3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Contents

Basic Data Types

Stacks and Queues

Lists

Arrays

Compressed Boolean Arrays (Type ett)
Random Sources

Pairs, Triples, and such

Strings

Making Simple Demos and Tables

Bibliography

I ndex

page2

17
21
23
38
39
40

43

44

MOBILEIRON, INC. - EXHIBIT 1007

Page 001

3
Basic Data Types

The basic data typesack queuelist, array, random numbertuple, andstring are ubiqui-
tous in computing. Most readers are probably thoroughly familiar with them already. All
sections of this chapter can be read independently.

3.1 Stacks and Queues

A stackis a last-in-first-out store for the elements of some tifpand a queue is a first-in-
first-out store. Both data types store sequences of elements oEtypey differ in the set

of operations that can be performed on the sequence. In a stack one end of the sequence is
designated as thep of the stack and all queries and updates on a stack operate on the top
end of the sequence. Incueueall insertions occur at one end, trear of the queue, and

all deletions occur at the other end, finent of the queue. The definitions

stack<E> S;
queue<E> Q;

define a stacks and a queud&) for the element typdc, respectively. Both structures are
initially empty. The following operations are available on stacks< i an object of type
E then the insertiorf& pushx) addsx as the new top element. We can inspect the contents
of a stack:Stop() returns the top element ai®pop() deletes and returns the top element.
Of course, both operations are illegalSfis empty. The calSempty) returnstrue if the
stack is empty anthlseotherwise and@&sizg) returns the number of elements in the stack.
So Sempty) is equivalent toSsize) == 0. All elements of a stack can be removed by
Sclear().

We illustrate stacks by a program to evaluate a simple class of expressions. The character
1 is an expression and E; and E, are expressions thetkE; + Ey) and (E; x Ey) are

MOBILEIRON, INC. - EXHIBIT 1007
Page 002

3.1 Stacks and Queues 3

expressions. Thugl+ 1) and((1+ 1) « (1 + (1 + 1))) are expressions, but& 1 and

(1+ 2) are not. The former is not an expression since it is not completely bracketed and the
latter is not an expression since we only allow the constant 1 as an operand. We will ask
you in the exercises to evaluate more complex expressions. There is a simple algorithm to
evaluate expressions. It uses two stackstagkint> S to hold intermediate results and a
stackchar> Opto hold operator symbols. Initially, both stacks are empty. The expression
is scanned from left to right. Letbe the current character scannect i an open bracket,

we do nothing, ifc is a 1, we push it ont, if c is a+ or %, we push it ontdOp, and

if ¢ is a closing bracket, we remove the two top elements f@rsayx andy, and the

top element fromOp, sayop, and push the valug op yonto S. When an expression is
completely scanned, its value is the top elemengoh fact, it is the only element irs.

The following program assumes that a well-formed expression followed by a dot is given
on standard input. It prints the value of the expression onto standard output.

(stackdemo.¢=
#include<LEDA/stack.h>

main()
{ char c;
stack<int> S; stack<char> Op;
while ((¢ = read_char('"next symbol = ")) != 2.’)
{ switch(c)
{ case ’(’ : break;
case ’1’ : { S.push(1); break; }
case ’+’ : { Op.push(c); break; }
case ’*’ : { Op.push(c); break; }
case ’)’ : { int x = S.pop(); int y = S.popQ);
char op = Op.pop();
if (op = ’+’) S.push(x+y); else S.push(x*y);
break;
}
}
}
cout << "\n\nvalue = " << S.pop() << "\n\n";
}

Oninput((1+1) % (14 (14 1))) this program prints 6, on inp@l + (1+ 1)) it prints 3, and
on input() it crashes because it attempts to pop from an empty stack. This is bad software
engineering practice and we will ask you in the exercises to remedy this shortcoming.

We turn to queues. The two ends of a queue are callefidhtand therear of the queue,
respectively. An insertiorQ.appendx) appends at the rear,Q.top() returns the front
element, and).pop() deletes and returns the front element. Of course, the latter two calls
requireQ to be non-empty. The functio@.empty) checks for emptiness ang.sizg)
returns the number of elements in the quew@clear() removes all elements from the
queue.

MOBILEIRON, INC. - EXHIBIT 1007
Page 003

4 Basic Data Types

Queues and stacks are implemented as singly linked lists. All operations take constant
time exceptclear, which takes linear time. The space requirement is linear. LEDA also
offers bounded queues and stacks, for example,

b_stack<E> S(n);

defines a stacls that can hold up tm elements. Bounded stacks and queues are imple-
mented by arrays and hence always use the same amount of space independently of the
actual number of elements stored in them. They are preferable to unbounded queues and
stacks when the maximal size is known beforehand and the number of elements stored in
the data structure is always close to the maximal size.

In the remainder of this section we show how to implement a queue by two stacks. This
is to demonstrate the versatility of stacks, to illustrate that the same abstract data type can be
implemented in many ways, to give an example of an amortized analysis of a data structure,
and to amuse the user; it is not the implementation of queues used in LEDA. We use two
stacksSfrontand Srear and split the queue into two parts: df, ..., an is the current
content ofSfrontandby, . .., by, is the current contents &rearwith a,, andb, being the
top elements, respectively, theg, ..., a;, by, ..., by is the current contents of the queue.
Appending an element to the queue is realized by pushing itSmet@: Popping an element
from the queue is realized by popping an element f@fnont If Sfrontis empty, we first
move all elements fror®rearto Sfront(by popping fromSrearand pushing ont&fron).

Note that this will reverse the sequence as it should be.

(strangequeue.h=
#include <LEDA/stack.h>

template<class E>
class queue {

stack<E> Sfront, Srear;

public:
queue<E>(){ } // initialization to empty queue
void append(const E& x){ Srear.push(x); }
E pop()
{ if (Sfront.empty())
{ while (!Srear.empty()) Sfront.push(Srear.pop()); }
if (Sfront.empty()) error_handler(l,"queue: pop from empty queue");

return Sfront.pop();
}

bool empty() { return Sfront.empty() && Srear.empty(); }

int size() { return Sfront.size() + Srear.size(); }

};

It is interesting to analyze the time complexity of this queue implementation. We claim
that a sequence of queue operations takes total tifdgn). To see this we note first that

the constructor and the operatioagpend empty andsizerun in constant time. Aoop
operation may take an arbitrary amount of time. More precisely, it takes constant time

MOBILEIRON, INC. - EXHIBIT 1007
Page 004

3.2 Lists 5

Figure3.1 A list of five integers.

plus time proportional to the number of elements moved fBrearto Sfront Since each
elementis moved at most once fr@rearto Sfront we incur a constant cost per element for
moving elements frorGrearto Sfront We conclude that the time spent inpdipoperations

is linear.

Exercisesfor 3.1

Implement the typstack

Implement the typgueue

Extend the expression evaluator such that it complains about illegal inputs.

Extend the expression evaluator such that it can handle arbitrary integers as operands.
Extend the expression evaluator such that it can handle expressions that are not com-
pletely bracketed. The usual precedence rules should be applied, +€b,* c is in-
terpreted asa + (b = ¢)). More specifically, the evaluator should be able to handle all
expressions that are generated by the following four rules:

A factor is either an integer or a bracketed expression.

A term is either a factor or a factor times a term.

An expression is either a term or a term plus an expression.
That'’s all.

a b~ wNBE

3.2 Lists

Lists are a simple, yet powerful, data type. It is difficult to implement a combinatorial or
geometric algorithm without using lists. Moreover, the implementation of several LEDA
data types, e.g., stacks, queues, and graphs, is based on lists. In this section we discuss lists
for unordered and ordered element types, we sketch the implementation of lists, and in the
final subsection we treat singly linked lists.

3.2.1 Basics
list<E> L;

declares a list. for elements of typd= and initializes it to the empty list. Generally, a list
L over element typ& (typelist<E>) is a sequence of items (of predefined tyigeitem),

MOBILEIRON, INC. - EXHIBIT 1007
Page 005

6 Basic Data Types

each holding an element of tyge Figure 3.1 shows a list of integers. It consists of five
items shown as rectangular boxes. The contents of the first item is 5, the contents of the
second item is 3, and so on. We call the number of items in a list the length of the list
and use(x) to denote an item with contenks Lists offer an extremely rich repertoire of
operations.

L.empty();
checksL for emptiness. Let's assume tHais non-empty. Then

E

x = L.head();
list_item it

L.first();

assign the contents of the first item bfto x and the first item tot. Please pause for a
moment to grasp the differencé..first() returns the first item and.head) returns the
contents of the first item. Thus, lif is the list of Figure 3.1, the value afis now 5 and the
value ofit is the first box. The content of the item (bdkEan be accessed lycontentsit)
or LJ[it]. So

x == L.contents(it)
evaluates tdrue and so do

3 == L.contents(L.succ(L.first());
L.last() !'= L.first();
nil == L.pred(L.first());
L.tail() L[L.cyclicpred(L.first())];
L.last() L.cyclicpred(L.first()).

We need to explain these expressions a bit further. For d Jidt.head) andL.tail()
return the contents of the first and last itemLgfrespectively (5 and 2 in our example) and
L.first() andL.last() return the first and last item df, respectively (the first and the fifth
box in our example). The items in a list can be viewed as either arranged linearly or arranged
cyclically. The operationsuccandpred support the linear view of a list and the operations
cyclicsuccand cyclicpredsupport the cyclic view. Thus, if is an item of a lisL_ different
from the last item therl.sucdit) returns the successor item bfand L.succL.last())
returnsnil and ifit is different from the first item theh.pred(it) returns the predecessor
item of it andL.pred(L.first()) returnsnil. L.cyclicpred(it) andL.cyclicsucdit) return the
cyclic predecessor and successor, respectively, where the cyclic predecessor of the firstitem
is the last item. So in the next to last expression above both sides evaluate to the contents of
the last item ofL and in the last expression both sides evaluate to the last itém of

We further illustrate the use of items by the member funcfiant. It takes two argu-
ments, an output streaf and a charactepaceand prints the elements of a list separated
by spaceonto O. The default value apaceis the space character. It requires that the type
E offers a functiorPrint(x, O) that prints an object of type E onto O, see Section 2.8 for
a discussion of therint-function for type parameters.

template<class E>

void list<E>::print(ostream& 0, char space = " ")
{ list_item it = first();

MOBILEIRON, INC. - EXHIBIT 1007
Page 006

3.2 Lists 7

while (it != nil)
{ Print(contents(it),0);
if (it != last_item()) 0 << space;
it = succ(it);
}
}

Note howit steps through the items of the list. It starts at the first item. In the general step,
we first print the contents af and then advande to its successor item. We do so uritil
falls off the list.

