] …

Limitation [19f] is similar to [1g], with overlapping language shown in

green below:

 -70-

Ex. 1003 ¶211. The analysis from [1g] applies here and renders this shared

language obvious. See §VI.A.3[1g]. Claim 19 omits some limitations from the

latter portion, but this does not materially alter the analysis because, while this part

of [19f] might be broader, it is satisfied by teachings that render [1g] obvious. Ex.

1003 ¶212.

Regarding the remainder of [19f], Khandekar teaches or suggests a control

node that comprises an automation infrastructure (e.g., “heuristics/rules engine”) to

provide autonomic deployment of the plurality of image instances of the software

applications on the virtual machines. See §VIII.A.3[1g], VI.A.9[19e]. That analysis

applies here, rendering obvious the step of executing the rules engine (e.g., the

“heuristics/rules engine”) to perform operations to autonomically deploy the

“image instances…” recited in the remainder of the claim. See id.; Ex. 1003 ¶¶213-

214.

 -71-

10. Claim 20

20. The method of claim 19, wherein storing the image instances of the

plurality of software applications comprises storing virtual disk image

files.

Claim 20 is nearly identical to claim 2. That analysis applies here, rendering

claim 20 obvious. See supra §VI.A.4. Claim 20 additionally recites “storing.” This

is taught by Khandekar alone (Ground 1), and in combination with Le (Ground 2),

which teach or suggest storing the plurality of image instances of a plurality of

software applications. See §VIII.A.9[19d], §VIII.A.3[1b]; Ex. 1003 ¶216.

11. Claim 21

21. …

The limitations of Claim 21 are identical to those recited for Claim 3. That

analysis applies here, rendering claim 21 obvious. See §VI.A.5; Ex. 1003 ¶¶219-

220.

12. Claim 26

26[a]. A non-transitory, computer-readable medium comprising instructions

stored thereon, that when executed by a programmable processor:

Khandekar renders [26a] obvious. Ex. 1003 ¶¶222-224. Khandekar teaches

that its provisioning server includes standard computer components, which

obviously would have included a processor to execute software (instructions) that

implement the functions of the provisioning server. See Ex. 1004, 9:26-45. It

 -72-

would also have been obvious to use a non-transitory, computer-readable medium,

such as a hard disk, to store the provisioning server’s software, as was common for

the vast majority of computers. Ex. 1003 ¶224.

Ground 2: The Combination with Le Further Renders [26a] Obvious.

Le teaches implementation details that further render [26a] obvious. See

§VI.A.2; Ex. 1003 ¶¶225-227. For example, Le teaches using software installed on

a computer to implement the features of its UCMS, which plays an analogous role

to Khandekar’s provisioning server (see supra §VI.A.2), with further teachings that

software programs comprise computer-executable instructions and stored on disks.

See Ex. 1005, 59:29-36, 60:13-18, 23:44-52, 89:8-31, 26:38-52, FIG. 4; Ex. 1003

¶226. It would have been obvious to apply these teachings to the provisioning

server. Ex. 1003 ¶227.

[26b] store a plurality of image instances of a virtual machine manager that

is executable on a plurality of application nodes in a distributed

computing system,

Aside from verb tense, limitation [26b] is identical to [19b]. That analysis

applies here, rendering this limitation obvious. See §VI.A.9[19b]; Ex. 1003 ¶228.

 -73-

[26c] wherein the image instances of the virtual machine manager provide a

plurality of virtual machines, each virtual machine operable to

provide an environment that emulates a computer platform;

Limitation [26c] is identical to [19c]. That analysis applies here, rendering

this limitation obvious. See §VI.A.9[19c]; Ex. 1003 ¶229.

[26d] store a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual machines;

Aside from verb tense, limitation [26d] is identical to [19d]. That analysis

applies here, rendering this limitation obvious. See §VI.A.9[19d]; Ex. 1003 ¶230.

