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Foreword
by R.L. Rivest

As we draw near to closing out the twentieth century, we see quite clearly that the
information-processing and telecommunications revolutions now underway will continue
vigorously into the twenty-first. We interact and transact by directing flocks of digital pack-
ets towards each other through cyberspace, carrying love notes, digital cash, and secret cor-
porate documents. Our personal and economic lives rely more and more on our ability to
let such ethereal carrier pigeons mediate at a distance what we used to do with face-to-face
meetings, paper documents, and a firm handshake. Unfortunately, the technical wizardry
enabling remote collaborations is founded on broadcasting everything as sequences of ze-
ros and ones that one’s own dog wouldn’t recognize. What is to distinguish a digital dol-
lar when it is as easily reproducible as the spoken word? How do we converse privately
when every syllable is bounced off a satellite and smeared over an entire continent? How
should a bank know that it really is Bill Gates requesting from his laptop in Fiji a transfer of
$10,000,000,000 to another bank? Fortunately, the magical mathematics of cryptography
can help. Cryptography provides techniques for keeping information secret, for determin-
ing that information has not been tampered with, and for determining who authored pieces
of information. :

Cryptography is fascinating because of the close ties it forges between theory and prac-
tice, and because today’s practical applications of cryptography are pervasive and critical
components of our information-based society. Information-protection protocols designed
on theoretical foundations one year appear in products and standards documents the next.
Conversely, new theoretical developments sometimes mean that last year’s proposal has a
previously unsuspected weakness. While the theory is advancing vigorously, there are as
yet few true guarantees; the security of many proposals depends on unproven (if plausible)
assumptions. The theoretical work refines and improves the practice, while the practice
challenges and inspires the theoretical work. When a system is “broken,” our knowledge
improves, and next year’s system is improved to repair the defect. (One is reminded of the
long and intriguing battle between the designers of bank vaults and their opponents.)

Cryptography is also fascinating because of its game-like adversarial nature. A good
cryptographer rapidly changes sides back and forth in his or her thinking, from attacker
to defender and back. Just as in a game of chess, sequences of moves and counter-moves
must be considered until the current situation is understood. Unlike chess players, cryptog-
raphers must also consider all the ways an adversary might try to gain by breaking the rules
or violating expectations. (Does it matter if she measures how long I am computing? Does
it matter if her “random” number isn’t one?)

The current volume is a major contribution to the field of cryptography. It is a rigorous
encyclopedia of known techniques, with an emphasis on those that are both (believed to be)
secure and practically useful. It presents in a coherent manner most of the important cryp-
tographic tools one needs to implement secure cryptographic systems, and explains many
of the cryptographic principles and protocols of existing systems. The topics covered range
from low-level considerations such as random-number generation and efficient modular ex-
ponentiation algorithms and medium-level items such as public-key signature techniques,
to higher-level topics such as zero-knowledge protocols. This book’s excellent organiza-
tion and style allow it to serve well as both a self-contained tutorial and an indispensable
desk reference.
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Foreword

In documenting the state of a fast-moving field, the authors have done incredibly well
at providing error-free comprehensive content that is up-to-date. Indeed, many of the chap-
ters, such as those on hash functions or key-establishment protocols, break new ground in
both their content and their unified presentations. In the trade-off between comprehensive
coverage and exhaustive treatment of individual items, the authors have chosen to write
simply and directly, and thus efficiently, allowing each element to be explained together
with their important details, caveats, and comparisons.

‘While motivated by practical applications, the authors have clearly written a book that
will be of as much interest to researchers and students as it is to practitioners, by includ-
ing ample discussion of the underlying mathematics and associated theoretical consider-
ations. The essential mathematical techniques and requisite notions are presented crisply
and clearly, with illustrative examples. The insightful historical notes and extensive bib-
liography make this book a superb stepping-stone to the literature. (I was very pleasantly
surprised to find an appendix with complete programs for the CRYPTO and EUROCRYPT
conferences!) ' :

It is a pleasure to have been asked to provide the foreword for this book. I am happy
to congratulate the authors on their accomplishment, and to inform the reader that he/she is
looking at a landmark in the development of the field.

Ronald L. Rivest
Webster Professor of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
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Preface

This book is intended as a reference for professional cryptographers, presenting the
techniques and algorithms of greatest interest to the current practitioner, along with the sup-
porting motivation and background material. It also provides a comprehensive source from
which to learn cryptography, serving both students and instructors. In addition, the rigor-
ous treatment, breadth, and extensive bibliographic material should make it an important
reference for research professionals.

Our goal was to assimilate the existing cryptographic knowledge of industrial interest
into one consistent, self-contained volume accessible to engineers in practice, to computer
scientists and mathematicians in academia, and to motivated non-specialists with a strong
desire to learn cryptography. Such a task is beyond the scope of each of the following: re-
search papers, which by nature focus on narrow topics using very specialized (and often
non-standard) terminology; survey papers, which typically address, at most, a small num-
ber of major topics at a high level; and (regretably also) most books, due to the fact that
many book authors lack either practical experience or familiarity with the research litera-
ture or both. Our intent was to provide a detailed presentation of those areas of cryptogra-
phy which we have found to be of greatest practical utility in our own industrial experience,
while maintaining a sufficiently formal approach to be suitable both as a trustworthy refer-
ence for those whose primary interest is further research, and to provide a solid foundation
for students and others first learning the subject.

Throughout each chapter, we emphasize the relationship between various aspects of
cryptography. Background sections commence most chapters, providing a framework and
perspective for the techniques which follow. Computer source code (e.g. C code) for algo-
rithms has been intentionally omitted, in favor of algorithms specified in sufficient detail to
allow direct implementation without consuliting secondary references. We believe this style
of presentation allows a better understanding of how algorithms actually work, while at the
same time avoiding low-level implementation-specific constructs (which some readers will
invariably be unfamiliar with) of various currently-popular programming languages.

The presentation also strongly delineates what has been established as fact (by math-
ematical arguments) from what is simply current conjecture. To avoid obscuring the very
applied nature of the subject, rigorous proofs of correctness are in most cases omitted; how-
ever, references given in the Notes section at the end of each chapter indicate the original
or recommended sources for these results. The trailing Notes sections also provide infor-
mation (quite detailed in places) on various additional techniques not addressed in the main
text, and provide a survey of research activities and theoretical results; references again in-
dicate where readers may pursue particular aspects in greater depth. Needless to say, many
results, and indeed some entire research areas, have been given far less attention than they
warrant, or have been omitted entirely due to lack of space; we apologize in advance for
such major omissions, and hope that the most significant of these are brought to our atten-
tion.

To provide an integrated treatment of cryptography spanning foundational motivation

-through concrete implementation, it is useful to consider a hierarchy of thought ranging
from conceptual ideas and end-user services, down to the tools necessary to complete ac-
tual implementations. Table 1 depicts the hierarchical structure around which this book is
organized. Corresponding to this, Figure 1 illustrates how these hierarchical levels map
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Information Security Objectives
Confidentiality
Data integrity
Authentication (entity and data origin)
Non-repudiation
Cryptographic functions
| Encryption i Chapters 6, 7, 8 |
Message authentication and data integrity techniques ~ Chapter 9
Identification/entity authentication techniques Chapter 10
Digital signatures Chapter 11
Cryptographic building blocks
Stream ciphers Chapter 6
Block ciphers (symmetric-key) Chapter 7
Public-key encryption Chapter 8
One-way hash functions (unkeyed) Chapter 9
Message authentication codes Chapter 9
Signature schemes (public-key, symmetric-key) Chapter 11
Utilities
Public-key parameter generation Chapter 4
Pseudorandom bit generation Chapter 5
Efficient algorithms for discrete arithmetic Chapter 14
Foundations
Introduction to cryptography Chapter 1
Mathematical background Chapter 2
Complexity and analysis of underlying problems Chapter 3
Infrastructure techniques and commercial aspects
Key establishment protocols Chapter 12
Key installation and key management Chapter 13
Cryptographic patents Chapter 15
Cryptographic standards Chapter 15

Table 1: Hierarchical levels of applied cryptography.

onto the various chapters, and their inter-dependence.

Table 2 lists the chapters of the book, along with the primary author(s) of each who
should be contacted by readers with comments on specific chapters. Each chapter was writ-
ten to provide a self-contained treatment of one major topic. Collectively, however, the
chapters have been designed and carefully integrated to be entirely complementary with
respect to definitions, terminology, and notation. Furthermore, there is essentially no du-
plication of material across chapters; instead, appropriate cross-chapter references are pro-
vided where relevant.

While it is not intended that this book be read linearly from front to back, the material
has been arranged so that doing so has some merit. Two primary goals motivated by the
“handbook” nature of this project were to allow easy access to stand-alone results, and to al-
low results and algorithms to be easily referenced (e.g., for discussion or subsequent cross-
reference). To facilitate the ease of accessing and referencing results, items have been cate-
gorized and numbered to a large extent, with the following classes of items jointly numbered
consecutively in each chapter: Definitions, Examples, Facts, Notes, Remarks, Algorithms,
Protocols, and Mechanisms. In more traditional treatments, Facts are usually identified as
propositions, lemmas, or theorems. We use numbered Notes for additional technical points,
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Hash Functions and Data Integrity
Identification and Entity Authentication

Chapter Primary Author
AIM PVO SAV
1. Overview of Cryptography & ] 3
2. Mathematical Background )
3. ‘Number-Theoretic Reference Problems g
4. Public-Key Parameters < &
5. Pseudorandom Bits and Sequences i
6. Stream Ciphers i
7. Block Ciphers 2
8. Public-Key Encryption o
9.
10.

11. Digital Signatures <
12. Key Establishment Protocols

13. Key Management Techniques

14.  Efficient Implementation o
15. Patents and Standards

—  Opverall organization i)

Table 2: Primary authors of each chapter.

while numbered Remarks identify non-technical (often non-rigorous) comments, observa-
tions, and opinions. Algorithms, Protocols and Mechanisms refer to techniques involving
a series of steps. Examples, Notes, and Remarks generally begin with parenthetical sum-
mary titles to allow faster access, by indicating the nature of the content so that the entire
item itself need not be read in order to determine this. The use of a large number of small
subsections is also intended to enhance the handbook nature and accessibility to results.

Regarding the partitioning of subject areas into chapters, we have used what we call a
Junctional organization (based on functions of interest to end-users). For example, all items
related to entity authentication are addressed in one chapter. An alternative would have been
what may be called an academic organization, under which perhaps, all protocols based on
zero-knowledge concepts (including both a subset of entity authentication protocols and
signature schemes) might be covered in one chapter. We believe that a functional organi-
zation is more convenient to the practitioner, who is more likely to be interested in options
available for an entity authentication protocol (Chapter 10) or a signature scheme (Chapter
11), than to be seeking a zero-knowledge protocol with unspecified end-purpose.

In the front matter, a top-level Table of Contents (giving chapter numbers and titles
only) is provided, as well as a detailed Table of Contents (down to the Ievel of subsections,
e.g., §5.1.1). This is followed by a List of Figures, and a List of Tables. At the start of each
chapter, a brief Table of Contents (specifying section number and titles only, e.g., §5.1, §5.2)
is also given for convenience.

At the end of the book, we have included a list of papers presented at each of the Crypto,
Eurocrypt, Asiacrypt/Auscrypt and Fast Software Encryption conferences to date, as well
as a list of all papers published in the Journal of Cryptology up to Volume 9. These are
in addition to the References section, each entry of which is cited at least once in the body
of the handbook. Almost all of these references have been verified for correctness in their
exact titles, volume and page numbers, etc. Finally, an extensive Index prepared by the
authors is included. The Index begins with a List of Symbols.

Our intention was not to introduce a collection of new techniques and protocols, but
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rather to selectively present techniques from those currently available in the public domain.
Such a consolidation of the literature is necessary from time to time. The fact that many
good books in this field include essentially no more than what is covered here in Chapters
7,8 and 11 (indeed, these might serve as an introductory course along with Chapter 1) illus-
trates that the field has grown tremendously in the past 15 years. The mathematical foun-
dation presented in Chapters 2 and 3 is hard to find in one volume, and missing from most
cryptography texts. The material in Chapter 4 on generation of public-key parameters, and
in Chapter 14 on efficient implementations, while well-known to a small body of specialists
and available in the scattered literature, has previously not been available in general texts.
The material in Chapters 5 and 6 on pseudorandom number generation and stream ciphers
1s also often absent (many texts focus entirely on block ciphers), or approached only from
a theoretical viewpoint. Hash functions (Chapter 9) and identification protocols (Chapter
10) have only recently been studied in depth as specialized topics on their own, and along
with Chapter 12 on key establishment protocols, it is hard to find consolidated treatments
of these now-mainstream topics. Key management techniques as presented in Chapter 13
have traditionally not been given much attention by cryptographers, but are of great impor-
tance in practice. A focused treatment of cryptographic patents and a concise summary of
cryptographic standards, as presented in Chapter 15, are also long overdue.

In most cases (with some historical exceptions), where algorithms are known to be in-
secure, we have chosen to leave out specification of their details, because most such tech-
niques are of little practical interest. Essentially all of the algorithms included have been
verified for correctness by independent implementation, confirming the test vectors speci-
fied.
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Chapter

Overview of Cryptography

Contentsin Brief

1.1 Introduction. . . . . . . . . ... 1
1.2 Information security and cryptography . . . . . ... ... ... 2
1.3 Backgroundonfunctions . . . . . ... ... ... 6
14 Basicterminologyandconcepts. . . . . . . ... ... ... ... 1
15 Symmetric-key encryption . . . ... ..o 15
16 Digitalsignatures . . . . . . ... 22
1.7 Authentication and identification . . . . . . ... ... ... ... 24
1.8 Public-key cryptography . . . . . .. ... oL 25
19 Hashfunctions . . . ... ... ... ... 33
1.10 Protocolsand mechanisms . . . . .. .. .. ... .. ...... 33
111 Key establishment, management, and certification . . . . . . . .. 35
112 Pseudorandom numbersand sequences . . . . . ... ... ... 39
1.13 Classesof attacksand securitymodels . . . . . . ... ... ... 41
1.14 Notesand further references . . . . . . . ... ... ... 45

1.1 Introduction

Cryptography has a long and fascinating history. The most complete non-technical acc
of the subject is Kahn'$he Codebreakers. This book traces cryptography from its initial
and limited use by the Egyptians some 4000 years ago, to the twentieth century whe
played a crucial role in the outcome of both world wars. Completed in 1963, Kahn's b
coversthose aspects of the history which were most significant (up to that time) to the d
opment of the subject. The predominant practitioners of the art were those associatec
the military, the diplomatic service and government in general. Cryptography was use
a tool to protect national secrets and strategies.

The proliferation of computers and communications systems in the 1960s brought
it a demand from the private sector for means to protect information in digital form anc
provide security services. Beginning with the work of Feistel at IBM in the early 1970s ¢
culminating in 1977 with the adoption as a U.S. Federal Information Processing Stan
for encrypting unclassified information, DES, the Data Encryption Standard, is the n
well-known cryptographic mechanism in history. It remains the standard means for se
ing electronic commerce for many financial institutions around the world.

The most striking developmentin the history of cryptography came in 1976 when Di
and Hellman publisheNew Directionsin Cryptography. This paper introduced the revolu-
tionary concept of public-key cryptography and also provided a new and ingenious me

1
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§1.2 Information security and cryptography 3

privacy keeping information secret from all but those who are autho-

or confidentiality rized to see it.

data integrity ensuring information has not been altered by unauthorized or
unknown means.

entity authentication| corroboration of the identity of an entity (e.g., a person| a

or identification computer terminal, a credit card, etc.).

message corroborating the source of information; also known as data

authentication origin authentication.

signature a means to bind information to an entity.

authorization conveyance, to another entity, of official sanction to do orbe
something.

validation a means to provide timeliness of authorization to use or ma-
nipulate information or resources.

access control restricting access to resources to privileged entities.

certification endorsement of information by a trusted entity.

timestamping recording the time of creation or existence of information

witnessing verifying the creation or existence of information by an entjty
other than the creator.

receipt acknowledgement that information has been received.

confirmation acknowledgement that services have been provided.

ownership a means to provide an entity with the legal right to use| or
transfer a resource to others.

anonymity concealing the identity of an entity involved in some process.

non-repudiation preventing the denial of previous commitments or actions.

revocation retraction of certification or authorization.

Table 1.1: Some information security objectives.

offense to open mail for which one is not authorized. It is sometimes the case that secu
is achieved not through the information itself but through the physical document recordil
it. For example, paper currency requires special inks and material to prevent counterfeiti

Conceptually, the way information is recorded has not changed dramatically over tim
Whereas information was typically stored and transmitted on paper, much of it now r
sides on magnetic media and is transmitted via telecommunications systems, some w
less. What has changed dramatically is the ability to copy and alter information. One ¢
make thousands of identical copies of a piece of information stored electronically and ec
is indistinguishable from the original. With information on paper, this is much more diffi-
cult. What is needed then for a society where information is mostly stored and transmitt
in electronic form is a means to ensure information security which is independent of t
physical medium recording or conveying it and such that the objectives of information s
curity rely solely on digital information itself.

One of the fundamental tools used in information security is the signature. Itis a buils
ing block for many other services such as non-repudiation, data origin authentication, ide
tification, and witnessing, to mention a few. Having learned the basics in writing, an ind
vidual is taught how to produce a handwritten signature for the purpose of identificatio
At contract age the signature evolves to take on a very integral part of the person’s ident
This signature is intended to be unique to the individual and serve as a means to iden
authorize, and validate. With electronic information the concept of a signature needs to
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Ch. 2 Mathematical Background
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Definition (division algorithm for integers) If a and b are integerswith b > 1, then or-
dinary long division of a by b yields integers ¢ (the quotient) and r (the remainder) such
that

a=qgb+r, where0 <r <b.

Moreover, ¢ and r are unique. The remainder of the division is denoted a mod b, and the
quotient is denoted a div b.

Fact Leta,b e Z withb # 0. Thena div b = |a/b] anda mod b = a — bla/b].

Example Ifa = 73,b = 17,theng = 4andr = 5. Hence 73 mod 17 = 5 and
73 div 17 = 4. O
Definition Aninteger ¢ isacommon divisor of a and b if ¢|a and ¢|b.

Definition A non-negative integer d is the greatest common divisor of integers a and b,
denoted d = ged(a, b), if

(i) disacommon divisor of a and b; and

(i) whenever c|a and c|b, then ¢|d.

Equivalently, ged(a, b) isthelargest positive integer that divides both a and b, with the ex-
ception that ged(0,0) = 0.

Example Thecommondivisorsof 12and18 are{+1,+2, +3,4+6},andgcd(12,18) = 6.
0

Definition A non-negativeinteger d is the least common multiple of integersa and b, de-
noted d = lem(a, b), if

(i) aldandb|d; and

(i) whenever a|c and b|c, then d|c.
Equivalently, lem(a, b) isthe smallest non-negative integer divisible by both a and b.

Fact If a and b are positive integers, then lem(a, b) = a - b/ ged(a, b).
Example Sincegcd(12,18) = 6, it followsthat lem(12,18) = 12 -18/6 = 36. O
Definition Twointegersa andb aresaidtoberelatively primeor coprimeif ged(a, b) = 1.

Definition Aninteger p > 2 issaid to be primeif its only positive divisors are 1 and p.
Otherwise, p is called composite.

The following are some well known facts about prime numbers.
Fact If p isprimeand p|ab, then either p|a or p|b (or both).
Fact There are an infinite number of prime numbers.

Fact (prime number theorem) Let 7(z) denote the number of prime numbers < z. Then
m(z)
z—oo x/Inx
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2.114
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(iv) (transitivity) If a = b (mod n) andb = ¢ (mod n), thena = ¢ (mod n).
(V) If a = a1 (mod n)andb = b; (mod n),thena +b = a; + b1 (mod n) and
ab = a1by (mod n).

The equivalence class of an integer a is the set of all integers congruent to a modulo
n. From properties (ii), (iii), and (iv) above, it can be seen that for afixed n the relation of
congruence modulo n partitions Z into equivalence classes. Now, if a = ¢gn + r, where
0 <r <mn,thena =r (mod n). Hence each integer a is congruent modulo n to a unique
integer between 0 and n — 1, called the least residue of a modulon. Thusa and r areinthe
same equivalence class, and so » may simply be used to represent this equivalence class.

Definition Theintegers modulo n, denoted Z,,, is the set of (equivalence classes of) in-
tegers {0, 1,2,... ,n — 1}. Addition, subtraction, and multiplication in Z,, are performed
modulo n.

Example Zgs = {0,1,2,...,24}. InZy5, 13+ 16 = 4,sincel3 + 16 = 29 = 4
(mod 25). Similarly, 13 - 16 = 8 in Zas. O

Definition Leta € Z,. The multiplicative inverse of « modulon isaninteger = € Z,
suchthat az = 1 (mod n). If such an z exists, thenit isunique, and a is said to beinvert-
ible, or aunit; theinverse of a is denoted by a —*.

Definition Leta,b € Z,. Division of a by b modulon isthe product of ¢ and b~! modulo
n, and isonly defined if b isinvertible modulo n.

Fact Leta € Z,. Thena isinvertibleif and only if gcd(a,n) = 1.
Example Theinvertible elementsin Zy are 1, 2, 4, 5, 7, and 8. For example, 4=1 = 7
because4 -7 =1 (mod 9). O

Thefollowing is a generalization of Fact 2.117.

Fact Let d = gcd(a,n). The congruence equation az = b (mod n) has asolution z if
and only if d divides b, in which case there are exactly d solutions between 0 and n — 1;
these solutions are al congruent modulo n/d.

Fact (Chineseremainder theorem, CRT) If theintegersny, ns, ... ,ny are parwiserela
tively prime, then the system of simultaneous congruences
a1 (mod ny)

as (mod no)

x = ar (mod ng)

has a unique solution modulon = nyns - - - ng.

Algorithm (Gauss's algorithm) The solution x to the simultaneous congruences in the
Chinese remainder theorem (Fact 2.120) may be computedas = = 3% | a;N; M; mod n,
where N; = n/n; and M; = N[l mod n;. These computations can be performed in
O((Ign)?) bit operations.
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Another efficient practical algorithm for solving simultaneous congruencesin the Chinese
remainder theorem is presented in §14.5.

Example Thepair of congruencesz = 3 (mod 7), z = 7 (mod 13) hasaunique solu-
tionz = 59 (mod 91). O

Fact If ged(n1,n2) = 1,thenthepair of congruencesz = a (mod n1),z = a (mod ns)
hasauniquesolution z = a (mod ning).

Definition The multiplicative group of Z,, isZ), = {a € Z, | gcd(a,n) = 1}.In
particular, if nisaprime thenZ;, = {a |1 <a<n-—1}.

Definition Theorder of Z;, is defined to be the number of elementsin Z;,, namely |Z |.

It follows from the definition of the Euler phi function (Definition 2.100) that |Z | =
¢(n). Notedsothatif a € Z; andb € Z;,thena - b € Z;, and so Z, is closed under
multiplication.

Fact Letn > 2 beaninteger.
(i) (Euler’stheorem) If a € Z*, thena®™ =1 (mod n).
(ii) If nisaproduct of distinct primes, andif » = s (mod ¢(n)),thena” = a® (mod n)
for al integers a. In other words, when working modulo such an n, exponents can
be reduced modulo ¢(n).

A special case of Euler’'stheoremis Fermat’s (little) theorem.

Fact Let p beaprime.
(i) (Fermat'stheorem) If ged(a,p) = 1,thena?~! =1 (mod p).
(i) f r = s (mod p — 1), thena” = a° (mod p) for dl integers a. In other words,
when working modulo a prime p, exponents can be reduced modulo p — 1.
(iii) Inparticular, a? = a (mod p) for dl integersa.

Definition Leta € Z,,. Theorder of a, denoted ord(a), istheleast positiveinteger ¢ such
that o =1 (mod n).

Fact If theorder of a € Z), ist,and a® = 1 (mod n), then ¢ divides s. In particular,

tp(n).

Example Letn = 21. ThenZ}, = {1,2,4,5,8,10,11,13,16,17,19,20}. Note that
#(21) = ¢(7)9(3) = 12 = |Z3;|. Theordersof elementsin Z3, arelistedin Table2.3. O

a €7y 1124|5810 |11 |13 |16 |17 |19 | 20
oderofa [|1 (63|62 6|6 |2 |3 |6 | 6|2

Table 2.3: Orders of elementsin Z3; .

Definition Let o € Z,. If the order of a is ¢(n), then « is said to be a generator or a
primitive element of Z. If Z; has agenerator, then Z is said to be cyclic.
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2.159 Example (Bluminteger) For the Blum integer n = 21, J, = {1,4,5,16,17,20} and
Qn = {5,17,20}. Thefour squarerootsof a = 4 are 2, 5, 16, and 19, of which only 16 is
alsoin Q21. Thus16 isthe principal square root of 4 modulo 21. O

2.160 Fact If n = pq isaBlum integer, then the function f : Q, — @, defined by f(z) =
22 mod n is apermutation. Theinversefunction of f is:

F ) = 2 D@D/ oq g

2.5 Abstract algebra

This section provides an overview of basic algebraic objects and their properties, for refer-
enceintheremainder of thishandbook. Severa of the definitionsin §2.5.1 and §2.5.2 were
presented earlier in §2.4.3 in the more concrete setting of the algebraic structure Z, .

2.161 Definition A binary operation « onaset .S isamappingfrom S x Sto S. Thatis, xisa
rule which assigns to each ordered pair of elementsfrom .S an element of S.

2.5.1 Groups
2.162 Definition A group (G, *) consists of a set G with a binary operation x on G satisfying
the following three axioms.
(i) Thegroup operationisassociative. Thatis, a* (bxc) = (axb)xcforadl a,b,c € G.
(if) Thereisanelement 1 € G, caled theidentity element, suchthatax1 = 1%xa = a

forala e G.
(iii) Foreacha € G thereexistsan element a—* € G, called the inverse of a, such that
a*a_l :a_l*azl_

A group G is abelian (or commutative) if, furthermore,
(iv) axb=0bxaforala,becG.

Note that multiplicative group notation has been used for the group operation. If the
group operation is addition, then the group is said to be an additive group, the identity ele-
ment is denoted by 0, and the inverse of a is denoted —a.

Henceforth, unless otherwise stated, the symbol * will be omitted and the group oper-
ation will simply be denoted by juxtaposition.

2.163 Definition A group G isfiniteif |G| isfinite. The number of elementsin afinite groupis
calledits order.

2.164 Example Theset of integersZ with the operation of addition formsagroup. Theidentity
element is 0 and the inverse of an integer a istheinteger —a. O

2.165 Example The set Z,,, with the operation of addition modulo n, forms a group of order
n. The set Z,, with the operation of multiplication modulo n is not a group, since not al
elementshavemultiplicativeinverses. However, theset Z;, (see Definition 2.124) isagroup
of order ¢(n) under the operation of multiplication modulo n, with identity element 1. O
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2.166

2.167

2.168

2.169

2.170

2.171

2172

2.173

2174

Definition A non-empty subset H of agroup G isasubgroup of G if H isitself agroup
with respect to the operation of G. If H isasubgroup of G and H # G, then H iscalled a
proper subgroup of G.

Definition A group G iscyclicif thereisanelement o € G suchthat foreachb € G there
isaninteger i with b = . Such an element « is called a generator of G.

Fact If Gisagroupanda € G, then the set of all powers of a formsa cyclic subgroup of
G, called the subgroup generated by a, and denoted by (a).

Definition Let G beagroupanda € G. Theorder of a isdefined to be the least positive
integer ¢ such that a® = 1, provided that such an integer exists. If such at does not exist,
then the order of « is defined to be co.

Fact Let G beagroup, andlet a € G bean element of finite order ¢. Then |{(a)|, the size
of the subgroup generated by «, isequal to ¢.

Fact (Lagrange'stheorem) If G isafinitegroupand H isasubgroupof G, then |H | divides
|G|. Hence, if a € G, the order of a divides |G].

Fact Every subgroup of acyclic group G isaso cyclic. Infact, if G isacyclic group of
order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

Fact Let G beagroup.

(i) If theorder of a € G ist, thenthe order of a* ist/ ged(t, k).
(i) If G isacyclic group of order n and d|n, then G has exactly ¢(d) elements of order
d. In particular, G has ¢(n) generators.

Example Consider themultiplicativegroupZi, = {1,2,...,18} of order 18. Thegroup

*

iscyclic (Fact 2.132(i)), and a generator is o = 2. The subgroups of Z7,, and their gener-
ators, arelisted in Table 2.7. O

| Subgroup | Generators | Order |
{1} 1 1
{1,18} 18
{1,7,11} 7,11
{1,7,8,11,12, 18} 8,12
{1,4,5,6,7,9,11,16,17} | 4,5,6,9,16,17
{1,2,3,...,18} 2,3,10,13,14, 15

© O W N

fu—
oo

Table 2.7: The subgroups of Zig.

2.5.2 Rings

2.175

Definition Aring (R, +, x) consists of aset R with two binary operations arbitrarily de-
noted + (addition) and x (multiplication) on R, satisfying the following axioms.

(i) (R,+) isan abelian group with identity denoted 0.
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2.176

2.177

2.178

2.179

(i) Theoperation x isassociative. Thatis, a x (b x ¢) = (a x b) x cforal a,b,c € R.
(iii) Thereisamultiplicativeidentity denoted 1, with1 # 0, suchthat 1 xa =ax1=a
foral a € R.
(iv) Theoperation x isdistributiveover +. Thatis, a x (b+¢) = (a x b) + (a x ¢) and
(b+c)xa=(bxa)+ (cxa)fordla,b,ce R.
Theringisacommutativeringif a x b =b x aforal a,b € R.

Example Theset of integers Z with the usual operations of addition and multiplicationis
acommutative ring. O

Example The set Z,, with addition and multiplication performed modulo » is a commu-
tative ring. O

Definition Anelement a of aring R iscalled aunit or an invertible element if thereisan
elementb € R suchthata x b = 1.

Fact Theset of unitsin aring R forms a group under multiplication, called the group of
unitsof R.

2.180 Example Thegroup of unitsof thering Z,, isZ;, (see Definition 2.124). a
2.5.3 Fields
2.181 Definition A field isacommutative ring in which all non-zero elements have multiplica-

2.182

2.183

2.184

2.185

2.186

tive inverses.

m times

——
Definition Thecharacteristic of afieldis0if1+ 1+ --- 4 1 isnever equa to 0 for any
m > 1. Otherwise, the characteristic of the field is the least positive integer m such that

>, 1equasO.

Example The set of integers under the usual operations of addition and multiplicationis
not afield, sincetheonly non-zerointegerswith multiplicativeinversesare1 and —1. How-
ever, the rational numbers Q, the real numbers R, and the complex numbers C form fields
of characteristic 0 under the usual operations. O

Fact Z, isafield (under the usual operations of addition and multiplication modulo n) if
and only if n isaprime number. If n is prime, then Z,, has characteristic n.

Fact If the characteristic m of afield is not 0, then m is a prime number.

Definition A subset F' of afield F isasubfield of E if F isitself afield with respect to
the operations of E. If thisisthecase, F issaid to be an extension field of F'.
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2.209

2.210

2.211

2.212

2.213

2.214

2.215

Fact (existence and uniqueness of finite fields)

(i) If Fisafinitefield, then F' containsp™ elementsfor someprimep andinteger m > 1.
(ii) For every prime power order p™, thereisaunique (up to isomorphism) finite field of
order p™. Thisfield is denoted by F,,, or sometimes by GF(p™).

Informally speaking, two fields are isomorphic if they are structurally the same, al-
though the representation of their field elements may be different. Notethat if p isaprime
then Z,, is afield, and hence every field of order p isisomorphic to Z,,. Unless otherwise
stated, the finite field I, will henceforth be identified with Z,,.

Fact If I, isafinite field of order ¢ = p™, p aprime, then the characteristic of F, is p.
Moreover, IF, contains a copy of Z, asasubfield. HenceF, can be viewed as an extension
field of Z, of degree m.

Fact (subfieldsof afinitefield) Let[F, beafinitefield of order ¢ = p™. Thenevery subfield
of I, has order p™, for somen that is apositive divisor of m. Conversely, if n isapositive
divisor of m, then there is exactly one subfield of IF, of order p™; an element a € F, isin
the subfield F,, if and only if a?” = a.

Definition Thenon-zeroelementsof F, form agroup under multiplication called the mul-
tiplicative group of I, denoted by ;..

Fact I isacyclic group of order ¢ — 1. Hencea? = aforal a € F,.

Definition A generator of the cyclic group IF;, is called a primitive element or generator
of Fy.

Fact If a,b € IFy, afinitefield of characteristic p, then

(@a+b)? =a® +b* foralt>0.

2.6.2 The Euclidean algorithm for polynomials

2.216

2.217

Let Z,, be the finite field of order p. The theory of greatest common divisors and the Eu-
clidean algorithm for integers carries over in a straightforward manner to the polynomial
ring Z,[z] (and more generally to the polynomial ring F[z], where F' is any field).

Definition Letg(x), h(z) € Z,[z], wherenot both are 0. Then the greatest common divi-
sor of g(z) and h(x), denoted ged(g(z), h(z)), isthe monic polynomial of greatest degree
in Zy[z] which divides both g(z) and h(x). By definition, gcd(0,0) = 0.

Fact Z,[z] is aunique factorization domain. That is, every non-zero polynomial f(x) €
Zy[z] has afactorization

f(@) = afi(x) fa(2) - fu(2)",
wherethe f;(z) are distinct monic irreducible polynomialsin Z,[z], the e; are positivein-
tegers, anda € Z,. Furthermore, thefactorization is unigque up to rearrangement of factors.
The following is the polynomial version of the Euclidean algorithm (cf. Algorithm 2.104).
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3.6 The discrete logarithm problem

3.48

3.49

3.50

3.51

3.52

3.53

The security of many cryptographi ¢ techniques depends on the intractability of the discrete
logarithm problem. A partid list of these includes Diffie-Hellman key agreement and its
derivatives (§12.6), EIGamal encryption (§8.4), and the EIGamal signature scheme and its
variants (§11.5). This section summarizes the current knowledge regarding al gorithms for
solving the discrete logarithm problem.

Unless otherwise specified, algorithmsin this section are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator o (see
Definition 2.167). For amore concrete approach, the reader may find it convenient to think
of G as the multiplicative group Z,, of order p — 1, where the group operation is simply
multiplication modul o p.

Definition Let G be afinite cyclic group of order n. Let o be agenerator of G, and let
0 € G. Thediscrete logarithm of 3 to the base «, denoted log,, 3, is the unique integer «,
0<z<n-1,suchthat g = o*.

Example Letp = 97. Then Zg, isacyclic group of order n = 96. A generator of Zg, is
a = 5. Since53? = 35 (mod 97), logy 35 = 32in Zg;. O

The following are some elementary facts about |ogarithms.

Fact Let o be agenerator of acyclic group G of order n, and let 3, v € G. Let s bean
integer. Then log,, (6v) = (log, 8 + log, v) mod n andlog, (%) = slog,, B mod n.

Thegroupsof most interest in cryptography arethe multiplicativegroupF; of thefinite
fieldF, (§2.6), including the particular cases of the multiplicative group Z, of the integers
modulo aprime p, and the multiplicative group F5... of thefinitefield Fam of characteristic
two. Also of interest are the group of units Z;, where n is a composite integer, the group
of points on an elliptic curve defined over afinite field, and the jacobian of a hyperelliptic
curve defined over afinite field.

Definition The discrete logarithm problem (DLP) is the following: given a prime p, a
generator o of Z,, and an element 3 € Zj, find the integer , 0 < = < p — 2, such that
a® = (mod p).

Definition The generalized discretelogarithm problem (GDLP) isthe following: givena
finite cyclic group G of order n, agenerator o of G, and an element 5 € G, find theinteger
z,0 <z <n-—1,suchthat a* = 3.

The discrete logarithm problem in elliptic curve groups and in the jacobians of hyper-
elliptic curves are not explicitly considered in this section. The discrete logarithm problem
inZ; isdiscussed further in §3.8.

Note (difficulty of the GDLP isindependent of generator) Let o and ~ be two generators
of acyclicgroup G of ordern, andlet 3 € G. Letz = log,, 8,y = log, 3,and z = log,, 7.
Thena® = = ~Y = (a*)Y. Consequently z = zy mod n, and

log, B = (log, ) (log, )" mod n.

This means that any algorithm which computes logarithms to the base o can be used to
compute logarithms to any other base ~y that is also a generator of G.
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3.54

3.55

Note (generalizationof GDLP) A moregenera formulation of the GDLPisthefollowing:
givenalfinitegroup G and elementsa, § € G, find aninteger x suchthat o® = 3, provided
that such an integer exists. In thisformulation, it is not required that G be a cyclic group,
and, evenifitis, itisnot required that o be agenerator of G. Thisproblem may be harder to
solve, in general, than GDLP. However, in the case where G is acyclic group (for example
if G isthe multiplicative group of afinitefield) and the order of a: isknown, it can be easily
recognized whether an integer x satisfying o* = 3 exists. Thisis because of the following
fact: if G isacyclic group, a isan element of order n in G, and 5 € G, then there exists
aninteger x suchthat o = g if and only if g™ = 1.

Note (solvingthe DLP ina cyclic group G of order n isin essence computing an iSomor-
phism between G and Z,,) Even though any two cyclic groups of the same order are iso-
morphic (that is, they have the same structure although the elements may be written in dif-
ferent representations), an efficient algorithm for computing logarithmsin one group does
not necessarily imply an efficient algorithm for the other group. To see this, consider that
every cyclic group of order n isisomorphic to the additive cyclic group Z,,, i.e., the set of
integers {0, 1,2,... ,n — 1} where the group operation is addition modulo n. Moreover,
the discrete logarithm problem in the latter group, namely, the problem of finding an inte-
ger x such that az = b (mod n) givena, b € Z,, is easy as shown in the following. First
note that there does not exist a solution z if d = ged(a, n) does not divide b (Fact 2.119).
Otherwise, if d dividesb, the extended Euclidean algorithm (Algorithm 2.107) can be used
to find integers s and ¢ such that as + nt = d. Multiplying both sides of this equation by
the integer b/d gives a(sb/d) + n(tb/d) = b. Reducing this equation modulo n yields
a(sb/d) =b (mod n) and hencex = (sb/d) mod n isthe desired (and easily obtainable)
solution.

The known algorithms for the DL P can be categorized as follows:
1. algorithmswhichwork in arbitrary groups, e.g., exhaustive search (§3.6.1), the baby-
step giant-step algorithm (§3.6.2), Pollard’s rho algorithm (§3.6.3);
2. dgorithmswhich work in arbitrary groups but are especialy efficient if the order of
the group has only small prime factors, e.g., Pohlig-Hellman algorithm (§3.6.4); and
3. theindex-calculusalgorithms (§3.6.5) which are efficient only in certain groups.

3.6.1 Exhaustive search

Themost obviousalgorithm for GDL P (Definition 3.52) isto successively computea’, !,
o, ... until 3 isobtained. This method takes O(n) multiplications, where n is the order

)

of «, andisthereforeinefficient if n islarge (i.e. in cases of cryptographic interest).

3.6.2 Baby-step giant-step algorithm

Let m = [y/n], wheren isthe order of «. The baby-step giant-step algorithmis atime-
memory trade-off of the method of exhaustive search and isbased on the following observa-
tion. If 8 = o*, thenonecanwritex = im+ j, where0 < i, j < m. Hence, a® = a™a,
whichimplies 3(a=™)? = /. This suggests the following algorithm for computing .
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3.61 Example (Pollard’srhoalgorithmfor logarithmsinasubgroup of Z;4,) Theelementa =
2 isa generator of the subgroup G of Zzg, of order n = 191. Suppose 3 = 228. Partition
theelementsof G into three subsetsaccordingtotherulez € Sy ifx =1 (mod 3),z € S,
ifx=0 (mod 3),andz € S5 if z =2 (mod 3). Table 3.2 showsthe valuesof z;, a;, b;,
Toi, ao;, and bo; at the end of each iteration of step 2 of Algorithm 3.60. Notethat 14 =
T8 = 144. Finaly, computer = by4 — bag mod 191 = 125,771 = 125! mod 191 =

136, and 7~ (a2 — a14) mod 191 = 110. Hence, log, 228 = 110. O
| 1 || T; | a; | b; || T2; | az; | ba; |
1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 | 48 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 | 97 | 119
12 121 6 18 304 | 98 120
13 12 6 19 121 5 51
14 144 | 12 | 38 144 10 104

Table 3.2: Intermediate steps of Pollard’'s rho algorithm in Example 3.61.

3.62 Fact Let G be agroup of order n, a prime. Assume that the function f : G — G de-
fined by equation (3.2) behaveslike arandom function. Then the expected running time of
Pollard’srho algorithm for discrete logarithmsin G is O(/n) group operations. Moreover,
the algorithm requires negligible storage.

3.6.4 Pohlig-Hellman algorithm

Algorithm 3.63 for computing logarithmstakes advantage of the factorization of the order n
of thegroup G. Letn = p7'p5? - - - p& bethe primefactorization of n. If z = log,, 3, then
theapproachistodeterminez; = « mod p{’ for1 <4 < r, and then use Gauss'salgorithm
(Algorithm 2.121) to recover x mod n. Each integer x; is determined by computing the
digitsip, l1, ... ,le,—1 inturnof itsp;-ary representation: z; = lo+1l1p;+- - -+lei_1pf"’_1,
where0 <1; < p; — 1.

To see that the output of Algorithm 3.63 is correct, observe first that in step 2.3 the
order of @isg. Next, at iteration j of step 2.4, v = alo+hia+-+Li-1 " Hence,

B = B/

(an/q.7+1

R O L L

)$i*l0*lllI*"'*lj71q171

PRSI O B e—1
(an/q )qu+ +le—19

(an/ays o Head ()l

)

the last equality being true because & has order ¢g. Hence, log 3 isindeed equal to [;.
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3.63 Algorithm Pohlig-Hellman algorithm for computing discrete logarithms

INPUT: agenerator o of acyclic group G of order n, and an element 5 € G.
OUTPUT: the discrete logarithm z = log,, S.
1. Findthe primefactorization of n: n = p§'ps? - - - po, wheree,; > 1.
2. For i from 1to r do the following:
(Compute ; = lo + lyp; + -+ + Lo, _1p5 ', where z; = 2 mod p¢*)
2.1 (Smplify the notation) Set g<—p; and e<—e;.
2.2 Sety+1andi_1+0.
2.3 Compute @«a"/1.
2.4 (Computethe!;) For j from0 to e — 1 do the following:
Compute y<yali—17 " and B« (By~ )"/,
Compute ;< log 3 (e.g., using Algorithm 3.56; see Note 3.67(iii)).
25 Setx;<Ily+ llq 4+ 4 leflqeil.
3. Use Gauss's agorithm (Algorithm 2.121) to compute the integer z, 0 < z < n — 1,
suchthat z = x; (mod p;*) forl <i <r.
4. Return(x).

