
(12) United States Patent
Byrne et al.

USOO6347312B1

US 6,347,312 B1
Feb. 12, 2002

(10) Patent No.:
(45) Date of Patent:

(54)

(75)

(73)

(21)
(22)
(51)
(52)
(58)

(56)

LIGHTWEIGHT DIRECTORY ACCESS
PROTOCOL (LDAP) DIRECTORY SERVER
CACHE MECHANISMAND METHOD

Inventors: Debora Jean Byrne, Austin, TX (US);
Chetan Ra m Murthy, New York, NY
(US); Shaw-Ben Shi; Chin-Long Shu,
both of Austin, TX (US)

ASSignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.:
Filed:

Int. Cl."
U.S. Cl.
Field of Search

09/187,071

Nov. 5, 1998
- G06F 17/30

- - - - - - - - 707/3; 707/10; 709/218

- 707/1, 5, 10,3;

709/217-218

References Cited

U.S. PATENT DOCUMENTS

4920,478 A 4/1990
5,715,443 A 2/1998
5,752.264 A 5/1998
5,758,146 A 5/1998
5,822,749 A * 10/1998
6,014,667 A * 1/2000
6,016,499 A * 1/2000

LOCAL
STORAGE AREA

4-)
DIRECTORY
SERVER
56

42
CAHCE

Furuya et al. 364/200
Yanagihara et al. 395/603
Blake et al. 711/144
Schiefer et al. 707/2
Agarwal 707/2
Jenkins et al. 707/10
Ferguson 707/104

CACHE
40
--

TY PE

-

6,052,681 A * 4/2000 Harvey 707/3
6,073,129 A * 6/2000 Levine et al. 707/4
6,085,188 A 7/2000 Bachmann et al. 707/3
6,101,541. A 8/2000 Ellesson et al. 709/225

OTHER PUBLICATIONS

Reference Guide for Image Search & Retrieval(IS&R) Com
puter-Based Training(CBT), for U.S. PTO, Jul. 11, 1997,
sections: 3.4.3.4.1.3.7.3.12 p.38.*
* cited by examiner
Primary Examiner John Breene
Assistant Examiner Susan Rayyan
(74) Attorney, Agent, or Firm Winstead Sechrest &
Minick P.C.; Jeffrey S. LaBaw
(57) ABSTRACT

A method of hierarchical LDAP searching in an LDAP
directory Service having a relational database management
system (DBMS) as a backing store. The method begins in
response to a Search query to the relational database. Search
results retrieved in response to the Search query are cached,
preferably in a pair of caches in the directory Service. The
first cache receives a Set of identifiers indexed by a filter key
of the Search query. The Search results, namely entries
corresponding to the Set of identifiers, are then Stored in the
Second cache. In response to Subsequent issuance of the
Search query, the cached Search results are then used in lieu
of accessing the relational database to increase Search effi
ciency. To maintain the integrity of the cached information,
routines are provided to invalidate the caches during given
directory Service operations.

26 Claims, 5 Drawing Sheets

LDAP QUERY

SEARCH RESULTS

BlackBerry 1030
U.S. Patent No. 8,359,016

U.S. Patent Feb. 12, 2002 Sheet 1 of 5 US 6,347,312 B1

FIC. 1
10 11

CLIENT

DIRECTORY SERVER

25 N LDAP RUNTIME

25
DIRECTORY

r 12
LDAP RUNTIME

DIRECTORY

ROOT

RDNJRDN
FIC. 2 RDN 29

1
ENTRY (ATTRIBUTES)
1.

27

40 INITIALIZE
LDAP SESSION

OPEN CONNECTION

AUTHENTICATION

DIRECTORY
SERVER OPERATION

RETURN RESULTS

CLOSE SESSION

FIC. 3 FIC. 4A

42 36

44

46

48
LDAP CLIENT

LDAP SERVER
50

U.S. Patent Feb. 12, 2002 Sheet 2 of 5 US 6,347,312 B1

54
y

NETWORK
DISPATCHER

(EE25a. LDAP CLIENTS
DB/2 CLIENT +
LDAP SERVER FIC. 4B

NETWORK
DISPATCHER

E. is 235
LDAP CLIENTS

DB/2 CLIENT + DB/2 SERVERS LDAP SERVER FIG. 4C

U.S. Patent Feb. 12, 2002 Sheet 3 of 5 US 6,347,312 B1

FIC. 6
LOCAL

STORAGE AREA

44-;
DIRECTORY
SERVER

C = US

scope ---------------------------

| bose bOSe dn----- > O = IBM O = MS

one ou = Austin ou = Endicott
Subtree

-- Sn = Adoms Sn = AOron FIC. 6

60

FIC. 7

REPETITIVE
QUERY?