Iterating over the items or elements of a list is a very frequently occurring task and there-
fore LEDA offers corresponding iteration macros. The iteration statements

forall(x,L) << body >>
and
forall items(it,L) << body >>

step through the elements and itemsLofrespectively, and executodyfor each one of
them. Thus,

list_item it;

forall_items(it,L) Print(L[it],cout);

E x;

forall(x,L) Print(x,cout);
prints the elements df twice. Theforallitemsloop is a macro that expands into

for (list_item loop_it = L.first();
it = loop-it, loop-it = L.next_item(loop_it), it;)
{ << body >> }

and theforall loop is a macro that essentially expands into

for (list_item it = L.first(); it; it = L.succ(it))
{ x = LLit];

<< body >>;
}

As one can see from the expansions both iteration statements work in time proportional to
the length of the list. However, since the assignment L[it] may be a costly operation

(if E is a complicated type) it is usually more efficient to useftirallitemsloop. The fact

that the iteration statements for lists (and any other LEDA data type, for that matter) are
realized as macros is a possible source for programming errors; we &olvieger write
forallitemgit, f()), where f is a function that produces a lisee Sections 2.5 and 13.9

for details.

Next, we turn to update operations on lists.
L[it] = x;

changes the contents of the iténand

MOBILEIRON, INC. - EXHIBIT 1007
Page 007

8 Basic Data Types

L.append(x);

adds a new itenix) after the last item of. and returns the item. We may store the item for
later use:

list_item it = L.append(x);
The operations

L.del_item(it);

L.pop(Q);

L.Pop();
remove the itenit, the first item, and the last item &f respectively. Each operation returns
the contents of the item removed. So we may wxite- L.pop(). The program fragment

list<int> L;

L.append(5) ;

L.append(3);

list_item it = L.append(1);

L.append(5) ;

L.append(2);
builds the list of Figure 3.1 and assigns the third itenh. @b it. SoL[it] evaluatesto 1 and
L.delitem(it) removes the third item frorh, i.e., L consists of four items with contents 5,
3, 5, and 2, respectively, after the call.

Two listsL andL1 of the same type can be combined by

L.conc(L1,dir);

wheredir determines whethdrl is appended to the rear erdifl = LEDA::after) or front
end @dir = LEDA::beforg of L; beforeandafter are predefined constants. As a side effect,
concclears the list.1. The listsL andL1 must be distinct list objects. A lidt can be split
into two parts. Ifit is an item ofL then

L.split(it,L1,L2,dir);

splitsL before @ir = LEDA::beforg or after dir = LEDA::after) itemit into listsL1 and
L2. The listsL1 andL2 must be distinct list objects. It is allowed, however, that one of them
is equal toL. If L is distinct fromL1 andL2 thenL is empty after the splitSplitandconc
take constant time. Givesplit andcong it is easy to write a functiosplice' that inserts a
list L1 after itemit into a listL. If it = nil, L1 is added to the front of .
if (it == nil)
L.conc(L1,LEDA: :before) ;
else
{ list<E> L2;
L.split(it,L,L2,LEDA: :after);
L.conc(L1,LEDA: :after);
L.conc(L2,LEDA: :after);
}

1 spliceis a member function dfsts and so there is no need to define it at the user level. We give its
implementation in order to illustratplit andconc

MOBILEIRON, INC. - EXHIBIT 1007
Page 008

3.2 Lists 9

Theapplyoperator applies a function to all elements of a list, i.ef, i§ a function defined
for objects of typeE then

L.apply(£);

performs the callf (x) for all items(x) of L. The elemenk is passed by reference. For
example, ifL is a list of integers then

void incr(int& i) { i++; }

L.apply(incr);
increases all elements &f by one. apply takes linear time plus the time for the function
calls.

LEDA provides many ways to reorder the elements of a list.
L.reverse_items();

reverses the items ib and
L.permute();

randomly permutes the items &f Both functions take linear time and both functions

are good examples to illustrate the difference between items and their contents. The call
L.reversdtemg) does not change the set of items comprising thelligind it does not
change the contents of any item, it changes the order in which the items are arranged in the
list. The last item becomes the first, the next to last item becomes the second, and so on.
Thus,

list_item it = L.first();
L.reverse_items();
bool b = (it == L.last());

assigngrueto b.

For contrast, we give a piece of code that reverses the contents of the items but leaves the
order of the items unchanged. It makes use of a fundddaswapthat swaps the contents
of two variables of the same type. We use two itetsnditl which we position initially
at the first and last item df. We interchange their contents and advance both of them. We
do so as long as the items are distinct @0ds not the successor @fl. The former test
guarantees termination for a list of odd length and the latter test guarantees termination for
a list of even length. If the list is empty the first and the last itenmdlrand the former test
guarantees that the loop body is not entered.

/* this is not the implementation of reverse_items */

list_item it0 = L.first();
list_item it1l L.last();

while (itO '= it1l && itO !'= L.succ(itl))
{ leda_swap(L[it0],L[it1]);

it0 = L.succ(it0);

itl = L.pred(itl);
}

MOBILEIRON, INC. - EXHIBIT 1007
Page 009

10 Basic Data Types

The above code implements
L.reverse().

We turn to sorting. We will discuss general sorting methods in the next section and
discuss bucket sorting now. ff is an integer-valued function da then

L.bucket_sort(f);

sortsL into increasing order as prescribed byMore preciselybucketsortrearranges the
items ofL such that thef -values are non-decreasing after the sort and such that the relative
order of two items with the samé-value is unchanged by the sort. Such a sort is called
stable For an example, assume that we appigketsortto the listL of Figure 3.1 withf
the identity function. This will make the third item the first item, the fifth item the second
item, the second item the third item, the first item the fourth item, and the fourth item the
fifth item. bucketsort takes timeO(n +r —), wheren is the length of the list andandr
are the minimum and maximum value bfe) ase ranges over the elements of the list.

We give an application of bucket sort. Assume thais a list of edges of a grap
(typelist<edge) and thadfsnumis a numbering of the nodes Gf (typenodearray<int>).
Our goal is to reordeL such that the edges are ordered according to the number of the
source of the edge, i.e., all edges out of the node with smallest number come first, then all
edges out of the node with second smallest number, and so on. For ae efigegraph
G, G.sourcée) returns the source node of the edge and helfieeun] G.sourcge)] is the
number of the source of the edge. We define a funatimhthat, given an edge, returns
dfsnuniG.sourcge)] and then calbucketsort with this function.

int ord(edge e){ return dfs num[G.source(e)]; };
L.bucket_sort(ord);

3.2.2 Listsfor Ordered Sets

Recall that a typé is linearly ordered if the functiomt comparéconst B, const B) is
defined and establishes a linear ordefgref. Section 2.10. For lists over linearly ordered
element types additional operations are available.

list_item L.search(E x);

searches for an occurrencefin L. It usescompareto comparex with the elements

of L. If x occurs inL, the leftmost occurrence is returned and ifloes not occur irL,

nil is returned. The running time &karchis proportional to the distance of the leftmost
occurrence ok from the front of the list. We next show how to usearchin a primitive

but highly effective implementation of theetdata type, the so-callesklf-organizing list
implementation We realize a set over type (type sasekE>) as a list overE and use
searchto realize thanembemperation; the prefix “so” stands for self-organizing. We will
make the member operation more effective by rearranging the list after each successful
access. We use the operatioovetafront(it) that takes an itenit of a list, removes it

MOBILEIRON, INC. - EXHIBIT 1007
Page 010

3.2 Lists 11

from its current position, and makes it the first element of the list. The effect of moving
each accessed item to the front of the list is to collect the frequently accessed items near
the front of the list. Since the access time in a list is linear in the distance from the front,
this strategy keeps the expected access time small. We refer the reader to [Meh84, 111.6.1.1]
for the theory of self-organizing lists and turn to the implementation. We dedsek E>

from list< E> and accordingly define snsetitemas a new name for bstitem We realize

the membership test Igearchfollowed by moveta front (if the search was successful), we
realizeinsertby a membership test followed by append (if the membership test returned
false). The other member functions are self-explanatory.

(saset.h=
#include <LEDA/list.h>
typedef list_item so_set_item;

template <class E>
class so_set: private list<E>{
public:
bool member(const E& e)
{ list_item it = search(e);
if (it) { move_to_front(it); }

return (it != nil);
}
void insert(const E& e) { if (!member(e)) append(e); }
so_set_item first() const { return list<E>::first(); }

so_set_item succ(so_set_item it) const { return list<E>::succ(it); }

E contents(so_set_item it) const { return list<E>::contents(it); }

};

We give an application of our new data type. We read the file containing the source of this
chapter, insert all its words intosmset and finally print the first thirty words in the set.

(sasetdemo=
main(){
so_set<string> S;
file_istream I("datatype.lw");
string s;
float T = used_time();
while (I >> s) S.insert(s);
cout << "time required = " << used_time(T);
so_set_item it = S.first();
for (int i = 0; i < 30; i++)
{cout << (i 45 ==07 "\n" : " ") << S.contents(it);
it = S.succ(it);

}
}

MOBILEIRON, INC. - EXHIBIT 1007
Page 011

12 Basic Data Types

The output of this program is:

time required = 13.58

} \end{exercises} respectively. and s
of length the are m

n where $0(n+m)$ time in

runs program that Show substring

a is p if omly

success this @ else p.length())

As expected, we see frequent English words, because the move-to-front-heuristic tends to
keep them near the front of the list, and words that occurred near the end of the text, because
they were accessed last.

We turn to merging and sorting. timpdefines a linear order on the element typd_of
then

L.sort(cmp); L1.sort(cmp);
L.merge(L1,cmp)

sortsL andL1 according to the linear order and then merges the two sorted lists. If we call
the functions without themp-argument

L.sort(); Li.sort();
L.merge(L1);

the default order on the element type is used. Merging two lists of lemgtidm, respec-

tively, takes timeO(n 4+ m) and sorting a list oh elements takes expected tir@gn logn).

Let us verify this fact experimentally. We start wittequal to 128000 and repeatedly dou-

ble n. For each value of we generate a list of lengti, make two copies of the list and
merge them, and we permute the items of the list and then sort the list. For each value of
n we outputn, the measured running time for the merge and the sort, respectively, and the
running time divided by andn logn, respectively.