Example 3.64 illustrates Algorithm 3.63 with artificially small parameters.

3.64 Example (Pohlig-Hellman algorithmfor logarithmsin Z3,) Let p = 251. The element
a = 71 isagenerator of Z3, of order n = 250. Consider 3 = 210. Then z = log,; 210
is computed as follows.

1. The prime factorization of n is 250 = 2 - 53.
2. (a) (Computezr; = z mod 2)
Compute@ = a"/2 mod p = 250 and 8 = 3™/2 mod p = 250. Thenz; =
logysp 250 = 1.
(0) (Computezy = z mod 53 = Iy + 115 + 152)
i. Compute@ = "/ mod p = 20.
ii. Computey = 1and 8 = (By')"® mod p = 149. Using exhaustive
search,” compute [y = log,, 149 = 2.
iii. Computey = ya?modp = 21 and 3 = (By1)"* mod p = 113.
Using exhaustive search, compute; = log,, 113 = 4.
iv. Computey = ya*® mod p = 115and B = (By~1)P~1/125 mod p =
149. Using exhaustive search, compute [y = logy, 149 = 2.
Hence,zo =2 +4-5+2-52=72.
3. Finally, solve the pair of congruencesz = 1 (mod 2), z = 72 (mod 125) to get
r = log,; 210 = 197. 0

3.65 Fact Given thefactorization of n, the running time of the Pohlig-Hellman algorithm (Al-
gorithm 3.63) is O(>";_; e;(lgn + /p;)) group multiplications.

3.66 Note (effectiveness of Pohlig-Hellman) Fact 3.65 implies that the Pohlig-Hellman algo-
rithmisefficient only if each primedivisor p; of n isrelatively small; thatis, if n isasmooth

5Exhaustive search is preferable to Algorithm 3.56 when the group is very small (here the order of o is 5).
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integer (Definition 3.13). An example of a group in which the Pohlig-Hellman agorithm
is effective follows. Consider the multiplicative group Z,, where p is the 107-digit prime:

p = 227088231986781039743145181950291021585250524967592855
96453269189798311427475159776411276642277139650833937.

Theorder of Z, isn = p —1 = 2*.1047298 - 224737% - 350377*. Sincethe largest prime
divisor of p — 1 isonly 350377, it is relatively easy to compute logarithms in this group
using the Pohlig-Hellman a gorithm.

3.67 Note (miscellaneous)

(i) If nisaprime, then Algorithm 3.63 (Pohlig-Hellman) is the same as baby-step giant-
step (Algorithm 3.56).

(i) Instep1of Algorithm 3.63, afactoring algorithm which finds small factorsfirst (e.g.,
Algorithm 3.9) should be employed; if the order n is not a smooth integer, then Al-
gorithm 3.63 isinefficient anyway.

(iii) Thestoragerequiredfor Algorithm 3.56in step 2.4 can be eliminated by using instead
Pollard’s rho algorithm (Algorithm 3.60).

3.6.5 Index-calculus algorithm

The index-calculus algorithm is the most powerful method known for computing discrete
logarithms. The technique employed does not apply to al groups, but when it does, it of-
ten gives a subexponentia-time algorithm. The algorithmis first described in the general
setting of acyclic group G (Algorithm 3.68). Two examplesare then presented to illustrate
how the index-cal culus algorithm works in two kinds of groups that are used in practical
applications, namely Z,, (Example 3.69) and IF5,. (Example 3.70).

The index-calculus agorithm requires the selection of arelatively small subset S of
elements of G, called the factor base, in such away that a significant fraction of elements
of G can beefficiently expressed as products of elementsfrom S. Algorithm 3.68 proceeds
to precompute a database containing the logarithms of al the elementsin S, and then reuses
this database each time the logarithm of a particular group element is required.

The description of Algorithm 3.68 isincomplete for two reasons. Firstly, atechnique
for selecting thefactor base S is not specified. Secondly, amethod for efficiently generating
relations of the form (3.5) and (3.7) is not specified. The factor base S must be a subset of
G that is small (so that the system of equationsto be solved in step 3 is not too large), but
not too small (so that the expected number of trials to generate a relation (3.5) or (3.7) is
not too large). Suitable factor bases and techniques for generating relations are known for
somecyclicgroupsincludingZ,, (see §3.6.5(i)) and ... (see §3.6.5(ii)), and, moreover, the
multiplicative group IF;, of agenera finitefield .

3.68 Algorithm Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT: agenerator « of acyclic group G of order n, and an element g € G.
OUTPUT: the discrete logarithm y = log,, G.

1. (Sdect afactor base S) Chooseasubset S = {p1,p2, ... ,p:} of G suchthat a“sig-
nificant proportion” of all elementsin G can be efficiently expressed as a product of
elementsfrom S.

2. (Collect linear relationsinvolving logarithms of elementsin S)
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The efficient generation of public-key parameters is a prerequisite in public-key systems.
A specific example is the requirement of a prime number p to define a finite field Z, for
use in the Diffie-Hellman key agreement protocol and its derivatives (§12.6). In this case,
an element of high order in Z; is also required. Another example is the requirement of
primes p and ¢ for an RSA modulus n = pq (§8.2). In this case, the prime must be of
sufficient size, and be “random” in the sense that the probability of any particular prime
being selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. Prime numbers may be
required to have certain additional properties, in order that they do not make the associated
cryptosystems susceptible to specialized attacks. A third example is the requirement of an
irreducible polynomial f(z) of degree m over the finite field Z,, for constructing the finite
field Fym. In this case, an element of high order in Fy is also required.

Chapter outline

The remainder of §4.1 introduces basic concepts relevant to prime number generation and
summarizes some results on the distribution of prime numbers. Probabilistic primality tests,
the most important of which is the Miller-Rabin test, are presented in §4.2. True primality
tests by which arbitrary integers can be proven to be prime are the topic of §4.3; since these
tests are generally more computationally intensive than probabilistic primality tests, they
are not described in detail. §4.4 presents four algorithms for generating prime numbers,
strong primes, and provable primes. §4.5 describes techniques for constructing irreducible
and primitive polynomials, while §4.6 considers the production of generators and elements
of high orders in groups. §4.7 concludes with chapter notes and references.
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134 Ch. 4 Public-Key Parameters

4.1.1 Generating large prime numbers naively

To motivate the organization of this chapter and introduce many of the relevant concepts,
the problem of generating large prime numbers is first considered. The most natural method-
is to generate a random number n of appropriate size, and check if it is prime. This can
be done by checking whether n is divisible by any of the prime numbers < ,/n. While
more efficient methods are required in practice, to motivate further discussion consider the
following approach:

1. Generate as candidate a random odd number 7 of appropriate size.

2. Test n for primality.

3. If n is composite, return to the first step.

A slight modification is to consider candidates restricted to some search sequence start-
ing from n; a trivial search sequence which may be usedis n,n+2,n+4,n+6,.... Us-
ing specific search sequences may allow one to increase the expectation that a candidate is
prime, and to find primes possessing certain additional desirable properties a priori.

In step 2, the test for primality might be either a test which proves that the candidate
is prime (in which case the outcome of the generator is called a provable prime), or a test
which establishes a weaker result, such as that n is “probably prime” (in which case the out-
come of the generator is called a probable prime). In the latter case, careful consideration
must be given to the exact meaning of this expression. So-called probabilistic primality
tests typically determine, with mathematical certainty, which candidates n are composite,
but do not provide a mathematical proof that n is prime in the case when such a number is
declared to be “probably” so. In the latter case, however, when used properly one may often
be able to draw conclusions more than adequate for the purpose at hand. For this reason,
such tests are more properly called compositeness tests than probabilistic primality tests.
True primality tests, which allow one to conclude with mathematical certainty that a num-
ber is prime, also exist, but generally require considerably greater computational resources.

While (true) primality tests can determine (with mathematical certainty) whether a typ-
ically random candidate number is prime, other techniques exist whereby candidates n are
specially constructed such that it can be established by mathematical reasoning whether a
candidate actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniques for prime number generation is the use
of randomness. Candidates are typically generated as a function of a random input. The
technique used to judge the primality of the candidate, however, may or may not itself use
random numbers. If it does not, the technique is deterministic, and the result is reproducible;
if it does, the technique is said to be randomized. Both deterministic and randomized prob-
abilistic primality tests exist.

In some cases, prime numbers are required which have additional properties. For ex-
ample, to make the extraction of discrete logarithms in Zy, resistant to an algorithm due to
Pohlig and Hellman (§3.6.4), it is a requirement that p — 1 have a large prime divisor. Thus
techniques for generating public-key parameters, such as prime numbers, of special form
need to be considered.

4.1.2 Distribution of prime numbers

Let (z) denote the number of primes in the interval [2,z]. The prime number theorem

|

|

' (Fact 2.95) states that 7(z) ~ ﬁ.l In other words, the number of primes in the interval
(4

{

If f(x) and g(z) are two functions, then f(z) ~ g(z) means that limz_ 0o g—((% =l
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§4.2 Probabilistic primality tests 135

[2, z] is approximately equal to . The prime numbers are quite uniformly distributed, as
the following three results illustrate.

4.1 Fact (Dirichlet theorem)If gcd(a, n) = 1, then there are infinitely many primes congruent
to a modulo n.

A more explicit version of Dirichlet’s theorem is the following.

4.2 Fact Let 7(z,n, a) denote the number of primes in the interval [2, z] which are congruent
to a modulo n, where ged(a, n) = 1. Then

x
w(z,n,a) ~ W

In other words, the prime numbers are roughly uniformly distributed among the ¢(n) con-
gruence classes in Z,, for any value of nn. .

4.3 Fact (approximation for the nth prime number) Let p,, denote the nth prime number. Then
Pn ~ nlInn. More explicitly,

nlnn < p, < n(lnn+Inlnn) forn > 6.

4.2 Probabilistic primality tests

The algorithms in this section are methods by which arbitrary positive integers are tested to
provide partial information regarding their primality. More specifically, probabilistic pri-
mality tests have the following framework. For each odd positive integer n, a set W(n) C
Zn, is defined such that the following properties hold:
(i) givena € Zy, it can be checked in deterministic polynomial time whethera € W (n);
(ii) if nis prime, then W(n) = @ (the empty set); and '
(iii) if n is composite, then #W(n) > 2.
4.4 Definition If n is composite, the elements of W (n) are called witnesses to the compos-
iteness of n, and the elements of the complementary set L(n) = Z, \ W(n) are called
liars.

A probabilistic primality test utilizes these properties of the sets W (n) in the following
manner. Suppose that 2 is an integer whose primality is to be determined. An integer a €
Zn, is chosen at random, and it is checked if a € W {(n). The test outputs “composite” if
a € W (n), and outputs “prime” if a ¢ W (n). If indeed a € W (n), then n is said to fail the
primality test for the base a; in this case, n is surely composite. If a ¢ W (n), then n is said
to pass the primality test for the base a; in this case, no conclusion with absolute certainty
can be drawn about the primality of n, and the declaration *“prime” may be incorrect.?

Any single execution of this test which declares “composite” establishes this with cer-
tainty. On the other hand, successive independent runs of the test all of which return the an-
swer “prime” allow the confidence that the input is indeed prime to be increased to whatever
level is desired — the cumulative probability of error is multiplicative over independent tri-
als. If the test is run ¢ times independently on the composite number n, the probability that
n is declared “prime” all ¢ times (i.e., the probability of error) is at most (%)t.

2This discussion illustrates why a probabilistic primality test is more properly called a compositeness test.
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4.5

Definition An integer n which is believed to be prime on the basis of a probabilistic pri-
mality test is called a probable prime.

Two probabilistic primality tests are covered in this section: the Solovay-Strassen test
(§4.2.2) and the Miller-Rabin test (§4.2.3). For historical reasons, the Fermat test is first
discussed in §4.2.1; this test is not truly a probabilistic primality test since it usually fails
to distinguish between prime numbers and special composite integers called Carmichael
numbers.

4.2.1 Fermat’s test

4.6

4.7

4.8

4.9

Fermat’s theorem (Fact 2.127) asserts that if 7 is a prime andais anyinteger,1 < a < n-—1,
thena™ ! =1 (mod n). Therefore, given an integer n whose primality is under question,
finding any integer a in this interval such that this equivalence is not true suffices to prove
that n is composite.

Definition Let » be an odd composite integer. An integer a, 1 < a < n — 1, such that
a™ ! # 1 (mod n) is called a Fermat witness (to compositeness) for n.

Conversely, finding an integer a between 1 and n — 1 such that a®~! = 1 (mod n)
makes 1 appear to be a prime in the sense that it satisfies Fermat’s theorem for the base a.
This motivates the following definition and Algorithm 4.9.

Definition Let n be an odd composite integer and let @ be an integer, 1 < a < n — 1.
Then 7 is said to be a pseudoprime to the base a if a» ' = 1 (mod n). The integer a is
called a Fermat liar (to primality) for n.

Example (pseudoprime) The composite integer n = 341 (= 11 x 31) is a pseudoprime
to the base 2 since 234° = 1 (mod 341). [

Algorithm Fermat primality test

FERMAT (n,t) _
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”
1. For ¢ from 1 to ¢ do the following:
1.1 Choose arandom integera, 2 < a <n — 2.
1.2 Compute 7 = @™~ ! mod n using Algorithm 2.143.
1.3 If r # 1 then return(“composite”).

2. Return(“prime”).

If Algorithm 4.9 declares “composite”, then 7 is certainly composite. On the other
hand, if the algorithm declares “prime” then no proof is provided that n is indeed prime.
Nonetheless, since pseudoprimes for a given base a are known to be rare, Fermat’s test

. provides a correct answer on most inputs; this, however, is quite distinct from providing

a correct answer most of the time (e.g., if run with different bases) on every input. In fact,
it does not do the latter because there are (even rarer) composite numbers which are pseu-
doprimes to every base a for which ged(a,n) = 1.
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§4.2 Probabilistic primality tests 137

‘4.10 Definition A Carmichael number n is a composite integer such that ¢® ! = 1 (mod n)
' for all integers a which satisfy ged(a,n) = 1.

If n is a Carmichael number, then the only Fermat witnesses for n are those integers
a,1 < a < n— 1, for which gcd(a,n) > 1. Thus, if the prime factors of 7 are all large,
then with high probability the Fermat test declares that n is “prime”, even if the number of
iterations ¢ is large. This deficiency in the Fermat test is removed in the Solovay-Strassen
and Miller-Rabin probabilistic primality tests by relying on criteria which are stronger than
Fermat’s theorem.
This subsection is concluded with some facts about Carmichael numbers. If the prime
~ factorization of n is known, then Fact 4.11 can be used to easily determine whether n is a
Carmichael number.

4.11 Fact (necessary and sufficient conditions for Carmichael numbers) A composite integer
n is a Carmichael number if and only if the following two conditions are satisfied:

(i) m is square-free, i.e., n is not divisible by the square of any prime; and
(i) p — 1 divides n — 1 for every prime divisor p of n.

A consequence of Fact 4.11 is the following.
4.12 Fact Every Carmichael number is the product of at least three distinct primes.

4.13 Fact (bounds for the number of Carmichael numbers)

(i) There are an infinite number of Carmichael numbers. In fact, there are more than
n?/7 Carmichael numbers in the interval [2, 7], once n is sufficiently large.
(ii) The best upper bound known for C'(n), the number of Carmichael numbers < n, is:

C’(n) < nl—{1+o(1)}]n]nlnn/lnlnn forn — 00.

The smallest Carmichael number is n = 561 = 3 x 11 x 17. Carmichael numbers are
relatively scarce; there are only 105212 Carmichael numbers < 1015,

4.2.2 Solovay-Strassen test

The Solovay-Strassen probabilistic primality test was the first such test popularized by the
advent of public-key cryptography, in particular the RSA cryptosystem. There is no longer
any reason to use this test, because an alternative is available (the Miller-Rabin test) which
is both more efficient and always at least as correct (see Note 4.33). Discussion is nonethe-
less included for historical completeness and to clarify this exact point, since many people
continue to reference this test.
Recall (§2.4.5) that (2) denotes the Jacobi symbol, and is equivalent to the Legendre
‘symbol if n2 is prime. The Solovay-Strassen test is based on the following fact.

4.14 Fact (Euler’s criterion) Let n be an odd prime. Then a(®~1/2 = (2) (mod n) for all
integers @ which satisfy ged(a, n) = 1.

Fact 4.14 motivates the following definitions.

4.15 Definition Let n be an odd composite integer and let a be an integer, 1 < a <n —1.

(i) Ifeitherged(a,n) > 1ora(®~1/2 £ (2) (mod n), then ais called an Euler witness
(to compositeness) for n.

Facebook's Exhibit No. 1005
0036

MOBILEIRON, INC. - EXHIBIT 1011
Page 050



138 Ch. 4 Public-Key Parameters

(ii) Otherwise, i.e., if gcd(a,n) = 1 and a™~1/2 = (%) (mod n), then n is said to be
an Euler pseudoprime to the base a. (That is, n acts like a prime in that it satisfies
Euler’s criterion for the particular base a.) The integer a is called an Euler liar (to
primality) for n.

4.16 Example (Euler pseudoprime) The composite integer 91 (= 7 x 13) is an Euler pseudo-
- prime to the base 9 since 9*° = 1 (mod 91) and (&) = 1. O

Euler’s criterion (Fact 4.14) can be used as a basis for a probabilistic primality test be-
cause of the following result.

4.17 Fact Let n be an odd composite integer. Then at most @(n)/2 of all the numbers a, 1 -
@ < n — 1, are Euler liars for n (Definition 4.15). Here, ¢ is the Euler phi function (Defi-
nition 2.100).

4.18 Algorithm Solovay-Strassen probabilistic primality test

SOLOVAY-STRASSEN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”
1. For i from 1 to ¢ do the following:
1.1 Choose a random integer a, 2 < a <1 — 2.
1.2 Compute r = a(»~1/2 mod n using Algorithm 2.143.
1.3 If r # 1 and r # n — 1 then return(“composite™).
1.4 Compute the Jacobi symbol s = (2) using Algorithm 2.149.
L5 Ifr # s (mod n) then return (“composite”).
2. Return(“prime”).

If ged(a,n) = d, then d is a divisor of r = a(®~1)/2 mod n. Hence, testing whether
r # 1is step 1.3, eliminates the necessity of testing whether ged(a,n) # 1. If Algo-
rithm 4.18 declares “composite”, then n is certainly composite because prime numbers do
not violate Euler’s criterion (Fact 4.14). Equivalently, if n is actually prime, then the algo-
rithm always declares “prime”. On the other hand, if n is actually composite, then since the
bases a in step 1.1 are chosen independently during each iteration of step 1, Fact4.17 can be
used to deduce the following probability of the algorithm erroneously declaring “prime”.

4.19 Fact (Solovay-Strassen error-probability bound) Let n be an odd composite integer. The
probability that SOLOVAY-STRASSEN(n,¢) declares 7 to be “prime” is less than (3)*.

4.2.3 Miller-Rabin test

The probabilistic primality test used most in practice is the Miller-Rabin test, also known
as the strong pseudoprime test. The test is based on the following fact.

4.20 Fact Let n be an odd prime, and let n — 1 = 257 where = is odd. Let a be any integer
such that ged(a, n) = 1. Then either a™ = 1 (mod n) or a?" = —1 (mod n) for some
j’ 0 S .7 S s—1.

Fact 4.20 motivates the following definitions.
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§4.2 Probabilistic primality tests 139

4.21

4.22

4.23

4.24

Definition Let n be an odd composite integer and let n — 1 = 2% where r is odd. Let
be an integer in the interval [1,n — 1].

(i) Ifa” # 1 (mod n) and if a®™ # —1 (mod n) forall /,0 < j < s — 1, then a is
called a strong witness (to compositeness) for n.

(i) Otherwise, i.e., if either a” = 1 (mod n) or a®” = 1 (mod n) for some j, 0 <
7 < s — 1, then n is said to be a strong pseudoprime to the base a. (That is, n acts
like a prime in that it satisfies Fact 4.20 for the particular base a.) The integer a is
called a strong liar (to primality) for n.

Example (strong pseudoprime) Consider the composite integer n = 91 (= 7 x 13). Since
91-1=90=2x45,s=1andr = 45. Since 9" = 9% = 1 (mod 91), 91 is a strong
pseudoprime to the base 9. The set of all strong liars for 91 is:

{1,9,10,12,16,17,22, 29, 38,53, 62, 69, 74, 75, 79, 81, 82, 90}.

Notice that the number of strong liars for 91 is 18 = ¢(91)/4, where ¢ is the Buler phi
function (cf. Fact 4.23). i 0O

Fact 4.20 can be used as a basis for a probabilistic primality test due to the following result.
Fact If n is an odd composite integer, then at most % of all the numbersa,1 < a <n-—1,

are strong liars for n. In fact, if n. # 9, the number of strong liars for 7 is at most ¢(n)/4,
where ¢ is the Euler phi function (Definition 2.100).

Algorithm Miller-Rabin probabilistic primality test

MILLER-RABIN(n,t)
INPUT: an odd integer n > 3 and security parameter ¢ > 1.
OUTPUT: an answer “prime” or “‘composite” to the question: “Is n prime?”
1. Write n — 1 = 2°r such that 7 is odd.
2. For ¢ from 1 to ¢ do the following:
2.1 Choose a random integera, 2 < a < n — 2.
2.2 Compute y = a” mod n using Algorithm 2.143.
2.3 If y # 1 and y # n — 1 then do the following:
j1
While j < s —1and y # n — 1 do the following:
Compute y<y* mod 7.
If y = 1 then return(“‘composite™).
Jjej+ L
If y % n — 1 then return (“composite”).
3. Return(“prime”).

Algorithm 4.24 tests whether each base a satisfies the conditions of Definition 4.21(i).
In the fifth line of step 2.3, if y = 1, then a®’" = 1 (mod n). Since it is also the case that
a? 7' # +1 (mod n), it follows from Fact 3.18 that n is composite (in fact gcd(a? '™ -
1,7) is a non-trivial factor of 7). In the seventh line of step 2.3,if y # n — 1, thena is a
strong witness for n. If Algorithm 4.24 declares “composite”, then n is certainly compos-
ite because prime numbers do not violate Fact 4.20. Equivalently, if n is actually prime,
then the algorithm always declares “prime”. On the other hand, if  is actually composite,
then Fact 4.23 can be used to deduce the following probability of the algorithm erroneously
declaring “prime”.
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140 Ch. 4 Public-Key Parameters

4.25 Fact (Miller-Rabin error-probability bound) For any odd composite integer 7, the proba-
bility that MILLER-RABIN(n,t) declares . to be “prime” is less than (})*.

4.26 Remark (number of strong liars) For most composite integers n, the number of strong
liars for m is actually much smaller than the upper bound of ¢(n)/4 given in Fact 4.23.
Consequently, the Miller-Rabin error-probability bound is much smaller than (‘11—)t for most
positive integers n.

4.27 Example (some composite integers have very few strong liars) The only strong liars for
the composite integer 7 = 105 (= 3 X 5 x 7) are 1 and 104. More generally, if £ > 2 and
n is the product of the first £ odd primes, there are only 2 strong liars for 7, namely 1 and
n—1. |

4.28 Remark (fixed bases in Miller-Rabin) If a; and a9 are strong liars for n, their product
a1az is very likely, but not certain, to also be a strong liar for n. A strategy that is some-
times employed is to fix the bases a in the Miller-Rabin algorithm to be the first few primes
(composite bases are ignored because of the preceding statement), instead of choosing them
at random.

4.29 Definition Letp;,po,... ,p: denote the first ¢ primes. Then 1), is defined to be the small-
' est positive composite integer which is a strong pseudoprime to all the bases p1, pa, ... , P¢.

The numbers 1); can be interpreted as follows: to determine the primality of any integer
n < Y, it is sufficient to apply the Miller-Rabin algorithm to n with the bases a being the
first ¢ prime numbers. With this choice of bases, the answer returned by Miller-Rabin is
always correct. Table 4.1 gives the value of ¢; for 1 <t < 8.

I

| ¥ |
2047

1373653
25326001
3215031751
2152302898747
3474749660383
341550071728321
341550071728321

00 3 O UL b W b |

Table 4.1: Smallest strong pseudoprimes. The table lists values of 1y, the smallest positive composite
integer that is a strong pseudoprime to each of the first t prime bases, for 1 < t < 8.

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin

Fact 4.30 describes the relationships between Fermat liars, Euler liars, and strong liars (see
Definitions 4.7, 4.15, and 4.21).

4.30 Fact Let n be an odd composite integer.

(i) If a is an Euler liar for n, then it is also a Fermat liar for n.
(ii) If a is a strong liar for 7, then it is also an Euler liar for n.
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§4.2 Probabilistic primality tests 141

4.31 Example (Fermat, Euler, strong liars) Consider the composite integer n = 65 (= 5 x
13). The Fermat liars for 65 are {1,8,12,14,18,21,27, 31, 34, 38,44, 47,51,53,57, 64}.
The Euler liars for 65 are {1,8,14,18,47,51,57, 64}, while the strong liars for 65 are
{1,8,18,47,57,64}. 0J

For a fixed composite candidate n, the situation is depicted in Figure 4.1. This set-

e —

Fermat liars for n

"’fEurafHarsmrn \

K (rcmg liars for -t )
_.--"/

Figure 4.1: Relationships between Fermat, Euler, and strong liars for a composite integer n.

e
___-—

tles the question of the relative accuracy of the Fermat, Solovay-Strassen, and Miller-Rabin
tests, not only in the sense of the relative correctness of each test on a fixed candidate n, but
also in the sense that given n, the specified containments hold for each randomly chosen
base a. Thus, from a correctness point of view, the Miller-Rabin test is never worse than the
Solovay-Strassen test, which in turn is never worse than the Fermat test. As the following
result shows, there are, however, some composite integers n for which the Solovay-Strassen
and Miller-Rabin tests are equally good.

4.32 Fact If n = 3 (mod 4), then a is an Euler liar for n if and only if it is a strong liar for 7.

What remains is a comparison of the computational costs. While the Miller-Rabin test
may appear more complex, it actually requires, at worst, the same amount of computation
as Fermat’s test in terms of modular multiplications; thus the Miller-Rabin test is better than
Fermat’s test in all regards. At worst, the sequence of computations defined in MILLER-
RABIN(n,1) requires the equivalent of computing a(*~1)/2 mod n. It is also the case that
MILLER-RABIN(n,1) requires less computation than SOLOVAY-STRASSEN(n,1), the
latter requiring the computation of a{®~1)/2 mod n and possibly a further Jacobi symbol
computation. For this reason, the Solovay-Strassen is both computationally and conceptu-
ally more complex.

4.33 Note (Miller-Rabin is better than Solovay-Strassen) In summary, both the Miller-Rabin
and Solovay-Strassen tests are correct in the event that either their input is actually prime,
or that they declare their input composite. There is, however, no reason to use the Solovay-
Strassen test (nor the Fermat test) over the Miller-Rabin test. The reasons for this are sum-
marized below.

(i) The Solovay-Strassen test is computationally more expensive.
(ii) The Solovay-Strassen test is harder to implement since it also involves Jacobi symbol
computations.
(ii1) The error probability for Solovay-Strassen is bounded above by ( )t, while the error
probability for Miller-Rabin is bounded above by ( ek
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142 Ch. 4 Public-Key Parameters
(iv) Any strong liar for n is also an Euler liar for n. Hence, from a correctness point of
view, the Miller-Rabin test is never worse than the Solovay-Strassen test.
Ty

4.3 (True) Primality tests

4.34

The primality tests in this section are methods by which positive integers can be proven
to be prime, and are often referred to as primality proving algorithms. These primality
tests are generally more computationally intensive than the probabilistic primality tests of
§4.2. Consequently, before applying one of these tests to a candidate prime 7, the candidate
should be subjected to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).

Definition An integer n which is believed to be prime on the basis of a primality proving
algorithm is called a provable prime.

4.3.1 Testing Mersenne numbers

4.35

4.36

4.37

Efficient algorithms are known for testing primality of some special classes of numbers,
such as Mersenne numbers and Fermat numbers. Mersenne primes 7 are useful because
the arithmetic in the field Z,, for such n can be implemented very efficiently (see §14.3.4).
The Lucas-Lehmer test for Mersenne numbers (Algorithm 4.37) is such an algorithm.

Definition Let s > 2 be an integer. A Mersenne number is an integer of the form 25 — 1.
If 25 — 1 is prime, then it is called a Mersenne prime.

The following are necessary and sufficient conditions for a Mersenne number to be prime.

Fact Let s > 3. The Mersenne number nn = 25 — 1 is prime if and only if the following
two conditions are satisfied:
(i) s is prime; and
(ii) the sequence of integers defined by ug = 4 and ug41 = (uj — 2) mod n fork > 0
satisfies ugs_9 = 0.

Fact 4.36 leads to the following deterministic polynomial-time algorithm for dctermin-
ing (with certainty) whether a Mersenne number is prime.

Algorithm Lucas-Lehmer primality test for Mersenne numbers

INPUT: a Mersenne number n = 25 — 1 with s > 3.

‘OUTPUT: an answer “prime” or “composite” to the question: “Is n prime?”

1. Use trial division to check if s has any factors between 2 and |+/3s]. If it does, then
return(‘‘composite”).

2. Set u+4.

3. For k from 1 to s — 2 do the following: compute u¢(u? — 2) mod n.

4. If u = 0 then return(“prime”). Otherwise, return(“‘composite”).

It is unknown whether there are infinitely many Mersenne primes. Table 4.2 lists the
33 known Mersenne primes.

Facebook's Exhibit No. 1005

0041

MOBILEIRON, INC. - EXHIBIT 1011

Page 055



§4.3 (True) Primality tests 143

Index M; | decimal Index M; | decimal
9 digits j digits
1 D) 1 18 3217 969
2 3 1 19 4253 1281
3 5 2 20 4423 1332
4 7 3 21 9689 2017
5 13 4 22 9941 2993
6 T 6 23 11213 3376
7 19 6 24 19937 6002
8 31 10 25 21701 6533
9 61 19 26 23209 6987
10 89 27 27 44497 13395
11 107 33 28 86243 25962
12 127 39 29 110503 33265
13 521 157 30 132049 39751
14 607 183 31 216091 65050
15 1279 386 327 756839 | 227832
16 2203 664 337 859433 | 258716
17 2281 687

Table 4.2: Known Mersenne primes. The table shows the 33 known exponents M;, 1 < j < 33, for
which 2™ — 1 is a Mersenne prime, and also the number of decimal digits in 2Mi — 1. The question
marks after j = 32 and j = 33 indicate that it is not known whether there are any other exponents s
between Mz and these numbers for which 2° — 1 is prime.

| 4.3.2 Primality testing using the factorization of n — 1

4.38

4.39

This section presents results which can be used to prove that an integer 7 is prime, provided
that the factorization or a partial factorization of n—1 is known. It may seem odd to consider
a technique which requires the factorization of n — 1 as a subproblem — if integers of this
size can be factored, the primality of n2 itself could be determined by factoring n. However,
the factorization of n— 1 may be easier to compute if n has a special form, such as a Fermat
numbern = 22° + 1. Another situation where the factorization of 7 — 1 may be easy to
compute is when the candidate n is “constructed” by specific methods (see §4.4.4).

Fact Let n > 3 be an integer. Then n is prime if and only if there exists an integer a
satisfying:

(i) a®! =1 (mod n); and

(i) a™ /2 £1 (mod n) for each prime divisor g of nn — 1.

This result follows from the fact that Z,. has an element of order n — 1 (Definition 2.128)
if and only if n is prime; an element a satisfying conditions (i) and (ii) has order n — 1.

Note (primality test based on Fact 4.38) If n is a prime, the number of elements of order
n — 1 is precisely ¢(n — 1). Hence, to prove a candidate n prime, one simply chooses
an integer a € Z, at random and uses Fact 4.38 to check if a has order » — 1. If this is
the case, then n is certainly prime. Otherwise, another a € Z,, is selected and the test is
repeated. If n is indeed prime, the expected number of iterations before an element a of
order n — 1 is selected is O(In Inn); this follows since (n — 1)/¢(n — 1) < 6Inlnn for
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n > 5 (Fact 2.102). Thus, if such an a is not found after a “reasonable”” number (for ex-
ample, 12 Inlnn) of iterations, then n is probably composite and should again be subjected
to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).2 This method is, in
effect, a probabilistic compositeness test.

The next result gives a method for proving primality which requires knowledge of only
a partial factorization of n — 1.

4.40 Fact (Pocklington’s theorem) Let n > 3 be an integer, and let n = RF +1 (i.e. F' divides
n — 1) where the prime factorization of F' is F' = H;=1 qjj. If there exists an integer a
satisfying:

(@) a™ ! =1 (mod n); and

(i) ged(a™ 1/% —1,n) =1foreachj, 1 < j <t
then every prime divisor p of n is congruent to 1 modulo F. Tt follows that if F' > \/n—1,
then n is prime.

Ifnis indeéd prime, then the following result establishes that most integers a satisfy
conditions (i) and (ii) of Fact 4.40, provided that the prime divisors of F' > {/n — 1 are
sufficiently large.

4.41 Fact Letn = RF + 1 be an odd prime with F' > 4/n — 1.and ged(R, F') = 1. Let the
distinct prime factors of F' be g1, g2, . . . , ¢:. Then the probability that a randomly selected
base a, 1 < a < n — 1, satisfies both: (i) a®~! = 1 (mod n); and (i) gcd(a(*~1/% —
1,n) =1foreachyj,1<j <{iis H;___l(l —1/g;) >1- Z§.=1 1/q;.

Thus, if the factorization of a divisor ' > /n — 1 of n — 1 is known, one simply
chooses random integers a in the interval [2, n — 2] until one is found satisfying conditions i
(i) and (ii) of Fact 4.40, implying that n is prime. If such an a is not found after a “rea-
sonable” number of iterations,* then n is probably composite and should be subjected to a
probabilistic primality test (footnote 3 also applies here). This method is, in effect, a prob-
abilistic compositeness test.

The next result gives a method for proving primality which only requires the factoriza-
tion of a divisor F' of n— 1 that is greater than /n. For an example of the use of Fact 4.42,
see Note 4.63.

4.42 Fact Letn > 3 be an odd integer. Letn = 2RFE' + 1, and suppose that there exists an
integer a satisfying both: (i) @®~! = 1 (mod n); and (ii) gcd(a»~V/9 — 1,n) = 1 for
each prime divisor g of F'. Let z > 0 and y be defined by 2R = 2F' + yand 0 < y < F.
If F > ¢n and if y? — 4z is neither 0 nor a perfect square, then 7 is prime.

4.3.3 Jacobi sum test

The Jacobi sum test is another true primality test. The basic idea is to test a set of con-
gruences which are analogues of Fermat’s theorem (Fact 2.127(i)) in certain cyclotomic
rings. The running time of the Jacobi sum test for determining the primality of an integer
nis O((In n)¢'n 217 bit operations for some constant c. This is “almost” a polynomial-
time algorithm since the exponent In In Inn acts like a constant for the range of values for

3 Another approach is to run both algorithms in parallel (with an unlimited number of iterations), until one of
them stops with a definite conclusion “prime” or “composite”. »
4The number of iterations may be taken to be T where PT < (3)'°°, and where P = 1—[T}_(1—1/g;).

—
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n of interest. For example, if n < 252, then Inlnlnn < 1.78. The version of the Ja-
cobi sum primality test used in practice is a randomized algorithm which terminates within
O(k(inn)eininlnn) steps with probability at least 1 — (1)* for every k£ > 1, and always
gives a correct answer. One drawback of the algorithm is that it does not produce a “certifi-
cate” which would enable the answer to be verified in much shorter time than running the
algorithm itself.

The Jacobi sum test is, indeed, practical in the sense that the primality of numbers that
are several hundred decimal digits long can be handled in just a few minutes on a com-
puter. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 4.24), and the resulting code is not as compact. The details of the algorithm are
complicated and are not given here; pointers to the literature are given in the chapter notes
on page 166.

4.3.4 Tests using elliptic curves’

Elliptic curve primality proving algorithms are based on an elliptic curve analogue of Pock-
lington’s theorem (Fact 4.40). The version of the algorithm used in practice is usually re-
ferred to as Atkin’s test or the Elliptic Curve Primality Proving algorithm (ECPP). Under
heuristic arguments, the expected running time of this algorithm for proving the primality
of an integer n has been shown to be O((In 7)5+¢) bit operations for any € > 0. Atkin’s
test has the advantage over the Jacobi sum test (§4.3.3) that it produces a short certificate of
primality which can be used to efficiently verify the primality of the number. Atkin’s test
has been used to prove the primality of numbers more than 1000 decimal digits long. \

The details of the algorithm are complicated and are not presented here; pointers to the
literature are given in the chapter notes on page 166.

4.4 Prime number generation

This section considers algorithms for the generation of prime numbers for cryptographic
purposes. Four algorithms are presented: Algorithm 4.44 for generating probable primes
(see Definition 4.5), Algorithm 4.53 for generating strong primes (see Definition 4.52), Al-
gorithm 4.56 for generating probable primes p and g suitable for use in the Digital Signature
Algorithm (DSA), and Algorithm 4.62 for generating provable primes (see Definition 4.34).

4.43 Note (prime generation vs. primality testing) Prime number generation differs from pri-
mality testing as described in §4.2 and §4.3, but may and typically does involve the latter.
The former allows the construction of candidates of a fixed form which may lead to more
efficient testing than possible for random candidates.

4.4.1 Random search for probable primes

By the prime number theorem (Fact 2.95), the proportion of (positive) integers < z that
are prime is approximately 1/ Inz. Since half of all integers < z are even, the proportion
of odd integers < z that are prime is approximately 2/ Inz. For instance, the proportion
of all odd integers < 2512 that are prime is approximately 2/(512 - In(2)) = 1/177. This
suggests that a reasonable strategy for selecting a random k-bit (probable) prime is to re-
peatedly pick random k-bit odd integers n until one is found that is declared to be “prime”
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4.44

4.45

4.46

4.47

by MILLER-RABIN(n,t) (Algorithm 4.24) for an appropriate value of the security param-
eter ¢ (discussed below).

If a random k-bit odd integer n is divisible by a small prime, it is less computationally
expensive to rule out the candidate n by trial division than by using the Miller-Rabin test.
Since the probability that a random integer n has a small prime divisor is relatively large,
before applying the Miller-Rabin test, the candidate n should be tested for small divisors
below a pre-determined bound B. This can be done by dividing n by all the primes below
B, or by computing greatest common divisors of n and (pre-computed) products of several
of the primes < B. The proportion of candidate odd integers n not ruled out by this trial
divisionis [ [5. ,« p(1— %) which, by Merten’s theorem, is approximately 1.12/ In B (here
p ranges over prime values). For example, if B = 256, then only 20% of candidate odd

integers n pass the trial division stage, i.e., 80% are discarded before the more costly Miller-

Rabin test is performed.

Algorithm Random search for a prime using the Miller-Rabin test

RANDOM-SEARCH(k,t)
INPUT: the required bitlength & of the prime, and a security parameter ¢. (See Note 4.49
for guidance on selecting ¢.)
OUTPUT: a random k-bit probable prime.
1. Generate an odd k-bit integer n at random.
2. Use trial division to determine whether n is divisible by any odd prime < B (see
Note 4.45 for guidance on selecting B). If it is then go to step 1.
3. If MILLER-RABIN(n,t) (Algorithm 4.24) outputs “prime” then return(n).
Otherwise, go to step 1.

Note (optimal trial division bound B) Let E denote the time for a full k-bit modular ex-
ponentiation, and let D denote the time required for ruling out one small prime as divisor
of a k-bit integer. (The values EZ and D depend on the particular implementation of long-
integer arithmetic.) Then the trial division bound B that minimizes the expected running
time of Algorithm 4.44 for generating a k-bit prime is roughly B = E/D. A more accurate
estimate of the optimum choice for B can be obtained experimentally. The odd primes up
to B can be precomputed and stored in a table. If memory is scarce, a value of B that is

“smaller than the optimum value may be used.

Since the Miller-Rabin test does not provide a mathematical proof that a number is in-
deed prime, the number n returned by Algorithm 4.44 is a probable prime (Definition 4.5).
It is important, therefore, to have an estimate of the probability that » is in fact composite.

Definition The probability that RANDOM-SEARCH(k,t) (Algorithm 4.44) returns a
composite number is denoted by py ¢.

Note (remarks on estimating pg,;) It is tempting to conclude directly from Fact 4.25 that
Pr,t < (%)t. This reasoning is flawed (although typically the conclusion will be correct in
practice) since it does not take into account the distribution of the primes. (For example, if
the candidate n were chosen from a set S' of composite numbers, the probability of error is
1.) The following discussion elaborates on this point. Let X represent the event that n is
composite, and let Y; denote the event than MILLER-RABIN(n,t) declares n to be prime.
Then Fact 4.25 states that P(Y3|X) < (§)*. What is relevant, however, to the estimation of
Dk.¢ 18 the quantity P(X|Y;). Suppose that candidates n are drawn uniformly and randomly
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from a set S of odd numbers, and suppose p is the probability that 7 is prime (this depends
on the candidate set 5). Assume also that 0 < p < 1. Then by Bayes’ theorem (Fact 2.10):

PX)P(WIX) _ P(YX) _ 1 /1Y
P) P Sp()’

P(X|Y;) = ;
since P(Y;) > p. Thus the probability P(X|Y;) may be considerably larger than (3 ) ifpis
small. However, the error-probability of Miller-Rabin is usually far smaller than ( )t (see
Remark 4.26). Using better estimates for P(Y;|X) and estimates on the number of k-bit
prime numbers, it has been shown that py ; is, in fact, smaller than (%)t for all sufficiently
large k. A more concrete result is the following: if candidates n are chosen at random from
the set of odd numbers in the interval [3, z], then P(X|Y;) < (3)* for all z > 10°.