RETRIEVE SEARCH
RESULTS FROM CACHE

RETURN SEARCH RESULTS

U.S. Patent Feb. 12, 2002 Sheet 4 of 5 US 6,347,312 B1

80 LOCK TYPE I CACHE

82 IS
FILTER

KEY FOR THE QUERY
IN THE TYPE I

CACHE2

84-NOBTAIN SET OF DENTIFIERS
CORRESPONDING TO KEY

ACCESS LDAP DESC 86
AND ATTRIBUTE TABLES,

GENERATE D LIST

ADD ID LIST TO 88
TYPE I CACHE INDEXED
BY THE FILTER KEY

90N UNLock TYPE cache
92
-Y------------ - FOR EACH IDENTIFIER

94 LOCK TYPE I CACHE

96
IS

IDENTIFIER IN THE
TYPE I CACHE2

NO

ACCESS LDAP ENTRY 100
TO RETRIEVE ENTRY YES

98 GET IDENTIFIER
ADD ENTRY

FROM TYPE I CACHE TO TYPE II CACHE 102
INDEXED BY DENTIFIER

104 PROCESS ENTRY

106 RETURN ENTRY

108

FIC. 8

U.S. Patent Feb. 12, 2002 Sheet 5 of 5 US 6,347,312 B1

110 LOCK TYPE I CACHE

112
-Y------------ - FOR EACH ATTRIBUTE NAME

114 IS
ATTRIBUTE

NAME IN THE FILTER
STRING OF THE
FILTER KEY?

NO

YES

116 REMOVE CACHE UNIT

mas -w - a -a amoa- maa -w- - - - a- un- - ALL ATTRIBUTE NAME PROCESSED

118N UNLock TYPE cache

120 LOCK TYPE I CACHE

122
IS

IDENTIFIER IN
TYPE I CACHE

NO

YES

124 REMOVE UNIT

FIC. 9

US 6,347,312 B1
1

LIGHTWEIGHT DIRECTORY ACCESS
PROTOCOL (LDAP) DIRECTORY SERVER
CACHE MECHANISMAND METHOD

BACKGROUND OF THE INVENTION

1. Technical Field

This invention relates generally to providing directory
Services in a distributed computing environment.

2. Description of the Related Art
A directory Service is the central point where network

Services, Security Services and applications can form a
integrated distributed computing environment. The current
use of a directory Services may be classified into Several
categories. A “naming service” (e.g., DNS and DCE Cell
Directory Service (CDS)) uses the directory as a source to
locate an Internet host address or the location of a given
server. A “user registry” (e.g., Novell NDS) stores informa
tion of all users in a System composed of a number of
interconnected machine. The central repository of user infor
mation enables a System administrator to administer the
distributed System as a Single System image. Still another
directory Service is a “yellow pages' lookup provided by
Some e-mail clients e.g., Netscape Communicator, Lotus
Notes, Endora and the like.

With more applications and System Services demanding a
central information repository, the next generation directory
Service will need to provide System administrators with a
data repository that can Significantly ease administrative
burdens. In addition, the future directory Service must also
provide end users with a rich information data warehouse
that allows them to access department or company employee
data, as well as resource information, Such as name and
location of printers, copy machines, and other environment
resources. In the Internet/intranet environment, it will be
required to provide user access to Such information in a
SCCUC C.

To this end, the Lightweight Directory Access Protocol
(LDAP) has emerged as an IETF open standard to provide
directory Services to applications ranging from e-mail Sys
tems to distributed System management tools. LDAP is an
evolving protocol that is based on a client-Server model in
which a client makes a TCP/IP connection to an LDAP
Server, Sends requests, and receives responses. The LDAP
information model in particular is based on an “entry,”
which contains information about Some object. Entries are
typically organized in a Specified tree Structure, and each
entry is composed of attributes.
LDAP provides a number of known functions including

query (Search and compare), update, authentication and
others. The Search and compare operations are used to
retrieve information from the database. For the search
function, the criteria of the Search is specified in a Search
filter. The search filter typically is a Boolean expression that
consists of attribute name, attribute value and Boolean
operations like AND, OR and NOT. Users can use the filter
to perform complex Search operations. The filter Syntax is
defined in RFC 1960.

LDAP thus provides the capability for directory informa
tion to be efficiently queried or updated. It offers a rich set
of Searching capabilities with which users can put together
complex queries to get desired information from a backing
Store. Increasingly, it has become desirable to use a rela
tional database for storing LDAP directory data. Represen
tative database implementations include DB/2, Oracle,
Sybase, Informix and the like. As is well known, Structured

15

25

35

40

45

50

55

60

65

2
Query Language (SQL) is the Standard language used to
acceSS Such databases.

One of main goals for implementing an LDAP directory
Service with an relational database backing Store (e.g., DB/2)
is to provide a design and implementation Such that all
LDAP Search queries can be executed efficiently. In the case
of repetitive Searches involving the same Search query,
however, it is not cost-effective to return to the backing Store
repetitively due to the nature of the database management
System. In particular, it is very time consuming and expen
Sive to go through the DBMS layers necessary to access
entries inside the database for every entry required to be
returned.

One approach to Solving this problem is to use the backing
Store's cache. While this approach has been implemented
and has proved Somewhat useful, it still requires repetitive
access to the backing Store from the directory Service.
Moreover, use of the relational database backing Store does
not provide Significant enough performance enhancements
to justify the more complex caching mechanism required.

There remains a need to address the problem of efficient
handling of repetitive Searches issued from a hierarchical
directory Service to a relational database backing Store.

