

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

UNITED STATES DISTRICT COURT

FOR THE NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

BROADCOM CORPORATION, et al.,

 Plaintiffs,

v.

NETFLIX, INC.

 Defendants.

Case No. 3:20–cv–04677–JD

JOINT CLAIM CONSTRUCTION

AND PREHEARING STATEMENT

In accordance with Patent L.R. 4-3 and the Court’s Standing Order for Claim Construction

in Patent Cases Before Judge James Donato, Plaintiffs Broadcom Corporation and Avago

Technologies International Sales PTE Ltd. and Defendant Netflix, Inc. (collectively the “Parties”)

jointly submit this Joint Claim Construction and Prehearing Statement (the “Statement”) for U.S.

Patent Nos. 7,266,079 (the “’079 Patent”); 8,259,121 (“the ’121 Patent”); 8,959,245 (“the ’245

Patent”); 8,270,992 (“the ’992 Patent”); 6,341,375 (“the ’375 Patent”); 8,572,138 (“the ’138

Patent”); 6,744,387 (“the ’387 Patent”); 6,982,663 (“the ’663 Patent”); 9,332,283 (“the ’283

Patent”), 8,548,976 (“the ’976 Patent”); 7,457,722 (“the ’722 Patent”); and 8,365,183 (“the ’183

Patent”). This Statement contains information on claim construction for these patents under Patent

L.R. 4-3 as follows.

I. STIPULATED CLAIM CONSTRUCTIONS UNDER PATENT L.R. 4–3(a)

To narrow their disputes, the Parties have met and conferred and have reached agreement

on claim constructions for the following terms:

Term(s) Patent Claim(s) Stipulated Construction
“flow control module” ’121 1, 35 “valve to control data flow”

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 1 of 17

Avago - Ex. 2003, Page 000001
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

“decoder devices” /
“decoders”

’375 15 “decoders” in Steps (C) and (D) of Claim
15 refers to the “decoder devices”
included in Steps (B) and (D) of Claim 15

“said exp-Golomb
binarization comprises
means for”

’387 4 Governed by 35 U.S.C. § 112(6).

Function: “a) forming . . . b) determining . .
. c) appending . . . d) determining . . . and e)
appending . . .”

Structure: binarization module 62
configured to perform at least Steps 4(a)-
4(e).

“determining the least
significant bits, of
v−(N=2)−2**γ”

’387 4, 6 “determining the least significant bits, of
v−(N−2)−2**γ”

“determining the number
of bits, γ+1, required to
represent v−(N−2) where
γ=└log2(v−(N−2))┘, v is
the code symbol index
value, and N is the
threshold value, and then
transforming y into a
unary representation to
create a result”

’387 4 “determining the number of bits, γ+1,
required to represent v−(N−2) where
γ=└log2(v−(N−2))┘, v is the code symbol
index value, and N is the threshold value,
and thereafter transforming γ into a unary
representation to create a result”

No further construction is necessary
regarding order of limitations.

“determining the number
of bits, γ+1, required to
represent v−(N=2) where
γ=└log2(v−(N−2))┘, v is
the code symbol index
value, and N is the
threshold value, and then
transforming γ into a
unary representation to
create a result”

’387 6 “determining the number of bits, γ+1,
required to represent v−(N−2) where
γ=└log2(v−(N−2))┘, v is the code symbol
index value, and N is the threshold value,
and thereafter transforming γ into a unary
representation to create a result”

No further construction is necessary
regarding order of limitations.

Claim 12’s Preamble ’663 12 The preamble of Claim 12 is limiting.
“to generate to generate” ’283 1 “to generate”
“syntax element” ’283 1, 14, 16 “a value that is encoded to form part of the

output bitstream”
“output bitstream” ’283 1, 3, 14,

16, 18
“a sequence of bits representing an
encoded video signal”

“virtual machine” ’138
1, 9, 19,
22, 23

“software that emulates a physical
computing platform”

“image instance” ’138 1, 19
“a snapshot, or copy, of installed and
configured software”

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 2 of 17

Avago - Ex. 2003, Page 000002
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

“operational
characteristics”

’183 1, 11, 16 “hardware and/or software characteristics”

“utilization criteria” ’183 1, 4, 5,
8, 9, 11–
13, 15–
18, 20

“criteria specifying a level of hardware
and/or software utilization”

“wherein said codeword
in compatible with at
least one of an
International
Organization for
Standardization/
International
Electrotechnical
Commission 14496-10
standard and an
International
Telecommunication
Union-
Telecommunications
Standardization Sector
Recommendation H.264”

’663 20 “wherein said codeword is compatible
with a binarization scheme of an
International Organization for
Standardization/ International
Electrotechnical Commission [ISO/IEC]
14496-10 standard or of an International
Telecommunication Union-
Telecommunications Standardization
Sector [ITU-T] Recommendation H.264”

“employ [a/the] single
binary tree”

’283 1, 14, 16 “employ [a/the] common binary tree
[when processing at least one P slice and
at least one B slice to generate the output
bitstream].”

“a compute program” ’079 38 “a computer program”

II. DISPUTED TERMS, PROPOSED CONSTRUCTIONS, AND SUPPORTING EVIDENCE UNDER

PATENT L.R. 4–3(b)

In accordance with Patent L.R. 4–3(b) and the Court’s Standing Order on Claim

Construction, the Parties identify the following ten terms for construction1:

Claim Terms Plaintiffs’ Proposed
Construction and Support

Defendant’s Proposed
Construction and Support

“display pipeline”

(’121 Patent, Claims
1-4, 33, 35, 36)

Proposed Construction:

No construction necessary.

Proposed Construction:

“a series of video processing
modules”

1 Copies of the patents for which the parties have requested the Court to construe terms

are attached to this Joint Statement — Ex. 1: ’121 Patent; Ex. 2: ’387 Patent; Ex. 3: ’663 Patent;
Ex. 4: ’283 Patent; Ex. 5: ’138 Patent.

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 3 of 17

Avago - Ex. 2003, Page 000003
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Plain and ordinary meaning
which, in the context of the
patent, is “chain of multiple
nodes”

Intrinsic Evidence:

’121 Patent at 6:42–50, 7:36–38,
8:46–54, Fig. 4.

’121 Patent File History Response
(Dec. 9, 2008).

Extrinsic Evidence:

Declaration of Dr. Nathaniel
Polish

Intrinsic Evidence:

1:41-49
1:66-2:4
2:5-9
2:55-59
3:23-25
4:45-47
4:54-58
5:41-44
5:50-53
6:15-17
6:42-53
7:1-4
7:13-19
7:36-44
8:6-8
8:25-33
8:46-54
9:45-64
10:23-26
11:20-24
Figs. 4, 5, 6, 8
U.S. Prosecution History: pp.
535-36 (Dec. 9, 2008 Response to
Final Office Action, pp. 15-16);
p. 392 (Office Action of June 23,
2010, p. 3);
IPR 2020-01647: Patent Owner’s
Preliminary Response; Decision
Denying Institution of Inter
Partes Review;
U.S. Pat. App. No. 10/300,370 at:
Figs. 11A, 14
Pg. 14, ⁋ [57];
Pg. 9, ⁋ [39]
Pg. 22, ⁋ [89];
U.S. Pat. App. No. 10/114,798 at
Pgs. 21-22, ⁋⁋ [66 & 68];
U.S. Prov. App. No. 60/420,347
at Pg. 18, ⁋ [66]

Extrinsic Evidence:

IPR 2020-01647: Declaration of
James A. Storer;

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 4 of 17

Avago - Ex. 2003, Page 000004
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

IBM Dictionary of Computing
(1994), p. 512 (“pipeline”);
U.S. Patent No. 4,187,539 to
Eaton at 1:8-22; Computer
Desktop Encyclopedia (9th ed.
2001) (“pipeline processing”);
“Pipe (Pipelined Image-
Processing Engine),” Journal of
Parallel and Distributed
Computing 2, pp. 50-78 (1995);
Computer Graphics (2nd ed.
1992) (18.4.1 “Pipelining”);
IEEE Standard Glossary of
Computer Hardware Terminology
(1994), p.69 (“pipeline
processing,” “pipeline processor,”
“pipelining”);
Microsoft Press Computer
Dictionary (1991) (“pipelining”);
The Computer Glossary (7th ed.
1995), p. 302 (“pipeline
processing”);
Webster’s New World Dictionary
of Computer Terms (1983), p.193
(“pipelining”);
U.S. Patent No. 5,798,770 to
Baldwin at 5:15-25;
U.S. Patent No. 6,628,243 to
Lyons at 6:12-55 & Figs. 2-6;
U.S. Patent No. 7,054,867 to
Bosley at 4:49-55, 5:22-27;
U.S. Patent No. 6,489,953 to
Chen at 3:16-33

Declaration of Prof. K.K.
Ramakrishnan

“means for
determining if a code
symbol index value is
less than a threshold
value” (‘387 Patent,
Claim 3)

Proposed Construction

Governed by 35 U.S.C. § 112(6).

Function: determining if a code
symbol index value is less than a
threshold value

Structure is disclosed in Fig. 2,

Proposed Construction

Function: determining if a code
symbol index value is less than a
threshold value

Structure: binarization module 62
and step 102 of Figure 4 as
described at 7:46 and 7:63-66

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 5 of 17

Avago - Ex. 2003, Page 000005
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

which describes an encoder, and
in particular binarization block 62
in conjunction with Fig. 4, and
Fig. 4, step 102, Col. 4, lines 1-
13, Tables 3 and 4, Col. 6, line 26
through Col. 8, line 23; and Claim
1.

Intrinsic and Extrinsic
Evidence
See e.g., ’387 patent at: 4:1-13;
6:26–8:23; Tables 3-4; Figs. 2, 4;
Claims 1-2.

Dr. Richardson may provide
expert testimony regarding the
level of skill of a person having
ordinary skill in the art for the
field of the ’387 Patent, the
meaning of this term, binarization
modules within encoders, as well
as rebuttal testimony (if
appropriate).

Intrinsic and Extrinsic
Evidence
1:6-11
2:15-34
4:01-05
6:26-8:10
Fig. 2
Fig. 4.

Prior claim construction briefing
(including extrinsic evidence
cited therein) from IPR 2017-
00963; IPR 2017-01181.

Prior claim construction briefing
(including extrinsic evidence
cited therein) from IPR 2017-
00963; IPR 2017-01181;
Broadcom Corp v. Amazon (16-
cv-1774) (C.D. Cal); Broadcom
Corp v. Sony Corp (16-cv-1052)
(C.D. Cal.); Avago Technologies
General IP (Singapore) Pte. Ltd.
v. ASUSTeK Computer, Inc. et
al. (No. 3:15-cv-04525) (N.D.
Cal.)

Expert testimony of Prof. Michael
Orchard regarding the
understanding of a person of
ordinary skill regarding
corresponding structure and the
intrinsic evidence, technical
background, and rebuttal of any
incorrect positions or expert
testimony asserted by Broadcom.

“means for
constructing a
codeword using a
unary binarization if
said code symbol
index value is less
than a threshold
value” (‘387 Patent,
Claim 3)

Proposed Construction

Governed by 35 U.S.C. § 112(6).

Function: constructing a
codeword using a unary
binarization if said code symbol
index value is less than said
threshold value

Proposed Construction

Function: constructing a
codeword using a unary
binarization if said code symbol
index value is less than said
threshold value

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 6 of 17

Avago - Ex. 2003, Page 000006
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Structure is disclosed in Fig. 2,
which describes an encoder, and
in particular binarization block 62
in conjunction with Fig. 4, and
Fig. 4, steps 102, 104 and 112,
Col. 4, lines 1-13, Tables 3 and 4,
Col. 6, line 26 through Col. 8,
line 23; and Claim 1.

Intrinsic and Extrinsic
Evidence

See e.g., ’387 patent at: 4:1-13;
4:52–54; 6:26–8:23; Tables 3-4;
Figs. 2, 4; Claims 1-2.

Dr. Richardson may provide
expert testimony regarding the
level of skill of a person having
ordinary skill in the art for the
field of the ’387 Patent, the
meaning of this term, binarization
modules within encoders, as well
as rebuttal testimony (if
appropriate).

Structure: binarization module 62
and steps 102 and 104 of Figure 4
as described at 7:46-47 and 7:61-
8:1

Intrinsic and Extrinsic
Evidence
 1:6-11
2:15-34
4:01-05
6:26-8:10
Fig. 2
Fig. 4.

Prior claim construction briefing
(including extrinsic evidence
cited therein) from IPR 2017-
00963; IPR 2017-01181.

Prior claim construction briefing
(including extrinsic evidence
cited therein) from IPR 2017-
00963; IPR 2017-01181;
Broadcom Corp v. Amazon (16-
cv-1774) (C.D. Cal); Broadcom
Corp v. Sony Corp (16-cv-1052)
(C.D. Cal.); Avago Technologies
General IP (Singapore) Pte. Ltd.
v. ASUSTeK Computer, Inc. et
al. (No. 3:15-cv-04525) (N.D.
Cal.)

Expert testimony of Prof. Michael
Orchard regarding the
understanding of a person of
ordinary skill regarding
corresponding structure and the
intrinsic evidence, technical
background, and rebuttal of any
incorrect positions or expert
testimony asserted by Broadcom.

A. Moffat et al., Compression and
Coding Algorithms, Kluwer
Academic Publishers (Mar. 31,
2002) at Ch. 3

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 7 of 17

Avago - Ex. 2003, Page 000007
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

“means for
constructing a
codeword using a
exp-Golomb
binarization if said
code symbol index
value is [not] less
than a threshold
value” (‘387 Patent,
Claim 3)

Proposed Construction

Governed by 35 U.S.C. § 112(6).

Function: constructing a
codeword using a exp-Golomb
binarization if said code symbol
index value is not less than said
threshold value

Structure is disclosed in Fig. 2,
which describes an encoder, and
in particular binarization block 62
in conjunction with Fig. 4, and
Fig. 4, steps 102, 106, 108, 110,
112; Col. 4, lines 1-13, Tables 3
and 4, Col. 6, line 26 through Col.
8, line 23; and Claims 1-2.

Intrinsic and Extrinsic
Evidence

See e.g., ’387 patent at: 4:1–13;
4:52–54; 6:26–8:23; Tables 3-4;
Figs. 2, 4; Claims 1-2.
Dr. Richardson may provide
expert testimony regarding the
level of skill of a person having
ordinary skill in the art for the
field of the ’387 Patent, the
meaning of this term, binarization
modules within encoders, as well
as rebuttal testimony (if
appropriate).

Proposed Construction

Function: constructing a
codeword using a exp-Golomb
binarization if said code symbol
index value is [not] less than said
threshold value

Structure: binarization module 62
and steps 106, 108, and 110 of
Figure 4 as described at 7:49-60
and 8:1-8:10.

Intrinsic and Extrinsic
Evidence

1:6-11
2:15-34
4:01-05
5:54-67
6:26-8:10
Fig. 2
Fig. 4

Prior claim construction briefing
(including extrinsic evidence
cited therein) from IPR 2017-
00963; IPR 2017-01181.

Prior claim construction briefing
(including extrinsic evidence
cited therein) from IPR 2017-
00963; IPR 2017-01181;
Broadcom Corp v. Amazon (16-
cv-1774) (C.D. Cal); Broadcom
Corp v. Sony Corp (16-cv-1052)
(C.D. Cal.); Avago Technologies
General IP (Singapore) Pte. Ltd.
v. ASUSTeK Computer, Inc. et
al. (No. 3:15-cv-04525) (N.D.
Cal.)

Potential expert testimony of
Prof. Michael Orchard regarding

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 8 of 17

Avago - Ex. 2003, Page 000008
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

the understanding of a person of
ordinary skill regarding
corresponding structure and the
intrinsic evidence, technical
background, and rebuttal of any
incorrect positions or expert
testimony asserted by Broadcom.

Teuhola, A Compression Method
for Clustered Bit-Vectors,
Information Processing Letters,
Vol. 7, No. 6 (Oct. 1978) at 1–4;
D. Marpe et al., Improved
CABAC, VCEG-O18 (Dec. 4,
2001) at 1–2;
U.S. Patent No. 6,304,607 to
Talluri et al. at 4:43–60, 5:08–
6:14, Table 1, Table 2; P.
Howard, Interleaving Entropy
Codes, IEEE (June 11, 1997) at
45–46, 48;
A. Moffat et al., Compression and
Coding
Algorithms, Kluwer Academic
Publishers (Mar. 31, 2002) at Ch.
3.

’663 Patent, Claim 12
(Entire Claim)

Proposed Construction:

The claim should be given its
plain and ordinary meaning, in
the context of the patent. No
further construction is necessary
regarding order of limitations.

Intrinsic Evidence:

’663 patent at: 1:38–62, 3:21–39,
4:42–50, 5:41–54, 6:24–28, 6:44–
7:13; Fig. 4; Tables 1 and 2;
Claims 1, 11–13, 18–19, 21.

Proposed Construction:

Steps recited within this claim
must be performed in order

Intrinsic Evidence:

’663 Patent at Abstract, Figs. 4-6,
1:37-2:33, 3:10-20, 4:46-7:12,
7:30-10:3; ’387 Patent at
Abstract, Fig. 4, 1:36-2:34, 3:7-
18, 4:52-8:10; ’663 File History:
Non-final Rejection dated Dec. 2,
2004 at 2-5; ’663 File History:
Amendment dated Mar. 4, 2005
at 4, 6-7, 9, 11-19.

Prior claim construction briefing
(including extrinsic evidence

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 9 of 17

Avago - Ex. 2003, Page 000009
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

cited therein) from ITC No. 337-
TA-837, IPR 2021-00468, IPR
2017-00964, IPR 2017-01182.

Extrinsic Evidence:

Prior claim construction briefing
(including extrinsic evidence
cited therein) from ITC No. 337-
TA-837, IPR 2021-00468, IPR
2017-00964, IPR 2017-01182,
Barnes & Noble, Inc. v. LSI
Corp., (No. 3:11-cv-2709) (N.D.
Cal.); Avago Technologies
General IP (Singapore) Pte. Ltd.
v. ASUSTeK Computer, Inc. et al.
(No. 3:15-cv-04525) (N.D. Cal.),
Broadcom Corp. et al v.
Amazon.com, Inc. et al. (No.
8:16-cv-01774-JVS-JCG) (C.D.
Cal.), Broadcom Corp. et al v.
Sony Corp. et al. (No. 8:16-cv-
01052-JVS-JCG) (C.D. Cal.)

Lowell Winger, JVT-C162 (May
2, 2002); “Draft ITU-T
Recommendation H.264,” Joint
Video Team, JVT-C167 (May 10,
2002); U.S. Patent No. 6,236,960
at Figs. 5 & 7, 11:11–12:30,
13:15–54;
Expert testimony of Prof. Michael
Orchard regarding the
understanding of a person of
ordinary skill regarding the
intrinsic evidence, technical
background, and rebuttal of any
incorrect positions or expert
testimony asserted by Broadcom.

“a fourth pattern in
said first portion
based on said index
value in response to
said index value

Proposed Construction:

Plain and ordinary meaning. No
construction of “[generating] a
fourth pattern in said first portion
based on said index value in

Proposed Construction:

Indefinite

Intrinsic Evidence:

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 10 of 17

Avago - Ex. 2003, Page 000010
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 11

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

being below said
threshold”

(’663 Patent, Claim
13)

response to said index value
being below said threshold”
needed.

Intrinsic Evidence:

’663 patent at: Tables 3–4, 6:50–
7:13.

Extrinsic Evidence:

Declaration of Dr. Iain
Richardson

’663 Patent at Abstract, Figs. 3-6,
2:15-33, 3:10-20, 4:1-12; 4:13-
33; 4:46-7:12; 7:30-10:3

Prior claim construction briefing
(including extrinsic evidence
cited therein) from ITC No. 337-
TA-837, IPR 2021-00468, IPR
2017-00964, IPR 2017-01182

Extrinsic Evidence:

Prior claim construction briefing
(including extrinsic evidence
cited therein) from ITC No. 337-
TA-837, IPR 2021-00468, IPR
2017-00964, IPR 2017-01182,
Barnes & Noble, Inc. v. LSI
Corp., (No. 3:11-cv-2709) (N.D.
Cal.); Avago Technologies
General IP (Singapore) Pte. Ltd.
v. ASUSTeK Computer, Inc. et al.
(No. 3:15-cv-04525) (N.D. Cal.),
Broadcom Corp. et al v.
Amazon.com, Inc. et al. (No.
8:16-cv-01774-JVS-JCG) (C.D.
Cal.), Broadcom Corp. et al v.
Sony Corp. et al. (No. 8:16-cv-
01052-JVS-JCG) (C.D. Cal.).

Lowell Winger, JVT-C162 (May
2, 2002); “Draft ITU-T
Recommendation H.264,” Joint
Video Team, JVT-C167 (May 10,
2002)

Declaration of Prof. Michael
Orchard

“wherein said
[second/third] portion
is void in response to
said index value
being below said
threshold”

Proposed Construction:

Plain and ordinary meaning,
which in the context of the patent
is “wherein said [second/third]
portion does not contribute any
bins to the codeword in response

Proposed Construction:

Indefinite

Intrinsic Evidence:

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 11 of 17

Avago - Ex. 2003, Page 000011
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

(’663 Patent, Claims
18, 19)

to said index value being below
said threshold.”

Intrinsic Evidence:

’663 patent at: Tables 3–4, 6:50–
7:13.

Extrinsic Evidence:

Void, MERRIAM-WEBSTER'S
COLLEGIATE DICTIONARY
(10th ed. 1993).

Void, THE AMERICAN
HERITAGE DICTIONARY OF
THE ENGLISH LANGUAGE
(4th ed. 2000).

Declaration of Dr. Iain
Richardson

’663 Patent at Abstract, Figs. 3-6,
2:15-33, 3:10-20, 4:1-12; 4:13-
33; 4:46-7:12; 7:30-10:3

Prior claim construction briefing
(including extrinsic evidence
cited therein) from ITC No. 337-
TA-837, IPR 2021-00468, IPR
2017-00964, IPR 2017-01182.

Extrinsic Evidence:

Prior claim construction briefing
(including extrinsic evidence
cited therein) from ITC No. 337-
TA-837, IPR 2021-00468, IPR
2017-00964, IPR 2017-01182,
Barnes & Noble, Inc. v. LSI
Corp., (No. 3:11-cv-2709) (N.D.
Cal.); Avago Technologies
General IP (Singapore) Pte. Ltd.
v. ASUSTeK Computer, Inc. et al.
(No. 3:15-cv-04525) (N.D. Cal.),
Broadcom Corp. et al v.
Amazon.com, Inc. et al. (No.
8:16-cv-01774-JVS-JCG) (C.D.
Cal.), Broadcom Corp. et al v.
Sony Corp. et al. (No. 8:16-cv-
01052-JVS-JCG) (C.D. Cal.).

Lowell Winger, JVT-C162 (May
2, 2002); “Draft ITU-T
Recommendation H.264,” Joint
Video Team, JVT-C167 (May 10,
2002);

Declaration of Prof. Michael
Orchard

“wherein the second
syntax element
specifies the PU
partition mode for the
selected CU, wherein
the PU partition
mode is based on a

Proposed Construction:

Plaintiffs object to Defendant’s
request to construe this entire
phrase without specifying which
portion(s)/element(s) it contends
require construction.

Proposed Construction:

Indefinite

Intrinsic Evidence:

17:19-23

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 12 of 17

Avago - Ex. 2003, Page 000012
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

size N×N PU when
the selected CU is a
smallest CU (SCU)
of the plurality of
CUs and is based on
a different size PU
than the size N×N PU
when the selected CU
is another CU than
the SCU of the
plurality of CUs”

(’283 Patent, Claims
1, 14)

No construction necessary.

Plain and ordinary meaning.

Intrinsic Evidence:

’283 patent at: 16:41–19:12, Figs.
11–13.

Extrinsic Evidence:

Declaration of Dr. Iain
Richardson

18:12-54
19:62-20:18
Figs. 12, 13, 14 & 15
Claims 2 &17

Extrinsic Evidence:

Declaration of Dr. Vivienne Sze

 “virtual machine
manager”

(’138 patent, claims
1, 19)

Proposed Construction:

No construction necessary.

Plain and ordinary meaning.

Intrinsic Evidence:

’138 Patent at 32:60-62.

Extrinsic Evidence:

MICROSOFT COMPUTER
DICTIONARY 327 (5th ed.
2002).

INTRODUCTION TO
VMWARE INFRASTRUCTURE
44 (2006-2007).

MERRIAM-WEBSTER
DICTIONARY [706, 1993]

Proposed Construction:

“software program that manages
one or more virtual machines”

Intrinsic Evidence:

Claim 1
32:59-67
33:21-23
33:39-41
Fig. 24

“rules engine”

(’138 patent, claims
11, 14, 19)

Proposed Construction:

No construction necessary.

Plain and ordinary meaning.

Intrinsic Evidence:

Proposed Construction:

“software that performs logical
reasoning using ‘if/then’ rules”

Intrinsic Evidence:

22:20-24

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 13 of 17

Avago - Ex. 2003, Page 000013
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 14

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

’138 Patent at 22:56-58; 25:60-
65; 2

Extrinsic Evidence:

MICROSOFT COMPUTER
DICTIONARY 193 (5th ed.
2002).

22:38-49
22:54-62
25:60-66
27:15-34
27:56-28:11
Fig. 20

Extrinsic Evidence

Computer Dictionary, Microsoft
Press, 2d Ed. (1994) (cross-
referencing “rule-based system”
with “expert system”)

Computer Dictionary, Microsoft
Press, 5th Ed. (2002) (cross-
referencing “rule-based system”
with “expert system”)

III. IDENTIFICATION OF CASE-DISPOSITIVE TERMS UNDER PATENT L.R. 4–3(a)

A. Plaintiffs’ Position:

None of the disputed terms will be case dispositive. Plaintiffs disagree with Defendant’s

statements in Subparagraph B below regarding the alleged dispositive nature of each of the terms

listed with respect to Defendant’s alleged non-infringement. Regarding Defendant’s statements

regarding invalidity, Plaintiffs state only that a finding of indefiniteness as to a claim term applies

only to claims including such term and are not dispositive of the case or all claims of a particular

patent.

Plaintiffs object to Defendant’s attempt to reserve the right to later seek construction of

“one or more underutilized computer devices” in the ’183 Patent or any other term not set forth in

this Joint Statement. Neither party identified “one or more underutilized computer devices” in their

Patent L.R. 4-1 or 4-2 disclosures.

B. Defendant’s Position:

The following disputed claim terms are dispositive of non-infringement:

 “display pipeline”

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 14 of 17

Avago - Ex. 2003, Page 000014
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

 “means for determining if a code symbol index value is less than a threshold value”

 “means for constructing a codeword using a unary binarization if said code symbol
index value is less than a threshold value”

 “means for constructing a codeword using a exp-Golomb binarization if said code
symbol index value is [not] less than a threshold value”

 Claim 12 (Entire Claim)

 “virtual machine manager”

 “rules engine”

The following disputed claim terms are dispositive of invalidity:

 “wherein the second syntax element specifies the PU partition mode for the
selected CU, wherein the PU partition mode is based on a size N×N PU when the
selected CU is a smallest CU (SCU) of the plurality of CUs and is based on a
different size PU than the size N×N PU when the selected CU is another CU than
the SCU of the plurality of CUs”

 “a fourth pattern in said first portion based on said index value in response to said
index value being below said threshold”

 “wherein said [second/third] portion is void in response to said index value being

below said threshold”

On May 17, 2021, the Patent Trial and Appeals Board issued an institution decision for

the ’183 patent. The PTAB construed “one or more underutilized computer devices” to mean

“one or more computer devices that have a utilization level below, or less than, a specified

utilization level.” Accordingly, it found that Claim 1 “requires both a determination that ‘one or

more underutilized computer devices exist on the list of suitable computer devices’ and that the

‘one or more underutilized computer devices hav[e] a suitable level of utilization for performing

the job.’” IPR2021-00098. This decision is not yet final. Netflix reserves the right to move for

leave to supplement its proposed terms for claim construction in light of a final decision.

IV. ANTICIPATED LENGTH OF CLAIM CONSTRUCTION HEARING

The Parties request that the Court provide three hours for the hearing.

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 15 of 17

Avago - Ex. 2003, Page 000015
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

V. PROPOSED CLAIM-CONSTRUCTION WITNESSES

The parties plan to submit expert declarations with their claim-construction briefs as

outlined in Section II above. The parties do not intend to call live witnesses at the claim-

construction hearing.

Dated: May 18, 2021

Respectfully submitted,

/s/ Richard L. Wynne, Jr.
Bruce S. Sostek, admitted pro hac vice
bruce.sostek@tklaw.com
Richard L. Wynne, Jr., admitted pro hac vice
richard.wynne@tklaw.com
Adrienne E. Dominguez, admitted pro hac vice
adrienne.dominguez@tklaw.com
THOMPSON & KNIGHT LLP
One Arts Plaza
1722 Routh Street, Suite 1500
Dallas, Texas 75201
Telephone:(214) 969-1700
Facsimile: (214) 969-1751

John V. Picone III, Bar No. 187226
jpicone@hopkinscarley.com
HOPKINS & CARLEY
A Law Corporation
The Letitia Building
70 South First Street
San Jose, CA 95113-2406

mailing address:
P.O. Box 1469
San Jose, CA 95109-1469
Telephone:(408) 286-9800
Facsimile: (408) 998-4790
Attorneys for Plaintiffs

COUNSEL FOR
BROADCOM CORPORATION and AVAGO
TECHNOLOGIES INTERNATIONAL SALES
PTE. LIMITED.

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 16 of 17

Avago - Ex. 2003, Page 000016
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

JOINT CLAIM CONSTRUCTION AND PREHEARING STATEMENT PAGE 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Dated: May 18, 2021

By:

KEKER, VAN NEST & PETERS LLP

/s/ Sharif E. Jacob
 ROBERT A. VAN NEST

MATTHIAS A. KAMBER
PAVEN MALHOTRA
SHARIF E. JACOB
THOMAS E. GORMAN
EDWARD A. BAYLEY

 Attorneys for Defendant
NETFLIX, INC.

Case 3:20-cv-04677-JD Document 112 Filed 05/18/21 Page 17 of 17

Avago - Ex. 2003, Page 000017
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Exhibit 1

U.S. Patent No. 8,259,121

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 1 of 23

Avago - Ex. 2003, Page 000018
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US0082591.21B2

(12) United States Patent (10) Patent No.: US 8,259,121 B2
LaW et al. (45) Date of Patent: Sep. 4, 2012

(54) SYSTEMAND METHOD FOR PROCESSING (56) References Cited
DATAUSING ANETWORK

(75) Inventors: Patrick Law, Milpitas, CA (US);
Darren Neuman, San Jose, CA (US);
David Baer, San Jose, CA (US)

(73) Assignee: Broadcom Corporation, Irvine, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1509 days.

(21) Appl. No.: 10/314,525

(22) Filed: Dec. 9, 2002

(65) Prior Publication Data

US 2004/OO78418 A1 Apr. 22, 2004

Related U.S. Application Data

(60) Provisional application No. 60/420,151, filed on Oct.
22, 2002.

(51) Int. Cl.
G06T L/20 (2006.01)
GO6F 2/O2 (2006.01)
GO6F 3/28 (2006.01)
GO6F 3/OO (2006.01)
GO6K 9/54 (2006.01)

(52) U.S. Cl. 345/506; 34.5/567; 382/303: 382/304
(58) Field of Classification Search 345/505,

345/501, 502,506,567; 382/303, 304; 710/22,
710/29

See application file for complete search history.

918A 9 2 2

U.S. PATENT DOCUMENTS

5,638,533 A * 6/1997 Law 711/157
5,646,693 A * 7/1997 Cismas 348/441
5,822,779 A * 10/1998 Intrater et al. 711,168
5,828.903 A * 10/1998 Sethuram et al. 710, 53
5,841,439 A * 1 1/1998 Pose et al. 345,418
5,987,246 A * 1 1/1999 Thomsen et al. .. T17/109
6,101,591 A * 8/2000 Foster et al. T11,219
6,412,061 Bl 6/2002 Dye
6,429,902 B1* 8/2002 Har-Chen et al. 348,518
6,489,953 B1* 12/2002 Chen 345,213
6,525,738 B1* 2/2003 Devins et al. 345/553
6,628,243 B1* 9/2003 Lyons et al. 345/1.1
6,636.214 B1 * 10/2003 Leather et al. 345,422

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1091318 A2 4/2001

(Continued)
OTHER PUBLICATIONS

European Patent Office, Communication with European Search
Report, in Application No. 03023968.5, dated Oct. 1, 2010, pp. 1-3.

Primary Examiner — Hoang-Vu. A Nguyen-Ba
(74) Attorney, Agent, or Firm — Thomas,
Horstemeyer & Risley LLP.
(57) ABSTRACT
Systems and methods are disclosed for video processing
modules. More specifically a network is disclosed for pro
cessing data. The network comprises a register DMA control
ler adapted to Support register access and at least one node
adapted to the data. At least one link communicates with the
node, and is adapted to transmit data and at least one network
module communicates with at least the link, and is adapted to
route data to at least the link.

36 Claims, 11 Drawing Sheets

Kayden,

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 2 of 23

Avago - Ex. 2003, Page 000019
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
Page 2

U.S. PATENT DOCUMENTS 2003/0080963 A1* 5/2003 Van Hook et al. 345,501
ck

6,700,588 B1* 3/2004 MacInnis et al. 345 629 58.87% A. S. S. 3.3
6,801,591 B1 * 10/2004 Frencken 375/373 9.

6,919,896 B2 * 7/2005 Sasaki et al. 345,505 FOREIGN PATENT DOCUMENTS
7,034,828 B1 * 4/2006 Drebin et al. 345.426
7,054,867 B2 * 5/2006 Bosley et al. 707/10 WO WO99,13637 A2 3, 1999
7,218,676 B2 * 5/2007 Kono et al. ... 375,240.25 WO WO9522. Al 1999
7,230,651 B2* 6/2007 Schoner et al ... 348/500 WO WO-01/22736 3, 2001

2002/0066007 A1* 5, 2002 Wise et al. .. 712,300 * cited by examiner

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 3 of 23

Avago - Ex. 2003, Page 000020
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Sep. 4, 2012 Sheet 1 of 11 US 8,259,121 B2

to
-s 120

y
30.000fps

Data
Processing Recovery

30.001 fps

29.999fps

"Data Processing"

All decoding, capture,
playback, graphics, etc

MPEG
(PCRISCR)

runs from a fixed clock

data is supplied to the
output at the rate it is

requested 214
y

(SR Broadcast data ?equest" 212

Rate Manager
Compare fate control ---

N

data request \
data is output at 222
a fixed clock rate

local SR

data rate is fed back N

220
to rate manager

-215
- 216

Fig. 2

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 4 of 23

Avago - Ex. 2003, Page 000021
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2 Sheet 2 of 11 Sep. 4, 2012 U.S. Patent

| y Ozy
(

· 807

· 809

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 5 of 23

Avago - Ex. 2003, Page 000022
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 6 of 23

Avago - Ex. 2003, Page 000023
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 7 of 23

Avago - Ex. 2003, Page 000024
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Sep. 4, 2012 Sheet 5 of 11 US 8,259,121 B2

712
728 730 ".

RBUS Register DMA VBUS
Controller

MBUS 710 s: Triggers
(a 732 734 Kiss

Fig. 7

81.83
18

8 N
N

RBUS (optional)------ links

aux (optional)------
870-1
818

N 818 links N
MBUS (optional)------ Enly Nede linkS

822 N-7 vegmem
aux (optional)------

870-1
818

Y 818
links N

Exit Node
816B dedicated Output RBUS (optional)-- - - - -

812-y
aux (optional)------

870-1

Fig. 8

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 8 of 23

Avago - Ex. 2003, Page 000025
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2 Sheet 6 of 11 Sep. 4, 2012 U.S. Patent

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 9 of 23

Avago - Ex. 2003, Page 000026
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 10 of 23

Avago - Ex. 2003, Page 000027
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2 Sheet 8 of 11 Sep. 4, 2012 U.S. Patent

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 11 of 23

Avago - Ex. 2003, Page 000028
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 12 of 23

Avago - Ex. 2003, Page 000029
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Sep. 4, 2012 Sheet 10 of 11 US 8,259,121 B2

Generate DMA
Trigger at End of

Picture

1310

1312 Fetch Predefined
RU

1314 Notify Decoder
About End of Picture

Configure Video Feeder 1316
for Next Picture

Re-Enable Feeder

Fetch Specified Picture
From Frame Buffer

1318

1320

1322
Feed Speficied Picture TO

Display Pipeline

Fig. 13

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 13 of 23

Avago - Ex. 2003, Page 000030
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Sep. 4, 2012 Sheet 11 of 11 US 8,259,121 B2

Method Register

Single Buffering
Register Bus

Double Buffering

Single Buffering
Register DMA

Double Buffering

Single Buffering
BVB Control

Packet Double Buffering
in band Control

Fig. 14

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 14 of 23

Avago - Ex. 2003, Page 000031
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
1.

SYSTEMAND METHOD FOR PROCESSING
DATAUSING ANETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to, and claims benefit of and
priority from, Provisional Application No. 60/420,151 dated
Oct. 22, 2002, titled “Network Environment for Video Pro
cessing Modules”, the complete subject matter of which is
incorporated herein by reference in its entirety. This applica
tion is also related to the following applications, each of
which is incorporated herein by reference in its entirety for all
purposes: U.S. patent application Ser. No. 10/300,371, filed
Nov. 20, 2002, titled “A/V Decoder Having A Clocking
Scheme That Is Independent Of Input Data Streams”; U.S.
Provisional Application No. 60/420,347, filed Oct. 22, 2002,
titled “Video Bus For a Video Decoding System”; U.S. patent
application Ser. No. 10/300,370, filed Nov. 20, 2002, titled
“Hardware Assisted Format Change Mechanism in a Display
Controller”; U.S. patent application Ser. No. 10/114,798,
filed Apr. 1, 2002, titled “Video Decoding System Supporting
Multiple Standards'; and U.S. Provisional Application No.
60/420,308, filed Oct. 22, 2002, titled “Multi-Pass System
and Method Supporting Multiple Streams of Video'.

FEDERALLY SPONSORED RESEARCHOR
DEVELOPMENT

Not Applicable

SEQUENCE LISTING

Not Applicable

MICROFICHEACOPYRIGHT REFERENCE

Not Applicable

BACKGROUND OF THE INVENTION

The present invention relates to a network adapted to pro
cess data. More specifically, the present invention relates to a
network environment in an A/V system using A/V decod
ers’, where the A/V decoders are adapted to process, decode
or decompress one or more input data streams (alternatively
referred to as “input data”, “input data streams' or “data
streams').

There is currently no known methodological way to con
nect video processing modules in A/V systems. Most video
processing modules are connected togetherinan ad-hoc man
ner. As a result, Such ad-hoc designs may become difficult to
Verify, maintain and reuse. Furthermore, as more features are
added to the A/V systems (i.e., incorporating more video
processing modules for example) it becomes more difficult to
design and integrate Such features properly. This may result in
long development cycles, poor design reuse and an unreliable
product.

Further limitations and disadvantages of conventional and
traditional approaches will become apparent to one of skill in
the art, through comparison of such systems with the present
invention as set forth in the remainder of the present applica
tion with reference to the drawings.

BRIEF SUMMARY OF THE INVENTION

There is a need for an architecture or network that provides
a general model illustrating how various video processing

10

15

25

30

35

40

45

50

55

60

65

2
modules behaves in a network environment. Further, an
exemplary embodiment of such network should reduce the
number of clock domains, ease design reuse and perform
format changes in a robust manner.

Features of the present invention may be found in a net
work environment in an A/V system and method Supporting a
pull data flow scheme for an A/V decoder. The network is
adapted to video process modules using a pull data flow (an
output rate driven by data flow for example).
One embodiment of the present invention relates to a net

work for processing data to form at least one display pipeline
therein by selecting and concatenating at least two nodes from
a plurality of nodes in the network together. It is contemplated
that this selection and concatenation happens on the fly (i.e.,
in real time). In this embodiment, the network is further
adapted to form a plurality of the same or different display
pipelines using at least the two nodes. It is contemplated that
the network may change the functionality of the display pipe
line by concatenating more than two nodes together. In one
embodiment, the network is adapted to form at least two
display pipelines having different and/or independent data
rates (using a flow control valve or module for example). It is
further contemplated that such network is adapted to form at
least two of the display pipelines using a handshaking or
ready/accept protocol.

In another embodiment, the network comprises at least a
register DMA controller adapted to Support register access.
The register DMA controller is further adapted to obtain at
least one instruction from a register update list and provide
that instruction to the display pipeline. It is further contem
plated that the register DMA controller may obtain the
instruction in response to a trigger event.

Yet another embodiment of the present invention relates to
a network for processing data. In this embodiment, the net
work comprises a register DMA controller adapted to Support
register access and a plurality of nodes adapted to process the
data. The network further comprises at least one link commu
nicating with the nodes and adapted to transmit the data
between the nodes, and at least one network module commu
nicating with at least the link and adapted to route the data
thereto, wherein the network is adapted to form at least one
display pipeline therein by selecting and concatenating at
least two nodes from the plurality of nodes.

Another embodiment of the present invention relates to a
method of processing data using a network. In this embodi
ment, the network comprises forming a first display pipeline
using at least one node in the network and processing the data
using the first display pipeline. The method further comprises
forming a second display pipeline using at least one node in
the network and processing the data using the second display
pipeline, where the first and second display pipelines are
different.

Still another embodiment of the present invention relates to
a method of processing data using a network. In this embodi
ment, the network comprises forming a display pipeline by
selecting and concatenating at least two nodes from a plural
ity of nodes in the network on the fly (i.e., in real time) and
processing the data using the display pipeline.

Another embodiment of the present invention relates to a
method of programming an A/V system using a network. In
this embodiment, the network comprises generating at least
one triggeratan end of a first picture and obtaining at least one
register update list from a main memory. The network notifies
a decoder about the end of the first picture and configures at
least one node in the network for a second picture. The net
work enables the at least one node, obtains the second picture

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 15 of 23

Avago - Ex. 2003, Page 000032
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
3

from a frame buffer, and provides the second picture to a
display pipeline in the network.

These and other advantages and novel features of the
present invention, as well as details of an illustrated embodi
ment thereof, will be more fully understood from the follow
ing description and drawings.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 illustrates one embodiment of a block diagram of an
A/V decoder in accordance with the present invention;

FIG. 2 illustrates another embodiment of a block diagram
of an A/V decoder in accordance with the present invention;

FIG.3 illustrates one embodiment of a block diagram of an
A/V system having a network in accordance with the present
invention;

FIG. 4 illustrates another embodiment of a block diagram
of an A/V system having a network in accordance with the
present invention;

FIG. 5 illustrates one embodiment of a block diagram of a
network environment for videoprocessing modules;

FIG. 6 illustrates another embodiment of a block diagram
of a network environment in accordance with the present
invention;

FIG. 7 illustrates one embodiment of a register DMA con
troller in accordance with one embodiment of the present
invention;

FIG. 8 illustrates embodiments of block diagrams of nodes
in accordance with the present invention;

FIG. 9 illustrates one embodiment of an entry node in
accordance with one embodiment of the present invention;

FIG.10 illustrates one embodiment of a network module in
accordance with one embodiment of the present invention;

FIGS. 11A, 11B, 11C, 11D, 11E, 11F and 11G illustrate
embodiments of Switched used in a network module in accor
dance with one embodiment of the present invention;

FIG. 12 illustrates one embodiment of a programming
model in accordance with one embodiment of the present
invention;

FIG. 13 illustrates one embodiment of a high level flow
chart of a programmable method using at least one node in
accordance with one embodiment of the present invention;
and

FIG. 14 illustrates three methods used to write or imple
ment control registers in accordance with one embodiment of
the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The following description is made with reference to the
appended figures.
One embodiment of the present invention relates to a net

work environment. More specifically, one embodiment
relates to a network environment in an A/V decoder device
that decodes one or more input data streams with multiple
output rates using a single clock reference. This embodiment
enables video processing modules having multiple time bases
to be implemented using a single clock reference (alterna
tively referred to as a “system clock”). FIGS. 1 and 2 illustrate
block diagrams of embodiments of an A/V decoders in accor
dance with the present invention.