Further refinements for P(Y;|X) allow the following explicit upper bounds on py, ; for
various values of k and t. 5

4.48 Fact (some upper bounds on py s in Algorithm 4.44)
() pr1 < K242 VE fork > 2.
(i) o, < k32204~ 1/242-VEk for (¢ = 2,k > 88) or (3 < £ < k/9, k > 21).
(ii) pr,e < g5k275 4 LK18/4270/2-2t | 19E2—R/4~3t for /9 < ¢ < k/4, k > 21.
(iv) pre < ;k15/42 k22 or i B4 k> 21,

For example, if k = 512 and ¢ = 6, then Fact 4.48(ii) gives p512,6 < (%)88. In other
words, the probability that RANDOM-SEARCH(512,6) returns a 512-bit composite integer
is less than ()%, Using more advanced techniques, the upper bounds on py ; given by
Fact 4.48 have been improved. These upper bounds arise from complicated formulae which
are not given here. Table 4.3 lists some improved upper bounds on py, ; for some sample
values of k£ and t. As an example, the probability that RANDOM-SEARCH(500,6) returns
a composite number is < ( 2)92 Notice that the values of py; implied by the table are
considerably smaller than (3)* = (3)%.

t
k 1 2 3 4 5 6 { 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 b1 54 57
200 | 11 25 34 41 47 52 b7 61 65 69
250 | 14 29 39 47 54 60 65 70 75 79
300 | 19. 33 44 53 60 67 73 78 83 88
350 | 28 38 48 58 66 73 8 86 91 97
400 | 37 46 55 63 72 80 8 93 99 105
450 | 46 54 62 70 78 85 93 100 106 112
500 | 66 63 70 78 8 92 99 106 113 119
550 | 65 72 79 86 93 100 107 113 119 126
600 | 75 82 88 95 102 108 115 121 127 133

Table 4.3: Upper bounds on pr for sample values of k and t. An entry j corresponding to k and t
implies pr,t < (% ¥,

5The estimates of Dk, presented in the remainder of this subsection were derived for the situation where Al-
gorithm 4.44 does not use trial division by small primes to rule out some candidates 7. Since trial division never
rules out a prime, it can only give a better chance of rejecting composites. Thus the error probability py, ; might
actually be even smaller than the estimates given here.
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4.49

4.50

4.51

Note (controlling the error probability) In practice, one is usually willing to tolerate an er-
ror probability of (%)% when using Algorithm 4.44 to generate probable primes. For sam-
ple values of k, Table 4.4 lists the smallest value of ¢ that can be derived from Fact 4.48
for which pg: < (%)80. For example, when generating 1000-bit probable primes, Miller-
Rabin with ¢ = 3 repetitions suffices. Algorithm 4.44 rules out most candidates n either
by trial division (in step 2) or by performing just one iteration of the Miller-Rabin test (in
step 3). For this reason, the only effect of selecting a larger security parameter ¢ on the run-
ning time of the algorithm will likely be to increase the time required in the final stage when
the (probable) prime is chosen.

k] ¢l kel k|t k]
100 | 27 || 500 | 6 || 900 | 3 || 1300
150 | 18 || 550 950 1350 1750
200 | 15 || 600 1000 1400 1800

t] k|¢]
2
2
2
250 | 12 || 650 1050 1450 | 2 || 1850
2
2
2
2

1700 | 2

300 9 || 700 1100 1500 1900
350 8 || 750 1150 1550 1950
400 7 || 800 1200 1600 2000
450 6 || 850 1250 1650 2050

b i B R OOt
WL W W W
NN NN N NDN

Table 4.4: For sample k, the smallest t from Fact 4.48 is given for which py < (%)%

Remark (Miller-Rabin test with base a = 2) The Miller-Rabin test involves exponenti-
ating the base a; this may be performed using the repeated square-and-multiply algorithm
(Algorithm 2.143). If a = 2, then multiplication by a is a simple procedure relative to mul-
tiplying by a in general. One optimization of Algorithm 4.44 is, therefore, to fix the base
a = 2 when first performing the Miller-Rabin test in step 3. Since most composite numbers
will fail the Miller-Rabin test with base a = 2, this modification will lower the expected
running time of Algorithm 4.44.

Note (incremental search)

(i) An alternative technique to generating candidates n at random in step 1 of Algo-
rithm 4.44 is to first select a random k-bit odd number ng, and then test the s numbers
n = ng,ng +2,n0+4, ... ,ng +2(s — 1) for primality. If all these s candidates are
found to be composite, the algorithm is said to have failed. If s = c-1n 2* where cis a
constant, the probability gz, s that this incremental search variant of Algorithm 4.44

returns a composite number has been shown to be less than §k32~ vE for some con-
stant §. Table 4.5 gives some explicit bounds on this error probability for k¥ = 500 and
t < 10. Under reasonable number-theoretic assumptions, the probability of the algo-
rithm failing has been shown to be less than 2e~2¢ for large k (here, e ~ 2.71828).

(ii) Incremental search has the advantage that fewer random bits are required. Further-
more, the trial division by small primes in step 2 of Algorithm 4.44 can be accom-
plished very efficiently as follows. First the values R[p] = ng mod p are computed
for each odd prime p < B. Each time 2 is added to the current candidate, the values
in the table R are updated as R[p]+-(R|[p] + 2) mod p. The candidate passes the trial
division stage if and only if none of the R[p] values equal 0.

(iii) If B is large, an alternative method for doing the trial division is to initialize a table
S[i]«-0 for 0 < i < (s — 1); the entry S[3] corresponds to the candidate ng + 27.
For each odd prime p < B, ng mod p is computed. Let j be the smallest index for
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t
it 2 3 4 5 6 7 8 9 10
1|17 37 51 63 72 8 89 96 103 110
5113 32 46 58 68 77 85 92 99 105
10|11 30 44 56 66 75 83 90 97 103

Table 4.5: Upper bounds on the error probability of incremental search (Note 4.51) for k = 500
and sample values of ¢ and t. An entry j corresponding to ¢ and t implies gsoot,s < (3)7, where
s =c-In2%00,

which (n9 + 27) = 0 (mod p). Then S[5] and each p'" entry after it are setto 1. A
candidate ng + 2i then passes the trial division stage if and only if S[i] = 0. Note
that the estimate for the optimal trial division bound B given in Note 4.45 does not
apply here (nor in (ii)) since the cost of division is amortized over all candidates.

4.4.2 Strong primes

The RSA cryptosystem (§8.2) uses a modulus of the form n = pq, where p and g are dis-
tinct odd primes. The primes p and g must be of sufficient size that factorization of their
product is beyond computational reach. Moreover, they should be random primes in the
sense that they be chosen as a function of a random input through a process defining a pool
of candidates of sufficient cardinality that an exhaustive attack is infeasible. In practice, the
resulting primes must also be of a pre-determined bitlength, to meet system specifications.
The discovery of the RSA cryptosystem led to the consideration of several additional con-
straints on the choice of p and g which are necessary to ensure the resulting RSA system safe
from cryptanalytic attack, and the notion of a strong prime (Definition 4.52) was defined.
These attacks are described at length in Note 8.8(iii); as noted there, it is now believed that
strong primes offer little protection beyond that offered by random primes, since randomly
selected primes of the sizes typically used in RSA moduli today will satisfy the constraints
with high probability. On the other hand, they are no less secure, and require only minimal
additional running time to compute; thus, there is little real additional cost in using them.

4,52 Definition A prime number p is said to be a strong prime if integers r, s, and £ exist such
-that the following three conditions are satisfied:

(i) p — 1 has a large prime factor, denoted r;
(i) p + 1 has a large prime factor, denoted s; and
(ii1) 7 — 1 has a large prime factor, denoted £.

In Definition 4.52, a precise qualification of “large” depends on specific attacks that should
be guarded against; for further details, see Note 8.8(iii).
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4.53 Algorithm Gordon's algorithm for generating a strong prime

SUMMARY: a strong prime p is generated.
1. Generate two large random primes s and ¢ of roughly equal bitlength (see Note 4.54).
2. Select an integer ig. Find the first prime in the sequence 2it + 1, for i = 4,1 +

1,40 + 2, ... (see Note 4.54). Denote this prime by r = 2it + 1.

. Compute pg = (25" "2 mod r)s — 1.

4. Select an integer jg. Find the first prime in the sequence pg + 2j7s, for § = jo, jo +
1,70 + 2,... (see Note 4.54). Denote this prime by p = po + 2jrs.

5. Return(p).

w

Justification. To see that the prime p returned by Gordon’s algorithm is indeed a strong
prime, observe first (assuming r # s) that s"~! =1 (mod r); this follows from Fermat’s
theorem (Fact 2.127). Hence, pg = 1 (mod r) and pp = —1 (mod s). Finally (cf. Defi-
nition 4.52),

(i) p—1=po+2jrs —1=0 (mod ), and hence p — 1 has the prime factor r;
(ii) p+1=po+2jrs+1=0 (mod s), and hence p + 1 has the prime factor s; and
(iii) 7 — 1 = 2it = 0 (mod t), and hence r — 1 has the prime factor ¢.

4.54 Note (implementing Gordon'’s algorithm)

(i) The primes s and t required in step 1 can be probable primes generated by Algo-
rithm 4.44. The Miller-Rabin test (Algorithm 4.24) can be used to test each candidate
_for primality in steps 2 and 4, after ruling out candidates that are divisible by a small
prime less than some bound B. See Note 4.45 for guidance on selecting B. Since the
Miller-Rabin test is a probabilistic primality test, the output of this implementation
of Gordon’s algorithm is a probable prime.
(ii) By carefully choosing the sizes of primes s, ¢ and parameters ig, jo, one can control
the exact bitlength of the resulting prime p. Note that the bitlengths of r and s will
be about half that of p, while the bitlength of ¢ will be slightly less than that of r.

4.55 Fact (running time of Gordon’s algorithm) If the Miller-Rabin test is the primality test used
in steps 1, 2, and 4, the expected time Gordon’s algorithm takes to find a strong prime is only
about 19% more than the expected time Algorithm 4.44 takes to find a random prime.

4.4.3 NIST method for generating DSA primes

Some public-key schemes require primes satisfying various specific conditions. For exam-
ple, the NIST Digital Signature Algorithm (DSA of §11.5.1) requires two primes p and ¢
satisfying the following three conditions:
(i) 2% < ¢ < 2'99; that is, g is a 160-bit prime;

(i) 251 < p < 2L for a specified L, where L = 512 + 641 for some 0 < [ < 8; and

(ii1) g divides p — 1.
This section presents an algorithm for generating such primes p and ¢g. In the following,
H denotes the SHA-1 hash function (§9.53) which maps bitstrings of bitlength < 2%4 1o
160-bit hash-codes. Where required, an integer & in the range 0 < z < 29 whose binary
representationis z = 4129 ' + 2492972 + ...+ 2922 + 212 + z¢ should be converted
to the g-bit sequence (zg_1Z4—3 - - - T221Zp ), and vice versa.
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4.56 Algorithm NIST method for generating DSA primes

INPUT: an integer 1, 0 <[ < 8.
OUTPUT: a 160-bit prime ¢ and an L-bit prime p, where L = 512 + 64/ and ¢|(p — 1).
1. Compute L = 512 + 641. Using long division of (L — 1) by 160, find n, b such that
L —1=160n+b, where 0 < b < 160.
2. Repeat the following:
2.1 Choose a random seed s (not necessarily secret) of bitlength g > 160.
2.2 Compute U = H(s)®H((s + 1) mod 29).
2.3 Form ¢ from U by setting to 1 the most significant and least significant bits of
U. (Note that g is a 160-bit odd integer.)
2.4 Test g for primality using MILLER-RABIN(g,t) for ¢ > 18 (see Note 4.57).
Until ¢ is found to be a (probable) prime.
3. Set i+-0, j¢-2.
4. While i < 4096 do the following:
4.1 For k from 0 to n do the following: set Vi~ H((s + j + k) mod 29).
4.2 For the integer W defined below, let X = W + 251, (X is an L-bit integer.)

W = Vo + V121%0 4 132520 4 ... 4+ 1, 12690 4 (V,, mod 2°)219°".
4.3 Computec = X mod 2gandsetp = X —(c—1). (Notethatp = 1 (mod 2q).)
4.4 1f p > 281 then do the following:
Test p for primality using MILLER-RABIN(p,?) for £ > 5 (see Note 4.57).
If p is a (probable) prime then return(g,p). ’
4.5 Setiti-+1,jj+n+L
5. Gotostep 2.

4.57 Note (choice of primality test in Algorithm 4.56)

(i) The FIPS 186 document where Algorithm 4.56 was originally described only speci-
fies that a robust primality test be used in steps 2.4 and 4.4, i.e., a primality test where
the probability of a composite integer being declared prime is at most (3)5°. If the
heuristic assumption is made that g is a randomly chosen 160-bit integer then, by Ta-
ble 4.4, MILLER-RABIN(q,18) is a robust test for the primality of ¢. If p is assumed
to be a randomly chosen L-bit integer, then by Table 4.4, MILLER-RABIN(p,5) is
a robust test for the primality of p. Since the Miller-Rabin test is a probabilistic pri-
mality test, the output of Algorithm 4.56 is a probable prime.

(i) To improve performance, candidate primes g and p should be subjected to trial divi-
sion by all odd primes less than some bound B before invoking the Miller-Rabin test.
See Note 4.45 for guidance on selecting B.

4.58 Note (“weak” primes cannot be intentionally constructed) Algorithm 4.56 has the feature
that the random seed s is not input to the prime number generation portion of the algorithm
itself, but rather to an unpredictable and uncontrollable randomization process (steps 2.2
and 4.1), the output of which is used as the actual random seed. This precludes manipulation
of the input seed to the prime number generation. If the seed s and counter i are made public,
then anyone can verify that g and p were generated using the approved method. This feature

prevents a central authority who generates p and g as system-wide parameters for use in the.

DSA from intentionally constructing “weak” primes ¢ and p which it could subsequently
exploit to recover other entities’ private keys.
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4.4.4 Constructive techniques for provable primes

4.59

4.60

4.61

Maurer’s algorithm (Algorithm 4.62) generates random provable primes that are almost
uniformly distributed over the set of all primes of a specified size. The expected time for
generating a prime is only slightly greater than that for generating a probable prime of equal
size using Algorlthm 4.44 with security parameter ¢ = 1. (In practice, one may wish to
choose ¢ > 1 in Algorithm 4.44; cf. Note 4.49.)

The main idea behind Algorithm 4.62 is Fact 4.59, which is a slight modification of
Pocklington’s theorem (Fact 4.40) and Fact 4.41.

Fact Letn > 3 be an odd integer, and suppose that n = 1+ 2Rq where g is an odd prime.
Suppose further that ¢ > R.

(i) If there exists an integer a satisfying a®~! = 1 (mod n) and ged(a?? — 1,n) = 1,
then n is prime. ,

(i) If nis prime, the probability that a randomly selected base a, 1 < a < n—1, satisfies
a™ ! =1 (mod n) and ged(a®? — 1,n) = 1is (1 — 1/q).

Algorithm 4.62 recursively generates an odd prime ¢, and then chooses random integers R,
R < g, untiln = 2Rqg + 1 can be proven prime using Fact 4.59(i) for some base a. By
Fact 4.59(ii) the proportion of such bases is 1 — 1/q for prime n. On the other hand, if n is
composite, then most bases a will fail to satisfy the condition a®~! = 1 (mod n).

Note (description of constants ¢ and m in Algorithm 4.62)

(i) The optimal value of the constant ¢ defining the trial division bound B = ck? in
step 2 depends on the implementation of long-integer arithmetic, and is best deter-
mined experimentally (cf. Note 4.45).

(ii) The constant m = 20 ensures that I is at least 20 bits long and hence the interval
from which R is selected, namely [I + 1, 21|, is sufficiently large (for the values of
k of practical interest) that it most likely contains at least one value R for whichn =
2Rq + 1 is prime.

Note (relative size v of q with respect to n) The relative size r of g with respect to 7 is de-
fined to be 7 = Ig ¢/ lgn. In order to assure that the generated prime n is chosen randomly
with essentially uniform distribution from the set of all k-bit primes, the size of the prime
factor g of n — 1 must be chosen according to the probability distribution of the largest
prime factor of a randomly selected k-bit integer. Since g must be greater than R in order
for Fact 4.59 to apply, the relative size 7 of g is restricted to being in the interval [% ,1]. Itcan
be deduced from Fact 3.7(i) that the cumulative probability distribution of the relative size
T of the largest prime factor of a large random integer, given that r is at least , is (1 +1gr)
for 1 5 < r < 1. Instep 4 of Algorithm 4.62, the relative size r is generated accordmg to this

dlstrlbutlon by selecting a random number s € [0, 1] and then setting 7 = 2571, If & < 2m -

then 7 is chosen to be the smallest permissible value, namely %, in order to ensure that the
interval from which R is selected is sufficiently large (cf. Note 4.60(ii)).
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4.62 Algorithm Maurer's algorithm for generating provable primes

PROVABLE_PRIME(k)

INPUT: a positive integer k.

OUTPUT: a k-bit prime number n.

1. (Ifk is small, then test random integers by trial division. A table of small primes may
be precomputed for this purpose.)
If k < 20 then repeatedly do the following:
1.1 Select a random k-bit odd integer n.
1.2 Use trial division by all primes less than v/n to determine whether 7 is prime.
1.3 If n is prime then return(n).

. Set ¢4-0.1 and m 20 (see Note 4.60).

(Trial division bound) Set B¢ - k?* (see Note 4.60).

4. (Generate r, the size of q relative to n — see Note 4.61) If k > 2m then repeatedly
do the following: select a random number s in the interval [0, 1], set 7¢2°~1, until
(k —rk) > m. Otherwise (i.e. k < 2m), set r-0.5.

. Compute ¢+—PROVABLE PRIME(|r - k] + 1).

. Set I+|2*¥1/(2q)].

. success<—0.

. While (success = 0) do the following:

W N

o0 ~1 O\ n

8.1 (select a candidate integer n) Select a random integer R in the interval [I +
1,2I] and set n«-2Rg + 1.
8.2 Use trial division to determine whether n is divisible by any prime number < B.
If it is not then do the following:
Select a random integer a in the interval [2,n — 2].
Compute b+a™"! mod n.
If b = 1 then do the following:
Compute b+a?® mod n and d+ ged(b — 1, n).
If d = 1 then success+1.

9. Return(n).

4.63 Note (improvements to Algorithm 4.62)
(i) A speedup can be achieved by using Fact 4.42 instead of Fact 4.59(i) for proving

n = 2Rq+ 1 prime in step 8.2 of Maurer’s algorithm — Fact 4.42 only requires that
q be greater than ¢/n. : '

(i) If a candidate n passes the trial division (in step 8.2), then a Miller-Rabin test (Algo-
rithm 4.24) with the single base a = 2 should be performed on n; only if n passes
this test should the attempt to prove its primality (the remainder of step 8.2) be under-
taken. This leads to a faster implementation due to the efficiency of the Miller-Rabin
test with a single base a. = 2 (cf. Remark 4.50). ‘

(iii) Step 4 requires the use of real number arithmetic when computing 2°=1, To avoid
these computations, one can precompute and store a list of such values for a selection
of random numbers s € [0, 1].

4.64 Note (provable )m’mes vs. probable primes) Probable primes are advantageous over prov-
able primes in that Algorithm 4.44 for generating probable primes with ¢ = 1 is slightly
faster than Maurer’s algorithm. Moreover, the latter requires more run-time memory due
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to its recursive nature. Provable primes are preferable to probable primes in the sense that
the former have zero error probability. In any cryptographic application, however, there
is always a non-zero error probability of some catastrophic failure, such as the adversary
guessing a secret key or hardware failure. Since the error probability of probable primes
can be efficiently brought down to acceptably low levels (see Note 4.49 but note the depen-
dence on t), there appears to be no reason for mandating the use of provable primes over
probable primes.

4.5 Irreducible polynomials oyer Z,

Recall (Definition 2.190) that a polynomial f(z) € Z,[z] of degree m > 1 is said to be
irreducible over Zy if it cannot be written as a product of two polynomials in Zy,[z] each

* having degree less than . Such a polynomial f(z) can be used to represent the elements

of the finite field Fym as Fpm = Zy[z]/(f(z)), the set of all polynomials in Zy|z] of de-
gree less than m where the addition and multiphication of polynomials is performed modulo
f(z) (see §2.6.3). This section presents techniques for constructing irreducible polynomials
over Zy, where p is a prime. The characteristic two finite fields [Fo= are of particular inter-
est for cryptographic applications because the arithmetic in these fields can be efficiently
performed both in software and in hardware. Thus, attention in the section will be focused
on irreducible polynomials over Zo.

The arithmetic in finite fields can usually be implemented more efficiently if the irre-
ducible polynomial chosen has few non-zero terms. Irreducible trinomials, i.e., irreducible
polynomials having exactly three non-zero terms, are considered in §4.5.2. Primitive poly-
nomials, i.e., irreducible polynomials f(z) of degree m in Zy[z] for which z is a generator
of F,m , the multiplicative group of the finite field Fym = Zj[x]/(f(z)) (Definition 2.228),
are the topic of §4.5.3. Primitive polynomials are also used in the generation of linear feed-
back shift register sequences having the maximum possible period (Fact 6.12).

4.5.1 Irreducible polynomials

4.65

4.66

If f(z) € Zy[x]is irreducible over Z;, and a is a non-zero element in Z,, then a- f(z) is also
irreducible over Z;,. Hence it suffices to restrict attention to monic polynomials in Zy[z],

i.e., polynomials whose leading coefficient is 1. Observe also that if f(z) is an irreducible -

polynomial, then its constant term must be non-zero. In particular, if f(z) € Zs[z], then
its constant term must be 1.
There is a formula for computing exactly the number of monic irreducible polynomi-

als in Zyp[z] of a fixed degree. The Mdbius function, which is defined next, is used in this -

formula.

Definition Let m be a positive integer. The Mdbius function y is defined by
1 ifm=1,
u(m) =< 0, if m is divisible by the square of a prime,
(—1)%, if m s the product of k distinct primes.

Example (Mobius function) The following table gives the values of the Mobius function
p{m) for the first 10 values of m:
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4.67 Fact (number of monic irreducible polynomials) Let p be a prime and m a positive integer.

(i) The number Nj,(m) of monic irreducible polynomials of degree m in Zy[z] is given
by the following formula:

1 x—
Ny(m) = =3 u(d)p™",
dlm

where the summation ranges over.all positive divisors d of m.
(ii) The probability of arandom monic polynomial of degree m in Zy [z being irreducible
over Z, is roughly # More specifically, the number N, (m) satisfies

= < _Np (m) i

2m — pm | om’
Testing irreducibility of polynomials in Z,[x] is significantly simpler than testing pri-
mality of integers. A polynomial can bé tested for irreducibility by verifying that it has no

irreducible factors of degree < | 2 |. The following result leads to an efficient method (Al-
gorithm 4.69) for accomplishing this.

4.68 Fact Let p be a prime and let k be a positive integer.
(i) The product of all monic irreducible polynomials in Zy[z] of degree dividing k is
equal to P — 1.
(ii) Let f(z) be a polynomial of degree m in Z,[z]. Then f(z) is irreducible over Zyp if
and only if gcd(f(x),a:pi —1x) = 1foreachi, 1 <i < [B].

4.69 Algorithm Testing a polynomial for irreducibility

INPUT: a prime p and a monic polynomial f(z) of degree m in Zy[z].
OUTPUT: an answer to the question: “Is f(z) irreducible over Z;,7”
1. Setu(z)«=z.
2. For ¢ from 1 to [ 7| do the following:
2.1 Compute u(z)«u(z)? mod f(z) using Algorithm 2.227. (Note that u(z) is a
polynomial in Z,(z] of degree less than m.)
2.2 Compute d(z) = ged(f(z), u(z) — ) (using Algorithm 2.218).
2.3 If d(z) # 1 then return(“reducible™).
3. Return(“‘irreducible”).

Fact 4.67 suggests that one method for finding an irreducible polynomial of degree m
in Z,[z] is to generate a random monic polynomial of degree m in Zj(z], test it for irre-
ducibility, and continue until an irreducible one is found (Algorithm 4.70). The expected
number of polynomials to be tried before an irreducible one is found is approximately m.
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4.70 Algorithm Generating a random monic irreducible polynomial over Z,,

INPUT: a prime p and a positive integer m.
OUTPUT: a monic irreducible polynomial f(z) of degree m in Z,[z].
1. Repeat the following:
1.1 (Generate a random monic polynomial of degree m in Zy[z])
Randomly select integers ag, a1, az, . .. , am—1 between 0 and p — 1 with ag #
0. Let f(z) be the polynomial f(z) = 2™ +am—12™ " +- - -+azx? +a12+ao.
1.2 Use Algorithm 4.69 to test whether f(z) is irreducible over Z,.
Until f(z) is irreducible.
2. Return(f(x)).

It is known that the expected degree of the irreducible factor of least degree of a random
polynomial of degree m in Zy z] is O(lg m). Hence for each choice of f(z), the expected
number of times steps 2.1 — 2.3 of Algorithm 4.69 are iterated is O(Igm). Each iteration
takes O((lg p)m?) Z,-operations. These observations, together with Fact 4.67(ii), deter-
mine the running time for Algorithm 4.70.

4.71 Fact Algorithm 4.70 has an expected running time of O(m?(lg m)(lg p)) Z,-operations.

Given one irreducible polynomial of degree m over Z,, Note 4.74 describes a method, -

which is more efficient than Algorithm 4.70, for randomly generating additional such poly-
nomials,

4.72 Definition Let I, be a finite field of characteristic p, and let o € F,,. A minimum polyno-
mial of o over Zyp is a monic polynomial of least degree in Z,[z] having « as a root.

4.73 Fact LetIF, be a finite field of order g = p™, and let o € IFy.
(1) The minimum polynomial of « over Zj, denoted mq(z), is unique.
(il) mq(z) is irreducible over Z,.
(iii) The degree of m(z) is a divisor of m.
(iv) Let ¢ be the smallest positive integer such that o? = a (Notc that such a t exists
since, by Fact 2.213, " = «.) Then

t—1
ma(z) = [[(z - o). @1

=0

4.74 Note (generating new irreducible polynomials from a given one) Suppose that f (y)isa
given irreducible polynomial of degree m over Z,. The finite field Fm can then be repre-
sented as Fym = Zp[y]/(f(y)). A random monic irreducible polynomial of degree m over
Zyp can be efficiently generated as follows. First generate a random element o € Fym and
thetn, by repeated exponentiation by p, determine the smallest positive integer ¢ for which
af = a. Ift < m, then generate a new random element a € Fpm and repeat; the probabil-
ity that ¢ < m is known to be at most (Ig m)/q™/2. If indeed ¢ = m, then compute m,, (z)
using the formula (4.1). Then mq () is a random monic irreducible polynomial of degree
m in Zp|z]. This method has an expected running time of O(m3(lg p)) Z,-operations (com-
pare with Fact 4.71).
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4.5.2 Irreducible trinomials

If a polynomial f(z) in Zz[x] has an even number of non-zero terms, then f (1) = 0, whence
(z + 1) is a factor of f(z). Hence, the smallest number of non-zero terms an irreducible
polynomial of degree > 2 in Zy[z] can have is three. An irreducible ¢rinomial of degree m
in Zy[z] must be of the form z™ + z¥ 41, where 1 < k < m — 1. Choosing an irreducible
trinomial f(z) € Zs[z] of degree m to represent the elements of the finite field Fom =
Zo|z]/(f(x)) can lead to a faster implementation of the field arithmetic. The following
facts are sometimes of use when searching for irreducible trinomials.

4.75 Fact Let m be a positive integer, and let k denote an integer in the interval [1,m — 1].
(i) If the trinomial 2™ + =¥ + 1 is irreducible over Zs then so is ™ + z™~% + 1.
(ii) If m = 0 (mod 8), there is no irreducible trinomial of degree m in Zz[x].
(iii) Suppose thateitherm = 3 (mod 8) orm = 5 (mod 8). Then a necessary condition
for 2™ + z* + 1 to be irreducible over Z, is that either k or m — k must be of the
form 2d for some positive divisor d of m.

Tables 4.6 and 4.7 list an irreducible trinomial of degree m over Z, for eachm < 1478
for which such a trinomial exists.

4.5.3 Primitive polynomials

Primitive polynomials were introduced at.the beginning of §4.5. Let f(z) € Zy[z] be an
irreducible polynomial of degree m. If the factorization of the integer p™ —1 is known, then
Fact 4.76 yields an efficient algorithm (Algorithm 4.77) for testing whether or not f(z) is
a primitive polynomial. If the factorization of p™ — 1 is unknown, there is no efficient
algorithm known for performing this test.

4.7¢ Fact Let p be a prime and let the distinct prime factors of p™ — 1 be r1,72,... ,7¢. Then
an irreducible polynomial f(z) € Zp[z] is primitive if and only if for each i, 1 < i < &:
£®" =D/ £ 1 (mod f(z)).
(That is, z is an element of order p™ — 1 in the field Zy{z|/(f(z)).)

4.77 Algorithm Testing whether an irreducible polynomial is primitive

INPUT: a prime p, a positive integer m, the distinct prime factors 7y, 7o, ... ,r¢ of p”* — 1,
and a monic irreducible polynomial f(z) of degree m in Zy[].
OUTPUT: an answer to the question: “Is f(z) a primitive polynomial?”

1. For i from 1 to ¢ do the following:
1.1 Compute [(z) = z®" ~1)/™ mod f(z) (using Algorithm 2.227).
1.2 IfI(z) = 1 then return(“not primitive”).

2. Return(“primitive”).

There are precisely ¢(p™ — 1)/m monic primitive polynomials of degree m in Zj, [x]
(Fact 2.230), where ¢ is the Euler phi function (Definition 2.100). Since the number of
monic irreducible polynomials of degree m in Zj (] is roughly p™ /m (Fact 4.67(ii)), it fol-
lows that the probability of a random monic irreducible polynomial of degree m in Zj, ]
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[m I k[ m[ k]l m[ k[ m[ k[ m[ k[ m[ k] m] k]|
2 1 93 2 193 IS [8220S 48 |y 402 | 171 508 9 || 618 | 295
3 1 94 | 21 194 87 || 297 5 || 404 65 || 510 69 1l 620 9
4 1 95 | 11 196 3 || 300 5 || 406 | 141 511 10 || 622 | 297
S 2 97 6 198 9 (| 302 41 || 407 71 513 26 || 623 68
6 1 98 | 11 199 34 {| 303 1 (| 409 87 || 514 67 il 625 | 133
i 1 100 | 15 |} 201 14 || 305 | 102 || 412 | 147 || 516 21 626 | 251
9 1 102 | 29 || 202 55 || 308 15 || 414 13 || 518 33 | 628 [ 223
10 3 103 9 || 204 27 |f 310 93 || 415 | 102 || 519 79 || 631 | 307
11 2 105 4 | 207 43 |1 313 79 || 417 | 107 || 521 32 || 633 | 101

12 3 106 | 15 || 209 6 (| 314 15 || 418 | 199 || 522 39 || 634 39
14 5 108 | 17 || 210 7 || 316 63 (} 420 7 | 524 | 167 || 636 | 217
15 1 110 | 33 |} 212 | 105 318 45 || 422 | 149 || 526 97 || 639 16
17 3 111 | 10 || 214 73 || 319 36 || 423 25 || 527 47 || 641 11
18 3 113 9 || 215 23 || 321 31 || 425 12 || 529 42 || 642 | 119
20 3 118 | 33 || 217 45 || 322 67 | 426 63 || 532 1 || 646 | 249
21 2 119 8 || 218 11 324 51 || 428 | 105 ([ 534 | 161 647 5
22 1 121 | 18 || 220 7| 327 34 || 431 | 120 || 537 94 || 649 37
23 5 123 2 |} 223 33 || 329 50 || 433 33 538 | 195 || 650 3
25 3 124 | 19 || 225 32 {1 330 99 || 436 | 165 || 540 9 | 651 14
28 1 126 | 21 228 | 113 || 332 89 || 438 65 || 543 16 || 652 93
29 2 127 1 231 26 | 333 2 || 439 49 || 545 | 122 || 654 33
30 1 129 5 (| 233 74 || 337 55 || 441 7 I 550 | 193 || 655 88
31 3 130 3| 234 31 340 45 || 444 81 551 | 135 || 657 38
33110 132 | 17 |} 236 5 || 342 | 125 || 446 | 105 || 553 39 1 658 S5
34 7 134 | 57 || 238 73 | 343 75 || 447 73 556 | 153 || 660 11
35 2 135 | 11 239 36 || 345 22 || 449 | 134 |f 558 73 || 662 21
36 9 137 | 21 241 70 || 346 63 || 450 47 || 559 34 1) 663 | 107
89 4 140 | 15 || 242 95 || 348 | 103 || 455 38 || 561 71 665 33
41 3 142 | 21 244 | 111 350 53 || 457 16 || 564 | 163 || 668 | 147
42 7 145 | 52 || 247 82 || 351 34-1| 458 | 203 || 566 | 153 || 670 | 153
44 5 146 | 71 249 35 || 353 69 || 460 19 || 567 28 || 671 15
46 1 147 | 14 || 250 | 103 || 354 99 i 462 73 569 77 || 673 28
47 5 148 | 27 || 252 15 || 358 57 || 463 93 570 67 || 676 31
49 9 150 | 53 || 253 46 || 359 68 || 465 31 574 13 || 679 66
52 3 151 3| 255 52 |} 362 63 || 468 27 || 575 | 146 || 682 | 171
54 9 153 1 257 12 || 364 9 || 470 9 || 577 25 || 684 | 209
55 7 154 | 15 || 258 71 366 29 || 471 1 580 | 237 || 686 | 197
57 4 155 | 62 || 260 15 | 367 21 || 473 | 200 )| 582 85 || 687 13 1
58 119 156 9 || 263 93 || 369 91 |[j 474 | 191 583 | 130 || 689 14
60 1 159 | 31 || 265 42 [ 370 | 139 || 476 9 || 585 88 || 690 79
62 | 29 161 | 18 i 266 47 || 372 | 111 || 478 | 121 588 35 || 692 | 299 |
63 1 162 | 27 || 268 25 || 375 16 || 479 | 104 || 590 93 || 694 | 169
65 | 18 166 | 37 || 270 53 4 377 41 || 481 | 138 || 593 86 || 695 | 177
66 3 167 6 || 271 58 || 378 43 || 484 | 105 || 594 19 || 697 | 267
68 9 169 | 34 || 273 23 || 380 47 || 486 81 596 | 273 {] 698 | 215
71 6 170 | 11 274 67 (| 382 81 || 487 94 || 599 30 || 700 75
135|825 172 1 276 63 || 383 90 |} 489 83 || 601 | 201 702 37
74 | 35 174 | 13 )| 278 5 |f 385 6 [| 490 [ 219 || 602 | 215 |{ 705 17
76 | 21 175 6 || 279 5 || 386 83 || 492 7 {| 604 | 105 || 708 15
79 9 177 8 || 281 93 || 388 | 159 || 494 17 [} 606 | 165 |[ 711 92 |
81 4 178 | 31 282 35 |f 390 9 || 495 76 || 607 | 105 | 713 41
84 S 180 3] 284 53 1] 391 28 || 497 78 609 31 714 23
86 | 21 182 | 81 286 69 || 393 7 [} 498 | 155 610 | 127 || 716 | 183
87 | 13 183 | 56 || 287 71 394 | 135 || 500 27 || 612 81 718 | 165
89 | 38 185 | 24 || 289 21 396 25 || 503 3 || 614 45 || 719 | 150
9 | 27 186 | 11 292 37 1] 399 26 || 505 | 156 || 615 | 211 721 9
92 | 21 191 9 1] 294 | 33 || 401 | 152 || 506 23 [{ 617 | 200 || 722 | 231

Table 4.6: Irreducible trinomials ™ + z* + 1 over Z. For each m, 1 < m < 722, for which an
irreducible trinomial of degree m in Zz () exists, the table lists the smallest k for which z™ + z* + 1
is irreducible over Zo.

Facebook's Exhibit No. 1005
0057

MOBILEIRON, INC. - EXHIBIT 1011
Page 071



§4.5 Irreducible polynomials over Z, 159
m]| k] m] k]| m] &k m k m| k][ m k m k
724 | 207 || 831 49 937 | 217 || 1050 | 159 || 1159.] 66 || 1265 | 119 || 1374 | 609
726 5| 833 | 149 938 | 207 || 1052 | 291 1161 | 365 || 1266 7 i 1375 S52;
727 | 180 || 834 15 942 | 45 || 1054 | 105 || 1164 | 19 || 1268 | 345 (| 1377 | 100
729 58 || 838 61 943 24 || 1055 24 || 1166 | 189 || 1270 | 333 || 1380 | 183
730 | 147 || 839 | 54 945 | 77 || 1057 | 198 || 1167 | 133 || 1271 17 || 1383 | 130
732 | 343 || 841 | 144 948 | 189 (| 1058 | 27 || 1169 | 114 |} 1273 | 168 || 1385 12
735 44 || 842 | 47 951 | 260 || 1060 | 439 || 1170 | 27 || 1276 | 217 || 1386 | 219
737 51| 844 | 105 953 | 168 (| 1062 | 49 || 1174 | 133 || 1278 | 189 || 1388 i
738 | 347 || 845 2, 954 | 131 || 1063 | 168 || 1175 | 476 |{ 1279 | 216 || 1390 | 129
740 | 135 || 846 | 105 956 | 305 || 1065 | 463 || 1177 16 || 1281 | 229 || 1391 3
742 85 || 847 | 136 959 | 143 || 1071 7 || 1178 | 375 || 1282 | 231 || 1393 | 300
743 90 [ 849 | 253 961 18 | 1078 | 361 1180 25 || 1284 | 223 || 1396 | 97
745 | 258 || 850 | 111 964 | 103 (| 1079 | 230 || 1182 | 77 || 1286 | 153 || 1398 | 601
746 | 351 |l 852 | 159 966 | 201 || 1081 24 || 1183 87 || 1287 | 470 || 1399 | 55
748 19 |1 855 | 29 967 | 36 (| 1082 | 407 || 1185 | 134 || 1289 | 99 || 1401 92
750 | 309 || 857 | 119 969 31 || 1084 | 189 || 1186 | 171 || 1294 | 201 || 1402 | 127
751 18 || 858 | 207 972 7 || 1085 62 || 1188 75 || 1295 38 || 1404 81
753 | 158 || 860 | 35 975 19 || 1086 | 189 || 1190 | 233 || 1297 | 198 || 1407 | 47
754 19 || 861 14 977 15 || 1087 | 112 || 1191 | 196 || 1298 | 399 || 1409 | 194
756 | 45 || 862 | 349 979 | 178 || 1089 | O1 || 1193 | 173 || 1300 | 75 || 1410 | 383
758 | 233 || 865 1 982 | 177 || 1090 | 79 || 1196 | 281 || 1302 | 77 || 1412 | 125
759 98 || 866 | 75 983 | 230 || 1092 23 || 1198 | 405 || 1305 | 326 || 1414 | 429
761 3 (| 868 | 145 985 | 222 || 1094 | 57 |} 1199 | 114 || 1306 39 |} 1415 | 282
762 83 || 870 | 301 986 3 41 1095 | 139 (| 1201 | 171 1308 | 495 || 1417 | 342
767 | 168 || 871 | 378 988 | 121 | 1097 14 || 1202 | 287 || 1310 | 333 || 1420 | 33
769 | 120 || 873 | 352 990 | 161 || 1098 | 83 || 1204 | 43 || 1311 | 476 || 1422 @ 49
772 7 || 876 | 149 991 39 || 1100 | 35 }| 1206 | 513 || 1313 | 164 || 1423 ‘ 15
774 | 185 || 879 11 993 | 62 (| 1102 | 117 §| 1207 | 273 || 1314 19 || 1425 | 28
715 93 i| 881 78 994 | 223 || 1103 65 || 1209 | 118 |[ 1319 | 129 || 1426 | 103
777 29 || 882 | 99 996 65 || 1105 21 1210 | 243 || 1321 52 || 1428 27
778 | 375 || 884 | 173 998 | 101 || 1106 | 195 || 1212 | 203 || 1324 | 337 |i 1430 | 33
780 13 || 887 | 147 999 59 || 1108 | 327 || 1214 | 257 || 1326 | 397 {| 1431 17
782 | 329 || 889 | 127 || 1001 17 || 1110 | 417 || 1215 | 302 }| 1327 | 277 || 1433 | 387
783 68 || 890 | 183 || 1007 | 75 || 1111 13 [} 1217 | 393 || 1329 [ 73 || 1434 | 363
785 92 || 892 31 1009 55 || 1113 | 107 |} 1218 91 |j 1332 95 || 1436 83
791 30 |[ 894 | 173 || 1010 | 99 || 1116 | 59 || 1220 | 413 || 1334 | 617 || 1438 | 357
793 | 253 || 895 12 || 1012 | 115 || 1119 | 283 || 1223 | 255 || 1335 | 392 || 1441 | 322
794 | 143 || 897 | 113 || 1014 | 385 || 1121 62 || 1225 | 234 || 1337 75 || 1442 | 395
798 53 || 898 | 207 |} 1015 | 186 [| 1122 | 427 || 1226 | 167 || 1338 | 315 |{ 1444 | 595
799 25 || 900 1 1020 | 135 || 1126 | 105 || 1228 27 || 1340 | 125 || 1446 | 421
801 | 217 || 902 | 21 {} 1022 | 317 ([ 1127 | 27 || 1230 | 433 || 1343 | 348 |} 1447 | 195
804 | 75 i 903 [ 35 | 1023 7 (| 1129 | 103 || 1231 | 105 || 1345 | 553 || 1449 13
806 21 || 905 | 117 {| 1025 | 294 || 1130 | 551 1233 | 151 || 1348 | 553 {| 1452 | 315
807 7 (| 906 | 123 {} 1026 35 || 1134 | 129 || 1234 | 427 || 1350 | 237 || 1454 | 297
809 15 [{ 908 | 143 || 1028 | 119 || 1135 9 || 1236 49 || 1351 39 || 1455 52
810 | 159 |{ 911 | 204 |} 1029 98 || 1137 | 277 || 1238 | 153 || 1353 | 371 1457 | 314
812 | 29 ([ 913 [ 91 || 1030 { 93 || 1138 | 31 || 1239 4 (| 1354 | 255 || 1458 | 243
814 21 || 916 | 183 (| 1031 68 || 1140 | 141 1241 54 || 1356 | 131 1460 | 185
815 | 333 [[ 918 | 77 || 1033 | 108 || 1142 | 357 || 1242 | 203 || 1358 | 117 || 1463 | 575
817 52 || 919 | 36 || 1034 | 75 || 1145 | 227 ([ 1246 |~ 25 | 1359 | 98 || 1465 | 39
818 | 119 || 921 | 221 [| 1036 | 411 1146 } 131 1247 14 || 1361 56 || 1466 | 311
820 | 123 || 924 | 31 || 1039 | 21 || 1148 | 23 [} 1249 | 187 || 1362 | 655 || 1468 | 181
822 17 || 926 | 365 || 1041 | 412 || 1151 | . 90 || 1252 | 97 || 1364 | 239 || 1470 | 49
823 9 (| 927 | 403. || 1042 | 439 || 1153 | 241 1255 | 589 | 1366 1 1471 25
825 38 [} 930 31 || 1044 | 41 1154 | 75 [ 1257 | 289 || 1367 | 134 ([ 1473 77
826 | 255 || 932 | 177 || 1047 10 || 1156 | 307 || 1260 | 21 || 1369 88 [} 1476 | 21
828 | 189 || 935 | 417 [| 1049 | 141 || 1158 | 245 || 1263 | 77 || 1372 | 181 |} 1478 | 69 |

Table 4.7: Irreducible trinomials x™+x* +1 over Zo. Foreachm, 723 < m < 1478, for whichan
irreducible trinomial of degree T in Za [x) exists, the table gives the smallest k for which z™ + z¥ 41
is irreducible over Zs.
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being primitive is approximately ¢(p™ — 1)/p™. Using the lower bound for the Euler phi
function (Fact 2.102), this probability can be seen to be at least 1/(6 Inln p™). This sug-
gests the following algorithm for generating primitive polynomials.