[26e] perform operations to autonomically deploy the image instances of the

virtual machine manager on the application nodes by causing the

image instances of the virtual machine manager to be copied to the

application nodes; and

Limitation [26e] is identical to [19e] except [26e] omits “executing a rules

engine to.” This omission does not materially alter the analysis because, while

[26e] might be broader than [19e], it is still satisfied by teachings that render [19e]

obvious. That analysis applies here, rendering this limitation obvious. See

§VI.A.9[19e]; Ex. 1003 ¶231.

[26f] perform operations to autonomically deploy the image instances of the

software applications on the virtual machines by causing the image

instances of the software applications to be copied to the application

nodes.

Limitation [26f] is identical to [19f] except [26f] omits “executing a rules

engine to.” This omission does not materially alter the analysis because, while

 -74-

[26f] might be broader than [19f], it is still satisfied by the teachings that render

[19f] obvious. That analysis applies here, rendering this limitation obvious. See

§VI.A.9[19f]; Ex. 1003 ¶232.

B. Ground 3: Khandekar in View of Le and Sidebottom

1. Motivation to Combine

The combination of Khandekar and Le was explained for Ground 2. See

§VI.A.2. A POSITA would have been further motivated to apply Sidebottom’s

teachings regarding a rules engine with a forward-chaining algorithm. See, e.g., Ex.

1006, Abstract, 1:36-44; Ex. 1003 ¶234.

The combination of Khandekar and Le includes automatic deployment using

a heuristics/rules engine. See §VI.A.3[1f]-[1g], §VI.A.8. Khandekar provides

express motivation to apply known “knowledge-based systems and engines” to its

heuristics/rules engine. See Ex. 1004, 10:27-42; Ex. 1003 ¶235. Sidebottom

provides such a teaching in the form of a “rules engine” that applies a “forward-

chaining rule-based algorithm, such as LEAP or RETE.” See Ex. 1006, 3:44-58,

9:36-45. Khandekar’s express motivation to combine its teachings with known

knowledge-based systems and engines would have included the forward-chaining

rule algorithms taught by Sidebottom. Ex. 1003 ¶236.

Furthermore, the prior art provides motivation to combine these teachings.

For example, Khandekar teaches that “[h]osts can be monitored for load…” See

 -75-

Ex. 1004, 13:44-56; supra §VI.A.8. Das teaches monitoring “facts” such as “an

average load on a CPU” and applying a “Chaining of Rules.” See Ex. 1013

¶¶[0083]-[0084], [0163]-[0164]. Therefore, Das provides a teaching, suggestion,

and motivation to apply chaining rules, such as a forward-chaining rules engine, in

response to monitored load, as taught by Khandekar. Ex. 1003 ¶237.

As another example, Russell teaches that forward-chaining algorithms, such

as the widely-used RETE, apply Modus Ponens inference rules, which are useful to

make inferences in response to newly-arrived information. See Ex. 1010 at 280,

286 n. 4, 310. Khandekar teaches taking actions based on newly-arrived

information (e.g., monitored load or status). See, e.g., Ex. 1004, 13:44-56.

Therefore, Russell provides a teaching, suggestion, and motivation to apply

forward-chaining rules such as RETE to Khandekar. Ex. 1003 ¶¶238-239.

Sidebottom provides additional motivation to combine, explaining that its

teachings are broadly applicable for defining policies in a computer network. See

Ex. 1006, 1:36-38. Sidebottom teaches monitoring events in the network,

evaluating if the condition of a condition/action rule is satisfied using a rules

engine, and if so, implementing the action. See id., 2:65-3:17, 3:32-43, 5:63-6:17,

4:26-44. As was typical for rules engines, Sidebottom teaches that its rules were

“specified in terms of high-level business information.” See id., 1:41-44.

 -76-

Therefore, Sidebottom’s high-level rules were adaptable to a wide variety of

applications and business needs. Ex. 1003 ¶240.

Forward-chaining rules engines, such as LEAP or RETE, could be readily

utilized in the combination of Khandekar and Le because they are general

algorithms, not tied to any particular implementation. Sidebottom and Khandekar

both teach the use of rules for defining condition/action rules based on monitored

events in a network. See Ex. 1004, 10:27-4, 13:44-56; See Ex. 1006, 3:32-43, 5:63-

6:17, 4:26-44. Therefore, the combination would have used Sidebottom’s rules

engine teachings in a natural and conventional manner. Ex. 1003 ¶241.