(sortmergetimes =
main()
{ int min, max;
(sort merge times: read max
for (int n = min; n <= max; n = 2%n)
{ list<int> L;
for (int j = 0; j < n; j++) L.append(j);
list<int> L1 L;
list<int> L2 L;

float T1 = used_time();
L1.merge(L2);

Tl = used_time(T1);
L.permute();

float T2 = used_time();
L.sort();

MOBILEIRON, INC. - EXHIBIT 1007
Page 012

3.2 Lists

13

Merging Sorting
n time normalized time normalized
128000 0.07 0.547 0.64 0.425
256000 0.15 0.586 1.35 0.423
512000 0.3 0.586 3.15 0.468
1024000 0.58 0.566 6.31 0.445

Table 3.1 The table produced by the experiment. All running times are in seconds. The
normalized time is the £0'/n in the case of merging and &D/(n logn) in the case of sorting.

The normalized time of sorting grows slowly. This is due to the increased memory access time
for larger inputs. You can produce your own table by running swtgetimes.

Figure3.2 The listL before and after the call gfermute

T2 = used_time(T2);

(sort merge times: produce table

Table 3.1 shows the outcome of the experiment. Does it confirm our statement that the
running time of merge i® (n) and that the running time of sort@&(nlogn)? In the case of
merging one may say yes, since the numbers in the third column of our table are essentially
constant, however, in the case of sorting the answer is a definite no, since the numbers in
the last column of our table certainly grow. Why is this so? The explanation lies in the
influence of cache memory on the running time of algorithms.

The internal memory of modern computers is organized hierarchically. There are at least
two levels of internal memory, a small and very fast first-level memory (usually called
cache) and a larger and slower second-level memory (usually called main memory). On
many machines the hierarchy consists of more than two levels, see [HP90] for an excellent
account of computer architecture. In the example above we first allocate afistenfis:
this puts the items consecutively into storage. Then we change the order of the items in the
list randomly. This leaves the items where they are and changes the links, i.epgafterte
the links jump around widely in memory, see Figure 3.2. The joboofis to untangle this

MOBILEIRON, INC. - EXHIBIT 1007

Page 013

14 Basic Data Types

Build Traverse Permute Traverse

0.59 0.16 2.77 0.44

Table 3.2 lllustration of cache effects on running time: We built a list of 2000000 items,
traversed it, permuted it, and traversed it again. You may perform your own experiments with the
cacheeffects demo.

mess. In doing so, it frequently has to access items that are not in the fastest memory. This
explains the last column of our table, at least qualitatively.

Next, we attempt a quantitative explanation. Consider the following program:

list<int> L;

for (int i = 0; i < 1000000; i++) L.append(i);

// L.permute();

float T = used_time();

list_item it = L.first();

while (it '= nil) it = L.succ(it);

cout << used_time(T);
We make the following assumptions (see [HP9O0] for a justification): It takes ten machine
instructions to execute one iteration of the while-loop. Memory is organized in two levels
and the first level can hold 10000 items. An access to an item that is in first level is serviced
immediately and an access to an item that is not in the first level costs an additional twenty
machine cycles. An access to an item in second level moves this item and the seven items
following it in second-level memory from second-level memory to first-level memory. An
access to an item that is not in first-level memory in calledehe miss

What behavior will we see? First assume that the list is permuted. Since the first level
memory can hold only 10000 items it is unlikely that the successor of the currentitem is also
in memory. We should therefore expect that each iteration of the loop takes thirty machine
cycles, ten for the instructions executed in the loop and twenty for the transport of an item
into fast memory. Next assume that the list is not permuted. Now we will incur the access
time for slow memory only once in eight iterations and hence eight iterations will take a
total of 100 machine cycles. In contrast, the eight iterations will take a total of 240 machine
cycles on the permuted list. Thus, permuting the list will make the program about 2.4 times
slower for largen. Forn = 10000 we will see no slowdown yet, as the entire list fits in fast
memory. For very larga we will see a slowdown of.2 and for intermediata we will see
a slowdown less than2.

Table 3.2 shows actual measurements.

3.2.3 Thelmplementation of Lists
Lists are implemented as doubly linked lists. Each item corresponds to a structure (type
dlink) with three fields, one for the contents of the item and one each for the predecessor

MOBILEIRON, INC. - EXHIBIT 1007
Page 014

3.2 Lists 15

and the successor item, and the list itself is realized by a structure dtigbecontaining
pointers to the first and last item of the list and additional bookkeeping information. The
space requirement of a list of items is 16+ 12n bytes plus the space needed for the
elements of the list. The contents of an item is either stored directly in the item (if it fits
into four bytes) or is stored through a pointer, i.e., ¢higeld of adlink either contains the
contents of the item or a pointer to the contents of the item. In the former case there is no
extra space needed for the elements of the list and in the latter case additional space for
objects of typeE is needed (her& denotes the type of the objects stored in the list). All of
this is discussed in detail in the chapter on implementation.

(storage layout for lists=
typedef dlink* list_item;
class dlink {

dlink* succ;
dlink* pred;

GenPtr e; // for the contents of the item
// space: 3 words = 12 bytes
};
class dlist {
dlink* h; // head
dlink* t; // tail
link* iterator // iterator, historical
int count; // length of list
// space: four words = 16 bytes
(member functions of class dlist
3

There is no space to show the implementations of all member functions. We show only the
implementation of bucket sort. The implementation is very low-level and therefore hard to
understand.Bucketsort assumes that a functioord and integers and j are given such
thatord maps the elements of the list into the ranige []. It uses an arrapucketof linear

lists; buckefi] points to the end of thé-th bucket list as shown in Figure 3.3. Initially,

all bucket lists are empty. The algorithm runs through the items of the list to be sorted,
computes for each item the indexk = ord(x — €) of the bucket into which the item
(recall thatx — e contains the object stored in itex) belongs, and appends the item to the
appropriate bucket. Afterwards, it joins all bucket lists into a single list. This is done from
right to left.

(list: bucket sont=
void dlist::bucket_sort(int i, int j)
¢ if (h == nil) return; // empty list
int n = j-i+1;
register list_item* bucket = new list_item[n+1];
register list_item* stop = bucket + n;

MOBILEIRON, INC. - EXHIBIT 1007
Page 015

16 Basic Data Types

[~ |

T o= I

Figure 3.3 lllustration of bucket sort. We have two non-empty buckets. The list items are shown
as rectangular boxes, successor pointers go from left to right, and predecessor pointers go from
right to left. The pointers from the bucket array to the rears of the bucket lists are shown
vertically.

register list_item* p;

register list_item q;
register list_item x;
for(p = bucket; p <= stop; p++) *p = 0;
while (h
{x =h;
h = h->succ;
int k = ord(x->e);
if (k> 1i&& k<=3j)
{ // add x at end of k-th bucket
p = bucket + k - 1ij;
x->pred = *p;
if (*p) (*p)->succ = x;
¥p = X;
}
else
error_handler(1,"bucket_sort: value out of range")

}
for(p = stop; *p == 0; p--);
// now p points to the end of the rightmost non-empty bucket
// make it the new tail of the list.
t = *p;
t->succ = nil;
for(q = *p; q->pred; q = gq->pred);
// now q points to the start of this bucket
// link buckets together from right to left:
// q points to the start of the last bucket
// p points to end of the next bucket
while(--p >= bucket)
if (xp)
{ (*p)->succ = q;
q->pred = *p;
for(q = *p; q->pred; q = gq->pred);

MOBILEIRON, INC. - EXHIBIT 1007
Page 016

3.3 Arrays 17

h = q; // head = start of leftmost non-empty bucket

delete[] bucket;
}

Aren't you glad that one of us wrote this program?

3.2.4 Singly Linked Lists

LEDA also offers singly linked lists (typglist) in which each item only knows its successor.
They require space 16 8n bytes but offer a smaller repertoire of operations. Singly linked
lists are used to implement stacks and queues.

Exercisesfor 3.2

1 Implement queues by singly linked lists.

2 Implement more operations on lists, egpncor merge

3 Write a procedure that reverses the order of the items in a list.

4 Extend the data typsasetto a dictionary. Realize a dictionary frol to | as a list of
pointer to pairs (ist<twatuple<K, I > % >). Then proceed in analogy to the text.

5 (Topological sorting) LeL be a list of pairs of integers in the range from htacCompute
an ordering of the integers 1 tosuch that if(x, y) is any pair in the list then precedes
y in the ordering, or decide that there is no such ordering. 8dsf4 andL is (2, 1),
(1,4), (3,4 then 2 3,1, 4is a possible ordering. Hint: 2 can go first because it does not
appear as the second component of any pair.

6 Redo the calculation for the slowdown due to cache misses for the case that an iteration
of the loop takes 100 clock cycles instead of ten.

7 Find out what a cache miss costs on the machine that you are using.

3.3 Arrays

Arrays are what they are supposed to be: collections of variables of a certai
are indexed by either an interval or a two-dimensional box of integers. The declarations

array<string> A(3,5);

array<string> B(10);

array2<int> C(1,2,4,6);
define two one-dimensional arrays and one two-dimensional arfaigsa one-dimensional
array of strings with index set [35], B is a one-dimensional array of strings with index
set [0..9], andC is a two-dimensional array of integers with index set.J] x [4..6],
respectively. Each entry is initialized with the appropriate default value. So each ery of
andB is initialized to the empty string and each entry®fs initialized to some integer.

We use the standard+e subscript operator for the selection of variables in one-dimensional
arrays. SQA[4] evaluates to the variable with index 4 & For two-dimensional arrays we

MOBILEIRON, INC. - EXHIBIT 1007
Page 017

18 Basic Data Types

need to use round brackets sincet@loes not allow the use of angular brackets with two ar-
guments. S& (1, 5) evaluates to the variable with indé€k 5) in C. Arrays check whether
their indices are legal (this can be turned off by the compiler{zgEDA_CHECKING_OFF)
and hence we get an error in the following assignment:

A[6] = "Kurt" // "ERROR array:: index out of range"

An array knows its index set. The callslow() and Ahigh() return the lower and upper
index bound ofA, respectively. For two-dimensional arrays we have the corresponding
functionslowl, highl, low2, andhigh2

We illustrate arrays by two sorting functions: straight insertion sort and merge sort. Both
operate on amarray<E> A and assume that the element tyipas linearly ordered by the
functioncompare see Section 2.10. We ude.[h] to denote the index range & Straight
insertion sort follows a very simple strategy; it sorts increasingly larger initial segments of
A. Assume that we have already sorted an initial segm@it . . ., Ali — 1] of Afor some
i. Initially, i =1 + 1. In the incremental step we adyi] to the sorted initial segment by
inserting it at the proper position. We determipavith A[j] < Ali] < Alj + 1], move
Alj +1],..., Ali —1] one position to the right, and pé{i] into A[j + 1], see Figure 3.4.
Straight insertion sort is a stable sorting method. Its running time is quadratic.