4.78 Algorithm Generating a random monic primitive polynomial over Z,

INPUT: a prime p, integer m > 1, and the distinct prime factors r{,72,... ,7; of p™* — 1.
OUTPUT: a monic primitive polynomial f(z) of degree m in Zy[z].
1. Repeat the following:
1.1 Use Algorithm 4.70 to generate a random monic irreducible polynomial f(x)
of degree m in Zy[z].
1.2 Use Algorithm 4.77 to test whether f(z) is primitive. -
Until f(z) is primitive.
2. Return(f(z)).

For each m, 1 < m < 229, Table 4.8 lists a polynomial of degree m that is primitive
over Zj. If there exists a primitive trinomial f(z) = 2™ + z* + 1, then the trinomial with
the smallest £ is listed. If no primitive trinomial exists, then a primitive pentanomial of the
form f(z) = 2™ + a*1 + zk2 + 2 4 L is listed.

If p™ — 1 is prime, then Fact 4.76 implies that every irreducible polynomial of de-
gree m in Zy[z] is also primitive. Table 4.9 gives either a primitive trinomial or a primitive
pentanomial of degree m over Z, where m is an exponent of one of the first 27 Mersenne
primes (Definition 4.35).

4.6 Generators and elements of high order

Recall (Definition 2.169) that if G is a (multiplicative) finite group, the order of an element
a € G is the least positive integer ¢ such that a* = 1. If there are n elements in G, and if
a € G is an element of order n, then G is said to be cyclic and a is called a generator or a
primitive element of G (Definition 2.167). Of special interest for cryptographic applications
are the multiplicative group Z; of the integers modulo a prime p, and the multiplicative
group IF3... of the finite field Fom of characteristic two; these groups are cyclic (Fact 2.213).
Also of interest is the group Z;, (Definition 2.124), where 7 is the product of two distinct
odd primes. This section deals with the problem of finding generators and other elements
of high order in Zj, F3., and Zy,. See §2.5.1 for background in group theory and §2.6 for
background in finite fields.

Algorithm 4.79 is an efficient method for determining the order of a group element,
given the prime factorization of the group order n. The correctness of the algorithm follows
from the fact that the order of an element must divide n (Fact 2.171).
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§4.6 Generators and elements of high order 161

k or k or k or k or
m | (ky,k2,k3) m | (ki, ka2, k3) m | (ki k2, ks) || m | (k1, ke, ks)
7 1 59 22,21,1 || 116 71,70,1 || 173 100, 99, 1
3 1 60 . 1 || 117 20,18,2 || 174 13
4 1 61 16,15,1 || 118 33 || 175 6
5 21 62 57,56,1 || 119 8 || 176 | 119,118,1
6 1 63 1| 120 | 118, 111,7 || 177 8
7 1 64 4,3,1 || 121 18 || 178 87
8 6,5,1 65 18 | 122 60,59,1 || 179 34,33, 1
9 4| 66 10,9,1 || 123 -2 || 180 37, 36, 1
| 10 341 67 10,9,1 || 124 37 || 181 7,6,1
11 21 68 9 || 125 | 108,107.1 || 182 | 128,127,1
12 7,4,3 || 69 29,27,2 || 126 37,36,1 || 183 56
13 4,3,1 70 16,15,1 || 127 17| 184 | 102,101,1
14 12,11, 1 7 6. || 128 29,27,2 || 185 24
15 1 72 53,47,6 || 129 5 || 186 235221
16 532 73 25 || 130 3 |l 187 58,57, 1
17 3| 74 16,15,1 || 131 48,47,1 || 188 74,73, 1
18 7 75 11,10, 1 || 132 29 || 189 | 127,126,1
19 6,5, 1 76 36,35,1 {| 133 52,51,1 || 190 18,17, 1
20 3| 77 31,30,1 || 134 57 || 191 9
1 21 24 78 20,19,1 || 135 11 || 192 28,27, 1
22) 1 79 9 || 136 | 126,125,1 || 193 15
23 5 80 38,37,1 || 137 21 || 194 87
24 4,31 81 4 || 138 8,71 1| 195 10,9,1
25 3 82 38,35,3 {| 139 .8,5,3 || 196 66, 65, 1
; 26 8,71 83 46,45,1 || 140 29 || 197 62,61,1
; 27 8,71 84 13 || 141 32,31,1 || 198 65
28 3 85 28,27,1 || 142 21 || 199 34
29 2 || 86 13,12,1 || 143 21,20,1 || 200 42,41, 1
30 16,15, 1 87 13 || 144 70,69,1 || 201 14
31 3 88 72,71,1 || 145 52 || 202 55
, 32 28,27, 1 89 38 || 146 60,59,1 || 203 8,71
! 33 13| 90 19,18,1 || 147 38,371 || 204 74,73, 1
34 15,14, 1 91 84,83,1 || 148 27 || 205 30,29, 1
35 2| 92 13,12,1 |l 149 | 110, 109,1 || 206 29,28, 1
36 11 93 2 |l 150 53 || 207 43
37 12,102 || 94 21 || 151 3 || 208 62,59,3
| 38 6,5,1 95 1 || 152 66,65,1 || 209 6
39 41 96 49,47,2 || 153 1] 210 35,32,3
40 21,19,2 || 97 6 || 154 | 129,127,2 || 211 46, 45, 1
41 3 98 1 |} 155 32,31,1 || 212 105
42 23,22,1 99 47,452 || 156 | 116,115,1 || 213 R&78]
43 6,51 || 100 37 || 157 27,26,1 || 214 49,48, 1
44 27,26,1 || 101 7,6,1 || 158 27,26,1 || 215 23
45 4,3,1 | 102 77,76,1 || 159 31 || 216 | 196,195,1
46 21,20,1 || 103 9 || 160 19,18,1 || 217 45
a7 5 || 104 11,10,1 || 161 18 || 218 1
48 28,27,1 || 105 16 || 162 88,87,1 || 219 19, 18, 1
49 9 || 106 15 || 163 60,59, 1 || 220 15, 14, 1
50 27,26,1 || 107 65,63,2 || 164 14,13,1 || 221 35,34, 1
51 16,15,1 || 108 31 || 165 31,30, 1 || 222 92,91, 1
52 3 || 109 7,6,1 || 166 39,38, 1 || 223 33
53 16,15,1 || 110 13,12,1 || 167 6 i 224 31,30, 1
54 37,36,1 || 111 10 || 168 17,15,2 || 225 k7]
55 24 || 112 45,43,2 || 169 34 || 226 58, 57,1
56 22,21,1 || 113 9 || 170 23 || 227 46, 45,1
57 7 || 14 82,81,1 || 171 19,18,1 || 228 | 148,147, 1
58 19 || 115 15, 14,1 || 172 7 1| 229 64,63, 1

Table 4.8: Primitive polynomials over Zs. For each m, 1 < m < 229, an exponent k is given for
which the trinomial ™ + z* + 1 is primitive over Za. If no such trinomial exists, a triple of exponents
(k1, ko, k3) is given for which the pentanomial ™ + £ 4 2 4 o*s 4 1 is primitive over Zo.
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m ‘ m | k(k1,k2,k3) - ‘——]
1 2 1
2 3 1
3 5 2
4 7 1,3
5 13 none (4,3,1)
6 17 3,5,6
7 19 | none (5,2,1)
8 31 3,6,7,13
9 61 none (43,26,14)
10 89 38 .

11 107 none (82,57,31)

12 127 1,7, 15, 30, 63

13 521 32, 48, 158, 168

14 = 607 105, 147, 273

15 + 1279 216, 418

16 | 2203 | none (1656,1197,585)

17 | 2281 | 715,915,1029

18 | 3217 | 67,576

19 | 4253 | none (3297,2254,1093)

20 | 4423 | 271, 369, 370, 649, 1393, 1419, 2098
21 | 9689 | 84,471, 1836, 2444, 4187

22 | 9941 | none (7449,4964,2475)

23 | 11213 | none (8218,6181,2304) i
24 | 19937 | 881, 7083, 9842 !
25 | 21701 | none (15986,11393,5073) !
26 | 23209 | 1530, 6619, 9739

27 | 44497 | 8575, 21034

Table 4.9: Primitive polynomials of degree m over Zz, 2™ —1 a Mersenne prime. For each exponent
m = M; of the first 27 Mersenne primes, the table lists all values of k, 1 < k < m/2, for which
the trinomial x™ + z* + 1 is irreducible over Zs. If no such trinomial exists, a triple of exponents
(k1, ka2, ks) is listed such that the pentanomial x™ + z** + z*2 + 2 + 1 is irreducible over Zs.

4.79 Algorithm Determining the order of a group element

o r—
-
= =

i INPUT: a (multiplicative) finite group G of order n, an clement a € G, and the prime fac-

| torization n = p{'p§? - - - pg*. «
, OUTPUT: the order ¢ of a. |

| 1. Set t+n. '

| 2. For i from 1 to k do the following: r

[ 2.1 Set te—t/pf.

| 2.2 Compute a;¢—al.

i 2.3 While a; # 1 do the following: compute a;¢af* and set t+t - p;.

| 3. Return(t).

[' Suppose now that G is a cyclic group of order n. Then for any divisor d of n the number
| of elements of order d in G'is exactly ¢(d) (Fact 2.173(ii)), where ¢ is the Euler phi function
(Definition 2.100). In particular, G has exactly ¢(n) generators, and hence the probability
of a random element in G being a generator is ¢(n)/n. Using the lower bound for the Eu-
ler phi function (Fact 2.102), this probability can be seen to be at least 1/(6 Inlnn). This |
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4.80

4.81

4.82

4.83

suggests the following efficient randomized algorithm for finding a generator of a cyclic
group.

Algorithm Finding a generator of a cyclic group

INPUT: a cyclic group G of order n, and the prime factorization nn = p{*p5* - - - p*.
OUTPUT: a generator « of G.

1. Choose a random element o in G.
2. For ¢ from 1 to k do the following:
2.1 Compute b+—a™/?:,
2.2 If b = 1 then go to step 1.

3. Return(e).

Note (group elements of high order) In some situations it may be desirable to have an el-.
ement of high order, and not a generator. Given a generator « in a cyclic group G of order
n, and given a divisor d of n, an element (3 of order d in G can be efficiently obtained as
follows: 8 = ™. If ¢ is a prime divisor of the order n of a cyclic group G, then the fol-
lowing method finds an element 3 € G of order ¢ without first having to find a generator
of G: select a random element g € G and compute 8 = g™/9; repeat until 3 # 1.

Note (generators of F3) There are two basic approaches to finding a generator of Fym.
Both techniques require the factorization of the order of F5., namely 2™ — 1.

(i) Generate a monic primitive polynomial f(z) of degree m over Zs, (Algorithm 4.78).
The finite field Fom can then be represented as Zy[z]/(f(z)), the set of all polyno-
mials over Zg modulo f(z), and the element « = z is a generator.

(ii) Select the method for representing elements of Fy= first. Then use Algorithm 4.80
with G = Fjm and n = 2™ — 1 to find a generator o of Fim.

If n = pq, where p and g are distinct odd primes, then Z., is a non-cyclic group of order
¢(n) = (p — 1)(g — 1). The maximum order of an element in Z;, is lem(p ~ 1,q — 1).
Algorithm 4.83 is a method for generating such an element which requires the factorizations
ofp—landq— 1.

Algorithm Selecting an element of maximum order in Z7,, where n = pq

INPUT: two distinct odd primes, p, ¢, and the factorizations of p — 1 and g — 1.
OUTPUT: an element & of maximum order lem(p — 1,q — 1) in Z},, where n = pyg.
1. Use Algorithm 4.80 with G = Zj andn =p —1to find a generator a of Z,,.
2. Use Algorithm 4.80 with G = Z; and n = g — 1 to find a generator b of Z;.
3. Use Gauss’s algorithm (Algorithm 2.121) to find an integer @, 1 < & < n — 1,
satisfying o = @ (mod p) and @ = b (mod g).
4, Return(a). '
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4.6.1 Selecting a prime p and generator of Z;

In cryptographic applications for which a generator of Z, is required, one usually has the
flexibility of selecting the prime p. To guard against the Pohlig-Hellman algorithm for com-
puting discrete logarithms (Algorithm 3.63), a security requirement is that p— 1 should con-
tain a “large” prime factor g. In this context, “large” means that the quantity /g represents
an infeasible amount of computation; for example, ¢ > 216%. This suggests the following
algorithm for selecting appropriate parameters (p, o). ‘

4.84 Algorithm Selecting a k-bit prime p and a generator « of Z;,

INPUT: the required bitlength & of the prime and a security parameter ¢. \
OUTPUT: a k-bit prime p such that p — 1 has a prime factor > #, and a generator « of Z,.
1. Repeat the following:
1.1 Select a random k-bit prime p (for example, using Algorithm 4.44).
1.2 Factorp — 1.
Until p — 1 has a prime factor > t.
2. Use Algorithm 4.80 with G = Z;, and n = p — 1 to find a generator o of 25
3. Return(p,q).

Algorithm 4.84 is relatively inefficient as it requires the use of an integer factorization
algorithm in step 1.2. An alternative approach is to generate the prime p by first choosing
a large prime ¢ and then selecting relatively small integers R at random until p = 2Rg + 1
is prime. Since p — 1 = 2Rg, the factorization of p — 1 can be obtained by factoring R. A
particularly convenient situation occurs by imposing the condition £ = 1. In this case the
factorization of p — 1 is simply 2q. Furthermore, since ¢(p — 1) = ¢(2q) = ¢(2)d(gq) =
q — 1, the probability that a randomly selected element @ € Z, is a generator is 22:11_1 R %

4.85 Definition A safe prime p is a prime of the form p = 2¢g + 1 where ¢ is prime.

Algorithm 4.86 generates a safe (probable) prime p and a generator of Z;‘,.

4.86 Algorithm Selecting a k-bit safe prime p and a generator a of Z;,

INPUT: the required bitlength & of the prime.
OUTPUT: a k-bit safe prime p and a generator o of Zy,.

1. Do the following:

1.1 Select arandom (k — 1)-bit prime ¢ (for example, using Algorithm 4.44).
1.2 Compute p+2q + 1, and test whether p is prime (for example, using trial divi-
sion by small primes and Algorithm 4.24).
Until p is prime.
2. Use Algorithm 4.80 to find a generator o of Z;.
3. Return(p,a).
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4.7 Notes and further references

§4.1

Several books provide extensive treatments of primality testing including those by Bres-
soud [198], Bach and Shallit [70], and Koblitz [697]. The book by Kranakis [710] offers
a more theoretical approach. Cohen [263] gives a comprehensive treatment of modern pri-
mality tests. See also the survey articles by A. Lenstra [747] and A. Lenstra and H. Lenstra
[748]. Facts 4.1 and 4.2 were proven in 1837 by Dirichlet. For proofs of these results, see
Chapter 16 of Ireland and Rosen [572]. Fact 4.3 is due to Rosser and Schoenfeld [1070].
Bach and Shallit [70] have further results on the distribution of prime numbers.

§4.2
Fact 4.13(i) was proven by Alford, Granville, and Pomerance [24]; see also Granville [521].
Fact 4.13(ii) is due to Pomerance, Selfridge, and Wagstaff [996]. Pinch [974] showed that
there are 105212 Carmichael numbers up to 1015,

The Solovay-Strassen probabilistic primality test (Algorithm 4.18) is due to Solovay and
Strassen [1163], as modified by Atkin and Larson [57].

Fact 4.23 was proven independently by Monier [892] and Rabin [1024]. The Miller-Rabin
test (Algorithm 4.24) originated in the work of Miller [876] who presented it as a non-
probabilistic polynomial-time algorithm assuming the correctness of the Extended Riemann
Hypothesis (ERH). Rabin [1021, 1024] rephrased Miller’s algorithm as a probabilistic pri-
mality test. Rabin’s algorithm required a small number of gcd computations. The Miller-
Rabin test (Algorithm 4.24) is a simplification of Rabin’s algorithm which does not require
any gcd computations, and is due to Knuth [692, p.379]. Arazi [55], making use of Mont-
gomery modular multiplication (§14.3.2), showed how the Miller-Rabin test can be imple-
mented by “divisionless modular exponentiations” only, yielding a probabilistic primality
test which does not use any division operations.

Miller [876], appealing to the work of Ankeny [32], proved under assumption of the Ex-
tended Riemann Hypothesis that, if n is an odd composite integer, then its least strong wit-
ness is less than ¢(lnn)?, where c is some constant. Bach [63] proved that this constant
may be taken to be ¢ = 2; see also Bach [64]. As a consequence, one can test n for pri-
mality in O((Ign)%) bit operations by executing the Miller-Rabin algorithm for all bases
a < 2(Inn)?2. This gives a deterministic polynomial-time algorithm for primality testing,
under the assumption that the ERH is true.

Table 4.1 is from Jaeschke [630], building on earlier work of Pomerance, Selfridge, and
Wagstaff [996]. Arnault [56] found the following 46-digit composite integer

n = 1195068768795265792518361315725116351898245581

that is a strong pseudoprime to all the 11 prime bases up to 31. Arnault also found a 337-
digit composite integer which is a strong pseudoprime to all 46 prime bases up to 199.

The Miller-Rabin test (Algorithm 4.24) randomly generates ¢ independent bases a and tests
to see if each is a strong witness for n. Let n be an odd composite integer and let ¢ =
f% Ign]. In situations where random bits are scarce, one may choose instead to generate
a single random base a and use the bases a,a + 1,... ,a + t — 1. Bach [66] proved that
for a randomly chosen integer a, the probability thata,a + 1,... ,a +t — 1 are all strong
liars for 7 is bounded above by n1/4+°(1); in other words, the probability that the Miller-
Rabin algorithm using these bases mistakenly declares an odd composite integer “prime”
is at most n~1/4+°(1) Peralta and Shoup [969] later improved this bound to n=1/2+e(1)
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§4.3

Monier [892] gave exact formuias for the number of Fermat liars, Euler liars, and strong
liars for composite integers. One consequence of Monier’s formulas is the following im-
provement (in the case where n is not a prime power) of Fact 4.17 (see Kranakis [710,
p.68]). If n > 3 is an odd composite integer having r distinct prime factors, and if n = 3

(mod 4}, then there are at most ¢(n)/2"~! Euler liars for n. Another consequence is the
following improvement (in the case where n has at least three distinct prime factors) of
Fact 4.23. If n > 3 is an odd composite integer having r distinct prime factors, then there
are at most ¢(n) /27! strong liars for n. Erdos and Pomerance [373] estimated the averag
number of Fermat liars, Euler liars, and strong liars for composite integers. Fact 4.30(ii) was
proven independently by Atkin and Larson [57], Monier [892], and Pomerance, Selfridge,
and Wagstaff [996].

Pinch [975] reviewed the probabilistic primality tests used in the Mathematica, Maple V,
Axiom, and Pari/GP computer algebra systems. Some of these systems use a probabilistic
primality test known as the Lucas test; a description of this test is provided by Pomerance,
Seliridge, and Wagstaff [996].

If a number . is composite, providing a non-trivial divisor of . is evidence of its composite-
ness that can be verified in polynomial time (by long division). In other words, the decision
problem “is nn composite?” belongs to the complexity class NP (cf. Example 2.65). Pratt
[1000] used Fact 4.38 to show that this decision problem is also in co-NP. That is, if n is
prime there exists some evidence of this (called a certificate of primality) that can be veri-

 fied in polynomial time. Note that the issue here is not in finding such evidence, but rather

in determining whether such evidence exists which, if found, allows efficient verification.
Pomerance [992] improved Pratt’s results and showed that every prime n has a certificate
of primality which requires O(ln n) multiplications modulo 7 for its verification.

Primality of the Fermat number Fy, = 22" + 1 can be determined in deterministic polyno-
mial time by Pepin’s test: for k > 2, Fy, is prime if and only if 5(Fx=1)/2 = 1 (mod F}).
For the history behind Pepin’s test and the Lucas-Lehmer test (Algorithm 4.37), see Bach
and Shallit [70].

In Fact 4.38, the integer a does not have to be the same for all q. More precisely, Brillhart
and Selfridge [212] showed that Fact 4.38 can be refined as follows: an integer n > 3 is
prime if and only if for each prime divisor q of n — 1, there exists an integer a, such that

a?~! =1 (mod n) and a{"™ /% 2£ 1 (mod n). The same is true of Fact 4.40, which is
due to Pocklington [981]. For a proof of Fact 4.41, see Maurer [818]. Fact 4.42 is due to
Brillhart, Lehmer, and Selfridge [210]; a simplified proof is given by Maurer [818].

The original Jacobi sum test was discovered by Adleman, Pomerance, and Rumely [16].
The algorithm was simplified, both theoretically and algorithmically, by Cohen and H.
Lenstra [265]. Cohen and A. Lenstra [264] give an implementation report of the Cohen-
Lenstra Jacobi sum test; see also Chapter 9 of Cohen [263]. Further improvements of the
Jacobi sum test are reported by Bosma and van der Hulst [174].

Elliptic curves were first used for primality proving by Goldwasser and Kilian [477], who
presented a randomized algorithm which has an expected running time of O((In 7)) bit
operations for most inputs n. Subsequently, Adleman and Huang [13] designed a primality
proving algorithm using hyperelliptic curves of genus two whose expected running time
is polynomial for all inputs n. This established that the decision problem “is n prime?”
is in the complexity class RP (Definition 2.77(ii)). The Goldwasser-Kilian and Adleman-
Huang algorithms are inefficient in practice. Atkin’s test, and an implementation of it, is
extensively described by Atkin and Morain [58]; see also Chapter 9 of Cohen [263]. The
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largest number proven prime as of 1996 by a general purpose primality proving algorithm is
a 1505-decimal digit number, accomplished by Morain [903] using Atkin’s test. The total
time for the computation was estimated to be 4 years of CPU time distributed among 21
SUN 3/60 workstations. See also Morain [902] for an implementation report on Atkin’s
test which was used to prove the primality of the 1065-decimal digit number (22539 +1)/3.

§4.4

A proof of Merten's theorem can be found in Hardy and Wright [540]. The optimal trial di-
vision bound (Note 4.45) was derived by Maurer [818]. The discussion (Note 4.47) on the
probability P(X|Y;) is from Beauchemin et al. [8 1]; the result mentioned in the last sen-
tence of this note is due to Kim and Pomerance [673]. Fact 4.48 was derived by Damgard,
Landrock, and Pomerance {300], building on earlier work of Erd6s and Pomerance [373],
Kim and Pomerance [673], and Damgard and Landrock [299]. Table 4.3 is Table 2 of Dam-
gérd, Landrock, and Pomerance [300]. The suggestions to first do a Miller-Rabin test with
base a = 2 (Remark 4.50) and to do an incremental search (Note 4.51) in Algorithm 4.44
were made by Brandt, Damgard, and Landrock [187]. The error and failure probabilities
for incremental search (Note 4.51(i)) were obtained by Brandt and Damgard [186]; consult
this paper for more concrete estimates of these probabilities.

Algorithm 4.53 for generating strong primes is due to Gordon [514, 513]. Gordon originally
proposed computing po = (s™~! —r*~1) mod rs in step 3. Kaliski (personal communica-
tion, April 1996) proposed the modified formula po = (25”2 mod r)s — 1 which can be
computed more efficiently. Williams and Schmid [1249] proposed an algorithm for gener-
ating strong primes p with the additional constraint that p — 1 = 2q where ¢ is prime; this
algorithm is not as efficient as Gordon’s algorithm. Hellman and Bach [550] recommended
an additional constraint on strong primes, specifying that s — 1 (where s is a large prime
factor of p + 1) must have a large prime factor (see §15.2.3(v)); this thwarts cycling attacks
based on Lucas sequences.

The NIST method for prime generation (Algorithm 4.56) is that recommended by the NIST
Federal Information Processing Standards Publication (FIPS) 186 [406].

Fact4.59 and Algorithm 4.62 for provable prime generation are derived from Maurer [818].
Algorithm 4.62 is based on that of Shawe-Taylor [1123]. Maurer notes that the total diver-
sity of reachable primes using the original version of his algorithm is roughly 10% of all
primes. Maurer also presents a more complicated algorithm for generating provable primes
with a better diversity than Algorithm 4.62, and provides extensive implementation details
and analysis of the expected running time. Maurer [812] provides heuristic justification that
Algorithm 4.62 generates primes with virtually uniform distribution. Mihailescu [870] ob-
served that Maurer’s algorithm can be improved by using the Eratosthenes sieve method
for trial division (in step 8.2 of Algorithm 4.62) and by searching for a prime 7 in an appro-
priate interval of the arithmetic progression 2g+1,4¢+1,6¢+1, ... instead of generating
R’s at random until n = 2Rg + 1 is prime. The second improvement comes at the expense
of a reduction of the set of primes which may be produced by the algorithm. Mihailescu’s
paper includes extensive analysis and an implementation report.

84.5
Lidl and Niederreiter [764] provide a comprehensive treatment of irreducible polynomials;
proofs of Facts 4.67 and 4.68 can be found there.

Algorithm 4.69 for testing a polynomial for irreducibility is due to Ben-Or [109]. The fast-
est algorithm known for generating irreducible polynomials is due to Shoup [1131] and has
an expected running time of O(m? 1g m + m? lg p) Z,-operations. There is no determinis-
tic polynomial-time algorithm known for finding an irreducible polynomial of a specified
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degree m in Zy[z]. Adleman and Lenstra [14] give a deterministic algorithm that runs in
polynomial time under the assumption that the ERH is true. The best deterministic algo-
rithm known is due to Shoup [1129] and takes O(m*,/p) Zp-operations, ignoring powers
of logm and log p. Gordon [512] presents an improved method for computing minimum
polynomials of elements in Fom.

Zierler and Brillhart [1271] provide a-table of all irreducible trinomials of degree < 1000
in Zs[z]. Blake, Gao, and Lambert [146] extended this list to all irreducible trinomials of
degree < 2000 in Zy(z]. Fact 4.75 is from their paper.

Table 4.8 extends a similar table by Stahnke [1168]. The primitive pentanomials =™ +
xk1 4 gk2 1 zks 4 1 listed in Table 4.8 have the following properties: (i) ky = ko + ka;
(ii) kg > k3; and (iii) k3 is as small as possible, and for this particular value of k3, ks is
as small as possible. The rational behind this form is explained in Stahnke’s paper. For
each m < 5000 for which the factorization of 2™ — 1 is known, Zivkovié [1275, 1276]
gives a primitive trinomial in Zg[z], one primitive polynomial in Z[x] having five non-
zero terms, and one primitive polynomial in Z|z| having seven non-zero terms, provided
that such polynomials exist. The factorizations of 2™ — 1 are known for all m < 510 and
for some additional m < 5000. A list of such factorizations can be found in Brillhart et
al. [211] and updates of the list are available by anonymous ftp from sable.ox.ac.uk
in the /pub/math/cunningham/ directory. Hansen and Mullen [538] describe some
improvements to Algorithm 4.78 for generating primitive polynomials. They also give ta-
bles of primitive polynomials of degree m in Z,|[z] for each prime power p™ < 10°° with
p < 97. Moreover, for each such p and m, the primitive polynomial of degree m over Z,
listed has the smallest number of non-zero coefficients among all such polynomials.

The entries of Table 4.9 were obtained from Zierler [1270] for Mersenne exponents Mj,
1 < j < 23, and from Kurita and Matsumoto [719] for Mersenne exponents M;, 24 < j <
27.

Let f(z) € Zp[z] be an irreducible polynomial of degree m, and consider the finite field

Fpm = Zp[z]/(f(z)). Then f(z) is called a normal polynomial if the set {z, ¥, ...,
:vpm_l} forms a basis for Fpm over Zy; such a basis is called a normal basis. Mullin et
al. [911] introduced the concept of an optimal normal basis in order to reduce the hardware
complexity of multiplying field elements in the finite field Fom. A VLSI implementation of
the arithmetic in Fom which uses optimal normal bases is described by Agnew et al. [18]. A
normal polynomial which is also primitive is called a primitive normal polynomial. Dav-
enport [301] proved that for any prime p and positive integer m there exists a primitive
normal polynomial of degree m in Zy[z]. See also Lenstra and Schoof [760] who general-
ized this result from prime fields Z,, to prime power fields F;. Morgan and Mullen [905]
give a primitive normal polynomial of degree m over Zj, for each prime power p™ < 10%°
with p < 97. Moreover, each polynomial has the smallest number of non-zero coefficients
among all primitive normal polynomials of degree m over Zp; in fact, each polynomial has
at most five non-zero terms.

No polynomial-time algorithm is known for finding generators, or even for testing whether
an element is a generator, of a finite field I if the factorization of ¢ — 1 is unknown. Shoup
[1130] considered the problem of deterministically generating in polynomial time a subset
of IF, that contains a generator, and presented a solution to the problem for the case where
the characteristic p of T, is small (e.g. p = 2). Maurer [818] discusses how his algorithm
(Algorithm 4.62) can be used to generate the parameters (p, @), where p is a provable prime
and o is a generator of Z,.
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5.1 Introduction

The security of many cryptographic systems depends upon the generation of unpredictable
quantities. Examples include the keystream in the one-time pad (§1.5.4), the secret key
in the DES encryption algorithm (§11.5.1), the primes p, g in the RSA encryption (§8.2)
and digital signature (§11.3.1) schemes, the private key a in the DSA (§11.5.1), and the
challenges used in challenge-response identification systems (§10.3). In all these cases, the
quantities generated must be of sufficient size and be “random” in the sense that the proba-
bility of any particular value being selected must be sufficiently small to preclude an adver-
sary from gaining advantage through optimizing a search strategy based on such probability.
For example, the key space for DES has size 2°6. If a secret key k were selected using a
true random generator, an adversary would on average have to try 25° possible keys before
guessing the correct key k. If, on the other hand, a key k were selected by first choosing a
16-bit random secret s, and then expanding it into a 56-bit key k using a complicated but
publicly known function £, the adversary would on average only need to try 2!® possible
keys (obtained by running every possible value for s through the function f).

This chapter considers techniques for the generation of random and pseudorandom
bits and numbers. Related techniques for pseudorandom bit generation that are generally
discussed in the literature in the context of stream ciphers, including linear and nonlinear
feedback shift registers (Chapter 6) and the output feedback mode (OFB) of block ciphers
(Chapter 7), are addressed elsewhere in this book.

Chapter outline

The remainder of §5.1 introduces basic concepts relevant to random and pseudorandom
bit generation. §5.2 considers techniques for random bit generation, while §5.3 considers
some techniques for pseudorandom bit generation. §5.4 describes statistical tests designed

169
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to measure the quality of a random bit generator. Cryptographically secure pseudorandom
bit generators are the topic of §5.5. §5.6 concludes with references and further chapter notes.

5.1.1 Background and Classification

51

5.2

5.3

5.4

Definition A random bit generator is a device or algorithm which outputs a sequence of
statistically independent and unbiased binary digits.

Remark (random bits vs. random numbers) A random bit generator can be used to gener-
ate (uniformly distributed) random numbers. For example, a random integer in the interval
[0,n] can be obtained by generating a random bit sequence of length Ug n] + 1, and con-
verting it to an integer; if the resulting integer exceeds n, one option is to discard it and
generate a new random bit sequence.

§5.2 outlines some physical sources of random bits that are used in practice. Ideally,
secrets required in cryptographic algorithms and protocols should be generated with a (true)
random bit generator. However, the generation of random bits is an inefficient procedure in
most practical environments. Moreover, it may be impractical to securely store and transmit
a large number of random bits if these are required in applications such as the one-time pad
(§6.1.1). In such situations, the problem can be ameliorated by substituting a random bit
generator with a pseudorandom bit generator.

Definition A pseudorandom bit generator (PRBG) is a deterministic! algorithm which,
given a truly random binary sequence of length k, outputs a binary sequence of length > k
which “appears” to be random. The input to the PRBG is called the seed, while the output
of the PRBG is called a pseudorandom bit sequence. )

The output of a PRBG is not random; in fact, the number of possible output sequences is at
most a small fraction, namely 2% /2%, of all possible binary sequences of length . The intent
is to take a small truly random sequence and expand it to a sequence of much larger length,
in such a way that an adversary cannot efficiently distinguish between output sequences of
the PRBG and truly random sequences of length I. §5.3 discusses ad-hoc techniques for
pseudorandom bit generation. In order to gain confidence that such generators are secure,
they should be subjected to a variety of statistical tests designed to detect the specific char-
acteristics expected of random sequences. A collection of such tests is given in §5.4. As
the following example demonstrates, passing these statistical tests is a necessary but not
sufficient condition for a generator to be secure.

Example (linear congruential generators) A linear congruential generator produces a
pseudorandom sequence of numbers 1, Zo, Z3, . . . according to the linear recurrence

Tp = QTp—1+bmodm, n>1;

a, b, and m are parameters which characterize the generator, while o is the (secret) seed.
While such generators are commonly used for simulation purposes and probabilistic algo-
rithms, and pass the statistical tests of §5.4, they are predictable and hence entirely insecure
for cryptographic purposes: given a partial output sequence, the remainder of the sequence
can be reconstructed even if the parameters a, b, and m are unknown. 0

1Deterministic here means that given the same initial seed, the generator will always produce the same output
sequence.
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A minimum security requirement for a pseudorandom bit generator is that the length
k of the random seed should be sufficiently large so that a search over 2* elements (the
total number of possible seeds) is infeasible for the adversary. Two general requirements
are that the output sequences of a PRBG should be statistically indistinguishable from truly
random sequences, and the output bits should be unpredictable to an adversary with limited
computational resources; these requirements are captured in Definitions 5.5 and 5.6.

5.5 Definition A pseudorandom bit generator is said to pass all polynomial-time? statistical
tests if no polynomial-time algorithm can distinguish between an output sequence of the
generator and a truly random sequence of the same length with probability significantly
greater that 1. '

5.6 Definition A pseudorandom bit generator is said to pass the nexz-bit test if there is no
polynomial-time algorithm which, on input of the first / bits of an output sequence s, can
predict the (I + 1)5¢ bit of s with probability significantly greater than %

Although Definition 5.5 appears to impose a more stringent security requirement on
pseudorandom bit generators than Definition 5.6 does, the next result asserts that they are,
in fact, equivalent.

5.7 Fact (universality of the next-bit test) A pseudorandom bit generator passes the next-bit |
test if and only if it passes all polynomial-time statistical tests.

5.8 Definition A PRBG that passes the next-bit test (possibly under some plausible but un-
proved mathematical assumption such as the intractability of factoring integers) is called a
cryptographically secure pseudorandom bit generator (CSPRBG).

5.9 Remark (asymptotic nature of Definitions 5.5, 5.6, and 5.8.) Each of the three definitions
above are given in complexity-theoretic terms and are asymptotic in nature because the no-
tion of “polynomial-time” is meaningful for asymptotically large inputs only; the resulting -
notions of security are relative in the same sense. In Definitions 5.5, 5.6, 5.8, and Fact 5.7,
a pseudorandom bit generator is actually a family of such PRBGs. Thus the theoretical se-
curity results for a family of PRBGs are only an indirect indication about the security of
individual members.

Two cryptographically secure pseudorandom bit generators are presented in §5.5.

5.2 Random bit generation

A (true) random bit generator requires a naturally occurring source of randomness. De-
signing a hardware device or software program to exploit this randomness and produce a
bit sequence that is free of biases and correlations is a difficult task. Additionally, for cryp-
tographic applications, the generator must not be subject to observation or manipulation by
an adversary. This section surveys some potential sources of random bits.

Random bit generators based on natural sources of randomness are subject to influence
by external factors, and also to malfunction. It is imperative that such devices be tested
periodically, for example by using the statistical tests of §5.4.

2The running time of the test is bounded by a polynomial in.the length [ of the output sequence.
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(i) Hardware-based generators

Hardware-based random bit generators exploit the randomness which occurs in some phys-
ical phenomena. Such physical processes may produce bits that are biased or correlated, in
which case they should be subjected to de-skewing techniques mentioned in (iii) below.
Examples of such physical phenomena include:

1. elapsed time between emission of particles during radioactive decay;

2. thermal noise from a semiconductor diode or resistor;

3. the frequency instability of a free running oscillator;

4. the amount a metal insulator semiconductor capacitor is charged during a fixed period
of time;

5. air turbulence within a sealed disk drive which causes random fluctuations in disk
drive sector read latency times; and

6. sound from a microphone or video input from a camera.

Generators based on the first two phenomena would, in general, have to be built externally
to the device using the random bits, and hence may be subject to observation or manipula-
tion by an adversary. Generators based on oscillators and capacitors can be built on VLSI
devices; they can be enclosed in tamper-resistant hardware, and hence shielded from active
adversaries.

(ii) Software-based generators

Designing a random bit generator in software is even more difficult than doing so in hard-
ware. Processes upon which software random bit generators may be based include:

1. the system clock; .

2. elapsed time between keystrokes or mouse movement;

3. content of input/output buffers;

4. user input; and

5. operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various factors, such
as the computer platform. It may also be difficult to prevent an adversary from observing or
manipulating these processes. For instance, if the adversary has a rough idea of when aran-
dom sequence was generated, she can guess the content of the system clock at that time with
a high degree of accuracy. A well-designed software random bit generator should utilize as
many good sources of randomness as are available. Using many sources guards against the
possibility of a few of the sources failing, or being observed or manipulated by an adver-
sary. Each source should be sampled, and the sampled sequences should be combined using
a complex mixing function; one recommended technique for-accomplishing this is to apply
a cryptographic hash function such as SHA-1 (Algorithm 9.53) or MD5 (Algorithm 9.51) to
a concatenation of the sampled sequences. The purpose of the mixing function is to distill
the (true) random bits from the sampled sequences.

(iii) De-skewing

A natural source of random bits may be defective in that the output bits may be biased (the
probability of the source emitting a 1 is not equal to %) or correlated (the probability of
the source emitting a 1 depends on previous bits emitted). There are various techniques for
generating truly random bit sequences from the output bits of such a defective generator;
such techniques are called de-skewing techniques.
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5.10 Example (removing biases in output bits) Suppose that a generator produces biased but
uncorrelated bits. Suppose that the probability of a 1 is p, and the probability ofa 0 is 1 — p,
where p is unknown but fixed, 0 < p < 1. If the output sequence of such a generator is
grouped into pairs of bits, with a 10 pair transformed to a 1, a 01 pair transformed to a 0, and
00 and 11 pairs discarded, then the resulting sequence is both unbiased and uncorrelated. (I

A practical (although not provable) de-skewing technique is to pass sequences whose
bits are biased or correlated through a cryptographic hash function such as SHA-1 or MDS5.

5.3 Pseudorandom bit generation

A one-way function f (Definition 1.12) can be utilized to generate pseudorandom bit se-
quences (Definition 5.3) by first selecting arandom seed s, and then applying the function to
the sequence of values s, s+1, s+2, .. . ; the output sequence is f(s), f(s+1), f(s+2),....
Depending on the properties of the one-way function used, it may be necessary to only keep
a few bits of the output values f(s + 1) in order to remove possible correlations between
successive values. Examples of suitable one-way functions f include a cryptographic hash
function such as SHA-1 (Algorithm 9.53), or a block cipher such as DES (§7.4) with secret
key k.

Although such ad-hoc methods have not been proven to be cryptographically secure,
they appear sufficient for most applications. Two such methods for pseudorandom bit and
number generation which have been standardized are presented in §5.3.1 and §5.3.2. Tech-
niques for the cryptographically secure generation of pseudorandom bits are given in §5.5.

5.3.1 ANSI X9.17 generator

Algorithm 5.11 is a U.S. Federal Information Processing Standard (FIPS) approved method
from the ANSI X9.17 standard for the purpose of psendorandomly generating keys and
initialization vectors for use with DES. E}, denotes DES E-D-E two-key triple-encryption
(Definition 7.32) under a key k; the key k should be reserved exclusively for use in this
algorithm.

5.11 Algorithm ANSI X9.17 pseudorandom bit generator

INPUT: a random (and secret) 64-bit seed s, integer m, and DES E-D-E encryption key k.
OUTPUT: m pseudorandom 64-bit strings =1, Z2, . .. , Tpm,.
1. Compute the intermediate value I = FEi(D), where D is a 64-bit representation of
the date/time to as fine a resolution as is available. ‘
2. For i from 1 to m do the following:
2.1 z;+Ex(I ® s).
22 seBy(z; 1)
3. Return(z1, z9,... ,Zm).

Each output bitstring z; may be used as an initialization vector (IV) for one of the DES
modes of operation (§7.2.2). To obtain a DES key from z;, every eighth bit of z; should be
reset to odd parity (cf. §7.4.2).
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5.3.2 FIPS 186 generator

The algorithms presented in this subsection are FIPS-approved methods for pseudorandom-
ly generating the secret parameters for the DSA (Algorithm 11.5.1). Algorithm 5.12 gen-
erates a DSA private key a, while Algorithm 5.14 generates the per-message secrets k to
be used in signing messages. Both algorithms use a secret seed s which should be ran-
domly. generated, and utilize a one-way function constructed by using either SHA-1 (Algo-
rithm 9.53) or DES (Algorithm 7.82), respectively described in Algorithms 5.15 and 5.16.

5.12 Algorithm FIPS 186 pseudorandom number generator for DSA private keys

INPUT: an integer m and a 160-bit prime number g.
OUTPUT: m pseudorandom numbers ai, as, . .. , am, in the interval [0, g — 1] which may
be used as DSA private keys.
- 1. If Algorithm 5.15 is to be used in step 4.3 then select an arbitrary integer b, 160 <
b < 512; if Algorithm 5.16 is to be used then set b+-160.
2. Generate a random (and secret) b-bit seed s.
3. Define the 160-bit string t = 67452301 efcdab89 98badcfe 10325476 c3d2e110 (in
hexadecimal). .
4. For i from 1 to m do the following:
4.1 (optional user input) Either select a b-bit string y;, or set y; 0.
4.2 z+(s+y;) mod 2,
4.3 a;+G(t,z;) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.4 s¢(1+ s+ a;) mod 2°.
5. Return(ai, as,... ,0m).

5.13 Note (optional user input) Algorithm 5.12 permits a user to augment the seed s with ran-
dom or pseudorandom strings derived from alternate sources. The user may desire to do
this if she does not trust the quality or integrity of the random bit generator which may be
built into a cryptographic module implementing the algorithm.

5.14 Algorithm FIPS 186 pseudorandom number generator for DSA per-message secrets

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers k1, k2, . .. , kn, in the interval [0, ¢ — 1] which may
be used as the per-message secret numbers k& in the DSA.
1. If Algorithm 5.15 is to be used in step 4.1 then select an integer b, 160 < b < 512;
if Algorithm 5.16 is to be used then set b<—160.
2. Generate a random (and secret) b-bit seed s.
3. Define the 160-bit string ¢t = efcdab89 98badcfe 10325476 c3d2e1f0 67452301 (in
hexadecimal).
4. For i from 1 to m do the following:
4.1 k;+G(t, s) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.2 s+(1+ s+ k;) mod 2°.
5. Return(ky, k2, ... ,km).
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5.15 Algorithm FIPS 186 one-way function using SHA-1

INPUT: a 160-bit string ¢ and a b-bit string ¢, 160 < b < 512.
OUTPUT: a 160-bit string denoted G(t, c).