A POSITA would have had a reasonable expectation of success in

combining the teachings of Khandekar, Le, and Sidebottom given the similarity in

their teachings, which are directed to complimentary aspects of distributed

computing systems. The combination of Khandekar and Le was explained for

Ground 2. Khandekar teaches the use of known knowledge-based systems and

engines and Sidebottom teaches such a rules engine, with forward-chaining rules

algorithms, such as LEAP or RETE, that were known in the art. Their application

to Khandekar’s heuristics/rules engine would have been for their known and

conventional purpose, as explained above. Given a POSITA’s knowledge of

distributed computer systems, related monitoring techniques, and rules engines, the

combination would have been well within the level of ordinary skill in the art. See

 -77-

§IV. Ex. 1003 ¶242. The combination applies known techniques (e.g., forward-

chaining rules algorithms, such as LEAP or RETE) to improve similar devices

(e.g., distributed computing systems in a network) in the same way as they were

used in the prior art. Ex. 1003 ¶243.

2. Claim 9

9. The distributed computing system of claim 1, wherein the control

node further comprises one or more rule engines that provide

autonomic deployment of the software applications to the virtual

machines in accordance with a set of one or more rules.

The combination renders claim 9 obvious. Ex. 1003 ¶¶244-251. Khandekar

teaches the control node of claim 9. See §VI.A.8; Ex. 1003 ¶245. A POSITA

would have been motivated to apply Sidebottom’s teachings to Khandekar’s

heuristics/rules engine. See §VI.B.1; Ex. 1003 ¶246.

Sidebottom teaches a rules engine using “forward-chaining rule-based

algorithm, such as LEAP or RETE.” See Ex. 1006, 3:44-58, 9:36-45. Sidebottom

teaches high-level condition/action rules. See id., 1:41-44 (“The business logic

rules may be defined as condition/action rules specified in terms of high-level

business information that ‘fire’ in response to one or more low-level network

events.”), 9:36-45 (“Rules engine 20 begins a condition/action rule processing

cycle … For example, rules engine 20 may use a forward-chaining algorithm to

evaluate the ‘condition’ attributes.”); Ex. 1003 ¶247. For example, Sidebottom

teaches monitoring events in the network, evaluating if the condition of a

 -78-

condition/action rule is satisfied using a rules engine, and if so, implementing the

action. See Ex. 1006, 2:65-3:17, 3:32-43, 5:63-6:17, 4:26-44, Abstract, FIG. 2:

Ex. 1003 ¶248.

Similarly, Khandekar similarly teaches monitoring host status, such as

whether the load of a host has exceeded a threshold, and using that information for

its heuristics/rules engine. See, e.g., Ex. 1004, 4:58-65, 13:44-56. Therefore, a

POSITA would have found it obvious to apply Sidebottom’s teachings to

Khandekar by monitoring events in hosts—such as whether a host is overloaded—

 -79-

evaluating if the condition of a condition/action rule is satisfied using a forward-

chaining rules engine, and if so, implementing the action to guide the deployment

of software applications. See Ex. 1006, 2:65-3:17, 3:32-43, 5:63-6:17, 4:26-44;

supra §VI.A.3[1g] (explaining autonomic deployment), §VI.A.8 (same); Ex. 1003

¶249.

This is consistent with the specification of the ’138 patent, which similarly

looks to whether a server status is “overloaded” and then takes action accordingly

with its rules engine. See Ex. 1001, 25:60-26:25; Ex. 1003 ¶250.

3. Claim 10

10. The distributed computing system of claim 9, wherein the one or more

rule engines are forward-chaining rule engines.

The combination renders claim 10 obvious. Ex. 1003 ¶¶252-255; see supra

§VI.B.1, §VI.B.2 (explaining the application of Sidebottom’s forward-chaining

rule engines to Khandekar and Le). Sidebottom teaches the use of forward-

chaining rules algorithms for rules engines. See Ex. 1006, 3:44-58 (“… In one

embodiment, SDD 4 uses a forward-chaining rule-based algorithm, such as LEAP

or RETE.”), 9:36-45 (“… rules engine 20 may use a forward-chaining algorithm to

evaluate the ‘condition’ attributes.”); Ex. 1003 ¶253.