BRIEF SUMMARY OF THE INVENTION

It is a primary object of this invention to obviate repetitive
inquiries into a relational database backing Store used by a
hierarchical-based directory Service.

It is another primary object to Search a relational database
using hierarchical, filter-based queries, Such as LDAP, and
efficiently caching Search results to increase Search effi
ciency for repetitive queries.

Another primary object of this invention is to cache
Search results in a more efficient manner in a directory
Service having a relational database backing Store.

Still another important object of this invention is to
provide a mechanism for populating a local Storage area
associated with an LDAP directory service with directory
Search results retrieved from a relational database (e.g.,
DE/2) backing store.

Yet another important object of this invention is to
enhance the efficiency of a directory Service using a caching
mechanism.
A more general object of this invention is to provide more

efficient, leSS expensive hierarchical LDAP Searches using
relational tables in an LDAP directory service having a
relational database management System (DBMS) as a back
ing Store.
A Still more general object of this invention is to provide

a reliable and Scaleable enterprise directory Solution,
wherein a preferred implementation is LDAP using a DB/2
backing Store.

These and other objects are provided in a method for
Searching a relational database using hierarchical, filter
based Search queries. The method begins in response to a
Search query to the relational database. Search results
retrieved in response to the Search query are cached, pref
erably in a local Storage area of the directory Service. In
response to Subsequent issuance of the Search query, the
cached Search results are then used preferentially in lieu of
re-accessing the relational database to increase Search effi
ciency.

According to a feature of the present invention, the Search
results are cached in a unique manner to facilitate use of
these results for Subsequent, repetitive queries. Preferably,

US 6,347,312 B1
3

first and Second caches are established in the local Storage
area. The first cache is Sometimes referred to herein as a
Type I cache, and the Second cache is Sometimes referred
herein as a Type II cache. The first cache receives a set of
identifiers indexed by a filter key of the search query. The
Search results, namely entries corresponding to the Set of
identifiers, are then Stored in the Second cache. The present
invention thus provides a mechanism for populating the
Type I and Type II caches. In addition, the mechanism
modifies information in the caches during (or as a result of)
given directory Service operations (e.g., modify, modify ran,
delete and add) that would otherwise invalidate the cached
information. Thus, whenever a repetitive Search query is
generated within the directory Service, Search results are
Selectively fetched from the caches instead of being
retrieved from the relational database. Cached information
remains current at all times using the invalidation routines.
This operation Significantly reduces the cost of processing
the repetitive Search query.

Preferably, the filter-based query is a Lightweight Direc
tory Access Protocol (LDAP) directory service query and
the relational database is DB/2 or some other convenient
backing Store. AS noted above, preferably the local Storage
area is associated with the directory Service for enhanced
query response. The Type I and Type II caches are preferably
dedicated portions of the directory Service local Storage area.

In accordance with a more Specific aspect of the
invention, a method for Searching a relational database (e.g.,
DB/2) from a Lightweight Directory Access Protocol
(LDAP) directory service utilizes first and second caches
associated with the directory service to obviate use of the
backing Store when receiving repetitive Search queries.
Preferably, a given unit of the first cache is a set of identifiers
that qualified for the LDAP search of a particular filter key.
Each given unit of the Second cache is an entry qualified for
the search and is indexed by its identifier.

The present invention also describes a computer program
product in a computer readable media that implements an
algorithm for populating the Type I and Type II caches, and
that implements an algorithm for invalidating the caches
during given directory Service operations. A directory Ser
Vice implementing this inventive mechanism is also
described.

The foregoing has outlined Some of the more pertinent
objects of the present invention. These objects should be
construed to be merely illustrative of some of the more
prominent features and applications of the invention. Many
other beneficial results can be attained by applying the
disclosed invention in a different manner or modifying the
invention as will be described. Accordingly, other objects
and a fuller understanding of the invention may be had by
referring to the following Detailed Description of the pre
ferred embodiment.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven
tion and the advantages thereof, reference should be made to
the following Detailed Description taken in connection with
the accompanying drawings in which:

FIG. 1 is a representative LDAP directory service imple
mentation;

FIG. 2 is a simplified LDAP directory;
FIG. 3 is a flowchart of an LDAP directory session;
FIGS. 4A-4C show representative LDAP directory ser

Vice implementations having relational database backing
Store,

15

25

35

40

45

50

55

60

65

4
FIG. 5 is a simplified block diagram of the directory

Service caching mechanism of the present invention;
FIG. 6 is a representative LDAP directory tree;
FIG. 7 is a simplified flowchart of the inventive method

for hierarchical LDAP searching in an LDAP directory
Service having a relational database management System as
a backing Store wherein Search results are Selectively cached
in the directory service caching mechanism of FIG. 5;

FIG. 8 is a detailed flowchart of a preferred routine for
populating the Type I and Type II caches of the present
invention;