. Break up ¢ into five 32-bit blocks: ¢ = H; || Ho||Hs3|| Ha|| Hs.

. Pad ¢ with 0’s to obtain a 512-bit message block: X ¢-¢||0%12~2,

. Divide X into 16 32-bit words: zoz; ... z1s, and set m«1.

. Execute step 4 of SHA-1 (Algorithm 9.53). (This alters the H;’s.)
. The output is the concatenation: G(t,c) = Hy| Ha|| Hs|| Ha| Hs.

[ T R

5.16 Algorithm FIPS 186 one-way function using DES

INPUT: two 160-bit strings ¢ and c.
OUTPUT: a 160-bit string denoted G(t, ¢).
1. Break up t into five 32-bit blocks: t = to||t1|t||ts]/t4.
2. Break up c into five 32-bit blocks: ¢ = cpl|e1||c2||csl|ca-
3. For i from 0 to 4 do the following: z;¢t; & ¢;.
4. For i from 0 to 4 do the following:
4.1 b1¢-Clita)modss V24C(i43)mods-
4.2 01¢Ti, G2+Z(i41)mods D T(i4-4)mod5-
4.3 A<ayllag, B+bl|bo, where b} denotes the 24 least significant bits of b;.
4.4 Use DES with key B to encrypt A: y;<DESp(A). '
4.5 Break up y; into two 32-bjt blocks: y; = L;|| R;.
5. For ¢ from 0 to 4 do the following: 2;<L; & E(;12)mods D L(i+3)mods-
6. The output is the concatenation: G(t, c) = 2o||21 22| 23| 2a-

5.4 Statistical tests

This section presents some tests designed to measure the quality of a generator purported
to be a random bit generator (Definition 5.1). While it is impossible to give a mathematical
proof that a generator is indeed a random bit generator, the tests described here help detect
certain kinds of weaknesses the generator may have. This is accomplished by taking a sam-
ple output sequence of the generator and subjecting it to various statistical tests. Each statis-
tical test determines whether the sequence possesses a certain attribute that a truly random
sequence would be likely to exhibit; the conclusion of each test is not definite, but rather
probabilistic. An example of such an attribute is that the sequence should have roughly the
same number of 0’s as 1’s. If the sequence is deemed to have failed any one of the statistical
tests, the generator may be rejected as being non-random; alternatively, the generator may
be subjected to further testing. On the other hand, if the sequence passes all of the statisti-
cal tests, the generator is accepted as being random. More precisely, the term “accepted”
should be replaced by “not rejected”, since passing the tests merely provides probabilistic
evidence that the generator produces sequences which have certain characteristics of ran-
dom sequences.

§5.4.1 and §5.4.2 provide some relevant background in statistics. §5.4.3 establishes
some notation and lists Golomb’s randomness postulates. Specific statistical tests for ran-
domness are described in §5.4.4 and §5.4.5.
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5.4.1 The normal and chi-square distributions

The normal and x? distributions are widely used in statistical applications.

5.17 Definition If the result X of an experiment can be any real number, then X is said to be
a continuous random variable.

5.18 Definition A probability density function of a continuous random variable X is a function
f(x) which can be integrated and satisfies:

i) f(z) >0forallz € R;
() [, f(z)dz =1;and
(iii) forall a,b € R, P(a < X <b) = [’ f(z)dz.
(i) The normal distribution

The normal distribution arises in practice when a large number of independent random vari-
ables having the same mean and variance are summed.

5.19 Definition A (continuous) random variable X has a normal distribution with mean p. and
variance o2 if its probability density function is defined by

_ 2
f.(w) = 0\}2.; exp{ (32202”) }, —00 < T < 00.

Notation: X.is said to be N(p,02). If X is N(0,1), then X is said to have a standard
normal distribution.

A graph of the N(0,1) distribution is given in Figure 5.1. The graph is symmetric
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Figure 5.1: The normal distribution N(0, 1).

about the vertical axis, and hence P(X > z) = P(X < —z) for any x. Table 5.1 gives
some percentiles for the standard normal distribution. For example, the entry (o = 0.05,
2 = 1.6449) means that if X is N (0, 1), then X exceeds 1.6449 about 5% of the time.

Fact 5.20 can be used to reduce questions about a normal distribution to questions about
the standard normal distribution.
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« 0.1 0.05 0.025 0.01 0.005 | 0.0025 0.001 | 0.0005
T 1.2816 | 1.6449 | 1.9600 | 2.3263 | 2.57568 | 2.8070 | 3.0902 | 3.2905

Table 5.1: Selected percentiles of the standard normal distribution. If X is a random variable having
a standard normal distribution, then P(X > z) = a.

5.20
N(0,1).

(ii) The x? distribution

Fact If the random variable X is N (g, o2), then the random variable Z = (X — p)/o is

The x? distribution can be used to compare the goodness-of-fit of the observed frequencies
of events to their expected frequencies under a hypothesized distribution. The x? distribu-
tion with v degrees of freedom arises in practice when the squares of v independent random
variables having standard normal distributions are summed.

5.21

f(a?) =

1
T(v/2)2°/2

3

pr <1 ()}

z/)-le=2/2 0 < z < o0,

Definition A (continuous) random variable X has a x? (chi-square) distribution with v
degrees of freedom if its probability density function is defined by

where T is the gamma function. > The mean and variance of this distribution are y = v,

and 02 = 2v.

A graph of the x? distribution with v = 7 degrees of freedom is given in Figure 5.2.
Table 5.2 gives some percentiles of the x? distribution for various degrees of freedom. For

0.12 |

0.1 | J{ \

0.02

,-f/- X
N

X

fix)

0
0

20

Figure 5.2: The x? (chi-square) distribution with v = 7 degrees of freedom.

example, the entry in row v = 5 and column a = 0.05 is z = 11.0705; this means that if
X has a x? distribution with 5 degrees of freedom, then X exceeds 11.0705 about 5% of

the time.

3The gamma function is defined by T'(t) = [;° z*~le~%dz, for t > 0.
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(84
v 0100 | 0050 ] _ 0.025 [ _ 0010 | 0005 | 0001
1 27055 | 38415 | 5.0239 | 66349 78794 | 10.8276
2 46052 | 59915 |  7.3778 | 92103 | 10.5966 | 13.8155
3 62514 |  7.8147 | 03484 | 113449 | 128382 | 16.2662
4 77794 | 9.4877 | 111433 | 132767 | 14.8603 | 18.4668
5 92364 | 110705 | 128325 | 150863 | 167496 | 20.5150
6 || 106446 | 125916 | 144494 | 168119 | 18.5476 | 22.4577
7 || 120170 | 140671 | 160128 | 184753 | 202777 | 243219
g || 133616 | 155073 | 17.5345 | 200002 | 219550 | 26.1245
9 || 146837 | 169190 | 19.0228 | 21.6660 | 23.5894 | 27.8772
10 || 159872 | 183070 | 204832 | 23.2093 | 25.1882 | 29.5883
11 || 172750 | 196751 | 21.9200 | 247250 | 267568 | 31.2641
12 || 185493 | 210261 | 233367 | 262170 | 28.2995 | 329095
13 || 198119 | 223620 | 247356 | 27.6882 | 29.8195 | 34.5282
14 || 210641 | 23.6848 | 261189 | 29.1412 | 313193 | 36.1233
15 || 223071 | 249958 | 274884 | 305779 | 32.8013 | 37.6973
16 || 235418 | 262962 | 28.8454 | 319999 | 342672 | 39.2524
17 || 247690 | 27.5871 | 301910 | 33.4087 | 357185 | 407902
18 || 259894 | 28.8693  31.5264 | 34.8053 | 37.1565 | 423124
19 || 272036 | 301435 | 32.8523 | 36.1909 | 38.5823 | 43.8202
20 || 28.4120 | 314104 | 341696 | 37.5662 | 39.9968 | 45.3147
21 || 29.6151 | 326706 | 354780 | 389322 | 414011 | 467970
22 || 308133 | 339244 | 367807 | 402894 | 427957 | 48.2679
23 || 320069 | 351725 | 380756 | 41.6384 | 441813 | 49.7282
24 || 331962 | 364150 | 393641 | 429798 | 455585 | 51.1786
25 || 343816 | 37.6525 | 40.6465 | 443141 | 469279 | 52.6197
26 || 355632 | 38.8851 | 41.9232 | 456417 | 482899 | 54.0520
27 || 367412 | 40.1133 | 43.1945 | 469629 | 49.6449 | 55.4760
28 || 379159 | 413371 | 444608 | 482782 | 509934 | 56.8923
29 || 39.0875 | 425570 | 457223 | 49.5879 | 523356 | 583012
30 || 402560 | 437730 | 469792 | 508922 | 53.6720 | 59.7031
31 || 414217 | 449853 | 482319 | 521914 | 55.0027 | 61.0983
63 || 777454 | 825287 | 86.8296 | 920100 | 95.6493 | 103.4424
127 || 147.8048 | 154.3015 | 160.0858 | 1669874 | 171.7961 | 181.9930
255 || 284.3350 | 293.2478 | 301.1250 | 3104574 | 3169194 | 330.5197
511 || 5523739 | 5646961 | 575.5298 | 588.2978 | 597.0978 | 615.5149
1023 || 1081.3794 | 1098.5208 | 1113.5334 | 11311587 | 1143.2653 | 1168.4972

Table 5.2: Selected percentiles of the X” (chi-square) distribution. A (v, @)-entry of © in the table '
has the following meaning: if X is a random variable having a X distribution with v degrees of
freedom, then P(X > z) = o
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§5.4 Statistical tests 179

Fact 5.22 relates the normal distribution to the %2 distribution.

5.22 Fact If the random varia}ble X is N(u,0?), o2 >0, then the random variable Z — (X —
1)?/o? has a x? distribution with 1 degree of freedom. In particular, if X is N (0, 1), then
Z = X? has a x? distribution with 1 degree of freedom.

5.4.2 Hypothesis testing

A statistical hypothesis, denoted Hy, is an assertion about a distribution of one or more ran-
dom variables. A test of a statistical hypothesis is a procedure, based upon observed values
of the random variables, that leads to the acceptance or rejection of the hypothesis Hg. The
test only provides a measure of the strength of the evidence provided by the data against
the hypothesis; hence, the conclusion of the test is not definite, but rather probabilistic.

5.23 Definition The significance level o of the test of a statistical hypothesis Hy is the proba-
bility of rejecting Hy when it is true.

In this section, Hy will be the hypothesis that a given binary sequence was produced
by arandom bit generator. If the significance level o of a test of Hy is too high, then the test
may reject sequences that were, in fact, produced by a random bit generator (such an error
is called a Type I error). On the other hand, if the significance level of a test of Hy is too
low, then there is the danger that the test may accept sequences even though they were not
produced by a random bit generator (such an error is called a Type I1 error).* Itis, therefore,
important that the test be carefully designed to have a significance level that is appropriate
for the purpose at hand; a significance level o between 0.001 and 0.05 might be employed
in practice.

A statistical test is implemented by specifying a statistic on the random sample. 5 Statis-
tics are generally chosen so that they can be efficiently computed, and so that they (approxi-
mately) follow an N (0, 1) or a x? distribution (see §5.4.1). The value of the statistic for the
sample output sequence is computed and compared with the value expected for a random
sequence as described below. ‘

1. Suppose that a statistic X for a random sequence follows a x? distribution with v
degrees of freedom, and suppose that the statistic can be expected to take on larger
values for nonrandom sequences. To achieve a significance level of «, a threshold
value z,, is chosen (using Table 5.2) so that P(X > z,) = a. If the value X of the
statistic for the sample output sequence satisfies Xg > z, then the sequence fails the
test; otherwise, it passes the test. Such a test is called a one-sided test. For example,
if v = 5 and & = 0.025, then z, = 12.8325, and one expects arandom sequence to
fail the test only 2.5% of the time.

2. Suppose that a statistic X for a random sequence follows an N (0, 1) distribution, and
suppose that the statistic can be expected to take on both larger and smaller values for
nonrandom sequences. To achieve a significance level of «, a threshold value z,, is
chosen (using Table 5.1) so that P(X > z,) = P(X < —z4) = /2. If the value

4 Actually, the probability 3 of a Type II error may be completely independent of . If the generator is not a
random bit generator, the probability 3 depends on the nature of the defects of the generator, and is usually difficult
to determine in practice. For this reason, assuming that the probability of a Type II error is proportional to ¢ is a
useful intuitive guide when selecting an appropriate significance level for a test.

5A statistic is a function of the elements of a random sample; for example, the number of 0’s in a binary se-
quence is a statistic.
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180 Ch. 5 Pseudorandom Bits and Sequences

X of the statistic for the sample output sequence satisfies Xg > zo or Xg < —Zq, :
then the sequence fails the test; otherwise, it passes the test. Such a test is called a
two-sided test. For example, if & = 0.05, then 2, = 1.96, and one expects a random i
sequence to fail the test only 5% of the time.

5.4.3 Golomb’s randomness postulates |

Golomb’s randomness postulates (Definition 5.28) are presented here for historical reasons
— they were one of the first attempts to establish some necessary conditions for a periodic
pseudorandom sequence to look random. It is emphasized that these conditions are far from
being sufficient for such sequences to be considered random. Unless otherwise stated, all
sequences are binary sequences.

5.24 Definition Let s = so, 81, 82, ... be an infinite sequence. The subsequence consisting of
the first n terms of s is denoted by s™ = s¢,'S1,... , Sn—1- i

5.25 Definition The sequence s = sg, s1, 82,... is said to be N-periodic if s; = s;4n for
all 1 > 0. The sequence s is periodic if it is N-periodic for some positive integer N. The
period of a periodic sequence s is the smallest positive integer IV for which s is N-periodic.
If 5 is a periodic sequence of period N, then the cycle of s is the subsequence s .

5.26 Definition Let s be asequence. A run of s is a subsequence of s consisting of consecutive
0’s or consecutive 1°s which is neither preceded nor succeeded by the same symbol. A run
of 0’s is called a gap, while a run of 1’s is called a block.

5.27 Definition Let s = s, 51, S2,... be a periodic sequence of period N. The autocorrela-
tion function of s is the integer-valued function C(t) defined as

N—-1
o) = ;]2(251 1) (28005 —1), for0<t<N—1
=0

The autocorrelation function C(t) measures the amount of similarity between the se-
quence s and a shift of s by ¢ positions. If s is a random periodic sequence of period N,
then |V - C(t)| can be expected to be quite small for all values of ¢,0 < ¢t < N.

5.28 Definition Let s be a periodic sequence of period N. Golomb’s randomness postulates
are the following.
R1: In the cycle s”V of s, the number of 1’s differs from the number of 0’s by at most 1.
R2: In the cycle s%, at least half the runs have length 1, at least one-fourth have length
2, at least one-eighth have length 3, etc., as long as the number of runs so indicated
exceeds 1. Moreover, for each of these len gths there are (almost) equally many, gaps
and blocks.®
R3: The autocorrelation function C(t) is two-valued. That is for some integer K,

N, ift=0,
N-C@) = 2(231"1)'(25%'“1):{ Sl L P A

SPostulate R2 implies postulate R1.
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5.29 Definition A binary sequence which satisfies Golomb’s randomness postulates is called
a pseudo-noise sequence or a pn-sequence.

Pseudo-noise sequences arise in practice as output sequences of maximum-length lin-
ear feedback shift registers (cf. Fact 6.14).

5.30 Example (pn-sequence) Consider the periodic sequence s of period N = 15 with cycle
s'®=0,1,1,0,0,1,0,0,0,1,1,1,1,0,1.

The following shows that the sequence s satisfies Golomb’s randomness postulates.
R1: The number of 0’s in s'3 is 7, while the number of 1’s is 8.
R2: 55 has 8 runs. There are 4 runs of length 1 (2 gaps and 2 blocks), 2 runs of length 2
(1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 block).
R3: The autocorrelation function C(£) takes on two values: C(0) = 1and C(t) = 3¢
forl <t <14

Hence, s is a pn-sequence. a

5.4.4 Five basic tests

Let s = 8g, 81,82,.-- ,8,—1 be a binary sequence of length nn. This subsection presents
five statistical tests that are commonly used for determining whether the binary sequence
s possesses some specific characteristics that a truly random sequence would be likely to
exhibit. It is emphasized again that the outcome of each test is not definite, but rather prob-
abilistic. If a sequence passes all five tests, there is no guarantee that it was indeed produced
by a random bit generator (cf. Example 5.4). ‘

(i) Frequency test (monobit test)

The purpose of this test is to determine whether the number of 0’s and 1’s in s are approxi-
mately the same, as would be expected for a random sequence. Let ng, 1 denote the num-
ber of 0’s and 1°s in s, respectively. The statistic used is

2
X et (no —m)* (5.1)
n

which approximately follows a x? distribution with 1 degree of freedom if n > 10. ¢

(ii) Serial test (two-bit test)

The purpose of this test is to determine whether the number of occurrences of 00, 01, 10,
and 11 as subsequences of s are approximately the same, as would be expected for arandom
sequence. Let ng, n1 denote the number of 0’s and 1’s in s, respectively, and let ngo, 701,
n10, 711 denote the number of occurrences of 00, 01, 10, 11 in s, respectively. Note that
noo + nor + nio + n11 = (n — 1) since the subsequences are allowed to overlap. The
statistic used is '

4

2
Xa = —— (nfo +n§y +nfo +ndy) — = (n§ +ni) +1 &

which approximately follows a x2 distribution with 2 degrees of freedom if n > 21.

7In practice, it is recommended that the length 7 of the sample output sequence be much larger (for example,
7> 10000) than the minimum specified for each test in this subsection.
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5.31

(iii) Poker test

Letmn be a positive integer such that | = | > 5-(2™), andletk = | 2 |. Divide the sequence
s into k non-overlapping parts each of length mm, and let n; be the number of occurrences of
the i*® type of sequence of length mm, 1 < i < 2™. The poker test determines whether the
sequences of length m each appear approximately the same number of times in s, as would
be expected for a random sequence. The statistic used is

gm (3,
Mg =ae (an) -k (5:3)

i=1 ,
which approximately follows a x? distribution with 2™ — 1 degrees of freedom. Note that
the poker test is a generalization of the frequency test: setting m = 1 in the poker test yields
the frequency test.

(iv) Runs test '
The purpose of the runs test is to determine whether the number of runs (of either zeros or
ones; see Definition 5.26) of various lengths in the sequence s is as expected for a random
sequence. The expected number of gaps (or blocks) of length ¢ in a random sequence of
lengthnise; = (n—i+3)/2+2. Letk be equal to the largest integer i for whiche; > 5. Let
B;, G; be the number of blocks and gaps, respectively, of length i in s foreachi,1 < 7 < k.
The statistic used is
k k
B, —e;)? G, — e;)?
X4 = Z(_Q_??L)_'FZ% (5.4)
i=1 g i=1 k

which approximately follows a x? distribution with 2k — 2 degrees of freedom.

(v) Autocorrelation test

The purpose of this test is to check for correlations between the sequence s and (non-cyclic)
shifted versions of it. Let d be a fixed integer, 1 < d < |n/2|. The number of bits in s not
=

equal to their d-shifts is A(d) = Zizod_l 8;®B8i+d4, where @ denotes the XOR operator.
The statistic used is

Xs = (A(d) - -——) /vVn—d (5.5

which approximately follows an IV (0, 1) distribution if n — d > 10. Since small values of
A(d) are as unexpected as large values of A(d), a two-sided test should be used.

Example (basic statistical tests) Consider the (non-random) sequence s of lcngth n =
160 obtained by replicating the following sequence four times:

11100 01100 01000 10100 11101 11100 10010 01001.

(1) (frequency test) ng = 84, ny = 76, and the value of the statistic X, is 0.4.
(ii) (serial test) ngo = 44, no1 = 40, n1o = 40, n11 = 35, and the value of the statistic
X5 is 0.6252.
(ili) (poker tesr) Here m =.3 and k = 53. The blocks 000, 001, 010, 011, 100, 101, 110,
- 111 appear 5, 10, 6, 4, 12, 3, 6, and 7 times, respectively, and the value of the statistic
X5 is 9.6415.
(iv) (runs test) Here e; = 20.25, e = 10.0625, e3 = 5, and k£ = 3. There are 25, 4, 5
blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respec-
tively. The value of the statistic X4 is 31.7913.

s
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(v) (autocorrelation test) If d = 3, then A(3) = 35. The value of the statistic X5 is
—6.9434.

For a significance level of @ = 0.05, the threshold values for X, X5, X3, X4, and X5 are

3.8415, 5.9915, 14.0671, 9.4877, and 1.96, respectively (see Tables 5.1 and 5.2). Hence,

the given sequence s passes the frequency, serial, and poker tests, but fails the runs and

autocorrelation tests. &

5.32 Note (FIPS 140-1 statistical tests for randomness) FIPS 140-1 specifies four statistical
tests for randomness. Instead of making the user select appropriate significance levels for
these tests, explicit bounds are provided that the computed value of a statistic must satisfy.
A single bitstring s of length 20000 bits, output from a generator, is subjected to each of the
following tests. If any of the tests fail, then the generator fails the test.

(i) monobit test. The number n; of 1’s in s should satisfy 9654 < n; < 10346.
(ii) poker test. The statistic X3 defined by equation (5.3) is computed for m = 4. The
poker test is passed if 1.03 < X3 < 57.4.

(iii) runs test. The number B; and G; of blocks and gaps, respectively, of length ¢ in s are
counted for each 4, 1 < 4 < 6. (For the purpose of this test, runs of length greater
than 6 are considered to be of length 6.) The runs test is passed if the 12 counts B;,
G;, 1 <4 < 6, are each within the corresponding interval specified by the following

table.
[ Length of run | Required interval
1 2267 — 2733
2 1079 — 1421
3 502 — 748
4 223 — 402
5 90 — 223
6 90 — 223

(iv) long run test. The long run test is passed if there are no runs of length 34 or more.
For high security applications, FIPS 140-1 mandates that the four tests be performed each
time the random bit generator is powered up. FIPS 140-1 allows these tests to be substituted
by alternative tests which provide equivalent or superior randomness checking.

5.4.5 Maurer’s universal statistical test

The basic idea behind Maurer’s universal statistical test is that it should not be possible to
significantly compress (without loss of information) the output sequence of a random bit
generator. Thus, if a sample output sequence s of a bit generator can be significantly com-
pressed, the generator should be rejected as being defective. Instead of actually compress-
ing the sequence s, the universal statistical test computes a quantity that is related to the
length of the compressed sequence.

The universality of Maurer’s universal statistical test arises because it is able to detect
any one of a very general class of possible defects a bit generator might have. This class
includes the five defects that are detectable by the basic tests of §5.4.4. A drawback of the
universal statistical test over the five basic tests is that it requires a much longer sample
output sequence in order to be effective. Provided that the required output sequence can be
efficiently generated, this drawback is not a practical concern since the universal statistical
test itself is very efficient.

Algorithm 5.33 computes the statistic X, for a sample outputsequence s = so, 51, ... ,
Sn—1 to be used in the universal statistical test. The parameter L is first chosen from the
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5.33

S | [[Z s ]

0.7326495 | 0.690 ) 9 | 8.1764248 | 3.311
1.5374383 | 1.338 10 | 9.1723243 | 3.356
2.4016068 | 1.901 11 | 10.170032 | 3.384
3.3112247 | 2.358 12 | 11.168765 | 3.401
4.2534266 | 2.705 . 13 | 12.168070 | 3.410
5.2177052 | 2.954 14 | 13.167693 | 3.416
6.1962507 | 3.125 15 | 14.167488 | 3.419
7.1836656 | 3.238 16 | 15.167379 | 3.421

[« ST = L B N

Table 5.3: Mean . and variance o* of the statistic X u for random sequences, with pa}ameters L,
K as Q — oco. The variance of X is 0 = ¢(L, K)? - 01 /K, where ¢(L,K) =~ 0.7 — (0.8/L) +
(1.6 + (12.8/L)) - K~¥* for K > 2L,

interval [6, 16]. The sequence s is then partitioned into non-overlapping L-bit blocks, with
any leftover bits discarded; the total number of blocks is Q@+ K, where ) and K are defined
below. Foreachi,1 < i < Q+K, letb; be the integer whose binary representation is the ith
block. The blocks are scanned in order. A table T" is maintained so that at each stage T[] is
the position of the last occurrence of the block corresponding to integer j, 0 < j < 21— 1.
The first @ blocks of s are used to initialize table 7"; ) should be chosen to be at least 10- oL
in order to have a high likelihood that each of the 2% L-bit blocks occurs at least once in
the first Q blocks. The remaining K blocks are used to define the statistic X,, as follows.
Foreachi, @ +1<i < Q+ K, let A; = i — T'[b;]; A; is the number of positions since
the last occurrence of block b;. Then
1 Q+K
ool > Igh (5.6)
i=Q+1

K should be at least 1000 - 2~ (and, hence, the sample sequence s should be at least (1010 .

2L . L) bits in length). Table 5.3 lists the mean p and variance o of X, for random se-
quences for some sample choices of L as Q — co.

Algorithm Computing the statistic X. for Maurer’s universal statistical test

INPUT: a binary sequence 8 = Sg, 81, . . . , Sp—1 Of length n, and parameters L, @, K.
OUTPUT.: the value of the statistic X,, for the sequence s.

1. Zero the table T. For j from 0 to 21 — 1 do the following: T'[5]<0.
2. Initialize the table T'. For i from 1 to Q do the following: T'[b;]<—.
3. sum<-0.
4. For i from Q + 1 to @ 4+ K do the following:

4.1 sum¢-sum + lg(i — T'[bs]).

4.2 T[b1](—-1,
5. Xy¢sum/K.

6. Return(Xy,).

Maurer’s universal statistical test uses the computed value of X, for the sample output
sequence s in the manner prescribed by Fact 5.34. To test the sequence s, a two-sided test
should be used with a significance level a between 0.001 and 0.01 (see §5.4.2).
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5.34 Fact Let X, be the statistic defined in (5.6) having mean  and variance o as given in
Table 5.3. Then, for random sequences, the statistic Z,, = (X, — p)/o approximately
followsan N (0, 1) distribution.

5.5 Cryptographically secure pseudorandom bit
generation

Two cryptographically secure pseudorandom bit generators (CSPRBG - see Definition 5.8)
are presented in this section. The security of each generator relies on the presumed in-
tractability of an underlying number-theoretic problem. The modular multiplications that
these generators use make them relatively slow compared to the (ad-hoc) pseudorandom
bit generators of §5.3. Nevertheless they may be useful in some circumstances, for exam-
ple, generating pseudorandom bits on hardware devices which already have the circuitry for
performing modular multiplications. Efficient techniques for implementing modular mul-
tiplication are presented in §14.3.

5.5.1 RSA pseudorandom bit generator

The RSA pseudorandom bit generator is a CSPRBG under the assumption that the RSA
problem is intractable (§3.3; see also §3.9.2). -

5.35 Algorithm RSA pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z1, 22, . . . , z; of length [ is generated.

1. Setup. Generate two secret RSA-like primes p and ¢ (cf. Note 8.8), and compute rn =
pgand ¢ = (p — 1)(g — 1). Select a random integer e, 1 < e < ¢, such that
ged(e, @) = 1.

2. Select a random integer zo (the seed) in the interval [1,n — 1].

3. For i from 1 to [ do the following:

3.1 z;2z¢_; modn.
3.2 z;< the least significant bit of z;.

4. The output sequence is 21, 22, . . . , 2.

5.36 Note (efficiency of the RSA PRBG) If e = 3 is chosen (cf. Note 8.9(ii)), then generating
each pseudorandom bit z; requires one modular multiplication and one modular squaring.
The efficiency of the generator can be improved by extracting the j least significant bits
of z; in step 3.2, where j = clglgn and c is a constant. Provided that n is sufficiently
large, this modified generator is also cryptographically secure (cf. Fact 3.87). For a mod-
ulus 7 of a fixed bitlength (e.g., 1024 bits), an explicit range of values of ¢ for which the
resulting generator remains cryptographically secure (cf. Remark 5.9) under the intractabil-
ity assumption of the RSA problem has not been determined.

The following modification improves the efficiency of the RSA PRBG.
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5.837 Algorithm Micali-Schnorr pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence is generated.
1. Serup. Generate two secret RSA-like primes p and g (cf. Note 8.8), and compute n =
pgand ¢ = (p—1)(g—1). Let N = |lgn| + 1 (the bitlength of 7). Select an integer
e, 1 < e < @, such that gcd(e, ¢) = 1and 80e < N. Letk = |[N(1 — 2)] and
P =TI Sk _
2. Select a random sequence zp (the seed) of bitlength 7.
3. Generate a pseudorandom sequence of length k-1. For i from 1 to ] do the following:
3.1 yi+xf_, modn.
3.2 z;+ the r most significant bits of y;.
3.3 z;+ the k least significant bits of y;.

4. The output sequence is z1 || zo | -+ || 2, where || denotes concatenation.

5.38 Note (efficiency of the Micali-Schnorr PRBG) Algorithm 5.37 is more efficient than the
RSA PRBG since | N(1 — 2)] bits are generated per exponentiation by e. For example,
ife = 3and N = 1024, then k = 341 bits are generated per exponentiation. Moreover,
each exponentiation requires only one modular squaring of an r = 683-bit number, and one
modular multiplication.

5.39 Note (security of the Micali-Schnorr PRBG) Algorithm 5.37 is cryptographically secure
under the assumption that the following is true: the distribution 2° mod n for random r-bit
sequences z is indistinguishable by all polynomial-time statistical tests from the uniform
distribution of integers in the interval [0, n — 1]. This assumption is stronger than requiring
that the RSA problem be intractable.

5.5.2 Blum-Blum-Shub pseudorandom bit generator

The Blum-Blum-Shub pseudorandom bit generator (also known as the 2 mod n genera-
tor or the BBS generator) is a CSPRBG under the assumption that integer factorization is
intractable (§3.2). It forms the basis for the Blum-Goldwasser probabilistic public-key en-
cryption scheme (Algorithm 8.55).

5.40 Algorithm Blum-Blum-Shub pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z1, 22, . .. , z; of length [ is generated.
1. Setup. Generate two large secret random (and distinct) primes p and ¢ (cf. Note 8.8),
each congruent to 3 modulo 4, and compute n = pq.
2. Select arandom integer s (the seed) in the interval [1, n — 1] such that gcd(s, n) = 1,
and compute zp4—s% mod n.
3. For i from 1 to.! do the following:
3.1 z;¢z2_; mod n.
3.2 z;« the least significant bit of z;.
4. The output sequence is 21, 2z, ... , 2.
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5.41 Note (efficiency of the Blum-Blum-Shub PRBG) Generating each pseudorandom bit z; re-
quires one modular squaring. The efficiency of the generator can be improved by extracting
the j least significant bits of z; in step 3.2, where j = clglg n and cis a constant. Provided
that n is sufficiently large, this modified generator is also cryptographically secure. For a
modulus n of a fixed bitlength (eg. 1024 bits), an explicit range of values of ¢ for which
the resulting generator is cryptographically secure (cf. Remark 5.9) under the intractability
assumption of the integer factorization problem has not been determined.

5.6 Notes and further references
§5.1

Chapter 3 of Knuth [692] is the definitive reference for the classic (non-cryptographic) gen-
eration of pseudorandom numbers. Knuth [692, pp.142-166] contains an extensive discus-
sion of what it means for a sequence to be random. Lagarias [724] gives a survey of theo-
retical results on pseudorandom number generators. Luby [774] provides a comprehensive
and rigorous overview of pseudorandom generators.

For a study of linear congruential generators (Example 5.4), see Knuth [692, pp.9-25].
Plumstead/Boyar [979, 980] showed how to predict the output of a linear congruential gen-
erator given only a few elements of the output sequence, and when the parameters a, b,
and m of the generator are unknown. Boyar [180] extended her method and showed that
linear multivariate congruential generators (having recurrence equation z, = a1&p-1 +
a2%Tp—2+ - - - +a1xy—; + b mod m), and quadratic congruential generators (having recur-
rence equation z,, = az>_, + bxp_1 + c mod m) are cryptographically insecure. Finally,
Krawczyk [713] generalized these results and showed how the output of any multivariate
polynomial congruential generator can be efficiently predicted. A truncated linear congru-
ential generator is one where a fraction of the least significant bits of the z; are discarded.
Frieze et al. [427] showed that these generators can be efficiently predicted if the genera-
tor parameters a, b, and m are known. Stern [1173] extended this method to the case where
only m is known. Boyar [179] presented an efficient algorithm for predicting linear congru-
ential generators when O(log log m) bits are discarded, and when the parameters a, b, and
m are unknown. No efficient prediction algorithms are known for truncated multivariate
polynomial congruential generators. For a summary of cryptanalytic attacks on congruen-
tial generators, see Brickell and Odlyzko [209, pp.523-526].

For a formal definition of a statistical test (Definition 5.5), see Yao [1258]. Fact 5.7 on
the universality of the next-bit test is due to Yao [1258]. For a proof of Yao’s result, see
Kranakis [710] and §12.2 of Stinson [1178]. A proof of a generalization of Yao’s result
is given by Goldreich, Goldwasser, and Micali [468]. The notion of a cryptographically
secure pseudorandom bit generator (Definition 5.8) was introduced by Blum and Micali
{166]. Blum and Micali also gave a formal description of the next-bit test (Definition 5.6),
and presented the first cryptographically secure pseudorandom bit generator whose security
is based on the discrete logarithm problem (see page 189). Universal tests were presented
by Schrift and Shamir [1103] for verifying the assumed properties of a pseudorandom gen-
erator whose output sequences are not necessarily uniformly distributed.

The first provably secure pseudorandom number generator was proposed by Shamir [1112].
Shamir proved that predicting the next number of an output sequence of this generator is
equivalent to inverting the RSA function. However, even though the numbers as a whole
may be unpredictable, certain parts of the number (for example, its least significant bit) may
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§5.2

§5.3

§5.4

be biased or predictable. Hence, Shamir’s generator is not cryptographically secure in the
sense of Definition 5.8.

Agnew [17] proposed a VLSI implementation of a random bit generator consisting of two
identical metal insulator semiconductor capacitors close to each other. The cells are charged
over the same period of time, and then a 1 or 0 is assigned depending on which cell has
a greater charge. Fairfield, Mortenson, and Coulthart [382] described an LSI random bit
generator based on the frequency instability of a free running oscillator. Davis, Thaka, and
Fenstermacher [309] used the unpredictability of air turbulence occurring in a sealed disk
drive as a random bit generator. The bits are extracted by measuring the variations in the
time to access disk blocks. Fast Fourier Transform (FFT) techniques are then used to re-
move possible biases and correlations. A sample implementation generated 100 random
bits per minute. For further guidance on hardware and software-based techniques for gen-
erating random bits, see RFC 1750 [1043).

The de-skewing technique of Example 5.10 is due to von Neumann [1223]. Elias [370]
generalized von Neumann’s technique to a more efficient scheme (one where fewer bits
are discarded). Fast Fourier Transform techniques for removing biases and correlations are
described by Brillinger [213]. For further ways of removing correlations, see Blum [161],
Santha and Vazirani [1091], Vazirani [1217], and Chor and Goldreich [258].

The idea of using a one-way function f for generating pseudorandom bit sequences is due to
Shamir [1112]. Shamir illustrated why it is difficult to prove that such ad-hoc generators are
cryptographically secure without imposing some further assumptions on f. Algorithm 5.11
is from Appendix C of the ANSI X9.17 standard [37]; it is one of the approved methods for
pseudorandom bit generation listed in FIPS 186 [406]. Meyer and Matyas [859, pp.316-
317] describe another DES-based pseudorandom bit generator whose output is intended for
use as data-encrypting keys. The four algorithms of §5.3.2 for generating DSA parameters
are from FIPS 186.

Standard references on statistics include Hogg and Tanis [559] and Wackerly, Mendenbhall,
and Scheaffer [1226]. Tables 5.1 and 5.2 were generated using the Maple symbolic algebra
system [240]. Golomb’s randomness postulates (§5.4.3) were proposed by Golomb [498].

The five statistical tests for local randomness outlined in §5.4.4 are from Beker and Piper
[84]. The serial test (§5.4.4(ii)) is due to Good [508]. It was generalized to subsequences of
length greater than 2 by Marsaglia [782] who called it the overlapping m-tuple test, and later
by Kimberley [674] who called it the generalized serial test. The underlying distribution
theories of the serial test and the runs test (§5.4.4(iv)) were analyzed by Good [507] and
Mood [897], respectively. Gustafson [531] considered alternative statistics for the runs test
and the autocorrelation test (§5.4.4(v)).

There are numerous other statistical tests of local randomness. Many of these tests, includ-
ing the gap test, coupon collector’s test, permutation test, run test, maximum-of-¢ test, col-
lision test, serial test, correlation test, and spectral test are described by Knuth [692]. The
poker test as formulated by Knuth [692, p.62] is quite different from that of §5.4.4(iii). In
the former, a sample sequence is divided into m-bit blocks, each of which is further subdi-
vided into [-bit sub-blocks (for some divisor ! of m). The number of m-bit blocks having r
distinct I-bit sub-blocks (1 < 7 < m/I) is counted and compared to the corresponding ex-
pected numbers for random sequences. Erdmann [372] gives a detailed exposition of many
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of these tests, and applies them to sample output sequences of six pseudorandom bit gener-
ators. Gustafson et al. [533] describe a computer package which implements various statis-
tical tests for assessing the strength of a pseudorandom bit generator. Gustafson, Dawson,
and Goli¢ [532] proposed a new repetition test which measures the number of repetitions of
{-bit blocks. The test requires a count of the number of patterns repeated, but does not re-
quire the frequency of each pattern. For this reason, it is feasible to apply this test for larger
values of [ (e.g. I = 64) than would be permissible by the poker test or Maurer’s universal
statistical test (Algorithm 5.33). Two spectral tests have been developed, one based on the
discrete Fourier transform by Gait [437], and one based on the Walsh transform by Yuen
[1260]. For extensions of these spectral tests, see Erdmann [372] and Feldman [389]. .

FIPS 140-1 [401] specifies security requirements for the design and implementation of
cryptographic modules, including random and pseudorandom bit generators, for protecting
(U.S. government) unclassified information.

The universal statistical test (Algorithm 5.33) is due to Maurer [813] and was motivated by
source coding algorithms of Elias [371] and Willems [1245]. The class of defects that the
test is able to detect consists of those that can be modeled by an ergodic stationary source
with limited memory; Maurer argues that this class includes the possible defects that could
occur in a practical implementation of a random bit generator. Table 5.3 is due to Maurer
[813], who provides derivations of formulae for the mean and variance of the statistic X,,.

§5.5

Blum and Micali [166] presented the following general construction for CSPRBGs. Let D
be a finite set, and let f: D -+ D be a permutation that can be efficiently computed. Let
B: D — {0,1} be a Boolean predicate with the property that B(z) is hard to compute
given only 2 € D, however, B(z) can be efficiently computed given y = f~!(z). The
output sequence 21, 22, . . . , 2 corresponding to a seed o € D is obtained by computing
z; = f(xi—1), 2z = B(z;), for 1 < ¢ < [. This generator can be shown to pass the
next-bit test (Definition 5.6). Blum and Micali [166] proposed the first concrete instance of
a CSPRBG, called the Blum-Micali generator. Using the notation introduced above, their
method can be described as follows. Let p be a large prime, and « a generator of Z,,. Define
D=2Z,={12,...,p— 1}. The function f : D — D is defined by f(z) = o® mod p.
The function B : D — {0,1} is defined by B(z) = 1if 0 < log,z < (p — 1)/2, and
B(z) = 0iflog, = > (p—1)/2. Assuming the intractability of the discrete logarithm prob-
lemin Z;'; (§3.6; see also §3.9.1), the Blum-Micali generator was proven to satisfy the next-
bit test. Long and Wigderson [772] improved the efficiency of the Blum-Micali generator
by simultaneously extracting O(lg Ig p) bits (cf. §3.9.1) from each z;. Kaliski [650, 651}
modified the Blum-Micali generator so that the security depends on the discrete logarithm
problem in the group of points on an elliptic curve defined over a finite field.

The RSA pseudorandom bit generator (Algorithm 5.35) and the improvement mentioned
in Note 5.36 are due to Alexi et al. [23]. The Micali-Schnorr improvement of the RSA
PRBG (Algorithm 5.37) is due to Micali and Schnorr [867], who also described a method
that transforms any CSPRBG into one that can be accelerated by parallel evaluation. The
method of parallelization is perfect: m parallel processors speed the generation of pseudo-
random bits by a factor of m.

Algorithm 5.40 is due to Blum, Blum, and Shub [160], who showed that their pseudoran-
dom bit generator is cryptographically secure assuming the intractability of the quadratic
residuosity problem (§3.4). Vazirani and Vazirani [1218] established a stronger result re-
garding the security of this generator by proving it cryptographically secure under the
weaker assumption that integer factorization is intractable. The improvement mentioned in
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Note 5.41 is due to Vazirani and Vazirani. Alexi et al. [23] proved analogous results for the
modified-Rabin generator, which differs as follows from the Blum-Blum-Shub generator:
in step 3.1 of Algorithm 5.40, let T = 3312—1 mod n; if T < n/2, then z; = T; otherwise,
EE =17y A7}

Impagliazzo and Naor [569] devised efficient constructions for a CSPRBG and for a univer-
sal one-way hash function which are provably as secure as the subset sum problem. Fischer
and Stern [411] presented a simple and efficient CSPRBG which is provably as secure as

* the syndrome decoding problem.

Yao [1258] showed how to obtain a CSPRBG using any one-way permutation. Levin [761]
generalized this result and showed how to obtain a CSPRBG using any one-way function.
For further refinements, see Goldreich, Krawczyk, and Luby [470], Impaghazzo, chm,
and Luby [568], and Hastad [545].

A random function f: {0,1}™ — {0, 1}" is a function which assigns independent and ran-
dom values f(z) € {0,1}" to all arguments z € {0,1}™. Goldreich, Goldwasser, and
Micali [468] introduced a computational complexity measure of the randomness of func-
tions. They defined a function to be poly-random if no polynomial-time algorithm can dis-
tinguish between values of the function and true random strings, even when the algorithm
is permitted to select the arguments to the function. Goldreich, Goldwasser, and Micali
presented an algorithm for constructing poly-random functions assuming the existence of
one-way functions. This theory was applied by Goldreich, Goldwasser, and Micali [467]
to develop provably secure protocols for the (essentially) storageless distribution of secret
identification numbers, message authentication with timestamping, dynamic hashing, and
identify friend or foe systems. Luby and Rackoff [776] showed how poly-random permu-
tations can be efficiently constructed from poly-random functions. This result was used,
together with some of the design principles of DES, to show how any CSPRBG can be
used to construct a symmetric-key block cipher which is provably secure against chosen-
plaintext attack. A simplified and generalized treatment of Luby and Rackoff’s construction
was given by Maurer [816].

