
M. Iskander  (ed.), Innovations in E-learning, Instruction Technology, Assessment, and Engineering Education, – . 
© 2007 Springer. 

1

ROLE OF LDAP IN ENTERPRISE 

Amrita Shukla                                                Dr.A.S.Thoke 
Lecturer, Electronics & Telecomm. Engg.     Prof. & H.O.D., Electrical Engg. 

U.I.T. RAIPUR[C.G.] N.I.T. RAIPUR[C.G.]

Ms. Smita Shukla 
Lecturer, Electrical Engg. Deptt. 

N.I.T. RAIPUR[C.G.]

ABSTRACT 

Lightweight Directory Access Protocol 
(LDAP) is a fast growing technology for 
accessing common directory information. 
LDAP has been embraced and 
implemented in most network-oriented 
middleware. As an open, vendor-neutral 
standard, LDAP provides an extendable 
architecture for centralized storage and 
management of information that needs to 
be available for today’s distributed 
systems and services. After a fast start, it 
can be assumed that LDAP has become 
the de facto access method for directory 
information, much the same as the 
Domain Name System (DNS) is used for 
IP address look-up on almost any system 
on an intranet and on the Internet. LDAP 
is currently supported in most network 
operating systems, groupware and even 
shrink-wrapped network applications. 

Introduction 

People and businesses are increasingly 
relying on networked computer systems 
to support distributed applications. These 
distributed applications might interact 
with computers on the same local area 
network (LAN), within a corporate 
intranet, or anywhere on the worldwide 
Internet. To improve functionality, ease 
of use and to enable cost-effective 
administration of distributed applications 

information about the services, resources, 
users, and other objects accessible from 
the applications needs to be organized in 
a clear and consistent manner. Much of 
this information can be shared among 
many applications, but it must also be 
protected to prevent unauthorized 
modification or the disclosure of private 
information. Information describing the 
various users, applications, files, printers, 
and other resources accessible from a 
network is often collected into a special 
database, sometimes called a directory. 
As the number of different networks and 
applications has grown, the number of 
specialized directories of information has 
also grown, resulting in islands of 
information that cannot be shared and are 
difficult to maintain. If all of this 
information could be maintained and 
accessed in a consistent and controlled 
manner, it would provide a focal point for 
integrating a distributed environment into 
a consistent and seamless system.  

The Lightweight Directory Access 
Protocol (LDAP) is an open industry 
standard that has evolved to meet these 
needs. LDAP defines a standard method 
for accessing and updating information 
in a directory. LDAP is gaining wide 
acceptance as the directory access 
method of the Internet and is therefore 
also becoming strategic within corporate 
intranets. It is being supported by a 

1
6

BlackBerry 1031 
U.S. Patent No. 8,359,016



SHUKLA AND THOKE 

growing number of software vendors 
and is being incorporated into a growing 
number of applications. 

  

Old Model 

 

New Model 

Fig. 1 Old And New Model of  LDAP 
 
What is a Directory? 
 
A directory is a listing of information 
about objects arranged in some order 
that gives details about each object. 
Common examples are a city telephone 
directory and a library card catalog. For 
a telephone directory, the objects listed 
are people; the names are arranged 
alphabetically, and the details given 
about each person are address and 
telephone number. Books in a library 
card catalog are ordered by author or by 
title, and information such as the ISBN 
number of the book and other 
publication information is given. 
 
In computer terms, a directory is a 
specialized database, also called a data 
repository, that stores typed and ordered 
information about objects. A particular 
directory might list information about 
printers (the objects) consisting of typed 
information such as location (a 
formatted character string), speed in 
pages per minute (numeric), print 
streams supported (for example 
PostScript or ASCII), and so on. 

Directories allow users or applications to 
find resources that have the 
characteristics needed for a particular 
task. For example, a directory of users 
can be used to look up a person’s e-mail 
address or fax number. A directory could 
be searched to find a nearby PostScript 
color printer. Or a directory of 
application servers could be searched to 
find a server that can access customer 
billing information. The terms white 
pages and yellow pages are sometimes 
used to describe how a directory is used. 
If the name of an object (person, printer) 
is known, its characteristics (phone 
number, pages per minute) can be 
retrieved. This is similar to looking up a 
name in the white pages of a telephone 
directory. If the name of a particular 
individual object is not known, the 
directory can be searched for a list of 
objects that meet a certain requirement. 
This is like looking up a listing of 
hairdressers in the yellow pages of a 
telephone directory. However, 
directories stored on a computer are 
much more flexible than the yellow 
pages of a telephone directory because 
they can usually be searched by specific 
criteria, not just by a predefined set of 
categories. 
 