FIG. 9 is a flowchart of a preferred routine for invalidating
the cache during an LDAP modify operation.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A block diagram of a representative LDAP directory
Service in which the present invention may be implemented
is shown in FIG. 1. As is well-known, LDAP is the light
weight directory access protocol, and this protocol has been
implemented in the prior art, e.g., as either a front end to the
X.500 directory Service, or as a Standalone directory Service.
According to the protocol, a client machine 10 makes a
TCP/IP connection over network II to an LDAP server 12,
Sends requests and receives responses. LDAP Server 12
Supports a directory 21 as illustrated in a simplified form in
FIG. 2. Each of the client and server machines further
include a directory “runtime” component 25 for implement
ing the directory Service operations as will be described
below. The directory 21 is based on the concept of an “entry”
27, which contains information about Some object (e.g., a
person). Entries are composed of attributes 29, which have
a type and one or more values. Each attribute 29 has a
particular Syntax that determines what kinds of values are
allowed in the attribute (e.g., ASCII characters, jpeg file,
etc.) and how these values are constrained during a particu
lar directory operation.
The directory tree is organized in a predetermined

manner, with each entry uniquely named relative to its
sibling entries by a “relative distinguished name” (RDN).
An RDN comprises at least one distinguished attribute value
from the entry and, at most, one value from each attribute is
used in the RDN. According to the protocol, a globally
unique name for an entry, referred to as a “distinguished
name” (DN), comprises a concatenation of the RDN
Sequence from a given entry to the tree root.
The LDAP Search can be applied to a single entry (a base

level search), an entry's children (a one level search), or an
entire Subtree (a Subtree Search). Thus, the “Scope” Sup
ported by LDAP search are: base, one level and subtree.
LDAP does not support search for arbitrary tree levels and
path enumeration.
LDAP includes an application programming interface

(API), as described in “The C LDAP Application Program
Interface", IETF Task Force Working Draft, Jul. 29, 1997,
which is incorporated herein by reference. An application on
a given client machine uses the LDAP API to effect a
directory Service "Session' according to the flowchart of
FIG. 3. At step 40, an LDAP session with a default LDAP
Server is initialized. At step 42, an API function ldap init()
returns a handle to the client, and this handle allows multiple
connections to be open at one time. At Step 44, the client
authenticates to the LDAP server using, for example, an API
ldap bind() function. At step 46, one or more LDAP
operations are performed. For example, the API function
ldap SearchO may be used to perform a given directory

US 6,347,312 B1
S

search. At step 48, the LDAP server returns the results. The
session is then closed at step 50 with the API ldap unbind()
function then being used to close the connection.

It may be desirable to store LDAP directory data in a
backing store. FIGS. 4A-4C illustrates several representa
tive LDAP directory service implementations that use a
relational database management system (RDBMS) for this
purpose. These systems merely illustrate possible LDAP
directory Services in which the present invention may be
implemented. One of ordinary skill should appreciate,
however, that the invention is not limited to an LDAP
directory service provided with a DB/2 backing store. The
principles of the present invention may be practiced in other
types of directory Services (e.g., X.500) and using other
relational database management Systems (e.g., Oracle,
Sybase, Informix, and the like) as the backing Store.

In FIG. 4A, an LDAP client 34 can connect to a number
of networked databases 38a–58n through an LDAP server
36. The databases 38a–38n contain the directory informa
tion. However, from the user's perspective, the LDAP server
36 actually stores all the information without knowing the
database 38 in which the data is actually located. With this
configuration, the LDAP server 36 is freed from managing
the physical data Storage and is able to retrieve information
from multiple database servers 38 which work together to
form a huge data Storage.

FIG. 4B illustrates a multiple client/multiple server
LDAP/DB2 enterprise solution. In this environment, a DB/2
client preferably runs on each LDAP server 36. Each such
DB/2 client can connect to any database server 38 contain
ing directory information. The collection of database Servers
38a–38n form a single directory System image, and one or
more of the LDAP servers 36 can access Such information.
Because all the LDAP servers 36 see the same directory
image, a network dispatcher 37 may be deployed to route
requests among the LDAP servers 36.

FIG. 4C illustrates a multiple client/parallel super server
configuration. In certain environment where users need to
Store large amount of information into the directory, this
configuration automatically partitions the database into dif
ferent machines 38. In addition, database queries are divided
into Smaller, independent tasks that can execute
concurrently, which increases end user query response time.
This configuration enables users to Store up to terabytes of
data into the database.
One of ordinary skill should appreciate that the System

architectures illustrated in FIGS. 4A-4C are not to be taken
as limiting the present invention.
With the above as background, FIG. 5 illustrates a block

diagram of an inventive caching mechanism that is prefer
ably implemented at or in association with the LDAP
directory service. The directory service includes an LDAP
server 36 and a relational database backing store 38 as
previously described. LDAP server 36 is typically a com
puter having Suitable memory partitioned into a first cache
40 and a second cache 42. The first cache 40 is sometimes
referred to herein as a Type I cache, and the Second cache 42
is Sometimes referred to herein as a Type II cache. First and
Second caches 40 and 42 may comprise part of the same
local Storage area 44, or each cache may be associated with
its own local Storage area. AS used herein, the designations
“first” and “second” thus may not designate different physi
cal Structures. In a preferred embodiment, the Type I and
Type II caches are merely Separate memory locations of the
same random access memory (RAM) of the LDAP server,
although any Suitable Storage area(s) may be used for this
purpose.