FIG. 1 illustrates one embodiment of a high level block
diagram of an embodiment of an A/V decoder, generally
designated 110. More detail about the A/V decoder is pro
vided in U.S. patent application Ser. No. 10/300,371 filed
Nov. 20, 2002, titled “A/V Decoder Having A Clocking

10

15

25

30

35

40

45

50

55

60

65

4
Scheme That Is Independent Of Input Data Streams”, the
complete subject matter of which is incorporated herein by
reference in its entirety. In the illustrated embodiment, the
decoder 110 comprises a system time reference recovery
device 112 (alternatively referred to as an "STR recovery
device’) having one or more input data streams 118.
The STR recovery device 112 is illustrated communicating

with an A/V data processing device 114. In one embodiment
of the invention, STR refers to a reference time value. It is
anticipated that different or more complex systems are also
possible and within the scope of the present invention. For
example if the A/V decoder 110 has more than one data
source, the decoder may include more than one STR recovery
device, where the number of STR recovery devices may or
may not correspond to the number of data sources.
As an alternative to the MPEG scheme, an A/V system

incorporating an A/V decoder may accept analog television
signals as inputs. In this embodiment, the analog video input
goes through, and is processed or decoded by, the A/V data
processing device 114, which may comprise a video decoder
or VDEC. Likewise, analog audio goes through, and is pro
cessed or decoded by, the A/V data processing device 114
which may further comprise a BTSC audio decoder (alterna
tively referred to as a “ADEC or “BTSC').
One embodiment of the present invention uses a system

clock (a fixed system clock for example) to control the data
processing. More specifically, the system clock may be used
to control the data process in a networkinaccordance with the
present invention. It is contemplated that the STR recovery
device 112 may be locked to the analog video line rate. The
analog hySncs are converted into a pseudo-STR using a
simple counter in one embodiment. The STR recovery device
112 locks to this pseudo-STR and broadcasts the recovered
STR to the rest of the decoder 110. The broadcast STR is used
to control the output rates as provided previously.

FIG. 1 further illustrates a rate managed output device 116,
which is illustrated as communicating with the data process
ing device 114. In the illustrated embodiment, the rate man
aged output device 116 has one or more A/V outputs 120,
which are output at the same or different rates. In FIG.1, three
A/V outputs, generally designated 120, are illustrated. For
example, one A/V output is output at 29.999 frames per
second (alternatively referred to as “fps), one is output at
30.001 fps and one is output at 30.000 fps.

In one embodiment, the A/V data processing device 114
includes a network environment for video processing mod
ules. The data processing device 114 bases audio and video
processing on multiples of a single, fixed clock, a 27 MHZ
crystal clock for example. It is contemplated that, as a single
fixed clock is used, the processing is not constrained by clock
boundaries. Video and audio may be muxed between mod
ules. It is further contemplated that such architecture may be
made orthogonal, and easy to control.

In accordance with one embodiment, all data, including all
audio and video data, is processed by a network environment
and transferred using a “pull” model or mode, even though
typical A/V streams (e.g., MPEG) are adapted to operate
according to a push model or mode. The outputs request data
as needed. Each module in the A/V decoder 110 may supply
data to its outputs at the rate it is requested. Because a pull
model or mode is used, the data processing clock (i.e., the
system clock) is not tied to the input data rate. For example,
the audio decoder may be clocked at 243 MHz, 133 MHz, or
any other reasonable rate. The audio decoder clock does not
need to “track’ the input data rate.

Conventional A/V decoders use a VCXO or VCXO-PLL to
lock the chip clock to the input data rate. However, one

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 16 of 23

Avago - Ex. 2003, Page 000033
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
5

embodiment of the present invention uses rate managed out
put devices 116 and the associated SRC devices to change or
adjust the video and audio output rates.

It is contemplated that, in one embodiment of the present
invention, the output data rate tracks the STR. If the A/V
decoder decodes multiple video streams, there may be mul
tiple STRs. Each output data rate tracks an associated STR.
The process of controlling the output rates may be called “rate
management. In one embodiment, the rate managed output
device 116 (alternatively referred to as a “output rate man
ager” or "output rate manager PLL), comprising for example
a digital PLL, is used to compare the output rate with the STR,
and adjust the output rate accordingly, such that the output
data rate matches the STR and the input data rate. In one
embodiment, the A/V decoder may include several output
rate managers, one for each output of the A/V decoder. More
detail about rate managers is provided in U.S. Provisional
Application No. 60/420.344 filed Oct. 22, 2002, titled “Data
Rate Management System and Method for A/V Decoder”.

FIG. 2 illustrates another embodiment of a block diagram
of an A/V decoder, generally designated 210, in accordance
with one embodiment of the present invention. In the illus
trated embodiment, the decoder 210 comprises an STR recov
ery device 212 having one or more input data streams 218 and
a STR broadcast output.

In the illustrated embodiment, the input data streams (alter
natively referred to as “system clock sources' or “system
reference sources”) 218 comprise an MPEG (PCR/SCR)
stream, a 656 (hysnc) stream and a VDEC (hysnc) stream.
While three input streams are illustrated, more complex sys
tems, having more or different input data streams are contem
plated. In the illustrated embodiment, the input time refer
ences are MPEG PCR/SCR values. However, for analog
video or ITU656 video inputs, the hsync timing may be used
as the time reference or a fixed timing reference may be used
for PVR playback.
The STR recovery device 212 is illustrated as communi

cating (indirectly in this embodiment) with a data processing
device 214. In one embodiment, the SRT recovery device 212
controls the output data rates (in conjunction with a rate
managed output and SRC devices). The data processing
device 214 is adapted to decode, capture, play back and
produce graphics, etc. from the data inputs (i.e., the input data
streams 218) using a fixed clock or timing reference. That is
the data processing devices may decode, capture, play back
and produce graphics, etc. using a fixed clock (i.e., the system
clock for example). In one embodiment, the data is Supplied
to an output device or buffer 222 as requested (i.e., the output
device requests data from the data processing device or the
data is “pulled'). It is contemplated that, in one embodiment,
the data processing device 214 comprises or includes a net
work environment for video processing modules in accor
dance with the present invention.
A rate managed output device 216 is illustrated as commu

nicating (indirectly in this embodiment) with at least the data
processing device 214. More specifically, the rate managed
output device 216 communicates with the STR recovery
device 212 and the output device 222. In the illustrated
embodiment, the rate managed output device 216 comprises
at least local STR and compare devices 215 and 217 respec
tively, while the output device 222 comprises at least an SRC
device 223.

In one embodiment, the output device 222 outputs data 220
at a fixed clock rate (i.e., the system clock rate) as it is
requested. The output device 222 Submits data requests to the
data processing device 214, and thus pulls the data. The data
request is also Submitted or mirrored to the rate managed

10

15

25

30

35

40

45

50

55

60

65

6
output device 216, where it is compared with the STR broad
cast in the compare module 217. A rate control signal is
communicated to the output device 222 (specifically the SRC
device 223), ensuring that the data 220 is output at the fixed
clock rate, and the output data rate matches the input data rate.
The digital sample rate converter converts data from an input
sample rate to an output sample rate. In one embodiment, the
output sample rate may differ from the input sample rate. By
adjusting the SRC parameters, the rate managed output
device 216B changes the rate of the sample rate at the input of
the SRC device 223B. This change to the sample rate changes
the rate the data is requested from the data processing device
214B.

FIG.3 illustrates one embodiment of a block diagram of an
A/V system, generally designated 300, having a network in
accordance with the present invention. It is contemplated that
the illustrated A/V system may be similar to those A/V sys
tems provided previously. It is also contemplated that the
network may be used in different systems. In this embodi
ment, system 300 includes a decoder 310 (an MPEG decoder
for example) adapted to receive video inputs or data 308. In
this embodiment, the decoder 310 includes one or more STR
recovery devices 312, used, with the system clock (a fixed
system clock for example) to control the data processing
similar to that provided previously. However, other decoders,
with or without STR recovery devices are contemplated.
A memory or frame buffer 314 is illustrated coupled to the

decoder 310 and receives data therefrom. The memory 314 is
shown coupled to network316 as illustrated, which is adapted
to transport and process video or data, outputting video out or
data 320. In one embodiment, the network 316 is adapted to
support a pull data flow. The network 316 includes one or
more counters 318 (coupled to the STR recovery device via
feedback loop 322) that, along with the rate managed output
device (not shown) control the data rate of the output.

FIG. 4 illustrates one embodiment of a block diagram of a
network, similar to the network 316 of FIG. 3 in accordance
with the present invention. In this embodiment, the network
416 is adapted to receive video-in 408 (from a memory for
example) and output video out 420.

FIG. 4 further illustrates at least one display pipeline 440
inside the network 416. In one embodiment of the present
invention, the display pipeline 440 is changeably formed by
chaining, coupling or concatenating one or more network
nodes together, depending on the network requirements, on
the fly (i.e., in real time). It is contemplated that the nodes may
be re-configured, so that a plurality of display pipelines 440
may be formed, each pipeline having different functionality
depending on the nodes that are concatenated together. More
over, in one embodiment, it is contemplated that the network
440 may change the display pipeline 440 every /60" of a
second for example.

In this embodiment, a register DMA controller 442 (alter
natively referred to as an “RDC) is illustrated coupled to the
network 416 and one or more register update lists 446 (alter
natively referred to as an “RUL). The RDC 442 is adapted to
Support multiple, configurable pipelines 440 by accessing
and fetching (i.e., obtaining) one or more instructions from
the RUL 446 and providing such instructions to the display
pipeline 440. In one embodiment, the RDC 442 accesses the
RUL 446 (fetching the instructions) in response to the one or
more trigger signals 444 (real time DMA trigger signals or
events generated by the last node in the pipeline 440 for
example). It is contemplated that, if the network 416 did not
have an RDC 442 associated therewith, the network 416
would have to reconfigure the pipeline one register at a time.

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 17 of 23

Avago - Ex. 2003, Page 000034
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
7

FIG. 5 illustrates one embodiment of a block diagram of a
network environment (alternatively referred to as a “display
engine') for video processing modules inaccordance with the
present invention. The network, generally designated 500, is
adapted to Support a pull data scheme and comprises at least
a register DMA controller, one or more nodes, one or more
links, and one or more network modules. In this embodiment,
the register DMA controller 510 (or register DMA controller)
is responsible for register access within the system 500. The
register DMA controller 510 connects the register bus 512
(alternatively referred to as “RBUS") with the video register
bus 514 (alternatively referred to as “VBUS”).

The system 500, in one embodiment, further comprises one
or more nodes 516 (two nodes 516A & 516B are illustrated).
Nodes 516 are modules that process video information (nodes
516A & 516B are illustrated having video-in signals 514 and
video-out signals 526 respectively). Some examples of nodes
comprise video scalers, 2D graphics compositors, video
encoders, etc.

FIG.5 further illustrates one or more links 518 (links 518A
& 518B are illustrated). In this embodiment, the links 518
comprise a set of signals or buses that tie or connect at least
two nodes together (link 518A is illustrated coupling node
516A to network module 520 while link S18B is illustrated
coupling network module 520 to node 516B). The links 518
are adapted to transfer information using a predefined proto
col. More detail about the links is provided in U.S. Provi
sional Application No. 60/420,347 filed Oct. 22, 2002, titled
“Video Bus For a Video Decoding System’, the complete
subject matter of which is incorporated herein by reference in
its entirety.

Additionally, system 500 comprises one or more network
modules 520 that, in this embodiment, are specialized nodes
that don't perform video processing functions. Rather, the
network module 520 connects at least two or more links 518
together, routing information between them. In general, the
system 500 may include a number of pipelines (i.e., display
pipelines) formed by chaining multiple nodes together. Each
pipeline starts at one or more nodes 516, where it is contem
plated that each node has a memory interface to a frame buffer
(not shown in FIG. 5). Functions are added to the pipeline by
cascading more nodes to the pipelines. Finally, a pipeline
ends at one or more nodes, where each such node is a desired
output channel.

In accordance with the present invention, the registerbus or
RBUS 512 is connected to the video registerbus or VBUS514
through the register DMA controller 510. In this embodi
ment, both buses use identical signaling and protocols. The
register DMA controller 510 acts as a slave to the RBUS 512
and forwards all the transactions to VBUS 514. In addition,
register DMA controller 510 may perform one or more Reg
ister DMA operations, which comprises decoupling a host
from video timing by automating mode changes.

In one embodiment, register DMA controller 510 includes
four interfaces. There are two register bus interfaces, one
interface 528 coupling the register DMA controller 510 to
RBUS 512 and the other interface 530 coupling the register
DMA controller 510 to VBUS 514. The third interface is a
memory bus interface 532 coupling the register DMA con
troller 510 to the memory bus 522 (alternatively referred to as
“MBUS). The memory bus 522 is used to access register
writes from an external memory. Finally the last interface 534
comprises an array of signals coming from at least one of the
nodes 516, which are used as DMA triggers.

In accordance with one embodiment, display modes are
configured or changed using control registers. Instead of
updating the display modes one at a time, the host uses the

10

15

25

30

35

40

45

50

55

60

65

8
register DMA controller, feature or operation (alternatively
referred to as the register DMA controller in FIG. 5) to auto
mate the process. In this embodiment, the Register DMA
comprises three entities: a register update list, a DMA
descriptor and a DMA trigger as provided below.

FIG. 6 illustrates another embodiment of a block diagram
of a network or display engine according to the present inven
tion. In this embodiment, the network, generally designated
600, video processes modules and is further adapted to sup
port a pull data scheme. Register DMA controller 610 is
responsible for register accesses within the network 600 (i.e.,
the register DMA controller 610 is a register DMA). The
register DMA controller 610 connects the register bus or
RBUS 612 with the video register bus or VBUS 614.

In this embodiment, the RBUS 612 comprises at least one
Video-in module 624 coupled to and communicating with at
least one node (Node 616A for example). Further the RBUS
612 may comprise a memory interface 636 coupled to and
communicating with at least the memory bus 622 (using
memory bus interface 632 for example) and main memory
638; and a host interface 640 communicating with at least the
memory bus 622 (using memory bus interface 632 for
example), host 642 and register DMA controller (using inter
face 628 for example).
The network 600, in this embodiment, comprises a plural

ity of nodes 616 (nine nodes 616A-616I are illustrated)
adapted to process video information. While only nine nodes
are illustrated, more (or less) nodes are contemplated. Again,
the nodes 616 process video information (node 616A is illus
trated having video-in signals 624 communicating therewith,
while nodes 616H and 616I are illustrated having video-out
signals 626A and 626B respectively communicating there
with). In this embodiment an optional MPEG decoder 617 is
illustrated coupled to node 616C, and communicating with
video bus 614, register DMA controller 610 and memory bus
622.

FIG. 6 further illustrates a plurality of links 618 (12 links
618A-618L are illustrated). Again, while 12 links 618 are
shown, a different number is contemplated. In this embodi
ment, the links 618 comprise a set of signals or buses that tie
at least two nodes 616 together and transfer information using
a predefined protocol.

Additionally, network 600 comprises a plurality of special
ized nodes or network modules 620 that, in this embodiment,
connect at least two or more links 618 together, routing infor
mation therebetween. It is again contemplated that, in gen
eral, the network 600 may include a number of display pipe
lines formed by chaining multiple nodes together using the
network modules 620 to switch between the nodes 616, thus
varying or changing the pipeline. Each pipeline starts and
ends at one or more nodes 616, where it is contemplated that
each node has a memory interface 636 to a frame buffer.
Functions are added to the pipelines by cascading that pipe
line with more nodes.

In accordance with the present invention, the RBUS 612 is
connected to the VBUS 614 through the register DMA con
troller 610. In this embodiment, both buses use identical
signaling and protocols. The register DMA controller 610
acts as a slave to the RBUS 612 and forwards all the transac
tions to VBUS 614. In addition, register DMA controller 610
is a Register DMA, decoupling the host from video timing
using automating mode changes.

In accordance with one embodiment, one or more modules
(nodes for example) process pixels or other data as fast as
possible, responding to an incoming accept signal transmitted
via the links to stall pixel processing at the current cycle. The
modules communicate using a ready-accept protocol trans

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 18 of 23

Avago - Ex. 2003, Page 000035
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2

mitted via the links (i.e., a protocol using ready and accept
signals alternatively referred to as a handshake protocol).
More fully described in U.S. Provisional Application No.
60/420,347 as provided above.

It is contemplated that, in one embodiment, the links con- 5
tain information that may be used to delineate the start of a
line of video information, and the start of a field or frame of
video information. StartLine information is active only dur
ing the first beat of the first pixel of a line. StartField infor
mation indicates the start of a field/frame, or the end of a field 10
or frame. This signal is active only during the first beat of the
first pixel of the first line of a field or frame or the first beat of
the last pixel of the last line of the field or frame (i.e., end
frame). It is contemplated that in this embodiment, unlike
other video standards such as Rec(656, StartLine and Start- 15
Field information is not separated by blanking lines or blank
ing pixels. All blanking information is removed from the data
structure of the bus or link.

Essentially, the field of data is sent as a contiguous array of
data on the bus, without blank pixels. This removes the strict 20
timing relationship between the arrival time of the StartField
on the bus, and the Vertical Sync information defined by
NTSC or SMPTE standards. The output module inserts the
correct timing information which governs the pull-rate of the
data flow across the bus. Further, all modules supply pixel 25
data to the output module at or ahead of the time the pixels are
needed. This is governed by the flow control ready/accept
signals (i.e., ready-accept protocol).

FIG. 7 illustrates one embodiment of register DMA con
troller 710 including four interfaces similar to that provided 30
previously. There are two register bus interfaces, one inter
face 728 coupling the register DMA controller 710 to RBUS
712 and the other interface 730 coupling the register DMA
controller 710 to VBUS 714. The third interface is a memory
bus interface 732 coupling the register DMA controller 710 to 35
the memory bus 722. Finally, interface 734 comprises an
array of signals (0-n) coupled to at least one of the nodes 716,
which are used as DMA triggers, and generally designated
735. More detail about the register DMA controller is pro
vided in U.S. patent application Ser. No. 10/300,370 filed 40
Nov. 20, 2002, titled “Hardware Assisted Format Change
Mechanism in a Display Controller, the complete subject
matter of which is incorporated herein by reference in its
entirety.

FIG. 8 illustrates different embodiments of the nodes, gen- 45
erally designated 816, used in one embodiment of the net
work. The network, in accordance with the present invention,
is adapted to perform video processing functions similar to a
display engine, including video playback, Scaling, encoding,
etc. It is contemplated that each node 816 in the network may 50
be generally divided into three categories according to its
position in a display pipeline: entry, exit, and intermediate.
Video data enters a display pipeline at an “entry node' des
ignated 816A and leaves at an “exit node' designated 816B.
All the nodes in-between are referred to as “intermediate 55
nodes' or “nodes' designated 816C. Examples of entry nodes
816A include MPEG display feeders, playback engines, etc.
Examples of exit nodes 816B include video encoders, capture
engines, etc. Examples of intermediate nodes 816C include
scalers, compositors, etc. It is further contemplated that the 60
position of each node in the pipeline configuration is not
fixed; rather its position varies depending on the display pipe
line (i.e., an entry node in one pipeline may be an intermediate
node in another display pipeline).
As illustrated, the nodes 816 each generally include at least 65

one input and output interface or link 818 communicating
therewith. It is contemplated however that each node 816 is

10
adapted to have multiple input or output links 818A & 818B
coupled thereto and communicating therewith (a compositor
for example has multiple input links). Furthermore, each
node 816 may also have an optional RBUS 814, MBUS 822
or some other optional auxiliary interface 880 (a DMA trigger
for the register DMA controller for example) communicating
therewith. If the node 816 is an entry node 816A, it is con
templated that the input link is an MBUS interface 822 as
illustrated. For exit nodes 816B, the output is replaced by a
dedicated output 850 (e.g., a memory interface for a capture
engine or an analog video output for a video encoder).
As provided previously, a display pipeline in the network

starts or begins at one or more entry nodes 816A. The entry
node 816A is responsible for feeding video to the downstream
nodes 816 and includes, for example, MPEG display feeders
and playback engines. In one embodiment, the input to an
entry node 816A may comprise RBUS and memory inter
faces. Its output may comprise one or more output links 818B.
In addition, the entry node 816A may include one or more
auxiliary interfaces 870 such as a DMA triggerfor the register
DMA controller.
The intermediate node 816C, in one embodiment, may

have specific functions comprising Scaling, compositing, etc.
One or more nodes are added to a display pipeline as its
features are used to satisfy certain output requirements. In
general, the input and output of an intermediate node 816C
comprises one or more links 818A & 818B as provided pre
viously. In addition, the intermediate node 816C may have an
optional register bus interface or some other auxiliary inter
face 870 coupled thereto and communicating therewith.
As provided previously, the display pipeline ends at exit

node 816B, which may comprise a video interface such as a
composite signal encoder or capture engine for example. In
general, the inputs to an exit node 816B consist of an input
link 818, an optional register bus 812, and a video output or a
memory bus interface 870.

In addition to the functions described previously, the exit
nodes 816B may include Some debugging functions. For
example, a checkpoint register may be written into control
packets and read by the register bus 812. This register is
programmed in every field to a field dependent number. At the
same time, a host may check the progress of the video packets
by monitoring this register through the register bus 812.

It is contemplated that exemplary embodiments of the
nodes 812 should meet certain requirements in order to main
tain intra- and inter-packet synchronization. For example,
nodes should be adapted to forward incoming control packets
without being modified. If the node is a multi-input node, one
particular input may be designated as the primary link, Such
that the control packets of the primary links are forwarded,
while control packets from other inputs are terminated.

It is contemplated that exemplary nodes 816 process and
output packets in their arriving order. If the node is a multi
input node, it may only operate on packets corresponding to
the same field in time. For example, if the node 816 is a
graphics compositor, the i-th field of one input may be com
bined with the i-th field of another input. If the active input is
not receiving any data, other inputs and the outputs may be
stalled.

If the exemplary node 816 is a multi-output node, control
and video packets may be forwarded to all the output links.
Stalling by one of the output links stalls the inputs as well as
the other outputs. Unused input or output links of Such exem
plary nodes 816 may be disabled using RBUS 812 and the
control register. The disabled link may be excluded from

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 19 of 23

Avago - Ex. 2003, Page 000036
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
11

controlling other inputs or outputs. For a pipelined node, the
next field's control packet should not have any effect on
current field's video packet.

Another embodiment of an entry node, generally desig
nated 916, is illustrated in FIG. 9. It is contemplated that the
entry node 916, in addition to having input links 918A (com
prising RBUS 912 and MBUS 922) and output link 918B,
may include an optional register referred to as a “register
window' generally designated 950. In one embodiment, the
register window 950 is adapted to insert control packets into
the output link918B (using DMA engine 952 and mux 954).
In this embodiment, a write to a specific location outputs a
32-bit control word.

FIG. 10 illustrates one embodiment of a network module
1020 in accordance with the present invention. In this
embodiment, the network module 1020 comprises a plurality
of network interfaces or links generally designated 1018 and
switches, described in greater detail below. In this invention,
one or more network modules are used to connect one or more
nodes, forming a display pipeline. Since the nodes may be
re-configured, it is contemplated that display pipelines having
different functionality may be implemented for different
applications. In other words, the display pipelines are
dynamic and not static.
The network interfaces 1018, in this embodiment, com

prise input and output links 1018.A & 1018B respectively, and
an optional register bus 1012. In this embodiment, m input
links 1018A and n output links 1018B are illustrated, where m
and n may be the same or different. It is contemplated that m
may be greater than, equal to or less than n (i.e., the number of
input links 1018A may be greater than, equal to or less than
the number of output links 1018B).

It is contemplated that different types of network modules
may be used within the register DMA controller or display
engine. The network module 1020, in accordance with the
present invention, is comprised of an array of Switches
coupled together using predefined topology. This topology
determines the network module’s routing capabilities, as well
as the implementation cost.

In accordance with the present invention, a multi-stage
network module may comprises at least one 2x2 Switchbox
1121 as illustrated in FIG. 11A. Although a 2x2 switchbox is
discussed, other switches are contemplated. Each switchbox
1121 is, in this embodiment, a two-input two-output inter
change device. The Switch box has four functions as illus
trated: Straight, designated 1170A; exchange, designated
1170B; upper broadcast, designated 1170C; and lower broad
cast, designated 1170D. Forbijections interchanges (i.e., one
to-one connections) such broadcast functions are not used.

It is contemplated that, in the present invention, multiple
switch boxes may be coupled together to form a subset of
multi-stage network modules. As illustrated in FIG. 11B, a
single stage shuffle-exchange network module, generally
designated 1101, may be formed by connecting or coupling
N/2 switchboxes 1121 (where N equals the number of inputs)
after a hardwired shuffle function 1172. The shuffle function
1172 is, in this embodiment, a single bit rotation of a network
address. The switch boxes 1121 perform an exchange func
tion 1174, which is a single bit negation of a network address.

FIG.11C illustrates an example of an NxNOmega network
module, generally designated 1123, formed by cascading
log(N) stages of shuffle-exchange network modules 1101 as
illustrated in FIG. 11B. As a result, such network module
1123 has a complexity of O(N log(N)).

Other networks having topologies similar to the network
module 1123 of FIG. 11C are illustrated in FIGS. 11D-11F.
For example, an n-cube network 1125 illustrated in FIG. 11D

10

15

25

30

35

40

45

50

55

60

65

12
may be formed from an network module 1123 by reversing
the signal direction and Swapping the middle two Switch
boxes 1121 (switchboxes 1121F and 1121G for example) in
the second stage. In one embodiment, the n-cube network
1125 uses only two-function switch boxes instead of four
function switch boxes used in the network module 1123.
The n-cube network 1125 of FIG. 11D may be converted to

another type of network module referred to as a butterfly
network module generally designated 1127 and illustrated in
FIG. 11E. This butterfly network module 1127 may be
formed from an n-cube network 1125 by swapping the first
two shuffle functions and replacing the last shuffle function
by re-mapping the network addresses.

It is contemplated that the multi-stage shuffle exchange
network modules provided previously are adapted to provide
connections from any input to any output at a very low cost.
However, Such multi-stage shuffle network modules are con
sidered blocking networks. Simultaneous connections of
more than one input/output pair may result in conflicts in the
links and switches. For example, in the network module 1123
illustrated in FIG.11C, connections from 5 to 0 and 7 to 1 may
not be established simultaneously.

FIG. 11F illustrates a variation of the butterfly network
1127 of 11E and referred to as the Benes network module,
generally designated 1129. In the illustrated embodiment, the
NXN Benes network module 1129 comprises 2 log(N)-1
levels. The first and last log(N) levels comprise two butterfly
network modules, where the middle level is shared between
the two butterflies. The Benes network module 1129 is a
rearrangeable network module. However, it is contemplated
that any new connections in the Benes network module may
require a complete reordering of the internal connections.

FIG. 11G illustrates a crossbar network module 1156,
comprising a plurality of Switches 1121, similar to the cross
bar switches provided previously. In this embodiment, the
crossbar network module 1156 is a non-blocking network,
adapted to handle all possible connections without blocking.
This enables the network to map any input to any output.
Furthermore, a connection may be set up or torn down
dynamically without affecting the existing connections. In
one embodiment, the switch boxes 1121 in the crossbar net
work module 1156 are different from those provided previ
ously, representing a tap from the horizontal data bus to the
vertical data bus.

It is contemplated that one or more embodiments of the
present invention are adapted to provide at least one display
pipeline of a plurality of display pipelines having a data rate
different from at least one other display pipeline of the plu
rality of display pipelines. It is also contemplated that at least
one display pipeline of a plurality of display pipelines may
have a data rate that is independent of at least one other
display pipeline of the plurality of display pipelines (using a
flow control valve for example). FIG. 12 illustrates one
embodiment of a block diagram of a programming model
using an entry node 1212 (a video feeder for example) similar
to the entry nodes provided previously. The video feeder or
entry node 1212 is adapted to fetch or capture a decoded
picture 1210 from a frame pipeline and feed it to the display
pipeline. In this embodiment, it is contemplated that the
MPEG video decoder 1224 is a TITAN decoder, although
other decoders are contemplated (an MVP examples of which
are described in U.S. patent application Ser. No. 10/114,798
filed Apr. 1, 2002, titled “Video Decoding System Supporting
Multiple Standards' incorporated herein by reference in its
entirety.
As illustrated, the register DMA unit 1218 is connected to

at least some registers shared with the TITAN decoder or

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 20 of 23

Avago - Ex. 2003, Page 000037
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
13

other video decoder 1224 through bus register DMA control
ler 1222. The register DMA 1218 is adapted to fetch one or
more predefined RULs 1220 from the main memory. One of
these entries may be written to the video decoder or TITAN
decoder's share register, which is used to notify the MPEG
decoder 1224 about the end of the picture. In this embodi
ment, the video output 1216, coupled to the display pipeline
1214, may comprise a video encoder or capture engine for
example. The video output 1216 is adapted to generate one or
more DMA trigger signals tied to the register DMA 1218.

FIG. 13 illustrates one embodiment of a high level flow
chart of a method of programming an A/V system (an A/V
system having a network for example) using at least one node
(entry node or video feeder for example) in accordance with
the present invention. In this embodiment, during a frame or
field time, the video output generates at least one DMA trig
ger at the end of a first picture as illustrated by block 1310. In
this embodiment the DMA trigger is communicated to the
register DMA unit. The register DMA unit fetches or obtains
at least one predefined RUL from the main memory (not
shown) as illustrated by block 1312. One of the RUL entries
is written to the video decoder share register, which is used to
notify the video decoder about the end of the picture as
illustrated by block 1314.

After the video feeder is configured for the next picture as
illustrated by block 1316, the video decoder re-enables the
video feeder as illustrated by block 1318. It is contemplated
that, if the video feeder is double buffered, the video decoder
may re-enable the video feeder before the end of the picture.
The video feeder fetches or obtains a second or next picture
from a frame buffer as illustrated by block 1320. The video
feeder 1312 feeds at least the second picture to the display
pipeline as illustrated by block 1322. It is contemplated that
this programming method may end or repeat for one or more
pictures.

In accordance with the present invention, control registers
are utilized to set up the network module routing. Two types
of control structures (i.e., individual stage control and indi
vidual box control) are discussed with respect to setting up or
establishing Such network module routing, although other
control structures are contemplated. In individual stage con
trol, the same register is used to set up all Switchboxes within
the same stage. In other words, all the Switch boxes assume
the same State. This simplifies the control design but may be
considered inflexible. In individual box control, each switch
box may be configured independently. This independent con
figuration generally requires more hardware when compared
to the individual stage control, but it offers greater flexibility.

In addition to the two types of control structures, three
methods for configuring network modules are discussed,
although other methods are contemplated. One method to
configure a network module comprises using an asynchro
nous control scheme, which is considered the simplest of the
three. The switch boxes of the network module may be con
figured directly using the register bus by packing their control
signals into a number of registers. The host may set up or tear
down connections by programming different values into
these registers. However, as the register writes are asynchro
nous to video timing, Such register writes have to be handled
carefully to avoid interrupting the display. In a non-blocking
network module, this may be accomplished using a Register
DMA. In a blocking or rearrangeable network module, addi
tional buffering may be used at the network modules outputs
in order to accommodate the pipeline bubbles created during
the reconfiguration.

Another method for configuring network modules com
prises semi-synchronous control, which is an extension of the

10

15

25

30

35

40

45

50

55

60

65

14
asynchronous control scheme discussed previously. This
extension may be accomplished using double buffering and a
trigger mask. Firstly, semi-synchronous control double buff
ers all the switch box control registers. The front registers
control the switch boxes while the back registers are pro
grammed by the host. The front registers are updated by the
back registers when a force update bit is set or a trigger signal
is generated by the trigger mask.

Secondly, the semi-synchronous control method uses a
trigger mask. In this embodiment, the trigger mask contains
an array of bits, each bit corresponding to an input port of the
network. A trigger is generated at the end of a video stream for
which the mask bit is set. During initialization, the host uses
a force update bit to program the network module. Afterward,
the host reconfigures the network module by programming
the back registers and setting a mask bit accordingly. At the
end of the video stream corresponding to the mask bit, the
network is automatically reconfigured. One benefit associ
ated with Such exemplary semi-synchronous control method
is that reconfiguration may be automatically synchronized to
Video timing.

Another method for configuring network modules com
prises synchronous control. This method requires that the
network connections be changed synchronously with video
streams. Such synchronization may beachieved using control
packets to configure the network modules. The network mod
ule creates a connection using the control packets, forwarding
Subsequence packets according to the resulting route. If a
packet is forwarded to an occupied output link, the packet is
stalled until that link is free.

In accordance with one embodiment of the present inven
tion, the network carefully accommodates format changes for
the display engine, as even a slight mistake may be noticeable
on a display. In accordance with one embodiment of the
present invention, control registers are used to set one or more
nodes in the network. Three methods for implementing the
control registers are discussed, although other methods are
contemplated. One method, referred to as “single buffering,
relies on the fact that the values of some control registers are
designated “don’t care' during certain periods of time during
the transmission (e.g., vertical blanking). These registers may
be modified freely during Such period without any damaging
effect.

Another method for implementing the control registers
comprises using double buffering, which may be imple
mented using a pair of front (i.e., “current’) and back (i.e.,
“next) registers. The front register provides the current con
trol information while the back register may be updated in the
background. A properly timed signal is used to copy the
content of the back register to the front register. This method
may be used in situations where the window for register
updating is Small or the control doesn't allow any slack for a
format change.

Yet another method for implementing control registers
comprises an inband control method, wherein control infor
mation is embedded within the data stream, such that the
control information and the data stream share a single path.
This method r utilizes synchronization between the control
information and the data stream. It is contemplated that, in
this method, format changes may be performed rapidly, even
in a heavily pipelined design. This method is well suited for
high performance designs such as 3D graphics processors.

FIG. 14 illustrates the three methods (i.e., Register bus,
Register DMA, and control packets) used to write or imple
ment control registers in accordance with the present inven
tion. Each of these method supports certain types of control

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 21 of 23

Avago - Ex. 2003, Page 000038
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
15

register. While only three methods are discussed and illus
trated, other methods are contemplated.
One method for writing or implementing control registers

comprises using the register bus and Supports single and
double buffering. The host uses the register bus to directly
program the control registers. The host further controls the
write timing and ordering. In one embodiment, double buff
ering may be used to decouple the host from the video timing.
However, since the registers are written one at a time using a
relatively slow interface (i.e., the register bus), the process
may be considered time consuming in comparison to the
other methods.

Another method for writing or implementing control reg
isters comprises using the register DMA and Supports single
and double buffering. The register DMA automates the reg
ister programming. The register DMA controller is used to
stream predefined lists of register write into the display
engine through the registerbus. The write timing is controlled
by the triggering signals generated by various nodes, thus the
real-time requirement on the host is relaxed. In addition, this
method may potentially eliminate most double buffering.

Yet another method for writing or implementing control
registers comprises using control packets and Supports all
three control register types. A control packet may be fed into
an entry node's register window using a register DMA. Using
the control packets with single and double buffered control
registers provides benefits similar to those provided by the
Register DMA. The control packet may enable rapid format
changes for inband control. However, such rapid format
changes require extensive control register staging. Further
more, such rapid format changes arent used in video pro
cessing applications, as a format changes occur, at most, once
per field.

It is contemplated that the Register DMA in accordance
with the present invention may be an exemplary method used
to implement format change. However, it is contemplated that
the register bus may be used to handle simpler or ad hoc
control register accesses, while control packets may be used
as a complement to these methods in limited situations.
A flow control valve is used, in one embodiment of the

invention, as a device to control data flow in a display engine.
It is contemplated that such flow control valve or module may
provide for independent data flow rates on one, two more
display pipelines, and enable one or more display pipelines
having different and/or independent data rates. The flow con
trol valve sequences video data and controls information
inside the display engine. Such valve acts primarily by stall
ing and restarting the flow control signals of at least one link.
An exemplary flow control valve maintains synchronization
between video and control with minimum effort. Four flow
control valve modes (i.e., Manual On Manual Off, Manual On
Auto Off, Auto On Manual Off and Auto On Auto Off) are
discussed, although other modes are contemplated.
The Manual On Manual Off type of flow control valve may

be turned on and off by writing to the valve's control register.
The Manual On Auto Off type of flow control valve is turned
on manually. However, the type of flow valve senses a trigger
signal to shut itself off, where the signal may be an external
signal or a bit from the content of a link (e.g., an end of field
signal).
The Auto On Manual Off type of flow control valve is the

opposite of the Manual On Auto Off type of flow control
valve. However, in this embodiment, the Auto On Manual Off
type of flow control valve uses an external trigger signal. The
Auto On Auto Off type of flow control valve uses two trigger
signal inputs: trigger on and trigger off.

10

15

25

30

35

40

45

50

55

60

65

16
In general, the front-end of a video decoder is responsible

for producing pictures while the display engine consumes
them. A frame buffer may be placed between the video
decoder and the display engine as an intermediate storage.

However, it is contemplated that modern display engines
may incorporate one or more front-end like features (com
positing, graphics overlaying, windowing for example).
These features are included in the display engine to eliminate
the memory bandwidth required for handling the intermedi
ate results. In accordance with one embodiment of the present
invention, it is possible to perform multi-pass operations
using a display engine by capturing its output in a frame
buffer (for example to down scale a picture for PIP displaying
or for non real-time compositing of a complicated graphics
background). In addition, using multi-pass operation on a
network (taking advantage of the flow control architecture of
the network) in accordance with one embodiment of the
present invention enables a data throughput greater than the
Video rate. As a result, some functions may be shared or
reused between different video streams. More detail about the
multi-pass operations is disclosed is provided in U.S. Provi
sional Application No. 60/420,308 filed Oct. 22, 2002, titled
“Multi-Pass System and Method Supporting Multiple
Streams of Video', incorporated herein by reference in its
entirety.
Many modifications and variations of the present invention

are possible in light of the above teachings. Thus, it is to be
understood that, within the scope of the appended claims, the
invention may be practiced otherwise than as described here
inabove.

The invention claimed is:
1. A network for processing data configured by a controller

to form at least one display pipeline therein by dynamically
selecting use of at least two selectable nodes from a plurality
of selectable nodes and dynamically concatenating the
selected at least two selectable nodes in the network together,
wherein said at least one display pipeline has an independent
data rate and a flow control module enables said independent
data rate.

2. The network of claim 1, wherein the network is further
configured by said controller to form a plurality of display
pipelines.

3. The network of claim 1, further comprising at least two
display pipelines having different data rates.

4. The network of claim 1, further comprising a handshak
ing protocol configured to generate at least two display pipe
lines.

5. The network of claim 1, wherein the network is further
configured by said controller to change a functionality of said
display pipeline by dynamically concatenating more than two
nodes together.

6. The network of claim 1, wherein said controller is a
register DMA controller configured to Support register
aCCCSS,

7. The network of claim 6, wherein said register DMA
controller is further configured to provide at least one instruc
tion to form said display pipeline.

8. The network of claim 6, wherein said register DMA
controller is further configured to obtain at least one instruc
tion from a register update list.

9. The network of claim 8, wherein said register DMA
controller is further configured to obtain said instruction in
response to a trigger event.

10. A network for processing data comprising:
at least one display pipeline formed by dynamically select

ing and concatenating at least two selectable nodes from

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 22 of 23

Avago - Ex. 2003, Page 000039
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,259,121 B2
17

a plurality of nodes, wherein the plurality of nodes are
configured to process the data;

at least one network module configured to route the data by
connecting the at least two selectable nodes using at least
one link communicating between each of the at least two
selectable nodes and the at least one network module:
and

a register DMA controller for dynamically configuring the
at least one display pipeline.

11. The network of claim 10, wherein the network is further
configured to form a plurality of display pipelines.

12. The network of claim 10, comprising at least two dis
play pipelines having different data rates.

13. The network of claim 10, comprising at least one dis
play pipeline having an independent data rate.

14. The network of claim 13, further comprising a flow
control module configured to enable said independent data
rate.

15. The network of claim 10, further comprising a hand
shaking protocol configured to generate at least two display
pipelines.

16. The network of claim 10, further comprising a plurality
of network modules connecting at least two links and further
configured to route information there between.

17. The network of claim 10, further comprising a video
register bus coupled to said register DMA controller.

18. The network of claim 17 further comprising a register
bus connected to at least said register DMA controller,
wherein said video register bus and register bus use identical
protocol and signals.

19. The network of claim 18, wherein said register DMA
controller forwards all transactions to said video register bus.

20. The network of claim 10, wherein said register DMA
controller is configured to perform register DMA operations.

21. A method of processing data using a network compris
1ng:

forming a first display pipeline using a register DMA con
trollerto dynamically select at least two selectable nodes
in the network;

processing the data using said first display pipeline;
forming a second display pipeline using said register DMA

controller to dynamically select at least two selectable
nodes in the network; and

processing the data using said second display pipeline,
wherein said first and second display pipelines are dif
ferent.

22. A method of processing data using a network compris
1ng:

forming a display pipeline by using a register DMA con
troller to dynamically select and concatenate at least two
selectable nodes from a plurality of nodes in the net
work, wherein at least one network module connects the
at least two selectable nodes using at least one link
between each of the at least two selectable nodes and the
at least one network module; and

processing the data using said display pipeline.
23. The method of claim 22, whereinforming said display

pipeline comprises dynamically coupling a plurality of nodes
together.

24. The method of claim 22, further comprising starting
said display pipeline at an entrance node.

10

15

25

30

35

40

45

50

55

60

18
25. The method of claim 22 further comprising ending said

display pipeline at an exit node.
26. The method of claim 22, further comprising adding

functionality to said display pipeline by dynamically cascad
ing at least one additional node to said at least two nodes.

27. A method of programming an A/V system using a
network comprising:

(a) generating, at a video output, at least one trigger at an
end of a first picture;

(b) obtaining at least one register update list from a main
memory in response to receiving the at least one trigger,

(c) Writing at least one register update entry from said at
least one register update list to at least one register of a
decoder to notify said decoder about said end of said first
picture;

(d) configuring at least one node in the network for a
second picture;

(e) enabling said at least one node:
(f) obtaining said second picture from a frame buffer; and
(g) providing said second picture to a display pipeline in

the network.
28. The programming method of claim 27 comprising

repeating steps (a)-(g).
29. The method of claim 27, wherein said at least one node

is an entry node.
30. The method of claim 27, wherein said at least one node

is a video feeder.
31. The network of claim 27, comprising at least two dis

play pipelines having different data rates.
32. The network of claim 27, comprising at least one dis

play pipeline having an independent data rate.
33. A network for processing data configured by a control

ler to form at least one display pipeline therein by dynami
cally selecting use of at least two selectable nodes from a
plurality of selectable nodes and dynamically concatenating
the selected at least two selectable nodes in the network
together, wherein a handshaking protocol is configured to
generate at least two display pipelines.

34. A network for processing data configured by a register
DMA controller to form at least one display pipeline therein
by dynamically selecting use of at least two selectable nodes
from a plurality of selectable nodes and dynamically concat
enating the selected at least two selectable nodes in the net
work together, wherein said register DMA controller is con
figured to Support register access and to obtain at least one
instruction from a register update list in response to a trigger
event.