Schnorr [1096] used Luby and Rackoff’s poly-random permutation generator to construct
a pseudorandom bit generator that was claimed to pass all statistical tests depending only
on a small fraction of the output sequence, even when infinite computational resources are
available. Rueppel [1079] showed that this claim is erroneous, and demonstrated that the
generator can be distinguished from a truly random bit generator using only a small num-
ber of output bits. Maurer and Massey [821] extended Schnorr’s work, and proved the ex-
istence of pseudorandom bit generators that pass all statistical tests depending only on a
small fraction of the output sequence, even when infinite computational resources are avail-
able. The security of the generators does not rely on any unproved hypothesis, but rather
on the assumption that the adversary can access only a limited number of bits of the gener-
ated sequence. This work is primarily of theoretical interest since no such polynomial-time
generators are known.

L

Facebook's Exhibit No. 1005

0089

MOBILEIRON, INC. - EXHIBIT 1011

Page 103



Chapter

Block Ciphers

Contentsin Brief

7.1 Introductionandoverview . . . . .. ... ... 223
7.2 Background and general concepts . . . ... ..o 224
7.3 Classical ciphersand historical development . . . . . . . . .. .. 237
74 DES . . . . . . e 250
75 FEAL . . . . e 259
76 IDEA . . .. e 263
7.7 SAFER, RC5, and other block ciphers . . . . . . ... ... ... 266
7.8 Notesand furtherreferences . . . . . . ... ... ... ... .. 271

7.1 Introduction and overview

Symmetric-key block ciphersare the most prominent and important elementsin many cryp-
tographic systems. Individually, they provide confidentiality. As afundamental building
block, their versatility allows construction of pseudorandom number generators, stream ci-
phers, MACs, and hash functions. They may furthermore serve as a central component in
message authentication techniques, dataintegrity mechanisms, entity authentication proto-
cols, and (symmetric-key) digital signatureschemes. Thischapter examinessymmetric-key
block ciphers, including both general concepts and details of specific agorithms. Public-
key block ciphers are discussed in Chapter 8.

No block cipher isidealy suited for al applications, even one offering ahigh level of
security. Thisisaresult of inevitable tradeoffsrequired in practical applications, including
those arising from, for example, speed requirements and memory limitations (e.g., code
Size, data size, cache memory), constraints imposed by implementation platforms (e.g.,
hardware, software, chipcards), and differing tolerances of applicationsto propertiesof var-
iousmodesof operation. Inaddition, efficiency must typically betraded off against security.
Thusit is beneficial to have a number of candidate ciphers from which to draw.

Of the many block ciphers currently available, focusin this chapter is given to a sub-
set of high profile and/or well-studied algorithms. While not guaranteed to be more secure
than other published candidate ciphers (indeed, this status changes as new attacks become
known), emphasis is given to those of greatest practical interest. Among these, DES is
paramount; FEAL has received both serious commercial backing and alarge amount of in-
dependent cryptographicanalysis, and IDEA (originally proposed asaDESreplacement) is
widely known and highly regarded. Other recently proposed ciphers of both high promise
and high profile (in part due to the reputation of their designers) are SAFER and RC5. Ad-
ditional ciphers are presented in less detail.

223
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7.48

7.49

7.50

7.51

(i) Mono-alphabetic substitution

Suppose the ciphertext and plaintext character sets are the same. Let m = miymams . ..

be a plaintext message consisting of juxtaposed charactersm,; € A, where A is some fixed
character alphabet suchas A = {A,B,...,Z}. A simple substitution ciphesr mono-
alphabetic substitution cipheamploys a permutation e over A, with encryption mapping
E.(m) = e(m1)e(mz)e(ms) . ... Herejuxtaposition indicates concatenation (rather than
multiplication), and e(m;) is the character to which m,; is mapped by e. This corresponds
to Definition 1.27.

Example (trivial shift cipher/Caesar cipher) A shift ciphés asimple substitution cipher
with the permutation e constrained to an a phabetic shift through & charactersfor somefixed
k. Moreprecisdly, if | A| = s, and m; is associated with theinteger valuei, 0 <i < s—1,
then ¢; = e(m;) = m; + k mod s. The decryption mapping is defined by d(c;) = ¢; —
k mod s. For Englishtext, s = 26, and characters A through Z are associated with integers
0 through 25. For k = 1, the message m = HAL is encrypted to ¢ = IBM. According to
folklore, Julius Caesar used the key k = 3. O

The shift cipher can betrivially broken because thereareonly s = | A| keys(e.g., s =
26) to exhaustively search. A similar comment holds for affine ciphers (Example 7.49).
More generally, see Fact 7.68.

Example (affine cipher— historical) Theaffine cipher on a26-letter alphabet is defined by
ek (xz) = ax+b mod 26, where0 < a,b < 25. Thekey is(a,b). Ciphertextc = ex (z) is
decrypted using d (¢) = (¢ — b)a—! mod 26, with the necessary and sufficient condition
for invertibility that gcd(a, 26) = 1. Shift ciphers are asubclass defined by a = 1. O

Note (recognizing simple substitution) Mono-al phabetic substitution alters the frequency
of individual plaintext characters, but does not alter the frequency distribution of the overall
character set. Thus, comparing ciphertext character frequenciesto atable of expected letter
frequencies (unigram statistics) in the plaintext language allows associations between ci-
phertext and plaintext characters. (E.g., if the most frequent plaintext character X occurred
twelve times, then the ciphertext character that X mapsto will occur twelve times).

(if) Polygram substitution

A simple substitution cipher substitutes for single plaintext letters. In contrast, polygram
substitution cipherevolve groups of characters being substituted by other groupsof char-
acters. For example, sequences of two plaintext characters (digrams) may be replaced by
other digrams. The same may be done with sequences of three plaintext characters (tri-
grams), or more generally usingn-grams.

Infull digram substitution over an alphabet of 26 characters, the key may be any of the
262 digrams, arranged in atablewith row and column indices corresponding to thefirst and
second charactersin the digram, and the table entries being the ciphertext digrams substi-
tuted for the plaintext pairs. There are then (262)! keys.

Example (Playfair cipher — historical) A digram substitution may be defined by arrang-
ing the characters of a 25-letter alphabet (1 and J are equated) ina5 x 5 matrix M. Adja-
cent plaintext characters are paired. The pair (p1, p2) isreplaced by thedigram (cs, ¢4) @
follows. If p; and p, arein distinct rows and columns, they define the corners of a subma-
trix (possibly M itself), with the remaining cornerscs and c4; c3 is defined as the character
in the same column as p;. If p; and p, are in acommon row, c3 is defined as the charac-
ter immediately to the right of p; and ¢, that immediately right of po (the first columnis
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7.56 Example (single mixed alphabet Vigenere) A simple substitution mapping defined by a
general permutation e (not restricted to an a phabetic shift), followed by asimple Vigenére,
is defined by the mapping ¢; = e(m;) + k; mod s, withinversem; = e~*(c; — k;) mod s.
Analternativeisasimple Vigenerefollowed by asimple substitution: ¢; = e(m; + k; mod
s), withinversem; = e~!(c;) — k; mod s. O

7.57 Example (full Vigenere) Inasimple Vigenére of period, replace the mapping defined by
theshift value k; (for shifting character m;) by ageneral permutatione; of theal phabet. The
result is the substitution mapping ¢; = e;(m;), where the subscript i in e; is taken modulo
t. Thekey consists of ¢t permutationsey, ... , e;. O

7.58 Example (running-key Vigenere) If the keystrearh; of a simple Vigenereis aslong as
the plaintext, the cipher is called arunning-key cipher. For example, the key may be mean-
ingful text from a book. O

While running-key ciphers prevent cryptanalysis by the Kasiski method (§7.3.5), if the
key has redundancy, cryptanalysis exploiting statistical imbalances may nonetheless suc-
ceed. For example, when encrypting plaintext English characters using a meaningful text
as arunning key, cryptanalysisis possible based on the observation that a significant pro-
portion of ciphertext characters results from the encryption of high-frequency running text
characters with high-frequency plaintext characters.

7.59 Fact A running-key cipher can be strengthened by successively enciphering plaintext un-
der two or more distinct running keys. For typical English plaintext and running keys, it
can be shown that iterating four such encipherments appears unbreakable.

7.60 Definition An auto-key ciphers a cipher wherein the plaintext itself serves as the key
(typically subsequent to the use of an initial priming key).

7.61 Example (auto-key Vigenére) In arunning-key Vigenére (Example 7.58) with ags-char-
acter alphabet, defineapriming keyk = k1 ks . . . k;. Plaintext charactersm; are encrypted
asc; = m; +k;modsforl <i < ¢(smplestcase: t = 1). Fori > t,¢; = (m; +
m;—¢) mod s. An alternative involving more keying material is to replace the simple shift
by afull Vigenére with permutationse;, 1 < ¢ < s, defined by the key &, or character m;:
for1 <i<t, ¢ = €k, (ml), andfori > ¢, ¢; = €m,_¢ (ml) O

An aternative to Example 7.61 is to auto-key a cipher using the resulting ciphertext
asthekey: for example, fori > ¢, ¢; = (m; + ¢;—) mod s. This, however, is far less
desirable, asit provides an eavesdropping cryptanalyst the key itself.

7.62 Example (Vernam viewed as a Vigenere) Consider a smple Vigenére defined by =
m; + k; mod s. If the keystream is truly random and independent — as long as the plain-
text and never repeated (cf. Example 7.58) —this yields the unconditional ly secure Vernam
cipher (Definition 1.39; §6.1.1), generalized from a binary to an arbitrary alphabet. O

7.3.4 Polyalphabetic cipher machines and rotors (historical)

The Jefferson cylindeis a deceptively simple device which implements a polyal phabetic
substitution cipher; conceived in the late 18th century, it had remarkable cryptographic
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strength for its time. Polyal phabetic substitution ciphers implemented by a class of rotor-
based machines were the dominant cryptographic tool in World War 11. Such machines, in-
cluding the Enigma machine and those of Hagelin, have an al phabet which changes con-
tinuoudly for a very long period before repeating; this provides protection against K asi ski
analysis and methods based on the index of coincidence (§7.3.5).

(i) Jefferson cylinder

The Jefferson cylinde(Figure 7.3) implements a polyal phabetic substitution cipher while
avoiding complex machinery, extensive user computations, and Vigenéretableaus. A solid
cylinder 6incheslongissliced into 36 disks. A rodinserted throughthe cylinder axisalows
the disks to rotate. The periphery of each disk is divided into 26 parts. On each disk, the
letters A—Z areinscribed in a (different) random ordering. Plaintext messages are encrypted
in 36-character blocks. A reference bar is placed along the cylinder’s length. Each of the
36 wheelsisindividually rotated to bring the appropriate character (matching the plaintext
block) into position along the reference line. The 25 other parallel reference positions then
each define a ciphertext, from which (in an early instance of randomized encryption) oneis
selected as the ciphertext to transmit.

T

Wkl 9

Figure 7.3: The Jefferson cylinder.

The second party possesses a cylinder with identically marked and ordered disks (1—
36). The ciphertext is decrypted by rotating each of the 36 disksto obtain charactersalong
afixed reference line matching the ciphertext. The other 25 reference positions are exam-
ined for arecognizable plaintext. If the original message is not recognizable (e.g., random
data), both parties agree beforehand on an index 1 through 25 specifying the offset between
plaintext and ciphertext lines.

To accommodate plaintext digits 0-9 without extra disk sections, each digit is per-
manently assigned to one of 10 letters (a,e,i,0,u,y and f,I,r,s) which is encrypted as above
but annotated with an overhead dot, identifying that the procedure must be reversed. Re-
ordering disks (1 through 36) altersthe polyal phabetic substitution key. The number of pos-
sible orderingsis 36! ~ 3.72 x 10%!. Changing the ordering of letters on each disk affords
25! further mappings (per disk), but is more difficult in practice.

(ii) Rotor-based machines —technical overview

A simplified generic rotor machine (Figure 7.4) consists of anumber of rotors (wired code-
wheels) each implementing a different fixed mono-al phabeti ¢ substitution, mapping a char-
acter at itsinput face to one on its output face. A plaintext character input to the first rotor
generates an output which is input to the second rotor, and so on, until the final ciphertext
character emerges from the last. For fixed rotor positions, the bank of rotors collectively
implements a mono-al phabetic substitution which is the composition of the substitutions
defined by theindividual rotors.

To provide polyal phabetic substitution, the encipherment of each plaintext character
causes various rotors to move. The simplest case is an odometer-like movement, with a
single rotor stepped until it completes afull revolution, at which time it steps the adjacent
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9.1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. While re
lated to conventional hash functions commonly used in non-cryptographic computer aj
cations —in both cases, larger domains are mapped to smaller ranges — they differ in se
importantaspects. Our focus is restricted to cryptographic hash functions (hereatfter, si
hash functions), and in particular to their use for data integrity and message authentice
Hash functions take a message as input and produce an output referredhasas a
code, hash-result, hash-value, or simplyhash. More precisely, a hash functidgnmaps bit-
strings of arbitrary finite length to strings of fixed length, salits. For a domairD and
rangeR with h : D— R and|D| > |R|, the function is many-to-one, implying that the exis-
tence ofcollisions (pairs of inputs with identical output) is unavoidable. Indeed, restrictir
h to a domain of-bit inputs (¢ > n), if h were “random” in the sense that all outputs wer:
essentially equiprobable, then ab@ét™ inputs would map to each output, and two ran
domly chosen inputs would yield the same output with probalility (independent of).
The basic idea of cryptographic hash functions is that a hash-value serves as a compa
resentative image (sometimes calledimmprint, digital fingerprint, or message digest) of
an input string, and can be used as if it were uniquely identifiable with that string.
Hash functions are used for data integrity in conjunction with digital signature s
emes, where for several reasons a message is typically hashed first, and then the hash
as a representative of the message, is signed in place of the original message (see
ter 11). A distinct class of hash functions, called message authentication codes (MA
allows message authentication by symmetric techniques. MAC algorithms may be vie
as hash functions which take two functionally distinct inputs, a message and a secref
and produce a fixed-size (saybit) output, with the design intent that it be infeasible ir
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§9.2 Classification and framework 329

9.15

9.16

9.17

Example (one-wayness w.r.t. two inputs) Considerf(z, k) = Ey(z), whereE repre-
sents DES. This is not a one-way function of the joint infyt:), because given any func-
tion valuey = f(z, k), one can choose any kéy and computer’ = E,'(y) yielding

a preimaggz’, k'). Similarly, f(z, k) is not a one-way function of if &k is known, as
giveny = f(z, k) andk, decryption ofy usingk yieldsz. (However, a “black-box” which
computesf(z, k) for fixed, externally-unknowk is a one-way function af.) In contrast,
f(z, k) is a one-way function of; giveny = f(z, k) andz, it is not known how to find

a preimagek in less than abow®® operations. (This latter concept is utilized in one-time
digital signature schemes — sgl.6.2.) O

Example (OWF - multiplication of large primes) For appropriate choices of primgsind

g, f(p,q) = pq is a one-way function: givepandg, computing: = pq is easy, but given

n, findingp andg, i.e.,integer factorization, is difficult. RSA and many other cryptographic
systems rely on this property (see Chapter 3, Chapter 8). Note that contrary to many c
way functions, this functiorf does not have properties resembling a “random” funcfion.

Example (OWF - exponentiation in finite fields) For most choices of appropriately large
primesp and any element € Z, of sufficiently large multiplicative order (e.g., a gen-
erator),f(z) = o® mod p is a one-way function. (For examplemust not be such that
all the prime divisors op — 1 are small, otherwise the discrete log problem is feasible b
the Pohlig-Hellman algorithm d§3.6.4.) f () is easily computed given, x, andp using

the square-and-multiply technique (Algorithm 2.143), but for most chgidgs difficult,
given (y, p, «), to find anz in the range) < = < p — 2 such thatv® mod p = y, due to
the apparent intractability of the discrete logarithm problem (§3.6). Of course, for speci
values off (x) the function can be inverted trivially. For example, the respective preimage
of 1 and—1 are known to b® and(p — 1)/2, and by computing (z) for any small set of
values forz (e.g.,.x = 1,2,...,10), these are also known. However, fssentially all y

in the range, the preimage gis difficult to find. a

9.2.5 Relationships between properties

9.18

9.19

In this section several relationships between the hash function properties stated in the
ceding section are examined.

Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Justification. Suppose: has collision resistance. Fix an input. If 2 does not have 2nd-
preimage resistance, then it is feasible to find a distinct inpsuch that(z;) = h(z;),

in which casgx;, ;) is a pair of distinct inputs hashing to the same output, contradictin
collision resistance.

Remark (one-way vs. preimage and 2nd-preimage resistant) While the term “one-way”

is generally taken to mean preimage resistant, in the hash function literature it is sor
times also used to imply that a function is 2nd-preimage resistant or computationally ne
invertible. (Computationally non-invertibleis a more explicit term for preimage resistance
when preimages are unique, e.g., for one-way permutations. In the case that two or v
preimages exist, a function fails to be computationally non-invertible if any one can |
found.) This causes ambiguity as 2nd-preimage resistance does not guarantee preirr
resistance (Note 9.20), nor does preimage resistance guarantee 2nd-preimage resis
(Example 9.11); see also Remark 9.10. An attempt is thus made to avoid unqualified us
the term “one-way”.
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89.4 Unkeyed hash functions (MDCs) 347

(i) MD5

MD5 (Algorithm 9.51) was designed as a strengthened version of MD4, prior to actual ML

collisions being found. It has enjoyed widespread use in practice. It has also now be

found to have weaknesses (Remark 9.52).

The changes made to obtain MD5 from MD4 are as follows:

. addition of a fourth round of 16 steps, and a Round 4 function

. replacement of the Round 2 function by a new function

. modification of the access order for message words in Rounds 2 and 3

. modification of the shift amounts (such that shifts differ in distinct rounds)

. use of unique additive constants in each ofthel6 steps, based on the integer part
of 232 . sin(4) for stepj (requiring overall, 256 bytes of storage)

. addition of output from the previous step into each of the 64 steps.

ga b wdNPF

(9]

9.51 Algorithm MD5 hash function

INPUT: bitstringz of arbitrary bitlengttb > 0. (For notation, see Table 9.7.)
OUTPUT: 128-bit hash-code of. (See Table 9.6 for test vectors.)
MDS5 is obtained from MD4 by making the following changes.

1. Notation. Replace the Round 2 function byj(u, v, w) o v v
Define a Round 4 functiork(u, v, w) RN (u V w).
2. Definition of constants. Redefine unique additive constants:
y[j] = first 32 bits of binary valuebs(sin(j +1)), 0 < j < 63, wherej is in radians
and “abs” denotes absolute value. Redefine access order for words in Rounds 2
3, and define for Round 4:
2[16..31] = [1,6,11,0,5,10,15,4,9,14,3,8,13,2,7,12],
2(32..47] = [5,8,11,14,1,4,7,10,13,0,3,6,9,12, 15, 2],
2[48..63] = [0,7,14,5,12,3,10,1,8,15,6,13,4,11,2,9].
Redefine number of bit positions for left shifts (rotates):
5[0..15] = [7,12,17,22,7,12,17,22,7,12,17,22,7,12,17, 22],
5[16..31] = [5,9,14, 20, 5,9, 14,20,5,9, 14, 20, 5,9, 14, 20],
5[32..47] = [4,11,16,23,4,11,16,23,4, 11, 16,23,4, 11, 16, 23],
s[48..63] = [6,10, 15,21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21].
. Preprocessing. As in MD4.
4. Processing. In each of Rounds 1, 2, and 3, replace “B (¢t « s[j])" by “B «+
B + (t < s[j])". Also, immediately following Round 3 add:
(Round 4) For j from 48 to 63 do the following:
t < (A+k(B,C,D)+X[z[j]]+ylj]), (4, B,C, D) + (D, B+(t < s[j]), B, C).
5. Completion. As in MD4.

w

9.52 Remark (MD5 compression function collisions) While no collisions for MD5 have yet
been found (cf. Table 9.3), collisions have been found for the MD5 compression functic
More specifically, these are called collisions for random IV. (8&&.2, and in particular
Definition 9.97 and Note 9.98.)
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348 Ch. 9 Hash Functions and Data Integrity

(iii) SHA-1
The Secure Hash Algorithm (SHA-1), based on MD4, was proposed by the U.S. Natio

Institute for Standards and Technology (NIST) for certain U.S. federal government apj
cations. The main differences of SHA-1 from MD4 are as follows:

1. The hash-value is 160 bits, and five (vs. four) 32-bit chaining variables are used.
2. The compression function has four rounds instead of three, using the MD4 step fu
tions f, g, andh as follows: f in the first,g in the third, andh in both the second and

fourth rounds. Each round has 20 steps instead of 16.

3. Within the compression function, each 16-word message block is expanded to an
word block, by a process whereby each of the last 64 of the 80 words is the XOR
4 words from earlier positions in the expanded block. These 80 words are then in|
one-word-per-step to the 80 steps.

4. The core step is modified as follows: the only rotate used is a constant 5-bit rote
the fifth working variable is added into each step result; message words from the
panded message block are accessed sequentially; @dpdated a®3 rotated left
30 bits, rather than simpl3.

5. SHA-1 uses four non-zero additive constants, whereas MD4 used three const
only two of which were non-zero.

The byte ordering used for converting between streams of bytes and 32-bitwords in
official SHA-1 specification is big-endian (see Note 9.48); this differs from MD4 which i
little-endian.

9.53 Algorithm Secure Hash Algorithm — revised (SHA-1)

INPUT: bitstringz of bitlengthb > 0. (For notation, see Table 9.7.)
OUTPUT: 160-bit hash-code of. (See Table 9.6 for test vectors.)
SHA-1 is defined (with reference to MD4) by making the following changes.

1. Notation. As in MD4.

2. Definition of constants. Define a fifth IV to match those in MD4i5 = Oxc3d2e1f0.
Define per-round integer additive constangs: = 0x5a827999y, = 0x6ed9ebal,
ys = 0x8flbbcdcy, = Oxca62cld6. (No order for accessing source words, or spe
ification of bit positions for left shifts is required.)

3. Overall preprocessing. Pad as in MD4, except the final two 32-bit words specifying
the bitlengthb is appended with most significant word preceding least significan
As in MD4, the formatted input i46m 32-bit words: zgx1 ... x16m—1. Initialize
chaining variables{H;, Ho, H3, Hy, Hs) < (h1, ha, hs, ha, hs).

4. Processing. For eachi from 0 to m — 1, copy thei*® block of sixteen 32-bit words
into temporary storageX [j] < z16i+5, 0 < j < 15, and process these as below in
four 20-step rounds before updating the chaining variables:

(expand 16-word block into 80-word block; 1&t; denoteX [;])

forj from16t0 79, X; « (( X; 30X, s®X; 140X 16 ) < 1).
(initialize working variables) (A, B,C, D, E) < (Hy, Ha, Hs, Hy, Hs).
(Round 1) Forj from 0 to 19 do the following:

t <+ (A< 5)+ f(B,C,D)+ E + X; + 1),

(A,B,C,D,E) + (t,A, B+ 30,C, D).

(Round 2) For j from 20 to 39 do the following:

t < (A< 5)+h(B,C,D)+ E + X, + y2),

(A,B,C,D,E) « (t,A, B + 30,C, D).
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§9.4 Unkeyed hash functions (MDCs) 349

(Round 3) For j from 40 to 59 do the following:
+— ((A+5)+g(B,C,D)+ E + X; +y3),
(A,B,C,D,E) < (t,A, B+ 30,C, D).
(Round 4) For j from 60 to 79 do the following:
+ ((A+5)+h(B,C,D)+ E+ X, + ya),
(A,B,C,D,E) < (t,A,B + 30,C, D).
(update chaining values)
(H1,Hy,Hs,Hy,H5) < (Hi + A Hy + B,Hs+ C,Hy+ D,Hs + E).
5. Completion. The hash-value isH: ||H, || Hs||Hy|| Hs
(with first and last bytes the high- and low-order bytegfaf Hs, respectively).

9.54 Remark (security of SHA-1) Compared to 128-bit hash functions, the 160-bit hash-valu

of SHA-1 provides increased security against brute-force attacks. SHA-1 and RIPEM
160 (see§9.4.2(iv)) presently appear to be of comparable strength; both are consider
stronger than MD5 (Remark 9.52). In SHA-1, a significant effect of the expansion of 1
word message blocks to 80 words in the compression function is that any two distinct !
word blocks yield 80-word values which differ in a larger number of bit positions, signif
icantly expanding the number of bit differences among message words input to the cc
pression function. The redundancy added by this preprocessing evidently adds strengt

(iv) RIPEMD-160

RIPEMD-160 (Algorithm 9.55) is a hash function based on MD4, taking into accour
knowledge gained in the analysis of MD4, MD5, and RIPEMD. The overall RIPEMD-16
compression function maps 21-word inputs (5-word chaining variable plus 16-word me
sage block, with 32-bit words) to 5-word outputs. Each input block is processed in paral
by distinct versions (thé&eft line andright line) of the compression function. The 160-bit
outputs of the separate lines are combined to give a single 160-bit output.

| Notation | Definition ]

flu,v,w) | udvdw
glu,v,w) | uvVaw
h(u,v,w) | (uVv)dw
k(u,v,w) | vwVvw
l(u,v,w) | ud(vVw)

Table 9.8: RIPEMD-160 round function definitions.

The RIPEMD-160 compression function differs from MD4 in the number of words o
chaining variable, the number of rounds, the round functions themselves (Table 9.8),
order in which the input words are accessed, and the amounts by which results are rote
The left and and right computation lines differ from each other in these last two items,
their additive constants, and in the order in which the round functions are applied. This ¢
sign is intended to improve resistance against known attack strategies. Each of the par
lines uses the same IV as SHA-1. When writing the IV as a bitstring, little-endian orderil
is used for RIPEMD-160 as in MD4 (vs. big-endian in SHA-1; see Note 9.48).
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Many public-key encryption and digital signature schemes, and some hash functions (see
§9.4.3), require computations in Z,, the integers modulo m (m is a large positive integer
which may or may not be a prime). For example, the RSA, Rabin, and ElGamal schemes re-
quire efficient methods for performing multiplication and exponentiation in Z,,. Although
Z. is prominent in many aspects of modern applied cryptography, other algebraic struc-
tures are also important. These include, but are not limited to, polynomial rings, finite fields,
and finite cyclic groups. For example, the group formed by the points on an elliptic curve
over a finite ficld has considerable appeal for various cryptographic applications. The effi-
ciency of a particular cryptographic scheme based on any one of these algebraic structures
will depend on a number of factors, such as parameter size, time-memory tradeoffs, process-
ing power available, software and/or hardware optimization, and mathematical algorithms.

This chapter is concerned primarily with mathematical algorithms for efficiently carry-
ing out computations in the underlying algebraic structure. Since many of the most widely
implemented techniques rely on Z,,, emphasis is placed on efficient algorithms for per-
forming the basic arithmetic operations in this structure (addition, subtraction, multiplica-
tion, division, and exponentiation).

In some cases, several algorithms will be presented which perform the same operation.
For example, a number of techniques for doing modular multiplication and exponentiation
are discussed in §14.3 and §14.6, respectively. Efficiency can be measured in numerous
ways; thus, it is difficult to definitively state which algorithm is the best. An algorithm may
be efficient in the time it takes to perform a certain algebraic operation, but quite inefficient
in the amount of storage it requires. One algorithm may require more code space than an-
other. Depending on the environment in which computations are to be performed, one algo-
rithm may be preferable over another. For example, current chipcard technology provides
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592 Ch. 14 Efficient Implementation

very limited storage for both precomputed values and program code. For such applications,
an algorithm which is less efficient in time but very efficient in memory requirements may
be preferred.

The algorithms described in this chapter are those which, for the most part, have re-
ceived considerable attention in the literature. Although some attempt is made to point out
their relative merits, no detailed comparisons are given.

Chapter outline

§14.2 deals with the basic arithmetic operations of addition, subtraction, multiplication,
squaring, and division for multiple-precision integers. §14.3 describes the basic arithmetic
operations of addition, subtraction, and multiplication in Z,,. Techniques described for per-
forming modular reduction for an arbitrary modulus m are the classical method (§14.3.1),
Montgomery’s method (§14.3.2), and Barrett’s method (§14.3.3). §14.3.4 describes a re-
duction procedure ideally suited to moduli of a special form. Greatest common divisor
(gcd) algorithms are the topic of §14.4, including the binary gcd algorithm (§14.4.1) and
Lehmer’s ged algorithm (§14.4.2). Efficient algorithms for performing extended ged com-
putations are given in §14.4.3. Modular inverses are also considered in §14.4.3. Garner’s
algorithm for implementing the Chinese remainder theorem can be found in §14.5. §14.6 is
a treatment of several of the most practical exponentiation algorithms. §14.6.1 deals with
exponentiation in general, without consideration of any special conditions. §14.6.2 looks
at exponentiation when the base is variable and the exponent is fixed. §14.6.3 considers al-
gorithms which take advantage of a fixed-base element and variable exponent. Techniques
involving representing the exponent in non-binary form are given in §14.7; recoding the ex-
ponent may allow significant performance enhancements. §14.8 contains further notes and
references.

14.2 Multiple-precision integer arithmetic

This section deals with the basic operations performed on multiple-precision integers: ad-
dition, subtraction, multiplication, squaring, and division. The algorithms presented in this
section are commonly referred to as the classical methods.

14.2.1 Radix representation

Positive integers can be represented in various ways, the most common being base 10. For
example, o = 123 base 10 means @ = 1-10%4-2-10! 4+ 3. 10°. For machine computations,
base 2 (binary representation) is preferable. If a = 1111011 base 2, then @ — 2% + 2% +
24 4+234+0.22 421 420,

14.1 Fact If b > 2 is an integer, then any positive integer a can be expressed uniquely as a =
anb™ + an_1b""1 + - -+ a1b+ ag, where a; is an integer with 0 < a; < bfor0 < i < n,
and a,, # 0.

14.2 Definition The representation of a positive integer a as a sum of multiples of powers of
b, as given in Fact 14.1, is called the base b or radix b representation of a.

.
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§14.2 Multiple-precision integer arithmetic 593

14.3 Note (notation and terminology)

(i) The baseb representation of a positive integer a given in Fact 14.1 is usually written
as @ = (@pGn_1---01ap)s. The integers a;, 0 < 4 < n, are called digits. ay, is
called the most significant digit or high-order digit; ag the least significant digit or
low-order digit. If b = 10, the standard notation is @ = @,Gnp—_1 - - @¢1Q0.

(ii) It is sometimes convenient to pad high-order digits of a base b representation with
0’s; such a padded number will also be referred to as the base b representation.

(iii) If (@n@n—1 - - - @1G0)p is the base b representation of a and a,, # 0, then the precision
orlengthof aisn+1. If n = 0, then a is called a single-precision integer; otherwise,
a is a multiple-precision integer. a = 0 is also a single-precision integer.

The division algorithm for integers (see Definition 2.82) provides an efficient method
for determining the base b representation of a non-negative integer, for a given base b. This
provides the basis for Algorithm 14.4.

14.4 Algorithm Radix b representation
INPUT: integers a and b,a > 0, b > 2.
OUTPUT: the base b representation a = (ay - - - a1a9)s, Where n > O and a,, # 0if n > 1.
1. 440, z¢—a, q+| %], as+z — qb. (|-] is the floor function; see page 49.)
2. While ¢ > 0, do the following:
2 e S o E e A o S R T R
3. Return((a;a;—1 - - - a1a0)).

14.5 Fact If (anan—1 -+ a1a0)p is the base b representation of a and k is a positive integer,
then (wjwi—1 - - - u1Uo)yx is the base b* representation of a, where I = [(n + 1)/k] — 1,
Uy = 2;-:(} Q40 for0 < i <l—1,and w = Z;:ék Qik45b7.

14.6 Example (radix b representation) The base 2 representation of @ = 123 is (1111011)a.
The base 4 representation of a is easily obtained from its base 2 representation by grouping
digits in pairs from the right: a = ((1)2(11)2(10)2(11)2)4 = (1323)4. O

Representing negative numbers

Negative integers can be represented in several ways. Two commonly used methods are:
1. signed—magnituéle representation
2. complement representation.

These methods are described below. The algorithms provided in this chapter all assume a
signed-magnitude representation for integers, with the sign digit being implicit.

(i) Signed-magnitude representation

The sign of an integer (i.e., either positive or negative) and its magnitude (i.e., absolute
value) are represented separately in a signed-magnitude representation. Typically, a posi-
tive integer is assigned a sign digit 0, while a negative integer is assigned a sign digitb— 1.
For n-digit radix b representations, only 26"~ ! sequences out of the b™ possible sequences
are utilized: precisely ”~! — 1 positive integers and b~ — 1 negative integers can be rep-
resented, and 0 has two representations. Table 14.1 illustrates the binary signed-magnitude
representation of the integers in the range [7, —7).
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594 Ch. 14 Efficient Implementation

Signed-magnitude representation has the drawback that when certain operations (such
as addition and subtraction) are performed, the sign digit must be checked to determine the
appropriate manner to perform the computation. Conditional branching of this type can be
costly when many operations are performed.

(ii) Complement representation

Addition and subtraction using complement representation do not require the checking of
the sign digit. Non-negative integers in the range [0,5"! — 1] are represented by base b
sequences of length n with the high-order digit being 0. Suppose z is a positive integer
in this range represented by the sequence (2 %p—1 - - - £17o)p Where , = 0. Then —z is
represented by the sequence T = (TnZn—1- - - Z1Zo) + 1 where Z; = b—1—x; and -+ is the
standard addition with carry. Table 14.1 illustrates the binary complement representation of
the integers in the range [—7, 7]. In the binary case, complement representation is referred
to as two’s complement representation. '

Sequence Signed- Two’s Sequence Signed- Two’s
magnitude | complement magnitude | complement
0111 7 ff 1111 —7 -1
0110 6 6 1110 —6 -2
0101 5 5 1101 -5 -3
0100 4 4 1100 —4 —4
0011 3 3 1011 -3 -5
0010 2 2 1010 -2 -6
0001 1 1 1001 -1 -7
0000 0 0 1000 —0 -8

Table 14.1: Signed-magnitude and two’s complement representations of integers in [—7, 7).

14.2.2 Addition and subtraction

Addition and subtraction are performed on two integers having the same number of base b
digits. To add or subtract two integers of different lengths, the smaller of the two integers
is first padded with O’s on the left (i.e., in the high-order positions).

14.7 Algorithm Multiple-precision addition

INPUT: positive integers z and y, each having n 4 1 base b digits.
OUTPUT: the sum & + ¥ = (Wn4+1Wy - * - W1Wo)p in radix b representation.
1. ¢+-0 (c1s the carry digit).
2. For i from 0 to n do the following:
2.1 wy+—(z; + 95 + ¢) mod b.
2.2 If (z; + y; + ¢) < bthen c¢ -0; otherwise c¢-1.
3. Wpt14-cC.
4. Return((Wp41wWn, - - - w1wg)).

14.8 Note (computational efficiency) The base b should be chosen so that (z; + y; + ¢) mod b
can be computed by the hardware on the computing device. Some processors have instruc-
tion sets which provide an add-with-carry to facilitate multiple-precision addition.
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§14.2 Multiple-precision integer arithmetic 595

14.9 Algorithm Multiple-precision subtraction

INPUT: positive integers x and y, each having n + 1 base b digits, with z > y.
OUTPUT: the difference z — y = (Wpwy—1 - - - W1 W )p in radix b representation.

1. e+0.
2. For i from 0 to n do the following:
2.1 wi«(z; — ys + ¢) mod b.
2.2 If (z; — y; + ¢) = 0 then c«0; otherwise ¢+ — 1.

3. Return((WpWp—1 -+ - w1wWp)).

14.10 Note (eliminating the requirement z > y) If the relative magnitudes of the integers x

and y are unknown, then Algorithm 14.9 can be modified as follows. On termination of

the algorithm, if ¢ = —1, then repeat Algorithm 14.9 with x = (00---00) and y =
(WpWn—1 -+ - wywy)p. Conditional checking on the relative magnitudes of  and y can also
be avoided by using a complement representation (§14.2.1(ii)).

14.11 Example (modified subtraction) Let x = 3996879 and y = 4637923 in base 10, so that

z < y. Table 14.2 shows the steps of the modified subtraction algorithm (cf. Note 14.10). .

First execution of Algorithm 14.9 Second execution of Algorithm 14.9
i 6 5 4 3 2 10 % 6 5 4 3 2 1 0
z; 3 9 9 6 8 7 9 Ti 0 0 0 0 0 o 0
Yi 4 6 3 7 9 2 3 Yi 9 3 5 8 9 b 6
w; 9 3 5 8 9 5 6 w; 0 6 4 ik 0 4 4
c|~1 0 0 -1 -1 0 O c|-1 =1 -1 =1 =1 1 1

Table 14.2: Modified subtraction (see Example 14.11).

14.2.3 Multiplication

Let z and y be integers expressed in radix b representation: £ = (ZpTp_1 '+ T1To)p and
y = (YtYt—1- - Y1Yo)s- The product z - y will have at most (n + ¢ + 2) base b digits. Al-
gorithm 14.12 is a reorganization of the standard pencil-and-paper method taught in grade
school. A single-precision multiplication means the multiplication of two base b digits. If
z; and y; are two base b digits, then x; - ; can be written as z; - y; = (uv)p, where u and
v are base b digits, and u may be 0.

14.12 Algorithm Multiple-precision multiplication

~ INPUT: positive integers z and y having » + 1 and ¢ + 1 base b digits, respectively.
OUTPUT: the product - y = (Wny41 - - - WiwWo)p in radix b representation.
1. Fori from 0 to (n + ¢ + 1) do: w;<0.
2. For i from 0 to ¢ do the following:
2.1 ¢<0.
2.2 For 7 from 0 to n do the following: _
Compute (uv)p = Wit; + &5 - Y; + ¢, and set WiV, c+u.
23 Witn+1$U.
3. Return((wpt4+1 - W1Wp))-
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596 Ch. 14 Efficient Implementation

14.13 Example (multiple-precision multiplication) Take = z3zaz1Z¢ = 9274 and y =
y2y1yo = 847 (base 10 representations), so that n = 3and ¢t = 2. Table 14.3 shows

the steps performed by Algorithm 14.12 to compute z - y = 7855078. O
[ c|wi+j+mjyi+01u|vnwa|w5|w4|w3|w2|w1|wo|
0 0]60 0+2840 218 0 0 0 0 0 0| 8

15|52 0+49+4+2 51 0 0 0 0 1 8
215 0+14+5 119 0 0 0 9 1 8
31 0+63+1 6 | 4 (MBI EE R
1 010 14+16+4+0 1L e 0 0 6 4 9 7 8
1|1 94+ 28+1 318 0 0 6 4 8 T 8
2583 44843 1|5 0 0 6 5 8 (5 8
311 6+36+1 4 | 3 |[EoEESE SR
23N OH (MO 843240 410 0 4 3 5 0 7 8
114 5+56+4 6|5 0 4 3 5 0 T 8
2|6 3+16+6 215 0 4 ) 5 0 7 8
s|2| 4+7+2 | 7] s [DiENEEEREGEEE

Table 14.3: Multiple-precision multiplication, (see Example 14.13).

14.14 Remark (pencil-and-paper method) The pencil-and-paper method for multiplying z =
9274 and y = 847 would appear as

9 2 7 4
x 8 4 7
S ek L (row 1)
S 7 B (U (row 2)
(i ST ) (row 3)
7 8 5 5 0 7 8

The shaded entries in Table 14.3 correspond to row 1, row 1 + row 2, and row 1 +row 2 +
row 3, respectively.

14.15 Note (compﬁtational efficiency of Algorithm 14.12)

(i) The computationally intensive portion of Algorithm 14.12 is step 2.2. Computing
Witj + T - Yi + cis called the inner-product operation. Since Wiy;, Tj, Yi and ¢
are all base b digits, the result of an inner-product operation is at most (b — 1) + (b —
1)2 + (b — 1) = &* — 1 and, hence, can be represented by two base b digits.

(ii) Algorithm 14.12 requires (n + 1)(t + 1) single-precision multiplications.

(iii) Itis assumed in Algorithm 14.12 that single-precision multiplications are part of the
instruction set on a processor. The quality of the implementation of this instruction
is crucial to an efficient implementation of Algorithm 14.12.

14.2.4 Squaring

In the preceding algorithms, (uv)y has both and v as single-precision integers. This nota- -

tion is abused in this subsection by permitting v to be a double-precision integer, such that
0 < u < 2(b — 1). The value v will always be single-precision.
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§14.2 Multiple-precision integer arithmetic 597

14.16 Algorithm Multiple-precision squaring

INPUT: positive integer & = (@;—1Z¢—2 - - - £120 ).
OUTPUT: z - = = 22 in radix b representation.
1. For ¢ from 0 to (2t — 1) do: w;<-0.
2. For i from 0 to (¢ — 1) do the following:
2.1 (uv)pe—wo; + T; - T, Woid—v, cé—u.
2.2 For j from (i + 1) to (¢t — 1) do the following:
('M’U)M—*’wi_m' =+ 297_7' CZi + € WiV, C+u.
2.3 Wit U
3. (U'U)bFU)zt—Z’ + T - Tp—1, Wop—2¢V, Wop_1¢U.
4. Return((wop—1wot—3 - . . wlwo)b).

14.17 Note (computational efficiency of Algorithm 14.16)

() (overflow) In step 2.2, u can be larger than a single-precision integer. Since w;
is always set to v, wir; < b— 1. Ifc < 2(b — 1), then wiy; + 2zjz; + ¢ <
(0-1)+2(b—1)2+2(b—1) = (b—1)(2b+ 1), implying 0 < u < 2(b — 1). This
value of u may exceed single-precision, and must be accommodated.

(it) (number of operations) The computationally intensive part of the algorithm is step 2.
The number of single-precision multiplications is about (2 + t)/2, discounting the
multiplication by 2. This is approximately one half of the single-precision multipli-
cations required by Algorithm 14.12 (cf. Note 14.15(ii)).

14.18 Note (squaringvs. multiplication in general) Squaring a positive integer z (i.e., computing
z?) can at best be no more than twice as fast as multiplying distinct integers  and y. To
see this, consider the identity zy = ((z+y)? — (z — y)?)/4. Hence, « - y can be computed
with two squarings (i.e., (z + y)? and (z — y)?). Of course, a speed-up by a factor of 2 can
be significant in many applications.