15

25

35

40

45

50

55

60

65

6
By implementing the Type I and Type II caches in the

directory Service local Storage area, repetitive Search queries
are handled without resort to the relational database 38. This
caching mechanism provides significant performance
improvements given that conventional LDAP directory serv
erS are Search-oriented and have many repetitive Searches.
According to the invention, a unit of the Type I cache is a Set
of identifiers (Ids) which qualify for a given LDAP search
query of a particular filter key. The unit is indexed by that
filter key. A unit of Type II cache is an entry qualified for the
Search and is indexed by its identifier.
By way of example, and with reference to the represen

tative directory tree in FIG. 6, a typical LDAP search may
be as follows:

ldapsearch -b “c=IBM US, c=US” -s Sub (sn=Smith);
where: “-b' is the base distinguished name (dn) from which
the Search is initiated, "-s” is the Scope of the Search (either
base, one or Subtree), and "Sn=Smith’ is the filter String that
Specifies the condition the Search needs to find matches in
the directory. The three elements above form a unique
combination of criteria for a given LDAP Search query. AS
is well known, a filter key is a combination of filter String+
Scope--base din, and each filter key is thus unique for an
LDAP search. In the above example, the filter key is:

where 2 is a numeric representation of the Scope Subtree
level (with base level being 0 and one level being 1).

FIG. 7 is a representative flowchart of the inventive
caching method. AS described above, the method is prefer
ably implemented in an LDAP directory service having a
DB/2 relational database backing Store, although one of
ordinary skill will appreciate that the inventive technique
may be used to Search any relational database using
hierarchical, filter-based database queries. The method
begins at step 60 by establishing the Type I and Type II
caches, preferably in a directory Server. At Step 62, a test is
run to determine whether an LDAP search query has been
issued. If not, the routine cycles. If, however, the outcome of
the test at Step 62 indicates that a Search query has been
issued, the routine continues at Step 64 to determine whether
the Search query has been previously Serviced. If the out
come of the test at Step 64 is negative, the Search query is
processed by communicating the query to the relational
database at Step 66 and then returning the Search results at
Step 68. In this processing path, the Search results are cached
at step 70 and the routine then returns to step 62 or
terminates. If, however, the outcome of the test at Step 64 is
positive, which indicates that the query is a repetitive one,
the routine branches to step 65 to retrieve the search results
from the cache in lieu of going back to the relational
database. These results are then returned to the inquiring
client or process at Step 67. This completes the processing.
AS will be seen, the inventive caching Scheme preferably

takes advantage of several LDAP table structures that are
now described below. Further details about these structures
are provided in U.S. Ser. No. 09/050,503, titled “A Fast And
Efficient Method To Support Hierarchical LDAP Searches
With Relational Tables', assigned to the assignee of this
application, and incorporated herein by reference.
Entry Table:

This table holds the information about a LDAP entry. This
table is used for obtaining the EID of the entry and Sup
porting LDAP SCOPE ONELEVEL and LDAP
SCOPE BASE search scope.

EID. The unique identifier of the LDAP entry. This field
is indexed.

US 6,347,312 B1
7

PEID. The unique identifier of a parent LDAP entry in the
naming hierarchy.

Entry Data. Entries are Stored using a simple text format of
the form “attribute: value'. Non-ASCII values or val
ues that are too long to fit on a reasonable sized line are
represented using a base 64 encoding. Giving an ID, the
corresponding entry can be returned with a single
SELECT Statement.

Descendant Table:
The purpose of this table is to Support the Subtree Search

feature of LDAP. For each LDAP entry with, a unique ID
(AEID), this table contains the descendant entries unique
identifiers (DEID). The columns in this table are:
AEID. The unique identifier of the ancestor LDAP entry.

This entry is indexed.
DEID. The unique identifier of the descend LDAP entry.

This entry is indexed.
Attribute Table:

One table per searchable attribute. Each LDAP entry is
assigned an unique identifier (EID) by the backing Store. The
columns for this table are:
EID
Attribute value
Thus, in the parent table, the EID field is the unique

identifier of an entry in the LDAP naming hierarchy. The
PEID field is the unique identifier of the parent entry in the
naming hierarchy. In the descendant table, the AEID field is
the unique identifier of a ancestor LDAP entry in the LDAP
naming hierarchy. The DEID field is the unique identifier of
the descend LDAP entry.

In addition to the table structures described above, the
following SQL SELECT statements are used by LDAP/DB2
Search routines:
Base Level Search:
SELECT entry. EntryData,

from laap entry as entry
where entry. EID in (

select distinct ldap entry. EID
from <table list>
where (ldap entry. EID=<root dn idd)

<Sql where expressions>)
One Level Search:
SELECT entry. EntryData,

from laap entry as entry
where distinct lclap entry. EID
from laap entry, <table list>

ldap entry as pchild, <list of tables>
where lodap entry. EID=pchild. EID
AND pchild. PIED=<root dn idd

<Sql where expressions>)
Subtree Search
SELECT entry. Entry Data,

from laap entry as entry
where entry. EID in (

select distinct ldap dentry. EID
from laap entry, ldap desc, <table list>
where
(LDAP ENTRY.EID=ldap desc.DEID AND

ldap desc. AEID=<root dn idd)
ldap entry as pchild. <table list>
where lodap entry. EID=ldap desc. EID
AND lclap desc. AEID=%d <where expressions>).