(straightinsertionsort)=

template<class E>
void straight_insertion_sort(array<E>& A)
{int 1 = A.1low();
int h = A.high(Q);
for (int 1 =1 + 1; i <= h; i++)
{Ex = A[i];
int j =1i - 1;
while (j >= 1 && compare(x,A[j]) < 0)
{ A[j+1] = A[j1;
i—s
}
A[j+1] = x;

}

We turn to merge sort. It is much more efficient than straight insertion sort and runs in
time O(nlogn) on an array of siza. The underlying strategy is also simple. Merge sort
operates in phases. At the beginning of kalh phasek > 0, the array is partitioned into
sorted blocks of size*2 These blocks are paired and any pair is merged into a single sorted
block. In the program below we ugé to denote ® and we use an auxiliary arra with
the same index set & In even phases the merge step reads ffoamd writes intoB, and
in odd phases the roles éfand B are interchanged. In this way the data moves back and
forth betweerA andB. If it ends up inB at the end ofnergesort, we need to copy it back
to A. We use a boolean variald@enphasethat is true iff the next phase is even. The actual
merging is done by the functiamerge A call mergéX, Y, i, K, h) takes the blocks oK

MOBILEIRON, INC. - EXHIBIT 1007
Page 018

3.3 Arrays 19

Figure3.4 We insertAJ[i] into the already sorted initial segment by inserting it into the proper
position, say position) + 1, and moving elementd[j + 1], ..., Ali — 1] one element to the
right.

starting at positionsandi + K, respectively, and merges them into the block cftarting

at positioni and having the combined size of the two blocks to be merged. The last element
of the two blocks to be merged is to be found at positipthis information is important if

the size ofA is not a power of two.

(mergesorty=
(merge routing

template<class E>

void merge_sort(array<E>& A)

{ int 1 = A.low(); int h = A.high(); int n =h - 1 + 1;
array<E> B(1,h);
bool even_phase = true;

for (int K = 1; K < n; K = 2xK)
{ for (int 1 = 1; i <= h; 1 =i + 2%K)
{ if (even_phase) merge(A,B,i,K,h);
else merge(B,A,i,K,h);
}
even_phase = !even_phase;

}

if (!'even_phase)
{ for (int i = 1; i <= h; i++) A[i] = B[i]l; }

It remains to definamergéX, Y, i, K, h). Our goal is to fill the block ofY starting at
positioni and extending to positiom wherem = min(+ 2K — 1, h) from the two
blocks of X starting at positions andi + K, respectively. The two blocks iK extend to

ml = min(i + K — 1, h) andm, respectively. We maintain one index in each of the three
blocks to control the merging process: The indeidicates the position ity that is to

be filled next and the indicdabandih point to the smallest remaining elements in the two
blocks of X. We always move the smaller &fil] and X[ih] to Y[j]. We break ties in favor

of XJil]. This makes merge sort a stable sorting method.

MOBILEIRON, INC. - EXHIBIT 1007
Page 019

20 Basic Data Types

n 2 4 8 16 32 64 128 256

insertionsort 0.83 3.27 135

mergesort 0.03 0.06 0.14 029 066 128 285 5.99

insertionsort 0.47 1.74 7.07

mergesort 0.02 0.03 0.09 0.17 038 0.78 1.66 3.49

member function 0.01 0.01 0.03 0.07 0.15 0.3 0.6 1.33

Table 3.3 Running times of our sorting routines and the member funcgimm All running

times are in seconds and for an array of 1®00egers. Insertion sort and merge sort have been
compiled without and with the flagDLEDA_CHECKING_OFF. You may produce you own table by
calling arraysorttimes.

(merge routing=
#include <LEDA/misc.h> // to include Min

template<class E>
void merge(array<E>& X, array<E>& Y, int i, int K, int h)
{ int il = i; int ih = i + K;
int ml = Min(i + K - 1,h); int m = Min(i + 2*K - 1,h);
for (int j = i; j <= m ; j++)
{if (ih <=m && (i1 > ml1 || compare(X[ih],X[il]) < 0))
{ Y[j] = X[ih]l; ih++; }
else
{ Y[j1 = X[il]; il++; }

Table 3.3 shows the running times of our two sorting procedures in comparison to the mem-
ber functionsort for the task of sorting an array of ints Observe how the running time
of insertion sort explodes. Since its running time grows proportionaPtat quadruples
wheneven is doubled. In contrast, the running time of the two other metho@xmsog n)
and hence basically doubles whenemds doubled. The member functi@ort beats our
implementation of merge sort because it exploits the fact that the objects to be sorted are
ints, see Section 13.5.

Arrays are implemented by+@ arrays. There are important differences, however:

e The index sets may be arbitrary intervals of integers and arrays check whether their
indices are legal. The index check can be turned off by the compiler flag
-DLEDA_CHECKING_OFF.

e The entries of an array are initialized to the default value of the entry type.

e AnassignmenA = B assigns a copy dB to A, i.e., Ais made to have the same

MOBILEIRON, INC. - EXHIBIT 1007
Page 020

3.4 Compressed Boolean Arrays (Type $et) 21

number of variables aB and these variables are initialized with copies of the values
of the corresponding variables \ Thus, it is perfectly legal to assign an array of size
100 to an array of size 5.

e One-dimensional arrays offer some additional higher level functions which we discuss
next.

We can reorder the elements of a one-dimensional array according to a linear order on
the typeE. The linear order may either be the default order of the type or be given by a
compare function. Thus,

A.sort();

sorts the entries of our arraf according to the lexicographic ordering on strings. On a
sorted array we may use binary search.

A.binary search("Stefan");

returns the index e [3..5] containing"Stefan" if there is such an index and returns
Alow() — 1if there is no such index. We can permute the entries of an array by

A .permute();

The space required for an arrayroélements i1 times the space required for an object of
type E. All access operations on arrays take constant tgog,takes timeO(nlogn) and
binarysearchtakes timeO(logn).

In many applications one needs arrays with large but sparsely used index sets, e.g., we
may have 16indices in the range from 0 to 10In this situation it would be a complete
waste of space and time to allocate an array Sfel®ments and therefore a different data
structure is called for. The data typempandharray are appropriate. They will be dis-
cussed in Section 5.1.

Exercisesfor 3.3

1 Implement other sorting routines for arrays. Candidates are bubble sort, shell sort, heap
sort, quick sort, and others.

2 Implement the typarray by C++ arrays.

3 (Sparse arrays) Use lists to realize arrays whose index ranges are the integers from 0
to 220, Call the typesparsearray<E>. The constructor for the class should have an
argument of typeE. All elements of the array are initialized with this value. The time
efficiency of your method is not important. However, the space requirement should be
proportional to the number of indices for which the subscript operator was executed.

3.4 Compressed Boolean Arrays (Typeint_set)

Boolean arrays are often used to represent sets. In this situation one also wants to perform
the set operationgnion, intersection andcomplemenbesides the usual operations on ar-

MOBILEIRON, INC. - EXHIBIT 1007
Page 021

22 Basic Data Types

rays (read the value of an entry or set the value of an entry). The datantygetprovides

these operations in a space- and time-efficient way. It stores boolean arrays as bit-vectors,
i.e., A entries are stored in a single word on a machine with word sjznd it uses the
parallelism available at the word level to perform the set operations énitries in a single
machine instruction. A speed-up of abauis thus obtained for the set operations. On the
other hand, reading or setting a single entry takes slightly longer than for an array.

int_set S(n),T(n),R(n);

definesS, T, and R as subsets of [On — 1] and initializes them to the empty set; the
alternative definitionnt set Sa, b) definesS as a subset off.. b]. If x is an integer with
0<x<n-1then

S.insert(x);

S.del(x);
S.member (x) ;

insertsx into S, deletesx from S, and tests for membership &f respectively.Sclear()
makesSthe empty set. The set operations union, intersection, and complement are denoted
by the corresponding logical operator. So

S=T]/| R;
S =T & R;
S = "T;

assigns the union of andR, the intersection ol and R, and the complement dF to

S, respectively. We also have the shortha®ls= Rfor S= S| RandS &= R for

S= S & R. Note that the shorthands are more efficient than the verbose versions since the
verbose versions first construct a temporary object and then copy that object into the left-
hand side (except if your compiler is clever). The space requirementeétstisO(n/1);

insert, del, andmembettake timeO(1), and the other operations take tir@€n/1).

As an application of compressed boolean arrays we give an algorithm for the multiplica-
tion of boolean matrices that runs in tin@n3/1). Let A andB be boolean matrices with
index sets [0.n — 1] x [0..n — 1], and letC be their product, i.e.,

n

-1
Ci.ky=\/ Al j) A B(j.k
j=0
for all i andk. The obvious method to obta® from A andB takes timeO(n2). We can
obtain a faster algorithm by observing that for eac < i < n, thei-th row of C is the
bit-wise or of certain rows ofB, namely those that are selected by tké& row of A. If
we represent the rows @& andC as compressed arrays we obtain each ro& af time
O(n?/1) and hence can multiply two matrices in tifdgn3/1).
We give the details. First we compute a compressed versi@én of

array<int_set*> B_compressed(0,n-1);
int i;
for (i = 0; i < n; i++)

MOBILEIRON, INC. - EXHIBIT 1007
Page 022

3.5 Random Sources 23

{ B_compressed[i] = new int_set(0,n-1);
for (int j = 0; j < nj; j++)
if (B(i,j)) B_compressed[i]->insert(j);
}

Next we perform the multiplication. We compute each row first in compressed form and
then expand it inte.

int_set compressed row(0,n-1);
for (i = 0; i < n; i++)
{ for (int j = 0; j < m; j++)
if (A(i,j)) compressed row |= *B_compressed[j];
for (j = 0; j < m; j++)
C(i,j) = compressed row.member[j];
compressed row.clear();

}

Exercisefor 34
1 Compare the method described above with the following variant of the traditional method.

for (int i =
for (int k = 0; k < n; k++)
{ C(i,k) = false;
for (int j = 0; j < m; j++)
if (A(i,j) && B(j,k))
{ C(i,k) = true;
break;

}

0; i < n; i++)

}

How do the two algorithms perform whehandB contain only zeros and ones, respec-
tively? Is there a way to combine the advantages of both methods?