35. A system, comprising:
a controller that is operable to configure two or more nodes

in a data processing network to form two or more display
pipelines within said data processing network; and

a flow control module that is operable to configure each of
said two or more display pipelines such that a corre
sponding data rate of each of said two or more display
pipelines is independent of each other.

36. The system according to claim 35, wherein said con
troller dynamically concatenates said two or more nodes in
said data processing network to form said two or more display
pipelines.

Case 3:20-cv-04677-JD Document 112-1 Filed 05/18/21 Page 23 of 23

Avago - Ex. 2003, Page 000040
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Exhibit 2

U.S. Patent No. 6,744,387

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 1 of 13

Avago - Ex. 2003, Page 000041
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

(12) United States Patent
Winger

USOO6744387B2

US 6,744,387 B2
Jun. 1, 2004

(10) Patent No.:
(45) Date of Patent:

(54) METHOD AND SYSTEM FOR SYMBOL
BINARIZATION

(75) Inventor: Lowell Winger, Waterloo (CA)

(73) Assignee: LSI Logic Corporation, Milpitas, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 7 days.

(21) Appl. No.: 10/191,596
(22) Filed: Jul. 10, 2002
(65) Prior Publication Data

US 2004/0008769 A1 Jan. 15, 2004

(51) Int. Cl." ... H03M 7700
(52) U.S. Cl. .. 341/50, 341/51
(58) Field of Search 341/50, 51, 107,

341/106

(56) References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Article-Predictive Quantizing Systems by J.B. O’Neil,
Jr-Manuscript received Dec. 27, 1965.
Article-A method for the construction of Minimum-redun
dancy Codes by David A. Huffman, no date.
Article-A Compressioin Method for Clustered Bit-Vec
torS-Oct. 1978.
Article- pp. 399-401 of the publication entitled IEEE
Transactions on Information Theory Published 1966.
* cited by examiner
Primary Examiner Brian Young
(74) Attorney, Agent, or Firm-Christopher P. Maiorana PC
(57) ABSTRACT

The present invention is directed to an improved method for
the binarization of data in an MPEG data stream. The
invention makes use of unary binarization to create code
words up until an index threshold. Once the threshold has
been met, Succeeding code Symbols have appended to them
an exp-Golomb suffix. This hybrid binarization scheme
reduces the number of binary codewords to be processed by
a Binary Arithmetic Coder (BAC), thus reducing the com
putation required by the BAC.

5,471,207 A 11/1995 Zandi 341/107 6 Claims, 4 Drawing Sheets

1O

14 18 22 -

EnCode
Content Encoder Transport Transmitter
Provider 22 System

12 16 20 24

Transmission
Medium

40 36 32 28

DeCOder 26
Decoder Transport Receiver 22

System

38 34 30

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 2 of 13

Avago - Ex. 2003, Page 000042
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 3 of 13

Avago - Ex. 2003, Page 000043
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2 Sheet 2 of 4 U.S. Patent

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 4 of 13

Avago - Ex. 2003, Page 000044
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2 Sheet 3 of 4 Jun. 1, 2004 U.S. Patent

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 5 of 13

Avago - Ex. 2003, Page 000045
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Jun. 1, 2004 Sheet 4 of 4 US 6,744,387 B2

FIG. 4

1 OO

Start

106
102

Create
ntial

Prefix
No

108

104

110

Add Suffix
Bits to Unary

Prefix

112

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 6 of 13

Avago - Ex. 2003, Page 000046
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2
1

METHOD AND SYSTEM FOR SYMBOL
BINARIZATION

FIELD OF THE INVENTION

The present invention relates generally to a System and
method for the compression of digital Signals. More
Specifically, the present invention relates to reducing the file
Size or the bit rate required by a System using binary
arithmetic encoding to entropy encode a digital Signal Such
as a digital image or digital Video.

BACKGROUND OF THE INVENTION

Throughout this specification we will be using the term
MPEG as a generic reference to a family of international
standards set by the Motion Picture Expert Group. MPEG
reports to sub-committee 29 (SC29) of the Joint Technical
Committee (JTC1) of the International Organization for
Standardization (ISO) and the International Electro
technical Commission (IEC).

Throughout this specification the term H26x will be used
as a generic reference to a closely related group of interna
tional recommendations by the Video Coding Experts Group
(VCEG). VCEG addresses Question 6 (Q.6) of Study Group
16 (SG16) of the International Telecommunications Union
Telecommunication Standardization Sector (ITU-T). These
Standards/recommendations Specify exactly how to repre
Sent visual and audio information in a compressed digital
format. They are used in a wide variety of applications,
including DVD (Digital Video Discs), DVB (Digital Video
Broadcasting), Digital cinema, and videoconferencing.

Throughout this specification the term MPEG/H.26X will
refer to the Superset of MPEG and H.26x standards and
recommendations.

Afeature of MPEG/H.26X is that these standards are often
capable of representing a Video signal with data roughly
/So" the size of the original uncompressed video, while still
maintaining good Visual quality. Although this compression
ratio varies greatly depending on the nature of the detail and
motion of the Source Video, it serves to illustrate that
compressing digital images is an area of interest to those
who provide digital transmission. MPEG/H.26x achieves
high compression of Video through the Successive applica
tion of four basic mechanisms:

1) Storing the luminance (black & white) detail of the
Video signal with more horizontal and Vertical resolu
tion than the two chrominance (colour) components of
the video.

2) Storing only the changes from one video frame to
another, instead of the entire frame. Thus, often Storing
motion vector Symbols indicating Spatial correspon
dence between frames.

3) Storing these changes with reduced fidelity, as quan
tized transform coefficient symbols, to trade-off a
reduced number of bits per symbol with increased
video distortion.

4) Storing all the Symbols representing the compressed
Video with entropy encoding, which exploits the Sta
tistics of the symbols, to reduce the number of bits per
Symbol without introducing any additional Video signal
distortion.

With regard to point 4), the symbols may be encoded as
codewords in a variety of ways. One Such encoding is
binarization. Small codewords are well handled by unary or
exp-Golomb binarizations while large codewords are best

15

25

35

40

45

50

55

60

65

2
represented with the binarization limited to a reasonable
length. Thus there is a need for a method and System
binarization System that retains the most valuable properties
of the unary and exp-Golomb binarizations. That is, Small
codewords should be distinguishable as with a unary
binarization, while large codewords should have their bina
rization limited to a reasonable length. A binarization that
Simultaneously Satisfies these two requirements will reduce
the complexity and the bitrate/size for compressing and
decompressing Video, images, and Signals that are com
pressed using binary arithmetic encoding for entropy encod
ing. The present invention addresses this need.

SUMMARY OF THE INVENTION

The present invention is directed to a method of
binarization, the method comprising the Step of determining
if a code Symbol index value is less than a threshold value,
if So then constructing a codeword using a first binarization
model; else constructing a codeword using a Second bina
rization model.

The present invention is also directed to a binarization
System, the System comprising means for determining if a
code Symbol index value is less than a threshold value, if So
then utilizing means for constructing a codeword using a
first binarization model; else utilizing means for construct
ing a codeword using a Second binarization model.
The present invention is further directed to a computer

readable medium containing instructions for binarization,
comprising instructions for determining if a code symbol
index value is less than a threshold value, if So then
constructing a codeword using a first binarization model;
else constructing a codeword using a second binarization
model.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, and to
show more clearly how it may be carried into effect,
reference will now be made, by way of example, to the
accompanying drawings which aid in understanding an
embodiment of the present invention and in which:

FIG. 1 is a block diagram of a Video transmission and
receiving System;

FIG. 2 is a block diagram of an encoder;
FIG. 3 is a block diagram of a decoder; and
FIG. 4 is a flowchart of a process for codeword construc

tion.

DETAILED DESCRIPTION OF THE
INVENTION

By way of introduction we refer first to FIG. 1, a video
transmission and receiving System, is shown generally as 10.
A content provider 12 provides a video Source 14 to an
encoder 16. A content provider may be anyone of a number
of Sources but for the purpose of Simplicity one may view
Video Source 14 as originating from a television
transmission, be it analog or digital. Encoder 16 receives
Video Source 14 and utilizes a number of compression
algorithms to reduce the size of Video Source 14 and passes
an encoded stream 18 to encoder transport system 20.
Encoder transport system 20 receives stream 18 and restruc
tures it into a transport Stream 22 acceptable to transmitter
24. Transmitter 24 then distributes transport stream 22
through a transport medium 26 Such as the Internet or any
form of network enabled for the transmission of MPEG data
Streams. Receiver 28 receives transport Stream 22 and passes

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 7 of 13

Avago - Ex. 2003, Page 000047
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2
3

it as received stream 30 to decoder transport system 32. In
a perfect world, steams 22 and 30 would be identical.
Decoder transport System 32 processes Stream 30 to create
a decoded Stream 34. Once again, in a perfect world Streams
18 and 34 would be identical. Decoder 36 then reverses the
steps applied by encoder 16 to create output stream 38 that
is delivered to the user 40.

There are several existing major MPEG/H.26x standards:
H.261, MPEG-1, MPEG-2/H.262, MPEG-4/H.263. Among
these, MPEG-2/H.262 is clearly most commercially
Significant, being Sufficient for all the major TV Standards,
including NTSC (National Standards Television Committee)
and HDTV (High Definition Television). Of the series of
MPEG standards that describe and define the syntax for
Video broadcasting, the Standard of relevance to the present
invention is the draft standard ITU-T Recommendation
H.264, ISO/IEC 14496-10 AVC, which is incorporated
herein by reference and is hereinafter referred to as “MPEG
AVC/H.264”.
An MPEG video transmission is essentially a series of

pictures taken at closely spaced time intervals. In the MPEG/
H.26X Standards a picture is referred to as a "frame', and a
"frame' is completely divided into rectangular Sub
partitions known as "picture blocks', with associated
“motion vectors”. Often a picture may be quite similar to the
one that precedes it or the one that follows it. For example,
a Video of waves washing up on a beach would change little
from picture to picture. Except for the motion of the waves,
the beach and Sky would be largely the same. Once the Scene
changes, however, Some or all Similarity may be lost. The
concept of compressing the data in each picture relies upon
the fact that many images often do not change Significantly
from picture to picture, and that if they do the changes are
often simple, Such as image pans or horizontal and vertical
block translations. Thus, transmitting only block translations
(known as “motion vectors”) and differences between pic
ture blocks, as opposed to the entire picture, can result in
considerable Savings in data transmission.

Usually motion vectors are predicted, Such that they are
represented as a difference from their predictor, known as a
predicted motion vector residual. In practice, the pixel
differences between picture blocks are transformed into
frequency coefficients, and then quantized to further reduce
the data transmission. Quantization allows the frequency
coefficients to be represented using only a discrete number
of levels, and is the mechanism by which the compressed
Video becomes a “lossy representation of the original
Video. This process of transformation and quantization is
performed by an encoder.

Referring now to FIG. 2 a block diagram of an encoder is
shown generally as 16. Encoder 16 accepts as input video
Source 14. Video Source 14 is passed to motion estimation
module 50, which determines the motion difference between
frames. The output of motion estimate module 50 is passed
to motion compensation module 52. At combination module
54, the output of motion compensation module 52 is sub
tracted from the input video Source 14 to create input to
transformation and quantization module 56. Output from
motion compensation module 52 is also provided to module
60. Module 56 transforms and quantizes output from module
54. The output of module 56 may have to be recalculated
based upon prediction error, thus the loop comprising mod
ules 52,54,56, 58 and 60. The output of module 56 becomes
the input to inverse transformation module 58. Module 58
applies an inverse transformation and an inverse quantiza
tion to the output of module 56 and provides that to module
60 where it is combined with the output of module 52 to
provide feedback to module 52.

15

25

35

40

45

50

55

60

65

4
Binarization module 62 is where the present invention

resides. Module 62 accepts as input, Symbols created by
module 56 and creates a binary representation of each one in
of the form of a codeword. The codewords are passed to
binary arithmetic encoding module 64 where the frequency
of each codeword is determined and the most frequently
occurring codewords are assigned the lowest Values. The
output of module 64 is encoded stream 18.
With regard to the above description of FIG. 2, as those

skilled in the art will appreciate that the functionality of the
modules illustrated are well defined in the MPEG family of
standards. Further, numerous variations of modules of FIG.
2 have been published and are readily available.

Referring now to FIG. 3 a block diagram of a decoder is
shown. Decoder 36 accepts as input decoded stream 34 to
binary arithmetic decoding module 70. Module 70 decodes
the binary arithmetic encoding performed by module 64 (see
FIG. 2) and passes the output to inverse binarization module
72. Module 72 reverses the binarization of module 62 (see
FIG. 2) and passes its output to inverse transformation and
inverse quantization module 74, which reverses the effects
of module 56 (see FIG. 2). At combination module 76 the
output from module 74 is combined with the output of
motion compensation module 78 to create output stream 38.
The MPEG/H.26x standards define precisely the syntax

that is used for Specifying how quantized coefficients,
motion vectors, and other associated information Such as
block modes are to be represented, as well as the Semantics
for reconstructing Video Source 14 from the Syntax of
encoded Stream 18. In particular, codewords Such as
transformed-quantized picture differences and predicted
motion vector residuals are entropy coded with Such
Schemes as variable length codes (e.g. Huffman codes) or
arithmetic encoding to become the Syntax elements that
form encoded bitstream 18.

Several types of arithmetic codecs (encoder/decoder
pairs) exist. One of the most efficient is the family of binary
arithmetic coders (BACs). Well-known members of this
family include, among others, the Q-coder, QM-coder,
MQ-coder, and QX-coder. A BAC accepts as input a binary
representation of a codeword and by recursively examining
the codewords it receives, is able to compress the codewords
based upon the probability of their frequency.

Since BACS operate only on binary valued data, a signal
compression standard such as MPEG-AVC/H.264 maps
codewords Such as transformed-quantized picture differ
ences and motion vector residuals to binarized symbol
representations prior to binary arithmetic encoding.
Among the commonly used binarization methods are the

following: unary, binary, Golomb, and exp-Golomb.
Unary binarization consists of a number of binary 1's

equal to an indeX for a Symbol followed by a Zero as shown
in Table 1.

TABLE 1.

Binarization by means of the unary code tree

Symbol Index Codeword

O O
1. 1. O
2 1. 1. O
3 1. 1. 1. O
4 1. 1. 1. 1. O
5 1. 1. 1. 1. 1. O
6 1. 1. 1. 1. 1. 1. O

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 8 of 13

Avago - Ex. 2003, Page 000048
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2
S

TABLE 1-continued

Binarization by means of the unary code tree

Symbol Index Codeword

bin no. 1. 2 3 4 5 6 7

The first column of Table 1 contains an index for a
Symbol. The corresponding row for each indeX contains a
binarization of the symbol represented by the index into a
codeword. Thus symbol index “0” results in a codeword of
a single bit, namely “0”. Symbol “1” results in a codeword
of “10, which comprises two bits, and so on. The row
labeled bin no at the bottom of Table 1 contains the
frequency of each bit for a codeword. For example bin no
“1” will contain the number of 0's and 1's that occur as the
first bit of a codeword. Similarly bin no “2” contains the
number of 0's and 1's in the second bit of a codeword, and
SO O.

A BAC by examining each bin no can determine the
length and frequency of a codeword by determining if there
is a Zero in the bin. For example bin no “5” will contain a
Zero for each codeword having a length of five, thus allow
ing the BAC to determine the number or frequency of five
bit codewords.

The advantage of the unary binarization is that a bin
containing a value 0 distinguishes a particular codeword
from all codewords with a larger symbol index. Therefore,
the BAC can be constructed to Separately account for the
Statistical frequency of every individual codeword by main
taining Separate Statistics on the frequency of Zeroes and
ones for every bin. A disadvantage of unary binarization is
that in practice the Statistics of high bins are lumped together
Since the Smaller, more frequent codewords account for the
majority of the bitstream, and infrequently occurring code
words do not occur often enough to enable accurate gath
ering of Statistical data. A major disadvantage of unary
binarization is that the number of binary values that must run
through the BAC will, in the worst case, be as many bins as
the largest Symbol index (which may range into the tens of
thousands). For example, the encoding of a large Symbol
indeX may require tens of thousands of binary bins to be sent
through the BAC.

Binary binarization creates a codeword as a fixed length
binary representation of the symbol index. Thus symbol
index “3” is encoded as “11” with the appropriate number of
leading Zeros applied. The disadvantage of binary binariza
tion is that a single bin no longer distinguishes each code
word uniquely. This results in a greatly reduced compression
ratio.

Golomb and exp-Golomb codewords, which use a unary
prefix followed by a binary postfix, may be regarded as
compromise positions between unrary and binary binariza
tions. Golomb codewords with parameter k begin with
unary binarizations as shown by the column labeled MSB
(Most Significant Bits) in Table 2. Appended to the unary
binerization are k binary bits as is shown in the column
labeled LSB (Least Significant Bits) in Table 2. This com
bination produces 2**k distinctbinerizations for each MSB.
The example illustrated in Table 2 shows an exp-Golob code
with k=1, thus the first LSB contains 2** 1 values. The next
levels contains 22 LSB values and so on. Unfortunately,
this still permits extremely long binarizations to occur for
large Symbol indices.

15

25

35

40

45

50

55

60

65

6

TABLE 2

Exp-Golomb codes.

Index MSB LSB

O O
1. 1O O
2 1O 1.
3 110 OO
4 110 O1
5 110 1O
6 110 11
7 1110 OOO
8 1110 OO1
9 1110 O10
1O 1110 O11
11 1110 1OO
12 1110 101

The exp-Golomb code does greatly reduce the maximum
possible number of bins in the binarization of symbol
indices. However, it does not permit codewords with a Small
symbol index (other than index 0) to be uniquely distin
guished from codewords with larger Symbol indices. This
results in reduced compression ratio for the binarizations,
relative to the unary binarization of Table 1.
The present invention provides a binarization that retains

the most valuable properties of the unary and exp-Golomb
binarizations. That is, Small codewords are distinguishable
as with a unary binarization, while large codewords have
their binarization limited to a reasonable length. By doing
So, the present invention provides a binarization that reduces
the complexity and the bitrate/size for compressing and
decompressing video, images, and Signals that are com
pressed using binary arithmetic encoding for entropy encod
Ing.

The present invention allows for the maintenance of a true
prefix code, while Switching between a unary binarization
for small codeword indices and a modified exp-Golomb
binarization for larger codewords. The invention prepends a
fixed prefix to an eXp-Golomb code that begins at a fixed
index value, prior to which unary binarization is used.

Tables 3 and Table 4 demonstrate particular instances of
this new class of binary codes: hybrid unary-exp-Golomb
codes. Table 3 illustrates a binerization that is particularly
appropriate for the binarization of quarter or residual mag
nitudes of MPEG-AVC/H.264.

TABLE 3

Motion vector magnitude residual binarization.

Unary exp-Golomb
Index Prefix Suffix

O O
1. 1O
2 110

63 1... 10
64 1... 110 O
65 1... 110 1.
66 1...1110 OO
67 1...1110 O1
68 1...1110 1O
69 1...1110 11
70 1...11110 OOO
71 1...11110 OO1
72 1...11110 O10
73 1...11110 O11

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 9 of 13

Avago - Ex. 2003, Page 000049
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2
7

TABLE 3-continued

Motion vector magnitude residual binarization.

Unary exp-Golomb
Index Prefix Suffix

74 1...11110 1OO
75 1...11110 101

Table 4 is a binarization that is particularly appropriate for
the binerization of the quantized frequency-transform coef
ficient magnitudes (also often called coefficient levels) of
MPEG-AVC/H.264.

TABLE 4

Coefficient level binarization.

Unary exp-Golomb
Index Prefix Suffix

O O
1. 1O
2 110

15 1... 10
16 1... 110 O
17 1... 110 1.
18 1...1110 OO
19 1...1110 O1
2O 1...1110 1O
21 1...1110 11
22 1...11110 OOO
23 1...11110 OO1
24 1...11110 O10
25 1...11110 O11
26 1...11110 1OO
27 1...11110 101

When these binarizations illustrated in Tables 3 and 4,
bitrate and complexity are both reduced for MPEG-AVC/
H.264 relative to other known
A detailed description of the method for constructing Such

hybridbinerization follows. Let N be the threshold at which
unary to exp-Golomb Switching occurs (N=64 for Table 3,
N=16 for Table 4). The construction of a codeword of this
modified unary binarization table for a given index v is given
by the following algorithm:

If V &N

1) use a unary code of V 1's terminated with a 0
If V =N

1) Form an initial prefix of (N-1) 1's;
2) Determine the number of bits Y+1 required to represent

v-(N-2). For example, for N=64, Y=|log(v-62), and
put it in a unary representation. The unary representa
tion is appended to the initial prefix to form the unary
prefix as shown in Tables 3 and 4.

3) Append the Y least significant bits of “g” where
g=v-(N-2)-2**y in its binary representation to the
prefix.

4) The corresponding bits obtained at Step 3) are shown in
the exp-Golomb Suffix column of Tables 3 and 4.

Referring now to FIG. 4, a flowchart of a process for
codeword construction is shown generally as 100. Process
100 illustrates the steps of the present invention. Process 100
begins at step 102 where a test is made to determine if the
value of the code symbol index is less than the value of the
threshold. If it is processing moves to step 104 were a unary
codeword is constructed comprising a Series of V 1's termi

15

25

35

40

45

50

55

60

65

8
nated with a 0. Processing then ends at Step 112. Returning
to Step 102 if the test is negative, processing moves to Step
106, where an initial prefix of N 1's is created. Processing
then moves to step 108 where the most significant bits of the
value V-(N-2) are extracted and converted to a unary
representation. The unary representation is then appended to
the initial prefix to create a unary prefix. Process 100 then
moves to step 110 where the binary representation of the
least significant bits of the value of V-(N-2) are appended
to the unary prefix to create the codeword.
Although the description of the present invention

describes a binarization Scheme for MPEG-AVC/H.264, it is
not the intent of the inventors to restrict this binarization
Scheme Solely to the referenced proposed Standard. AS one
skilled in the art can appreciate any System utilizing BAC
may make use of the present invention improve binarization.

Although the present invention has been described as
being implemented in Software, one skilled in the art will
recognize that it may be implemented in hardware as well.
Further, it is the intent of the inventors to include computer
readable forms of the invention. Computer readable forms
meaning any Stored format that may be read by a computing
device.

Although the invention has been described with reference
to certain Specific embodiments, various modifications
thereof will be apparent to those skilled in the art without
departing from the Spirit and Scope of the invention as
outlined in the claims appended hereto.
What is claimed is:
1. A method of binarization,
comprising the Step of:
determining if a code Symbol index value,
if said code symbol index value is less than a threshold

value, constructing a codeword using a unary binariza
tion; and

if Said code Symbol index value is not less than Said
threshold value, constructing a codeword using a exp
Golomb binarization.

2. The method of claim 1, wherein said exp-Golomb
binarization model comprises the Steps of:

a) forming an initial prefix of 1's, equal in number to said
threshold value minus one;

b) determining the number of bits, Y+1 required to rep
resent v-(N-2) where y=|log(v-(N-2)), v is the code
symbol index value, and N is the threshold value, and
then transforming Y into a unary representation to create
a result,

c) appending the result of step b) to the result of Step a);
d) determining the least significant bits, of V-(N-2)-

2**Y, and
e) appending the result of Step d) in its binary represen

tation to the result of step c) to create Said codeword.
3. A binarization System comprising:
means for determining if a code Symbol index value is less

than a threshold value
means for constructing a codeword using a unary

binarization if Said code Symbol index value is less
than a threshold value; and

means for constructing a codeword using a exp-Golomb
binarization if Said code Symbol index value is less than
a threshold value.

4. The system of claim 3, wherein said exp-Golomb
binarization comprises means for:

a) forming an initial prefix of 1's, equal in number to said
threshold value minus one;

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 10 of 13

Avago - Ex. 2003, Page 000050
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,744,387 B2
9

b) determining the number of bits, Y+1 required to rep
resent v-(N-2) where y=|log(v-(N-2)), v is the code
symbol index value, and N is the threshold value, and
then transforming y into a unary representation to
create a result;

c) appending the result of step b) to the result of Step a);
d) determining the least significant bits, of V-(N=2)-

2**Y; and
e) appending the result of Step d) in its binary represen

tation to the result of step c) to create Said codeword.
5. A computer readable medium containing instructions

for binarization, comprising instructions for:
determining if a code symbol index value;
if said code symbol index value is less than a threshold

value, constructing a codeword using a unary binariza
tion; and

if said symbol index value is not less than said threshold
value constructing a codeword using a exp-Golomnb
binarization.

1O

15

10
6. The computer readable medium of claim 5, wherein

Said exp-Golomb binarization comprises instructions for:
a) forming an initial prefix of 1's, equal in number to said

threshold value;
b) determining the number of bits, Y+1, required to

represent v-(N=2) where y=|log(v-(N-2)), v is the
code symbol index value, and N is the threshold value,
and then transforming Y into a unary representation to
create a result;

c) appending the result of step b) to the result of Step a);
d) determining the least significant bits, of V-(N=2)-

2**Y; and
e) appending the result of Step d) in its binary represen

tation to the result of step c) to create Said codeword.

k k k k k

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 11 of 13

Avago - Ex. 2003, Page 000051
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,744,387 B2 Page 1 of 1
APPLICATIONNO. : 10/191596
DATED : June 1, 2004
INVENTOR(S) : Lowell Winger

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In column 8, line 32, replace “determining if a code symbol with --determining a code symbol--.

In column 8, line 59, replace “a threshold value with --said threshold value--.
In column 8, line 62, replace “a threshold value with --said threshold value--.
In column 9, line 13, replace “determining if a code symbol with --determining a code symbol--.

Signed and Sealed this
Eighth Day of May, 2012

David J. Kappos
Director of the United States Patent and Trademark Office

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 12 of 13

Avago - Ex. 2003, Page 000052
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,744,387 B2 Page 1 of 1
APPLICATIONNO. : 10/191596
DATED : June 1, 2004
INVENTOR(S) : Lowell Winger

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In column 8, line 62, replace “is less than with --is not less than--.

Signed and Sealed this
Tenth Day of March, 2015

74-4-04- 2% 4
Michelle K. Lee

Deputy Director of the United States Patent and Trademark Office

Case 3:20-cv-04677-JD Document 112-2 Filed 05/18/21 Page 13 of 13

Avago - Ex. 2003, Page 000053
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Exhibit 3

U.S. Patent No. 6,982,663

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 1 of 13

Avago - Ex. 2003, Page 000054
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

USOO6982663B2

(12) United States Patent (10) Patent No.: US 6,982,663 B2
Winger (45) Date of Patent: Jan. 3, 2006

(54) METHOD AND SYSTEM FOR SYMBOL 6,236,960 B1 * 5/2001 Peng et al. 704/211
BINARIZATION 6,636.222 B1 * 10/2003 Valmiki et al. 34.5/505

6,744,387 B2 * 6/2004 Winger 341/50
(75) Inventor: Lowell Winger, Waterloo (CA) 6.850,568 B1 * 2/2005 Williams et al........ 375/240.16

s 2004/O114683 A1 6/2004 Schwarz et al. 375/240.2

(73) ASSignee: It was Corporation, Milpitas, CA OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Article, pp 308-311, Predictive Quantizing Systems by
patent is extended or adjusted under 35 J.B. O'Neil, Jr. -Manuscript received Dec. 27, 1965.
U.S.C. 154(b) by 7 days. Article- pp. 1098-1101, A Method for the Construction of

Minimum-Redundancy Codes by David A. Huffman, no
(21) Appl. No.: 10/770,213 date given.

1-1. Article- pp. 689-721, A Compression Method for Clustered
(22) Filed: Feb. 2, 2004 Bit-Vectors by Jukka Teuhola-Oct. 1978.
(65) Prior Publication Data Article- pp. 399-401 of the publication entitled IEEE trans

US 2004/0150540 A1 Aug. 5, 2004 actions on Information Theory, 1966, Sep.

Related U.S. Application Data * cited by examiner

(63) Continuation of application No. 10/191,596, filed on Jul. 10, Primary Examiner Brian Young
2002, now Pat. No. 6,744,387. (74) Attorney, Agent, or Firm-Christopher P. Maiorana

(51) Int. Cl. (57) ABSTRACT
H03M 7700 (2006.01)

The present invention is directed to an improved method for
(52) U.S. Cl. ... 341/107 the binarization of data in an MPEG data stream. The
(58) Field of Classification Search 341/50, invention makes use of unary binarization to create code

341/51, 107, 106; 704/221, 222, 201, 204, words up until an index threshold. Once the threshold has
704/503, 500, 200, 211,236 been met, Succeeding code Symbols have appended to them

See application file for complete Search history. an exp-Golomb suffix. This hybrid binarization scheme
reduces the number of binary codewords to be processed by

(56) References Cited a Binary Arithmetic Coder (BAC), thus reducing the com
putation required by the BAC.

U.S. PATENT DOCUMENTS

5,471,207 A 11/1995 Zandi et al. 341/107 21 Claims, 6 Drawing Sheets

TRANSFORMATION BINARY
AND BNARIZATION ARTHMETIC

QUANIZATION ENCODING

NVERSE
TRANSFORMATION

AND
NVERSE

OUANTIZATION
14

MOTION
COMPENSATION

MOTION
ESTMATION

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 2 of 13

Avago - Ex. 2003, Page 000055
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2 Sheet 1 of 6 Jan. 3, 2006 U.S. Patent

22

92

W((\[C]EWN NOISSIWSN WHL 22

08 HEAIBOETH 82 HELLIWSN\/B 1
22

WE 1SÅS
28

02

WELSÅS 1HOdSNWHL HECIOONE

89 HEOOOBC] 99 HEOOONE

07 HECJIAOBd LNB LNO O

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 3 of 13

Avago - Ex. 2003, Page 000056
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2 Sheet 2 of 6 Jan. 3, 2006 U.S. Patent

NO||L\/SNEdWOO NOLLOW
-- - - as um war m or - amo - up P was ure m run are -

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 4 of 13

Avago - Ex. 2003, Page 000057
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2 Sheet 3 of 6 Jan. 3, 2006 U.S. Patent

NOI LVSNBCHWOO NO}_1(OW

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 5 of 13

Avago - Ex. 2003, Page 000058
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Jan. 3, 2006 Sheet 4 of 6 US 6,982,663 B2

1 OO

106

102
CREATE
NTIAL
PREFIX

NO

108

CREATE
UNARY
PREFX

CREATE
UNARY

CODEWORD 104

1 10

ADD SUFFIX
BTS TO
UNARY
PREFX

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 6 of 13

Avago - Ex. 2003, Page 000059
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Jan. 3, 2006 Sheet S of 6 US 6,982,663 B2

Table 3 - Motion vector magnitude residual binarization.

Unary exp-Golomb
Prefix Suffix

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 7 of 13

Avago - Ex. 2003, Page 000060
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Jan. 3, 2006 Sheet 6 of 6 US 6,982,663 B2

Table 4 - Coefficient level binarization.

exp-Golomb
Suffix

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 8 of 13

Avago - Ex. 2003, Page 000061
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2
1

METHOD AND SYSTEM FOR SYMBOL
BINARIZATION

This is a continuation of U.S. Ser. No. 10/191,596, filed
Jul. 10, 2002, now U.S. Pat. No. 6,744,387.

FIELD OF THE INVENTION

The present invention relates generally to a System and
method for the compression of digital Signals. More
Specifically, the present invention relates to reducing the file
Size or the bit rate required by a System using binary
arithmetic encoding to entropy encode a digital Signal Such
as a digital image or digital Video.

BACKGROUND OF THE INVENTION

Throughout this specification we will be using the term
MPEG as a generic reference to a family of international
standards set by the Motion Picture Expert Group. MPEG
reports to sub-committee 29 (SC29) of the Joint Technical
Committee (JTC1) of the International Organization for
Standardization (ISO) and the International Electro
technical Commission (IEC).

Throughout this specification the term H.26x will be used
as a generic reference to a closely related group of interna
tional recommendations by the Video Coding Experts Group
(VCEG). VCEG addresses Question 6 (Q.6) of Study Group
16 (SG16) of the International Telecommunications Union
Telecommunication Standardization Sector (ITU-T). These
Standards/recommendations Specify exactly how to repre
Sent visual and audio information in a compressed digital
format. They are used in a wide variety of applications,
including DVD (Digital Video Discs), DVB (Digital Video
Broadcasting), Digital cinema, and videoconferencing.

Throughout this specification the term MPEG/H.26x will
refer to the Superset of MPEG and H.26x standards and
recommendations.

Afeature of MPEG/H.26X is that these standards are often
capable of representing a Video signal with data roughly
/So" the size of the original uncompressed video, while still
maintaining good Visual quality. Although this compression
ratio varies greatly depending on the nature of the detail and
motion of the Source Video, it serves to illustrate that
compressing digital images is an area of interest to those
who provide digital transmission. MPEG/H.26x achieves
high compression of Video through the Successive applica
tion of four basic mechanisms:
1) Storing the luminance (black & white) detail of the video

Signal with more horizontal and Vertical resolution than
the two chrominance (colour) components of the Video.

2) Storing only the changes from one video frame to another,
instead of the entire frame. Thus, often Storing motion
vector Symbols indicating Spatial correspondence
between frames.

3) Storing these changes with reduced fidelity, as quantized
transform coefficient Symbols, to trade-off a reduced
number of bits per symbol with increased video distor
tion.

4) Storing all the Symbols representing the compressed
Video with entropy encoding, which exploits the Statistics
of the symbols, to reduce the number of bits per symbol
without introducing any additional Video signal distortion.
With regard to point 4), the symbols may be encoded as

codewords in a variety of ways. One Such encoding is
binarization. Small codewords are well handled by unary or
exp-Golomb binarizations while large codewords are best
represented with the binarization limited to a reasonable

15

25

35

40

45

50

55

60

65

2
length. Thus there is a need for a method and System
binarization System that retains the most valuable properties
of the unary and exp-Golomb binarizations. That is, Small
codewords should be distinguishable as with a unary
binarization, while large codewords should have their bina
rization limited to a reasonable length. A binarization that
Simultaneously Satisfies these two requirements will reduce
the complexity and the bitrate/size for compressing and
decompressing Video, images, and Signals that are com
pressed using binary arithmetic encoding for entropy encod
ing. The present invention addresses this need.

SUMMARY OF THE INVENTION

The present invention is directed to a method of
binarization, the method comprising the Step of determining
if a code Symbol index value is less than a threshold value,
if So then constructing a codeword using a first binarization
model; else constructing a codeword using a Second bina
rization model.

The present invention is also directed to a binarization
System, the System comprising means for determining if a
code Symbol index value is less than a threshold value, if So
then utilizing means for constructing a codeword using a
first binarization model; else utilizing means for construct
ing a codeword using a Second binarization model.
The present invention is further directed to a computer

readable medium containing instructions for binarization,
comprising instructions for determining if a code symbol
index value is less than a threshold value, if So then
constructing a codeword using a first binarization model;
else constructing a codeword using a Second binarization
model.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, and to
show more clearly how it may be carried into effect,
reference will now be made, by way of example, to the
accompanying drawings which aid in understanding an
embodiment of the present invention and in which:

FIG. 1 is a block diagram of a Video transmission and
receiving System;

FIG. 2 is a block diagram of an encoder;
FIG. 3 is a block diagram of a decoder;
FIG. 4 is a flowchart of a process for codeword construc

tion;
FIG. 5 is a table for motion vector magnitude residual

binarization; and
FIG. 6 is a table for coefficient level binarization.

DETAILED DESCRIPTION OF THE
INVENTION

By way of introduction we refer first to FIG. 1, a video
transmission and receiving System, is shown generally as 10.
A content provider 12 provides a video Source 14 to an
encoder 16. A content provider may be anyone of a number
of Sources but for the purpose of Simplicity one may view
Video Source 14 as originating from a television
transmission, be it analog or digital. Encoder 16 receives
Video Source 14 and utilizes a number of compression
algorithms to reduce the size of Video Source 14 and passes
an encoded stream 18 to encoder transport system 20.
Encoder transport system 20 receives stream 18 and restruc
tures it into a transport Stream 22 acceptable to transmitter
24. Transmitter 24 then distributes transport stream 22

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 9 of 13

Avago - Ex. 2003, Page 000062
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2
3

through a transport medium 26 Such as the Internet or any
form of network enabled for the transmission of MPEG data
Streams. Receiver 28 receives transport Stream 22 and passes
it as received stream 30 to decoder transport system 32. In
a perfect world, steams 22 and 30 would be identical.
Decoder transport System 32 processes Stream 30 to create
a decoded Stream 34. Once again, in a perfect world Streams
18 and 34 would be identical. Decoder 36 then reverses the
steps applied by encoder 16 to create output stream 38 that
is delivered to the user 40.

There are several existing major MPEG/H.26x standards:
H.261, MPEG-1, MPEG-2/H.262, MPEG-4/H.263. Among
these, MPEG-2/H.262 is clearly most commercially
Significant, being Sufficient for all the major TV Standards,
including NTSC (National Standards Television Committee)
and HDTV (High Definition Television). Of the series of
MPEG standards that describe and define the syntax for
Video broadcasting, the Standard of relevance to the present
invention is the draft standard ITU-T Recommendation
H.264, ISO/IEC 14496-10 AVC, which is incorporated
herein by reference and is hereinafter referred to as “MPEG
AVC/H.264”.
An MPEG video transmission is essentially a series of

pictures taken at closely spaced time intervals. In the MPEG/
H.26X Standards a picture is referred to as a "frame', and a
"frame' is completely divided into rectangular Sub
partitions known as "picture blocks', with associated
“motion vectors”. Often a picture may be quite similar to the
one that precedes it or the one that follows it. For example,
a Video of waves washing up on a beach would change little
from picture to picture. Except for the motion of the waves,
the beach and Sky would be largely the same. Once the Scene
changes, however, Some or all Similarity may be lost. The
concept of compressing the data in each picture relies upon
the fact that many images often do not change Significantly
from picture to picture, and that if they do the changes are
often Simple, Such as image pans or horizontal and vertical
block translations. Thus, transmitting only block translations
(known as “motion vectors”) and differences between pic
ture blocks, as opposed to the entire picture, can result in
considerable Savings in data transmission.

Usually motion vectors are predicted, Such that they are
represented as a difference from their predictor, known as a
predicted motion vector residual. In practice, the pixel
differences between picture blocks are transformed into
frequency coefficients, and then quantized to further reduce
the data transmission. Quantization allows the frequency
coefficients to be represented using only a discrete number
of levels, and is the mechanism by which the compressed
Video becomes a “lossy representation of the original
Video. This process of transformation and quantization is
performed by an encoder.

Referring now to FIG. 2 a block diagram of an encoder is
shown generally as 16. Encoder 16 accepts as input video
Source 14. Video Source 14 is passed to motion estimation
module 50, which determines the motion difference between
frames. The output of motion estimate module 50 is passed
to motion compensation module 52. At combination module
54, the output of motion compensation module 52 is sub
tracted from the input video Source 14 to create input to
transformation and quantization module 56. Output from
motion compensation module 52 is also provided to module
60. Module 56 transforms and quantizes output from module
54. The output of module 56 may have to be recalculated
based upon prediction error, thus the loop comprising mod
ules 52,54,56, 58 and 60. The output of module 56 becomes
the input to inverse transformation module 58. Module 58
applies an inverse transformation and an inverse quantiza
tion to the output of module 56 and provides that to module
60 where it is combined with the output of module 52 to
provide feedback to module 52.

15

25

35

40

45

50

55

60

65

4
Binarization module 62 is where the present invention

resides. Module 62 accepts as input, Symbols created by
module 56 and creates a binary representation of each one in
of the form of a codeword. The codewords are passed to
binary arithmetic encoding module 64 where the frequency
of each codeword is determined and the most frequently
occurring codewords are assigned the lowest Values. The
output of module 64 is encoded stream 18.
With regard to the above description of FIG. 2, as those

skilled in the art will appreciate that the functionality of the
modules illustrated are well defined in the MPEG family of
standards. Further, numerous variations of modules of FIG.
2 have been published and are readily available.

Referring now to FIG. 3 a block diagram of a decoder is
shown. Decoder 36 accepts as input decoded stream 34 to
binary arithmetic decoding module 70. Module 70 decodes
the binary arithmetic encoding performed by module 64 (see
FIG. 2) and passes the output to inverse binarization module
72. Module 72 reverses the binarization of module 62 (see
FIG. 2) and passes its output to inverse transformation and
inverse quantization module 74, which reverses the effects
of module 56 (see FIG. 2). At combination module 76 the
output from module 74 is combined with the output of
motion compensation module 78 to create output stream 38.
The MPEG/H.26x standards define precisely the syntax

that is used for Specifying how quantized coefficients,
motion vectors, and other associated information Such as
block modes are to be represented, as well as the Semantics
for reconstructing Video Source 14 from the Syntax of
encoded Stream 18. In particular, codewords Such as
transformed-quantized picture differences and predicted
motion vector residuals are entropy coded with Such
Schemes as variable length codes (e.g. Huffman codes) or
arithmetic encoding to become the syntax elements that
form encoded bitstream 18.

Several types of arithmetic codecs (encoder/decoder
pairs) exist. One of the most efficient is the family of binary
arithmetic coders (BACs). Well-known members of this
family include, among others, the Q-coder, QM-coder,
MQ-coder, and QX-coder. A BAC accepts as input a binary
representation of a codeword and by recursively examining
the codewords it receives, is able to compress the codewords
based upon the probability of their frequency.

Since BACS operate only on binary valued data, a signal
compression standard such as MPEG-AVC/H.264 maps
codewords Such as transformed-quantized picture differ
ences and motion vector residuals to binarized symbol
representations prior to binary arithmetic encoding.
Among the commonly used binarization methods are the

following: unary, binary, Golomb, and exp-Golomb.
Unary binarization consists of a number of binary 1's

equal to an indeX for a Symbol followed by a Zero as shown
in Table 1.

TABLE 1.

Binarization by means of the unary code tree

Symbol Index Codeword

O O
1. 1. O
2 1. 1. O
3 1. 1. 1. O
4 1. 1. 1. 1. O
5 1. 1. 1. 1. 1. O
6 1. 1. 1. 1. 1. 1. O

bin no. 1. 2 3 4 5 6 7

The first column of Table 1 contains an index for a
Symbol. The corresponding row for each indeX contains a

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 10 of 13

Avago - Ex. 2003, Page 000063
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2
S

binarization of the symbol represented by the index into a
codeword. Thus symbol index “0” results in a codeword of
a single bit, namely “0”. Symbol “1” results in a codeword
of “10”, which comprises two bits, and so on. The row
labeled bin no at the bottom of Table 1 contains the
frequency of each bit for a codeword. For example bin no
“1” will contain the number of 0s and 1's that occur as the
first bit of a codeword. Similarly bin no “2” contains the
number of 0s and 1’s in the second bit of a codeword, and
SO O.

A BAC by examining each bin no can determine the
length and frequency of a codeword by determining if there
is a Zero in the bin. For example bin no “5” will contain a
Zero for each codeword having a length of five, thus allow
ing the BAC to determine the number or frequency of five
bit codewords.

The advantage of the unary binarization is that a bin
containing a value 0 distinguishes a particular codeword
from all codewords with a larger symbol index. Therefore,
the BAC can be constructed to Separately account for the
Statistical frequency of every individual codeword by main
taining Separate Statistics on the frequency of Zeroes and
ones for every bin. A disadvantage of unary binarization is
that in practice the Statistics of high bins are lumped together
Since the Smaller, more frequent codewords account for the
majority of the bitstream, and infrequently occurring code
words do not occur often enough to enable accurate gath
ering of Statistical data. A major disadvantage of unary
binarization is that the number of binary values that must run
through the BAC will, in the worst case, be as many bins as
the largest Symbol index (which may range into the tens of
thousands). For example, the encoding of a large Symbol
index may require tens of thousands of binary bins to be sent
through the BAC.