In the above representation, <table list> and <where expres
Sion> are the two null terminated Strings returned by the
SQL generator. The <root dn idd is the unique identifier of
the root dn. The where clause should only be generated if

15

25

35

40

45

50

55

60

65

8
<where expression> is not the empty String and no errors
where detected in the parsing the LDAP filter.
AS is well-known, LDAP Search queries comprise Six

basic filters with the format <attributed <operators <values.
Complex Search filters are generated by combining basic
filters with Boolean operators AND (&), OR () and NOT ().
For each LDAP filter element or sub-expression, there is a
set of entries (EIDS) that will satisfy the element. Thus, each
element generally maps to a set of EIDS.

FIG. 8 is a flowchart illustrating the preferred routine of
the present invention for populating the cache. The routine
begins at step 80 by locking the Type I cache. At step 82, a
test is performed to determine whether the filter key for a
given LDAP Search query can be found in the Type I cache.
If the outcome of the test at step 82 is positive, the routine
continues at Step 84 to obtain a set of identifiers correspond
ing to that filter key from the cache. If the outcome of the test
at step 82 is negative, the routine accesses LDAP DESC
and the attribute tables (in the relational database) at step 86
to obtain candidate identifiers and generate an identifier list
(namely, the set of identifiers). At step 88, the identifier list
is added to the Type I cache indexed by the filter key. The
cache is then unlocked at step 90. At this point of the
operation, an identifier list has been formed which is either
retrieved from the Type I cache or retrieved from the tables
in the relational database. The routine then continues at Step
92.

In particular, for each identifier in the identifier list, the
routine continues at step 94 by locking the Type II cache. A
test is then performed at step 96 to determine if the identifier
can be found in the Type II cache. If the outcome of the test
at step 96 is positive, the routine continues at step 98 to get
the entry corresponding to that identifier from the Type II
cache. If the outcome of the test at step 96 is negative, the
routine accesses the LDAP ENTRY table (in the relational
database) at step 100 to retrieve the entry given the identifier.
At step 102, the entry is added to the Type II cache indexed
by the identifier. At this point in the process flow, an entry
is formed which is either retrieved from the Type II cache or
retrieved from the LDAP ENTRY table.
The routine then continues at step 104 to process the entry

with ACL information. At step 106, the entry is sent back to
the client or other process initiated the Search query. At Step
108, the Type II cache is unlocked.
The following is a representative picture of the Type I and

II caches following Such an operation: Example:

Type I cache:

filter key ids
((sn = Smith) (Ou = Austin)) -> (2,765,2001)
(cn = John) -> (23,56)
(jobresponsibility = programmer) -> (1,17)
Type II cache:

id entry (abbreviation)
1. -> rjla
2 -> xxx

17 -> dskif
23 -> yyyy
56 -> kklf
765 -> ppdf
2001 -> Sdffv

The following is a detailed listing of a preferred code
implementation of the above-described algorithm of FIG. 8:
mutex lock (lock cache I)
if the filter key can be found in the type I cache

US 6,347,312 B1
9

get the id list (a set of ids) corresponding to that filter
key from type I cache

else
access LDAP DESC and attributes tables to get can

didate ids and put them in an id list (a set of ids).
add the id list to the type I cache indexed by the filter
key

endif

mutex unlock (lock cache I)
/* So far an idlist is formed which is either retrieved from

type I cache or retrieved from the tables of the database
*/

for each id in that id list

mutex lock (lock cache II)
if id can be found in the type II cache

get the entry corresponding to that id from type II
cache.

else
access LDAP ENTRY table to retrieve the entry

given the id
add the entry to type II cache indexed by the id

endif

/*so far an entry is formed which is either retrieved from
type II cache or from LDAP ENTRY table */
process entry with ACL info
Send entry back to client
mutex unlock (lock cache II)

endfor
According to the present invention, it is necessary to

“invalidate' the cache during particular directory Service
operations (e.g., modify, modify ran, delete and add
operations) which would otherwise impact cached informa
tion. Inadvertently the cache according to the invention
refers to a Set of processes for maintaining the integrity of
the cached data during RDBMS operations that would
otherwise alter the contents of the backing Store which
formed the original search results for the query. FIG. 9
illustrates a flowchart of a preferred routine for invalidating
the cache during a representative operation, the LDAP
modify operation.

The routine assumes that particular Search results have
been Stored in the cache in response to a Search query and
that the RDBMS contents are being modified prior to a
repetitive query. The routine begins at Step 110 by locking
the Type I cache. Step 112 is then repeated for each attribute
name that is modified in the relational database. In
particular, a test is performed at Step 114 to determine if the
attribute name is in the filter string of the filter key for the
Search query. If the outcome of the test at Step 114 is
positive, the routine continues at Step 116 by removing the
cache unit (namely, the identifier list and the filter key). After
all attribute names have been processed in this manner, the
routine unlocks the Type I cache at step 118. The routine
then continues at step 120 to lock the Type II cache. A test
is then performed at step 122 to determine if the identifier of
the modified entry is in the Type II cache. If the outcome of
the test at Step 122 is positive, the routine continues at Step
124 to remove the unit (namely, the entry and its identifier).
The Type II cache is then unlocked at step 126 to end the
processing.