14.19 Example (squaring) Table 14.4 shows the steps performed by Algorithm 14.16 in squar-

ing z = 989. Here, t = 3 and b = 10. )
[i j [wa+tal [wirsj+2xmitc | v | v || ws | wa | ws | wa | wn [[wo |
0 —] o+sl = g mnlsg= [0~ ool o1
1 - | 0+2-8.9+8 |15]|2|l 0| o0o}f{o0o] o] 2 1
2 = 0+2-9-9+15 |17 |7l o] o] o 7] 2|1
A T | MO Sk S || gy T e
1 =i rt 6y - et i TR ¥ o) o s [ 2
2 = 17+2-9-8+7 1168 0o | o | 8| 1|21
6|8 0|16 8 |1 2]|1
prl S R e oGl Elg |\ 2 R = | e |
o | v [hecmharmbege o st

Table 14.4: Multiple-precision squaring (see Example 14.19).
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598 Ch. 14 Efficient Implementation

14.2.5 Division

Division is the most complicated and costly of the basic multiple-precision operations. Al-
gorithm 14.20 computes the quotient ¢ and remainder  in radix b representation when z is
divided by y.

14.20 Algorithm Multiple-precision division

INPUT: positive integers = (% - - - £120)b, ¥ = (y¢ - - - y190)p Withn > ¢t > 1, 3¢ # 0.
OUTPUT: the quotient ¢ = (gn—¢ - - q190)s and remainder r = (3 - - - r179)p such that
z=qy+7,0r <y
1. For j from 0 to (n — t) do: g;¢-0.
2. While (z > yb™*) do the following: gn—¢¢~Gn—¢ + 1, Tz — yb™*.
3. For i from n down to (¢ + 1) do the following:
3.1 If z; = y; then set g;_;_14b — 1; otherwise set g;—¢— 1| (z:b + Ti—1) /y2)]-
3.2 While (i—s—1(yeb + y2-1) > 2:b% + 2;_1b + xi—2) ot gi—g—14-Gi—s—1 — L.
33 zez— qgybt Tt L
3.4 If z < O then set £z + yb* *~! and g;_s_1¢-qi_¢—1 — 1.
AR
5. Return(q,r).

14.21 Example (nultiple-precisiondivision)Letz = 721948327,y = 84461, so thatn = 8and
t = 4. Table 14.5 illustrates the steps in Algorithm 14.20. The last row gives the quotient

g — 8547 and the remainder r = 60160. O
li]la ¢ ¢ @ g |[®s =z @ x5 x4 T3 T2 a1 To |
-1 0 0 0 0 0 7 2 1 9 4 8 2 7
810 9 0 0 O 7 2 1 9 4 8 2 7
L 4 80" 2= VgilSp . - i
7 8 5 0 0 4 0 2 9 2 7
6 8 5 5 0 4 0 2 9 2 7
8 5 4 0 6 5 1 8 (7
5 8 5 4 8 6 5 1 8 i
HRT Y G O S RO

Table 14.5: Multiple-precision division (see Example 14.21).

14.22 Note (comments on Algorithm 14.20)

(i) Step 2 of Algorithm 14.20 is performed at most once if y; > [%J and b is even.
(i1) The conditionn > ¢ > 1 can be replaced by n > ¢ > 0, provided one takes z; =
y; = 0 whenever a subscript j < 0 in encountered in the algorithm.

14.23 Note (normalization) The estimate for the quotient digit g;_;— in step 3.1 of Algorithm
14.20 is never less than the true value of the quotient digit. Furthermore, if y; > [%j , then
step 3.2 is repeated no more than twice. If step 3.1 is modified so that g;—¢—1¢ | (z:b? +
Ti1b + xi_2)/(ytb + y1—1)], then the estimate is almost always correct and step 3.2 is

l
!
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§14.3 Multiple-precision modular arithmetic 599

never repeated more than once. One can always guarantee that y¢ > L%J by replacing the
integers x, ¥ by Az, Ay for some suitable choice of A. The quotient of Az divided by Ay is
the same as that of z by ¥; the remainder is A times the remainder of z divided by y. If the
base b is a power of 2 (as in many applications), then the choice of ) should be a power of 2;
multiplication by ) is achieved by simply left-shifting the binary representations of z and
1. Multiplying by a suitable choice of A to ensure that y; > [%J is called normalization.
Example 14.24 illustrates the procedure.

14.24 Example (normalized division) Take z = 73418 and y = 267. Normalize z and y by
multiplying each by A = 3: z' = 3z = 220254 and 5’ = 3y = 801. Table 14.6 shows
the steps of Algorithm 14.20 as applied to ' and y'. When z’ is divided by ', the quotient
is 274, and the remainder is 780. When z is divided by y, the quotient is also 274 and the

remainder is 780/3 = 260. 0
[ las a2 @ o[ @ @4 25 22 21 %o |
=1 [Ro=gor  A0ENE0N [2EEw2 O 2l s e
5 0 2 0 0 6 0 0 5 4
4 2 i 0 3 9 8 4
3 e T A iy Y

Table 14.6: Multiple-precision division after normalization (see Example 14.24).

14.25 Note (computational efficiency of Algorithm 14.20 with normalization)

(i) (multiplication count) Assuming that normalization extends the number of digits in
by 1, each iteration of step 3 requires 1 + (£ + 2) = ¢ + 3 single-precision multi-
plications. Hence, Algorithm 14.20 with normalization requires about (n — t)(t +3)
single-precision multiplications.

(i) (division count) Since step 3.1 of Algorithm 14.20 is executed n — £ times, at most
n — t single-precision divisions are required when normalization is used.

14.3 Multiple-precision modular arithmetic

§14.2 provided methods for carrying out the basic operations (addition, subtraction, multi-
plication, squaring, and division) with multiple-precision integers. This section deals with
these operations in Zy,, the integers modulo 7, where m is a multiple-precision positive
integer. (See §2.4.3 for definitions of Z, and related operations.)

Letm = (mpmp_1-- -mymo)s be a positive integer in radix b representation. Let
% = (TnZn_1- T1Z0)s and ¥ = (YnYn—1-"-Y1%0)s be non-negative integers in base b
representation such that z < m and y < m. Methods described in this section are for
computing = + y mod m (modular addition), x — y mod m (modular subtraction), and
z -y mod m (modular multiplication). Computing z~! mod m (modular inversion) is ad-
dressed in §14.4.3.

14.26 Definition If z is any integer, then z mod m (the integer remainder in the range [0, 1]
after z is divided by m) is called the modular reduction of z with respect to modulus m.
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600 Ch. 14 Efficient Implementation
Modular addition and subtraction
As is the case for ordinary multiple-precision operations, addition and subtraction are the
simplest to compute of the modular operations.
14.27 Fact Let z and y be non-negative integers with z,y < m. Then:

(i) z+4+y < 2m;
(i) ifz > y, then0 < z — y < m; and
(i) ifz < y,then0 <z +4+m —y < m.
If z,y € Z,,, then modular addition can be performed by using Algorithm 14.7 to add
z and y as multiple-precision integers, with the additional step of subtracting m if (and only
if)  + y > m. Modular subtraction is precisely Algorithm 14.9, provided z > y.

14.3.1 Classical modular multiplication

14.28

Modular multiplication is more involved than multiple-precision muitiplication (§14.2.3),
requiring both multiple-precision multiplication and some method for performing modular
reduction (Definition 14.26). The most straightforward method for performing modular re-
duction is to compute the remainder on division by m, using a multiple-precision division
algorithm such as Algorithm 14.20; this is commonly referred to as the classical algorithm
for performing modular multiplication.

Algorithm Classical modular muitiplication

INPUT: two positive integers z, ¥ and a modulus m, all in radix b representation.
OUTPUT: z - y mod m.
1. Compute z - y (using Algorithm 14.12).
2. Compute the remainder » when 2 - y is divided by m (using Algorithm 14.20).
3. Return(r).

14.3.2 Montgomery reduction

Montgomery reduction is a technique which allows efficient implementation of modular
multiplication without explicitly carrying out the classical modular reduction step.

Let m be a positive integer, and let R and T be integers such that R > m, ged(m, R) =
1,and 0 < T < mR. A method is described for computing TR~! mod m without using
the classical method of Algorithm 14.28. TR~ mod m is called a Montgomery reduction
of T" modulo m with respect to R. With a suitable choice of R, a Montgomcry reduction
can be efficiently computed.

Suppose z and y are integers such that 0 < z,y < m. Let T = zR mod m and
¥ = yR mod m. The Montgomery reduction of Z¥ is ZyR™! mod m = zyR mod m.
This observation is used in Algorithm 14.94 to prov1de an efficient method for modular
exponentiation.

To briefly illustrate, consider computing z° mod m for some integer z,1 < z < m.
First compute T = zR mod m. Then compute the Montgomery reduction of ZT, which is
A = 72R~! mod m. The Montgomery reduction of A% is A2R~! mod m = Z*R~3 mod

m. Finally, the Montgomery reduction of (A2 R~ mod m)Zis (A2R~1)ZR~' mod m =
"R™* mod m = z°R mod m. Multiplying this value by R~! mod m and reducing
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§14.3 Multiple-precision modular arithmetic 601

modulo m gives 2% mod m. Provided that Montgomery reductions are more efficient to
compute than classical modular reductions, this method may be more efficient than com-
puting 2° mod m by repeated application of Algorithm 14.28.

If m is represented as a base b integer of length n, then a typical choice for Ris ™. The
condition R > m is clearly satisfied, but ged(R, m) = 1 will hold only if ged(b,m) = 1.
Thus, this choice of R is not possible for all moduli. For those moduli of practical interest
(such as RSA moduli), m will be odd; then b can be a power of 2 and R = b™ will suffice.

Fact 14.29 is basic to the Montgomery reduction method. Note 14.30 then implies that
R = b™ is sufficient (but not necessary) for efficient implementation.

14.29 Fact (Montgomery reduction) Given integers m and R where ged(m, R) = 1, letm/ =
—m~! mod R, and let T be any integer such that 0 < 7' < mR. If U = Tm/ mod R,
then (T + Um)/R is an integer and (T + Um)/R = TR™" (mod m).

Justification. T + Um = T (mod m) and, hence, (T' + Um)R™* = TR~ (mod m).
To see that (T'+Um)R ™! is an integer, observe that U = T'm/ + kRandm'm = —~1+IR
for some integers k and I. It follows that (T' + Um)/R = (T + (I'm’ + kR)m)/R =
(T + T(~1+ IR) + kRm)/R = IT + km.

14.30 Note (implications of Fact 14.29)

@) (T + Um)/R is an estimate for TR™! mod m. Since T < mRand U < R, then
(T+Um)/R < (mR+mR)/R = 2m. Thuseither (T+Um)/R = TR~ mod m
or (T4+Um)/R = (TR ! mod m)-+m (i.e., the estimate is within m of the residue).
Example 14.31 illustrates that both possibilities can occur.

(ii) If.all integers are represented in radix b and R = b", then TR~! mod m can be
computed with two multiple-precision multiplications (i.e., U =T - m’ and U - m)
and simple right-shifts of " + Um in order to divide by R.

14.31 Example (Montgomery reduction) Let m = 187, R = 190. Then R~ mod m = 125,
mYimodR = 63, and m’ = 127. f T" = 563,then U = T'm/ mod R = 61 and
(T +Um)/R = 63 = TR~ mod m. If T = 1125 then U = T/ mod R = 185 and
(T + Um)/R = 188 = (TR™! mod m) + m. O

Algorithm 14.32 computes the Montgomery reduction of T = (t25,—1 - - - t1%0)» When
R = b and m = (mp—1---mimo)s. The algorithm makes implicit use of Fact 14.29
by computing quantities which have similar properties to U = T'm’ mod Rand T' + Um,
although the latter two expressions are not computed explicitly.

14.32 Algorithm Montgomery reduction

INPUT: integers m = (M1 - - - m1my)p withged(m, b) = 1, R = 0", m’ = —m~! mod
band T = (tz'n—l o tlto)b < mR.
OUTPUT: TR~} mod m. _
1. A«T. (Notation: A = (azn—1-*-1G0)s-)
2. For i from 0 to (n — 1) do the following:
2.1 u;¢—a;m’ mod b.
2.2 A+A+ u;mb.
3. A—A/b™
4. If A > mthen A—A —m.
5. Return(A).
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602 Ch. 14 Efficient Implementation

14.33 Note (comments on Montgomery reduction)
(i) Algorithm 14.32 does notrequiren’ = —m ™! mod R, as Fact 14.29 does, but rather
m' = —m~! mod b. This is due to the choice of R = b™.
(i) Atstep 2.1 of the algorithm with ¢ = [, A has the property thata; = 0,0 <j <[-1.
Step 2.2 does not modify these values, but does replace a; by 0. It follows that in
step 3, A is divisible by ™.
(iii) Going into step 3, the value of A equals T plus some multiple of m (see step 2.2);
here A = (T + km)/b™ is an integer (see (ii) above) and A = TR™! (mod m). It
remains to show that A is less than 2m, so that at step 4, a subtraction (rather than a

division) will suffice. Going intostep 3, A = T+ 37~ u;bém. But Y S ubim <

b™m = Rm and T < Rm;hence, A < 2Rm. Going into step 4 (after division of A
by R), A < 2m as required.

14.34 Note (computational efficiency of Monigomery reduction) Step 2.1 and step 2.2 of Algo-
rithm 14.32 require a total of n + 1 single-precision multiplications. Since these steps are
executed n times, the total number of single-precision multiplications is n(n + 1). Algo-
rithm 14.32 does not require any single-precision divisions.

14.35 Example (Montgomery reduction) Letm = 72639,b =10, R = 1_05, and T = 7118368.
Heren = 5,m' = —m~! mod 10 = 1, T mod m = 72385, and TR~! mod m = 39796.

Table 14.7 displays the iterations of step 2 in Algorithm 14.32. O
l i H u; = a;m’ mod 10 ] uymb® | A
- - - 7118368
0 8 581112 7699480
1 8 5811120 13510600
2 6 43583400 57094000
3 4 290556000 347650000
4 5 3631950000 | 3979600000

Table 14.7: Montgomery reduction algorithm (see Example 14.35).

Montgomery muitiplication

Algorithm 14.36 combines Montgomery reduction (Algorithm 14.32) and multiple-precis-
ion multiplication (Algorithm 14.12) to compute the Montgomery reduction of the product
of two integers.

14.36 Algorithm Montgomery multiplication

INPUT: integers m = (Mn—1---M1Mo)p, T = (Tn—1-*T1L0)ts ¥ = (Yn—1"""Y1%0)b
with 0 < z,y < m, R = b" with ged(m,b) = 1, and m' = —m~! mod b.
OUTPUT: zyR~! mod m.
1. A«0. (Notation: A = (an@n_1---a1ap)p.)
2. For i from O to (n — 1) do the following:
2.1 u;¢(aop + ziyoym' mod b.
22 A(A+ ziy + u;m)/b.
3. If A > mthen A+-A —m.
4. Return(4).
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§14.3 Multiple-precision modular arithmetic 603

14.37 Note (partial justification of Algorithm 14.36) Suppose at the i** iteration of step 2 that
0 < A < 2m—1. Step 2.2 replaces A with (A + z;y + usm) /b; but (A + z;y +uim) /b <
2m~2+®B-1)(m—-1)+(b—1)m)/b=2m—1 - (1/b). Hence, A < 2m — 1,
justifying step 3.

14.38 Note (computational efficiency of Algorithm 14.36) Since A + z;y + u;m is a multiple of
b, only a right-shift is required to perform a division by b in step 2.2. Step 2.1 requires two
single-precision multiplications and step 2.2 requires 2n. Since step 2 is executed 7 times,
the total number of single-precision multiplications is n(2 + 2n) = 2n(n + 1).

14.39 Note (computing xy mod m with Montgomery multiplication) Suppose z, y, and m are
n-digit base b integers with 0 < z,y < m. Neglecting the cost of the precomputation in
the input, Algorithm 14.36 computes zy R ~! mod m with 2n(n+ 1) single-precision mul-
tiplications. Neglecting the cost to compute R? mod m and applying Algorithm 14.36 to
zyR~! mod m and R? mod m, zy mod m is computed in 4n(n + 1) single-precision op-
erations. Using classical modular multiplication (Algorithm 14.28) would require 2n(n+1)
single-precision operations and no precomputation. Hence, the classical algorithm is supe-
rior for doing a single modular multiplication; however, Montgomery multiplication is very
effective for performing modular exponentiation (Algorithm 14.94).

14.40 Remark (Montgomery reductionvs. Montgomery multiplicatior) Algorithm 14.36 (Mont-
gomery multiplication) takes as input two n-digit numbers and then proceeds to interleave
the multiplication and reduction steps. Because of this, Algorithm 14.36 is not able to take
advantage of the special case where the input integers are equal (i.e., squaring). On the other
hand, Algorithm 14.32 (Montgomery reduction) assumes as input the product of two inte-
gers, each of which has at most n digits. Since Algorithm 14.32 is independent of multiple-
precision multiplication, a faster squaring algorithm such as Algorithm 14.16 may be used
prior to the reduction step.

14.41 Example (Montgomery multiplication) In Algorithm 14.36, let m = 72639, R = 105,
z = 5792,y = 1229. Heren = 5, m’ = —m ' mod 10 = 1, and zyR~! mod m =
39796. Notice that m and R are the same values as in Example 14.35, as is xy = 7118368.

Table 14.8 displays the steps in Algorithm 14.36. O
(i@ [z [ | zy | wm A |
0| 2 18 8 2458 | 581112 | 583567
‘119 81 8 11061 | 581112 | 65053
24| w7 63 6 8603 | 435834 | 50949
3|5 | 45 | 4| 6145 | 290556 | 34765
410 0 5 0 363195 |FHATHET

Table 14.8: Montgomery multiplication (see Example 14.41).

14.3.3 Barrett reduction

Barrett reduction (Algorithm 14.42) computes 7 = z mod m given z and m. The algorithm
requires the precomputation of the quantity iz = |b%* /m]; itis advantageous if many reduc-
tions are performed with a single modulus. For example, each RSA encryption for one en-
tity requires reduction modulo that entity’s public key modulus. The precomputation takes

Facebook's Exhibit No. 1005
0102

MOBILEIRON, INC. - EXHIBIT 1011
Page 125



604 Ch. 14 Efficient Implementation

a fixed amount of work, which is negligible in comparison to modular exponentiation cost.
Typically, the radix b is chosen to be close to the word-size of the processor. Hence, assume
b > 3in Algorithm 14.42 (see Note 14.44 (ii)).

14.42 Algorithm Barrett modular reduction

INPUT: positive integers & = (Z2k—1 - - - £120)p, M = (M1 + - -mymy)p (With mg—1 #
0), and p = [b%*/m].
OUTPUT: r = z mod m.
1 que|z/b5 L), gaégi - p, ga¢—laa/bFT?].
. 714z mod bFtL, roe—gs - m mod b¥F, rery — 1o
. Ifr < 0 then r+—r + bFt1,
. While r > mdo: rér — m.
. Return(r).

b bW

14.43 Fact By the division algorithm (Definition 2.82), there exist integers @ and R such that
z=Qm+ Rand 0 < R < m. Instep 1 of Algorithm 14.42, the following inequality is
satisfied: Q —2 < g3 < Q.

14.44 Note (partial justification of correctness of Barrett reduction)

(i) Algorithm: 14.42 is based on the observation that [x/m/| can be written as Q=
| (z/bF1)(b%* /m)(1/b*+1)]. Moreover, @ can be approximated by the quantity
g3 = I_[a:/ b1 u/ bk+1J. Fact 14.43 guarantees that g is never larger than the true
quotient @, and is at most 2 smaller.

(i) In step 2, observe that —bFt! < 1y —ro < BF*L rp — 7y = (Q —g@3)m + R
(mod bF*1),and 0 < (Q — gz)m + R < 3m < b*+1 since m < b* and 3 < b. If
r1—1y >0, thenry — 1y = (@ —g3)m+ R. If ry — 72 < 0, thenry — g+ bFH =
(Q — g3)m + R. In either case, step 4 is repeated at most twice since 0 < 7 < 3m.

14.45 Note (computational efficiency of Barrett reduction)
(i) All divisions performed in Algorithm 14.42 are simple right-shifts of the base b rep-
resentation.

(ii) go is only used to compute g3. Since the k + 1 least significant digits of g, are not
needed to determine ga, only a partial multiple-precision multiplication (i.e., q1 - &)
is necessary. The only influence of the k + 1 least significant digits on the higher
order digits is the carry from position k + 1 to position k + 2. Provided the base b
is sufficiently large with respect to k, this carry can be accurately computed by only
calculating the digits at positions k and k+1. * Hence, the k—1 least significant digits
of g3 need not be computed. Since u and g; have at most & + 1 digits, determining ¢3
requires at most (k + 1)% — (%) = (k? + 5k + 2)/2 single-precision multiplications.

(iii) In step 2 of Algorithm 14.42, r5 can also be computed by a partial multiple-precision
multiplication which evaluates only the least significant & + 1 digits of g3 - m. This

can be done in at most (k;rl) + k single-precision multiplications.

14.46 Example (Barrett reduction)Letb = 4,k = 3, z = (313221);, and m = (233)p (ie.,
" g = 3561 and m = 47). Then p = |45/m] = 87 = (1113)s, g1 = [(313221);/42| =
(3132), g2 = (3132)s - (1113)p = (10231302)p, g3 = (1023)p, 71 = (3221)p, 72 =
(1023)5 - (233)s mod b* = (3011), and r = ry — 79 = (210)p. Thus z mod m = 36. O

11f b > k, then the carry computed by simply considering the digits at position k — 1 (and ignoring the carry
from position k£ — 2) will be in error by at most 1.

Facebook's Exhibit No. 1005

0103

MOBILEIRON, INC. - EXHIBIT 1011

Page 126



§14.3 Multiple-precision modular arithmetic 605

14.3.4 Reduction methods for moduli of special form

14.47

14.48

14.49

14.50

When the modulus has a special (customized) form, reduction techniques can be employed
to allow more efficient computation. Suppose that the modulus m is a t-digit base b positive
integer of the form m = b® — ¢, where c is an [-digit base b positive integer (for some
1 < t). Algorithm 14.47 computes z mod m for any positive integer « by using only shifts,
additions, and single-precision multiplications of base b numbers.

Algorithm Reduction modulo m = b* — ¢

INPUT: a base b positive integer z and a modulus m = b* — ¢, where c is an-/ digit base b
integer for some [ < t.
OUTPUT: r = 2 mod m.
1. go¢|z/bt], o<z — gob®, T4=10, 10.
2. While g; > 0 do the following:
2.1 gipr¢laic/V], riv1egic — qipab".
22 i+ 1, rer+ 1.
3. Whiler > m do: r<r —m.
4. Return(r).

Example (reduction modulo b* — ¢) Letb = 4, m = 936 = (32213)4, and x = 31085 =
(13211231)4. Since m = 4% — (1121)4, take ¢ = (1121)4. Heret = 5andl = 4.
Table 14.9 displays the quotients and remainders produced by Algorithm 14.47. At the be-
ginning of step 3, r = (102031)4. Since r > m, step 3 computes r — m = (3212)s. [

[i] gi-ic g | T | r |
0 2 (132)s | (11230)a | (11231)4
1| (221232)s | (2)a | (21232)s | (33123)s
2

(2302)s | (0)a | (2302)s | (102031)4

Table 14.9: Reduction modulo m = b — c (see Example 14.48).

Fact (termination) For some integer s > 0, g = 0; hence, Algorithm 14.47 terminates.

Justification. g;c = gs416*+7i41,1 > 0. Since ¢ < b%, ¢ = (qi41b*/¢)+(riv1/¢) > Qi1
Since the g;'s are non-negative integers which strictly decrease as 4 increases, there is some
integer s > 0 such that g; = 0.

Fact (correctness) Algorithm 14.47 terminates with the correct residue modulo m.

Justification. Suppose that s is the smallest index ¢ for which ¢; = 0 (i.e., g; = 0). Now,
z = qob® + 1o and gic = giy1b® + 71iq1, 0 < 4 < s — 1. Adding these equations gives
z + (Ef;é qi) c = (Zf;(} qi) bt + 3.5 i Since b* = ¢ (mod m), it follows that
x = Y;_or; (mod m). Hence, repeated subtraction of m from r = >oi_oTi gives the
correct residue.
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14.51 Note (computational efficiency of reduction modulo b — c)

(i) Suppose that = has 2t base b digits. If I < t/2, then Algorithm 14.47 executes step 2
at most s = 3 times, requiring 2 multiplications by ¢. In general, if [ is approxi-
mately (s — 2)t/(s — 1), then Algorithm 14.47 executes step 2 about s times. Thus,
Algorithm 14.47 requires about sl single-precision multiplications. '

(i) If ¢ has few non-zero digits, then multiplication by ¢ will be relatively inexpensive.
If ¢ is large but has few non-zero digits, the number of iterations of Algorithm 14.47
will be greater, but each iteration requires a very simple multiplication.

14.52 Note (modifications) Algorithm 14.47 can be modified if m = bt + ¢ for some positive
integer ¢ < b': in step 2.2, replace 17 + 73 with rer + (—1)'r;.

14.53 Remark (using moduli of a special form) Selecting RSA moduli of the form bt + ¢ for
small values of ¢ limits the choices of primes p and . Care must also be exercised when
selecting moduli of a special form, so that factoring is not made substantially easier; this is
because numbers of this form are more susceptible to factoring by the special number field
sieve (see §3.2.7). A similar statement can be made regarding the selection of primes ofa
special form for cryptographic schemes based on the discrete logarithm problem.

14.4 Greatest common divisor algorithms

Many situations in cryptography require the computation of the greatest common divisor
(ged) of two positive integers (see Definition 2.86). Algorithm 2.104 describes the classical
Fuclidean algorithm for this computation. For multiple-precision integers, Algorithm2.104
requires a multiple-precision division at step 1.1 which is a relatively expensive operation.
This section describes three methods for computing the ged which are more efficient than
the classical approach using multiple-precision numbers. The first is non-Euclidean and
is referred to as the binary gcd algorithm (§14.4.1). Although it requires more steps than
the classical algorithm, the binary ged algorithm eliminates the computationally expen-
sive division and replaces it with elementary shifts and additions. Lehmer’s gcd algorithm
(§14.4.2) is a variant of the classical algorithm more suited to multiple-precision computa-
tions. A binary version of the extended Euclidean algorithm is given in §14.4.3.

14.4.1 Binary gcd algorithm

14.54 Algorithm Binary gcd algorithm

INPUT: two positive integers z and y with 2 y.
OUTPUT: ged(z, v)-
1. g1
5. While both z and y are even do the following: z<z/2, y+y/2, ge2g.
3. While z # 0 do the following:
3.1 While z is even do: z¢x/2.
3.2 While y is even do: y<-y/2.
3.3 t«|z — y|/2.
3.4 If z > y then 24-1; otherwise, y+.
4. Return(g - ).
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§14.4 Greatest common divisor algorithms 607

14.55 Example (binary ged algorithm) The following table displays the 'stcps performed by Al-
gorithm 14.54 for computing ged(1764, 868) = 28. a

xz || 1764 | 441 | 112
Y 868 | 217 | 217 | 21
g 1 4 4

BN =3
= O
[N
[{e]
(3%
=
~
-3

10
|

14.56 Note (computational efficiency of Algorithm 14.54)
(i) If z and y are in radix 2 representation, then the divisions by 2 are simply right-shifts.
(ii) Step 3.3 for multiple-precision integers can be computed using Algorithm 14.9.

14.4.2 Lehmer’s gcd algorithm

Algorithm 14.57 is a variant of the classical Buclidean algorithm (Algorithm 2.104) and
is suited to computations involving multiple-precision integers. It replaces many of the
multiple-precision divisions by simpler single-precision operations.

Let z and y be positive integers in radix b representation, with z > y. Without loss
of generality, assume that z and y have the same number of base b digits throughout Algo-
rithm 14.57; this may necessitate padding the high-order digits of y with 0’s.

14.57 Algorithm Lehmer’s gcd algorithm

INPUT: two positive integers  and y in radix b representation, with > .
OUTPUT: ged(z, y).
1. While y > b do the following:
1.1 Set %, 7 to be the high-order digit of z, y, respectively (¥ could be 0).
12 A«1, B+0, C+0, D1
1.3 While (7 + C) # 0 and (¥ + D) # 0 do the following:
q—|@ + 4)/F+0)]. d<|E+B)/{G+ D)
If ¢ # ¢’ then go to step 1.4.
t—A—qC, A+C, C+i, t«+B —qD, B<D, D+t.
T — gy, T, Yt '
1.4 If B =0, then Tz mod y, z+y, y«T1;
otherwise, T+ Az + By, u+Cz + Dy, T, yeu.
2. Compute v = ged(z, y) using Algorithm 2.104.
3. Return(v).

14.58 Note (implementation notes for Algorithm 14.57)
(i) T is a multiple-precision variable. A, B, C, D, and ¢ are signed single-precision
variables; hence, one bit of each of these variables must be reserved for the sign.
(ii) The first operation of step 1.3 may result in overflow since 0 <z + A,y + D < b.
This possibility needs to be accommodated. One solution is to reserve two bits more
than the number of bits in a digit for each of Z and ¥ to accommodate both the sign
- and the possible overflow.
(iii) The multiple-precision additions of step 1.4 are actually subtractions, since AB <0
and CD < 0.
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14.59 Note (computational efficiency of Algorithm 14.57)
() Step 1.3 attempts to simulate multiple-precision divisions by much simpler single-
precision operations. In each iteration of step 1.3, all computations are single preci-
sion. The number of iterations of step 1.3 depends on b.
(ii) The modular reduction in step 1.4 is a multiple-precision operation. The other op-
erations are multiple-precision, but require only linear time since the multipliers are
single precision.

14.60 Example (Lehmer’s ged algorithm)Letb = 103, z = 768 454923, and y = 542 167 814.
Since b = 10, the high-order digits of = and y are ¥ = 768 and ¥ = 542, respectively.
Table 14.10 displays the values of the variables at various stages of Algorithm 14.57. The
single-precision computations (Step 1.3) when ¢ = ¢’ are shown in Table 14.11. Hence
ged(z,y) = 1. O

14.4.3 Binary extended gcd algorithm

Given integers z and y, Algorithm 2.107 computes integers a and b such that az + by = v,
where v = ged(z, y). It has the drawback of requiring relatively costly multiple-precision
divisions when z and y are multiple-precision integers. Algorithm 14.61 eliminates this
requirement at the expense of more iterations.

14.61 Algorithm Binary extended gcd algorithm

INPUT: two positive integers z and y.
OUTPUT: integers a, b, and v such that az + by = v, where v = ged(z, y).
1. g+1.
2. While z and y are both even, do the following: z+z/2, y+y/2, g«2g.
3. u¢=z, vy, A1, B+0, C«0, D1,
4. While u is even do the following;:

4.1 ueu/2.
42 If A= B =0 (mod 2) then A+ A/2, B+« B/2; otherwise, A—(A + y)/2,
B«(B —z)/2.
5. While v is even do the following:
5.1 vev/2. '
52 IfC =D =0 (mod 2) then C+~C/2, D+D/2; otherwise, C+(C +y)/2.
D«(D —z)/2.

6. fu > vthenu¢u—v, AA—-C,B+~B-D:;
otherwise, v¢<v —u, C«C — A, D« D — B.
7. If u = 0, then a+-C, b+ D, and return(a, b, g - v); otherwise, go to step 4.

14.62 Example (binary extended gcd algorithm) Let x = 693 and y — 609. Table 14.12 dis-
plays the steps in Algorithm 14.61 for computing integers a, b, v such that 693a+609b = v,
where v = ged(693, 609). The algorithm returns v = 21, a = —181, and b = 206. [

]
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609

lia N y | g | ¢ | precision reference
768 454923 | 542167814 | 1 1 single Table 14.11(1)
89 593 596 47 099 917 1 1 single Table 14.11(ii)
42 493 679 4606238 | 10 | 8 | multiple
4 606 238 1037537 | 5 | 2 | multiple
1037 537 456090 | — | — | multiple
456 090 125357 | 3 3 single Table 14.11(iii)
34 681 10657 | 3 | 3 single Table 14.11(iv)
10 657 2710 | 5 3 multiple
2710 2527 | 1 | O | multiple ‘
D3S2A] 183 Algorithm 2.104
183 148 Algorithm 2.104
148 35 Algorithm 2.104
35 8 Algorithm 2.104
8 3 Algorithm 2.104
3 2 Algorithm 2.104
2 1 Algorithm 2.104
1 0 Algorithm 2.104

Table 14.11: Single-precision computations (see Example 14.60 and Table 14.10).

Table 14.10: Lehmer’s gcd algorithm (see Example 14.60).

| G R . v e RO P e
i) | 768 | 542 1 0 0 1 1 1
542 | 226 0 1 1] ~1 2 2
oagl voo 'l .l =vl gt i ¥ &
| . ) T R |
O B e i vk iR | e
N 47 42 0 1 1 (-1 3 ]
o T T O | T
T e e 1l O o3 Ll = 3
125 81 0 ] | 1] -3 1 1l
i (S (I (T G e | R |
sl Zaal wdsletlesralera—
s7| 7| 2|7 3| 11| 9 1
B B 0 Ll O G e e
10 4 0 1 1| -3 7 esnlil
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vu|] v]|] A B c| DJ
693 | 609 il 0 0 1

84 | 609 . -1 0 1

42 | 609 | 305 | —347 0 1
21 | 609 | 457 | —520 0 i

21 | 588 | 457 | —520 | —457 521
21 | 294 | 457 | —520 76 —86
21 | 147 | 457 | —520 38 —43
21 | 126 | 457 | —520 | —419 477
21 63 | 457 | —520 95 | —108
21 42 | 457 | —520 | —362 412
21 21 | 457 | —520 | —181 206

0 21 |1 638 | —726 | —181 206

Table 14.12; The binary extended gcd algorithm with x = 693, y = 609 (see Example 14.62).

14.63 Note (computational efficiency of Algorithm 14.61)

(1) The only multiple-precision operations needed for Algorithm 14.61 are addition and
subtraction. Division by 2 is simply a right-shift of the binary representation.

(ii) - The number of bits needed to represent either u or v decreases by (at least) 1, after at
most two iterations of steps 4 — 7; thus, the algorithm takes at most 2(|lg z | + [lg v | +
2) such iterations.

14.64 Note (multiplicative inverses) Given positive integers m and a, it is often necessary to
find an integer 2z € Z, such that az = 1 (mod m), if such an integer exists. z is called
the multiplicative inverse of a modulo m (see Definition 2.115). For example, construct-
ing the private key for RSA requires the computation of an integer d such that ed = 1

(mod (p — 1)(¢ — 1)) (see Algorithm 8.1). Algorithm 14.61 provides a computation-
ally efficient method for determining z given a and m, by setting z = mand y = a. If
ged(z,y) = 1, then, at termination, z = Dif D > 0,orz = m — Dif D < 0;if
ged(z,y) # 1, then a is not invertible modulo m. Notice that if m is odd, it is not nec-
essary to comipute the values of A and C. It would appear that step 4 of Algorithm 14.61
requires both A and B in order to decide which case in step 4.2 is executed. But if m is odd
and B is even, then A must be even; hence, the decision can be made using the parities of
B and m.

Example 14.65 illustrates Algorithm 14.61 for computing a multiplicative inverse.

14.65 Example (multiplicative inverse) Let m = 383 and a = 271. Table 14.13 illustrates the
steps of Algorithm 14.61 for computing 271! mod 383 = 106. Notice that values for the
variables A and C' need not be computed. O

14.5 Chinese remainder theorem for integers

Fact 2.120 introduced the Chinese remainder theorem (CRT) and Fact 2.121 outlined an al- _

gorithm for solving the associated system of linear congruences. Although the method de-
scribed there is the one found in most textbooks on elementary number theory, it is not the
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iteration: 1 2 3 4 5 6 7 8 9 10
U 383 112 56 28 14 7 7 7 7 7
v 271 271 271 1 271 | 211 271 264 132 66 33
B 0 —1]-192 | —-96 | —48 | —24 | —-24| —-24 | —24| -24
D il 1 1 1 1 11 25 | —179 | —281 | —332

iteration: 11 12 13 14 15 16 17 18 19
u 7 7 7 7 4 2! 1 1 1
v 26 13 6 3 3 3 3 2 1
B ~24 | —24 | 24| -24| 41| —171 | 277 | —277 | —277
D —308 | —154 | —130 | —65 | —65 | —65 | —65 212 106

Table 14.13: Inverse computation using the binary extended gcd algorithm (see Example 14.65).

method of choice for large integers. Garner’s algorithm (Algorithm 14.71) has some com-
putational advantages. §14.5.1 describes an alternate (non-radix) representation for non-
negative integers, called a modular representation, that allows some computational advan-
tages compared to standard radix representations. Algorithm 14.71 provides a technique
for cenverting numbers from modaular to base b representation.

14.5.1 Residue number systems

In previous sections, non-negative integers have been represented in radix b notation. An
alternate means is to use a mixed-radix representation.

14.66 Fact Let B be a fixed positive integer. Let m1, meg, ... ,m; be positive integers such that
ged(m;, m;) = 1foralli # j,and M = szl m; > B. Theneachintegerz,0 < z < B,
can be uniquely represented by the sequence of integers v(z) = (v1,vs, ... ,v:), where
v;=zmodm;,1<i<¢t.

14.67 Definition Referring to Fact 14.66, v(z) is called the modular representation or mixed-
radix representation of z for the moduli mq, mao, ... ,m;. The set of modular representa-
tions for all integers z in the range 0 < x < B is called a residue number system.

Ifv(z) = (v1,v2, ... ,vt)andv(y) = (ug, ue, ... ,u), definev(z)+uv(y) = (wr, wa,
.«. ywz) where w; = v; + u; mod m;, and v(z) - v(y) = (21,22,...,2) where 2; =
v; - u; mod m;.

14.68 Fact If0 < z,y < M, then v((z +y) mod M) = v(z) +v(y) and v((z - y) mod M) =

v(z) - v(y)-

14.69 Example (modular representation)Let M = 30 = 2x 3 x 5; here,t =3, m; =2, m; =
3, and m3 = 5. Table 14.14 displays each residue modulo 30 along with its associated
modular representation. As an example of Fact 14.68, note that 21 4 27 = 18 (mod 30)
and (101) + (102) = (003). Also 22 - 17 = 14 (mod 30) and (012) - (122) = (024). O

14.70 Note (computational efficiency of modular representation for RSA decryption) Suppose
that n = pq, where p and g are distinct primes. Fact 14.68 implies that 2 mod n can be
computed in a modular representation as v¢(z); that is, if v(z) = (v1,v2) with respect to
moduli m; = p, ma = g, then vd(z) = (11‘11 mod p, v mod g). In general, computing
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z] @ [z | v@ [z [v@E [[ ] | | v
(000) [ 6 | (oo1) [[ 12 | (002) |[ 18 | (003) || 24 | (004)
(1) || 7 | (12) || 13 | (113) || 19 | (114) || 25 | (110)
(022) || 8 | (023) || 14 | (024) || 20 | (020) || 26 | (021)
(103) || 9 | (104) || 15 | (100) || 21 | (101) || 27 | (102)
(014) || 10 | (010) || 16 | (O11) || 22 | (012) || 28 (013)
(120) || 11 | (121) || 17 | (122) || 23 | (123) |{ 29 | (124)

TR W PO

Table 14.14: Modular representations (see Example 14.69).

v¢ mod p and v§ mod g is faster than computing £ mod 7. For RSA, if p and g are part
of the private key, modular representation can be used to improve the performance of both
decryption and signature generation (see Note 14.75).

Converting an integer z froma base b representation to a modular representation is eas-
ily done by applying a modular reduction algorithm to compute v; = mod m;,1 <1< 8.
Modular representations of integers in Zy; may facilitate some computational efficiencies,
provided conversion from a standard radix to modular representation and back arerelatively
efficient operations. Algorithm 14.71 describes one way of converting from modular rep-
resentation back to a standard radix representation.

14.5.2 Garner’s algorithm

Garner’s algorithm is an efficient method for determining z, 0 < = < M, given v(z) =
(v1,v2,... ,V;), the residues of = modulo the pairwise co-prime moduli my, ma, ... , M.

14.71 Algorithm Garner’s algorithm for CRT

INPUT: a positive integer M = [[;_, m; > 1, with ged(ms, m;) = 1 forallé # j, anda
modular representation v(z) = (vy,v2,... ,v:) of z for the m;.
OUTPUT: the integer z in radix b representation.
1. For ¢ from 2 to t do the following:
1.1 Cj+1. i
1.2 For 7 from 1 to (i — 1) do the following:
ut—mj; " mod m; (use Algorithm 14.61).
C;+u - C; mod m;.

2. uv1, TEU
3. For i from 2 to ¢ do the following: u<(v; — z)C; mod m;, 2z +u - H;;ll m;.
4. Return(z).

14.72 Fact z returned by Algorithm 14.71 satisfies 0 < z < M, z = v; (mod m;),1 <i <t

14.73 Example (Garner’s algorithm) Letmy = 5, mg = 7, mg = 11, my = 13, M =
H;‘:l m; = 5005, and v(z) = (2,1,3,8). The constants C; computed are C; = 3,
Cs = 6, and Cy4 = 5. The values of (i, u, ) computed in step 3 of Algorithm 14.71 are
(1,2,2), (2,4,22), (3,7,267), and (4, 5,2192). Hence, the modular representation v(x) =
(2,1, 3, 8) corresponds to the integer x = 2192. O
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14.74 Note (computational efficiency of Algorithm 14.71)

(i) If Garner’s algorithm is used repeatedly with the same modulus M and the same fac-
tors of M, then step 1 can be considered as a precomputation, requiring the storage
of t — 1 numbers.

(ii) The classical algorithm for the CRT (Algorithm 2.121) typically requires a modular
reduction with modulus M, whereas Algorithm 14.71 does not. Suppose M is a kt-
bit integer and each m is a k-bit integer. A modular reduction by M takes O((kt)?)
bit operations, whereas a modular reduction by m; takes O(k?) bit operations. Since
Algorithm 14.71 only does modular reduction with m,, 2 < i < ¢, it takes O(tk2)
bit operations in total for the reduction phase, and is thus more efficient.

14.75 Note (RSA decryption and signature generation)

(i) (special case of two moduli) Algorithm 14.71 is particularly efficient for RSA moduli
n = pq, where my = p and my = q are distinct primes. Step 1 computes a single
value C; = p~! mod g. Step 3 is executed once: u = (v — v;)Cs mod ¢ and
T = vy + up.

(ii) (RSA exponentiation) Suppose p and g are ¢-bit primes, and let n = pq. Let d be a 2t-
bit RSA private key. RSA decryption and signature generation compute z¢ mod n
for some = € Zy,. Suppose that modular multiplication and squaring require k2 bit
operations for k-bit inputs, and that exponentiation with a k-bit exponent requires
about %k multiplications and squarings (see Note 14.78). Then computing z¢ mod n
requires about %(2t)3 = 12¢3 bit operations. A more efficient approach is to compute
2% mod p and z% mod g (where d, = d mod (p — 1) and d; = d mod (g — 1)),
and then use Garner’s algorithm to construct ¢ mod pg. Although this procedure
takes two exponentiations, each is considerably more efficient because the moduli
are smaller. Assuming that the cost of Algorithm 14.71 is negligible with respect to
the exponentiations, computing z¢ mod n is about £(2t)3/2(3¢%) = 4 times faster.