The ’138 patent does not purport to invent a rules engine and instead relies

on known rules engines including the RETE and LEAP algorithms. See Ex. 1001,

26:45-61; Ex. 1003 ¶254.

 -80-

C. Ground 4: Khandekar in View of Le and Stone

1. Motivation to Combine

The combination of Khandekar and Le was explained for Ground 2. See

§VI.A.2. It includes automatic deployment using a heuristics/rules engine that

automatically deploys images or takes other actions based on the monitored status

of the hosts. See §VI.A.3[1f]-[1g], §VI.A.8; Ex. 1003 ¶258. A POSITA would

have been further motivated to apply Stone’s teachings regarding a multi-tier web

service and monitoring service-level-objectives (SLO) based on those tiers. See,

e.g., Ex. 1007 ¶¶[0028]-[0031], [0034], [0040]. Ex. 1003 ¶257.

Khandekar and Le teach techniques for virtual machine systems, which were

used in a variety of web and enterprise applications. Khandekar explains its

teachings may be applied to a “web application” that includes a web server, an

application server, and a database server on a network of host computers. See Ex.

1004 23:1-21. This three-tiered architecture was common for web sites. Ex. 1003

¶259.

Like Khandekar, Stone teaches a common three-tiered architecture for web

sites, with servers organized into “web server,” “application,” and “database”

tiers. See Ex. 1007, FIG. 2:

 -81-

Ex. 1003 ¶260.

A POSITA would have been motivated to combine Stone’s tiered

architecture with Khandekar and Le because Khandekar provides an express

motivation to apply its teachings to known web applications, including applications

with Stone’s three-tiered architecture. Id. ¶261.

Moreover, Stone’s tiered service model offered several benefits by

organizing components into functional tiers corresponding to the data flow for each

service. See Ex. 1007 ¶[0037]. Collected statistics are organized by service and

 -82-

tier, allowing automated diagnosis based on service-level objectives (“SLOs”). See

id. ¶¶[0037]-[0038]. The tiered model also allows automatic reallocation within a

tier. See id. ¶[0055]. Thus, a POSITA would have been motivated to apply Stone’s

tier-based teachings to improve the distributed computing system taught by the

combination of Khandekar and Le. Ex. 1003 ¶261.

A POSITA would have been further motivated to apply Stone’s teaching of

monitoring nodes based on tiers. See Ex. 1007 ¶[0001]. Stone teaches an SLO

monitoring and control system that collect statistics and monitors events by tier

(see id. ¶¶[0037]-[0038], [0040], FIG. 2), allowing an automated management

process (with an SLO agent) to diagnose and correct problems if an SLO is not

met, such as by replicating nodes or increasing resources. See id. ¶[0057],

Abstract; Ex. 1003 ¶¶262-263. These teachings complement and enhance the

automation of Khandekar’s teachings for monitoring the status of hosts and taking

actions in response. See Ex. 1004, 13:44-56; Ex. 1003 ¶¶263-264.

A POSITA would have had a reasonable expectation of success in

combining Khandekar, Le, and Stone given the similarities in their teachings,

which are directed to complementary aspects of distributed computing systems.

Khandekar provides express motivation to apply Stone’s tiered architecture, and

both teach similar monitoring of the hosts/nodes in distributed computing for web

applications. VMware systems were commonly used for Web applications, and the

 -83-

use of VMware patents Khandekar and Le for a common Web site architecture

would have been well within their intended scope. Distributed computing systems,

virtual machines and related monitoring techniques were well known at the time.

Given a POSITA’s knowledge of these topics, the combination would have been

well within the level of ordinary skill in the art. See §IV; Ex. 1003 ¶265.

The combination applies an obvious combination of well-known prior art

elements according to known methods to yield predictable results. Ex. 1003 ¶266.