Using the above example, assume an entry with id 234
and cn and Sn of the entry are modified. The caches then look
as follows:

1O

15

25

35

40

45

50

55

60

65

10

Type I cache:

The units of
(&(sn = smith) (ou = Austin)) -> (2,765, 2001)
(cn = Jonn) -> (23,56)
will be removed

Type II cache:
Nothing is removed.
The caches will become:

Type I cache:

ids
(1,17)

filter key
(jobresposibility = programmer)
Type II cache:

id entry (abbreviation)
1. -> rjla
2 -> xxx

17 -> dskif
23 -> yyyy
56 -> kklf
765 -> ppdf
2001 -> Sdffv

The code of the LDAP modify operation described in FIG.
9 is set forth below:

mutex lock (lock cache I)
for each attribute name that is modified

if attribute name is in the filter string of the filter key,
remove the unit (id list+filter key)

endif
endfor

mutex unlock (lock cache I)
mutex lock (lock cache II)
if id of the modified entry is in the type II cache remove

the unit (entry--id)
endif

mutex lock (lock cache II)
The following are representative code listings for the

other referenced LDAP operations that are processed to
invalidate the cache information.

LDAP Modify Rdn Operation
mutex lock(lock cache I)

if attribute name of the modified rdn is in the filter
string of the filter key, remove the unit (id list+filter
key)

endif

mutex unlock(lock cache I)
mutex lock (lock cache II)
if id of the modified entry is in the type II cache remove

the unit (entry--id)
endif

mutex unlock(lock cache II)
Example:
An entry with id 23 and rdn cn is modified.
Using the caches above in the i):
Type I cache:

US 6,347,312 B1
11

Nothing is removed.

Type II cache

The unit 23 -> yyyy will be removed.

The caches will become

Type I cache:

ids
1,17)

filter key
Cobresposibility = programmer)
Type II cache:

id entry (abbreviation)
1. -> rjla
2 -> xxx

17 -> dskif
56 -> kklf
765 -> ppdf
2001 -> Scffw

LDAP delete operation
mutex lock (lock cache I)
for each attribute name in the deleted entry
if attribute name is in the filter string of the filter key
remove the unit(id list+filter key)

endif
endfor

mutex unlock(lock cache I)
mutex lock (lock cache II)
if id of the modified entry is in the type II cache remove

the unit (entry--id)
endif

mutex lock (lock cache II)
Example:
An entry with id 4009 and attributes dn, ou, c, objectclass.
Using the example above in ii):
Type I cache:

Nothing is removed
Type II cache:

Nothing is removed
LDAP add operation
mutex lock (lock cache I)
for each attribute name in the added entry
if attribute name is in the filter string of the filter key
remove the unit (id list+filter key)

endif
endfor

mutex unlock (lock cache I)
Type II cache is not affected at all.

Example:
An entry with id 3515 and attributes dn, ou, c, objectclass

and jobresponsibility.
Using the example above in iii):

The unit of
Cobresponsibility = program)
will be removed
Type I cache:

-> (1,17)

15

25

35

40

45

50

55

60

65

12

-continued

filter key ids
NULL NULL

According to another desirable feature of the invention, a
double linked list preferably is used to keep track of the least
recently used (LRU) unit in each cache. When the cache is
full, the least recently used unit preferably will be flushed
Out.
AS noted above, the invention may be implemented in any

hierarchical directory Service in which a relational database
management system (RDBMS) is used to provide a backing
Store function. Typically, an SQL query is generated and
used to access the relational database, and results are then
returned in response to this query. Search results are cached
preferably in a pair of caches associated with or imple
mented in the directory server. Preferably, each unit of Type
I cache is a set of identifiers that qualify for the LDAP search
of a particular filter key, and the unit is indexed by that filter
key. A unit of Type II cache is an entry qualified for the
Search and is indexed by its identifiers. Routines are pro
vided to populate the caches and, where necessary (e.g.,
when information in the relational database changes) to
invalidate given information therein. The resulting cache
mechanism is robust and ensures that repetitive Search
queries are managed through the cache as opposed to
through repeated, yet unnecessary Search queries from the
directory Service to the relational database.
One of ordinary skill will appreciate that the invention can

be applied to any relational database management System
(RDBMS). In addition, the EID sets approach can also be
applied to b-tree based LDAP server implementation. The
inventive algorithm may be applied to any LDAP server
implementation, including Netscape Directory Server.
The present invention thus implements an LDAP server

cache that provides significant advantages. Foremost, the
inventive caching mechanism obviates the need to go back
repetitively into the backing Store on Subsequent Searches
when information in the directory Service is otherwise
current. The technique also ensures that the caches are
updated or modified as needed when LDAP operations are
carried out. In a preferred embodiment, each of the caches
are implemented in a Suitable Storage area, Such as a random
acceSS memory of a computer. Compared with using a
backing Store cache, the present invention achieves signifi
cant performance improvement.
One of the preferred embodiments of the routines of this

invention is as a set of instructions (computer program code)
in a code module resident in or downloadable to the random
acceSS memory of a computer.
Having thus described our invention, what we claim as

new and desire to Secure by letters patent is Set forth in the
following claims.
What is claimed is:
1. A method for Searching a relational database using

hierarchical, filter-based Search queries, comprising the
Steps of

in response to a Search query to the relational database,
caching Search results in a local Storage area; and

in response to a Subsequent issuance of the Search query,
using the cached Search results in lieu of accessing the
relational database.