Binary binarization creates a codeword as a fixed length
binary representation of the symbol index. Thus symbol
index “3” is encoded as “11”, with the appropriate number
of leading ZeroS applied. The disadvantage of binary bina
rization is that a single bin no longer distinguishes each
codeword uniquely. This results in a greatly reduced com
pression ratio.
Golomb and exp-Golomb codewords, which use a unary

prefix followed by a binary postfix, may be regarded as
compromise positions between unary and binary binariza
tions. Golomb codewords with parameter k begin with
unary binarizations as shown by the column labeled MSB
(Most Significant Bits) in Table 2. Appended to the unary
binarization are k binary bits as is shown in the column
labeled LSB (Least Significant Bits) in Table 2. This com
bination produces 2**k distinct binarizations for each MSB.
The example illustrated in Table 2 shows an exp-Golomb
code with k=1, thus the first LSB contains 2** 1 values. The
next level contains 2** 2 LSB values and so on.
Unfortunately, this still permits extremely long binarizations
to occur for large Symbol indices.

TABLE 2

Exp-Golomb codes.

Index MSB LSB

O O
1. 1O O
2 1O 1.
3 110 OO
4 110 O1
5 110 1O
6 110 11
7 1110 OOO

15

25

35

40

45

50

55

60

65

6

TABLE 2-continued

Exp-Golomb codes.

Index MSB LSB

8 1110 OO1
9 1110 O1O
1O 1110 O11
11 1110 1OO
12 1110 101

The exp-Golomb code does greatly reduce the maximum
possible number of bins in the binarization of symbol
indices. However, it does not permit codewords with a Small
symbol index (other than index 0) to be uniquely distin
guished from codewords with larger Symbol indices. This
results in reduced compression ratio for the binarizations,
relative to the unary binarization of Table 1.
The present invention provides a binarization that retains

the most valuable properties of the unary and exp-Golomb
binarizations. That is, Small codewords are distinguishable
as with a unary binarization, while large codewords have
their binarization limited to a reasonable length. By doing
So, the present invention provides a binarization that reduces
the complexity and the bitrate/size for compressing and
decompressing Video, images, and Signals that are com
pressed using binary arithmetic encoding for entropy encod
ing.
The present invention allows for the maintenance of a true

prefix code, while Switching between a unary binarization
for small codeword indices and a modified exp-Golomb
binarization for larger codewords. The invention prepends a
fixed prefix to an eXp-Golomb code that begins at a fixed
index value, prior to which unary binarization is used.

Referring to FIG. 5 and 6, Tables 3 and Table 4 demon
Strate particular instances of this new class of binary codes:
hybrid unary-exp-Golomb codes. Table 3 illustrates a bina
rization that is particularly appropriate for the binarization of
quarter pixel motion vector residual magnitudes of MPEG
AVC/H.264.

With these binarizations illustrated in Tables 3 and 4,
bitrate and complexity are both reduced for MPEG-AVC/
H.264 relative to other known binarizations.
A detailed description of the method for constructing Such

hybrid binarizations follows. Let N be the threshold at which
unary to exp-Golomb Switching occurs (N=64 for Table 3,
N=16 for Table 4). The construction of a codeword of this
modified unary binarization table for a given index v is given
by the following algorithm:

If VN

1) use a unary code of V 1's terminated with a 0

1) Form an initial prefix of (N-1) 1's;
2) Determine the number of bits Y+1 required to represent

v-(N-2). For example, for N=64, Y=|log(v-62), and
put it in a unary representation. The unary representa
tion is appended to the initial prefix to form the unary
prefix as shown in Tables 3 and 4.

3) Append the Y least significant bits of “g” where
g=v-(N-2)-2**Y in its binary representation to the
prefix.

4) The corresponding bits obtained at Step 3) are shown in
the exp-Golomb Suffix column of Tables 3 and 4.

Referring now to FIG. 4, a flowchart of a process for
codeword construction is shown generally as 100. Process
100 illustrates the steps of the present invention. Process 100
begins at step 102 where a test is made to determine if the

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 11 of 13

Avago - Ex. 2003, Page 000064
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2
7

value of the code symbol index is less than the value of the
threshold. If it is processing moves to step 104 were a unary
codeword is constructed comprising a Series of V 1's termi
nated with a 0. Processing then ends at Step 112. Returning
to Step 102 if the test is negative, processing moves to Step
106, where an initial prefix of N 1's is created. Processing
then moves to step 108 where the most significant bits of the
value V-(N-2) are extracted and converted to a unary
representation. The unary representation is then appended to
the initial prefix to create a unary prefix. Process 100 then
moves to step 110 where the binary representation of the
least significant bits of the value of V-(N-2) are appended
to the unary prefix to create the codeword.
Although the description of the present invention

describes a binarization scheme for MPEG-AVC/H.264, it is
not the intent of the inventors to restrict this binarization
Scheme Solely to the referenced proposed Standard. AS one
skilled in the art can appreciate any System utilizing BAC
may make use of the present invention improve binarization.

Although the present invention has been described as
being implemented in Software, one skilled in the art will
recognize that it may be implemented in hardware as well.
Further, it is the intent of the inventors to include computer
readable forms of the invention. Computer readable forms
meaning any Stored format that may be read by a computing
device.

Although the invention has been described with reference
to certain Specific embodiments, various modifications
thereof will be apparent to those skilled in the art without
departing from the Spirit and Scope of the invention as
outlined in the claims appended hereto.
What is claimed is:
1. A method for generating an index value from a code

word for digital Video decoding, comprising the Steps of:
(A) setting said index value to a threshold in response to

a first portion of Said codeword having a first pattern;
(B) adding an offset to said index value based on a Second

pattern in a Second portion of Said codeword following
Said first portion in response to Said first portion having
Said first pattern; and

(C) adding a value to said index value based on a third
pattern in a third portion of Said codeword following
Said Second portion in response to Said first portion
having Said first pattern.

2. The method according to claim 1, further comprising
the step of:

generating Said indeX value based on a fourth pattern in
Said first portion in response to Said fourth pattern being
other than Said first pattern.

3. The method according to claim 2, wherein said first
pattern is a predetermined pattern unique from all possible
representations of Said fourth pattern.

4. The method according to claim 2, wherein Said fourth
pattern comprises (i) between Zero and a plurality of first bits
having a first State and (ii) a second bit having a second State
opposite Said first State.

5. The method according to claim 4, wherein Said Second
bit follows said first bits.

6. The method according to claim 1, wherein said first
pattern comprises a plurality of bits each having a first State.

7. The method according to claim 1, wherein Said Second
pattern comprises between Zero and a plurality of first bits
having a first State and (ii) a second bit having a second State
opposite Said first State.

8. The method according to claim 1, wherein said third
pattern comprises a binary number.

9. The method according to claim 1, wherein said code
word in compatible with at least one of an International
Organization for Standardization/International Electrotech
nical Commission 14496-10 standard and an International

1O

15

25

35

40

45

50

55

60

65

8
Telecommunication Union-Telecommunications Standard
ization Sector Recommendation H.264.

10. The method according to claim 1, further comprising
the step of:

generating Said index value based on a fourth pattern in
Said first portion in response to Said fourth pattern being
other than said first pattern, wherein (i) said first pattern
comprises a plurality of bits each having a first State,
(ii) said first pattern is unique from all possible repre
Sentations of Said fourth pattern, (iii) each of Said
representations of Said fourth pattern ends in a bit
having a second State opposite Said first state and (iv)
Said Second pattern has a Same number of bits as Said
third pattern.

11. A System comprising:
a decoder configured to generate a codeword; and
a circuit configured to (i) set an index value to a threshold

in response to a first portion of Said codeword having
a first pattern, (ii) add an offset to said index value
based on a Second pattern in a Second portion of Said
codeword following Said first portion in response to
Said first portion having said first pattern and (iii) add
a value to Said index value based on a third pattern in
a third portion of Said codeword following Said Second
portion in response to Said first portion having Said first
pattern.

12. A method for generating a codeword from an index
value for digital Video encoding, comprising the Steps of:

(A) generating a first pattern in a first portion of Said
codeword in response to Said index value being at least
as great as a threshold;

(B) generating a second pattern in a second portion of Said
codeword following said first portion representing an
offset of Said index value above said threshold; and

(C) generating a third pattern in a third portion of Said
codeword following Said Second portion representing a
value of Said index value above said offset.

13. The method according to claim 12, further comprising
the step of:

generating a fourth pattern in Said first portion based on
Said index value in response to Said index value being
below said threshold.

14. The method according to claim 13, wherein said first
pattern is a predetermined pattern unique from all possible
representations of Said fourth pattern.

15. The method according to claim 13, wherein said
fourth pattern comprises (i) between Zero and a plurality of
first bits having a first State and (ii) a Second bit having a
Second State opposite Said first State.

16. The method according to claim 12, wherein (i) said
offset has a first representation and (ii) said value has a
Second representation different than Said first representation.

17. The method according to claim 12, wherein said
Second pattern has a same number of bits as Said third
pattern.

18. The method according to claim 12, wherein said
Second portion is void in response to Said index value being
below said threshold.

19. The method according to claim 12, wherein said third
portion is void in response to Said indeX value being below
said threshold.

20. The method according to claim 12, wherein said
codeword in compatible with at least one of an International
Organization for Standardization/International Electrotech
nical Commission 14496-10 standard and an International
Telecommunication Union-Telecommunications Standard
ization Sector Recommendation H.264.

21. A System comprising:
a circuit configured to (i) generate a first pattern in a first

portion of a codeword in response to an indeX value

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 12 of 13

Avago - Ex. 2003, Page 000065
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 6,982,663 B2
9 10

being at least as great as a threshold, (ii) generate a following Said Second portion representing a value of
Second pattern in a Second portion of Said codeword Said index value above Said offset; and
following Said first portion representing an offset of an encoder configured to encode Said codeword.
Said index value above said threshold and (iii) gener
ating a third pattern in a third portion of Said codeword k

Case 3:20-cv-04677-JD Document 112-3 Filed 05/18/21 Page 13 of 13

Avago - Ex. 2003, Page 000066
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Exhibit 4

U.S. Patent No. 9,332,283

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 1 of 34

Avago - Ex. 2003, Page 000067
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

USOO9332283B2

(12) United States Patent (10) Patent No.: US 9,332,283 B2
Chen et al. (45) Date of Patent: May 3, 2016

(54) SIGNALING OF PREDICTION SIZE UNIT IN (56) References Cited
ACCORDANCE WITHVIDEO CODING

(75) Inventors: Peisong Chen, San Diego, CA (US);
Brian Heng, Irvine, CA (US); Wade K.
Wan, Orange, CA (US)

(73) Assignee: BROADCOM CORPORATION,
Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 860 days.

(21) Appl. No.: 13/523,822

(22) Filed: Jun. 14, 2012

(65) Prior Publication Data

US 2013 FOOT7684 A1 Mar. 28, 2013

Related U.S. Application Data
(60) Provisional application No. 61/539,948, filed on Sep.

27, 2011.

(51) Int. Cl.
H04N 7/2 (2006.01)
H04N II/02 (2006.01)
H4N II/04 (2006.01)
H04N 9/96 (2014.01)
H04N 9/503 (2014.01)

(Continued)
(52) U.S. Cl.

CPC H04N 19/96 (2014.11); H04N 19/503
(2014.11); H04N 19/70 (2014.11); H04N

19/I 19 (2014.11); H04N 19/174 (2014.11)
(58) Field of Classification Search

CPC. H04N 19/119; H04N 19/115; H04N 19/169;
H04N 19/174; H04N 19/177; H04N 19796

USPC .. 375/24O.O1 240.29
See application file for complete search history.

satellite dish 132

encoder
114

transmitter 11

U.S. PATENT DOCUMENTS

2004/0213469 A1 * 10/2004 Apostolopoulos et al. ... 382/239
2005/0038837 A1 2/2005 Marpe et al.

(Continued)
OTHER PUBLICATIONS

Bross, et al.; WD4: Working Draft 4 of High-Efficiency Video Cod
ing; Joint Colaborative Team on Video Coding (JCT-VC) of ITU-T
SG16 WP3 and ISO/IEC JTC1/SC29/WG 11: 6th Meeting: Torino,
IT; Jul. 14-22, 2011; 216 pgs.

(Continued)

Primary Examiner — Andy Rao
Assistant Examiner — Jared Walker

(74) Attorney, Agent, or Firm — Garlick & Markison;
Shayne X. Short

(57) ABSTRACT

Signaling of prediction size unit in accordance with video
coding. In accordance with video coding, various binariza
tion may be performed. In accordance with coding related to
different types of slices (e.g., I, P. B slices), one or more
binary trees may be employed for performing various respec
tive operations (e.g., coding unit (CU) prediction and predic
tion unit (PU) partition mode operations). In one implemen
tation, a common or singular binary tree is employed to
encode jointly CU prediction and PU partition mode in a
single syntax element for both Pslices and B slices. That is to
say, in Such an implementation, instead of employing differ
ent respective binary trees for at least these different respec
tive processes/operations, a common or single binary tree
may be employed for them both. Appropriate coordination
between and encoder/transmitter device and a decoder/re
ceiver device may be performed to ensure appropriate han
dling of different respective phases of video coding.

20 Claims, 17 Drawing Sheets

100

satellite dish 134

decoder
124

receiver 122

local antenna 152
decode
118

receiver 116

device 110

local antenna 154

wired 150

encoder
128

transmitter 126

device 120

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 2 of 34

Avago - Ex. 2003, Page 000068
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
Page 2

2010/0098155 A1 4/2010 Demircin et al. (51) Int. Cl.
HO)4N 19/70 (2014.01) 2011/0206123 A1* 8, 2011 Panchal et al. 375,240.15
HO4N 9/174 (2014.01) 2011/0228858 A1 9/2011 Budagavi et al.
HO4N 9/119 (2014.01)

OTHER PUBLICATIONS

(56) References Cited European Patent Office; European Search Report; EP App No.
U.S. PATENT DOCUMENTS 12005568.6; Dec. 17, 2012; 5 pgs.

2010.008.6032 A1* 4/2010 Chen et al. 375,240.12 * cited by examiner

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 3 of 34

Avago - Ex. 2003, Page 000069
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2

* =•

w s as as a
N

U.S. Patent

3.

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 4 of 34

Avago - Ex. 2003, Page 000070
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 2 of 17 May 3, 2016 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 5 of 34

Avago - Ex. 2003, Page 000071
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 3 of 17 May 3, 2016 U.S. Patent

O O O Q Q Q Q Q Q O O

– E(
CIH

O

Y

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 6 of 34

Avago - Ex. 2003, Page 000072
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 4 of 17 May 3, 2016 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 7 of 34

Avago - Ex. 2003, Page 000073
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 8 of 34

Avago - Ex. 2003, Page 000074
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 9 of 34

Avago - Ex. 2003, Page 000075
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent May 3, 2016 Sheet 7 Of 17 US 9,332,283 B2

a

O
C
-
C
CD
-
-

Sex!d pepOO
ASnoAeud

5 s
5

8
5.2 8
C 5

5 3
S X
9

21||||||||
4|| || || || N
2|| || || 9
%

| -
| | | 5
|| 8

| | | 5
| W. 4

2%22%22%

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 10 of 34

Avago - Ex. 2003, Page 000076
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 8 of 17 May 3, 2016 U.S. Patent

Ox

|ex?d que Juno

?Ouenbes JO) ?ueu??uÐJuno

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 11 of 34

Avago - Ex. 2003, Page 000077
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 9 Of 17 May 3, 2016 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 12 of 34

Avago - Ex. 2003, Page 000078
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 13 of 34

Avago - Ex. 2003, Page 000079
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 11 of 17 May 3, 2016 U.S. Patent

s

OOO

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 14 of 34

Avago - Ex. 2003, Page 000080
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent May 3, 2016 Sheet 12 of 17 US 9,332,283 B2

O f
N CD

V C
O
S
D
n
O

Z
X

Z

N
N

9

s

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 15 of 34

Avago - Ex. 2003, Page 000081
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2

NZ × N. !N?,N × NZ

Sheet 13 of 17 May 3, 2016 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 16 of 34

Avago - Ex. 2003, Page 000082
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 17 of 34

Avago - Ex. 2003, Page 000083
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2

NZ x N0

Sheet 15 Of 17 May 3, 2016 U.S. Patent

|

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 18 of 34

Avago - Ex. 2003, Page 000084
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 16 of 17 May 3, 2016 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 19 of 34

Avago - Ex. 2003, Page 000085
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2 Sheet 17 Of 17 May 3, 2016 U.S. Patent

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 20 of 34

Avago - Ex. 2003, Page 000086
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
1.

SIGNALING OF PREDICTION SIZE UNIT IN
ACCORDANCE WITHVIDEO CODING

CROSS REFERENCE TO RELATED
PATENTS/PATENT APPLICATIONS

Provisional Priority Claims

The present U.S. Utility Patent Application claims priority
pursuant to 35 U.S.C. S 119(e) to the following U.S. Provi
sional Patent Application which is hereby incorporated herein
by reference in its entirety and made part of the present U.S.
Utility Patent Application for all purposes:

1. U.S. Provisional Patent Application Ser. No. 61/539,
948, entitled “Signaling of prediction size unit in accordance
with video coding, filed Sep. 27, 2011.

Incorporation by Reference

The following standards/draft standards are hereby incor
porated herein by reference in their entirety and are made part
of the present U.S. Utility Patent Application for all purposes:

1. “High efficiency video coding (HEVC) text specifica
tion draft 6. Joint Collaborative Team on Video Coding (JCT
VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG 11,
7th Meeting: Geneva, CH, 21-30 Nov. 2011, Document:
JCTVC-H1003, 259 pages.

2. International Telecommunication Union, ITU-T, TELE
COMMUNICATION STANDARDIZATION SECTOR OF

ITU, H.264 (March 2010), SERIES H: AUDIOVISUAL
AND MULTIMEDIA SYSTEMS, Infrastructure of audiovi
Sual services—Coding of moving video, Advanced video
coding for generic audiovisual services. Recommendation
ITU-T H.264, also alternatively referred to as International
Telecomm ISO/IEC 14496-10 MPEG-4 Part 10, AVC (Ad
vanced Video Coding), H.264/MPEG-4 Part 10 or AVC (Ad
vanced Video Coding), ITU H.264/MPEG4-AVC, or equiva
lent.

BACKGROUND OF THE INVENTION

1.Technical Field of the Invention
The invention relates generally to digital video processing:

and, more particularly, it relates to signaling in accordance
with Such digital video processing.

2. Description of Related Art
Communication systems that operate to communicate

digital media (e.g., images, video, data, etc.) have been under
continual development for many years. With respect to such
communication systems employing some form of video data,
a number of digital images are output or displayed at Some
frame rate (e.g., frames per second) to effectuate a video
signal Suitable for output and consumption. Within many
Such communication systems operating using video data,
there can be a trade-off between throughput (e.g., number of
image frames that may be transmitted from a first location to
a second location) and video and/or image quality of the
signal eventually to be output or displayed. The present art
does not adequately or acceptably provide a means by which
Video data may be transmitted from a first location to a second
location in accordance with providing an adequate or accept
able video and/or image quality, ensuring a relatively low
amount of overhead associated with the communications,
relatively low complexity of the communication devices at
respective ends of communication links, etc.

5

10

15

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE SEVERAL

VIEWS OF THE DRAWINGS

FIG. 1 and FIG. 2 illustrate various embodiments of com
munication systems.

FIG. 3A illustrates an embodiment of a computer.
FIG. 3B illustrates an embodiment of a laptop computer.
FIG. 3C illustrates an embodiment of a high definition

(HD) television.
FIG. 3D illustrates an embodiment of a standard definition

(SD) television.
FIG. 3E illustrates an embodiment of a handheld media

unit.
FIG.3F illustrates an embodiment of a set top box (STB).
FIG. 3G illustrates an embodiment of a digital video disc

(DVD) player.
FIG. 3H illustrates an embodiment of a generic digital

image and/or video processing device.
FIG.4, FIG. 5, and FIG. 6 are diagrams illustrating various

embodiments of video encoding architectures.
FIG. 7 is a diagram illustrating an embodiment of intra

prediction processing.
FIG. 8 is a diagram illustrating an embodiment of inter

prediction processing.
FIG. 9 and FIG. 10 are diagrams illustrating various

embodiments of video decoding architectures.
FIG. 11 illustrates an embodiment of recursive coding unit

(CU) structure.
FIG. 12 illustrates an embodiment of prediction unit (PU)

modes.
FIG. 13 illustrates an embodiment of a binary tree, includ

ing a modification thereof, employed for Pslice encoding in
one implementation and for both P and B slice encoding in
another implementation.

FIG. 14 illustrates an embodiment of a binary tree as may
be employed for B slice encoding in one implementation and
for both P and B slice encoding in another implementation.

FIG. 15 illustrates an embodiment of a binary tree as may
be employed for Pslice encoding in conjunction with B slice
encoding as performed in accordance with FIG. 12.

FIG. 16A, FIG. 16B, FIG. 17A, and FIG. 17B, illustrate
various embodiments of methods performed in accordance
with video coding (e.g., within one or more communication
devices).

DETAILED DESCRIPTION OF THE INVENTION

Within many devices that use digital media Such as digital
Video, respective images thereof, being digital in nature, are
represented using pixels. Within certain communication sys
tems, digital media can be transmitted from a first location to
a second location at which Such media can be output or
displayed. The goal of digital communications systems,
including those that operate to communicate digital video, is
to transmit digital data from one location, or Subsystem, to
another either error free or with an acceptably low error rate.
As shown in FIG. 1, data may be transmitted over a variety of
communications channels in a wide variety of communica
tion systems: magnetic media, wired, wireless, fiber, copper,
and/or other types of media as well.

FIG. 1 and FIG. 2 are diagrams illustrate various embodi
ments of communication systems, 100 and 200, respectively.

Referring to FIG. 1, this embodiment of a communication
system 100 is a communication channel 199 that communi
catively couples a communication device 110 (including a
transmitter 112 having an encoder 114 and including a
receiver 116 having a decoder 118) situated at one end of the

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 21 of 34

Avago - Ex. 2003, Page 000087
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
3

communication channel 199 to another communication
device 120 (including a transmitter 126 having an encoder
128 and including a receiver 122 having a decoder 124) at the
other end of the communication channel 199. In some
embodiments, either of the communication devices 110 and
120 may only include a transmitter or a receiver. There are
several different types of media by which the communication
channel 199 may be implemented (e.g., a satellite communi
cation channel 130 using satellite dishes 132 and 134, a
wireless communication channel 140 using towers 142 and
144 and/or local antennae 152 and 154, a wired communica
tion channel 150, and/or a fiber-optic communication channel
160 using electrical to optical (E/O) interface 162 and optical
to electrical (O/E) interface 164)). In addition, more than one
type of media may be implemented and interfaced together
thereby forming the communication channel 199.

It is noted that such communication devices 110 and/or 120
may be stationary or mobile without departing from the scope
and spirit of the invention. For example, either one or both of
the communication devices 110 and 120 may be implemented
in a fixed location or may be a mobile communication device
with capability to associate with and/or communicate with
more than one network access point (e.g., different respective
access points (APs) in the context of a mobile communication
system including one or more wireless local area networks
(WLANs), different respective satellites in the context of a
mobile communication system including one or more satel
lite, or generally, different respective network access points in
the context of a mobile communication system including one
or more network access points by which communications
may be effectuated with communication devices 110 and/or
120.
To reduce transmission errors that may undesirably be

incurred within a communication system, error correction
and channel coding schemes are often employed. Generally,
these error correction and channel coding schemes involve
the use of an encoder at the transmitter end of the communi
cation channel 199 and a decoder at the receiver end of the
communication channel 199.
Any of various types of ECC codes described can be

employed within any Such desired communication system
(e.g., including those variations described with respect to
FIG. 1), any information storage device (e.g., hard disk drives
(HDDs), network information storage devices and/or servers,
etc.) or any application in which information encoding and/or
decoding is desired.

Generally speaking, when considering a communication
system in which video data is communicated from one loca
tion, or Subsystem, to another, video data encoding may gen
erally be viewed as being performed at a transmitting end of
the communication channel 199, and video data decoding
may generally be viewed as being performed at a receiving
end of the communication channel 199.

Also, while the embodiment of this diagram shows bi
directional communication being capable between the com
munication devices 110 and 120, it is of course noted that, in
Some embodiments, the communication device 110 may
include only video data encoding capability, and the commu
nication device 120 may include only video data decoding
capability, or vice versa (e.g., in a uni-directional communi
cation embodiment Such as inaccordance with a video broad
cast embodiment).

Referring to the communication system 200 of FIG. 2, at a
transmitting end of a communication channel 299, informa
tion bits 201 (e.g., corresponding particularly to video data in
one embodiment) are provided to a transmitter 297 that is
operable to perform encoding of these information bits 201

5

10

15

25

30

35

40

45

50

55

60

65

4
using an encoder and symbol mapper 220 (which may be
viewed as being distinct functional blocks 222 and 224,
respectively) thereby generating a sequence of discrete-val
ued modulation symbols 203 that is provided to a transmit
driver 230 that uses a DAC (Digital to Analog Converter) 232
to generate a continuous-time transmit signal 204 and a trans
mit filter 234 to generate a filtered, continuous-time transmit
signal 205 that substantially comports with the communica
tion channel 299. At a receiving end of the communication
channel 299, continuous-time receive signal 206 is provided
to an AFE (Analog Front End) 260 that includes a receive
filter 262 (that generates a filtered, continuous-time receive
signal 207) and an ADC (Analog to Digital Converter) 264
(that generates discrete-time receive signals 208). A metric
generator 270 calculates metrics 209 (e.g., on either a symbol
and/or bit basis) that are employed by a decoder 280 to make
best estimates of the discrete-valued modulation symbols and
information bits encoded therein 210.

Within each of the transmitter 297 and the receiver 298, any
desired integration of various components, blocks, functional
blocks, circuitries, etc. Therein may be implemented. For
example, this diagram shows a processing module 280a as
including the encoder and symbol mapper 220 and all asso
ciated, corresponding components therein, and a processing
module 280 is shown as including the metric generator 270
and the decoder 280 and all associated, corresponding com
ponents therein. Such processing modules 280a and 280b
may be respective integrated circuits. Of course, other bound
aries and groupings may alternatively be performed without
departing from the scope and spirit of the invention. For
example, all components within the transmitter 297 may be
included within a first processing module or integrated cir
cuit, and all components within the receiver 298 may be
included within a second processing module or integrated
circuit. Alternatively, any other combination of components
within each of the transmitter 297 and the receiver 298 may be
made in other embodiments.
As with the previous embodiment, Such a communication

system 200 may be employed for the communication of video
data is communicated from one location, or Subsystem, to
another (e.g., from transmitter 297 to the receiver 298 via the
communication channel 299).

Digital image and/or video processing of digital images
and/or media (including the respective images within a digital
Video signal) may be performed by any of the various devices
depicted below in FIG. 3A-3H to allow a user to view such
digital images and/or video. These various devices do not
include an exhaustive list of devices in which the image
and/or video processing described herein may be effectuated,
and it is noted that any generic digital image and/or video
processing device may be implemented to perform the pro
cessing described herein without departing from the scope
and spirit of the invention.
FIG.3A illustrates an embodiment of a computer 301. The

computer 301 can be a desktop computer, or an enterprise
storage devices such a server, of a host computer that is
attached to a storage array Such as a redundant array of inde
pendent disks (RAID) array, storage router, edge router, Stor
age Switch and/or storage director. A user is able to view still
digital images and/or video (e.g., a sequence of digital
images) using the computer 301. Oftentimes, various image
and/or video viewing programs and/or media player pro
grams are included on a computer 301 to allow a user to view
Such images (including video).

FIG. 3B illustrates an embodiment of a laptop computer
302. Such a laptop computer 302 may be found and used in
any of a wide variety of contexts. In recent years, with the

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 22 of 34

Avago - Ex. 2003, Page 000088
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
5

ever-increasing processing capability and functionality found
within laptop computers, they are being employed in many
instances where previously higher-end and more capable
desktop computers would be used. As with the computer 301,
the laptop computer 302 may include various image viewing
programs and/or media player programs to allow a user to
view Such images (including video).

FIG. 3C illustrates an embodiment of a high definition
(HD) television 303. Many HD televisions 303 include an
integrated tuner to allow the receipt, processing, and decod
ing of media content (e.g., television broadcast signals)
thereon. Alternatively, sometimes an HD television 303
receives media content from another source such as a digital
video disc (DVD) player, set top box (STB) that receives,
processes, and decodes a cable and/or satellite television
broadcast signal. Regardless of the particular implementa
tion, the HD television 303 may be implemented to perform
image and/or video processing as described herein. Generally
speaking, an HD television 303 has capability to display HD
media content and oftentimes is implemented having a 16:9
widescreen aspect ratio.

FIG. 3D illustrates an embodiment of a standard definition
(SD) television304. Of course, an SD television 304 is some
what analogous to an HD television 303, with at least one
difference being that the SD television 304 does not include
capability to display HD media content, and an SD television
304 oftentimes is implemented having a 4:3 full screen aspect
ratio. Nonetheless, even an SD television 304 may be imple
mented to perform image and/or video processing as
described herein.

FIG. 3E illustrates an embodiment of a handheld media
unit 305. A handheld media unit 305 may operate to provide
general storage or storage of image/video content informa
tion Such as joint photographic experts group (JPEG) files,
tagged image file format (TIFF), bitmap, motion picture
experts group (MPEG) files, Windows Media (WMA/WMV)
files, other types of video content such as MPEG4 files, etc.
for playback to a user, and/or any other type of information
that may be stored in a digital format. Historically, Such
handheld media units were primarily employed for storage
and playback of audio media; however, Such a handheld
media unit 305 may be employed for storage and playback of
virtual any media (e.g., audio media, video media, photo
graphic media, etc.). Moreover, such a handheld media unit
305 may also include other functionality such as integrated
communication circuitry for wired and wireless communica
tions. Such a handheld media unit 305 may be implemented to
perform image and/or video processing as described herein.

FIG. 3F illustrates an embodiment of a set top box (STB)
306. As mentioned above, sometimes a STB 306 may be
implemented to receive, process, and decode a cable and/or
satellite television broadcast signal to be provided to any
appropriate display capable device such as SD television 304
and/or HD television 303. Such an STB 306 may operate
independently or cooperatively with Such a display capable
device to perform image and/or video processing as described
herein.

FIG. 3G illustrates an embodiment of a digital video disc
(DVD) player 307. Such a DVD player may be a Blu-Ray
DVD player, an HD capable DVD player, an SD capable
DVD player, an up-sampling capable DVD player (e.g., from
SD to HD, etc.) without departing from the scope and spirit of
the invention. The DVD player may provide a signal to any
appropriate display capable device such as SD television 304
and/or HD television 303. The DVD player 305 may be
implemented to perform image and/or video processing as
described herein.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 3H illustrates an embodiment of a generic digital

image and/or video processing device 308. Again, as men
tioned above, these various devices described above do not
include an exhaustive list of devices in which the image
and/or video processing described herein may be effectuated,
and it is noted that any generic digital image and/or video
processing device 308 may be implemented to perform the
image and/or video processing described herein without
departing from the scope and spirit of the invention.

FIG.4, FIG. 5, and FIG. 6 are diagrams illustrating various
embodiments 400 and 500, and 600, respectively, of video
encoding architectures.

Referring to embodiment 400 of FIG. 4, as may be seen
with respect to this diagram, an input video signal is received
by a video encoder. In certain embodiments, the input video
signal is composed of coding units (CUs) or macro-blocks
(MBs). The size of such coding units or macro-blocks may be
varied and can include a number of pixels typically arranged
in a square shape. In one embodiment, such coding units or
macro-blocks have a size of 16x16 pixels. However, it is
generally noted that a macro-block may have any desired size
such as NXN pixels, where N is an integer. Of course, some
implementations may include non-square shaped coding
units or macro-blocks, although square shaped coding units
or macro-blocks are employed in a preferred embodiment.
The input video signal may generally be referred to as

corresponding to raw frame (or picture) image data. For
example, raw frame (or picture) image data may undergo
processing to generate luma and chroma samples. In some
embodiments, the set of luma samples in a macro-block is of
one particular arrangement (e.g., 16x16), and set of the
chroma samples is of a different particular arrangement (e.g.,
8x8). In accordance with the embodiment depicted herein, a
Video encoder processes such samples on a block by block
basis.
The input video signal then undergoes mode selection by

which the input video signal selectively undergoes intra and/
or inter-prediction processing. Generally speaking, the input
Video signal undergoes compression along a compression
pathway. When operating with no feedback (e.g., in accor
dance with neither inter-prediction nor intra-prediction), the
input video signal is provided via the compression pathway to
undergo transform operations (e.g., in accordance with dis
crete cosine transform (DCT)). Of course, other transforms
may be employed in alternative embodiments. In this mode of
operation, the input video signal itself is that which is com
pressed. The compression pathway may take advantage of the
lack of high frequency sensitivity of human eyes in perform
ing the compression.

However, feedback may be employed along the compres
sion pathway by selectively using inter- or intra-prediction
Video encoding. In accordance with a feedback or predictive
mode of operation, the compression pathway operates on a
(relatively low energy) residual (e.g., a difference) resulting
from subtraction of a predicted value of a current macro
block from the current macro-block. Depending upon which
form of prediction is employed in a given instance, a residual
or difference between a current macro-block and a predicted
value of that macro-block based on at least a portion of that
same frame (or picture) or on at least a portion of at least one
other frame (or picture) is generated.
The resulting modified video signal then undergoes trans

form operations along the compression pathway. In one
embodiment, a discrete cosine transform (DCT) operates on a
set of video samples (e.g., luma, chroma, residual, etc.) to
compute respective coefficient values for each of a predeter
mined number of basis patterns. For example, one embodi

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 23 of 34

Avago - Ex. 2003, Page 000089
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
7

ment includes 64 basis functions (e.g., Such as for an 8x8
sample). Generally speaking, different embodiments may
employ different numbers of basis functions (e.g., different
transforms). Any combination of those respective basis func
tions, including appropriate and selective weighting thereof,
may be used to represent a given set of video samples. Addi
tional details related to various ways of performing transform
operations are described in the technical literature associated
with video encoding including those standards/draft stan
dards that have been incorporated by reference as indicated
above. The output from the transform processing includes
such respective coefficient values. This output is provided to
a quantizer.

Generally, most image blocks will typically yield coeffi
cients (e.g., DCT coefficients in an embodiment operating in
accordance with discrete cosine transform (DCT)) such that
the most relevant DCT coefficients are of lower frequencies.
Because of this and of the human eyes relatively poor sensi
tivity to high frequency visual effects, a quantizer may be
operable to convert most of the less relevant coefficients to a
value of Zero. That is to say, those coefficients whose relative
contribution is below some predetermined value (e.g., some
threshold) may be eliminated in accordance with the quanti
Zation process. A quantizer may also be operable to convert
the significant coefficients into values that can be coded more
efficiently than those that result from the transform process.
For example, the quantization process may operate by divid
ing each respective coefficient by an integer value and dis
carding any remainder. Such a process, when operating on
typical coding units or macro-blocks, typically yields a rela
tively low number of non-zero coefficients which are then
delivered to an entropy encoderfor lossless encoding and for
use in accordance with a feedback path which may select
intra-prediction and/or inter-prediction processing in accor
dance with video encoding.
An entropy encoder operates in accordance with a lossless

compression encoding process. In comparison, the quantiza
tion operations are generally lossy. The entropy encoding
process operates on the coefficients provided from the quan
tization process. Those coefficients may represent various
characteristics (e.g., luma, chroma, residual, etc.). Various
types of encoding may be employed by an entropy encoder.
For example, context-adaptive binary arithmetic coding
(CABAC) and/or context-adaptive variable-length coding
(CAVLC) may be performed by the entropy encoder. For
example, in accordance with at least one part of an entropy
coding scheme, the data is converted to a (run, level) pairing
(e.g., data 14, 3, 0, 4, 0, 0, -3 would be converted to the
respective (run, level) pairs of (0, 14), (0.3), (1,4), (2, -3)). In
advance, a table may be prepared that assigns variable length
codes for value pairs. Such that relatively shorter length codes
are assigned to relatively common value pairs, and relatively
longer length codes are assigned for relatively less common
value pairs.
As the reader will understand, the operations of inverse

quantization and inverse transform correspond to those of
quantization and transform, respectively. For example, in an
embodiment in which a DCT is employed within the trans
form operations, then an inverse DCT (IDCT) is that
employed within the inverse transform operations.
A picture buffer, alternatively referred to as a digital picture

buffer or a DPB, receives the signal from the IDCT module:
the picture buffer is operative to store the current frame (or
picture) and/or one or more other frames (or pictures) Such as
may be used in accordance with intra-prediction and/or inter
prediction operations as may be performed in accordance
with video encoding. It is noted that in accordance with

10

15

25

30

35

40

45

50

55

60

65

8
intra-prediction, a relatively small amount of storage may be
Sufficient, in that, it may not be necessary to store the current
frame (or picture) or any other frame (or picture) within the
frame (or picture) sequence. Such stored information may be
employed for performing motion compensation and/or
motion estimation in the case of performing inter-prediction
in accordance with video encoding.

In one possible embodiment, for motion estimation, a
respective set of luma samples (e.g., 16x16) from a current
frame (or picture) are compared to respective buffered coun
terparts in other frames (or pictures) within the frame (or
picture) sequence (e.g., in accordance with inter-prediction).
In one possible implementation, a closest matching area is
located (e.g., prediction reference) and a vector offset (e.g.,
motion vector) is produced. In a single frame (or picture), a
number of motion vectors may be found and not all will
necessarily point in the same direction. One or more opera
tions as performed in accordance with motion estimation are
operative to generate one or more motion vectors.

Motion compensation is operative to employ one or more
motion vectors as may be generated in accordance with
motion estimation. A prediction reference set of samples is
identified and delivered for subtraction from the original
input video signal in an effort hopefully to yield a relatively
(e.g., ideally, much) lower energy residual. If such operations
do not result in a yielded lower energy residual, motion com
pensation need not necessarily be performed and the trans
form operations may merely operate on the original input
Video signal instead of on a residual (e.g., in accordance with
an operational mode in which the input video signal is pro
vided straight through to the transform operation, such that
neither intra-prediction nor inter-prediction are performed),
or intra-prediction may be utilized and transform operations
performed on the residual resulting from intra-prediction.
Also, if the motion estimation and/or motion compensation
operations are Successful, the motion vector may also be sent
to the entropy encoder along with the corresponding residu
als coefficients for use in undergoing lossless entropy encod
ing.
The output from the overall video encoding operation is an

output bit stream. It is noted that Such an output bit stream
may of course undergo certain processing in accordance with
generating a continuous time signal which may be transmit
ted via a communication channel. For example, certain
embodiments operate within wireless communication sys
tems. In such an instance, an output bitstream may undergo
appropriate digital to analog conversion, frequency conver
Sion, Scaling, filtering, modulation, symbol mapping, and/or
any other operations within a wireless communication device
that operate to generate a continuous time signal capable of
being transmitted via a communication channel, etc.

Referring to embodiment 500 of FIG. 5, as may be seen
with respect to this diagram, an input video signal is received
by a video encoder. In certain embodiments, the input video
signal is composed of coding units or macro-blocks (and/or
may be partitioned into coding units (CUs)). The size of such
coding units or macro-blocks may be varied and can include
a number of pixels typically arranged in a square shape. In one
embodiment, such coding units or macro-blocks have a size
of 16x16 pixels. However, it is generally noted that a macro
block may have any desired size such as NXN pixels, where N
is an integer. Of course, some implementations may include
non-square shaped coding units or macro-blocks, although
square shaped coding units or macro-blocks are employed in
a preferred embodiment.
The input video signal may generally be referred to as

corresponding to raw frame (or picture) image data. For

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 24 of 34

Avago - Ex. 2003, Page 000090
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2

example, raw frame (or picture) image data may undergo
processing to generate luma and chroma samples. In some
embodiments, the set of luma samples in a macro-block is of
one particular arrangement (e.g., 16x16), and set of the
chroma samples is of a different particular arrangement (e.g.,
8x8). In accordance with the embodiment depicted herein, a
Video encoder processes such samples on a block by block
basis.

The input video signal then undergoes mode selection by
which the input video signal selectively undergoes intra and/
or inter-prediction processing. Generally speaking, the input
Video signal undergoes compression along a compression
pathway. When operating with no feedback (e.g., in accor
dance with neither inter-prediction nor intra-prediction), the
input video signal is provided via the compression pathway to
undergo transform operations (e.g., in accordance with dis
crete cosine transform (DCT)). Of course, other transforms
may be employed in alternative embodiments. In this mode of
operation, the input video signal itself is that which is com
pressed. The compression pathway may take advantage of the
lack of high frequency sensitivity of human eyes in perform
ing the compression.

However, feedback may be employed along the compres
sion pathway by selectively using inter- or intra-prediction
Video encoding. In accordance with a feedback or predictive
mode of operation, the compression pathway operates on a
(relatively low energy) residual (e.g., a difference) resulting
from subtraction of a predicted value of a current macro
block from the current macro-block. Depending upon which
form of prediction is employed in a given instance, a residual
or difference between a current macro-block and a predicted
value of that macro-block based on at least a portion of that
same frame (or picture) or on at least a portion of at least one
other frame (or picture) is generated.
The resulting modified video signal then undergoes trans

form operations along the compression pathway. In one
embodiment, a discrete cosine transform (DCT) operates on a
set of video samples (e.g., luma, chroma, residual, etc.) to
compute respective coefficient values for each of a predeter
mined number of basis patterns. For example, one embodi
ment includes 64 basis functions (e.g., Such as for an 8x8
sample). Generally speaking, different embodiments may
employ different numbers of basis functions (e.g., different
transforms). Any combination of those respective basis func
tions, including appropriate and selective weighting thereof,
may be used to represent a given set of video samples. Addi
tional details related to various ways of performing transform
operations are described in the technical literature associated
with video encoding including those standards/draft stan
dards that have been incorporated by reference as indicated
above. The output from the transform processing includes
such respective coefficient values. This output is provided to
a quantizer.

Generally, most image blocks will typically yield coeffi
cients (e.g., DCT coefficients in an embodiment operating in
accordance with discrete cosine transform (DCT)) such that
the most relevant DCT coefficients are of lower frequencies.
Because of this and of the human eyes relatively poor sensi
tivity to high frequency visual effects, a quantizer may be
operable to convert most of the less relevant coefficients to a
value of Zero. That is to say, those coefficients whose relative
contribution is below some predetermined value (e.g., some
threshold) may be eliminated in accordance with the quanti
Zation process. A quantizer may also be operable to convert
the significant coefficients into values that can be coded more
efficiently than those that result from the transform process.
For example, the quantization process may operate by divid

5

10

15

25

30

35

40

45

50

55

60

65

10
ing each respective coefficient by an integer value and dis
carding any remainder. Such a process, when operating on
typical coding units or macro-blocks, typically yields a rela
tively low number of non-zero coefficients which are then
delivered to an entropy encoder for lossless encoding and for
use in accordance with a feedback path which may select
intra-prediction and/or inter-prediction processing in accor
dance with video encoding.
An entropy encoder operates in accordance with a lossless

compression encoding process. In comparison, the quantiza
tion operations are generally lossy. The entropy encoding
process operates on the coefficients provided from the quan
tization process. Those coefficients may represent various
characteristics (e.g., luma, chroma, residual, etc.). Various
types of encoding may be employed by an entropy encoder.
For example, context-adaptive binary arithmetic coding
(CABAC) and/or context-adaptive variable-length coding
(CAVLC) may be performed by the entropy encoder. For
example, in accordance with at least one part of an entropy
coding scheme, the data is converted to a (run, level) pairing
(e.g., data 14, 3, 0, 4, 0, 0, -3 would be converted to the
respective (run, level) pairs of (0, 14), (0.3), (1,4), (2, -3)). In
advance, a table may be prepared that assigns variable length
codes for value pairs. Such that relatively shorter length codes
are assigned to relatively common value pairs, and relatively
longer length codes are assigned for relatively less common
value pairs.
As the reader will understand, the operations of inverse

quantization and inverse transform correspond to those of
quantization and transform, respectively. For example, in an
embodiment in which a DCT is employed within the trans
form operations, then an inverse DCT (IDCT) is that
employed within the inverse transform operations.