Differences Between Directories 
and Databases 
 
A directory is often described as a 
database, but it is a specialized database 
that has characteristics that set it apart 
from general purpose relational 
databases. One special characteristic of 
directories is that they are accessed (read 
or searched) much more often than they 
are updated (written). Hundreds of 
people might look up an individual’s 
phone number, or thousands of print 
clients might look up the characteristics 

2



ROLE OF LDAP IN ENTERPRISE 

of a particular printer. But the phone 
number or printer characteristics rarely 
change. Because directories must be able 
to support high volumes of read 
requests, they are typically optimized for 
read access. Write access might be 
limited to system administrators or to the 
owner of each piece of information. A 
general purpose database, on the other, 
hand needs to support applications such 
as airline reservation and banking with 
high update volumes. Because 
directories are meant to store relatively 
static information and are optimized for 
that purpose, they are not appropriate for 
storing information that changes rapidly. 
For example, the number of jobs 
currently in a print queue probably 
should not be stored in the directory 
entry for a printer because that 
information would have to be updated 
frequently to be accurate. Instead, the 
directory entry for the printer could 
contain the network address of a print 
server. The print server could be queried 
to learn the current queue length if 
desired. The information in the directory 
(the print server address) is static, 
whereas the number of jobs in the print 
queue is dynamic. Another important 
difference between directories and 
general purpose databases is that 
directories may not support transactions 
(some vendor implementations, 
however, do). Transactions are all-or-
nothing operations that must be 
completed in total or not at all. For 
example, when transferring money from 
one bank account to another, the money 
must be debited from one account and 
credited to the other account in a single 
transaction. If only half of this 
transaction completes or someone 
accesses the accounts while the money is 
in transit, the accounts will not balance. 
General-purpose databases usually 

support such transactions, which 
complicates their implementation. 
 
Because directories deal mostly with 
read requests, the complexities of 
transactions can be avoided. If two 
people exchange offices, both of their 
directory entries need to be updated with 
new phone numbers, office locations, 
and so on. If one directory entry is 
updated, and then other directory entry is 
updated there is a brief period during 
which the directory will show that both 
people have the same phone number. 
Because updates are relatively rare, such 
anomalies are considered acceptable. 
The type of information stored in a 
directory usually does not require strict 
consistency. It might be acceptable if 
information such as a telephone number 
is temporarily out of date. Because 
directories are not transactional, it is not 
a good idea to use them to store 
information sensitive to inconsistencies, 
like bank account balances. Because 
general-purpose databases must support 
arbitrary applications such as banking 
and inventory control, they allow 
arbitrary collections of data to be stored. 
Directories may be limited in the type of 
data they allow to be stored (although 
the architecture does not impose such a 
limitation). For example, a directory 
specialized for customer contact 
information might be limited to storing 
only personal information such as 
names, addresses, and phone numbers. If 
a directory is extensible, it can be 
configured to store a variety of types of 
information, making it more useful to a 
variety of programs.  
Another important difference between a 
directory and a general-purpose database 
is in the way information can be 
accessed. Most databases support a 
standardized, very powerful access 

3



SHUKLA AND THOKE 

method called Structured Query 
Language (SQL). SQL allows complex 
update and query functions at the cost of 
program size and application complexity. 
LDAP directories, on the other hand, use 
a simplified and optimized access 
protocol that can be used in slim and 
relatively simple applications. 
Because directories are not intended to 
provide as many functions as general-
purpose databases, they can be 
optimized to economically provide more 
applications with rapid access to 
directory data in large distributed 
environments. Because the intended use 
of directories is restricted to a read-
mostly, no transactional environment, 
both the directory client and directory 
server can be simplified and optimized. 
 
Directory Clients and Servers 
 
Directories are usually accessed using the 
client/server model of communication. 
An application that wants to read or write 
information in a directory does not access 
the directory directly. Instead, it calls a 
function or application programming 
interface (API) that causes a message to 
be sent to another process. This second 
process accesses the information in the 
directory on behalf of the requesting 
application. The results of the read or 
write are then returned to the requesting 
application (see Figure 2). 

 
The request is performed by the 
directory client, and the process that 

looks up information in the directory is 
called the directory server. In general, 
servers provide a specific service to 
clients. Sometimes a server might 
become the client of other servers in 
order to gather the information 
necessary to process a request. A 
directory service is only one type of 
service that might be available in a 
client/server environment. Other common 
examples of services are file services, 
mail services, print services, Web page 
services, and so on. The client and server 
processes might or might not be on the 
same machine. A server is capable of 
serving many clients. Some servers can 
process client requests in parallel. Other 
servers queue incoming client requests 
for serial processing if they are currently 
busy processing another client’s request. 
An API defines the programming 
interface a particular programming 
language uses to access a service. The 
format and contents of the messages 
exchanged between client and server 
must adhere to an agreed upon protocol. 
LDAP defines a message protocol used 
by directory clients and directory servers. 
There is also an associated LDAP API for 
the C language and ways to access LDAP 
from writhing a Java application. The 
client is not dependent upon a particular 
implementation of the server, and the 
server can implement the directory 
however it chooses. 
 