3.5 Random Sources

We frequently need random values in our programsraAdom sourceprovides an un-
bounded stream of integers in some rangev[. high], wherehigh andlow areints with

low < highandhigh — low < 231, The size restriction comes from the fact that the imple-
mentation of random sources ugesgs. The definition

random_source S(7,319);

defines a random sour&and sets its range to [7319]. Ranges of the form [02P] are
particularly useful. Therefore we have also the definition

random source S(p);

MOBILEIRON, INC. - EXHIBIT 1007
Page 023

24 Basic Data Types

that sets the range to [2P—1] (1 < p < 3lisrequired) and the definitisandomsource S
that sets the range to [23! — 1]. The random sourceand.int is already defined in the
header filerandom. h; it has range [0. 2°1 — 1]. A random value is extracted from a source
by the operatoy>. So

S >> x > y;

extracts two integers in the rangew .. high] and assigns them to andy; this assumes
thatx andy are defined as ints. Note that we are using the Diput stream syntax for
random sources, i.eS > X assigns tox and returns a reference

We may also extract characters, unsigned integers, bools, and doubles from a random
source. For the first three types this works as follows: first an integer from the range
[low.. high] is extracted and then this integer is converted to the appropriate type. Thus,
if b is a boolean variable the®d > b extracts a truth value. Note that the valueba$ not
uniformly distributed ifhigh— low + 1 is an odd number. In particular, ibw = 0 and
high = 2 then we should expect the valisseabout twice as often as the valurge (as 0
and 2 are converted falseand only 1 is converted tioue). Werecommendo extract char-
acters and boolean values only from sources whose range spans a power of two. If a source
Sis asked for a doubld by S > d then a random integer € [0.. 23! — 1] is extracted
andu/(23! — 1) is assigned tdl, i.e., the value assigned tblies in the unit interval.

The range of a random source can be changed either permanently or for a single oper-
ation: The operation§setrangeglow, high) and Ssetrangg p) change the range dd to
[low.. high] and [0.. 2P — 1], respectively, an&(low, high) and S(p) change the range for
a single operation and return an integerlow.. high] and [0.. 2P — 1], respectively.

Of course, the stream of integers generated by a random source is only pseudo-random.
It is generated from aeedthat can either be supplied by the user @getseeds)) or
is generated automatically from the internal clock. If a seed is supplied then the source
behaves deterministically; this is particularly useful during debugging. If no seed is supplied
the sequence produced depends on the time of the day.

In the remainder of this section we describe several uses and the implementation of ran-
dom sources.

A Chance Experiment: We use random sources for a chance experiment that is relevant to
the analysis of merge sort for secondary memory; see [Moo61] and [Knu81, section 5.4.1].
Assume that we have to sort a sethat is too large to fit into main memory. Merge sort

for external memory approaches this problem in two phases. In the first phase it partitions
Sand sorts each subset and in the second phase it merges the sorted subsets (usually called
runs). Of course, it is desirable that the number of runs produced in the first phase is kept
small, or in other words, that the runs produced in the first phase are long. Assurivé that
elements ofS can be kept in main memory. Then runs of lengylhcan be produced by
readingM elements into main memory and sorting them. Longer runs can be produced by

a method calledeplacement selectionThis method partitions its internal memory into a

MOBILEIRON, INC. - EXHIBIT 1007
Page 024

3.5 Random Sources 25

priority queueQ and a reservoiR that can together stofd elements. The production of
runs starts by readinlyl elements into the priority queue. A run is generated by repeated
selection of the minimum eleme@minfrom Q. This element is added to the current run
(and written to secondary memory) and the spot freed in main memory is filled by the next
elementx from S. If x is smaller tharQ . min thenx is added toR and it is added tdQ
otherwise. We continue unt®® becomes empty. When this is the case, the elemeris in
are moved tdQ and the production of the next run starts. Each run produced by replacement
selection has length at ledst. The two extreme situations arise wh8iis sorted: ifSis
sorted in descending order then each run has exactly légthd if Sis sorted in ascending
order then a single run will be produced.

The program below simulates the behavior of replacement selection foBatetndom
doubles We maintain a priority queu® and a stacks. We initialize Q with M random
doubles andR to the empty stack. Then we start the production of runs. In each iteration
we remove the smallest eleme@imin from Q and then produce a new random doukle
If X < @minwe addx to Q, and we add it tdR otherwise. WherQ is empty we move all
elements fronR to Q and start the production of the next run. For each run we record the
guotient of the length of the run arM.

(runlength=
main(){
int M, n;

(read M and i

p_queue<double,int> Q; // second type parameter is not used
stack<double> R;
random_source S;
double x;
int i;
for (i =0; i < M; i++) { S >> x; Q.insert(x,0); }
array<double> RL(1,n); // RL[i]l = length of i-th run
for (i = 1; i <= n; i++)
{ // production of i-th run

int runlength = O;

while (!Q.empty())

{ double Q_min = Q.del_min(); runlength++ ;

S >> x;
if (x < Q_min) R.push(x);
else Q.insert(x,0);

}
RL[i] = (double)runlength / M;

while (!'R.empty()) Q.insert(R.pop(),0);
}

(produce table runlength
}

Table 3.4 shows the output of a sample run; we ugee: 10°. The length of thé-th run

MOBILEIRON, INC. - EXHIBIT 1007
Page 025

26 Basic Data Types

Round Length Round Length Round Length Round Length

1 1.717 6 1.998 11 2 16 2.001
2 1.95 7 1.998 12 2 17 2.002
3 1.998 8 2.002 13 1.999 18 1.992
4 2.002 9 1.997 14 2.002 19 2
5 1.996 10 2 15 2 20 2.003

Table 3.4 Run formation by replacement selection, we usée= 10° andn = 20. You may
perform your own experiments by calling program runlength.

seems to converge tdvR asn grows. We refer the reader to [Moo61] and [Knu81, section
5.4.1] for a proof of this fact.

We give a second interpretation of the chance experiment above. Consider a circular
track on which a snow plow is operating. When the snow plow starts to operate there are M
snow flakes on the track (at random locations). In every time unit the snow plow removes
one snow flake and one new flake falls (at a random location). We compute how many snow
flakes the snow plow removes in its i-th circulation of the track.

Random Permutations and Graphs. We show how to generate more complex random
objects, namely random permutations and random graphs.

Let A be an array. We want to permute the elementd aindomly. Letay, ...,a,_1 be
the elements oA. We can generate a random permutation of these elements by selecting a
random element and putting it into the last position of the permutation, selecting a random
element from the remaining elements and putting it into the next to last position of the
permutation, and so on. In the program below we realize this process in-place. We keep an
indexj into A, initially j = n— 1. We maintain the invariant that the elements in position 0
to j have not been selected for the permutation yet and that positi¢riston — 1 contain
the part of the permutation that has been produced so far. In order to fill the next position
of the permutation we choose a random intagier[0 .. j] and interchange\[i] and A[j].
We obtain

random_source S;

for (int j =n - 1; j >=1; j--) leda_swap(A[j]1,A[S(0,3j)]1);
whereledaswapinterchanges its arguments. The method just described is used in operation
permuté) of typesarray andlist.

Our next task is to generate a random graph withodes andn edges. This is very
easy. We start with an empty graf) then addh nodes toG, and finally choosen pairs
of random nodes and create an edge for each one of them. A node can be added to a graph
G by G.newnod€). This call also returns the newly added node. We store the nodes in an

MOBILEIRON, INC. - EXHIBIT 1007
Page 026

3.5 Random Sources 27

array<node V. In order to add a random edge we choose two random integerk asaly
k,in[0..n— 1] and then add the edge fro#{l] to V[k] to G.

random_source S;
graph G; //empty graph
array<node> V(0,n-1);
for (int 1 = 0; i < n; i++) V[i] = G.new_node();
for (int i = 0; i < m; i++)
G.new_edge(V[S(0,n-1)] , V[S(0,n-1)]);
The program above realizes the functiamdomgraph(G, n, m). LEDA also offers func-
tions to generate other types of random graphs, e.g., random planar graphs. We discuss
these generators in later chapters.

Non-Uniform Distributions. We show how to generate integers according to an arbitrary
discrete probability distribution. The method that we are going to describe is called the
alias-methodand has been invented by Walker [Wal77]. Ld0..n — 1] be an array of
positive integers. For all, 0 < i < n, we interpretw[i] as the weight of. Our goal is to
generate with probabilityw[i]/W, whereW = w[0] + ... + w[n — 1]. We start with the
simplifying assumption that dividesW and letKk = W/n. We will remove this restriction
later. We viewW as amn by K arrangement of squareascolumns ofK squares each and
labelwl[i] squares by foralli, 0 <i < n, see Figure 3.5. In order to generate an integer we
select a random square and return its label. This makes the generation of a random integer a
constant time process. The drawback of this method is that it requires 8pathke space
requirement can be improved ©(n) by observing that there is always a labeling of the
squares such that at most two different labels are used in any column. This can be seen
as follows. Call a weighsmallif it is less than or equal t&k and call itlarge otherwise.
Clearly, there is at least one small weight. Lei] be an arbitrary small weight. liv[i]
is equal toK then we assign an entire columnitand if w[i] is less tharK then we take
an arbitrary large weight (there must be one!), sady], and assigrw[i] squares to and
K — w[i] squares tg. We also reduca[j] by K — w]i]. In either case, we have reduced
the number of weights by one and are left with- 1 weights whose sum iK (n — 1).
Proceeding in this way we label each column by at most two numbers.

We still need to remove the assumption thatividesW. We redefinek asK = [W/n]
and add an additional weighi[n] = K(n 4+ 1) — W. This yieldsn + 1 weights whose
sum is equal t&K (n + 1). We can now construct a labeling as described above. We also
need to modify the generation process slightly, because it is now possible that the number
n is generated. When this happens we declare the generation attempt a failure and repeat.
The probability of success M//(K (n 4+ 1)) and hence the expected number of iterations
required isK (n + 1)/W. We need to bound this quantity. We hawé > n since each
weightw[i] it at least one and we hawén < W + n and henceN > (K — 1)n by the
definition of K. Thus if K = 1 thenK(n+ 1)/W < (n+ 1)/n < 2 and ifK > 2 then
Knh+1)/W < Knh+1)/((K —21n) < 4. In either case we conclude that the expected
number of iterations required is bounded by 4.