2. Claim 17

17. The distributed computing system of claim 1, wherein the application

nodes are organized into tiers, and wherein status data is collected

based on the tiers.

The combination renders claim 17 obvious. Ex. 1003 ¶¶267-278. Khandekar

teaches collecting status data of the hosts. See Ex. 1004, 4:58-65 (“… the status of

the hosts is monitored and the host on which a configured VM is to be deployed is

selected heuristically.”), 12:57-13:8, 13:44-56, 23:28-51; Ex. 1003 ¶269. Le also

teaches status data is collected. See Ex. 1005, 68:21-24 (“… the agent 7300 can

also report status and system performance information to the imaging server 2101,

allowing the UCMS to detect the presence of the agent and to monitor the

deployed computer’s health.”); Ex. 1003 ¶270. A POSITA would have been

motivated to combine Khandekar and Le with Stone’s teachings regarding the

 -84-

monitoring of status data in a tiered distributed computing system, including web

server, application, and database tiers. See supra §VI.C.1; Ex. 1003 ¶271.

Stone teaches a distributed computing system (see Ex. 1007 ¶[0001],

¶[0026]), with application nodes organized into tiers. For example, Stone teaches

“a multi-tiered service model of an e-business web service” with, e.g., web server,

application, and database tiers. See id. ¶¶[0028]-[0031], [0034], FIG. 1:

Ex. 1003 ¶272.

 -85-

Stone teaches status data is collected based on those tiers. For example,

Stone teaches “a service-level-objective (SLO) monitoring and control system for a

multi-tier web site.” See Ex. 1007 ¶[0040], [0037] (“The tiered model organizes

these components into functional levels or tiers that correspond to the data flow for

each Service. Statistics collected and events monitored can thus be organized by

Service and tier …”), FIG.2:

Ex. 1003 ¶273.

 -86-

Stone teaches that “service agents” collect status data based on tiers; for

example, service agent 27 collects status data for the web server tier 20. See

Ex. 1007 ¶¶[0042]-[0046]; Ex. 1003 ¶274. Stone also teaches “node monitors” that

collect status data based on the tiers, for example, node monitor 28 which collects

status data for the web server tier 20. See Ex. 1007 ¶[0044], ¶[0046]; Ex. 1003

¶275.

Based on Stone’s teachings, a POSITA would have found it obvious to

organize application nodes, such as Khandekar’s hosts, into tiers, including web

server, application, and database tiers. Indeed, Khandekar already teaches or

suggests organizing hosts into those tiers. See Ex. 1004 4:58-65, 23:1-21.

Additionally, Stone teaches collecting status data based on those tiers. All

three references teach monitoring node/host status, and Stone teaches an obvious

way to organize the collection of status data when application nodes are organized

into tiers, as explained above. Stone teaches an improved way to monitor a Web

service in a tiered environment. See Ex. 1007 ¶[0038]; see §VIII.C.1. Therefore,

the combination renders claim 17 obvious. Ex. 1003 ¶276.

This is confirmed by the ’138 patent, which discloses application nodes

organized into the same three tiers as Stone, with status data collected based on the

tiers. See Ex. 1001, 13:40-56 (“…For example, storefront domain 34A includes a

 -87-

web server tier (labeled ‘web tier’) 36A, a business application tier (labeled ‘app

tier’) 36B, and a database tier (labeled ‘DB tier’) 36C …”), Fig. 2:

Ex. 1003 ¶¶277-278.

 CONCLUSION

For the foregoing reasons, Petitioner requests inter partes review and that

the challenged claims be canceled as unpatentable.

 -88-

 MANDATORY NOTICES AND FEES

Real Party In Interest: The real parties-in-interests here are Netflix, Inc.

and Netflix Streaming Services, Inc. No other parties directed, controlled, or

funded this Inter Partes Review proceeding (IPR).

Related Matters: The ’138 patent is the subject of the following civil

actions and administrative proceedings:

• Broadcom Corp. et al. v. Netflix, Inc.