In certain optional embodiments, the output from the de
blocking filter is provided to one or more other in-loop filters
(e.g., implemented in accordance with adaptive loop filter
(ALF), sample adaptive offset (SAO) filter, and/or any other
filter type) implemented to process the output from the
inverse transform block.

For example, such an adaptive loop filter (ALF) may be
implemented to process the output from the inverse transform
block. Such an adaptive loop filter (ALF) is applied to the
decoded picture before it is stored in a picture buffer (some
times referred to as a DPB, digital picture buffer). The adap
tive loop filter (ALF) is implemented to reduce coding noise
of the decoded picture, and the filtering thereof may be selec
tively applied on a slice by slice basis, respectively, for lumi
nance and chrominance whether or not the adaptive loop filter
(ALF) is applied either at slice level or at block level. Two
dimensional 2-D finite impulse response (FIR) filtering may
be used in application of the adaptive loop filter (ALF). The
coefficients of the filters may be designed slice by slice at the
encoder, and Such information is then signaled to the decoder
(e.g., signaled from a transmitter communication device
including a video encoder alternatively referred to as
encoder to a receiver communication device including a
video decoder alternatively referred to as decoder).
One embodiment operates by generating the coefficients in

accordance with Wiener filtering design. In addition, it may
be applied on a block by block based at the encoder whether
the filtering is performed and Such a decision is then signaled
to the decoder (e.g., signaled from a transmitter communica
tion device including a video encoder alternatively referred
to as encoder to a receiver communication device including
a video decoder alternatively referred to as decoder) based
on quadtree structure, where the block size is decided accord
ing to the rate-distortion optimization. It is noted that the

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 25 of 34

Avago - Ex. 2003, Page 000091
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
11

implementation of using Such 2-D filtering may introduce a
degree of complexity in accordance with both encoding and
decoding. For example, by using 2-D filtering in accordance
and implementation of an adaptive loop filter (ALF), there
may be some increasing complexity within an encoder imple
mented within the transmitter communication device as well
as within a decoder implemented within a receiver commu
nication device.

With respect to one type of an in-loop filter, the use of an
adaptive loop filter (ALF) can provide any of a number of
improvements in accordance with Such video processing,
including an improvement on the objective quality measure
by the peak to signal noise ratio (PSNR) that comes from
performing random quantization noise removal. In addition,
the Subjective quality of a Subsequently encoded video signal
may be achieved from illumination compensation, which
may be introduced in accordance with performing offset pro
cessing and Scaling processing (e.g., in accordance with
applying again) in accordance with adaptive loop filter (ALF)
processing.

Receiving the signal output from the ALF is a picture
buffer, alternatively referred to as a digital picture buffer or a
DPB; the picture buffer is operative to store the current frame
(or picture) and/or one or more other frames (or pictures) Such
as may be used in accordance with intra-prediction and/or
inter-prediction operations as may be performed in accor
dance with video encoding. It is noted that in accordance with
intra-prediction, a relatively small amount of storage may be
Sufficient, in that, it may not be necessary to store the current
frame (or picture) or any other frame (or picture) within the
frame (or picture) sequence. Such stored information may be
employed for performing motion compensation and/or
motion estimation in the case of performing inter-prediction
in accordance with video encoding.

In one possible embodiment, for motion estimation, a
respective set of luma samples (e.g., 16x16) from a current
frame (or picture) are compared to respective buffered coun
terparts in other frames (or pictures) within the frame (or
picture) sequence (e.g., in accordance with inter-prediction).
In one possible implementation, a closest matching area is
located (e.g., prediction reference) and a vector offset (e.g.,
motion vector) is produced. In a single frame (or picture), a
number of motion vectors may be found and not all will
necessarily point in the same direction. One or more opera
tions as performed in accordance with motion estimation are
operative to generate one or more motion vectors.

Motion compensation is operative to employ one or more
motion vectors as may be generated in accordance with
motion estimation. A prediction reference set of samples is
identified and delivered for subtraction from the original
input video signal in an effort hopefully to yield a relatively
(e.g., ideally, much) lower energy residual. If such operations
do not result in a yielded lower energy residual, motion com
pensation need not necessarily be performed and the trans
form operations may merely operate on the original input
Video signal instead of on a residual (e.g., in accordance with
an operational mode in which the input video signal is pro
vided straight through to the transform operation, such that
neither intra-prediction nor inter-prediction are performed),
or intra-prediction may be utilized and transform operations
performed on the residual resulting from intra-prediction.
Also, if the motion estimation and/or motion compensation
operations are Successful, the motion vector may also be sent
to the entropy encoder along with the corresponding residu
als coefficients for use in undergoing lossless entropy encod
1ng.

10

15

25

30

35

40

45

50

55

60

65

12
The output from the overall video encoding operation is an

output bit stream. It is noted that Such an output bit stream
may of course undergo certain processing in accordance with
generating a continuous time signal which may be transmit
ted via a communication channel. For example, certain
embodiments operate within wireless communication sys
tems. In such an instance, an output bitstream may undergo
appropriate digital to analog conversion, frequency conver
Sion, Scaling, filtering, modulation, symbol mapping, and/or
any other operations within a wireless communication device
that operate to generate a continuous time signal capable of
being transmitted via a communication channel, etc.

Referring to embodiment 600 of FIG. 6, with respect to this
diagram depicting an alternative embodiment of a video
encoder, Such a video encoder carries out prediction, trans
form, and encoding processes to produce a compressed out
put bit stream. Such a video encoder may operate in accor
dance with and be compliant with one or more video encoding
protocols, standards, and/or recommended practices Such as
ISO/IEC 14496-10 MPEG-4 Part 10, AVC (Advanced
Video Coding), alternatively referred to as H.264/MPEG-4
Part 10 or AVC (Advanced Video Coding), ITU H.264/
MPEG4-AVC.

It is noted that a corresponding video decoder, Such as
located within a device at another end of a communication
channel, is operative to perform the complementary pro
cesses of decoding, inverse transform, and reconstruction to
produce a respective decoded video sequence that is (ideally)
representative of the input video signal.
As may be seen with respect to this diagram, alternative

arrangements and architectures may be employed for effec
tuating video encoding. Generally speaking, an encoder pro
cesses an input video signal (e.g., typically composed in units
of coding units or macro-blocks, often times being square in
shape and including NXN pixels therein). The video encoding
determines a prediction of the current macro-block based on
previously coded data. That previously coded data may come
from the current frame (or picture) itself (e.g., Such as in
accordance with intra-prediction) or from one or more other
frames (or pictures) that have already been coded (e.g., Such
as in accordance with inter-prediction). The video encoder
subtracts the prediction of the current macro-block to form a
residual.

Generally speaking, intra-prediction is operative to employ
block sizes of one or more particular sizes (e.g., 16x16, 8x8,
or 4x4) to predict a current macro-block from Surrounding,
previously coded pixels within the same frame (or picture).
Generally speaking, inter-prediction is operative to employ a
range of block sizes (e.g., 16x16 down to 4x4) to predict
pixels in the current frame (or picture) from regions that are
selected from within one or more previously coded frames (or
pictures).

With respect to the transform and quantization operations,
a block of residual samples may undergo transformation
using a particular transform (e.g., 4x4 or 8x8). One possible
embodiment of such a transform operates in accordance with
discrete cosine transform (DCT). The transform operation
outputs a group of coefficients such that each respective coef
ficient corresponds to a respective weighting value of one or
more basis functions associated with a transform. After
undergoing transformation, a block of transform coefficients
is quantized (e.g., each respective coefficient may be divided
by an integer value and any associated remainder may be
discarded, or they may be multiplied by an integer value). The
quantization process is generally inherently lossy, and it can
reduce the precision of the transform coefficients according to
a quantization parameter (QP). Typically, many of the coef

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 26 of 34

Avago - Ex. 2003, Page 000092
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
13

ficients associated with a given macro-block are Zero, and
only some nonzero coefficients remain. Generally, a rela
tively high QP setting is operative to result in a greater pro
portion of Zero-valued coefficients and Smaller magnitudes of
non-Zero coefficients, resulting in relatively high compres
sion (e.g., relatively lower coded bit rate) at the expense of
relatively poorly decoded image quality; a relatively low QP
setting is operative to allow more nonzero coefficients to
remain after quantization and larger magnitudes of non-Zero
coefficients, resulting in relatively lower compression (e.g.,
relatively higher coded bit rate) with relatively better decoded
image quality.
The video encoding process produces a number of values

that are encoded to form the compressed bit stream. Examples
of Such values include the quantized transform coefficients,
information to be employed by a decoder to re-create the
appropriate prediction, information regarding the structure of
the compressed data and compression tools employed during
encoding, information regarding a complete video sequence,
etc. Such values and/or parameters (e.g., syntax elements)
may undergo encoding within an entropy encoder operating
in accordance with CABAC, CAVLC, or some other entropy
coding scheme, to produce an output bit stream that may be
stored, transmitted (e.g., after undergoing appropriate pro
cessing to generate a continuous time signal that comports
with a communication channel), etc.

In an embodiment operating using a feedback path, the
output of the transform and quantization undergoes inverse
quantization and inverse transform. One or both of intra
prediction and inter-prediction may be performed in accor
dance with video encoding. Also, motion compensation and/
or motion estimation may be performed in accordance with
Such video encoding.
The signal path output from the inverse quantization and

inverse transform (e.g., IDCT) block, which is provided to the
intra-prediction block, is also provided to a de-blocking filter.
The output from the de-blocking filter is provided to one or
more other in-loop filters (e.g., implemented in accordance
with adaptive loop filter (ALF), sample adaptive offset (SAO)
filter, and/or any other filter type) implemented to process the
output from the inverse transform block. For example, in one
possible embodiment, an ALF is applied to the decoded pic
ture before it is stored in a picture buffer (again, sometimes
alternatively referred to as a DPB, digital picture buffer). The
ALF is implemented to reduce coding noise of the decoded
picture, and the filtering thereofmay be selectively applied on
a slice by slice basis, respectively, for luminance and chromi
nance whether or not the ALF is applied either at slice level or
at block level. Two-dimensional 2-D finite impulse response
(FIR) filtering may be used in application of the ALF. The
coefficients of the filters may be designed slice by slice at the
encoder, and Such information is then signaled to the decoder
(e.g., signaled from a transmitter communication device
including a video encoder alternatively referred to as
encoder to a receiver communication device including a
video decoder alternatively referred to as decoder).
One embodiment generated the coefficients in accordance

with Wiener filtering design. In addition, it may be applied on
a block by block based at the encoder whether the filtering is
performed and Such a decision is then signaled to the decoder
(e.g., signaled from a transmitter communication device
including a video encoder alternatively referred to as
encoder to a receiver communication device including a
video decoder alternatively referred to as decoder) based on
quadtree structure, where the block size is decided according
to the rate-distortion optimization. It is noted that the imple
mentation of using Such 2-D filtering may introduce a degree

5

10

15

25

30

35

40

45

50

55

60

65

14
of complexity in accordance with both encoding and decod
ing. For example, by using 2-D filtering in accordance and
implementation of an ALF, there may be some increasing
complexity within encoder implemented within the transmit
ter communication device as well as within a decoder imple
mented within a receiver communication device.
As mentioned with respect to other embodiments, the use

of an ALF can provide any of a number of improvements in
accordance with Such video processing, including an
improvement on the objective quality measure by the peak to
signal noise ratio (PSNR) that comes from performing ran
dom quantization noise removal. In addition, the Subjective
quality of a Subsequently encoded video signal may be
achieved from illumination compensation, which may be
introduced in accordance with performing offset processing
and Scaling processing (e.g., in accordance with applying a
gain) in accordance with ALF processing.

With respect to any video encoder architecture imple
mented to generate an output bitstream, it is noted that Such
architectures may be implemented within any of a variety of
communication devices. The output bitstream may undergo
additional processing including error correction code (ECC),
forward error correction (FEC), etc. thereby generating a
modified output bitstream having additional redundancy deal
therein. Also, as may be understood with respect to Such a
digital signal, it may undergo any appropriate processing in
accordance with generating a continuous time signal Suitable
for or appropriate for transmission via a communication
channel That is to say, Such a video encoderarchitecture may
be implemented within a communication device operative to
perform transmission of one or more signals via one or more
communication channels. Additional processing may be
made on an output bitstream generated by Such a video
encoder architecture thereby generating a continuous time
signal that may be launched into a communication channel.

FIG. 7 is a diagram illustrating an embodiment 700 of
intra-prediction processing. As can be seen with respect to
this diagram, a current block of video data (e.g., often times
being square in shape and including generally NXN pixels)
undergoes processing to estimate the respective pixels
therein. Previously coded pixels located above and to the left
of the current block are employed in accordance with such
intra-prediction. From certain perspectives, an intra-predic
tion direction may be viewed as corresponding to a vector
extending from a current pixel to a reference pixel located
above or to the left of the current pixel. Details of intra
prediction as applied to coding in accordance with H.264/
AVC are specified within the corresponding standard (e.g.,
International Telecommunication Union, ITU-T, TELE
COMMUNICATION STANDARDIZATION SECTOR OF
ITU, H.264 (March 2010), SERIES H: AUDIOVISUAL
AND MULTIMEDIA SYSTEMS, Infrastructure of audiovi
Sual services—Coding of moving video, Advanced video
coding for generic audiovisual services, Recommendation
ITU-T H.264, also alternatively referred to as International
Telecomm ISO/IEC 14496-10 MPEG-4 Part 10, AVC (Ad
vanced Video Coding), H.264/MPEG-4 Part 10 or AVC (Ad
vanced Video Coding), ITU H.264/MPEG4-AVC, or equiva
lent) that is incorporated by reference above.
The residual, which is the difference between the current

pixel and the reference or prediction pixel, is that which gets
encoded. As can be seen with respect to this diagram, intra
prediction operates using pixels within a common frame (or
picture). It is of course noted that a given pixel may have
different respective components associated therewith, and
there may be different respective sets of samples for each
respective component.

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 27 of 34

Avago - Ex. 2003, Page 000093
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
15

FIG. 8 is a diagram illustrating an embodiment 800 of
inter-prediction processing. In contradistinction to intra-pre
diction, inter-prediction is operative to identify a motion vec
tor (e.g., an inter-prediction direction) based on a current set
of pixels within a current frame (or picture) and one or more
sets of reference or prediction pixels located within one or
more other frames (or pictures) within a frame (or picture)
sequence. As can be seen, the motion vector extends from the
current frame (or picture) to another frame (or picture) within
the frame (or picture) sequence. Inter-prediction may utilize
Sub-pixel interpolation, such that a prediction pixel value
corresponds to a function of a plurality of pixels in a reference
frame or picture.
A residual may be calculated in accordance with inter

prediction processing, though Such a residual is different
from the residual calculated in accordance with intra-predic
tion processing. In accordance with inter-prediction process
ing, the residual at each pixel again corresponds to the differ
ence between a current pixel and a predicted pixel value.
However, in accordance with inter-prediction processing, the
current pixel and the reference or prediction pixel are not
located within the same frame (or picture). While this dia
gram shows inter-prediction as being employed with respect
to one or more previous frames or pictures, it is also noted that
alternative embodiments may operate using references corre
sponding to frames before and/or after a current frame. For
example, in accordance with appropriate buffering and/or
memory management, a number of frames may be stored.
When operating on a given frame, references may be gener
ated from other frames that precede and/or follow that given
frame.

Coupled with the CU, a basic unit may be employed for the
prediction partition mode, namely, the prediction unit, or PU.
It is also noted that the PU is defined only for the last depth
CU, and its respective size is limited to that of the CU.

FIG. 9 and FIG. 10 are diagrams illustrating various
embodiments 900 and 1000, respectively, of video decoding
architectures.

Generally speaking, Such video decoding architectures
operate on an input bitstream. It is of course noted that Such an
input bitstream may be generated from a signal that is
received by a communication device from a communication
channel. Various operations may be performed on a continu
ous time signal received from the communication channel,
including digital sampling, demodulation, Scaling, filtering,
etc. Such as may be appropriate inaccordance with generating
the input bitstream. Moreover, certain embodiments, in which
one or more types of error correction code (ECC), forward
error correction (FEC), etc. may be implemented, may per
form appropriate decoding in accordance with Such ECC,
FEC, etc. thereby generating the input bitstream. That is to
say, in certain embodiments in which additional redundancy
may have been made in accordance with generating a corre
sponding output bitstream (e.g., Such as may be launched
from a transmitter communication device or from the trans
mitter portion of a transceiver communication device), appro
priate processing may be performed in accordance with gen
erating the input bitstream. Overall. Such a video decoding
architectures and lamented to process the input bitstream
thereby generating an output video signal corresponding to
the original input video signal, as closely as possible and
perfectly in an ideal case, for use in being output to one or
more video display capable devices.

Referring to the embodiment 900 of FIG. 9, generally
speaking, a decoder Such as an entropy decoder (e.g., which
may be implemented in accordance with CABAC, CAVLC,
etc.) processes the input bitstream in accordance with per

10

15

25

30

35

40

45

50

55

60

65

16
forming the complementary process of encoding as per
formed within a video encoder architecture. The input bit
stream may be viewed as being, as closely as possible and
perfectly in an ideal case, the compressed output bitstream
generated by a video encoder architecture. Of course, in a
real-life application, it is possible that some errors may have
been incurred in a signal transmitted via one or more com
munication links. The entropy decoder processes the input
bitstream and extracts the appropriate coefficients, such as the
DCT coefficients (e.g., Such as representing chroma, luma,
etc. information) and provides such coefficients to an inverse
quantization and inverse transform block. In the event that a
DCT transform is employed, the inverse quantization and
inverse transform block may be implemented to perform an
inverse DCT (IDCT) operation. Subsequently, A/D blocking
filter is implemented to generate the respective frames and/or
pictures corresponding to an output video signal. These
frames and/or pictures may be provided into a picture buffer,
or a digital picture buffer (DPB) for use in performing other
operations including motion compensation. Generally speak
ing, such motion compensation operations may be viewed as
corresponding to inter-prediction associated with video
encoding. Also, intra-prediction may also be performed on
the signal output from the inverse quantization and inverse
transform block. Analogously as with respect to video encod
ing, such a video decoderarchitecture may be implemented to
perform mode selection between performing it neither intra
prediction nor inter-prediction, inter-prediction, or intra-pre
diction in accordance with decoding an input bitstream
thereby generating an output video signal.

Referring to the embodiment 1000 of FIG. 10, in certain
optional embodiments, one or more in-loop filters (e.g.,
implemented in accordance with adaptive loop filter (ALF),
sample adaptive offset (SAO) filter, and/or any other filter
type) Such as may be implemented in accordance with video
encoding as employed to generate an output bitstream, a
corresponding one or more in-loop filters may be imple
mented within a video decoder architecture. In one embodi
ment, an appropriate implementation of one or more Such
in-loop filters is after the de-blocking filter.

FIG. 11 illustrates an embodiment 1100 of recursive cod
ing unit (CU) structure. High efficiency video coding
(HEVC) is a next-generation video compression standard
currently under development. In the opinion of some in the
industry, the HEVC standard looks to be a successor to H.264/
MPEG4-AVC (alternatively referred to as AVC), as referred
to and also incorporated by reference above. In accordance
with video coding in accordance with the currently develop
ing HEVC Standard operates using a coding unit, or CU, as a
basic unit which typically has a square shape and whose
counterpart in accordance with AVC is a macro block (MB).
From certain perspectives, the CU has a similar operational
purpose and role to the MB, and the corresponding Sub macro
block (SMB) in AVC. However, at least one difference
between the two respective components employed in accor
dance with video coding is that a CU may have any one of a
number of various sizes, with no particular distinction corre
sponding to its respective size. In accordance with video
coding terminology performed in accordance with the cur
rently developing HEVC standard, to particular terms are
defined with respect to CU, namely, the largest coding unit
(LCU) and the smallest content unit (SCU).

In accordance with video coding, a picture may be repre
sented using a number of non-overlapped LCUs. Since the
CU is assumed to be is restricted to be square in shape, the CU
structure within an LCU can be expressed in a recursive tree
representation as depicted within FIG.11. That is to say, a CU

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 28 of 34

Avago - Ex. 2003, Page 000094
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
17

may be characterized by a corresponding LCU size and the
hierarchical depth in the LCU to which that LCU belongs.
Once the tree splitting process is done as detected within

FIG. 11, different respective prediction encoding approaches
are specified for every CU which is not further split. In other
words, the CU hierarchical tree may be viewed as including a
number of respective leaf nodes each corresponding to the
respective tree splitting process as applied to the respective
CU's corresponding to a picture. In accordance with video
coding and specifically with respect to P and B slices, each
respective CU may use either intra-prediction or inter-predic
tion in accordance with video encoding. For example, as is
described in respect to the Subsequent paragraphs and the
respective FIG.7 and FIG. 8, inter-prediction coding is opera
tive to employ references from neighboring frames, while
intra-prediction coding is operative to employ references
from the spatial neighboring pixels or co-located color com
ponents.

FIG. 12 illustrates an embodiment 1200 of prediction unit
(PU) modes. FIG. 12 particularly shows the PU partition
modes respectively for a CU having size of 2Nx2N. The NXN
PU is different from other PU modes, and it only exists with
respect to the SCU, or the smallest CU.

In accordance with the currently developing HEVC stan
dard, there are different respective slice types employed,
namely, I slice(s), Pslice(s), and B slice(s). Generally speak
ing, I frames operate such that processing, such as in accor
dance with prediction, is only with respect to that particular
frame (e.g., and I frame only performs prediction with respect
to self).

Pslices operate by using only a single reference list rather
than to respective reference lists. Generally speaking, with
respect to P slices, prediction, such as in accordance with
motion compensation, is performed in accordance with only
one direction or unidirectional with respect to the frame
sequence. Such prediction in accordance with Pslices may be
in either direction but only one direction is employed at a
given time. Also, prediction accordance with Pslices is per
formed with respect to only one frame at a time, again, in
either direction of the frame sequence.

Generally speaking, with respect to B slices, prediction
may be performed in accordance with both directions along
the frame sequence. For example, prediction, such as in
accordance of motion compensation, can be employed in both
directions of the frame sequence simultaneously such that
information from at least two respective other frames, besides
the current frame, may be used in accordance with Such
motion compensation. For example, consider a current frame
2 interposed between a preceding frame 1 and a following
frame 3: the preceding frame 1 may be viewed as being in the
past, whereas the following frame 3 may be viewed as being
in the future or before the current frame 2 (e.g., with respect
to the frame sequence). Information may be taken from either
that preceding frame 1 and/or the following frame 3 for pro
cessing the current frame 2. Also, certain interpolated infor
mation or blended information may be realized from those
two other respective frames in accordance with processing
the current frame 2 (e.g., information from the preceding
frame 1 may be interpolated or blended with information
from the following frame 3). Also, with respect to B slices, B
slices may employ to respective reference lists. In accordance
with operation using B slices, CU prediction mode in PU
partition mode are encoded jointly by using a single syntax
element (e.g., such as shown with respect to FIG. 15). The
binarization employed as a function of whether or not the
current CU is the smallest CU, SCU, or not. For example, if
the smallest CU, or SCU, is not employed, then the binariza

10

15

25

30

35

40

45

50

55

60

65

18
tion and may be employed using the modified binary tree
described below with respect to FIG. 13.

With respect to the PU mode being employed, that infor
mation is signaled to a decoder so that it may appropriately
know how a signal block has been partitioned and to perform
appropriate processing of a video signal encoded in accor
dance with that particular PU mode. For example, depending
upon the particular PU mode employed in accordance with
encoding of a video signal, that information is provided to a
decoder so that the decoder may appropriately process and
decode the received video signal.

FIG. 13 illustrates an embodiment 1300 of a binary tree,
including a modification thereof, employed for Pslice encod
ing in one implementation and for both Pand B slice encoding
in another implementation. As can be seen with respect to this
diagram, a binary tree representing that binarization and of
PU partition symbols is illustrated. For example, a partition
corresponding to 2NX2N uses a codeword of the single digit,
namely, 1. A partition corresponding to 2NXN uses a code
word of two respective digits, namely, 01. A partition corre
sponding to 2NxN uses a codeword of three respective digits,
namely, 001, and a partition corresponding to NXN uses a
codeword of three respective digits, namely, 000. It is noted
that such encoding may be viewed as being implemented in
accordance with Huffman coding, such that those values hav
ing correspondingly lower probability are provided relatively
longer codewords, while those values having correspond
ingly higher probability are provided relatively shorter code
words. As may be understood, a system operating in accor
dance with such Huffman coding may provide for efficiency
in terms of employing relatively shorter codewords for those
values occurring more frequently and with greater predomi
aCC.

In certain implementations, the partition corresponding to
NxN may not be specifically implemented, and as such, the
codebook associated with representing MS. binary tree may
be modified as including only three respective entries. For
example, in Such a modified binary tree, a partition corre
sponding to 2NX2N would use a codeword of the single digit,
namely, 1. Also, a partition corresponding to 2NXN would use
a codeword of two respective digits, namely, 01. A partition
corresponding to 2NxN would use a codeword of two respec
tive digits, 00. As may be seen, by employing Such a modified
binary tree, a more efficiently implemented Huffman code
book may be realized. Again, as described also above, with
respect to B slices, B slices may employ to respective refer
ence lists. In accordance with operation using B slices, CU
prediction mode in PU partition mode are encoded jointly by
using a single syntax element (e.g., such as shown with
respect to FIG. 11). The binarization employed as a function
of whether or not the current CU is the smallest CU, SCU, or
not. For example, if the smallest CU, or SCU, is not
employed, then the binarization and may be employed using
the modified binary tree described with respect to FIG. 13.

In an alternative embodiment, the binary tree as pictorially
illustrated with respect to FIG. 13 is employed for both B
slices and Pslices. That is to say, the very same binary tree is
employed for both B slices and Pslices in such an implemen
tation. As may be understood with respect to Such an embodi
ment, a very efficient implementation may be achieved by
using the very same binary tree for both B slices and Pslices,
in that, only a singular codebook may be employed for both
processing of the B slices and Pslices. In other words, B slice
encoding and Pslice encoding may both be performed using
the binary tree as pictorially illustrated with respect to FIG. 13
(e.g., the same binary tree is employed for both B slices and P
slices) in certain embodiments. Stated another way, the

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 29 of 34

Avago - Ex. 2003, Page 000095
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
19

binary tree of FIG. 13, which may be viewed as being
intended primarily for use in Pslice encoding in one embodi
ment may, in an alternative embodiment, be employed for
both B slice encoding and Pslice encoding.

In Such an embodiment, separate respective syntax ele
ments may be employed for the CU prediction mode (whether
performing inter-prediction or intra-prediction) and the PU
partition mode. For example, a first syntax element may be
employed for indicating intra-prediction processing or inter
prediction processing, and a second syntax element may be
employed for indicating CU partition shape (e.g., indicating
how to perform CU splitting and partitioning).

FIG. 14 illustrates an embodiment 1400 of a binary tree as
may be employed for B slice encoding in one implementation
and for both P and B slice encoding in another implementa
tion. As also described above, with respect to B slices, B slices
may employ to respective reference lists. In accordance with
operation using B slices, CU prediction mode in PU partition
mode are encoded jointly by using a single syntax element
(e.g., as shown within FIG. 14).

In one embodiment, the binary tree as pictorially illustrated
with respect to FIG. 14 is employed for B slices, and the
modified binary tree pictorially illustrated in the right-hand
portion of FIG. 13 as well as in FIG. 15 is employed for P
slices. As may be understood, within Such an embodiment, by
utilizing the modified binary tree (e.g., right-hand portion of
FIG. 13 and in FIG. 15) being a relatively more efficiently
implemented binary tree when compared to the binary tree of
PU partitions as illustrated on the left-hand side of FIG. 13, a
more efficiently implemented video coding may be achieved
with relatively less overhead. As may be understood, with
respect to this embodiment, two different and respective
codebooks are employed respectively for B slices (e.g., right
hand portion of FIG.13 and in FIG. 15) and Pslices (e.g., FIG.
14).

In an alternative embodiment, the binary tree as pictorially
illustrated with respect to FIG. 14 is employed for both B
slices and Pslices. That is to say, the very same binary tree is
employed for both B slices and Pslices in such an implemen
tation. As may be understood with respect to such an embodi
ment, a very efficient implementation may be achieved by
using the very same binary tree for both B slices and Pslices,
in that, only a singular codebook may be employed for both
processing of the B slices and Pslices. In other words, B slice
encoding and Pslice encoding may both be performed using
the binary tree as pictorially illustrated with respect to FIG. 14
(e.g., the same binary tree is employed for both B slices and P
slices) in certain embodiments. Stated another way, the
binary tree of FIG. 14, which may be viewed as being
intended primarily for use in B slice encoding in one embodi
ment may, in an alternative embodiment, be employed for
both B slice encoding and Pslice encoding.

FIG. 15 illustrates an embodiment 1500 of a binary tree as
may be employed for Pslice encoding in conjunction with B
slice encoding as performed in accordance with FIG. 9. For
ease of illustration to the reader, the modified binary tree as
depicted in the right-hand portion of FIG. 13 is again picto
rially illustrated with respect to this FIG. 15. Such a modified
binary tree may be employed with respect to an embodiment
that uses two different and respective codebooks are
employed respectively for B slices (e.g., right-hand portion of
FIG. 13 and in FIG. 15) and Pslices (e.g., FIG. 14).
As may be understood with respect to the various embodi

ments and/or diagrams depicted herein, since the partition
corresponding to NxN is allowed only for the smallest CU, or
SCU’s, that respective partition is not needed for those par
ticular CU's at the root level and at the intermediate levels,

10

15

25

30

35

40

45

50

55

60

65

20
respectively. With respect to P slices, the codeword assign
ment (or binary tree architecture/design) employed for that
particular partition corresponding to NXN and the partition
sizes that fall into that same branch as NXN (e.g., as may be
seen with respect to the partition corresponding to NX2N,
within FIG. 13) should be level dependent. If the current CU
is not specifically the smallest CU, or SCU, then the modified
binary tree as pictorially illustrated in the right-hand portion
of FIG. 13 and also FIG. 15 should appropriately and effec
tively come up with the codewords of the different respective
PU partitions. Therefore, the binary tree pictorially illustrated
on the left-hand side of FIG. 13 need necessarily be used for
the smallest CU, or SCU, in P slices only. That is to say, for
other processing not specifically operating on P slices, the
binary tree pictorially illustrated on the left-hand side of FIG.
13 may be efficiently reduced and modified thereby generat
ing the modified binary tree as pictorially are illustrated in the
right-hand portion of FIG. 13 and also FIG. 15.

Also, as also mentioned above, in accordance with the
currently developing HEVC standard, both B slices and P
slices respectively used different respective codewords for
the different PU modes. In accordance with operation on P
slices, the CU prediction mode (whether performing inter
prediction or intra-prediction) and the PU partition mode are
encoded separate syntax elements. However, in accordance
with operation on B slices, the CU prediction mode and the
PU partition mode are encoded jointly by using a single
Syntax element. In certain situations, this disparate process
ing, depending upon whether P slices or be slices are being
operated on, can create an extra burden for syntax parsing. As
Such, is also described above, one possible embodiment may
be implemented using the binary tree, as pictorially illustrated
with respect to FIG. 14, to be used for both B slices and P
slices. That is to say, the very same binary tree is employed for
both B slices and Pslices in Such an implementation. As may
be understood with respect to Such an embodiment, a very
efficient implementation may be achieved by using the very
same binary tree for both B slices and Pslices, in that, only a
singular codebook may be employed for both processing of
the slices and Pslices. For example, such an embodiment but
operate by using the very same binary tree to unify processing
of both B slices and Pslices in this particular case and also to
use the same approach with respect to signal CU prediction
mode and PU partition mode. One possible embodiment may
be implemented such that the CU prediction mode (whether
performing inter-prediction or intra-prediction) and the PU
partition mode are respectively encoded in separate syntax
elements for both P slices and B slices. Another possible
embodiment may be implemented such that the CU predic
tion mode (whether performing inter-prediction or intra-pre
diction) and the PU partition mode are jointly encoded in a
single syntax element for both P slices and B slices.
As may be understood with respect to the various embodi

ments and/or diagrams herein, a variety of different imple
mentations may be employed as may be desired within a
particular application. In some instances, a unification of the
processing for both Pslices and B slices is effectuated using
the common binary tree as pictorially illustrated with respect
to FIG. 14. In other instances, when two separately imple
mented and different respective binary trees and codebooks
are employed respectively for B slices and Pslices, and par
ticularly when the smallest CU, or SCU, is not employed
(e.g., the current CU is not the SCU), then a modified binary
tree such as pictorially illustrated with respect to the right
hand side of FIG. 13 and in FIG. 15 may be employed for P
slices while the binary tree as pictorially illustrated with
respect to FIG. 14 may be employed for B slices.

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 30 of 34

Avago - Ex. 2003, Page 000096
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
21

FIG. 16A, FIG. 16B, FIG. 17A, and FIG. 17B, illustrate
various embodiments of methods performed in accordance
with video coding (e.g., within one or more communication
devices).

Referring to method 1600 of FIG. 16A, the method 1600
begins by operating a video encoder to encode an input video
signal to generate an output bitstream, as shown in a block
1610. The method 1600 continues by employing a single
binary tree within the video encoder to process at least one P
slice and at least one B slice inaccordance with generating the
output bitstream, as shown in a block 1620.

Referring to method 1601 of FIG. 16B, the method 1601
begins by operating a video encoder to encode an input video
signal to generate an output bitstream, as shown in a block
1611.
The method 1601 then operates by employing a single

binary tree within the video encoder to encode jointly coding
unit (CU) prediction and prediction unit (PU) partition mode
in a single syntax element for both the at least one Pslice and
the at least one B slice in accordance with generating the
output bitstream, as shown in a block 1621.

Referring to method 1700 of FIG. 17A, the method 1700
begins by operating a video encoder to encode an input video
signal to generate an output bitstream, as shown in a block
1710. The method 1700 continues by employing a single
binary tree within the video encoder to encode coding unit
(CU) prediction in a first syntax element for both the at least
one P slice and the at least one B slice in accordance with
generating the output bitstream, as shown in a block 1720.
The method 1700 then operates by employing the single

binary tree within the video encoder to encode prediction unit
(PU) partition mode in a second syntax element for both the at
least one Pslice and theat least one B slice inaccordance with
generating the output bitstream, as shown in a block 1730. As
mentioned elsewhere herein with respect to other embodi
ments and/or diagrams, separate respective syntax elements
may be employed for the CU prediction mode (whether per
forming inter-prediction or intra-prediction) and the PU par
tition mode. For example, a first syntax element may be
employed for indicating intra-prediction processing or inter
prediction processing, and a second syntax element may be
employed for indicating CU partition shape (e.g., indicating
how to perform CU splitting and partitioning).

Referring to method 1701 of FIG. 17A, the method 1701
begins by operating a video encoder to encode an input video
signal to generate an output bitstream, as shown in a block
1711.
The method 1701 continues by transmitting the output

bitstream, or a signal generated from or corresponding to the
output bitstream, to a video decoder via a communication
channel, as shown in a block 1721. For example, at the trans
mitter end of the communication channel, within some
embodiments, any of a variety of operations (e.g., any desired
analog and/or digital operations including filtering, Scaling,
frequency shifting, frequency conversion, rounding, digital to
analog conversion, etc.) may be made with respect to the
output bitstream to generate a signal that comports with and is
Suitable for transmission via a communication channel. That
is to say, the output bitstream may undergo any of a number of
transmitter front-end processing operations (e.g., such as
within an analog front end (AFE)) including modulation,
continuous-time signal generation, etc. to generate a signal
that actually gets transmitted via the communication channel.
In other embodiments, the output bitstream itself, without
modification, may in fact be transmitted via the communica
tion channel.

10

15

25

30

35

40

45

50

55

60

65

22
The method 1701 then operates by operating the video

decoder to decode an input bitstream (e.g., output bitstream,
or the signal generated from or corresponding to the output
bitstream, after having traversed the communication channel)
to generate an output video signal (e.g., re-generated version
of the input video signal), as shown in a block 1731. For
example, analogously, at the receiving end of the communi
cation channel, within Some embodiments, it is noted that any
additional processing may be performed on the received sig
nal (e.g., any desired analog and/or digital operations includ
ing filtering, Scaling, frequency shifting, frequency conver
Sion, rounding, analog to digital conversion, etc.) to generate
the signal (e.g., input bitstream) that undergoes video decod
ing. That is to say, the actual signal received from the com
munication channel may undergo any of a number of receiver
front-end processing operations (e.g., such as within an ana
log front end (AFE)) including demodulation, etc. to generate
the signal (e.g., input bitstream) that undergoes video decod
ing. Of course, in certain optional embodiments, when the
output bitstream itself, without modification, is in fact be
transmitted via the communication channel, no Such receiver
front-end processing operations may be required.

It is also noted that the various operations and functions as
described with respect to various methods herein may be
performed within a communication device. Such as using a
baseband processing module and/or a processing module
implemented therein and/or other component(s) therein.
As may be used herein, the terms “substantially' and

“approximately provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a difference
of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to’,
and/or "coupling includes direct coupling between items
and/or indirect coupling between items via an intervening
item (e.g., an item includes, but is not limited to, a component,
an element, a circuit, and/or a module) where, for indirect
coupling, the intervening item does not modify the informa
tion of a signal but may adjust its current level, Voltage level.
and/or power level. As may further be used herein, inferred
coupling (i.e., where one element is coupled to another ele
ment by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to. As
may even further be used herein, the term “operable to” or
“operably coupled to indicates that an item includes one or
more of power connections, input(s), output(s), etc., to per
form, when activated, one or more its corresponding func
tions and may further include inferred coupling to one or
more other items. As may still further be used herein, the term
“associated with', includes direct and/or indirect coupling of
separate items and/or one item being embedded within
another item. As may be used herein, the term “compares
favorably, indicates that a comparison between two or more
items, signals, etc., provides a desired relationship. For
example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may
be achieved when the magnitude of signal 1 is greater than
that of signal 2 or when the magnitude of signal 2 is less than
that of signal 1.
As may also be used herein, the terms “processing mod

ule'. “module”, “processing circuit', and/or “processing
unit (e.g., including various modules and/or circuitries Such
as may be operative, implemented, and/or for encoding, for

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 31 of 34

Avago - Ex. 2003, Page 000097
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
23

decoding, for baseband processing, etc.) may be a single
processing device or a plurality of processing devices. Such a
processing device may be a microprocessor, micro-control
ler, digital signal processor, microcomputer, central process
ing unit, field programmable gate array, programmable logic 5
device, state machine, logic circuitry, analog circuitry, digital
circuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module, module,
processing circuit, and/or processing unit may have an asso- 10
ciated memory and/or an integrated memory element, which
may be a single memory device, a plurality of memory
devices, and/or embedded circuitry of the processing module,
module, processing circuit, and/or processing unit. Such a
memory device may be a read-only memory (ROM), random 15
access memory (RAM), volatile memory, non-volatile
memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital informa
tion. Note that if the processing module, module, processing
circuit, and/or processing unit includes more than one pro- 20
cessing device, the processing devices may be centrally
located (e.g., directly coupled together via a wired and/or
wireless bus structure) or may be distributedly located (e.g.,
cloud computing via indirect coupling via a local area net
work and/or a wide area network). Further note that if the 25
processing module, module, processing circuit, and/or pro
cessing unit implements one or more of its functions via a
state machine, analog circuitry, digital circuitry, and/or logic
circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded 30
within, or external to, the circuitry comprising the State
machine, analog circuitry, digital circuitry, and/or logic cir
cuitry. Still further note that, the memory element may store,
and the processing module, module, processing circuit, and/
or processing unit executes, hard coded and/or operational 35
instructions corresponding to at least some of the steps and/or
functions illustrated in one or more of the Figures. Such a
memory device or memory element can be included in an
article of manufacture.
The present invention has been described above with the 40

aid of method steps illustrating the performance of specified
functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method
steps have been arbitrarily defined herein for convenience of
description. Alternate boundaries and sequences can be 45
defined so long as the specified functions and relationships
are appropriately performed. Any such alternate boundaries
or sequences are thus within the scope and spirit of the
claimed invention. Further, the boundaries of these functional
building blocks have been arbitrarily defined for convenience 50
of description. Alternate boundaries could be defined as long
as the certain significant functions are appropriately per
formed. Similarly, flow diagram blocks may also have been
arbitrarily defined herein to illustrate certain significant func
tionality. To the extent used, the flow diagram block bound- 55
aries and sequence could have been defined otherwise and
still perform the certain significant functionality. Such alter
nate definitions of both functional building blocks and flow
diagram blocks and sequences are thus within the Scope and
spirit of the claimed invention. One of average skill in the art 60
will also recognize that the functional building blocks, and
other illustrative blocks, modules and components herein,
can be implemented as illustrated or by discrete components,
application specific integrated circuits, processors executing
appropriate Software and the like or any combination thereof. 65
The present invention may have also been described, at

least in part, in terms of one or more embodiments. An

24
embodiment of the present invention is used herein to illus
trate the present invention, an aspect thereof, a feature
thereof, a concept thereof, and/or an example thereof. A
physical embodiment of an apparatus, an article of manufac
ture, a machine, and/or of a process that embodies the present
invention may include one or more of the aspects, features,
concepts, examples, etc. described with reference to one or
more of the embodiments discussed herein. Further, from
figure to figure, the embodiments may incorporate the same
or similarly named functions, steps, modules, etc. that may
use the same or different reference numbers and, as such, the
functions, steps, modules, etc. may be the same or similar
functions, steps, modules, etc. or different ones.

Unless specifically stated to the contra, signals to, from,
and/or between elements in a figure of any of the figures
presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. For instance, if
a signal path is shown as a single-ended path, it also repre
sents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended
signal path. While one or more particular architectures are
described herein, other architectures can likewise be imple
mented that use one or more data buses not expressly shown,
direct connectivity between elements, and/or indirect cou
pling between other elements as recognized by one of average
skill in the art.
The term “module' is used in the description of the various

embodiments of the present invention. A module includes a
functional block that is implemented via hardware to perform
one or module functions such as the processing of one or more
input signals to produce one or more output signals. The
hardware that implements the module may itself operate in
conjunction software, and/or firmware. As used herein, a
module may contain one or more Sub-modules that them
selves are modules.
While particular combinations of various functions and

features of the present invention have been expressly
described herein, other combinations of these features and
functions are likewise possible. The present invention is not
limited by the particular examples disclosed herein and
expressly incorporates these other combinations.
What is claimed is:
1. A video processing device comprising:
a video encoder configured to:

encode an input video signal to generate an output bit
Stream;

employ a single binary tree when processing at least one
Pslice and at least one B slice to generate the output
bitstream, wherein the at least one P slice is used for
unidirectional prediction forward or behind in at least
one frame sequence, and wherein the at least one B
slice is used forbidirectional prediction both forward
and behind in the at least one frame sequence;

employ the single binary tree to encode coding unit (CU)
prediction based on a selected CU that is selected
from a plurality of CUS when generating a first syntax
element for both the at least one Pslice and the at least
one B slice that undergo entropy encoding to generate
the output bitstream, wherein the first syntax element
specifies intra-prediction processing or inter-predic
tion processing for the selected CU; and

employ the single binary tree to encode prediction unit
(PU) partition mode based on the selected CU when
generating a second syntax element for both the at
least one P slice and the at least one B slice that
undergo the entropy encoding to generate to generate
the output bitstream, wherein the second syntax ele

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 32 of 34

Avago - Ex. 2003, Page 000098
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
25

ment specifies the PU partition mode for the selected
CU, wherein the PU partition mode is based on a size
NXN PU when the Selected CU is a smallest CU
(SCU) of the plurality of CUs and is based on a dif
ferent size PU than the size NXN PU when the
selected CU is another CU than the SCU of the plu
rality of CUs, wherein N is a positive integer.