MOBILEIRON, INC. - EXHIBIT 1007
Page 027

28 Basic Data Types

2 2 2 2 2
2 1 2 2 2
0 1 2 3 2
0 1 2 3 2
0 1 2 3 4

Figure 3.5 lllustration of alias-method. We have= 5, w = (3,4, 14, 3, 1), andK = 5. The
labeling shown is succinctly encoded by the vecibrs (3,4,5,3,1),L = (0, 1, 2, 3,4), and
U =(2 2, .2, 2): for each columnj the lowestT; squares are labeldd, and the highest

K — T; squares are labeled; .

We turn to an implementation. We define a clesmsdomvariate Its constructor takes an
array<int> w of non-negative integers and index ranpe i] and sets up the vectofs, L,
andU and the integeK defined above. Its member functiganerategenerates any integer
i € [l .. h] with probability w[i]/W whereW = . wl[i].

(definition of class randomariate)=
class random_variate{

array<int> T, L, U;
int 1, h, n, K;

public:
random_variate(const array<int>& w) { (random variate: constructor}
int generate() { (random variate: generaje}
};

The constructor operates in two phases. In the first phase we compute the totalWeight
the numben of non-zero weights, the integ&r, and an arrawarray<int> u(l, h + 1) with
the additional weightifh + 1] = K(n 4+ 1) — W.

(random variate: constructo=
1= w.low(); h = w.high();
int W = 0O;
array<int> u(1l,h+1);
n = 0; // number of non-zero weights

int i;
for (i = 1; i <= h; i++)
{ W += uli] = wlil;

if (ufil < 0)

error_handler(1,"random variate: negative weight");
if (ulil > 0) n++;

}

MOBILEIRON, INC. - EXHIBIT 1007
Page 028

3.5 Random Sources 29

if (n == 0) error_handler(1,"random_variate: no non-zero weight");
K=W/mn+ (W%n==070:1);
ulh + 1] = Kx(n+1) - W; n++;

In the second phase we set up the arfhyg, andU. We use two stackSmallandLarge
In Smallwe store all ali such thau[i] is small and inLargewe store alli such thauli]
is large. We store the labeling in three arrdysL, andU such that for every columa,
0 < c <n-—1,squares 1td|[c] are labeled_[c] and squareJ [c] + 1 to K are labeled
U[c].

(random variate: constructoa-=
stack<int> Small,Large;
for (i =1; i <=h + 1; i++)

{ if (u[i]l == 0) continue;
if (uf[i] <= K) Small.push(i);
else Large.push(i);
}

U =T =L = array<int>(n);
for (int ¢ = 0; c < n; c++)
{ int i = Small.pop();
Tlc] = ulil;
L[c] i;
if (ufi]l < K)
{ int j = Large.pop();
Ulcl = j;
uljl -= (K-ulil);
if (ul[j] <= K) Small.push(j); else Large.push(j);

The generator chooses a randaw and a randontolumnand looks up the table entry
defined by this row and column. If the table entry is different frbor 1, it is returned.
Otherwise the process is repeated.

(random variate: generajes
int r;
do { int row = rand_int(1,K);
int column = rand_int(0,n-1);
r = (row <= T[column] ? L[column] : Ulcolumn]);

}
while (r == h + 1);
return r;

Random Walksin Graphs(Simulating Markov Chains): We give an application of class
randomvariate We perform arandom walk on a graph. I&t= (V, E) be a directed graph
and for each edge let w[e] be a non-negative weight. We start our walk in an arbitrary

MOBILEIRON, INC. - EXHIBIT 1007
Page 029

30 Basic Data Types

node ofG and move according to the following rule: Suppose that we are currently in node
vand letey, ...,eq4_1 be the edges out af. We follow edges with probability proportional
tow[g]foralli, 0 <i < d. If there is no edge out af the walk terminates. We define a
classmarkovchainthat allows us to simulate such a process.

(definition of class markaghain=
class markov_chain {
graph& G;
int N;
node_array<int> visits;
node vcur;

node_array<array<node> > neighbors;
node_array<random_variate*> variate;

public:

markov_chain(const graph& g, const edge_array<int>& w,
node s = nil): G(g)
{ (markov chain: constructor >

void step(int T = 1) { (markov chain: step }
int number_of_visits(node v) { return visits[v]; }

(markov chain: further member functions
};

The constructor takes a graf@ an edge array of weights, and a start vertex. If no start
vertex is specified the first node & is taken as the start vertex. The functstegT) per-
formsT steps of the random walk and the functimmmberof_visits(v) returns the number

of visits to nodev. We give the details below.

The constructor sets up the required data structures. We build two data structures for each
nodev: anarray<node> neighbor$v] that stores for each 0 < i < outdedv), the target

of thei-th edge out ofv and a random variateariatd v] that produces with probability
proportional to the weight of thieth edge out ob. We set up both data structures by scan-
ning through the edges out of collecting the target of the edges outwin neighbor§v]

and their weights in a temporary arrasgights Then we use the latter array to construct the
random variate fop.

(markov chain: constructoe=
N =0;
visits = node_array<int>(G,0);
veur = s; if (s == nil) vcur = G.first_node();
neighbors = node_array<array<node> >(G);
variate node_array<random_variatex*>(G);

node v; edge e;

forall_nodes(v,G)

{ if (G.outdeg(v) == 0) continue;
neighbors[v] = array<node>(G.outdeg(v));

array<int> weights(G.outdeg(v));
int i = 0O;

MOBILEIRON, INC. - EXHIBIT 1007
Page 030

3.5 Random Sources

31

1/3
200 o9
1/2

Figure 3.6 A graph with two nodes. The edge probabilities are shown next to each edge.

forall_adj_edges(e,v)

{ neighbors[v][i] = G.target(e);
weights[i] = w([el;
it++;

}

variate[v] = new random_variate(weights) ;

Given these data structures it is easy to perforsteps of the walk. If the outdegree of the
current node is zero we stay put. Otherwise, we generate a neighbor at random and move

to the neighbor.

(markov chain: step=

if (T <= 0) return;

for (int 1 = 0; i < T; i++)

{ if (G.outdeg(vcur) == 0) return;
vcur = neighbors[vcur] [variate[vcur] -> generate()];
visits[vcur]++;
N++;

Let us perform a random walk on the graph shown in Figure 3.6.

(randomwalk examplé=

main(){

graph G;

node vO = G.new_node();

node vl = G.new_node();

edge e00 = G.new_edge(v0,v0); edge e01
edge e10 = G.new_edge(v1,v0); edge ell

G.new_edge(v0,vl);
G.new_edge(vl,vl);

edge_array<int> weight (G) ;
weight [e00] = 2; weight[e01] = 1;
weight[el10] = 1; weight[ell] = 1;

while(true)

{ int N = read_int("number of steps = ");
markov_chain M(G,weight) ;
M.step(N);
cout << "# of visits of vO = " << M.number_of_visits(v0) <<"\n";
cout << "# of visits of vl = " << M.number_of_visits(vl) <<"\n";
}
}

MOBILEIRON, INC

.- EXHIBIT 1007
Page 031

32 Basic Data Types

n 1 10 100 1000 10000 100000 1000000 10000000

w 0 3 63 570 6058 60180 600704 6003568

vi 1 7 37 430 3942 39820 399296 3996432

Table 3.5 The statistics of a random walk on the graph of Figure 3.6. Each column gives the
number of visits to both nodes in the firssteps of the walk. You may perform your own
experiments by calling randanvalk.

Table 3.5 shows a sample output of this program. There is a simple analytical explanation
for the output based on the theory of Markov chains, see [KSK76] for an introduction to
Markov chains. Letp;, be the relative frequency of nodeluring the firsin steps of the
random walk. It is known that thp; , converge to so-called stationary probabilitiesand

that the stationary probabilities satisfy a system of linear equations directly related to the
transition graph. For each nogléhere is an equation expressimgas a sum over all edges
directed intoj. The contribution to this sum of an edge j) is ¢ - 7j, whereg; is the
transition probability of the edge. In our example we obtain:

To = 2/3-7T0+1/2-7T1
7, = 1/3-mo+1/2- 7.

This system has solutiony = 6/10 andr; = 4/10. In Table 3.5 we see the convergence
of the visit frequencies to the stationary probabilities.

Dynamic Random Variates: We generalize the clagmndomvariate to a class called
dynamicrandomvariatewhich offers an additional operati@etweightthat allows the user

to change weights dynamically. More preciselyRfis a dynamic random variate with
weight vectorw andi is in the index range oi thensetweighti, g) changeav[i]to g; ¢

is an arbitrary non-negative integer. The generation process of dynamic random variates is
less efficient than the one for (static) random variates; it takes@igheg n), wheren is the

size of the index range ab.

The implementation is fairly simple. We put the weights into the leaves of a balanced
binary tree withn leaves andh — 1 internal nodes. In each node we store the sum of the
weights of the leaves in its subtree. In particul#,=), w[i] is stored in the root of
the tree. A weight change amounts to updating the weights along one leaf to root path. In
order to generate a random variate we choose a random irgégdd.. W — 1]. If sis
less than the total weight of the left subtree, we proceed recursively to the left subtree and
if sis larger or equal to the total weight of the left subtree, we subtract the weight of the
left subtree and proceed recursively to the right subtree. In this way, changing a weight and
generating a random variate takes time proportional to the height of the tree. If a balanced
tree is used the height 3(logn).

A particularly simple implementation results when the nodes of the tree are numbered

MOBILEIRON, INC. - EXHIBIT 1007
Page 032

3.5 Random Sources 33

Figure 3.7 A tree with five leaves and a total of nine nodes. The number of each node is shown.
The children of nodé have numbersizand 2 + 1.

with the integers 1 tor2— 1 in preorder, i.e., the root is given the number 1, the children
of the node with numbelr, 1 < i < n have numbersi2and 2 + 1, and the leaves are
numberedh to 2n — 1. See Figure 3.7 for an example. The parentof rip@e<i <2n—1

has numbeti/2].

In the implementation we use amray<int> u with index range [1. 2n — 1] to store the
tree.

(definition of class dynamitandomvariate)=
class dynamic_random_variate{

private:
array<int> u;
int n, h, 1;

public:

dynamic_random_variate(const array<int>& w)
{ (dynamic random variate: constructor}

int generate() { (dynamic random variate: generat&

int set_weight(int i, int g) { (dynamic random variate: set weigh
3

The constructor stores the weight vecioin the entries to 2n — 1 of u and then fills
each entryu;, n — 1 > i > 1 as the sum of the entries of its children.