Case No. 3:20-cv-04677-JD (N.D. Cal) transferred from 8:20-cv-

00529 (C.D. Cal)

Lead and Backup Counsel: Pursuant to 37 C.F.R. §42.8(b)(3) and 42.10(a),

Petitioner designates Harper Batts (Reg. No. 56,160) as lead counsel and Jeffrey

Liang (Reg. No. 69,043) and Chris Ponder (Reg. No. 77,167) as back-up counsel,

each of Sheppard, Mullin, Richter & Hampton LLP.

Service Information: Petitioner consents to service by electronic mail

addressed to:

HBatts@sheppardmullin.com,

CPonder@sheppardmullin.com,

JLiang@sheppardmullin.com, and

Legal-Netflix-Broadcom-IPRs@sheppardmullin.com

Petitioner’s counsel may also be served by mail or hand delivery at

Sheppard, Mullin, Richter & Hampton LLP, 379 Lytton Ave., Palo Alto, CA

 -89-

94301. Petitioner’s counsel may be reached by telephone at (650) 815-2673 and by

facsimile at (650) 815-4668.

Fees: The Office is authorized to charge fees for this Petition to Deposit

Account 50-4561, Ref. 64MK-316262-138.

Respectfully submitted,

SHEPPARD, MULLIN,

RICHTER & HAMPTON LLP

 /Harper Batts/

Harper Batts (Reg. No. 56,160)

 -90-

CLAIM APPENDIX

1[a]. A distributed computing system comprising:

[1b] a software image repository comprising non-transitory, computer-

readable media operable to store:

[1c] (i) a plurality of image instances of a virtual machine manager that is

executable on a plurality of application nodes,

[1d] wherein when executed on the applications nodes, the image instances

of the virtual machine manager provide a plurality of virtual machines, each of the

plurality of virtual machine operable to provide an environment that emulates a

computer platform, and

[1e] (ii) a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual machines; and

[1f] a control node that comprises an automation infrastructure to provide

autonomic deployment of the plurality of image instances of the virtual machine

manager on the application nodes by causing the plurality of image instances of the

virtual machine manager to be copied from the software image repository to the

application nodes and

[1g] to provide autonomic deployment of the plurality of image instances

of the software applications on the virtual machines by causing the plurality of

 -91-

image instances of the software applications to be copied from the software image

repository to the application nodes.

2. The distributed computing system of claim 1, wherein the image

instances of the plurality of software applications comprise virtual disk image files.

3. The distributed computing system of claim 1, wherein a first image

instance of the plurality of image instances of the plurality of software applications

comprises an operating system.

4. The distributed computing system of claim 1, wherein a first image

instance of the plurality of image instances of the plurality of software applications

comprises a server application.

5. The distributed computing system of claim 1, wherein a first one of

the virtual machines provides an environment that emulates an x86 platform.

9. The distributed computing system of claim 1, wherein the control

node further comprises one or more rule engines that provide autonomic

deployment of the software applications to the virtual machines in accordance with

a set of one or more rules.

10. The distributed computing system of claim 9, wherein the one or more

rule engines are forward-chaining rule engines.

 -92-

17. The distributed computing system of claim 1, wherein the application

nodes are organized into tiers, and wherein status data is collected based on the

tiers.

19[a]. A method comprising:

[19b] storing a plurality of image instances of a virtual machine manager

that is executable on a plurality of application nodes in a distributed computing

system,

[19c] wherein the image instances of the virtual machine manager provide a

plurality of virtual machines, each virtual machine operable to provide an

environment that emulates a computer platform;

[19d] storing a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual machines;

[19e] executing a rules engine to perform operations to autonomically

deploy the image instances of the virtual machine manager on the application

nodes by causing the image instances of the virtual machine manager to be copied

to the application nodes; and

[19f] executing the rules engine to perform operations to autonomically

deploy the image instances of the software applications on the virtual machines by

causing the image instances of the software applications to be copied to the

application nodes.

 -93-

20. The method of claim 19, wherein storing the image instances of the

plurality of software applications comprises storing virtual disk image files.

21. The method of claim 19, wherein a first image instance of the plurality

of image instances of the plurality of software applications comprises an operating

system.