2. The video processing device of claim 1, wherein the PU
partition mode is a size 2Nx2NPU, a size NX2N PU, or a size
2NXN PU when the selected CU is the another CU than the
SCU of the plurality of CUs.

3. The video processing device of claim 1, wherein the
video encoder is further configured to:

perform intra-prediction processing at or during a first time
to generate the output bitstream; and

perform inter-prediction processing at or during a second
time to generate the output bitstream.

4. The video processing device of claim 1, wherein:
the video processing device is a first communication

device; and further comprising:
a second communication device, in communication with

the first communication device via at least one commu
nication channel, including:
an input configured to receive the output bitstream; and
a video decoder configured to decode the output bit

stream to generate an output video signal correspond
ing to the input video signal; and wherein:

the second communication device is at least one of com
puter, a laptop computer, a high definition (HD) televi
sion, a standard definition (SD) television, a handheld
media unit, a set top box (STB), or a digital video disc
(DVD) player.

5. The video processing device of claim 1 further compris
ing:

a communication device that is operative within at least one
of a satellite communication system, a wireless commu
nication system, a wired communication system, a fiber
optic communication system, or a mobile communica
tion system.

6. A video processing device comprising:
a video encoder configured to:

encode an input video signal to generate an output bit
stream; and

employ a single binary tree when processing at least one
Pslice and at least one B slice when generating a first
Syntax element and a second syntax element that
undergo entropy encoding to generate the output bit
stream, wherein the at least one P slice is used for
unidirectional prediction forward or behind in at least
one frame sequence, and wherein the at least one B
slice is used forbidirectional prediction both forward
and behind in the at least one frame sequence, wherein
the first syntax element specifies intra-prediction pro
cessing or inter-prediction processing for a selected
coding unit (CU) that is selected from a plurality of
CUs, wherein the second syntax element specifies a
prediction unit (PU) partition mode for the selected
CU, wherein the PU partition mode is based on a size
NXN PU when the Selected CU is a smallest CU
(SCU) of the plurality of CUs and is based on a dif
ferent size PU than the size NXN PU when the
selected CU is another CU than the SCU of the plu
rality of CUs, wherein N is a positive integer.

7. The video processing device of claim 6, wherein the
video encoder is further configured to:

employ the single binary tree to encode jointly CU predic
tion and PU partition mode in a single syntax element for

5

10

15

25

30

35

40

45

50

55

60

65

26
both the at least one Pslice and the at least one B slice to
generate the output bitstream.

8. The video processing device of claim 6, wherein the
video encoder is further configured to:
employ the single binary tree to encode CU prediction

based on the selected CU when generating the first syn
tax element for both the at least one P slice and the at
least one B slice to generate the output bitstream; and

employ the single binary tree to encode PU partition mode
based on the selected CU when generating the second
syntax element for both the at least one Pslice and the at
least one B slice to generate the output bitstream.

9. The video processing device of claim 6, herein the PU
partition mode is a size 2Nx2NPU, a size NX2N PU, or a size
2NXN PU when the Selected CU is the another CU than the
SCU of the plurality of CUs.

10. The video processing device of claim 6, wherein the
video encoder is further configured to:

perform intra-prediction processing at or during a first time
to generate the output bitstream; and

perform inter-prediction processing at or during a second
time to generate the output bitstream.

11. The video processing device of claim 6, wherein:
the video processing device is a first communication

device; and further comprising:
a second communication device, in communication with

the first communication device via at least one commu
nication channel, including:
an input to receive the output bitstream; and
a video decoder to decode the output bitstream to gen

erate an output video signal corresponding to the
input video signal.

12. The video processing device of claim 11, wherein:
the second communication device is at least one of com

puter, a laptop computer, a high definition (HD) televi
sion, a standard definition (SD) television, a handheld
media unit, a set top box (STB), or a digital video disc
(DVD) player.

13. The video processing device of claim 6 further com
prising:

a communication device that is operative within at least one
of a satellite communication system, a wireless commu
nication system, a wired communication system, a fiber
optic communication system, or a mobile communica
tion system.

14. A method for operating a video processing device of a
communication device, the method comprising:

operating a video encoder of the video processing device to
encode an input video signal to generate an output bit
stream; and

employing a single binary tree within the video encoder to
process at least one Pslice and at least one B slice when
generating a first syntax element and a second syntax
element that undergo entropy encoding to generate the
output bitstream, wherein the at least one Pslice is used
for unidirectional prediction forward or behind in at
least one frame sequence, and wherein the at least one B
slice is used for bidirectional prediction both forward
and behind in the at least one frame sequence, wherein
the first syntax element specifies intra-prediction pro
cessing or inter-prediction processing for a selected cod
ing unit (CU) that is selected from a plurality of CUs,
wherein the second syntax element specifies a prediction
unit (PU) partition mode for the selected CU, wherein
the PU partition mode is based on a size NxN PU when
the selected CU is a smallest CU (SCU) of the plurality
of CUs and is based on a different size PU than the size

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 33 of 34

Avago - Ex. 2003, Page 000099
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 9,332,283 B2
27

NxN PU when the selected CU is another CU than the
SCU of the plurality of CUs, wherein N is a positive
integer.

15. The method of claim 14 further comprising:
employing the single binary tree within the video encoder

to encode jointly CU prediction and PU partition mode
in a single syntax element for both the at least one Pslice
and the at least one B slice when generating the output
bitstream.

16. The method of claim 14 further comprising:
employing the single binary tree to encode CU prediction

based on the selected CU when generating the first syn
tax element for both the at least one P slice and the at
least one B slice when generating the output bitstream;
and

employing the single binary tree to encode PU partition
mode based on the selected CU when generating the
second syntax element for both the at least one P slice
and the at least one B slice when generating the output
bitstream.

17. The method of claim 14, herein the PU partition mode
is a size 2Nx2N PU, a size NX2N PU, or a size 2NXN PU
when the selected CU is the another CU than the SCU of the
plurality of CUs.

5

10

15

28
18. The method of claim 14 further comprising:
performing intra-prediction processing at or during a first

time when generating the output bitstream; and
performing inter-prediction processing at or during a sec

ond time when generating the output bitstream.
19. The method of claim 14 further comprising:
operating an additional communication device, in commu

nication with the communication device via at least one
communication channel, by:

receiving the output bitstream; and
operating a video decoder to decode the output bitstream to

generate an output video signal corresponding to the
input video signal, wherein the additional communica
tion device is at least one of computer, a laptop com
puter, a high definition (HD) television, a standard defi
nition (SD) television, a handheld media unit, a set top
box (STB), or a digital video disc (DVD) player.

20. The method of claim 14, wherein the communication
device is operative within at least one of a satellite commu
nication system, a wireless communication system, a wired
communication system, a fiber-optic communication system,
or a mobile communication system.

Case 3:20-cv-04677-JD Document 112-4 Filed 05/18/21 Page 34 of 34

Avago - Ex. 2003, Page 000100
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Exhibit 5

U.S. Patent No. 8,572,138

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 1 of 52

Avago - Ex. 2003, Page 000101
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US008572138B2

(12) United States Patent (10) Patent No.: US 8,572,138 B2
Sundar et al. (45) Date of Patent: Oct. 29, 2013

(54) DISTRIBUTED COMPUTING SYSTEM 7,246,351 B2 * 7/2007 Bloch et al. 717/175
HAVING AUTONOMIC DEPLOYMENT OF 2002/0129129 A1* 9, 2002 Bloch et al. TO9.220

2002fO156877 A1 10, 2002 Lu et al.
VIRTUAL MACHINE DISKIMAGES 2003/0074360 A1* 4/2003 Chen et al. 7O7/1OO

2003/0078958 A1* 4, 2003 Pace et al. ... TO9,201
(75) Inventors: Jagane Sundar, Saratoga, CA (US); 2003/0110173 A1* 6/2003 Marsland........................ 707/10

Sanjay Radia, Fremont, CA (US); 2003/O126265 A1 7, 2003 Aziz et al.
David A. Henseler, Maplewood, MN (Continued)
(US)

FOREIGN PATENT DOCUMENTS
(73) Assignee: CA, Inc., Islandia, NY (US)

WO WO?O3,085526 A1 10/2003
(*) Notice: Subject to any disclaimer, the term of this WO WO, 2006/081503 A1 8, 2006

patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1339 days.

OTHER PUBLICATIONS

(21) Appl. No.: 11/694,483 E.N. Herness et al., “WebSphere Application Server: A Foundation
1-1. for on Demand Computing.” IBM Systems Journal IBM, vol.43, No.

(22) Filed: Mar. 30, 2007 2, pp. 213-237, XP-002383791, 2004.

(65) Prior Publication Data (Continued)

US 2007/O233698 A1 Oct. 4, 2007 Primary Examiner — Angelica Ruiz
(74) Attorney, Agent, or Firm — Baker Botts, L.L.P.

Related U.S. Application Data
(60) Provisional application No. 60/787,280, filed on Mar. (57) ABSTRACT

30, 2006. One or more control nodes provide for the efficient and auto
mated allocation and management of computing functions

(51) Int. Cl. and resources within the distributed computing system. The
G06F 12/00 (2006.01) distributed computing system includes a software image
G06F 7/30 (2006.01) repository storing: (i) one or more image instances of a virtual

(52) U.S. Cl. machine manager that is executable on the application nodes,
USPC 707/828; 707/831: 718/1 wherein when executed on the applications nodes, the image

(58) Field of Classification Search instances of the virtual machine manager provide one or more
None virtual machines, and (ii) one or more image instances of one
See application file for complete search history. or more Software applications that are executable on the Vir

tual machines. The distributed computing system also
(56) References Cited includes a control node that comprises an automation infra

U.S. PATENT DOCUMENTS

6.256,637 B1 * 7/2001 Venkatesh et al. 1f1
6.513,059 B1* 1/2003 Gupta et al. TO9,202
6,775,829 B1 8/2004 Kroening
6,865,737 B1 3/2005 Lucas et al.
7,093.239 B1* 8/2006 van der Made 717/135

- 10
- - - - - - - - - - - - - - - - - - 11

DiscoveRED pool r
DISCOWERED

s
--- ?------

ALLocATEDTIERS

APPLICATION |
NDES

CONTRONE
12

structure to provide autonomic deployment of the image
instances of the virtual machine manager on the application
nodes and to provide autonomic deployment of the image
instances of the software applications on the virtual
machines.

26 Claims, 29 Drawing Sheets

rFREEFoo
UNALLOCATED :
NES

- - - - - - - 17 MAINTENANCEP

FAILEONDES |

20

AMINISTRATR

RANZATIONAL IMAGE
DATA REPOSITORY
21 26

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 2 of 52

Avago - Ex. 2003, Page 000102
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
Page 2

(56) References Cited FOREIGN PATENT DOCUMENTS

U.S. PATENT DOCUMENTS WO WO, 2006/083727 A1 8, 2006
WO WO 2006/083893 A1 8, 2006

2003/0135509 A1* 7/2003 Davis et al. 707/100 WO WO 2006/083894 A1 8, 2006
2003/0135658 A1* 7/2003 Haggaret al. TO9/312 WO WO/2006/083895 A1 8/2006
2003/0140282 A1 7/2003 Kaler et al. WO WO/2006/083901 A1 8/2006

2003/0192035 A1 * 10, 2003 Duesterwald ald 717/138
2004/0088694 A1 5, 2004 Ho B. Urgaonkar et al., “Resource Overbooking and Application Profil
2004O162741 A1 8, 2004 Flaxer et al. ing in Shared Hosting Platforms.” Proceedings of the 5" Symposium
2004/O181794 A1 9, 2004 Coleman et al. on Operating Systems Design and Implementation, 17 pgs.
2004/O187104 A1 9, 2004 Sardesai et al. XP-002387427, 2002.
2004/0230948 A1* 11/2004 Talwar et al. T17,114 G. Lodi et al., “QoS-aware Clustering of Application Servers.” Pro
2004/0260734 A1 12/2004 Ren et al. ceedings of the 1 IEEE Workshop on Quality of Service for Appli
2005.0005200 A1 1/2005 Matena et al. cation Servers. In Conjunction With the 23' International Sympo
2005/0039180 A1 2/2005 Fultheim et al. T18, 1 sium on Reliable Distributed Systems, 6 pages, XP-002383792, Oct.
2005, 0138370 A1* 6/2005 Goudet al. T13, 164 17, 2004.
2005/O193265 A1 9, 2005 Lin et al. Preinstalling Microsofi Windows XP by Using the OEM Preinstalla
2006/0173856 A1 8/2006 Jackson et al. tion Kit, Part I. XP-00230.1441, Apr. 4, 2003, 24 pages.
2006/0173857 A1 8/2006 Jackson R. Mark Koan et al. It Takes a Village to Build an Image,
2006/0173895 A1 8/2006 Engquist et al. XP-002384269, 2003, pp. 200-207. 20 U.S. Appl. No. 1 1/607.819 entitled. “Automated Deplovment and pp ploym
2006/0173984 A1 8, 2006 Emeis et al. Configuration of Applications in an Autonomically Controlled Dis
2006/0173993 A1 8 2006 Henseler et al. tributed Computing System”, filed Dec. 1, 2006.
2006/0173994 A1 8, 2006 Emeis et al. U.S. Appl. No. 1 1/607,820 entitled, "Automated Deployment and
2006/0174238 A1 8/2006 Henseler et al. Configuration of Applications in an Autonomically Controlled Dis
2006/0259292 A1* 11/2006 Solomon et al. 703/27 tributed Computing System”, filed Dec. 1, 2006.
2007/0168919 A1* 7/2007 Henseler et al. 717/101
2007/0169049 A1* 7/2007 Gingell et al. 717/151 * cited by examiner

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 3 of 52

Avago - Ex. 2003, Page 000103
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 1 of 29 US 8,572,138 B2

- - - - - - - - - - - - - - - - - 13
DISCOVERED FREE POOL

NODES

V UNALLOCATED
NODES

- - - - - - - - - - - - - 17
MAINTENANCE POOL'

| |
| | FAILED NODES |

- - - - - - - - - - - - - - - - - - -

NETWORK
18 APPLICATION l

NODES

CONTROL NODE
12 ADMINISTRATOR

ORGANIZATIONAL
DATA
21

IMAGE
REPOSITORY

26

FIG. 1

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 4 of 52

Avago - Ex. 2003, Page 000104
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 5 of 52

Avago - Ex. 2003, Page 000105
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 3 of 29

RECEIVE INPUT DEFINING
HIERARCHY OF DISTRIBUTED

COMPUTING SYSTEM

RECEIVE INPUT IDENTIFYING
NODE REGUIREMENTS OF TERS

SELECT NODES FROM FREE
POOL OR LOWER PRIORITY TER

DYNAMICALLY ASSIGN NODESTO
NODE SLOTS OF THE DEFINED

TIERS

FIG. 3

US 8,572,138 B2

50

52

54

56

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 6 of 52

Avago - Ex. 2003, Page 000106
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 4 of 29 US 8,572,138 B2

SELECT A TIER TO ENABLE

RETRIEVE TIER RECQUIREMENTS

COMPARE CAPABILITIES OF A
NODE TO TIER REQUIREMENTS

NODE MEETS REMOVE NODE FROM LIST OF
INIMUM REQ'TS? CANDIDATES

NODE IS IMMEDIATELY ASSIGNED
TO THE TER

NODE COUNT
CALCULATE AND RECORD THE FORTIER MET2

ENERGY OF THE NODE

MORE NODES IN
THE FREE POOL2

IDENTIFY AND ASSIGN NODE
WITH THE MINIMUM POSITIVE

ENERGY TO THE TER

NODE COUNT
FORTIER MET2

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 7 of 52

Avago - Ex. 2003, Page 000107
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 5 Of 29 US 8,572,138 B2

IDENTIFY NEED FOR MORE NODE
CAPACITY ON TER

94

NODES IN THE
FREE POOL2

SELECT NODE

IDENTIFY TIERS WITH A LOWER
PRIORITY

DETERMINE WHICH NODES OF
THE LOWER PRIORITY TERS

MEET REQUIREMENTS

CALCULATE ENERGY OF NODES
THAT MEET REQUIREMENTS

SELECT NODE WITH THE LOWEST
ENERGY

ASSIGN THE SELECTED NODE TO
THE TER IN NEED OF CAPACITY

FIG. 5

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 8 of 52

Avago - Ex. 2003, Page 000108
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 6 of 29

110

IDENTIFY EXCESS NODE
CAPACITY ON TER

112

CALCULATE ENERGY OF ALL THE
NODES IN THE TER

114

SELECT NODE WITH THE HIGHEST
ENERGY (FURTHEST MATCH
FROM TIER'S IDEAL NODE)

116

RETURN SELECTED NODE TO THE
FREE POOL

FIG. 6

US 8,572,138 B2

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 9 of 52

Avago - Ex. 2003, Page 000109
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2

rrž~~~?

Sheet 7 Of 29 Oct. 29, 2013

&& ????????????

U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 10 of 52

Avago - Ex. 2003, Page 000110
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 8 of 29 Oct. 29, 2013

?

U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 11 of 52

Avago - Ex. 2003, Page 000111
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 9 Of 29 Oct. 29, 2013 U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 12 of 52

Avago - Ex. 2003, Page 000112
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 10 of 29 Oct. 29, 2013 U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 13 of 52

Avago - Ex. 2003, Page 000113
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 11 of 29 Oct. 29, 2013 U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 14 of 52

Avago - Ex. 2003, Page 000114
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 12 of 29 Oct. 29, 2013

0/11,

U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 15 of 52

Avago - Ex. 2003, Page 000115
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 13 Of 29 Oct. 29, 2013 U.S. Patent

-------------------------------^---------------------------|?

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 16 of 52

Avago - Ex. 2003, Page 000116
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 14 of 29 Oct. 29, 2013 U.S. Patent

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 17 of 52

Avago - Ex. 2003, Page 000117
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 18 of 52

Avago - Ex. 2003, Page 000118
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 19 of 52

Avago - Ex. 2003, Page 000119
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 20 of 52

Avago - Ex. 2003, Page 000120
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent

FIG. 18

Oct. 29, 2013 Sheet 18 Of 29 US 8,572,138 B2

WORKING MEMORY -270

EXPECTED STATE (READ ONLY) 272
MAX NODES: 5

BLT
N

ACTUAL STATE (READ/WRITE) 274

/ SENSORI
5 MINUTE LOADAVERAGE: 24. RULE

N ENGINES

276
LOCAL OBJECT (READ/WRITE)

/ SENSORT
(RULE
N ENGINES

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 21 of 52

Avago - Ex. 2003, Page 000121
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 22 of 52

Avago - Ex. 2003, Page 000122
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 20 Of 29 US 8,572,138 B2

RULE ENGINE

RULE COMPLER
344

EXECUTION ENGINE
346

WORKING MEMORY
348

LOCAL
OBJECTS

350

FIG. 20

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 23 of 52

Avago - Ex. 2003, Page 000123
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 21 of 29 Oct. 29, 2013 U.S. Patent

999

EGION TO?| LNO O

cþz-º viva STILLVILS

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 24 of 52

Avago - Ex. 2003, Page 000124
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 Sheet 22 of 29 Oct. 29, 2013 U.S. Patent

Z/19

STEMAET E?OIARHES 019

SELTMEIRHILLV/ CIERHOLINOW E™OIANES 899

SETTVA CIERIO LINOIN EGION 999

SE OIARHES

Z99

| =sepoNu?uu Z=sepoNXeuu OzL=Kelaqpeol 099

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 25 of 52

Avago - Ex. 2003, Page 000125
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 23 Of 29 US 8,572,138 B2

STAGE APPLICATION WITHIN STAGING
ENVIRONMENT AND GENERATE 380

APPLICATION DEFINITION

382

DEFINE APPLICATION CONFIGURATION
PROPERTIES

384
GENERATE APPLICATION ENTRY USING

APP. DEFINITION AND APP.
CONFIGURATION PROPERTIES

386

MODIFY APPLICATION ENTRY

INSERT APPLICATION ENTRY INTO 388
APPLICATION MATRIX

390
APPLICATION MATRIX ALERTS
CONFIGURATION PROCESSOR

392
CONFIGURATION PROCESSOR UPDATES

APPLICATION RULE ENGINE AND
MONITORING SUBSYSTEM

394
CONTROL NODE HAS AUTONOMIC
CONTROL OVERAPPLICATION

FIG. 23

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 26 of 52

Avago - Ex. 2003, Page 000126
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 24 of 29 US 8,572,138 B2

- - - - - -------------------- - - - - - --408A -408B -408N

OSIAPP. OSIAPP. OSIAPP.
406A 406B 406N

VIRTUAL MACHINE VIRTUAL MACHINE VIRTUAL MACHINE
404A 404B 404N

VIRTUAL MACHINE MANAGER
402

PHYSICAL NODE
400

FIG. 24

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 27 of 52

Avago - Ex. 2003, Page 000127
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 25 Of 29 US 8,572,138 B2

410

SET ASIDE A NODE AS AN
IMAGE HOST

412

INSTALL VIRTUAL MACHINE
MANAGER ON HOST

414
CONFIGURE VIRTUAL MACHINE
MANAGER WITH DESIRED
NUMBER OF VM INSTANCES

416

PERFORM NETWORK OR SAN
CONFIGURATION FOR NODE

418
CAPTURE NODE WITH THE
CONTROL NODE, SPECIFY IP
ADDRESS, AND SPECIFY
CAPTURE OF A VIRTUAL
MACHINE MANAGER

FIG. 25

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 28 of 52

Avago - Ex. 2003, Page 000128
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 26 of 29 US 8,572,138 B2

420
SET ASIDE ANODE THAT IS
RUNNINGVIRTUAL MACHINE

MANAGER

422

CREATE A VIRTUAL MACHINE
ON THE NODE

424
INSTALLAN OPERATING
SYSTEM ON THE VIRTUAL

MACHINE

426

INSTALL APPLICATIONS ON
THE OPERATING SYSTEM

428
PERFORMANY NEEDED

CONFIGURATION TO OS OR
APPLICATONS

430

SNAPSHOT THE VIRTUAL DISK
OF THE VIRTUAL MACHINE

432

CAPTURE THE VIRTUAL DISK
TO THE CONTROL NODE

FIG. 26

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 29 of 52

Avago - Ex. 2003, Page 000129
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

U.S. Patent Oct. 29, 2013 Sheet 27 Of 29 US 8,572,138 B2

440 446

CREATE NEW TER CREATE NEW TER

4.42 448
SPECIFY CAPTURED VIRTUAL SPECIFY CAPTURED OS/
MACHINE MANAGER IMAGE APPLICATION IMAGE FOR NEW

FOR NEW TER TIER

444 450

ACTIVATE TER SET TARGETS FORTER

452

ACTIVATE TIER

FIG. 27A FIG. 27B

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 30 of 52

Avago - Ex. 2003, Page 000130
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2

4 ;

U.S. Patent

FIG. 28

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 31 of 52

Avago - Ex. 2003, Page 000131
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2 U.S. Patent

FIG. 29

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 32 of 52

Avago - Ex. 2003, Page 000132
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
1.

DISTRIBUTED COMPUTING SYSTEM
HAVING AUTONOMIC DEPLOYMENT OF
VIRTUAL MACHINE DISKIMAGES

This application claims the benefit of U.S. provisional
Application Ser. No. 60/787,280, filed Mar. 30, 2006, the
entire content of which is incorporated herein by reference.

TECHNICAL FIELD

The invention relates to computing environments and,
more specifically, to distributed computing systems.

BACKGROUND

Distributed computing systems are increasingly being uti
lized to Support business as well as technical applications.
Typically, distributed computing systems are constructed
from a collection of computing nodes that combine to provide
a set of processing services to implement the distributed
computing applications. Each of the computing nodes in the
distributed computing system is typically a separate, indepen
dent computing device interconnected with each of the other
computing nodes via a communications medium, e.g., a net
work.
One challenge with distributed computing systems is the

organization, deployment and administration of Such a sys
tem within an enterprise environment. For example, it is often
difficult to manage the allocation and deployment of enter
prise computing functions within the distributed computing
system. An enterprise, for example, often includes several
business groups, and each group may have competing and
variable computing requirements.

SUMMARY

In general, the invention is directed to a distributed com
puting system that conforms to a multi-level, hierarchical
organizational model. One or more control nodes provide for
the efficient and automated allocation and management of
computing functions and resources within the distributed
computing system in accordance with the organization
model.
As described herein, the model includes four distinct lev

els: fabric, domains, tiers and nodes that provide for the
logical abstraction and containment of the physical compo
nents as well as system and service application Software of the
enterprise. A user, Such as a system administrator, interacts
with the control nodes to logically define the hierarchical
organization of the distributed computing system. The con
trol nodes are responsible for all levels of management in
accordance with the model, including fabric management,
domain creation, tier creation and node allocation and
deployment.

In one embodiment, a distributed computing system com
prises a plurality of application nodes interconnected via a
communications network and a control node. The control
node comprises a set of one or more applications to be
executed on the application nodes, an application matrix that
includes parameters for controlling the deployment of the
applications within the distributed computing system, and an
automation unit having one or more rule engines that provide
autonomic control of the application nodes and the applica
tions in accordance with a set of one or more rules and the
application matrix.

In another embodiment, a method comprises generating an
application matrix that specifies data for controlling the

10

15

25

30

35

40

45

50

55

60

65

2
deployment of a set of applications within a distributed com
puting system, and performing operations to provide auto
nomic control over the deployment of the applications within
the distributed computing system in accordance with param
eters of the application matrix.

In another embodiment, a computer-readable medium
comprises instructions. The instructions cause the processor
to generate an application matrix that specifies data for con
trolling the deployment of a set of applications within a dis
tributed computing system, and perform operations to pro
vide autonomic control over the deployment of the
applications within the distributed computing system in
accordance with parameters of the application matrix.

In another embodiment, a distributed computing system
comprises a plurality of application nodes interconnected via
a communications network. In addition, the distributed com
puting system includes a Software image repository storing:
(i) one or more image instances of a virtual machine manager
that is executable on the application nodes, wherein when
executed on the applications nodes, the image instances of the
virtual machine manager provide one or more virtual
machines, and (ii) one or more image instances of one or more
software applications that are executable on the virtual
machines. The distributed computing system also includes a
control node that comprises an automation infrastructure to
provide autonomic deployment of the image instances of the
virtual machine manager on the application nodes and to
provide autonomic deployment of the image instances of the
Software applications on the virtual machines.
The details of one or more embodiments of the invention

are set forth in the accompanying drawings and the descrip
tion below. Other features, objects, and advantages of the
invention will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a distributed comput
ing system constructed from a collection of computing nodes.

FIG. 2 is a schematic diagram illustrating an example of a
model of an enterprise that logically defines an enterprise
fabric.

FIG. 3 is a flow diagram that provides a high-level over
view of the operation of a control node when configuring the
distributed computing system.

FIG. 4 is a flow diagram illustrating exemplary operation of
the control node when assigning computing nodes to node
slots of tiers.
FIG.5 is a flow diagram illustrating exemplary operation of

a control node when adding an additional computing node to
a tier to meet additional processing demands.

FIG. 6 is a flow diagram illustrating exemplary operation of
a control node harvesting excess node capacity from one of
the tiers and returning the harvested computing node to the
free pool.

FIG. 7 is a screen illustration of an exemplary user interface
for defining tiers in a particular domain.

FIG. 8 is a screen illustration of an exemplary user interface
for defining properties of the tiers.

FIG.9 is a screen illustration of an exemplary user interface
for viewing and identify properties of a computing node.

FIG. 10 is a screen illustration of an exemplary user inter
face for viewing software images.

FIG. 11 is a screen illustration of an exemplary user inter
face for viewing a hardware inventory report.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 33 of 52

Avago - Ex. 2003, Page 000133
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
3

FIG. 12 is a screen illustration of an exemplary user inter
face for viewing discovered nodes that are located in the free
pool.

FIG. 13 is a screen illustration of an exemplary user inter
face for viewing users of a distributed computing system.

FIG. 14 is a screen illustration of an exemplary user inter
face for viewing alerts for the distributed computing system.

FIG. 15 is a block diagram illustrating one embodiment of
control node that includes a monitoring Subsystem, a service
level automation infrastructure (SLAI), and a business logic
tier (BLT).

FIG. 16 is a block diagram illustrating one embodiment of
the monitoring Subsystem.

FIG. 17 is a block diagram illustrating one embodiment of
the SLAI in further detail.

FIG. 18 is a block diagram of an example working memory
associated with rule engines of the SLAI.

FIG. 19 is a block diagram illustrating an example embodi
ment for the BLT of the control node.

FIG. 20 is a block diagram illustrating one embodiment of
a rule engine in further detail.

FIG. 21 is a block diagram illustrating another example
embodiment of the control node.

FIG. 22 is a flowchart illustrating an exemplary mode of
initiating a control node utilizing an application matrix.

FIG. 23 is a block diagram illustrating an exemplary appli
cation matrix.

FIG. 24 is a block diagram illustrating an exemplary con
figuration of a physical node to which a virtual machine
manager and one or more virtual machines are deployed.

FIG. 25 is a flowchart illustrating an exemplary procedure
for creating and capturing an image of a virtual machine
manager for autonomic deployment within the distributed
computing System.

FIG. 26 is a flowchart illustrating an exemplary procedure
for creating and capturing a virtual disk image file for auto
nomic deployment within the distributed computing system.

FIG. 27A is a flowchart illustrating an exemplary proce
dure for deploying a virtual machine manager to a node
within the distributed computing system.

FIG. 27B is a flowchart illustrating an exemplary proce
dure for deploying an operating system and application image
to a node that is executing a virtual machine manager within
the distributed computing system.

FIG. 28 is a screen image illustrating an exemplary tier
control interface for the embodiment described in FIGS. 24
through 27.

FIG. 29 is a screen image illustrating an exemplary node
control interface for the embodiment described in FIGS. 24
through 27.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating a distributed comput
ing system 10 constructed from a collection of computing
nodes. Distributed computing system 10 may be viewed as a
collection of computing nodes operating in cooperation with
each other to provide distributed processing.

In the illustrated example, the collection of computing
nodes forming distributed computing system 10 are logically
grouped within a discovered pool 11, a free pool 13, an
allocated tiers 15 and a maintenance pool 17. In addition,
distributed computing system 10 includes at least one control
node 12.

Within distributed computing system 10, a computing
node refers to the physical computing device. The number of
computing nodes needed within distributed computing sys

10

15

25

30

35

40

45

50

55

60

65

4
tem 10 is dependent on the processing requirements. For
example, distributed computing system 10 may include 8 to
512 computing nodes or more. Each computing node includes
one or more programmable processors for executing Software
instructions stored on one or more computer-readable media.

Discovered pool 11 includes a set of discovered nodes that
have been automatically “discovered within distributed
computing system 10 by control node 12. For example, con
trol node 12 may monitor dynamic host communication pro
tocol (DHCP) leases to discover the connection of a node to
network 18. Once detected, control node 12 automatically
inventories the attributes for the discovered node and reas
signs the discovered node to free pool 13. The node attributes
identified during the inventory process may include a CPU
count, a CPU speed, an amount of memory (e.g., RAM), local
disk characteristics or other computing resources. Control
node 12 may also receive input identifying node attributes not
detectable via the automatic inventory, such as whether the
node includes I/O, such as HBA. Further details with respect
to the automated discovery and inventory processes are
described in U.S. patent application Ser. No. 1 1/070,851,
entitled AUTOMATED DISCOVERY AND INVENTORY
OF NODES WITHIN AN AUTONOMIC DISTRIBUTED
COMPUTING SYSTEM filed Mar. 2, 2005, the entire con
tent of which is hereby incorporated by reference.

Free pool 13 includes a set of unallocated nodes that are
available for use within distributed computing system 10.
Control node 12 may dynamically reallocate an unallocated
node from free pool 13 to allocated tiers 15 as an application
node 14. For example, control node 12 may use unallocated
nodes from free pool 13 to replace a failed application node
14 or to add an application node to allocated tiers 15 to
increase processing capacity of distributed computing system
10.

In general, allocated tiers 15 include one or more tiers of
application nodes 14 that are currently providing a computing
environment for execution of user Software applications. In
addition, although not illustrated separately, application
nodes 14 may include one or more input/output (I/O) nodes.
Application nodes 14 typically have more substantial I/O
capabilities than control node 12, and are typically configured
with more computing resources (e.g., processors and
memory). Maintenance pool 17 includes a set of nodes that
either could not be inventoried or that failed and have been
taken out of service from allocated tiers 15.

Control node 12 provides the system support functions for
managing distributed computing system 10. More specifi
cally, control node 12 manages the roles of each computing
node within distributed computing system 10 and the execu
tion of software applications within the distributed comput
ing system. In general, distributed computing system 10
includes at least one control node 12, but may utilize addi
tional control nodes to assist with the management functions.

Other control nodes 12 (not shown in FIG. 1) are optional
and may be associated with a different subset of the comput
ing nodes within distributed computing system 10. Moreover,
control node 12 may be replicated to provide primary and
backup administration functions, thereby allowing for grace
ful handling a failover in the event control node 12 fails.
Network 18 provides a communications interconnect for

control node 12 and application nodes 14, as well as discov
ered nodes, unallocated nodes and failed nodes. Communi
cations network 18 permits internode communications
among the computing nodes as the nodes perform interrelated
operations and functions. Communications network 18 may
comprise, for example, direct connections between one or
more of the computing nodes, one or more customer networks

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 34 of 52

Avago - Ex. 2003, Page 000134
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
5

maintained by an enterprise, local area networks (LANs).
wide area networks (WANs) or a combination thereof. Com
munications network 18 may include a number of Switches,
routers, firewalls, load balancers, and the like.

In one embodiment, each of the computing nodes within
distributed computing system 10 executes a common general
purpose operating system. One example of a general-purpose
operating system is the WindowsTM operating system pro
vided by Microsoft Corporation. In some embodiments, the
general-purpose operating system such as the Linux kernel
may be used.

In the example of FIG. 1, control node 12 is responsible for
Software image management. The term "software image'
refers to a complete set of software loaded on an individual
computing node to provide an execution environment for one
or more applications. The software image including the oper
ating system and all boot code, middleware files, and may
include application files. As described below embodiments of
the invention provide application-level autonomic control
over the deployment, execution and monitoring of applica
tions onto Software images associated with application nodes
14.

System administrator 20 may interact with control node 12
and identify the particular types of Software images to be
associated with application nodes 14. Alternatively, adminis
tration software executing on control node 12 may automati
cally identify the appropriate Software images to be deployed
to application nodes 14 based on the input received from
system administrator 20. For example, control node 12 may
determine the type of Software image to load onto an appli
cation node 14 based on the functions assigned to the node by
system administrator 20. Application nodes 14 may be
divided into a number of groups based on their assigned
functionality. As one example, application nodes 14 may be
divided into a first group to provide web server functions, a
second group to provide business application functions and a
third group to provide database functions. The application
nodes 14 of each group may be associated with different
Software images.

Control node 12 provides for the efficient allocation and
management of the various Software images within distrib
uted computing system 10. In some embodiments, control
node 12 generates a 'golden image' for each type of software
image that may be deployed on one or more of application
nodes 14. As described herein, the term “golden image” refers
to a reference copy of a complete Software stack for providing
an execution environment for applications.

System administrator 20 may create a golden image by
installing an operating system, middleware and Software
applications on a computing node and then making a com
plete copy of the installed Software. In this manner, a golden
image may be viewed as a “master copy’ of the software
image for a particular computing function. Control node 12
maintains a Software image repository 26 that stores the
golden images associated with distributed computing system
10.

Control node 12 may create a copy of a golden image,
referred to as an "image instance for each possible image
instance that may be deployed within distributed computing
system 10 for a similar computing function. In other words,
control node 12 pre-generates a set of K image instances for
a golden image, where Krepresents the maximum number of
image instances for which distributed computing system 10 is
configured for the particular type of computing function. For
a given computing function, control node 12 may create the
complete set of image instance even if not all of the image
instances will be initially deployed. Control node 12 creates

5

10

15

25

30

35

40

45

50

55

60

65

6
different sets of image instances for different computing
functions, and each set may have a different number of image
instances depending on the maximum number of image
instances that may be deployed for each set. Control node 12
stores the image instances within Software image repository
26. Each image instance represents a collection of bits that
may be deployed on an application node.

Further details of Software image management are
described in co-pending U.S. patent application Ser. No.
11/046,133, entitled “MANAGEMENT OF SOFTWARE
IMAGES FOR COMPUTING NODES OF A DISTRIB
UTED COMPUTING SYSTEM filed Jan. 28, 2005 and
co-pending U.S. patent application Ser. No. 11/046,152,
entitled UPDATING SOFTWARE IMAGES ASSOCI
ATED WITHA DISTRIBUTED COMPUTING SYSTEM
filed Jan. 28, 2005, each of which is incorporated herein by
reference in its entirety.

In general, distributed computing system 10 conforms to a
multi-level, hierarchical organizational model that includes
four distinct levels: fabric, domains, tiers and nodes. Control
node 12 is responsible for all levels of management, including
fabric management, domain creation, tier creation and node
allocation and deployment.
As used herein, the “fabric' level generally refers to the

logical constructs that allow for definition, deployment, par
titioning and management of distinct enterprise applications.
In other words, fabric refers to the integrated set of hardware,
system Software and application Software that can be “knit
ted together to form a complete enterprise system. In gen
eral, the fabric level consists of two elements: fabric compo
nents or fabric payload. Control node 12 provides fabric
management and fabric services as described herein.

In contrast, a “domain is a logical abstraction for contain
ment and management within the fabric. The domain pro
vides a logical unit of fabric allocation that enables the fabric
to be partitioned amongst multiple uses, e.g. different busi
ness services.
Domains are comprised of tiers, such as a 4-tier application

model (web server, application server, business logic, persis
tence layer) or a single tier monolithic application. Fabric
domains contain the free pool of devices available for assign
ment to tiers.
A tier is a logically associated group of fabric components

within a domain that share a set of attributes: usage, availabil
ity model or business service mission. Tiers are used to define
structure withina domain e.g. N-tier application, and each tier
represents a different computing function. A user, Such as
administrator 20, typically defines the tier structure within a
domain. The hierarchical architecture may provide a high
degree of flexibility in mapping customer applications to
logical models which run within the fabric environment. The
tier is one construct in this modeling process and is the logical
container of application resources.
The lowest level, the node level, includes the physical

components of the fabric. This includes computing nodes
that, as described above, provide operating environments for
system applications and enterprise Software applications. In
addition, the node level may include network devices (e.g.,
Ethernet switches, load balancers and firewalls) used in cre
ating the infrastructure of network 18. The node level may
further include network storage nodes that are network con
nected to the fabric.
System administrator 20 accesses administration Software

executing on control node 12 to logically define the hierar
chical organization of distributed computing system 10. For
example, system administrator 20 may provide organiza
tional data 21 to develop a model for the enterprise and

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 35 of 52

Avago - Ex. 2003, Page 000135
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
7

logically define the enterprise fabric. System administrator
20 may, for instance, develop a model for the enterprise that
includes a number of domains, tiers, and node slots hierar
chically arranged within a single enterprise fabric.
More specifically, system administrator 20 defines one or

more domains that each correspond to a single enterprise
application or service, such as a customer relation manage
ment (CRM) service. System administrator 20 further defines
one or more tiers within each domain that represent the func
tional Subcomponents of applications and services provided
by the domain. As an example, System administrator 20 may
define a storefront domain within the enterprise fabric that
includes a web tier, an application tier and a database tier. In
this manner, distributed computing system 10 may be config
ured to automatically provide web server functions, business
application functions and database functions.

For each of the tiers, control node 12 creates a number of
"node slots’ equal to the maximum number of application
nodes 14 that may be deployed. In general, each node slot
represents a data set that describes specific information for a
corresponding node, such as Software resources for a physical
node that is assigned to the node slot. The node slots may, for
instance, identify a particular Software image instance asso
ciated with an application node 14 as well as a network
address associated with that particular image instance.

In this manner, each of the tiers include one or more node
slots that reference particular software image instances to
boot on the application nodes 14 to which each software
image instance is assigned. The application nodes 14 to which
control node 12 assigns the image instances temporarily
inherit the network address assigned to the image instance for
as long as the image instance is deployed on that particular
application node. If for some reason the image instance is
moved to a different application node 14, control node 12A
moves the network address to that new application node.

System administrator 20 may further define specific node
requirements for each tier of the fabric. For example, the node
requirements specified by System administrator 20 may
include a central processing unit (CPU) count, a CPU speed,
an amount of memory (e.g., RAM), local disk characteristics
and otherhardware characteristics that may be detected on the
individual computing nodes. System administrator 20 may
also specify user-defined hardware attributes of the comput
ing nodes, such as whether I/O (like HBA) is required. The
user-defined hardware attributes are typically not capable of
detection during an automatic inventory. In this manner, sys
tem administrator 20 creates a list of attributes that the tier
requires of its candidate computing nodes. In addition, par
ticular node requirements may be defined for Software image
instances.

In addition to the node requirements described above, sys
tem administrator 20 may further define policies that are used
when re-provisioning computing nodes within the fabric.
System administrator 20 may define policies regarding tier
characteristics, such as a minimum number of nodes a tier
requires, an indication of whether or not a failed node is
dynamically replaced by a node from free pool 13, a priority
for each tier relative to other tiers, an indication of whether or
not a tier allows nodes to be re-provisioned to other tiers to
satisfy processing requirements by other tiers of a higher
priority or other policies. Control node 12 uses the policy
information input by System administrator 20 to re-provision
computing nodes to meet tier processing capacity demands.

After receiving input from system administrator 20 defin
ing the architecture and policy of the enterprise fabric, control
node 12 identifies unallocated nodes within free pool 13 that
satisfy required node attributes. Control node 12 automati

10

15

25

30

35

40

45

50

55

60

65

8
cally assigns unallocated nodes from free pool 13 to respec
tive tier node slots of a tier. As will be described in detail
herein, in one embodiment, control node 12 may assign com
puting nodes to the tiers in a “best fit fashion. Particularly,
control node 12 assigns computing nodes to the tier whose
node attributes most closely match the node requirements of
the tier as defined by administrator 20. The assignment of the
computing nodes may occur on a tier-by-tier basis beginning
with a tier with the highest priority and ending with a tier with
the lowest priority. Alternatively, or in addition, assignment
of computing nodes may be based on dependencies defined
between tiers.
As will be described in detail below, control node 12 may

automatically add unallocated nodes from free pool 13 to a
tier when more processing capacity is needed within the tier,
remove nodes from a tier to the free pool when the tier has
excess capacity, transfer nodes from tier to tier to meet pro
cessing demands, or replace failed nodes with nodes from the
free pool. Thus, computing resources, i.e., computing nodes,
may be automatically shared between tiers and domains
within the fabric based on user-defined policies to dynami
cally address high-processing demands, failures and other
eVentS.

Distributed computing system 10 may provide one or more
advantages. For example, distributed computing system 10
may deliver application services in a manner that is indepen
dent of the computational infrastructure which generates the
application services. For example, the computation infra
structure that provides an application service to a user of
distributed computing system 10 may be irrelevant to the user,
So long as distributed computing system provides the appli
cation service. Distributed computing system 10 may deliver
application services in a manner that is independent of the
computational infrastructure by utilizing an infrastructure
management facility (IMF) that may guarantee application
service delivery using "service level automation.”