MOBILEIRON, INC. - EXHIBIT 1007
Page 033

34 Basic Data Types

(dynamic random variate: constructae
1 =w.low(); h = w.high(D; n=h -1+ 1;
u = array<int>(1,2*n - 1);
int i;
for (i = 0; 1 < n ; i++)
{ uln + i] = w1 + il;
if (uln + i] < 0) error_handler(l,"dynamic variate: negative weight");

}

for (i =n-1; i > 0; i--)
uli]l = ul2*i] + ul[2*i + 1]1;
if (ul1] == 0) error_handler(1,"dynamic variate: no non-zero weight");

The generator chooses a random integar [0.. W — 1] and then walks down a path
in the tree. When the walk reaches nags is a random integer in [Qu[i] — 1]. If i is
a leaf we returd + (i — n) since the leaf numberadcorresponds to entiy+ (i — n) of
weight vectorw. If i is not a leaf and < u[2i], we proceed to childi2and ifs > u[2i], we
subtract[2i] from s and proceed to childi2t 1.

(dynamic random variate: generate

int s = rand_int(0,ul1] - 1);
int i = 1;
while (i < n)
{ int j = 2%i;
if (s < uljl)
i=173;
else
{i=3j+1;
s -= uljl;
}
}

return 1 + i - n;

In order to change weigtitto g we walk the path from leafi + (i — 1) to the root and
change all entries af along the path byelta= g — u[i]. The old value oli[i] is returned.

(dynamic random variate: set weigkt
int ui = ul[il;
i=n+ ({H-1);
int delta = g - ulil;
if (g < 0) error_handler(l,"dynamic variate: negative weight");
while (1 > 1)
{ uli] += delta;
i=1/2;
}
ul[1] += delta;
if (ul1] == 0) error_handler(l,"dynamic variate: no positive weight");
return ui;

MOBILEIRON, INC. - EXHIBIT 1007
Page 034

3.5 Random Sources 35

n Static Dynamic

100 32.02 52.7

10000 41.07 90.34

Table 3.6 Running time of random variate generation: We set up a weight vectomvétitries
and then generated 16andom variates according to it. We used clasaasomvariateand
dynamicrandomvariate

You can make your own experiments using the randanmate demo.

Table 3.6 illustrates the speed of our two methods for generating random variates. Surpris-
ingly, the O(logn) method is faster than the constant time method.

Dynamic Markov Chains. The use of dynamic random variates instead of static random
variates in Markov chain data type yields a dynamic Markov chain data type which also
supports the change of edge weights.

Simulating a Supermarket Check-Out: We use dynamic random variates to simulate a
supermarket check-out. We consider a supermarketmitheck-out stations. We assume
that there is a queue (maybe empty) in front of every check-out station ang[ijse
denote the queue length in front of theh check-out station. Servicing a customer at a
check-out station takes either 1 (probabiliA82 or 2 (probability ¥3) time units. Thus the
average servicing time is/8 time units.

We assume thatri¥4 customers arrive at every time unit. Customers tend to choose
check-out stations with short queues. We assume that a customer chooses$ githue
probability proportional to A(1 + q[i]).

In the program we define random varialRsand S; Sis a static random variate which
models the distribution of service times aRds a dynamic random variate which yields
check-out stations. IR we use|M/(1 + g[i])] as the weight of, whereM is a large
constant. In each time step we first generaig4ustomers. For each customer we choose
the service length by callin§generaté) and the service station by callifiggenerat¢).

We update the queue lengths after each generation of a customer.

We collect all customers requiring short service in asisortserviceand all customers
requiring long service in a lidbngservice After having generated the new customers we
service all customers ishortservice update queue lengths appropriately, and move all
customers ifong serviceto shortservice

(supermarket check-opt=

array<int> q(n);
array<int> w(n);
int M = 10000;

for (int i = 0; i < n; i++) { ql[i] = 0; w[i]l] = M; }

MOBILEIRON, INC. - EXHIBIT 1007
Page 035

36 Basic Data Types

dynamic_random_variate R(w);

array<int> wi(1,2); wi[1] = 2; wi[2] = 1;
random_variate S(wl);

list<int> short_service, long_service;

for (int t = 0; t < T; t++)
{ for (int k = 0; k < 3%*n/4; k++)
{ int i = R.generate(); ql[i]l++; R.set_weight(i,M/(1 + q[il));
if (S.generate() == 1)
short_service.append(i);
else
long_service.append(i);
}
int i;
forall(i,short_service)
{ ql[il--; R.set_weight(i,M/(1 + q[i])); }
short_service.clear();
short_service.conc(long_service);

(report queue lengths

Implementation of random_source: Our implementation of random sources follows the
description in [Knu81, Vol2, section 3.2.2]. We first give the mathematics and then the
program. Internally, we always generate a sequence of integers in the rang# [0 1].

We define 32 unsigned long&, Xi, ..., X31 by

Xo = seed

and
Xi = (1103515245 X;_1 + 12345 modm

for1 <i < 31. Herem = 22, We extend this sequence by
Xi = (Xj—3 + Xj_32) modm

fori > 32. In this way an infinite sequencé&, Xi, ... of unsigned longs is obtained.
Following [Knu81, Vol2, section 3.2.2], we discard the first 320 elements of this sequence
(they are considered as a warm-up phase of the generator) and we also drop the right-most
bit of each number (since it is the least random). Thus,ittle number output by the
internal generator is

(X[1i + 320] >> 1) & OxTfffffff.

We next show how to generate a number uniformly at randotown.[high]. Let X be a
number produced by the internal generator. Tlogn- X modhigh—low+1) is a number in
the rangelpw .. high]. However, this number is not uniformly distributed (consider the case
wherelow = 0 andhigh = 231 — 2 and observe that in this case the number 0 is generated
with probability twice as large as any other number). We therefore proceed differently. Our

MOBILEIRON, INC. - EXHIBIT 1007
Page 036

3.5 Random Sources 37

approach is based on the observation thatig a random number in [0231—1] andpis an
integer less than 32 theimod 2° is a random number in [02P —1]. Letdiff = high—Ilow
and letp be such that2! < diff < 2P. We generate random numbetsising the internal
source untilX mod 2 < diff and then outpuibw + X mod 2°. Since 2-1 < diff at most
two X's have to be tried on average. The complete program follows.

(generation of a random number in [low..higkg
int diff = high - low;
/* compute pat = 2°p - 1 with 2°{p-1} <= diff < 2°p */

unsigned long pat = 1;
while (pat <= diff) pat <<= 1;

pat-—;

/* pat = 0...01...1 with exactly p ones.
Now, generate random x in [0 .. pat]
until x <= diff and return low + x */

unsigned long x = internal_source() & pat;
while (x > diff) x = internal_source() & pat;

return (int) (low + x);

Exercisesfor 3.5

1 Add an operatop> to the typerandomsourcethat allows you to extract a random point
in the two-dimensional unit square.

2 Consider the following program.

int i,j,x;
array<int> A(0,n-1);
for (i = 0; i < n; i++)
{ while (true)
{ x = rand_int(0,n-1);
for (j = 0; j <1 & x !'= A[j]; j++) ; // empty body
if (j == i) break;
}
Ali] = x;
}
a) Does it generate a random permutation of the integers6-t4.?
b) What is the expected running time of the program?

3 Change the random graph generator such that it generates graphs without self-loops, i.e.,
no edgegv, v), and without parallel edges, i.e., no two edges with the same source and
target.

4 Letdo, ...,d,_1 be non-negative integers whose sum is even. Generate a random undi-
rected graph where nodédias degred, foralli, 0 <i < n. Hint: Create an array of
length 2n = }; d;, write the integer into d; entries ofA for all i, permuteA, and then
generate the edgé\[2)], A[2] + 1]) forall j,0< j <m.

5 Balls and bins: Throw balls randomly intan bins, i.e, choosa random integers in the
range [0.. m— 1] and tabulate how often each number is chosen. Perform the experiment

MOBILEIRON, INC. - EXHIBIT 1007
Page 037

38 Basic Data Types

with n = 10° andm = 100,m = 1000, ...,m = 10°. If you want to understand the
outcome of the experiment analytically consult [MR95].

6 Use classemndomvariate and sasetto perform the following experiment. Let be
any vector ofn non-negative integers witteg > wy > ... > wp_1. Store the integers
0ton — 1in asasetand performN access operations. For eagld < i < n access
i with probability proportional tav;. Determine the total cost of all accesses where the
cost of an access is the distance of the accessed item from the front of the list (you need
to modify saset:memberslightly in order to get this information) and compare it to
C = N> wi(i +1)/WwhereW =), wi. Note thatC is the expected cost of the
accesses if the list were arranged in order of decreasing weight.

3.6 Pairs, Triples, and such

A tuple is an aggregation of variables of arbitrary types. LEDA offers two-tuples, three-
tuples, and four-tuples. We use two-tuples as our running example in this section. For any
typesA andB and objects andb belonging to these types the declarations

two_tuple<A,B> p;

two_tuple<A,B> q(a,b);
define a two-tuplep and a two-tupley, respectively. The components pfare initialized
to the default values ol and B, respectively, and the componentsqadire initialized with
copies ofa andb, respectively. The operatiorisst andsecondreturn the two variables
contained in a two-tuple. So we may write

a = p.first();

p-second() = b;
The operators==, «, > and the functionsompareandHashare defined for two-tuples.
They assume that the corresponding functions are defined for the component types. The
operators« and > read and write a two-tuple, respectively, the operater realizes
component-wise equalitgpmpareamounts to the lexicographic ordering of two-tuples and
Hashreturns the bitwise exclusive or of the hash values of the components. All of these
functions and operators are defined as template functions. For example,

template <class A, class B>

int compare(const two_tuple<A,B>% p, const two_tuple<A,B>& q)

{ int s = compare(p.first(),q.first());

if (s '= 0) return s;

return compare(p.second(),q.second());

}

If one uses two-tuples in a situation that requires the compare function for two-tuples, e.g.,
if one defines dist<twatupleint, int> > L and then calld_.sort(), it is wise to give the
compiler a hint that it should make the compare functiontfeatuple<int, int>. In the

MOBILEIRON, INC. - EXHIBIT 1007
Page 038

3.7 Strings 39

following program this is done by defining a variabpeof type twatupleint, int> and
callingcomparép, p).

(two_tupletesy=

main()
{ 1list< two_tuple<int,int> > L;

two_tuple<int,int> p;
compare(p,p); // dummy compare
L.sort();

3.7 Strings

A stringis a sequence of characters, where a character is an element of+tgp€ char.