26[a]. A non-transitory, computer-readable medium comprising instructions

stored thereon, that when executed by a programmable processor:

[26b] store a plurality of image instances of a virtual machine manager that

is executable on a plurality of application nodes in a distributed computing system,

[26c] wherein the image instances of the virtual machine manager provide a

plurality of virtual machines, each virtual machine operable to provide an

environment that emulates a computer platform;

[26d] store a plurality of image instances of a plurality of software

applications that are executable on the plurality of virtual machines;

[26e] perform operations to autonomically deploy the image instances of the

virtual machine manager on the application nodes by causing the image instances

of the virtual machine manager to be copied to the application nodes; and

 -94-

[26f] perform operations to autonomically deploy the image instances of the

software applications on the virtual machines by causing the image instances of the

software applications to be copied to the application nodes.

 -95-

CERTIFICATE OF SERVICE

The undersigned hereby certifies that on September 10, 2020, true and correct

copies of the foregoing Petition for Inter Partes Review of U.S. Patent No. 8,572,138

and Exhibits 1001-1017 were served in its entirety on the Patent Owner at the

following addresses of record as listed on PAIR via Priority Mail Express® or

Express Mail:

CA, Inc.

One CA Plaza

Islandia, NY 11749

Official Correspondence Address

Vanessa Elfend

15101 Alton Parkway

Irvine, CA 92618

Patent Owner Correspondent Address

The undersigned certifies that true and correct copies of the Petition for Inter

Partes Review of U.S. Patent No. 8,572,138 and Exhibits 1001-1017 were also sent

via electronic mail to the attorneys of record for Plaintiff in the concurrent litigation

matter(s):

Adrienne Dominguez (Pro Hac Vice) - adrienne.dominguez@tklaw.com

Bruce S. Sostek (Pro Hac Vice) - bruce.sostek@tklaw.com

Cary Chien, Bar No. 274078 - cchien@hopkinscarley.com

Christopher A. Hohn, Bar No. 271759 - chohn@hopkinscarley.com

John V. Picone, III - jpicone@hopkinscarley.com

Michael D. Karson (Pro Hac Vice) - michael.karson@tklaw.com

Richard L. Wynne, Jr. (Pro Hac Vice) - richard.wynne@tklaw.com

Robert K. Jain, Bar No. 309728 - rjain@hopkinscarley.com

Vishal Patel (Pro Hac Vice) - vishal.patel@tklaw.com

True and correct copies of the foregoing Petition for Inter Partes Review of

U.S. Patent No. 8,572,138 and Exhibits 1001-1017 will also be served by September

11, 2020 in its entirety on the Patent Owner at the following address of record as

listed on PAIR via Priority Mail Express® or Express Mail:

Avago Technologies International Sales Pte. Limited

1 Yishun Avenue 7

Singapore, Singapore 768923

Patent Owner

 -96-

SHEPPARD, MULLIN,

RICHTER & HAMPTON LLP

 /Harper Batts/

Harper Batts (Reg. No. 56,160)

Attorney for Petitioner

Date: September 10, 2020

379 Lytton Ave.

Palo Alto, CA 94301

Tel: (650) 815-2673

 -97-

CERTIFICATE OF COMPLIANCE WITH

TYPE-VOLUME LIMITATION, TYPEFACE REQUIREMENTS,

AND TYPE STYLE REQUIREMENTS

1. This Petition complies with the type-volume limitation of 14,000

words, comprising 13938 words, as counted using the Microsoft Word software that

was used to prepare this paper, excluding the parts exempted by 37 C.F.R.

§ 42.24(a).

2. This Petition complies with the general format requirements of 37

C.F.R. § 42.6(a) and has been prepared using Microsoft® Word 2016 in 14-point

Times New Roman.

Respectfully submitted,

SHEPPARD, MULLIN,

RICHTER & HAMPTON LLP

 /Harper Batts/

Harper Batts (Reg. No. 56,160)

Attorney for Petitioner

Date: September 10, 2020

379 Lytton Ave.

Palo Alto, CA 94301

Tel: (650) 815-2673