Directory-Enabled Applications 
 
A directory-enabled application is an 
application that uses a directory service 
to improve its functionality, ease of use, 
and administration. Today many 
applications make use of information 
that could be stored in a directory. For 
example, consider a group calendar 
application that is used to schedule 

4



ROLE OF LDAP IN ENTERPRISE 

meetings of company personnel in 
different conference rooms. In the worst 
case, the calendar application does not 
use a directory service at all. If this were 
the case, a user trying to schedule a 
meeting would have to remember the 
room number of every conference room 
that might be appropriate for the 
meeting. Is the room big enough, does it 
have the necessary audio and video 
equipment, and so on? The user would 
also have to remember the names and e-
mail addresses of every attendee that 
needs to receive a meeting notice. Such 
an application would obviously be 
difficult to use. If conference room 
information (size, location, special 
equipment, and so on) and personnel 
information (name, e-mail address, 
phone number, and so on) could be 
accessed from a directory service, the 
application would be much easier to use. 
Also, the functionality of the application 
could be improved. For example, a list 
of all available conference rooms 
meeting the size and equipment 
requirements could be presented to the 
user. But the developers of directory-
enabled applications are faced with a 
problem. What if they cannot assume 
that a directory service will exist in all 
environments? If there is a directory 
service it might be specific to a certain 
network operating system (NOS), 
making the application non-portable. 
Can the existing directory service be 
extended to store the type of information 
needed by the application? Because of 
these concerns, application developers 
often took the approach of developing 
their own application-specific directory. 
 
Conclusion  
 
Lightweight Directory Access Protocol 
(LDAP) is a fast growing technology for 

accessing common directory information. 
LDAP has been embraced and 
implemented in most network-oriented 
middleware. As an open, vendor-neutral 
standard, LDAP provides an extendable 
architecture for centralized storage and 
management of information that needs to 
be available for today’s distributed 
systems and services. 
 
Another very important role for LDAP 
in Active Directory is that of cross-
platform access interface. LDAP is not 
tied to a particular platform as is ADSI, 
which is COM-based and therefore tied 
to Windows. That means applications 
and scripts can be written to access and 
manage Active Directory from virtually 
any platform. This is a huge 
improvement over Windows NT4 where 
access was limited to the Win32 API, 
which for the most part can only be used 
from the Windows platform. LDAP 
allows companies that have a non–
Windows-based enterprise management 
infrastructure the ability to populate, 
maintain, and monitor Active Directory 
from the platform of choice. 
With LDAP Version 3, a solid 
foundation for a directory service 
infrastructure for the Internet was built. 
As we have seen in previous chapters, 
most vendor implementations are based 
on this version or have most features of 
Version 3 incorporated. But there is still 
room for enhancements, for example in 
areas of API support for other program 
languages, like Java. To define these 
standards, members of the Internet 
Engineering Task Force (IETF) work on 
and submit draft proposals that 
eventually might become Request for 
Comments (RFCs). The RFCs describe 
the idea and the implementation of the 
major design and technologies for the 
new functions and features. We describe 

5



SHUKLA AND THOKE 

some important proposed enhancements 
in the next section. Although there is not 
a specific section in this book devoted to 
it, it should be mentioned that the vendor 
products will of course be further 
developed and enhanced, namely in 
areas such as improved functionality, 
manageability, and performance. For 
example, client-side caching could be 
implemented to improve performance 
remarkably, especially on multi-user 
client systems with heavy directory 
access. Graphical management tools can 
be added, or existing GUIs may be 
improved that allow easy configuration 
and contents management. As LDAP 
matures to a de facto standard, it will 
eventually replace proprietary directory 
services in vendor products and other 
standardized middleware solutions, such 
as the Distributed Computing 
Environment (DCE). DCE makes heavy 
use of a directory service and currently 
uses its own, specific implementation, 
called Cell Directory Service (CDS).  
 
References 
   [1.] S. Bradner, "Key Words for use in 

RFCs to Indicate Requirement 
Levels", RFC 2119, March 1997. 

      
   [2.] J. Klensin, R. Catoe, P. 

Krumviede, "IMAP/POP 
AUTHorize Extension for Simple 
Challenge/Response", RFC 2195, 
September 1997.  

   [3.] J. Myers, "Simple Authentication 
and Security Layer (SASL)", RFC 
2222, October 1997.  

     
   [4.] Wahl, M., Howes, T., Kille, S., 

"Lightweight Directory Access 
Protocol (v3)", RFC 2251, August 
1997.  

 

   [5.] Wahl, M., Coulbeck, A., Howes, 
T., Kille, S., "Lightweight 
Directory Access Protocol (v3): 
Attribute Syntax Definitions", 
RFC 2252, December 1997.   

     
   [6.] Paul J. Leach, Chris Newman, 

"Using Digest Authentication as a 
SASL Mechanism", RFC 2831, 
May 2000. 

      
   [7.] Ed Reed, "LDAP Subentry 

schema", draft-ietf-ldup- subentry-
08.txt, April 2001.  

    
   [8.] K. Zeilenga, "LDAP Password 

Modify Extended Operation", 
RFC 3062, February 2001.  

 
[9.] Understanding and Deploying 

LDAP Directory Services Timothy 
A. Howes, Mark C. Smith and 
Gordon S. Good Macmillan 
Network Architecture and 
Development Series. Implementing 
LDAP 

 
[10.] Mark Wilcox Wrox Press Ltd 

Perl for System Administration 
 
[11.]  David N. Blank-Edelman 

O’Reilly 
 
 

6


	L-G-0000004366-0002336683