This concept is itself based upon two concepts: The Service
Delivery Model and Service Level Automation.

1. Service Delivery Model: The concept of computing as a
service is based upon the ability of the consumer to be guar
anteed availability of the quantity and quality of an applica
tion service required at the time and location necessary, inde
pendent of the type of service provided (e.g. audio, video,
application programs, etc). This may be achieved if the appli
cation services are provided in a manner that is independent
of the location and condition of the physical and logical
infrastructure which generates the application service, lim
ited only by total capability and capacity available. This dis
closure may refer to this concept as the “Service Delivery
Model

Physical and logical infrastructure facilities that provide an
application service may comprise a "computing infrastruc
ture. A "computing infrastructure' may include computing,
storage and communication hardware and related Software
infrastructure; the application Software and application con
tainers; and other enabling facilities and services that are part
of the environment necessary to generate and deliver appli
cation services.

2. Service Level Automation: In order to implement the
service delivery model, the IMF may provide service level
automation. The IMF may implement the service delivery
model for single and/or multiple application service flows.
For example, the IMF may automatically and dynamically
adjust application service levels of these application service
flows based on a policy automation facility. The policy auto
mation facility may automate delivery of application service
based upon dynamically extensible policies. These dynami

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 36 of 52

Avago - Ex. 2003, Page 000136
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2

cally extensible policies may include but are not limited to:
customer, location, priority, duration, date and time of day,
service type, business demands and conditions, quantity and
quality of the application service. The policy automation
facility may also enable independent control of the applica
tion service by a service provider and by a consumer. Further
more, the policy automation facility may allow the consumer
provide the application service or a service based on the
application service to another consumer. In addition, the IMF
may measure both efficiency and cost as reflected in the
behavior of the product. For example, the IMF may provide
the ability to make decisions that account for the best uses of
the resources on a dynamic basis in order to choose between
functionally equivalent alternatives that make the best usage
of the economics of the infrastructure at the time. This dis
closure may refer to this concept as “Service Level Automa
tion” (SLA).

Service-level automation may enable the separation of
Some or all aspects of the implementation of the computing
infrastructure from the delivery of application services. Sepa
rating the implementation of the computing infrastructure
from the delivery of application services may allow a con
Sumer of the application services to decrease risk and cost
while increasing business agility. Implementations of Ser
Vice-level automation may be based upon a new abstraction
which operates independent of existing software categories
(e.g. applications, middleware, database, operating systems
and system management) which for the purposes of this dis
closure shall be referred to as "Metaware.”
The IMF may comprise Metaware that regulates the deliv

ery of application services through service-level automation.
The IMF may use service-level automation to regulate the
delivery of application services in a manner that is indepen
dent of the computing infrastructure that provides the appli
cation services. Because application services are the result of
applications running within distributed computing system 10,
the IMF may automate application service levels and may
make independent of all aspects of the computing infrastruc
ture within the limits of the capability and capacity available
for delivery to the consumer. Service-level automation may
provide extensible, dynamic policy-driven control of service
delivery for both service providers and service consumers.
The IMF may include the following six functional design
capabilities:

1. Application Service Independence: The basic concept
which enables the IMF to deliver application services may be
the ability of the IMF to dynamically manage service-level
automation in a manner that is independent of the computing
infrastructure. A key element of this is that application ser
vices themselves are independent and unmodified. The IMF
may be able to accomplish this by abstracting the physical and
logical computing infrastructure away from the quantity and
quality of application services generated by the computing
infrastructure.

2. Scale Independence: The incremental overhead of the
IMF required by any server included in distributed computing
system 10 may be independent of the number of nodes in
distributed computing system 10.

3. Container Capacity Metering: Distributed computing
system 10 may achieve application service independence by
dynamically metering higher-level software facilities of the
computing infrastructure. The higher-level software facilities
may generate the application services, service flow and flux.
This disclosure may refer to these facilities as “container
services.” Examples of container services may include, but
are not limited to, virtual machine managers, operating sys
tems, and web application servers. Furthermore, Some con

10

15

25

30

35

40

45

50

55

60

65

10
tainer services may contain other container services that the
IMF manages. The system may conceptualize the application
service as being independent of the type of computing infra
structure (e.g., middleware and hardware nodes) that generate
these services.

4. Policy Automation: The IMF may deliver the required
service-level automation through its extensible policy man
agement facility. The policy management facility may
dynamically adjust application service levels in order to
implement user-defined policy. The ability to adjust applica
tion service levels may be limited only by the capacity and
capability of the available computing infrastructure. The
policy management facility may be capable of providing
guaranteed service levels for single and/or multiple applica
tion service flows which the IMF automatically and dynami
cally adjust based on user-defined and extensible policies in
response to changes in the environment. Examples of policies
may include, but are not limited to: customer, location, Ser
Vice type, cost and/or pricing, quantity and quality of service,
priority, duration, date and time of day, business demands and
conditions, and other policies. The policy management facil
ity may also allow the service provider to manage delivery
and meter the capacity that the service provider delivers to
individual customers. The policy management facility may
allow the service provider to manage delivery and meter
capacity independent of the ability of the customer to set and
manage their own policies of how their capacity is utilized.
This may be effectively done by leveraging application ser
Vice independence.

5. Dynamic Provisioning: The IMF described herein may
Support the ability to dynamically provision at boot and run
time all software in order to Support installation, capacity
management, service levels and other policies, and Software
upgrades. Offering a computing infrastructure architecture
that is application service independent may create flexibility
in deployment of a single instance of a service.

6. Data Capture Capability: The IMF described herein may
acquire the data necessary to enable the service provider to
implement metering and auditing facilities necessary to con
trol, audit, bill and account for services provided in complete
detail. The customer may also use the ability to capture this
data as a means to educate the IMF about the performance
characteristics of combinations of resources in order to allow
the IMF to improve the quality of its scheduling decisions
over time. Improvement of the quality of scheduling deci
sions may enhance the ability of the IMF to provide the
requisite services with high efficiency.
The described system may allow customers to conve

niently acquire the guaranteed quantity and quality of appli
cation services required at competitive market-driven rates
with the ability to directly control the SLA capability of the
IMF in order to maximize their operations efficiency and
effectiveness without having to tradeoff operation risk, cost
and business agility. Potential advantages may include, but
are not limited to:

1. Efficiency and Effectiveness: The customer may not
need to manage the technology, and can focus on the auto
mation of the application service to improve their efficiency
and effectiveness without having to tradeoff operation risk,
cost and business agility which the IMF may enable through
the service-level automation capability of the IMF.

2. Capabilities & Convenience: By leveraging the Internet
as a generic, global delivery facility and separating the com
puting infrastructure from the application service delivery,
the IMF may simplify the consumer's life in several ways:

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 37 of 52

Avago - Ex. 2003, Page 000137
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
11

i. Complexity: The IMF may eliminate the complexity of
purchasing, installing, configuring, managing and
administering the computing infrastructure.

ii. Access: The IMF may provide ubiquitous access to a full
range of computing services wherever and whenever
desired from any client device capable of accessing the
Internet.

iii. Service Provider Independence: Consumers may be
free to change providers by simply transferring their
Software images to a new service provider.

iv. Service Management: Service management may enable
a consumer to provide services to customers of the con
Sumer. For example, a corporation may be able to regu
late and bill their individual business units for the capac
ity consumed.

3. Cost: By logically abstracting the application services
from the computing infrastructure, the IMF may enable a
competitive service provider industry that includes:

i. Capacity Utilization: A service provider using the IMF
may be able to charge customers for capacity actually
utilized by the customers. Presently, customers typically
pay for the maximum capacity they would need at peak
load.

ii. Choice of Suppliers: As the basic computing infrastruc
ture facilities may be generic, the customer may have a
choice of suppliers without the level of lock-in current
Vendors may enjoy. This may be enabled through the
image and policy management implementation of the
IMF. The image and policy management implementa
tion of the IMF may allow portability across service
providers through by enabling the customer to simply
transfer the files to the new provider and initiating it with
the IMF Metaware. The ability to easily migrate from a
first service provider to a second service provider may
drive the pricing competition. In this way, the ability of
the IMF to provide application services independent of
the computing infrastructure may enable customers to
choose a service provider more effectively.

iii. Capital Expense Leverage: The customer may not need
to own the capital equipment or software. Rather the
service provider may be motivated to use the most cost
effective components and amortize costs of these com
ponents across a customer base of the service provider.
As a result, the cost to the consumer may be lower.

iv. Operations Expense Leverage: As the IMF automates
most of the information technology operations func
tions, these costs may drop dramatically.

The IMF may enable the implementation of a service deliv
ery model based on service-level automation by service pro
viders:

1. A service provider may use the IMF to implement a
service delivery model for application services independent
of the computing infrastructure or of the service types pro
vided. This capability may enable the service provider to
deliver service-level automation on a global basis utilizing
generic computing infrastructure for all types of digital Ser
vices. Such digital service may include traditional applica
tions and service flow processing, digital audio and digital
Video services independently to any consumer type (e.g. indi
vidual, organization or corporation) as long as the consumer
has access to sufficient capacity of broadband communica
tions for the services levels require, and other types of digital
services. This capability of the IMF may also allow a con
Sumer of an application service to, in turn, be a service pro
vider as well.

2. The IMF described herein may enable a service provider
to meter application services that distributed computing sys

5

10

15

25

30

35

40

45

50

55

60

65

12
tem 10 delivers. For example, the service provider may meter
application services based on the capacity of computing
infrastructure consumed by customer. The service provider
may meter application services in order to control, audit, bill
and account for the application services provided to indi
vidual consumers of the application services. This capability
may represent a uniform model of service-level automation
that is independent of the capacity of computing infrastruc
ture for Some or all types of application services. As a result,
a pricing model of a service provider may reflect the goal of
utility computing by enabling the service provider to bill
based upon a combination of application service delivery
parameters. These application service delivery parameters
may include, but not limited to: customer, type of service,
duration, date and/or time of day, location, point of delivery,
quantity and quality of service and excess or reserved capac
ity, and other application service delivery parameters.

3. The IMF may also enable the service provider to lever
age the economics of the service delivery model in several
ways:

i. Utilization: By managing the computing infrastructure
with the IMF, a service provider may be able to maintain
much higher average utilization levels of the computing
infrastructure. The maintenance of higher average utili
Zation levels may dramatically reduce the amount of
hardware purchased, Software licensed and operations
expenses.

ii. Global Service Demand Levels: Demand for an appli
cation service by an organization may vary by local time
of day. By leveraging the global reach of the Internet, a
service provider may be able to effectively manage the
utilization of the computing infrastructure necessary to
meet demand for the application service on a global
“follow the Sun' basis.

iii. Service Digitization: As more services become digital,
service providers may deliver these services using a
generic computing infrastructure architecture.

iv. Value-Added Services: A service provider may be free
to provide value-added services beyond basic applica
tion services. A few examples of value-added services
may include: a bundle of personal computer services
that includes applications, storage, security, administra
tion and related services; Software as a service; compli
ance verification and certification, and other types of
value-added services.

V. Hardware Commoditization: Hardware commoditiza
tion may enable a service provider to implement a com
puting infrastructure using generic low cost servers,
storage facilities, and network Switches. These hardware
elements are undergoing dramatic commoditization
which may allows for much lower capital expenses then
in the past. This commoditization may continue for
many years to come making capital expenses a much
smaller part of the fixed costs for the service provider.

vi. Automation of Operations: One of the primary eco
nomic values of the IMF is that IMF may automate most
of the runtime operations costs of the computing infra
structure. Operations expenses may constitute the
majority of the costs of today. Because the IMF auto
mates the runtime operations, the IMF may reduce runt
ime operations costs. Thus by leveraging the ability of
the IMF to dramatically reduce the capital and opera
tions expenses, the service provider may be able to
implementan service delivery model that may justify the
consumers Switching cost.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 38 of 52

Avago - Ex. 2003, Page 000138
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
13

vii. Software Commoditization: Software pricing is being
commoditized based upon several factors which may
continue to accelerate. These factors may include:
1. Service-Oriented Architecture: Software systems that

utilize a service-oriented architecture may accelerate
innovation, allow for incremental independent inno
Vation, eliminate down stream lock in by Software
Vendors, and may make it possible to use commodity
servers to run applications that previously required
large expensive servers. Service-oriented architecture
may also reduce complex applications to their most
fundamental independently divisible functional ser
vices which will be the basis for the complete com
moditization of Software further leveraging the open
SOurce movement.

2. Open Source Software: The open source software
paradigm may serve as an accelerator for the com
moditization of many types of software by both com
promising the pricing power of Software and serving
as a reusable model of software services which may
further compromise the value of horizontal software
services.

3. Good Enough: Application services are becoming
more and more generic, thus accelerating their com
moditization further in combination with service-ori
ented architectures and Open Source.

FIG. 2 is a schematic diagram illustrating an example
embodiment of organizational data 21 that defines a model
logically representing an enterprise fabric in accordance with
the invention. In the example illustrated in FIG. 2, control
node 12 (FIG. 1) maintains organizational data 21 to define a
simple e-commerce fabric 32.

In this example, e-commerce fabric 32 includes a store
front domain 34A and a financial planning domain 34B.
Storefront domain 34A corresponds to the enterprise store
front domain and allows customers to find and purchase prod
ucts over a network, Such as the Internet. Financial planning
domain 34B allows one or more employees to perform finan
cial planning tasks for the enterprise.

Tier level 31C includes one or more tiers within each
domain that represent the functional Subcomponents of appli
cations and services provided by the domain. For example,
storefront domain 34A includes a web server tier (labeled
“web tier) 36A, a business application tier (labeled “app
tier”)36B, and a database tier (labeled “DB tier”)36C. Web
server tier 36A, business application tier 36B and database
tier 36C interact with one another to present a customer with
an online storefront application and services. For example,
the customer may interact with web servertier 36A via a web
browser. When the customer searches for a product, web
server tier 36A may interacts with business application tier
36B, which may in turn access a database tier 36C. Similarly,
financial planning domain 34B includes a financial planning
tier 36D that provides subcomponents of applications and
services of the financial planning domain 34B. Thus, in this
example, a domain may include a single tier.

Tier level 31D includes one or more logical node slots
38A-38H (“node slots 38”) within each of the tiers. Each of
node slots 38 include node specific information, such as soft
ware resources for an application node 14 that is assigned to
a respective one of the node slots 38. Node slots 38 may, for
instance, identify particular Software image instances within
image repository 26 and map the identified Software image
instances to respective application nodes 14. As an example,
node slots 38A and 38B belonging to web servertier 36A may
reference particular Software image instances used to boot
two application nodes 14 to provide web server functions.

10

15

25

30

35

40

45

50

55

60

65

14
Similarly, the other node slots 38 may reference software
image instances to provide business application functions,
database functions, or financial application functions depend
ing upon the tier to which the node slots are logically associ
ated.

Although in the example of FIG. 2, there are two node slots
38 corresponding to each tier, the tiers may include any num
ber of node slots depending on the processing capacity
needed on the tier. Furthermore, not all of node slots 38 may
be currently assigned to an application node 14. For example,
node slot 28B may be associated with an inactive software
image instance and, when needed, may be assigned to an
application node 14 for deployment of the Software image
instance.

In this example, organizational data 21 associates free node
pool 13 with the highest-level of the model, i.e., e-commerce
fabric 32. As described above, control node 12 may automati
cally assign unallocated nodes from free node pool 13 to at
least a portion of tier node slots 38 of tiers 36 as needed using
the “best fit” algorithm described above or another algorithm.
Additionally, control node 12 may also add nodes from free
pool 13 to a tier when more processing capacity is needed
within the tier, remove nodes from a tier to free pool 13 when
a tier has excess capacity, transfer nodes from tier to tier to
meet processing demands, and replace failed nodes with
nodes from the free tier.
Although not illustrated, the model for the enterprise fabric

may include multiple free node pools. For example, the model
may associate free node pools with individual domains at the
domain level or with individual tier levels. In this manner,
administrator 20 may define policies for the model such that
unallocated computing nodes of free node pools associated
with domains or tiers may only be used within the domain or
tier to which they areassigned. In this manner, a portion of the
computing nodes may be shared between domains of the
entire fabric while other computing nodes may be restricted to
particular domains or tiers.

FIG. 3 is a flow diagram that provides a high-level over
view of the operation of control node 12 when configuring
distributed computing system 10. Initially, control node 12
receives input from a system administrator defining the hier
archical organization of distributed computing system 10
(50). In one example, control node 12 receives input that
defines a model that specifies a number of hierarchically
arranged nodes as described in detail in FIG. 2. Particularly,
the defined architecture of distributed computing system 10
includes an overall fabric having a number of hierarchically
arranged domains, tiers and node slots.

During this process, control node 12 may receive input
specifying node requirements of each of the tiers of the hier
archical model (52). As described above, administrator 20
may specify a list of attributes, e.g., a central processing unit
(CPU) count, a CPU speed, an amount of memory (e.g.,
RAM), or local disk characteristics, that the tiers require of
their candidate computing nodes. In addition, control node 12
may further receive user-defined custom attributes, such as
requiring the node to have I/O, such as HBA connectivity. The
node requirements or attributes defined by System adminis
trator 20 may each include a name used to identify the char
acteristic, a data type (e.g., integer, long, float or string), and
a weight to define the importance of the requirement.

Control node 12 identifies the attributes for all candidate
computing nodes within free pool 13 or a lower priority tier
(54). As described above, control node 12 may have already
discovered the computing nodes and inventoried the candi
date computing nodes to identify hardware characteristics of
all candidate computing nodes. Additionally, control node 12

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 39 of 52

Avago - Ex. 2003, Page 000139
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
15

may receive input from system administrator 20 identifying
specialized capabilities of one or more computing nodes that
are not detectable by the inventory process.

Control node 12 dynamically assigns computing nodes to
the node slots of each tier based on the node requirements
specified for the tiers and the identified node attributes (56).
Population of the node slots of the tier may be performed on
a tier-by-tier basis beginning with the tier with the highest
priority, i.e., the tier with the highest weight assigned to it. As
will be described in detail, in one embodiment, control node
12 may populate the node slots of the tiers with the computing
nodes that have attributes that most closely match the node
requirements of the particular tiers. Thus, the computing
nodes may be assigned using a “best fit algorithm.

FIG. 4 is a flow diagram illustrating exemplary operation of
control node 12 when assigning computing nodes to node
slots of tiers. Initially, control node 12 selects a tier to enable
(60). As described above, control node 12 may select the tier
based on a weight or priority assigned to the tier by adminis
trator 20. Control node 12 may, for example, initially select
the tier with the highest priority and successively enable the
tiers based on priority.

Next, control node 12 retrieves the node requirements asso
ciated with the selected tier (62). Control node 12 may, for
example, maintain a database having entries for each node
slot, where the entries identify the node requirements for each
of the tiers. Control node 12 retrieves the node requirements
for the selected tier from the database.

In addition, control node 12 accesses the database and
retrieves the computing node attributes of one of the unallo
cated computing nodes of free pool 13. Control node 12
compares the node requirements of the tier to the node
attributes of the selected computing node (64).

Based on the comparison, control node 12 determines
whether the node attributes of the computing node meets the
minimum node requirements of the tier (66). If the node
attributes of the selected computing node do not meet the
minimum node requirements of the tier, then the computing
node is removed from the list of candidate nodes for this
particular tier (68). Control node 12 repeats the process by
retrieving the node attributes of another of the computing
nodes of the free pool and compares the node requirements of
the tier to the node attributes of the computing node.

If the node attributes of the selected computing node meet
the minimum node requirements of the tier (YES of 66),
control node 12 determines whether the node attributes arean
exact match to the node requirements of the tier (70). If the
node attributes of the selected computing node and the node
requirements of the tier are a perfect match (YES of 70), the
computing node is immediately assigned from the free pool to
a node slot of the tier and the image instance for the slot is
associated with the computing node for deployment (72).

Control node 12 then determines whether the node count
for the tier is met (74). Control node 12 may, for example,
determine whether the tier is assigned the minimum number
of nodes necessary to provide adequate processing capabili
ties. In another example, control node 12 may determine
whether the tier is assigned the ideal number of nodes defined
by system administrator 20. When the node count for the tier
is met, control node 12 selects the next tier to enable, e.g., the
tier with the next largest priority, and repeats the process until
all defined tiers are enabled, i.e., populated with application
nodes (60).

If the node attributes of the selected computing node and
the node requirements of the tier are not a perfect match
control node 12 calculates and records a “processing energy’
of the node (76). As used herein, the term “processing energy’

10

15

25

30

35

40

45

50

55

60

65

16
refers to a numerical representation of the difference between
the node attributes of a selected node and the node require
ments of the tier. A positive processing energy indicates the
node attributes more than satisfy the node requirements of the
tier. The magnitude of the processing energy represents the
degree to which the node requirements exceed the tier
requirements.

After computing and recording the processing energy of
the nodes, control node 12 determines whether there are more
candidate nodes in free pool 13 (78). If there are additional
candidate nodes, control node 12 repeats the process by
retrieving the computing node attributes of another one of the
computing nodes of the free pool of computing nodes and
comparing the node requirements of the tier to the node
attributes of the computing node (64).
When all of the candidate computing nodes in the free pool

have been examined, control node 12 selects the candidate
computing node having the minimum positive processing
energy and assigns the selected computing node to a node slot
of the tier (80). Control node 12 determines whether the
minimum node count for the tier is met (82). If the minimum
node count for the tier has not been met, control node 12
assigns the computing node with the next lowest calculated
processing energy to the tier (80). Control node 12 repeats this
process until the node count is met. At this point, control node
12 selects the next tier to enable, e.g., the tier with the next
largest priority (60).

In the event there are an insufficient number of computing
nodes in free pool 13, or an insufficient number of computing
nodes that meet the tier requirements, control node 12 notifies
system administrator 20. System administrator 20 may add
more nodes to free pool 13, add more capable nodes to the free
pool, reduce the node requirements of the tier so more of the
unallocated nodes meet the requirements, or reduce the con
figured minimum node counts for the tiers.

FIG.5 is a flow diagram illustrating exemplary operation of
control node 12 when adding an additional computing node to
a tier to meet increased processing demands. Initially, control
node 12 or system administrator 20 identifies a need for
additional processing capacity on one of the tiers (90). Con
trol node 12 may, for example, identify a high processing load
on the tier or receive input from a system administrator iden
tifying the need for additional processing capacity on the tier.

Control node 12 then determines whether there are any
computing nodes in the free pool of nodes that meet the
minimum node requirements of the tier (92). When there are
one or more nodes that meet the minimum node requirements
of the tier, control node 12 selects the node from the free pool
based the node requirements of the tier, as described above,
(94) and assigns the node to the tier (95). As described in
detail with respect to FIG.4, control node 12 may determine
whether there are any nodes that have node attributes that are
an exact match to the node requirements of the tier. If an exact
match is found, the corresponding computing node is
assigned to a node slot of the tier. If no exact match is found,
control node 12 computes the processing energy for each
node and assigns the computing node with the minimum
processing energy to the tier. Control node 12 remotely pow
ers on the assigned node and remotely boots the node with the
image instance associated with the node slot. Additionally,
the booted computing node inherits the network address asso
ciated with the node slot.

If there are no adequate computing nodes in the free pool,
i.e., no nodes at all or no nodes that match the minimal node
requirements of the tier, control node 12 identifies the tiers
with a lower priority than the tier needing more processing
capacity (96).

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 40 of 52

Avago - Ex. 2003, Page 000140
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
17

Control node 12 determines which of the nodes of the
lowerpriority tiers meet the minimum requirements of the tier
in need of processing capacity (98). Control node 12 may, for
example, compare the attributes of each of the nodes assigned
to node slots of the lower priority tiers to the node require
ments of the tier in need of processing capacity. Lower pri
ority tiers that have the minimum number of computing nodes
may be removed from possible tiers from which to harvest an
application node. If, however, all the lower priority tiers have
the minimum number of computing nodes defined for the
respective tier, the lowest priority tier is selected from which
to harvest the one or more nodes.

Control node 12 calculates the processingenergy of each of
the nodes of the lower priority tiers that meet the minimum
requirements (100). The energies of the nodes are calculated
using the differences between the node attributes and the node
requirements of the tier needing additional capacity. Control
node 12 selects the computing node with the lowest process
ingenergy that meets the minimum requirements, and assigns
the selected computing node to the tier in need of processing
capacity (102.95).

FIG. 6 is a flow diagram illustrating exemplary operation of
control node 12 when harvesting excess node capacity from
one of the tiers and returning the harvested computing node to
free pool 13. Initially, control node 12 identifies a tier having
excess node capacity (110). Control node 12 may, for
example, periodically check the node capacity of the tiers to
identify any tiers having excess node capacity. Performing a
periodic check and removal of excess nodes increases the
likelihood that a capable computing node will be in free pool
13 in the event one of the tiers needs additional node capacity.
When harvesting a node, control node 12 calculates the

processing energy of all the nodes in the tier as described
above with reference to FIG. 4 (112). Control node 12 iden
tifies the node within the tier with the highest processing
energy and returns the identified node to the free pool of
nodes (114, 116). As described above, the node with the
highest processing energy corresponds to the node whose
node attributes are the most in excess of the node require
ments of the tier.

Returning the node to the free pool may involve remotely
powering off the computing node and updating the database
to associate the harvested node with free pool 13. In addition,
control node 12 updates the database to disassociate the
returned node with the node slot to which it was assigned. At
this point, the node no longer uses the network address asso
ciated with the image instance mapped to the node slot. Con
trol node 12 may, therefore, assign a temporary network
address to the node while the node is assigned to free pool 13.

FIG. 7 is a screen illustration of an exemplary user interface
120 presented by control node 12 with which administrator
20 interacts to define tiers for a particular domain. In the
example illustrated in FIG. 7, system administrator 20 has
selected the “Collage Domain.” User interface 120 presents
the tiers that are currently in the selected domain. In the
example illustrated, the Collage Domain includes three tiers,
“test tier 1,” “test tier 2, and “test tier 3. As shown in FIG. 7,
in this example, each of the tiers includes two nodes. In
addition, user interface 120 lists the type of software image
currently deployed to application nodes for each of the tiers.
In the example illustrated, image “applone (1.0.0) is
deployed to the nodes of test tier 1 and image “appltwo
(1.0.0) is deployed to the nodes of test tier 2. System admin
istrator 20 may add one or more tiers to the domain by click
ing on new tier button 122.

FIG. 8 is a screen illustration of an exemplary user interface
130 for defining properties of the tiers. In particular, user

10

15

25

30

35

40

45

50

55

60

65

18
interface 130 allows system administrator 20 to input a name
for the tier, a description of the tier, and an image associated
with the tier. The image associated with the tier refers to a
golden image from which image instances are generated and
deployed to the nodes assigned to the tier.
When configuring a tier, system administrator 20 may elect

to activate email alerts. For example, system administrator 20
may activate the email alerts feature in order to receive email
alerts providing system administrator 20 with critical and/or
non-critical tier information, such as a notification that a tier
has been upgraded, a node of the tier has failed or the like.
Furthermore, system administrator 20 may input various poli
cies, such node failure rules. For example, system adminis
trator 20 may identify whether control node 12 should reboot
a node in case of failure or whether the failed node should
automatically be moved to maintenance pool 17. Similarly,
system administrator 20 may identify whether nodes assigned
to the tier may be harvested by other tiers.

User interface 130 may also allow system administrator 20
to input node requirements of a tier. In order to input node
requirements of a tier, system administrator 20 may click on
the “Requirements’ tab 132, causing user interface 130 to
present an input area to particular node requirements of the
tier.

FIG.9 is a screen illustration of an exemplary user interface
140 for viewing and identifying properties of a computing
node. User interface 140 allows system administrator 20 to
define a name, description, and location (including a rack and
slot) of a computing node. In addition user interface 140 may
specify user-defined properties of a node, such as whether the
computing node has I/O HBA capabilities.

User interface 140 also displays properties that control
node 12 has identified during the computing node inventory
process. In this example, user interface 140 presents system
administrator 20 with the a CPU node count, a CPU speed, the
amount of RAM, the disk size and other characteristics that
are identifiable during the automated node inventory. User
interface 140 additionally presents interface information to
system administrator 20. Specifically, user interface 140 pro
vides system administrator 20 with a list of components and
their associated IP and MAC addresses.

User interface 140 also allows system administrator 20 to
define other custom requirements. For example, system
administrator 20 may define one or more attributes and add
those attributes to the list of node attributes presented to
system administrator 20.

FIG. 10 is a screen illustration of an exemplary user inter
face 150 for viewing software images. User interface 150
presents to a system administrator or another user a list of
images maintained by control node 12 within image reposi
tory 26. The image list further includes the status of each
image (i.e., either active or inactive), the version of the image,
the operating system on which the image should be run, the
operating system version on which the image should be run
and a brief description of the image.

System administrator 20 or another user may select an
image by clicking on the box in front of the image identifier/
name and perform one or more actions on the image. Actions
that system administrator 20 may perform on an image
include deleting the image, updating the image, and the like.
System administrator 20 may select one of the image actions
via dropdown menu 152. In some embodiments, user inter
face 150 may further display other details about the images
Such as the node to which the images are assigned (if the node
status is “active'), the network address associated with the
images and the like.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 41 of 52

Avago - Ex. 2003, Page 000141
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
19

FIG. 11 is a screen illustration of an exemplary user inter
face 160 for viewing a hardware inventory report. User inter
face 160 presents to system administrator 20 or another user
a list of the nodes that are currently assigned to a domain.
System administrator 20 may elect to view the nodes for the
entire domain, for a single tier within the domain or for a
single rack within a tier.

For each node, user interface 160 presents a node ID, a
status of the node, the tier to which the node belongs, a
hostname associated with the node, a NIC IP address, a rack
location, a slot location, the number of CPUs of the node, the
amount of RAM on the node, the number of disks on the node,
whether the node has I/O HBA, and the number of NICs of the
node.

System administrator 20 or other user may select a node by
clicking on the box in front of the node identifier/name and
perform one or more actions on the node. Actions that system
administrator 20 may perform on the node include deleting
the node, updating the node attributes or other properties of
the node, and the like. System administrator 20 may select
one of the node actions via dropdown menu 162.

FIG. 12 is a screen illustration of an exemplary user inter
face 170 for viewing discovered nodes that are located in
discovered pool 11. For each node, user interface 170 pre
sents a node ID, a state of the node, a NIC IP address, a rack
location, a slot location, the number of CPUs of the node, the
amount of RAM on the node, the number of disks on the node,
whether the node has I/O HBA, and the number of NICs of the
node.

FIG. 13 is a screen illustration of an exemplary user inter
face 180 for viewing users of distributed computing system
10. User interface 180 presents a list of users as well as the
role assigned to each of the users and the status of each of the
users. Thus, system administrator 20 may define different
roles to each of the users. For example, a user may be eitheran
operator (i.e., general user) or an administrator. System
administrator 20 may add a new user to the list of users by
clicking on the “New User' button 182.

FIG. 14 is a screen illustration of an exemplary user inter
face 190 for viewing alerts for distributed computing system
10. For each of the alerts, user interface 190 identifies the
severity of the alert, whether the alert has been acknowledged,
an object associated with the alert, an event associated with
the alert, a state of the alert, a user associated with the alert and
a date associated with the alert.

System administrator 20 or other user may select an alert
by clicking on the box in front of the logged alert and perform
one or more actions on the logged alert. Actions that system
administrator 20 may perform include deleting the alert,
changing the status of the alert, or the like. System adminis
trator 20 may specify the log actions via dropdown menu 192.

FIG. 15 is a block diagram illustrating one embodiment of
control node 12 in further detail. In the illustrated example,
control node 12 includes a monitoring Subsystem 202, a ser
vice level automation infrastructure (SLAI) 204, and a busi
ness logic tier (BLT) 206.

Monitoring Subsystem 202 provides real-time monitoring
of the distributed computing system 10. In particular, moni
toring subsystem 202 dynamically collects status data 203
from the hardware and software operating within distributed
computing system 10, and feeds the status data in the form of
monitor inputs 208 to SLAI 204. Monitoring inputs 208 may
be viewed as representing the actual state of the fabric defined
for the organizational model implemented by distributed
computing system 10. Monitoring Subsystem 202 may utilize
well defined interfaces, e.g., the Simple Network Manage

10

15

25

30

35

40

45

50

55

60

65

20
ment Protocol (SNMP) and the Java Management Extensions
(JMX), to collect and export real-time monitoring informa
tion to SLAI 204.
SLAI 204 may be viewed as an automation subsystem that

provides Support for autonomic computing and acts as a cen
tral nervous system for the controlled fabric. In general, SLAI
204 receives monitoring inputs 208 from monitoring sub
system 202, analyzes the inputs and outputs appropriate
action requests 212 to BLT 206. In one embodiment, SLAI
204 is a cybernetic system that controls the defined fabric via
feedback loops. More specifically, administrator 20 may
interact with BLT 206 to define an expected state 210 for the
fabric. BLT 206 communicates expected state 210 to SLAI
204. SLAI 204 receives the monitoring inputs from monitor
ing Subsystem 202 and applies rules to determine the most
effective way of reducing the differences between the
expected and actual states for the fabric.

For example, SLAI 204 may apply a rule to determine that
a node within a high priority tier has failed and that the node
should be replaced by harvesting a node from a lower priority
tier. In this example, SLAI 204 outputs an action request 212
to invoke BLT 206 to move a node from one tier to the other.

In general, BLT 206 implements high-level business opera
tions on fabrics, domains and tiers. SLAI 204 invokes BLT
206 to bring the actual state of the fabric into accordance with
the expected state. In particular, BLT 206 outputs fabric
actions 207 to perform the physical fabric changes. In addi
tion, BLT 206 outputs an initial expected state 210 to SLAI
204 and initial monitoring information 214 to SLAI 204 and
monitoring subsystem 202, respectively. In addition, BLT
206 outputs notifications 211 to SLAI 204 and monitoring
subsystem 202 to indicate the state and monitoring changes to
distributed computing system 10. As one example, BLT 206
may provide control operations that can be used to replace
failed nodes. For example, BLT 206 may output an action
request indicating that a node having address 10.10.10.10 has
been removed from tier ABC and a node having address
10.10.10.11 has been added to tier XYZ. In response, moni
toring Subsystem 202 stops attempting to collect status data
203 from node 10.10.10.10 and starts monitoring for status
data from node 10.10.10.11. In addition, SLAI 204 updates an
internal model to automatically associate monitoring inputs
from node 10.10.10.11 with tier XYZ.

FIG. 16 is a block diagram illustrating one embodiment of
monitoring Subsystem 202. In general, monitoring Subsystem
202 dynamically detects and monitors a variety of hardware
and software components within the fabric. For example,
monitoring subsystem 202 identifies, in a timely and efficient
manner, any computing nodes that have failed, i.e., any node
that does not respond to a request to a known service. More
generally, monitoring Subsystem 202 provides a concise, con
sistent and constantly updating view of the components of the
fabric.
As described further below, monitoring subsystem 202

employs a modular architecture that allows new detection and
monitoring collectors 224 to be “plugged-in' for existing and
new protocols and for existing and new hardware and soft
ware. As illustrated in FIG. 16, monitoring subsystem 202
provides a plug-in architecture that allows different informa
tion collectors 224 to be installed. In general, collectors 224
are responsible for protocol-specific collection of monitoring
information. The plug-in architecture allows for new proto
cols to be added by simply adhering to a collector plug-in
signature. In this example, monitoring Subsystem 202
includes collectors 224A and 224B for collecting information
from operating systems and applications executing on nodes
within tier A and tier B, respectively.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 42 of 52

Avago - Ex. 2003, Page 000142
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
21

In one embodiment, collectors 224 are loaded at startup of
control node 12 and are configured with information retrieved
from BLT 206. Monitoring engine 222 receives collection
requests from SLAI 204, sorts and prioritizes the requests,
and invokes the appropriate one of collectors 224 based on the
protocol specified in the collection requests. The invoked
collector is responsible for collecting the required status data
and returning the status data to monitoring engine 222. If the
collector is unable to collect the requested Status data, the
collector returns an error code.

In one embodiment, collectors 224 are Java code compiled
into a jar file and loaded with a class loader at run time. Each
of collectors 224 has an associated configuration file written
in a data description language. Such as the extensible markup
language (XML). In addition, a user may interact with BLT
206 to add run-time configuration to dynamically configure
collectors 224 for specific computing environments. Each of
collectors 224 expose an application programming interface
(API) to monitoring engine 222 for communication and data
exchange.
A user, Such as a system administrator, specifies the pro

tocol or protocols to be used for monitoring a software image
when the image is created. In addition, the users may specify
the protocols to be used for monitoring the nodes and each
service executing on the nodes. Example protocols Supported
by the collectors 224 include Secure Shell (SSH), Simple
Network Management Protocol (SNMP), Internet Control
Message Protocol (ICMP) ping, Java Management Exten
sions (JMX) and the Hypertext Transfer Protocol (HTTP).
Some protocols require special privileges, e.g., root privi

leges, to perform the required data collection. In this case, the
corresponding collectors 224 communicate with a separate
process that executes as the root. Moreover, Some protocols
may require deployment and/or configuration of data provid
ers within the fabric. Software agents may, for example, be
installed and configured on nodes and configured on other
hardware. If needed, custom in-fabric components may be
deployed.

In this example, the modular architecture of monitoring
Subsystem 202 also Supports one or more plug-in interfaces
220 for data collection from a wide range of third-party moni
toring systems 228. Third-party monitoring systems 228
monitor portions of the fabric and may be vendor-specific.

FIG. 17 is a block diagram illustrating one embodiment of
SLAI 204 in further detail. In the illustrated embodiment,
SLAI 204 is composed of three subsystems: a sensor sub
system 240, an analysis Subsystem 244 and an effector Sub
system 248.

In general, sensor Subsystem 240 receives actual state data
from monitoring Subsystem 202 in the form of monitoring
inputs 208 and Supplies ongoing, dynamic input data to analy
sis Subsystem 244. For example, sensor Subsystem 240 is
notified of physical changes to distributed computing system
10 by monitoring subsystem 202. Sensor subsystem 240 uses
the state data received from monitoring subsystem 202 to
maintain ongoing, calculated values that can be sent to analy
sis subsystem 244 in accordance with scheduler 242.

In one embodiment, sensor subsystem 240 performs time
based hierarchical data aggregation of the actual state data in
accordance with the defined organization model. Sensor Sub
system 240 maintains organizational data in a tree-like struc
ture that reflects the current configuration of the hierarchical
organization model. Sensor Subsystem 240 uses the organi
Zational data to perform the real-time data aggregation and
map tiers and domains to specific nodes. Sensor Subsystem
240 maintains the organizational databased on notifications
211 received from BLT 2.06.

5

10

15

25

30

35

40

45

50

55

60

65

22
Sensor Subsystem 240 sends inputs to analysis Subsystem

244 to communicate the aggregated data on a periodic or
event-driven basis. Analysis Subsystem 244 may register an
interest in a particular aggregated data value with sensor
Subsystem 240 and request updates at a specified frequency.
In response, sensor Subsystem 240 interacts with monitoring
Subsystem 202 and scheduler 242 to generate the aggregated
data required by analysis Subsystem 244.

Sensor Subsystem 240 performs arbitrary data aggrega
tions via instances of plug-in classes (referred to as “trig
gers') that define the aggregations. Each trigger is registered
under a compound name based on the entity being monitored
and the type of data being gathered. For example, a trigger
may be defined to aggregate and compute an average com
puting load for a tier every five minutes. Analysis Subsystem
244 requests the aggregated data based on the registered
names. In some embodiments, analysis Subsystem 244 may
define calculations directly and pass them to sensor Sub
system 240 dynamically.

Analysis Subsystem 244 is composed of a plurality of for
ward chaining rule engines 246A-246N. In general, rule
engines 246 match patterns in a combination of configuration
data and monitoring data, which is presented by extraction
agent 251 in the form of events. Events contain the aggregated
data values that are sent to rule engines 246 in accordance
with scheduler 242.

Sensor subsystem 240 may interact with analysis sub
system 244 via trigger listeners 247 that receives updates
from a trigger within sensor Subsystem 240 when specified
events occur. An event may be based on system state (e.g., a
node transitioning to an up or down state) or may be time
based.

Analysis subsystem 244 allows rule sets to be loaded in
Source form and compiled at load time into discrimination
networks. Each rule set specifies trigger-delivered attributes.
Upon loading the rule sets, analysis Subsystem 244 estab
lishes trigger listeners 247 to receive sensor notifications and
update respective working memories of rule engines 246. As
illustrated in FIG. 17, each of rule engines 246 may serve a
different tier defined within the fabric. Alternatively, multiple
rule engines 246 may serve a single tier or a single rule engine
may serve multiple tiers.

Rule engines 246 process the events and invoke action
requests via calls to effector subsystem 248. In addition, rule
engines 246 provide a call-back interface so that effector
Subsystem 248 can inform a rule engine when an action has
completed. Rule engines 246 prevent a particular rule from
re-firing as long as any action invoked by the rule has not
finished. In general, rules contain notification calls and Ser
Vice invocations though either may be disabled by configu
ration of effector subsystem 248. BLT 206 supplies initial
system configuration descriptions to seed each of rule engines
246.

In general, rule engines 246 analyze the events and dis
cover discrepancies between an expected state of the fabric
and an actual state. Each of rule engines 246 may be viewed
as Software that performs logical reasoning using knowledge
encoded in high-level condition-action rules. Each of rule
engines 246 applies automated reasoning that works forward
from preconditions to goals defined by System administrator
20. For example, rule engines 246 may apply modus ponens
inferences rules.

Rule engines 246 output requests to effector Subsystem
248 which produce actions requests 212 for BLT 206 to
resolve the discrepancies. Effector subsystem 248 performs
all operations on behalf of analysis subsystem 244. For
example, event generator 250, task invocation module 252

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 43 of 52

Avago - Ex. 2003, Page 000143
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
23

and logger 254 of effector subsystem 248 perform event
generation, BLT action invocation and rule logging, respec
tively. More specifically, task invocation module 252 invokes
asynchronous operations within BLT 206. In response, BLT
206 creates a new thread of control for each task which is
tracked by a unique task identifier (taskid). Rules engine 246
uses the task id to determine when a task completes and, if
needed, to re-fire any rules that were pended until completion
of the task. These tasks may take arbitrary amounts of time,
and rules engine 246 tracks the progress of individual task via
change notifications 211 produced by BLT 206.

Event generator 250 creates persistent event records of the
state of processing of SLAI 204 and stores the event records
within a database. Clients uses these event records to track
progress and determine the current state of the SLAI 204.

Logger 254 generates detailed trace information about sys
tem activities for use in rule development and debugging. The
logging level can be raised or lowered as needed without
changing operation of SLAI 204.

FIG. 18 is a block diagram of an example working memory
270 associated with rule engines 246. In this example, work
ing memory 270 includes a read-only first data region 272 that
stores the expected state received from BLT 206. Data region
272 is read-only in the sense that it cannot be modified in
response to a trigger from sensor Subsystem 240 or by rule
engines 246 without notification from BLT 206.

In addition, working memory 270 includes a second data
region 274 that is modifiable (i.e., read/write) and may be
updated by monitoring subsystem 202 or used internally by
rule engines 246. In general, data region 274 stores aggre
gated data representing the actual state of the fabric and can
be updated by sensor subsystem 240 or by rule engines 246.
The actual state may consist of a set of property annotations
that can be attached to objects received from BLT 206 or to
objects locally defined within a rule engine, such as local
object 276.