2. The method as described in claim 1 wherein the
filter-based query is a Lightweight Directory Access Proto
col (LDAP) directory service query.

US 6,347,312 B1
13

3. The method as described in claim 2 wherein the
relational database is DB/2.

4. The method as described in claim 1 wherein the search
results are cached according to a set of identifiers.

5. The method as described in claim 4 wherein the set of
identifiers are cached in a first cache and indexed by a key
and the Search results are cached in a Second cache.

6. The method as described in claim 5 wherein the search
results include entries corresponding to the Set of identifiers.

7. The method as described in claim 1 wherein the local
Storage area is associated with a directory Service that
generates the hierarchical, filter-based Search queries.

8. The method as described in claim 7 further including
the Step of invalidating the cached Search results during a
given directory Service operation.

9. The method as described in claim 8 wherein the given
directory Service operation is Selected from the group of
directory Service operations consisting essentially of modify,
delete and add operations.

10. A method for Searching a relational database from a
Lightweight Directory Access Protocol (LDAP) directory
Service generating filter-based queries, comprising the Steps
of:

in response to a Search query to the relational database:
Storing in a first cache a set of identifiers indexed by a

filter key;
Storing in a Second cache directory entries correspond

ing to the Set of identifiers, and
in response to Subsequent issuance of the Search query,

using the identifiers and the directory entries in lieu of
accessing the relational database.

11. The method as described in claim 10 wherein the first
and second caches are associated with the LDAP directory
Service.

12. The method as described in claim 10 further including
the Step of Selectively modifying information in the first and
Second caches as a result of an LDAP directory Service
operation prior to the new Search query.

13. The method as described in claim 12 wherein the
LDAP directory Service operation is Selected from the group
of directory Service operations consisting essentially of
modify, delete and add operations.

14. A method for caching Search results retrieved from a
relational database in response to a Lightweight Directory
Access Protocol (LDAP) directory service generating filter
based queries, comprising the Steps of:

in response to an LDAP Search query to the relational
database:
Storing in a first cache a set of identifiers indexed by a

filter key; and
Storing in a Second cache directory entries correspond

ing to the Set of identifiers.
15. The method as described in claim 14 wherein the first

and second caches are associated with the LDAP directory
Service.

16. A computer program product in computer-readable
media for Searching a relational database using hierarchical,
filter-based queries, comprising:

5

15

25

35

40

45

50

55

14
means responsive to a Search query to the relational

database for caching Search results in a local Storage
area; and

means responsive to a Subsequent issuance of the Search
query for using the cached Search results in lieu of
accessing the relational database.

17. The computer program product as described in claim
16 wherein the filter-based query is a Lightweight Directory
Access Protocol (LDAP) directory service query.

18. The computer program product as described in claim
16 wherein the relational database is DB/2.

19. The computer program product as described in claim
16 further including means for invalidating the cached
Search results during a given directory Service operation
prior to the new Search query.

20. The computer program product as described in claim
17 wherein the given directory Service operation is Selected
from the group of directory Service operations consisting
essentially of modify, delete and add operations.

21. A directory Service, comprising:
a directory organized as a naming hierarchy having a

plurality of entries each represented by a unique iden
tifier;

a relational database management System having a back
ing Store for Storing directory data;

means for Searching the directory, comprising:
a first cache;
a Second cache;
means for Storing in the first cache a Set of identifiers

indexed by a filter key; and
means for Storing in the Second cache directory

entries corresponding to the Set of identifiers.
22. The directory service as described in claim 21 wherein

the directory is compliant with the Lightweight Directory
Access Protocol (LDAP).

23. The directory service as described in claim 22 wherein
the relational database management System is DB/2.

24. In a directory Service having a directory organized as
a naming hierarchy, the hierarchy including a plurality of
entries each represented by a unique identifier, the improve
ment comprising:

a relational database management System having a back
ing Store for Storing directory data;

means for Searching the directory, comprising:
a first cache;
a Second cache;
means for Storing in the first cache a Set of identifiers

indexed by a filter key; and
means for Storing in the Second cache directory

entries corresponding to the Set of identifiers.
25. In the directory service as described in claim 24

wherein the directory is compliant with the Lightweight
Directory Access Protocol (LDAP).

26. In the directory service as described in claim 25
wherein the relational database management System is
DB/2.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 6,347,312 B1 Page 1 of 1
DATED : February 12, 2002
INVENTOR(S) : Debora Jean Byrne, Chetan Ram Murthy, Shaw-Ben Shi and Chin-Long Shu

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 2
Line 39, please replace "DE/2" with -- DB/2 --.

Column 8
Line 8, please replace "(EIDS)" with -- (EIDs) --.

Signed and Sealed this

Sixteenth Day of July, 2002

Attest.

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