The number of characters in a string is called the length of the string and the characters in
a string are numbered starting at zero. 1B5is the character at position one kurt. The

string of length zero is called the empty string; it is the default value of the type. Strings are
related to thecharx type of CG++. There are, however, two significant differences:

e The value of a variable of type string is a sequence of characters, it is not a pointer. In
particular, assignment and parameter passing by value work properly for strings.
Strings are a primitive type, see Section 2.3.

e Strings offer a large number of additional operations, e.g., pattern matching, substring
replacement, and comparison according to the lexicographic ordering. We have to
admit, however, that some programming languages, e.g., PERL and AWK, offer much
more elaborate string classes.

Let us see strings at work.
string s("Stefan");

defines a string variabkeand initializes it with the valuéStefan".
string t = s + s;

defines another string variakiland initializes it to'StefanStefan"; the operato#- is the
concatenation operation on strings. The expressigrb) returns the substring d¢fstarting
at position 2 and ending at position 5. Since we start counting at O this is the 'sétfing".
We can also search for the occurrence of one string in another striagndb are strings
thena.pogb) searches for an occurrenceloin a. If b does not occur i thenposreturns
—1 and ifb does occur then it returns the first positioraiat whichb occurs. Thus

t.pos("efa");

MOBILEIRON, INC. - EXHIBIT 1007
Page 039

40 Basic Data Types

returns 2, i.e., the first position trat which an occurrence #&fa" starts, and.pog* Kurt”)
returns—1. Another useful operation on strings is substring replacement. It comes in sev-
eral forms:areplacdi, j, b) returnsa(0,i — 1) + b+ a(j + 1,a.length’) — 1), i.e.,bis
substituted for the substrirgyi, j), andareplacebl, b2 n) replaces tha-th occurrence

of blin a by b2, and finallya.replaceall (b1, b2) replaces all occurrences bt in a by b2

Itis important to notice that all three versions do not change the siriRather, they return

a new string. So after

t.replace(2,5,"Kurt");
t.replace(s,"Kurt",2);

string u
string v

we have a stringl with value"StKurtStefan", i.e., the substring df starting at position
2 and ending at position 5 is replaced'®urt", and a string with value"StefanKurt",
i.e., the second call akplacereturns a string in which the second occurrencs of t is
replaced by'Kurt".

The operatok realizes the lexicographic ordering of strings. So

(t < (s+s +3s8));

evaluates to true sinc&tefanKurt" precedes'StefanStefanStefan" in the lexico-

graphic ordering of strings. Many other operations on strings can be found in the manual.
Strings are implemented by+& character vectors. All operations on strings that do not

involve pattern matching take linear time. Pattern matching takes quadratic time. More

precisely, it takes tim@®(nm) in the worst case to search for a string of lengitin a string

of lengthn. There areD(n + m) pattern matching algorithms, see for example [CLR90].

3.8 Making Simple Demos and Tables

This book contains many tables. For many of these tables there is also a corresponding
demo which allows the reader to perform experiments on his or her own. We wanted to
have a single program that handles both cases. In this section we describe the |0-interface
used in these programs.

The program below serves as the randemiatedemo and also produces Table 3.6.
It makes all its input and output throud®.interface I. The program can be executed
in two modes: in book-mode it produces a t&bded in demo-mode it realizes the ran-
domvariatedemo. The demo-mode is the default and the book-mode is edlabtompile-
time by compiling with the flag-DBOOK®.
2 ;”:)IIS book is typeset usingTeX and hence the program generates a sequené@mf-commands that produce a

aple.

3 An alternative design would be to use an integer variable to distinguish between the cases and set the variable
through a command line argument.

MOBILEIRON, INC. - EXHIBIT 1007
Page 040

3.8 Making Simple Demos and Tables 41

(randomvariate. demo.¢=

#include <LEDA/random_variate.h>
#include <LEDA/IO_interface.h>

main()
{ I0_interface I("Random Variates");

I.write_demo("This demo illustrates the speed of classes \
random variate and dynamic random variate. \nYou will be asked \
to input integers n and N. We set up the weight vector w with \
w[2] = 2, w[3] =3, ..., w[n+1l] = n + 1 and generate N random \
variates according to this weight vector.");

int n, N;
n = I.read_int("n = ",100);
N = I.read_int("N = ",100000) ;

if (n <1) error_handler(l,"n must be at least one");

#ifdef BOOK
N = 10000000;
for (n = 100; n <= 10000; n = n*n)
{ I.write_table("\n ", n);
#endif
array<int> w(2, 1 + n);
array<double> Rfreq(2,n+1), Qfreq(2,n+1);
int W = 0; int i;
for (i = 2; i <n + 2; i++) { W += w[i]l = i; Qfreq[i] = Rfreq[i] = 0; }
dynamic_random_variate R(w);
random_variate Q(w);
float T = used_time(); float UT;
for (i = 0; i < N; i++) QfreqlQ.generate()]++;
UT = used_time(T);
I.write_demo("static random variate, time = ",UT);
I.write_table(" & ",UT);

for (i = 0; i < N; i++) Rfreq[R.generate()]++;

UT = used_time(T);
I.write_demo('"dynamic random variate, time = ",UT);
I.write_table(" & ",UT, " \\\\ \\hline");

I.write_demo("We report some frequencies.");
for (i =n+ 1; i >= Max(2,n - 3); i--)

{ I.write_demo("relative frequency, i = ",i);
I.write_demo(0,", wl[il/W = ", ((double)w[i])/W);
I.write_demo(l,"generated freq, static variate = ", Qfreq[i]/N);
I.write_demo(1,"generated freq, dynamic variate = ", Rfreq[i]/N);
}
#ifdef BOOK
}
#endif
}

The output statements come in two kinegite table and write. demo The output state-
mentwritexxx produces output when executedxrxmode and produces no output oth-

MOBILEIRON, INC. - EXHIBIT 1007
Page 041

42 Basic Data Types

erwise. Thus, the introductory text that explains the demo is output in demo-mode, but is
suppressed in book-mode. The output statements come in different forms:
I.write xxx(string mes);

.write xxx(string mes, double T, string mes2
.write xxx(string mes, int T, string mes2

llll);
IIII);

.write xxx(int k, string mes);
.write xxx(int k, string mes, double T, string mes2
.write xxx(int k, string mes, int T, string mes2

IIII) ;
IIII) ;

HHH HH

The first form outputs the stringesand the second and the third form output the strivegs
followed by the numbef, followed by the optional stringhnes2 The output is preceded by
an empty line. The last three forms allow a finer control over the positioning of the output;
the output is preceded iiyline feeds, i.e., wittk = 0 the output is printed on the same line
as the previous output, with = 1 the output is printed on a new line, and with= 2 the
output is preceded by an empty line.

The input statement

int I.read_int(string mes, int n = 0);

returnsn in book-mode and asks for an integer input with prommgssin demo-mode.
The precision of the output of double-values is controlled by a precision paramdter
is set to 4 by default and can be changed by

I.set_precision(int prec);

We come to the implementation. It is quite simple. We define cla§xégerfacebook
and IO.interfacedemoin the obvious way (see LEDAROOT/incl/LEDA/IMterface.h)
and definelO_interfaceas one of them depending on the compile-time flag.

(IO_interface=

#ifdef BOOK

#define I0_interface I0_interface_book
{(definition of IQinterfacebook

#telse

#define I0_interface I0_interface_demo
(definition of IQinterfacedemo

#endif

MOBILEIRON, INC. - EXHIBIT 1007
Page 042

Bibliography

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. Introduction to AlgorithmsMIT
Press/McGraw-Hill Book Company, 1990.

[HP90] J.L. Hennessy and D.A. Patterson.
Computer Architecture: A Quantitative
Approach Morgan Kaufmann, 1990.

[Knu81] D.E. Knuth.The Art of Computer
Programming (Volume II): Seminumerical
Algorithms Addison-Wesley, 1981.

[KSK76] G. Kemeny, L. Snell, and A.W. Knapp.
Denumerable Markov Chain$Springer, 1976.

[Meh84] K. Mehlhorn.Data Structures and
Algorithms 1: Sorting and Searchin@pringer,
1984.

[Moo61] E.F. Moore. U.S. Patent 2983904, 1961.

[MR95] R. Motwani and P. RaghavaRandomized
Algorithms Cambridge University Press, 1995.

[Wal77] A.J. Walker. An efficient method for
generating discrete random variables with
general distributionsACM Transaction on
Mathematical Software3:253-256, 1977.

43

MOBILEIRON, INC. - EXHIBIT 1007

Page 043

alias method, 27
amortized analysis, 4
array, 17-21
binary search, 21
boolean, 22
index out of range, 18
permute, 21
set operations, 22
sorting, 21

balls and bins experiment, 38
boolean arrays, 22

bounded queue, 4

bounded stack, 4

bucket sort for lists, 10, 15

cache effects, 13
cache miss, 14
compare function
instantiation of, 39
compressed boolean array, 22

demo
detailed examples
tables for ATgX, 41-43
programs
markov chain, 30
random walk, 31
run lengths, 25
stacks and expressions, 3
dynamic random variatsee randonvariate

expression evaluation, 3

graph
random walk, 31

1/0
tables for ATgX, 41-43

| ndex

int_set 22—-23
10_interface,41-43

44

iteration
in lists, 7

list, 5-17
basics, 5-8
bucket sort, 15
concatenation and split, 8
for ordered sets, 10-14
forall, 7
implementation, 14-17
iteration, 7
list item, 6
merging, 12
permute 9
reverse 9
singly linked, 17
sorting, 10, 12

Markov chain, 30
matrix, 17,seearray
memory hierarchy, 13
merge sort
basic algorithm, 12
run generation, 25

multiplication of boolean matrices, 22

non-uniform distribution, 27
ordered sets, 10
pair, 38
queue, 2-5
bounded, 4
implementation by stacks, 4

randint, 24

MOBILEIRON, INC. - EXHIBIT 1007

Page 044

Index

random number, 24
random permutations, 26
random walk in graph, 31
randomsource 23-38
functionality, 23-36
implementation, 36—-37
randomvariate,27-30
replacement selection, 25
run generation for merge sort, 25
running time experiments
cache effects, 14
random variates, 35
sorting and merging, 13
sorting of arrays, 20

saset 11

self-organizing search, 11
sets and boolean arrays, 22
singly linked list, 17

sorting
bucket sort, 10
for lists, 10
stable sort, 10
straight insertion sort, 18
sparse arrays, 21
stable sorting, 10
stack, 2-5
bounded, 4
straight insertion sort, 18
string, 39-40
subscript operator
for arrays, 17
for lists, 6
supermarket checkout simulation, 36

triple, 38
tuple, 38
two-tuple, 38

MOBILEIRON, INC. - EXHIBIT 1007
Page 045