FIG. 19 is a block diagram illustrating an example embodi
ment for BLT 206. In this example, BLT 206 includes a set of
one or more web service definition language (WSDL) inter
faces 300, a report generator 302, a fabric administration
interface service 304, a fabric view service 306, a user admin
istration service 308, a task interface 311, a task manager 312
and an event subsystem 315.
As described, BLT 206 provides the facilities necessary to

create and administer the organizational model (e.g., fabric,
domains, tiers and nodes) implemented by distributed com
puting system 10. In general, BLT 206 abstracts access to the
persisted configuration state of the fabric, and controls the
interactions with interfaces to fabric hardware services. As
such, BLT 206 provides fabric management capabilities, such
as the ability to create a tier and replace a failed node. WSDL
interfaces 300 provide web service interfaces to the function
ality of BLT 206 that may be invoked by web service clients
313. Many of WSDL interfaces 300 offered by BLT 206 allow
administrator 20 to define goals, such as specifying a goal of
the expected state of the fabric. As further described below,
rule engines 246 within SLAI 204, in turn, invoke task man
ger 312 to initiate one or more BLT tasks to achieve the
specified goal. In general, web service clients 313 may be
presentation layer applications, command line applications,
or other clients.
BLT 206 abstracts all interaction with physical hardware

for web service clients 313. BLT 206 is an enabling compo
nent for autonomic management behavior, but does not
respond to real-time events that either prevent a goal from
being achieved or produce a set of deviations between the
expected State and the actual state of the system. In contrast,

10

15

25

30

35

40

45

50

55

60

65

24
BLT 206 originates goals for autonomic reactions to changing
configuration and state. SLAI 204 analyzes and acts upon
these goals along with real-time state changes. BLT 206 sets
the goals to which SLAI 204 strives to achieve, and provides
functionality used by the SLAI in order to achieve the goals.

In general, BLT 206 does not dictate the steps taken in
pursuit of a goal since these are likely to change based on the
current state of distributed computing system 10 and changes
to configurable policy. SLAI 204 makes these decisions based
on the configured rule sets for the fabric and by evaluating
monitoring data received from monitoring Subsystem 202.

Fabric administration service 304 implements a set of
methods for managing all aspects of the fabric. Example
methods include methods for adding, viewing, updating and
removing domains, tiers, nodes, notifications, assets, appli
cations, Software images, connectors, and monitors. Other
example methods include controlling power at a node, and
cloning, capturing, importing, exporting or upgrading soft
ware images. Rule engines 246 of SLAI 204 may, for
example, invoke these methods by issuing action requests
212.

Task manager 312 receives action requests 212 via task
interface 311. In general, task interface 311 provides an inter
face for receiving action requests 212 from SLAI 204 or other
internal Subsystem. In response, task manager 312 manages
asynchronous and long running actions that are invoked by
SLAI 204 to satisfy a goal or perform an action requested by
a client.

Task manager 312 generates task data 310 that represents
identification and status for each task. Task manager 312
returns a task identifier to the calling web service clients 313
or the internal subsystem, e.g., SLAI 204, that initiated the
task. Rule engines 246 and web service clients 313 use the
task identifiers to track progress and retrieve output, results,
and errors associated with achieving the goal.

In one embodiment, there are no WSDL interfaces 300 for
initiating specific tasks. Rather, administrator 20 interacts
with BLT 206 though goal interfaces presented by WSDL
interfaces 300 to define the goals for the fabric. In contrast,
the term task is used to refer to internal system constructs that
require no user interaction. Tasks are distinct, low-level units
of work that affect the state of the fabric. SLAI 204 may
combine tasks to achieve or maintain a goal state.

For example, administrator 20 can request configuration
changes by either adding new goals to an object or by modi
fying the attributes on existing goals. Scheduled goals apply
a configuration at a designated time. For example, the goals
for a particular tier may specify the minimum, maximum, and
target node counts for that tier. As a result, the tier can increase
or decrease current node capacity by scheduling goals with
different configuration values.

This may be useful, for example, in Scheduling a Software
image upgrade. As another example, entire domains may
transition online and offline per a defined grid Schedule.
Administrator 20 may mix and match goals on a component
to achieve configurations specific to the application and envi
ronment. For example, a tier that does not support autonomic
node replacement would not be configured with a harvesting
goal.

In some embodiments, goals are either “inforce' or “out of
force.” SLAI 204 only works to achieve and maintain those
goals that are currently in force. SLAI 204 may applies a
concept of “gravity” as the goals transition from in force to
out of force. For example, SLAI 204 may transition a tier
offline when an online goal is marked out of force. Some goal
types may have prerequisite goals. For example, an image
upgrade goal may require as a prerequisite that a tier be

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 44 of 52

Avago - Ex. 2003, Page 000144
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
25

transitioned to offline before the image upgrade can be per
formed. In other embodiments, goals are always inforce until
modified.

SLAI 204 may automatically formulate dependencies
between goals or may allow a user to specify the dependen
cies. For example, a user may request that a newly created tier
come online. As a result of this goal, SLAI 204 may auto
matically direct task manager 312 to generate a task of har
vesting a target number of nodes to enable the tier. Generally,
all goals remain in-force by SLAI 204 until modified by BLT
206. In one embodiment, each goal remains in-force in one of
three states: Satisfied, Warning, or Critical depending on how
successful SLAI 204 was in achieving the goal at the time the
event record was generated and stored.

In this manner, SLAI 204 controls the life cycle of a goal
(i.e., the creation, scheduling, update, deletion of the goal),
and provides a common implementation of these and other
services such as timeout, event writing, goal conflicts, man
agement of intra-goal dependencies, and tracking tasks to
achieving the goals.

Progress toward a goal is tracked though event Subsystem
315. In particular, event subsystem 315 tracks the progress of
each in force goal based on the goal identifiers. Tasks
executed to achieve a particular goal produce events to com
municate result or errors. The events provide a convenient
time-based view of all actions and behaviors.

Examples of goal types that may be defined by administra
tor 20 include Software image management goals, node allo
cation goals, harvest goals, tier capacity goals, asset require
ment goals, tier online/offline goals, and data gathering goals.

In one embodiment, BLT 206 presents a task interface to
SLAI 204 for the creation and management of specific tasks
in order to achieve the currently in force goals. In particular,
rule engines 246 invoke the task interface based on evaluation
of the defined rule sets in view of the expected state and actual
state for the fabric. Example task interfaces include interfaces
to: reserve node resources; query resources for a node slot;
associate or disassociate an image with a node in a tier node
slot; allocate, de-allocate, startup or shutdown a node; move a
node to a tier, apply, remove or cycle power of a node; create
a golden image; create or delete an image instance; and delete
an activity, node or tier.

Report generator 302 provides an extensible mechanism
for generating reports 314. Typical reports include image
utilization reports that contain information with respect to the
number of nodes running each Software image, inventory
reports detailing both the logical and physical aspects of the
fabric, and system event reports showing all events that have
occurred within the fabric. Report generator 302 gathers,
localizes, formats and displays data into report form for pre
sentation to the user. Report generator 302 may include one or
more data gathering modules (not shown) that gather events
in accordance with a schedule and update an events table to
record the events. The data gathering modules may write the
events in XML format.

FIG. 20 is a block diagram illustrating one embodiment of
a rule engine 246 (FIG. 17). In the illustrated embodiment,
rule engine 246 includes a rule compiler 344 and an execution
engine 346. Each of rules 342 represents a unit of code that
conforms to a rule language and expresses a set of triggering
conditions and a set of implied actions. When the conditions
are met, the actions are eligible to occur. The following is one
example of a configuration rule:

10

15

25

30

35

40

45

50

55

60

65

26

rule checkTierLoad {
Tiert where status = 'overloaded:
LoadParameterp where app == tapp && maxload st. load:

-> {
modify t{

status: “overloaded:
}:

When translated, this example rule marks a tier as overloaded
if an application is implemented by the tier and the maximum
specified load for the application has been exceeded. Another
example rule for outputting a notification that a tier is over
loaded and automatically invoking a task within BLT 206 to
add a node is:

rule tierOverload Notify {
Tiert where status == "overloaded:

-> {
notify "Tier: + t + “is overloaded.:
BLTaddNode(f);

Rule compiler 344 compiles each of rules 344 and trans
lates match conditions of the rules into a discrimination net
work that avoids redundant tests during rule execution.
Execution engine 346 handles rule administration, object
insertion and retrieval, rule invocation and execution of rule
actions. In general, execution engine 346 first matches a
current set of rules 342 against a current state of working
memory 348 and local objects 350. Execution engine 346
then collects all rules that match as well as the matched
objects and selects a particular rule instantiation to fire. Next,
execution engine 346 fires (executes) the instantiated rule and
propagates any changes to working memory 348. Execution
engine 346 repeats the process until no more matching rule
instantiations can be found.

Firing of a rule typically produces a very small number of
changes to working memory 348. This allows Sophisticated
rule engines to scale by retaining match state between cycles.
Only the rules and rule instantiations affected by changes are
updated, thereby avoiding the bulk of the matching process.
One exemplary algorithm that may be used by execution
engine 346 to handle the matching process includes the RETE
algorithm that creates a decision tree that combines the pat
terns in all the rules and is intended to improve the speed of
forward-chained rule system by limiting the effort required to
re-compute a conflict set after a rule is fired. One example of
a RETE algorithm is described in Forgy, C. L.: 1982, RETE:
a fast algorithm for the many pattern/many object pattern
match problem, Artificial Intelligence 19, 1737, hereby
incorporated by reference. Other alternatives include the
TREAT algorithms, and LEAPS algorithm, as described by
Miranker, D. P.: TREAT: A New and Efficient Match Algo
rithm for AI Production Systems”. ISBN 0934613710 Daniel
P. Miranker, David A. Brant, Bernie Lofaso, David Gadbois:
On the Performance of Lazy Matching in Production Sys
tems. AAAI 1990: 685692, each of which is hereby incorpo
rated by reference.

FIG. 21 is a block diagram illustrating an alternative
embodiment of control unit 12 (FIG. 15). In this embodiment,
control unit 12 operates substantially as described above, but
includes an application matrix 350, an application governor
352, a configuration processor 354, and an application service
level automation infrastructure (“application SLAI) 358. As

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 45 of 52

Avago - Ex. 2003, Page 000145
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
27

described below, application matrix 350, application gover
nor 352, configuration processor 354, and application SLAI
358 provide a framework that allows control unit 12 to auto
nomically control the deployment, execution and monitoring
of applications across application nodes 14 of distributed
computing system 10.

Application matrix350 contains all the information needed
by control unit 12 to interact with one or more applications or
application servers and provide autonomic control over a set
of applications. Specifically, application matrix 350 provides
a logical definition for deploying and controlling the set of
applications to one or more tiers within distributed computing
system 10. In one embodiment, application matrix 350 is an
electronic document that conforms to a data description lan
guage, e.g., the extensible markup language (XML). Appli
cation SLAI 358 includes an application rules engine 355
dedicated to processing application-level rules, i.e., forward
chaining rules to provide autonomic control over the appli
cations defined within application matrix 350. Like rules
engine 246, application rules engine355 contains a rule com
piler, an execution engine, and a working memory. In order to
give effect to changes in application matrix 350, application
SLAI 358 automatically updates application rules engine355
and monitoring Subsystem 202. In particular, application
matrix 350 sends an alert whenever application matrix 350
changes. In response to this alert, application SLAI 358 cap
tures application-specific attributes from application matrix
350. Specifically, application SLAI 358 captures configura
tion attributes and rule attributes contained in application
matrix 350. Application SLAI 358 transfers any new rule
attributes to the working memory of application rules engine
355 to provide autonomic control over the deployment, moni
toring and the execution of the applications defined within
application matrix 350. In addition, application SLAI 358
updates monitoring Subsystem 202 to collect information
required to control the applications. In this manner, adminis
trator 20 may continue to add new application definitions and
configurations to application matrix350 after distributed con
trol node 12 has started.
As described in further detail below, configuration proces

Sor 354 is a Software module that generates an application
matrix entry based on an application definition and applica
tion configuration properties of a 'staged' application. A
staged application is an application that has been deployed in
a staging environment and customized for Subsequent
deployment within distributed computing system 10. After
creating the application matrix entry, administrator 20 may
insert the application matrix entry into application matrix
350.

Configuration processor 354 is “pluggable.” That is,
administrator 20 can “plug in different implementations of
configuration processor 354 as needed. For example, admin
istrator 20 may need to “plug in a different implementation
of configuration processor 354 to handle applications that do
not use an application server.

Application governor 352 is a Software engine that per
forms application-level actions based on requests received
from application rules engine 355. In this manner, BLT 206
effects fabric-level actions (e.g., deployment and monitoring
of nodes and images) based on request from fabric-level rules
engines 246 (FIG. 17), while matrix governor 352 performs
application-level actions (e.g., deployment and monitoring of
applications) based on requests from application rules engine
355.

Application governor 352 uses application matrix 350 as a
Source of parameters when carrying out the application-level
operations requested by application rules engine 355. For

10

15

25

30

35

40

45

50

55

60

65

28
example, application rules engine 355 may detect that a node
to which the application is not deployed is ready for use by the
application. As a result, application rules engine 355 directs
application governor 352 to handle the details of deploying
the application to the node. In turn, application governor 352
accesses application matrix 350 to retrieve application-spe
cific parameters necessary to deploy the application. Storing
application-specific parameters in application matrix 350
allows the application-specific parameters to change without
having to recompile the rules within working memory of
application rules engine 355.

Application governor 352 performs a similar procedure to
undeploy an application. That is, application rules engine355
may detect that a second application needs to use a node more
than a first application that is currently deployed to the node.
In this situation, application rules engine 355 sends an
instruction to application governor 352 to undeploy the first
application and deploy the second application. To carry out
this instruction, application governor 352 accesses applica
tion matrix 350 to discover configuration parameters of both
applications. Application governor 352 then uses the discov
ered configuration parameters to communicate with the appli
cations.

Like configuration processor 354, application governor
352 is also “pluggable.” That is, administrator 20 can easily
install or remove implementations of application governor
352 depending on the circumstances. Because application
governor 352, and configuration processor 354 represent
interchangeable, plug-in modules, the other parts of control
unit 12 and system 10, including application rules engine355.
can remain generic and application neutral while providing
autonomic control over distributed computing system 10.

FIG.22 provides a conceptual view of an exemplary appli
cation matrix 350. Although application matrix 350 is typi
cally represented in an encoded, electronic document (e.g., an
XML document), FIG.22 provides a conceptual view for ease
of illustration.

In this example, application matrix 350 contains seven
columns and two rows. Each row represents a different appli
cation entry for deployment within distributed computing
system 10. In FIG. 22, only the first entry is shown in detail.

Each of the columns represents a different category of
elements that make up an application's logical definition. In
this example, the columns include:

(1) an application column 360 that includes elements gen
erally related to the deployment of the application,

(2) an application nodes column 362 that contains elements
related to the tier node slots to which the application may be
assigned,

(3) a services column 364 that contains elements related to
the executable services launched when the application is
deployed,

(4) a node monitor values column 366 that contains ele
ments related to attributes of the nodes that are to be moni
tored after the application is deployed to that node,

(5) a service monitored attributes column 368 that contains
elements related to attributes of the services that are to be
monitored after the application is deployed,

(6) a service levels column 370 that contains elements
related to attributes for use when constructing rules to moni
tor execution of the services, and

(7) a deployment constraints column 372 that contains
elements related to attributes for use when constructing rules
to control deployment of the application.
Different types of applications may have different elements in
each column, and different numbers of columns.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 46 of 52

Avago - Ex. 2003, Page 000146
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
29

In the example of FIG.22, application matrix 350 contains
two applications 360 “DataDomain 374 and “PortalDo
main 376. DataDomain application 374 has eleven attributes
that define how control node 12 accesses and launches the
application. For instance, the “adminIP and “adminPort'
attributes instruct governor 352 as to which the server and
port hosts the administrative part of the logically defined
application. Other attributes like “maxNodes' and “min
Nodes' instruct application rules engine 355 to run the appli
cation no less than minNodes and no more than maxNodes.
Applications other than application 374 may have different
numbers or types of attributes. In XML format, the attributes
of application 374 may appear as follows:

<WebServerDomain
name=''DataDomain
adminP=172.31.64.201.
adminPort=1100'
adminTier=Web Admin'
clusterName="PathCluster'
expected StartupDelay="120
load Delay="120
maxNodes=2
minNodes='1'
nodeManagerPort=“5811
nodeTier=“Web App

In addition to these attributes, application 374 contains a
series of elements (columns 362-372). In general, application
nodes 362 contain a list of all of the available tier-node slots
to which control node 12 may deploy application 374. In this
example, two tier-node slots are specified. In XML, managed
servers 362 appears as:

<ManagedServers IP="172.31.64.201 name="managedServer O'
state-STOPPED >
<ManagedServers IP="172.31.64.201 name="managedServer 1
state-STOPPED >

Each services 364 element identifies a service that control
node 12 launches when deploying application 374 on a given
application node. A service element comprises a service name
and a path to a file containing the executable service. Gover
nor 352 uses the path to locate and launch the service. For
example, the following XML code indicates that governor
352 must access the file at “/lib/worklistApp/worklistAp
p.ear.

<services name="Worklist User Interface
path="/lib/worklistAppfworklistApp.ear f>

Node Monitored Values 366 elements represent character
istics for use in constructing rules for monitoring nodes to
which the applications are deployed. Similarly, Service
Monitored Values 368 elements represent characteristics for
use in constructing rules for monitoring services that are
launched once the application is deployed. In this example, a
"nodeMonitoredValues' element defines characteristics of a
particular node that are to be monitored. For instance, the
amount of free memory in a node is one example of a char
acteristic listed as a “nodeMonitored Values' element. On the
other hand, a “serviceMonitoredValues' element is specific
attribute of a service that is to be monitored. For example, the

10

15

25

30

35

40

45

50

55

60

65

30
number of pending operating system-level requests for the
service, the number of idle threads, etc., could be service
monitored values. In a XML rendition of application matrix
350, node monitored values and service monitored values
could appear as follows:

<nodeMonitored Values name="Load5Average' f>
<nodeMonitored Values name="PercentMemoryFree' f>
<serviceMonitored Values name="PendingRequests' f>
<serviceMonitoredValues name="ExecuteThreadIdleCount f
<serviceMonitoredValues name="ExecuteThreadTotalCount f

Deployment constraint elements 372 specify characteris
tics of a node under which application rules engine 355
should (or should not) deploy a service to the node. In this
example, a deployment constraint element has five attributes:
“attribute”, “expression”, “frequency”, “maxThreshold'.
“minThreshold', and “period.” The “attribute” attribute
names the deployment constraint. The “expression' attribute
specifies an arithmetic expression manipulating a monitored
value. For example, the expression could be “PercentMemo
ryFree* 100', meaning monitor the value of the “Percent
MemoryFree' node monitored value multiplied by 100. The
“expression' attribute may specify one or more node moni
tored values. The “frequency’ attribute informs application
rules engine 355 how frequently to check the monitored
value. The “maxThreshold' attribute tells application rules
engine 355 to invoke a rule when the value of the expression
exceeds the value specified by the “maxThreshold” attribute.
Similarly, the “minThreshold' attribute tells application rules
engine355 to invoke the rule when the value of the expression
drops below the value specified by the “minThreshold”
attribute. Finally, the “period’ attribute informs application
rules engine355 of the period over which to collect monitored
value. For example, a deployment constraint element may
specify that application rules engine 355 should monitor the
PercentMemoryFree attribute of a node every 15 seconds for
60 seconds. If the value of PercentMemoryFree*100 should
drop below 1.0 (i.e. 1% of memory free) for 60 seconds, then
application rules engine 355 should not deploy the applica
tion to that node. In XML, this rule would be represented as:

<deploymentConstraints attribute="FreeMemory”
expression=“PercentMemoryFree* 100 frequency=“15” maxThreshold="-
1.0 minThreshold=“1.0 period="60 f>

Service level elements 370 have the same five attributes as
deployment constraints elements: “attribute”, “expression'.
“frequency”, “maxThreshold”, “minThreshold', and
“period’. However, the “expression' attribute deals with ser
vice monitored attributes rather than node monitored
attributes. For example, a service level element may specify
that application rules engine355 check the “pendingRequest'
service-monitored attribute every 15 seconds for 30 seconds.
Then, if there are more than 20 pending requests for more than
30 seconds, application rules engine 355 should take the
action of starting a new application. On the other hand, if
there are fewer than 5 pending requests for 30 seconds, appli
cation rules engine 355 enables the action to remove the
application to free up space on a node. Such a service level
element could be represented as:

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 47 of 52

Avago - Ex. 2003, Page 000147
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
31

<serviceLevels attribute="PendingRequests'
expression="PendingRequests' frequency="15" maxThreshold="20.0
minThreshold="5.0" period="30 fis

Put together, an XML representation of an application
matrix logically defining a single application for deployment
within autonomically controlled distributed computing sys
tem 10 may appear as follows:

<?xml version=“1.0 encoding=UTF-8 standalone="yes' 25
<appMatrixRegisters
<WebServerDomain adminP=172.31.64.201 adminPort=1100'
adminTier=Web
Admin' clusterName="PathCluster expected StartupDelay="120
load Delay="120 maxNodes="2 minNodes='1' name="DataDomain
nodeManagerPort=“5811 nodeTier=“Web App's

<ManagedServers IP="172.31.64.201 name="managedServer O'
state-STOPPED >
<ManagedServers IP="172.31.64.201 name="managedServer 1
state-STOPPED >
<applications name="AI Design-time
path="/lib/ai-designtime.ear f>
<applications name="System EJBs' path="/lib/ebs.ear f>
<applications name="Worklist Worker User Interface'
path="/lib/worklist worklist.ear f>
<applications name="DBMS ADK path="/lib/DBMS ADK.ear
f>
<applications name="UserApp'
path=/user projects domainsfuser App.ear
f>
<nodeMonitoredValues name="Load5Average' f>
<nodeMonitoredValues name="PercentMemoryFree' f>
<serviceMonitoredValues name="PendingRequests
<serviceMonitoredValues name="ExecuteThreadIdleCount f
<serviceMonitoredValues name="ExecuteThreadTotalCount f
<deploymentConstraints attribute="LoadAverage'
expression="Load5Average' frequency="15"
maxThreshold=4.0
minThreshold=-1.0 period=“15” f>
<deploymentConstraints attribute="FreeMemory”
expression=“PercentMemoryFree* 100 frequency=“15”
maxThreshold='-1.0
minThreshold=“1.0 period="60 f>
<serviceLevels attribute="BusyThreadPercentage'
expression="(ExecuteThreadTotalCount
ExecuteThread IdleCount) * 100/ExecuteThreadTotal Count
frequency="15"
maxThreshold="20.0 minThreshold="5.0" period="30 f>
<serviceLevels attribute="PendingRequests'
expression="PendingRequests' frequency="15"
maxThreshold=20. O'
minThreshold="5.0" period="30 f>

</WebServerDomain
</appMatrixRegisters

s

FIG. 23 is a flowchart illustrating an exemplary series of
general steps that are performed to add an application to
application matrix 350 in accordance with the principles of
this invention. Administrator 20 first stages the application
within a staging environment including deploying the appli
cation on a desired image, creating a domain, specifying any
services and external system connectivity (e.g., connections
to databases, queues) (380).

During this process, administrator 20 directs the applica
tion to generate an application definition file that represents
an application-specific configuration based on the environ
ment specified by the administrator. The application defini
tion file contains information specific to an installation
instance of the application. For example, the application defi
nition file typically specifies the locations (paths) for all soft
ware components of the application as staged within the
staging environment, a list of files to execute, connectivity

10

15

25

30

35

40

45

50

55

60

65

32
information for the application, and other information that
may be recorded by the configured application.

After staging the application, administrator 20 defines a set
of application configuration properties that specify desired
behavior of the application within distributed computing sys
tem 10 (382). Examples of such application configuration
properties include a minimum number of nodes, minimum
resource requirements for a node, deployment timing infor
mation, network addresses of tier node slots that are able to
execute the application and other properties.

Next, administrator 20 directs configuration processor 354
to generate an application entry for the application using the
application definition and the application configuration prop
erties (384). The application entry contains configuration
attributes used by application governor 352 to interact with
the application. In addition, the application entry contains
rule attributes used by application rules engine355 that define
how control node 12 monitors the deployment and execution
of the application within distributed computing environment
10.

After configuration processor 354 creates the application
entry, administrator 20 may modify the application entry
(386). In particular, administrator 20 may update start scripts
or shell Scripts for the application due to path changes
between the staging environment and distributed computing
system 10.
Once administrator 20 has finished modifying the applica

tion entry, administrator 20 inserts the application entry into
application matrix 350 (388). Because application matrix 350
detects that it has changed, application matrix 350 sends an
alert to application SLAI 358 (390).

In response to the alert, application SLAI 358 may update
application rules engine 355 and monitoring subsystem 202
(392). In particular, application SLAI 358 automatically
scans application matrix 350. If application SLAI 358 detects
new rule attributes, application SLAI 358 creates local
objects reflecting the new rule attributes in the working
memory of application rules engine355. In addition, if appli
cation SLAI 358 detects new monitored values, application
SLAI 358 updates monitoring subsystem 202 to add new
monitoring collectors 224 (FIG. 16).

After application SLAI 358 updates application rules
engine 355 and monitoring subsystem 202, control node 12
has autonomic control over the deployment of applications to
tiers based on the configuration of application matrix 350
(394). For example, control node 12 deploys images, deploys
applications, monitors the state of nodes and the execution of
the applications, and applies tier-level rules as well as appli
cation-specific rules. Application SLAI 358 continues to lis
ten for alerts from application matrix 350.

FIGS. 24 through 29 illustrate exemplary embodiments of
distributed computing system 10 that provides autonomic
control and deployment of virtual machines and virtual disk
image files. For example, FIG. 24 is a block diagram illus
trating an exemplary configuration of a physical node 400.
Node 400 may be any node within distributed computing
system 10 (FIG. 1). For instance, node 400 may be any one of
application nodes 14.
As illustrated in FIG. 24, a virtual machine manager 402 is

executing on node 400. As used herein, a virtual machine
manager is a software program that is capable of managing
one or more virtual machines. For example, virtual machine
manager 402 may be an instance of VMWare ESX software
produced by VMWare, Inc. of Palo Alto, Calif.
When deployed on physical node 200, virtual machine

manager 402 hosts virtual machines 404A through 404N
(collectively, virtual machines 404). The term virtual

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 48 of 52

Avago - Ex. 2003, Page 000148
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
33

machine is used herein to refer to software that creates an
environment that emulates a computer platform. For
example, virtual machines 40 provide environments on which
guest operating systems (OS) execute as through the operat
ing systems were operating directly on a physical computing
platform. In this manner, multiple operating systems and
software applications 406A through 406N (collectively, oper
ating systems and applications 406) may execute on virtual
machines 404A through 404N, respectively, and the virtual
machines 404 may execute on a single physical node 400 or
multiple physical nodes. For example, if virtual machine
404A emulates an x86 machine, an instance of the Microsoft
Windows operating system (e.g., OS 406A) may execute on
virtual machine 404A as through the instance of Windows
were running on a physical x86 machine. Other Software
applications may be installed and configured on the guest
operating system running on virtual machine 404. For
example, an instance of Microsoft Internet Information
Server may execute on an instance of Microsoft Windows that
is executing on a virtual machine that emulates an x86
machine. In this manner, virtual machine manager 402 and
virtual machines 404 provide a level of independence from
the particular hardware environment provided by physical
node 400.

Virtual machine manager 402 utilizes operating system
data and application data for execution of each of virtual
machines 404. The operating system data and application
data, as well as instance-specific configuration data for the
underlying virtual machines 404, is stored as respective Vir
tual disk image files 408. From the perspective of the guest
operating system, each of virtual disk image files 408 appears
as a bootable hard disk of the host computer. In other words,
the virtual disk image file provides a bootable software image
of the operating system and applications, and includes all
necessary configuration data and file structures. As illustrated
in FIG. 24, virtual machine disk image file 408A provides a
bootable Software image for operating system/application
information 406A that is capable of being executed on virtual
machine 404A. For instance, if virtual machine manager 402
is an instance of VMWare ESX, virtual machine disk image
files 408 may be specially captured .vmdk files.
A two-phase capture process may be used to provide auto

nomic control and deployment of the virtual machine disk
image files 408 as well as virtual machine manager 402 to
physical nodes within distributed computing system 10. In
particular, control node 12 may first capture an image of
virtual machine manager 402 installed on physical node 400
prior to installation and configuration of any guest operating
system and applications 406. Control node 12 may utilize this
captured image of virtual machine manager 402 as a 'golden
image' from which instance images can be created for this
type virtual machine. The instance images may be stored
within application matrix 350 for autonomic deployment as
other software images (FIG. 21).

After the first capture is complete, an administrator may
install one or more virtual machines 404 to virtual machine
manager 402. After the user installs and configures guest
operating systems and any necessary applications 406 on the
virtual machines 404, control node 12 may capture software
images for storage as virtual disk image files 408. Specifi
cally, control node 12 may utilize the captured images as a
golden images for the particular operating systems, applica
tions and specific configuration of the virtual machine. The
golden image may then be used to produce image instances,
i.e., virtual disk images in this case, that are bootable on the
virtual machines. The image instances may likewise bestored
in application matrix 350 for autonomic deployment.

10

15

25

30

35

40

45

50

55

60

65

34
After generation of image instances for virtual machine

manager 402 and virtual disk image files 408, control node 12
may deploy the image instance of virtual machine manager
402 to one or more nodes in free pool 13. Once control node
12 deploys the image instance of virtual machine manager
402 to a node, the node appears to be one or more new,
unallocated nodes. For instance, if the image instance of
virtual machine manager 402 is configured to Support five
virtual machines, control node 12 represents the newly
deployed image instance as though five new, unallocated
nodes have been added to free pool 13. Subsequently, control
node 12 may deploy an image instance of virtual disk image
files 408 to one of the new unallocated nodes.

In one embodiment, during deployment, administrator 20
may specify whether data in virtual disk image files is to be
treated as persistent or non-persistent. If administrator 20
specifies that the virtual disk image files are persistent,
changes made to a virtual disk image file persist when node is
restarted. To ensure the persistence of the data, administrator
20 may configure virtual machine manager 402 to store Vir
tual disk image files in a storage area network (SAN). Other
wise, if administrator 20 specifies that virtual disk image files
are non-persistent, the original virtual disk image file is
reloaded from control node 12. Non-persistence may be valu
able to minimize risks (e.g., potential corruption due to
viruses) associated with prolonged use of an operating sys
tem. Further, corrupt or invalid data in the virtual disk image
file may be corrected by use of non-persistent image instances
for the virtual disk image files.

In this way, distributed computing system 10 may auto
nomically utilize application nodes, e.g., node 400, to flexibly
supporta wide variety of operating systems and applications,
and provide virtualized execution environment for those
operating systems and applications. For instance, node 400
may autonomically configured to Support a Macintosh Oper
ating System designed for a PowerPC processor, and a
Microsoft Windows Operating System designed for an x86
processor based on the particular goals of the autonomic
system. Thus, control node 12 may not need to distinguish
between hardware processor architectures when deploying
operating systems and applications. However, this system
may also allow administrator 20 to specify that control node
12 operate an image instance directly on a node without the
intervening virtual machine and virtual machine manager.
Furthermore, by executing multiple operating systems on a
single node, distributed computing system 10 may be able to
use and deploy the resources of each node more efficiently.

FIG.25 is a flowchart illustrating an exemplary procedure
for creating and capturing a golden image for a particular
virtual machine manager 402 (FIG. 24). Initially, administra
tor 20 sets aside a node (e.g., node 400) as an image host
(410). Administrator 20 may then install a particular type of
virtual machine manager 402 on node 400 (412). After
administrator 20 installs virtual machine manager 402 on
node 400, administrator 20 may configure the virtual machine
manager to Support a desired number of virtual machine
instances (414). For example, administrator 20 could config
ure virtual machine manager 402 to support one or more
virtual machines. Administrator 20 may then perform other
network or Storage Area Network (SAN) configuration on
virtual machine manager 402 (416). After administrator 20
performs all of the necessary configuration, administrator 20
instructs control node 12 to capture the image of virtual
machine manager 402 with the configurations (418). Control
node 12 may store the captured image as a golden image in
application matrix 350 for use in subsequent autonomic
deployment of image instances.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 49 of 52

Avago - Ex. 2003, Page 000149
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
35

FIG. 26 is a flowchart illustrating an exemplary procedure
for creating and capturing a virtual disk image file, i.e., a
golden image of a guest operating system and applications for
execution on a virtual machine. Initially, administrator 20 sets
aside a node (e.g., node 400) that is running a virtual machine
manager (e.g., virtual machine manager 402) (420). Admin
istrator 20 may then configure the virtual machine manager to
create a virtual machine (e.g., virtual machine 404) on node
400 (422). After creating the virtual machine, administrator
20 installs the particular operating system on virtual machine
404 (424). Administrator 20 may then install one or more
applications on the operating system (426). After installation,
administrator 20 may configure the operating system and
applications as needed (428). In some embodiments, virtual
machine manager 402 stores definition data for the particular
virtual machine, operating system, and applications in a vir
tual disk image file. Once configuration is complete, admin
istrator 20 takes a “snapshot of the data in the virtual disk
image file (430). Administrator 20 may then capture this
"Snapshot to control node 12 as a golden image (432). Con
trol node 12 may store the “snapshot in application matrix
350 as a golden image for use in autonomic deployment of
one or more image instances to virtual machines hosting the
particular operating system and applications.

FIG. 27A is a flowchart illustrating an exemplary proce
dure for autonomic deploying a virtual machine manager to a
node. Initially, administrator 20 may instruct control node 12
to create a new tier (440). Subsequently, administrator 20
specifies one or more captured virtual machine manager
image instances for assignment to the slots of the new tier
(442). Administrator 20 may also specify whether the image
instances of the tier run in persistent or non-persistent mode.
Administrator 20 may then activate the new tier (444). After
these physical nodes boot with the virtual machine manager
image instance, each of the nodes creates a set of virtual
machines as specified by the image instances. Control node
12 may then discover each of these virtual machines and place
them in free pool 13 as if they were independent nodes. In this
manner, each of the virtual machines appear to be physical
nodes available for use as application nodes 14 when needed.
However, control node 12 maintains tags or other metadata
that distinguish between virtual machines and actual physical
nodes. Finally, based on the current state and goals of distrib
uted computing system 10, control node 12 may allocate one
or more of the virtual machines to the slots within the tier,
similar to the process by which nodes are deployed from the
free pool 13 to a tier as needed.

FIG. 27B is a flowchart illustrating an exemplary proce
dure for deploying an operating system and application image
instance to a node that is executing a virtual machine man
ager. To start the procedure, administrator 20 may instruct
control node 12 to create a new tier, including defining the
number of slots for the tier, or select an existing tier (446).
Administrator 20 may then specify a captured operating sys
tem and application image for the tier (448). In addition,
administrator 20 may set minimum, maximum, and target
values for the image instances to be deployed to the slots new
tier (450). Administrator 20 may then activate the tier (452).
After administrator 20 activates the tier, based on the current
state and goals of distributed computing system 10, control
node 12 autonomically selects a virtual machine from free
pool 13, associates the virtual machine with a slot in the tier,
identifies the virtual disk image file (image instance) associ
ated with the particular slot, copies the virtual disk image file
to the local hard disk of the physical node on which the virtual
node resides or the an associated SAN, and finally boots the
virtual machine from the virtual disk image file.

10

15

25

30

35

40

45

50

55

60

65

36
FIG. 28 is a screen image illustrating an exemplary tier

control interface 460 for the embodiment described in FIGS.
24 through 27 above. In this example, control interface 460
displays a set of three tiers "elas3u6 2. "elas3u6 Vim', and
“esX17 8. As illustrated in FIG. 28, tier “esX17 8', labeled
462, contains eight physical nodes. The image “esX 17' is
operating on each node in tier 462. If the “esX 17' image is
a virtual machine manager image that operates seventeen
virtual machines, the eight nodes of tier 462 operate as 136
virtual machines.

FIG. 29 is a screen image illustrating an exemplary node
control interface 470 for the embodiment described in FIGS.
24 through 27 above. As illustrated in FIG. 29, a single physi
cal node “collage0104 hosts seventeen virtual machines
“collage0104 Vinode 1 through “collage0104 Vinode 17.
Each of these virtual machines is loaded with the
“w2k3 is sq1 (1.0) image. For instance, the “w2k3 is sql
(1.0)' image may be an image containing instances of
Microsoft Windows 2003 Internet Information Server and
Microsoft SQL Server.

Various embodiments of the invention have been
described. These and other embodiments are within the scope
of the following claims.

The invention claimed is:
1. A distributed computing system comprising:
a software image repository comprising non-transitory,

computer-readable media operable to store: (i) a plural
ity of image instances of a virtual machine manager that
is executable on a plurality of application nodes,
wherein when executed on the applications nodes, the
image instances of the virtual machine manager provide
a plurality of virtual machines, each of the plurality of
virtual machine operable to provide an environment that
emulates a computer platform, and (ii) a plurality of
image instances of a plurality of Software applications
that are executable on the plurality of virtual machines:
and

a control node that comprises an automation infrastructure
to provide autonomic deployment of the plurality of
image instances of the virtual machine manager on the
application nodes by causing the plurality of image
instances of the virtual machine manager to be copied
from the Software image repository to the application
nodes and to provide autonomic deployment of the plu
rality of image instances of the Software applications on
the virtual machines by causing the plurality of image
instances of the Software applications to be copied from
the Software image repository to the application nodes.

2. The distributed computing system of claim 1, wherein
the image instances of the plurality of Software applications
comprise virtual disk image files.

3. The distributed computing system of claim 1, wherein a
first image instance of the plurality of image instances of the
plurality of software applications comprises an operating sys
tem.

4. The distributed computing system of claim 1, wherein a
first image instance of the plurality of image instances of the
plurality of software applications comprises a server applica
tion.

5. The distributed computing system of claim 1, wherein a
first one of the virtual machines provides an environment that
emulates an x86 platform.

6. The distributed computing system of claim 1, wherein
the automation infrastructure captures a first image instance
of the image instances of the virtual machine manager from a
first application node of the plurality of application nodes.

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 50 of 52

Avago - Ex. 2003, Page 000150
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
37

7. The distributed computing system of claim 6, wherein
the first application node executes the virtual machine man
ager.

8. The distributed computing system of claim 1, wherein
the control node maintains the plurality of image instances of 5
the virtual machine manager and the plurality of image
instances of the plurality of Software applications as persis
tent or non-persistent based on a configuration.

9. The distributed computing system of claim 1, wherein
the control node further comprises one or more rule engines
that provide autonomic deployment of the Software applica
tions to the virtual machines inaccordance with a set of one or
more rules.

10. The distributed computing system of claim 9, wherein
the one or more rule engines are forward-chaining rule
engines.

11. The distributed computing system of claim 9, wherein
the automation infrastructure automatically updates the one
or more rules engines to autonomically control the deploy
ment of the Software applications to the application nodes in
accordance with a current state of an application matrix.

12. The distributed computing system of claim 1, wherein
the control node further comprises an application matrix that
includes parameters for controlling the deployment, unde
ployment, and execution of the Software applications to the
virtual machines within the distributed computing system.

13. The distributed computing system of claim 12, further
comprising an application governor that accesses the appli
cation matrix to communicate instructions from the automa
tion infrastructure to the Software applications.

14. The distributed computing system of claim 9, wherein
the automation infrastructure automatically updates the one
or more rules engines to monitor the execution of the Software
applications when deployed to the application nodes in accor
dance with a current state of the application matrix.

15. The distributed computing system of claim 1, wherein
the automation Subsystem includes a rule compiler that com
piles rules into one or more discrimination networks.

16. The distributed computing system of claim 1, wherein
the control node further comprises:

a monitoring Subsystem that collects status data from the
application nodes and communicates the status data to
the automation Subsystem, wherein the status data rep
resents an actual state for the application nodes; and

a business logic tier that provides expected State data to the
automation Subsystem, wherein the expected State data
represents an expected State for the application nodes,

wherein one or more rule engines analyze the status data
from the monitoring Subsystem and apply a set of rules
to produce action requests to the business logic tier to
control the application nodes to reduce any difference
between the actual state and the expected state.

17. The distributed computing system of claim 1, wherein
the application nodes are organized into tiers, and wherein
status data is collected based on the tiers.

18. The distributed computing system of claim 1, further
comprising:

a database storing data that defines a model for a hierarchi
cal organization of the distributed computing system,
wherein the model specifies a fabric having one or more
domains, and wherein each domain has at least one tier
that includes at least one of the application nodes,

wherein one or more rule engines automatically produce
action requests to control the deployment of the Software
applications in accordance with the hierarchical organi
zation of the distributed computing system defined by
the model.

10

15

25

30

35

40

45

50

55

60

65

38
19. A method comprising:
storing a plurality of image instances of a virtual machine
manager that is executable on a plurality of application
nodes in a distributed computing system, wherein the
image instances of the virtual machine manager provide
a plurality of virtual machines, each virtual machine
operable to provide an environment that emulates a com
puter platform;

storing a plurality of image instances of a plurality of
Software applications that are executable on the plurality
of virtual machines;

executing a rules engine to perform operations to auto
nomically deploy the image instances of the virtual
machine manager on the application nodes by causing
the image instances of the virtual machine manager to be
copied to the application nodes; and

executing the rules engine to perform operations to auto
nomically deploy the image instances of the Software
applications on the virtual machines by causing the
image instances of the Software applications to be cop
ied to the application nodes.

20. The method of claim 19, wherein storing the image
instances of the plurality of Software applications comprises
storing virtual disk image files.

21. The method of claim 19, wherein a first image instance
of the plurality of image instances of the plurality of software
applications comprises an operating system.

22. The method of claim 19,
further comprising generating an application matrix that

specifies data for controlling the deployment of the soft
ware applications within the distributed computing sys
tem; and

wherein performing operations to provide autonomic con
trol comprises providing autonomic control over the
deployment, undeployment, and execution of the Soft
ware applications on the virtual machines within the
distributed computing system in accordance with
parameters of the application matrix.

23. The method of claim 19, wherein performing opera
tions to autonomically deploy the image instances of the
Software applications on the virtual machines comprises:

receiving status data for the distributed computing system,
wherein the status data represents an actual state of the
application nodes;

processing the status data with rules in a set of rule engines
to determine operations for reducing any difference
between an expected state and the actual state of the
application nodes; and

performing the operations to provide autonomic control
over the deployment of the software applications on the
virtual machines within the distributed computing sys
tem in accordance with the rules.

24. The method of claim 19, further comprising accessing
parameters of an application matrix and determining one or
more rules for use in autonomically controlling the deploy
ment of the Software applications on the virtual machines.

25. The method of claim 24, further comprising processing
the one or more rules with a plurality of forward-chaining rule
engines that compile the one or more rules into one or more
discrimination networks.

26. A non-transitory, computer-readable medium compris
ing instructions stored thereon, that when executed by a pro
grammable processor:

store a plurality of image instances of a virtual machine
manager that is executable on a plurality of application
nodes in a distributed computing system, wherein the
image instances of the virtual machine manager provide

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 51 of 52

Avago - Ex. 2003, Page 000151
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 8,572,138 B2
39

a plurality of virtual machines, each virtual machine
operable to provide an environment that emulates a com
puter platform;

store a plurality of image instances of a plurality of Soft
ware applications that are executable on the plurality of 5
virtual machines;

perform operations to autonomically deploy the image
instances of the virtual machine manager on the appli
cation nodes by causing the image instances of the Vir
tual machine manager to be copied to the application 10
nodes; and

perform operations to autonomically deploy the image
instances of the Software applications on the virtual
machines by causing the image instances of the Software
applications to be copied to the application nodes. 15

k k k k k

40

Case 3:20-cv-04677-JD Document 112-5 Filed 05/18/21 Page 52 of 52

Avago - Ex. 2003, Page 000152
IPR2020-01582 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

	0112 - 2021-05-18 Joint Claim Construction Statement
	0112-01
	0112-02
	0112-03
	0112-04
	0112-05