14.6 Exponentiation

One of the most important arithmetic operations for public-key cryptography is exponen-
tiation. The RSA scheme (§8.2) requires exponentiation in Z,, for some positive integer
m, whereas Diffie-Hellman key agreement (§12.6.1) and the ElGamal encryption scheme
(88.4) use exponentiation in Z,, for some large prime p. As pointed out in §8.4.2, ElGamal
encryption can be generalized to any finite cyclic group. This section discusses methods for
computing the exponential g, where the base g is an element of a finite group G (§2.5.1)
and the exponent e is a non-negative integer. A reader uncomfortable with the setting of a
general group may consider G to be Z;,; that is, read g° as g® mod m.

An efficient method for multiplying two elements in the group G is essential to per-
forming efficient exponentiation. The most naive way to compute g€ is to do e — 1 multi-
plications in the group G. For cryptographic applications, the order of the group G typically
exceeds 2160 elements, and may exceed 21924, Most choices of e are large enough that it
would be infeasible to compute g° using e — 1 successive multiplications by g.

There are two ways to reduce the time required to do exponentiation. One way is to
decrease the time to multiply two elements in the group; the other is to reduce the number
of multiplications used to compute g¢. Ideally, one would do both.

This section considers three types of exponentiation algorithms.
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1. basic techniques for exponentiation. Arbitrary choices of the base g and exponent e
are allowed.

2. fixed-exponent exponentiation algorithms. The exponent e is fixed and arbitrary choi-
ces of the base g are allowed. RSA encryption and decryption schemes benefit from
such algorithms.

3. fixed-base exponentiation algorithms. The base g is fixed and arbitrary choices of
the exponent e are allowed. ElGamal.encryption and signatures schemes and Diffie-
Hellman key agreement protocols benefit from such algorithms.

14.6.1 Techniques for general exponentiation
This section includes general-purpose exponentiation algorithms referred to as repeated
square-and-multiply algorithms.
(i) Basic binary and k-ary exponentiation
Algorithm 14.76 is simply Algorithm 2.143 restated in terms of an arbitrary finite abelian
group G with identity element 1.
14.76 Algorithm Right-to-left binary exponentiation
INPUT: an element g € G and integer e > 1.
OUTPUT: g°.
1. A«1, S¢+g.
2. While e # 0 do the following:
2.1 Ifeis odd then A+A - S.
2.2 e—le/2].
2.3 If e # 0 then S«S - S.
3. Return(A).
14.77 Example (right-to-left binary exponentiation) The following table displays the values of
A, e, and S during each iteration of Algorithm 14.76 for computing g253. a
A 1 g 93 ga gll '927 g27 927 g27 9283
e | 283 141 70 35 17 8 4 2 1 0
S| g & ¢ &£ g° ¢2 g% g=® g% _
14.78 Note (computational efficiency of Algorithm 14.76) Let t + 1 be the bitlength of the bi-

nary representation of e, and let wt(e) be the number of 1’s in this representation. Algo-
rithm 14.76 performs ¢ squarings and wt(e) — 1 multiplications. If e is randomly selected
in the range 0 < e < |G| = n, then about |lgn| squarings and % (|lgn] + 1) multiplica-
tions can be expected. (The assignment 1 - z is not counted as a multiplication, nor is the
operation 1 - 1 counted as a squaring.) If squaring is approximately as costly as an arbi-
trary multiplication (cf. Note 14.18), then the expected amount of work is roughly % llgn|
multiplications.

Algorithm 14.76 computes A - S whenever e is odd. For some choices of g, A - g can
be computed more efficiently than A - S for arbitrary S. Algorithm 14.79 is a left-to-right
binary exponentiation which replaces the operation A - S (for arbitrary S) by the operation
A - g (for fixed g).
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§14.6 Exponentiation 615

14.79 Algorithm Left-to-right binary exponentiation

INPUT: g € G and a positive integer e = (eze;—1 - - - €1€0)2.
OUTPUT: g°.

1. A«1.

2. For i from ¢ down to 0 do the following:
2.1 A+ A- A
22 Ife; =1, then A«+A - g.

3. Return(A4).

14.80 Example (left-to-right binary exponentiation) The following table displays the values of
A during each iteration of Algorithm 14.79 for computing g®3, Note that ¢ = 8 and 283 =

(100011011)s. 0
AR 5 4 2 1 0
e 1l 0 0 0 1 1 0 1 1
A g g2 g4 98 g17 935 g70 gl41 283

14.81 Note (computational efficiency of Algorithm 14.79) Let t + 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1’s in this representation. Algo-
rithm 14.79 performs ¢ + 1 squarings and wt(e) — 1 multiplications by g. The number of
squarings and multiplications is the same as in Algorithm 14.76 but, in this algorithm, mul-
tiplication is always with the fixed value g. If g has a special structure, this multiplication
may be substantially easier than multiplying two arbitrary elements. For example, a fre-
quent operation in ElGamal public-key schemes is the computation of g* mod p, where g
is a generator of Z;, and p is a large prime number. The multiple-precision computation A - g
can be done in linear time if g is chosen so that it can be represented by a single-precision
integer (e.g., g = 2). If the radix b is sufficiently large, there is a high probability that such
a generator exists.

Algorithm 14.82, sometimes referred to as the window method for exponentiation, is a
generalization of Algorithm 14.79 which processes more than one bit of the exponent per
iteration.

14.82 Algorithm Left-to-right k-ary exponentiation

INPUT: g and e = (ese:—1 - - - e1€0)p, where b = 2 for some k& > 1.
OUTPUT: g°.
1. Precomputation.
1.1 go+1. )
1.2 For i from 1 to (2% — 1) do: g;<-g,—1 - g. (Thus, g; = g*.)
2. A1,
3. For ¢ from ¢ down to 0 do the following:
3.1 AA%
32 A«A.ge,.
4. Return(A).
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616 Ch. 14 Efficient Implementation

In Algorithm 14.83, Algorithm 14.82 is modified slightly to reduce the amount of pre-
computation. The following notation is used: foreach 4,0 < i < ¢, if e; # 0, then write
e; = 2hu; where u; is 0dd; if e; = 0, then let h; = 0 and u; = 0.

14.83 Algorithm Modified left-to-right k-ary exponentiation

INPUT: g and e = (eze1—1 - - - €1€0)p, Where b = 2% for some k > 1.
OUTPUT: g©.
1. Precomputation.
1.1 gO'(_‘l, 9149, 92(_92-
1.2 For i from 1 to (251 — 1) do: gaip1¢goi-1 - g2.
2. A«1.
3. For i from ¢ down to 0 do: A« (A"
4. Return(A).

" M
hy . gui)Q 1.

14.84 Remark (right-to-left k-ary exponentiation) Algorithm 14.82 is a generalization of Algo-
rithm 14.79. In a similar manner, Algorithm 14.76 can be generalized to the k-ary case.
However, the optimization given in Algorithm 14.83 is not possible for the generalized
right-to-left k-ary exponentiation method.

(ii) Sliding-window exponentiation
Algorithm 14.85 also reduces the amount of precomputation compared to Algorithm 14.82

and, moreover, reduces the average number of multiplications performed (excluding squar-
ings). k is called the window size.

14.85 Algorithm Sliding-window exponentiation

INPUT: g, e = (ete4—1 - - - €1€0)2 With e; = 1, and an integer k > 1.
OUTPUT: g°.
1. Precomputation.
L1 gi¢g, gat-g>.
1.2 For i from 1 to (25~! — 1) do: gaip14g2i1 - go-
2. A1, i+t.
3. 'While ¢ > 0 do the following:
3.1 Ife; = O thendo: A—A?, i—i—1.
3.2 Otherwise (e; # 0), find the longest bitstring e;e;_; - - - ¢; such thati—{ 41 < k
and ¢; = 1, and do the following:
S aas s
4. Return(A).

“Gleiei_1...er)ns 24— 1.

14.86 Example (sliding-window exponentiation) Take e = 11749 = (10110111100101), and
k = 3. Table 14.15 illustrates the steps of Algorithm 14.85. Notice that the sliding-window
method for this exponent requires three multiplications, corresponding to i = 7, 4, and 0.
Algorithm 14.79 would have required four multiplications for the same values of k and e. [
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§14.6 Exponentiation 617

[ i ] A Longest bitstring
13 i 101
10 9° 101
7| 6P =g" 111
4 (945)897 i) 9367 =
3 (TP =g =
2 (g734)2 = 91468 101
0 (91468)895 - B g11749 s

Table 14.15: Sliding-window exponentiation with k = 3 and exponent e = (10110111100101)2.

14.87 Note (comparison of exponentiation algorithms) Let t + 1 be the bitlength of e, and let

I + 1 be the number of k-bit words formed from e; thatis, [ = [(¢ + 1)/k] — 1 = [t/k].
Table 14.16 summarizes the number of squarings and multiplications required by Algo-
rithms 14.76, 14.79, 14.82, and 14.83. Analysis of the number of squarings and multipli-
cations for Algorithm 14.85 is more difficult, although it is the recommended method.

(1) (squarings for Algorithm 14.82) The number of squarings for Algorithm 14.82 is k.
Observe that Ik = [t/k|k = t — (t mod k). It follows thatt — (k — 1) < Ik < ¢
and that Algorithm 14.82 can save up to k — 1 squarings over Algorithms 14.76 and
14.79. An optimal value for & in Algorithm 14.82 will depend on t.

(ii) (squarings for Algorithm 14.83) The number of squarings for Algorithm 14.83 is [k+
hy where 0 < hy < t mod-k. Sincet—(k—1) < lk < lk+h; <lk+(t mod k) =t
ort—(k—1) < lk+ h;y < t, the number of squarings for this algorithm has the same
bounds as Algorithm 14.82.

Precomputation Multiplications
Algorithm | sq mult squarings worst case | average case
14.76 0 0 t t t/2
14.79 0 0 t t t/2
14.82 1] 2¥-3 t—(k-1)<lk<t -1 1(2F —1)/2"
14.83 12511 | t—(k-1)<lk+h<t 1-1 1(2F —1)/2%

Table 14.16: Number of squarings (sq) and multiplications (mult) for exponentiation algorithms.

(iii) Simultaneous multiple exponentiation

There are a number of situations which require computation of the product of several ex-
ponentials with distinct bases and distinct exponerits (for example, verification of ElGa-
mal signatures; see Note 14.91). Rather than computing each exponential separately, Al-
gorithm 14.88 presents a method to do them simultaneously.

Leteg, €1, ... , €x—1 be positive integers each of bitlength ¢£; some of the high-order bits
of some of the exponents might be 0, but there is at least one e; whose high-order bit is 1.
Form a k x t array EA (called the exponent array) whose rows are the binary representations
of the exponents e;, 0 < 4 < k — 1. Let I; be the non-negative integer whose binary
representation is the jth column, 1 < j < ¢, of EA, where low-order bits are at the top of
the column.
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618 Ch. 14 Efficient Implementation

14.88 Algorithm Simultaneous multiple exponentiation
INPUT: group elements go, g1, - - - , Jk—1 and non-negative t-bit integers €q, €1, ... €g—1.
OUTPUT g di - -0k -

1. Precomputation. For i from 0 to (2% — 1): Gy« H;:g g;.j where ¢ = (ig—1- - %0)2-

2. A«1.

3. For i from 1 to t do the following: A« A - A, A«A.Gjy,.

4. Return(A).

14.89 Example (simultaneous multiple exponentiation) In this example, g3°g1%g3* is computed
using Algorithm 14.88. Tet eg = 30 = (11110)s, e; = 10 = (01010)2, and ey = 24 =
(11000)2. The 3 x 5 array FA is:

1= 1% Sl i)
0 1 0 1 0O
1 1 0 0 O
The next table displays precomputed values from step 1 of Algorithm 14.88.
7 0| 1 2 3 4 5 6 7
Gi 1 go | g1 | gogi | g2 | og2 | 9192 | gogiga
Finally, the value of A at the end of each iteration of step 3 is shown in the following table.
Here, 11 =158 Iz =T/ I3 =k I4 = 3, and I5 =3 ().
% 1 2 3 4 5
A || 9092 | 89193 | ddgigd | 95°g03” | 98°9i%3"
O

14.90 Note (computational efficiency of Algorithm 14.88)

(i) Algorithm 14.88 computes g§°g5" - - - g5~ ;" (where each e; is represented by ¢ bits)
by performing ¢t — 1 squarings and at most (2% — 2) + ¢ — 1 multiplications. The
multiplication is trivial for any column consisting of all 0’s.

(ii) Notallofthe G;,0 < ¢ < 2% —1, need to be precomputed, but only for those ¢ whose
binary representation is a column of EA.

14.91 Note (ElGamal signature verification) The signature verification equation for the ElGa-

mal signature scheme (Algorithm 11.64) is «*(™)(a~%)" = r* (mod p) where pis a large
prime, o a generator of Z,, o* is the public key, and (r, s) is a signature for message m.
It would appear that three exponentiations and one multiplication are required to verify
the equation. If ¢ = [lgp]| and Algorithm 11.64 is applied, the number of squarings is
3(t — 1) and the number of multiplications is, on average, 3¢/2. Hence, one would ex-
pect to perform about (9t — 4) /2 multiplications and squarings modulo p. Algorithm 14.88
can reduce the number of computations substantially if the verification equation is rewrit-
ten as o™ (@=2)"r~* = 1 (mod p). Takinggo = @, g1 = &%, g = 7, and ey =
h{(m) mod (p — 1), e; = r mod (p — 1), ex = —s mod (p — 1) in Algorithm 14.88, the
expected number of multiplications and squarings is (¢— 1)+ (6 + (7¢/8)) = (15¢t+40)/8.
(For random exponents, one would expect that, on average, £ of the columns of EA will be
non-zero and necessitate a non-trivial multiplication.) This is only about 25% more costly
than a single exponentiation computed by Algorithm 14.79.
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14.92

14.93

(iv) Additive notation

Algorithms 14.76 and 14.79 have been described in the setting of a multiplicative group.
Algorithm 14.92 uses the methodology of Algorithm 14.79 to perform efficient multiplica-
tion in an additive group G. (For example, the group formed by the points on an elliptic
curve over a finite field uses additive notation.) Multiplication in an additive group corre-
sponds to exponentiation in a multiplicative group.

Algorithm Left-to-right binary multiplication in an additive group

INPUT: g € G, where G is an additive group, and a positive integer e = (ezes—1 - - - €1€p)2.
OUTPUT: e - g.

1. A« 0.
2. For i from t down to 0 do the following:

2.1 A+A+ A
22 Ife; = 1then A—A +g.

3. Return(A).

Note (the additive group Z,)

(i) If G is the additive group Z,, then Algorithm 14.92 provides a method for doing
modular multiplication. For example, if a,b € Zy,, then a - b mod m can be com-
puted using Algorithm 14.92 by taking ¢ = @ and e = b, provided b is written in
binary.

(i) If a,b € Zp,, thena < mand b < m. The accumulator A in Algorithm 14.92
never contains an integer as large as 2m; hence, modular reduction of the value in
the accumulator can be performed by a simple subtraction when A > m; thus no
divisions are required.

(iii) Algorithms 14.82 and 14.83 can also be used for modular multiplication. In the case
of the additive group Z,, the time required to do modular multiplication can be im-
proved at the expense of precomputing a table of residues modulo m. For a left-to-
right k-ary exponentiation scheme, the table will contain 2% — 1 residues modulo m.

(v) Montgomery exponentiation

The introductory remarks to §14.3.2 outline an application of the Montgomery reduction
method for exponentiation. Algorithm 14.94 below combines Algorithm 14.79 and Al-
gorithm 14.36 to give a Montgomery exponentiation algorithm for computing ¢ mod m.
Note the definition of m’ requires that gcd(m, R) = 1. For integers u and v where 0 <
%, v < ', define Mont(u, v) to be uv R~ mod m as computed by Algorithm 14.36.
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620 Ch. 14 Efficient Implementation

14.94 Algorithm Montgomery exponentiation

INPUT: m = (my—1---mo)p, R =bl,m' = —m 1 mod b, e= (e ep)s withe; =1,
and an integer 2, 1 <z <m.
OUTPUT: z¢ mod m.
1. T« Mont(z, R2 mod m), A« R mod m. (R mod m and R? mod m may be pro-
vided as inputs.)
2. For i from ¢ down to 0 do the following:
2.1 A+ Mont(A, A).
2.2 If e; = 1 then A+ Mont(A4, ).
3. A+ Mont(4,1).
4. Return(A4).

14.95 Example (Montgomery exponentiation) Let =, m, and R be integers suitable as inputs to
Algorithm 14.94. Let e = 11 = (1011); here, t = 3. The following table displays the
values of A mod m at the end of each iteration of step 2, and after step 3. O

i gl D 1 0 Step 3
Amodm || & | 2R | 2R~ | 'R~ || Mont(4,1) = Z''R™!! = g!

14.96 Note (computational efficiency of Montgomery exponentiation)

(i) - Table 14.17 displays the average number of single-precision multiplications required
for each step of Algorithm 14.94. The expected number of single-precision multipli-
cations to compute z° mod m by Algorithm 14.94 is 3i(1 + 1)(¢ + 1).

(ii) Each iteration of step 2 in Algorithm 14.94 applies Algorithm 14.36 at a cost of 21 (I +
1) single-precision multiplications but no single-precision divisions. A similar algo-
rithm for modular exponentiation based on classical modular multiplication (Algo-
rithm 14.28) would similarly use 2i(l + 1) single-precision multiplications per iter-
ation but also  single-precision divisions. _

(iii) Any of the other exponentiation algorithms discussed in §14.6.1 can be combined
with Montgomery reduction to give other Montgomery exponentiation algorithms.

Step 1 2 3
Number of Montgomery multiplications 1 3t 1
Number of single-precision multiplications || 2( +1) | 3t(I+ 1) | (I +1)

Table 14.17: Average number of single-precision multiplications per step of Algorithm 14.94.

14.6.2 Fixed-exponent exponentiation algorithms

There are numerous situations in which a number of exponentiations by a fixed exponent
must be performed. Examples include RSA encryption and decryption, and ElGamal de-
cryption. This subsection describes selected algorithms which improve the repeated square-
and-multiply algorithms of §14.6.1 by reducing the number of multiplications.
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(i) Addition chains

The purpose of an addition chain is to minimize the number of multiplications required for
an exponentiation.

14.97 Definition An addition chain V of length s for a positive integer e is a sequence ug, u1,
..., Uug Of positive integers, and an associated sequence wy, . . . , W, of pairs w; = (i1, 12),
0 < 41,19 < 1%, having the following properties:
(1) up = 1 and us = e; and
(i) foreach u;, 1 < i <8, Uy = Ugy + Uiy

14.98 Algorithm Addition chain exponentiation

INPUT: a-group element g, an addition chain V' = (ug, u1, . . . ,u,) of length s for a positive
integer e, and the associated sequence wy, . . . ,ws, where w; = (i1, 42).
OUTPUT: ¢°.

1. go¢-g.

2. For i from 1to s do: gi4-gi, - Gi,-
3. Return(gs).

14.99 Example (addition chain exponentiation) An addition chain of length 5 for e = 15 is
wp = 1,u1 = 2, us = 3, uz = 6, ug = 12, us = 15. The following table displays the

values of w; and g; during each iteration of Algorithm 14.98 for computing g'°. O
i Jo] 1 2 3 4 5 |
wi || - [(0,0) | (0,1) | (2,2) | (3,3) | (2,4)
s lg| ¢ i e [

14.100 Remark (addition chains and binary representations) Given the binary representation of
an exponent e, it is a relatively simple task to construct an addition chain directly from this
representation. Chains constructed in this way generally do not provide the shortest addition
chain possible for the given exponent. The methods for exponentiation described in §14.6.1
could be phrased in terms of addition chains, but this is typically not done.

14.101 Note (computational efficiency of addition chain exponentiation) Given an addition chain
of length s for the positive integer e, Algorithm 14.98 computes g¢ for any g € G, g =2 1k
using exactly s multiplications.

14,102 Fact If{ is the length of a shortest addition chain for a positive integer e, then ! > (Ige -+
lg wt(e) — 2.13), where wt(e) is the number of 1’s in the binary representation of e. An
upper bound of (|Ige| + wt(e) — 1) is obtained by constructing an addition chain for e
from its binary representation. Determining a shortest addition chain for e is known to be
an NP-hard problem.
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14.103

14.104

14.105

(ii) Vector-addition chains

Algorithms 14.88 and 14.104 are useful for computing g5°g5 - -+ g Where go, g1, - .,
gk—1 are arbitrary elements in a group G and e, €1, . .. ,ex—1 are fixed positive integers.
These algorithms can also be used to advantage when the exponents are not necessarily fixed
values (see Note 14.91). Algorithm 14.104 makes use of vector-addition chains.

Definition Let s and k be positive integers and let v; denote a k-dimensional vector of

non-negative integers. An ordered set V.= {v; : —k + 1 < i < s} is called a vector-
addition chain of length s and dimension % if V satisfies the following:

(i) Bachv;, —k + 1 <4 <0, has a 0 in each coordinate position, except for coordinate

position i + k — 1, which is a 1. (Coordinate positions are labeled 0 through k — 1.)

(ii) For each v;, 1 < i < s, there exists an associated pair of integers w; = (i1, 92) such
that —k + 1 < 41, 49 < i and v; = vy, + v, (41 = 99 is allowed).

Example 14.105 illustrates a sample vector-addition chain. Let V = {v; : =k +1 <
1 < s} be a vector-addition chain of length s and dimension k& with associated sequence
wi, ... ,ws. Algorithm 14.104 computes gi° g5* - - - g~ " where v, = (eo, €1, ... , €k—1).

Algorithm Vector-addition chain exponentiation

INPUT: group elements go, g1, - - - , gk—1 and a vector-addition chain V' of length s and di-
mension k with associated sequence wy, . .. ,ws, where w; = (i1, i2).
OUTPUT: g§°g5* - - - g5* ' where v, = (eg, €1, .. ,€k-1)-

1. For i from (—k + 1) to 0 do: a;gsyk—1.

2. For i from 1 to s do: a;¢—a;, - G;,.

3. Return(as).

Example (vector-addition chain exponentiation) A vector-addition chain V of length s =
9 and dimension k = 3 is displayed in the following table.

I'U—-Z"U—l|UO|711]1)2[’U:5I'U4{'Usl’l)slihl'b'sI’Ugl
ik 0 0\1 2 2 3\5 6 | 12 { 15 | 30
0 1 00 0 1 L2 2 4 5 | 10
0 0 |1 ]|1]2]|2[2]4]|5]|10]12]24

The following table displays the values of w; and a; during each iteration of step 2 in Al-

gorithm 14.104 for computing g3°g1°¢2*. Nine multiplications are required. O
K 1 2 3 4 5 6 7 8 9
wi || (=2,0) | (1,1) | (=1,2) | (=2,3) | (3,4) | (1,5) | (6,6) 4,7 (8,8)
ai || goga | 9893 | 989193 | 989193 | 989793 | 989ig3 | 96°919° | 98°97 93’ | 93°91%g3*

14.106 Note (computational efficiency of vector-addition chain exponentiation)

(i) (multiplications) Algorithm 14.104 performs exactly s multiplications for a vector-
addition chain of length s. To compute g§°g7* - - - gy* " using Algorithm 14.104, one
would like to find a vector-addition chain of length s and dimension k with v =
(eo,e€1,... ,er—1), where s is as small as possible (see Fact 14.107).

Facebook's Exhibit No. 1005

0121

MOBILEIRON, INC. - EXHIBIT 1011

Page 144



§14.6 Exponentiation 623

(ii) (storage) Algorithm 14.104 requires intermediate storage for the elements a;, —k +
1 < i < t, at the t*" iteration of step 2. If not all of these are required for succeeding
iterations, then they need not be stored. Algorithm 14.88 provides a special case of
Algorithm 14.104 where the intermediate storage is no larger than 2F — 1 vectors of
dimension k.

14.107 Fact The minimum value of s in Note 14.106(i) satisfies the following bound, where M =
max{ei 0<i <k~ 1} and c is a constant:

s<k—1+1gM+ck-lgM/lglg(M + 2).

14.108 Example (vector-addition chains from binary representations) The vector-addition chain
implicit in Algorithm 14.88 is not necessarily. of minimum length. The vector-addition
chain associated with Example 14.89 is displayed in Table 14.18. This chain is longer than
the one used in Example 14.105. The advantage of Algorithm 14.88 is that the vector-
addition chain does not have to be explicitly provided to the algorithm. In view of this,
Algorithm 14.88 can be applied more generally to situations where the exponents are not
necessarily fixed. 0

vz | vy [vo | vi | va | ws [wa | vs [vs | vr | ws | wo] vio]
1 3t 1 2 3 6 7 14 | 15 | 30
1 1 0 0 1 2 2 4 5 10
0 1 1 2 3: 6 6 12 112 | 24

O = O
= O O

1
0
0

Table 14.18: Binary vector-addition chain exponentiation (see Example 14.108).

14.6.3 Fixed-base exponentiation algorithms

Three methods are presented for exponentiation when the base g is fixed and the exponent
e varies. With a fixed base, precomputation can be done once and used for many exponen-
tiations. For example, Diffie-Hellman key agreement (Protocol 12.47) requires the compu-
tation of a®, where « is a fixed element in Z;.

For each of the algorithms described in this section, {bg, b1, ... , b:} is a set of integers
for some ¢ > 0, such that any exponent e > 1 (suitably bounded) can be written as e =
2”_0 eib;, where 0 < e; < h for some fixed positive integer h. For example, if e is any
(t + 1)-digit base b integer with b > 2, then b; = b* and h = b are possible choices.

Algorithms 14.109 and 14.113 are two fixed-base exponentiation methods. Both re-
quire precomputation of the exponentials g%, g%, . .. , g%, e.g., using one of the algorithms
from §14.6.1. The precomputation needed for Algorithm 14.117 is more involved and is ex-
plicitly described in Algorithm 14.116.

(i) Fixed-base windowing method

Algorithm 14.109 takes as mput the precomputed exponentials g; = g%, 0 < i<t and
positive integers h and.e = 3 ._, e;b; where 0 < ¢; < h, 0 < i < ¢. The basis for the

algorithm is the observation that g¢ = Hi=0 0= H].=1 B g:i).
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14.109 Algorithm Fixed-base windowing method for exponentiation
INPUT: {g,g™,... g%}, e = Y _eibi, and h.
OUTPUT: g°.

1. A«1, B+1. |
2. For j from (h — 1) down to 1 do the following:

2.1 For each i for which e; = j do: B« B - gb%.
22 A+A-B. '

3. Return(A).

14.110 Example (fixed-base windowing exponentiation) Precompute the group elements gl,l Figid
g%, g%, 9256, To compute g¢ for e = 862 = (31132)4, take t = 4, h = 4, and b; = 4? for
0 < 4 < 4, in Algorithm 14.109. The following table displays the values of A and B at the

end of each iteration of step 2. 0
==l 2 | !
B 1 949256 o 260 g260g = g261 9261916g64 = g34l
A 1 g260 92609261 = 9521 \ 95219341 — 9862

14.111 Note (computational efficiency of fixed-base windowing exponentiation)
(i) (number of multiplications) Suppose t + h > 2. Only multiplications where both
operands are distinct from 1 are counted. Step 2.2 is executed h — 1 times, but at least
one of these multiplications involves an operand with value 1 (A is initialized to 1).
Since B is also initially 1, at most ¢ multiplications are done in step 2.1. Thus, Algo-
rithm 14.109 computes ¢g° with at most ¢ + h — 2 multiplications (cf. Note 14.112).
(ii) (storage) Storage is required for the ¢ + 1 group elements g;, 0 <7 < ¢.

14.112 Note (a particular case) The most obvious application of Algorithm 14.109 is the case
where the exponent e is represented in radix b. If e = ZLO e;b', then g; = gb', 0<t<t,
are precomputed. If e is randomly selected from {0,1,... ,m —1},thent+1 < [log, m]
and, on average, % of the base b digits in e will be 0. In this case, the expected number of
multiplications is % [log, m] + b — 3. If mn is a 512-bit integer and b = 32, then 128.8
multiplications are needed on average, 132 in the worst case; 103 values must be stored.

"(ii) Fixed-base Euclidean method

Let {zg,1,...,z:} be a set of integers with ¢ > 2. Define M to be an integer in the
interval [0, t] such that zps > z; for all 0 < ¢ < ¢. Define N to be an integer in the interval
[0,t), N # M, suchthatey > e; forall0 <i¢ <t,i# M.

14.113 Algorithm Fixed-base Euclidean method for exponentiation
INPUT: {g%,g*,...,g"}ande = Z:=o eib;.

OUTPUT: g°.
1. For i from 0 to ¢ do the following: g;<-g%, =;¢e;.
2. Determine the indices M and N for {zg,z1,... ,2¢}.

3. While z # 0 do the following:

3.1 g—|zpm/zN], gN(gm)? - gN, TMTp mod ZN.
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§14.6 Exponentiation 625

3.2 Determine the indices M and N for {zg, Z1,... , ¢}
4. Return(gy).

14.114 Example (fixed-base Euclidean method) This example repeats the computation of g¢, e =
862 done in Example 14.110, but now uses Algorithm 14.113. Take by = 1, by = 16, by =
256. Then e = (3,5,14)16. Precompute g%, g'6, g%56. Table 14.19 illustrates the steps
performed by Algorithm 14.113. Notice that for this example, Algorithm 14.113 does 8

@0 [@[aa [M[N[a[g [ o [ g |
141 5 3 0 1|2 g gl |lagi
4 5 3 1 0 1 919 918 g256
4 1 3 0 2 1 gl9 gIB g275
1 1 3 2 1 3 g19 g843 9275
1 1 0 0 1 1 919 i .‘9.862‘ 9275
ol1fo0o]1|o]-|g¢" [HEEEE s

Table 14.19: Fixed-base Euclidean method to compute g% (see Example 14.114),

multiplications, whereas Algorithm 14.109 needs only 6 to do the same computation. Stor-
age requirements for Algorithm 14.113 are, however, smaller. The vector-addition chain
(Definition 14.103) corresponding to this example is displayed in the following table. [

(OB V-1 Vo v1 Vo U3 V4 Vs Vs v7 U8
1 0 0 2 2 3 3 6 9 (11 | 14
0 1 0 0 1 1 1 2 3 4 5
0 0 1 0 0 0 1 2 3 3 3

14.115 Note (fixed-base Euclidean vs. fixed-base windowing methods)

(i) In most cases, the quotient ¢ computed in step 3.1 of Algorithm 14.113 is 1. For a
given base b, the computational requirements of this algorithm are not significantly
greater than those of Algorithm 14.109. _

(i1) Since the division algorithm is logarithmic in the size of the inputs, Algorithm 14.113
can take advantage of a larger value of A than Algorithm 14.109. This results in less
storage for precomputed values.

(iii) Fixed-base comb method

Algorithm 14.117 computes g€ where e = (ezei—1 - - - €1€0)2, t > 1. Select an integer h,
1 < h <t+1and computea = [(t+1)/h]. Selectan integer v, 1 < v < a, and compute
b = [a/v]. Clearly, ah > t + 1. Let X = Rp_1||Ra—2]|---||Ro be a bitstring formed
from e by padding (if necessary) e on the left with 0’s, so that X has bitlength ah and each
R;,0 <4 < h—1,is abitstring of length a. Form an h X a array EA (called the exponent
array) where row i of FA is the bitstring R;, 0 < i < h — 1. Algorithm 14.116 is the
precomputation required for Algorithm 14.117.
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626 Ch. 14 Efficient Implementation

14.116 Algorithm Precomputation for Algorithm 14.117

INPUT: group element g and parameters h, v, a, and b (defined above).
OUTPUT: {G[j][i]: 1<i<2h, 0<j <o}
1. For i from 0 to (h — 1) do: gs<—g? .
2. For i from 1 to (2" — 1) (where i = (ih—1- "+ 0)2), do the following:
2.1 GO)[il«TT;= 95 -
2.2 For j from 1 to (v — 1) do: G[j][i]«(G[0][1])*".
3. Return({G[j][i] : 1 <i< 2", 0<j<v}).

Let I;%,0 < k < b,0 < j < v, be the integer whose binary representation is column
(7b+ k) of EA, where column 0 is on the right and the least significant bits of a column are
at the top.

14.117 Algorithm Fixed-base comb method for exponentiation

INPUT: g, e and {G[j][i] : 1 <i< 2", 0<j< v} (precomputed in Algorithm 14.116).
OUTPUT: g¢.
1. A«1.
2. For k from (b — 1) down to 0 do the following:
2.1 A+A- A
2.2 For j from (v — 1) down to 0 do: A«-G[j][L; k] - A.
3. Return(A).

14.118 Example (fixed-base comb method for exponentiation) Lett = 9 and h = 3; then a =
[10/3] = 4. Letv = 2;thenb = [a/v] = 2. Suppose the exponent input to Algo-

rithm 14.117 is e = (eges- - e1ep)2. Form the bitstring X = z11210 - - z120 where
i = €;,0 < ¢ < 9,and 211 = 39 = 0. The following table displays the exponent
array EA.

Iy ho Ion oo
zs3 T2 31 Zo
7 ) Zg x5 aR
T11 T10 Ty T8

The precomputed values from Algorithm 14.116 are displayed below. Recall that g; = gzia ;
0<i<3s.

pen R - G S S

GlOlls] | 9o 91 9190 g2 9290 @291  g20190
Gl | 96 g1 gigs 93 9590 ghgt ghgidd
Finally, the following table displays the steps in Algorithm 14.117 for EA.

A =900}
k| 7 lo h l2
)= 0 b 0 0
158 e 43 dz7 411
1{0 4z + 71 4z7 + x5 4z11 + 29
0| — 8z3 + 2z 8x7 + 2z5 8211 + 2z9
0 1 8r3 + 2z1 + 4z 8x7 + 2x5 -+ 4xs 8x11 + 2zg + 4z10
0 0 8x3 + 2z1 + 4z + xo | 8xr + 2x5 + 4x6 + 24 | 8z11 + 2z9 + 4210 + s
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§14.7 Exponent recoding 627

The last row of the table corresponds to g>izo #:2° = ge. O

14.119 Note (computational efficiency of fixed-base comb method)

(1) (number of multiplications) Algorithm 14.117 requires at most one multiplication for
each column of FA. The right-most column of EA requires a multiplication with the
initial value [ of the accumulator A. The algorithm also requires a squaring of the
accumulator A foreach k, 0 < k < b, except for k = b — 1 when A has value
1. Discounting multiplications by 1, the total number of non-trivial multiplications
(including squarings) is, at most, a + b — 2.

(il) (storage) Algorithm 14.117 requires storage for the v(2* — 1) precomputed group
elements (Algorithm 14.116). If squaring is a relatively simple operation compared
to multiplication in the group, then some space-saving can be achieved by storing
only 2% — 1 group elements (i.e., only those elements computed in step 2.1 of Algo-
rithm 14.116).

(iii) (trade-offs) Since h and v are independent of the number of bits in the exponent, se- .
lection of these parameters can be made based on the amount of storage available vs.
the amount of time (determined by multiplication) to do the computation.

14.7 Exponent recoding

Another approach to reducing the number of multiplications in the basic repeated square-
and-multiply algorithms (§14.6.1) is to replace the binary representation of the exponent e
with a representation which has fewer non-zero terms. Since the binary representation is
unique (Fact 14.1), finding a representation with fewer non-zero components necessitates
the use of digits-besides 0 and 1. Transforming an exponent from one representation to an-
other is called exponent recoding. Many techniques for exponent recoding have been pro-
posed in the literature. This section describes two possibilities: signed-digit representation
(§14.7.1) and string-replacement representation (§14.7.2).

14.7.1 Signed-digit representation

14.120 Definition Ife = E:=0 d;2¢ where d; € {0,1,~1},0 < i < t, then (d; - - -d1do)sp is
. called a signed-digit representation with radix 2 for the integer e.

Unlike the binary representation, the signed-digit representation of an integer is not
unique. The binary representation is an example of a signed-digit representation. Let ebe a
positive integer whose binary representation is (e;41€ses—1 « - - €1€0)2, With ez = €; = 0.
Algorithm 14.121 constructs a signed-digit representation for e having at most ¢ + 1 digits
and the smallest possible number of non-zero terms.
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628 Ch. 14 Efficient Implementation

14.121 Algorithm Signed-digit exponent recoding

INPUT: a positive integer e = (ezy1€:€4-1 - - €1€0)2 With ety = e; = 0.
OUTPUT: a signed-digit representation (d; - - - d1dg) sp for e. (See Definition 14.120.) .

1. ¢ «0.
2. For i from 0 to ¢ do the following:

2.1 cirr¢|(e; + eip1+ ¢i)/2], di<e;+ ci — 2¢ciy1.
3. Return((d; - - - d1do) sp)-

14.122 Example (signed-digit exponent recoding) Table 14.20 lists all possible inputs to the dh
iteration of step 2, and the corresponding outputs. If e = (1101110111),, then Algo-
rithm 14.121 produces the signed-digit representation e = (10010001001)gp where 1 =

—1.Notethate =29 +28 426 125+ 92449224+ 241=210_297_23_1, 0
inputs e; 0 0 0 Q] TR 1S
C; 0 0 1 1 0 0 1 "
€1 0 i 0 1 0 1 0 1
outputs | €it1 0o 0 o0 I 0 RSl
di OF S R (R

Table 14.20: Signed-digit exponent recoding (see Example 14.122).

14.123 Definition A signed-digit representation of an integer e is said to be sparse if no two non-
zero entries are adjacent in the representation.

14.124 Fact (sparse signed-digit representation)
(i) Every integer e has a unique sparse signed-digit representation.
(ii) A sparse signed-digitrepresentation for e has the smallest number of 10N-zero entries
among all signed-digit representations for e.
(iii) The signed-digit representation produced by Algorithm 14.121 is sparse.

14.125 Note (computational efficiency of signed-digit exponent recoding)

(i) Signed-digit exponentrecoding as per Algorithm 14.121 is very efficient, and can be
done by table look-up (using Table 14.20).

(ii) When e is given in a signed-digit representation, computing g° requires both g and
g~ L. If g 1s a fixed base, then g~ can be precomputed. For a variable base g, unless
g~ ! can be computed very quickly, recoding an exponent to signed-digit representa-
tion may not be worthwhile. ‘

14.7.2 String-replacement representation

14.126 Definition Let k& > 1 be a positive integer. A non-negative integer e is said to have a
k-ary string-replacement representation (f;—1fs—2 - - - f1fo)sr(k), denoted SR(k), if e =
Y fi2iand fie {29 -1:0<j<k}for0<i<t-—1.

Facebook's Exhibit No. 1005

0127

MOBILEIRON, INC. - EXHIBIT 1011

Page 150



§14.7 Exponent recoding 629

14.127 Example (non-uniqueness of string-replacement representations) A string-replacement
representation for a non-negative integer is generally not unique. The binary representa-
tion is a 1-ary string-replacement representation. If £ = 3 and e = 987 = (1111011011)5,
then some other string-replacements of e are (303003003) s(3). (1007003003) ¢ R(3), and
(71003003) gr(3)- O

14.128 Algorithm k-ary string-replacement representation

INPUT: e = (e;_1€¢—2 - - - €1€p )2 and positive integer k& > 2.
OUTPUT: € = (fs—1ft—2 - f1fo) srek)-
1. For i from k down to 2 do the following: starting with the most significant digit of
e = (et—1€4—2 - - €1€0)2, replace each consecutive string of i ones with a string of
length ¢ consisting of ¢ — 1 zeros in the high-order string positions.and the integer
2¢ — 1 in the low-order position.

2. Return((fz—1ft—2 - f1.fo)sr(k))-

14.129 Example (k-ary string-replacement) Suppose e = (110111110011101) and & = 3. The
SR(3) representations of e at the end of each of the two iterations of Algorithm 14.128 are
(110007110000701) sy and (030007030000701) g(3)- 0

14.130 Algorithm Exponentiation using an SE(k) representation

INPUT: an integer k > 2, an element g € G, and € = (fi—1fi—2" - f1f0) sr()-
OUTPUT: g¢.
1. Precomputation. Set g14—g. For i from 2 to k do: go: _1¢(g2i-1-1)% - g.
2. A«1.
3. For i from (¢ — 1) down to 0 do the following:
3.1 AA- A
3.2 If fi # Othen A—A - gy,.

4. Return(A).

14.131 Example (SR(k) vs. left-to-right binary exponentiation) Let e = 987 = (1111011011)5
and consider the 3-ary string-replacement representation (0071003003) sp(3). Computing
g° using Algorithm 14.79 requires 9 squarings and 7 multiplications. Algorithm 14.130
requires 2 squarings and 2 multiplications for computing g% and g7, and then 7 squarings
and 3 multiplications for the main part of the algorithm. In total, the SR(3) for e computes
g°® with 9 squarings and 5 multiplications.

14.132 Note (computational efficiency of Algorithm 14.130) The precomputation requires k£ — 1
squarings and £ — 1 multiplications. Algorithm 14.128 is not guaranteed to produce an
SR(k) representation with a minimum number of non-zero entries, but in practice it seems
to give representations which are close to minimal. Heuristic arguments indicate that a ran-
domly selected ¢-bit exponent will be encoded with a suitably chosen value of k to an SR(k)
representation having about £ /4 non-zero entries; hence, one expects to perform ¢ — 1 squar-
ings in step 3, and about ¢/4 multiplications.
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14.8 Notes and further references

§14.1

§14.2

This chapter deals almost exclusively with methods to perform operations in the integers
and the integers modulo some positive integer. When p is a prime number, Zj, is called a
finite field (Fact 2.184). There are other finite fields which have significance in cryptogra-
phy. Of particular importance are those of characteristic two, Fom. Perhaps the most useful
property of these structures is that squaring is a linear operator (i.e., if o, 3 € [Fam, then
(a + B)% = a? + B?%). This property leads to efficient methods for exponentiation and for
inversion. Characteristic two finite fields have been used extensively in connection with
error-correcting codes; for example, see Berlekamp [118] and Lin and Costello [769]. For
error-correcting codes, m is typically quite small (e.g., 1 < m < 16); for cryptographic
applications, m is usually much larger (e.g., m > 100).

The majority of the algorithms presented in this chapter are best suited to software imple-
mentations. There is a vast literature on methods to perform modular multiplication and
other operations in hardware. The basis for most hardware implementations for modular
multiplication is efficient methods for integer addition. In particular, carry-save adders and
delayed-carry adders are at the heart of the best methods to perform modular multiplica-
tion. The concept of a delayed-carry adder was proposed by Norris and Simmons [933] to
produce a hardware modular multiplier which computes the product of two t-bit operands
modulo a ¢-bit modulus in 2t clock cycles. Brickell [199] improved the idea to produce a
modular multiplier requiring only ¢ + 7 clock cycles. Enhancements of Brickell’s method
were given by Walter [1230]. Kog [699] gives a comprehensive survey of hardware meth-
ods for modular multiplication.

For a treatment of radix representations including mixed-radix representations, see Knuth
[692]. Knuth describes efficient methods for performing radix conversions. Representing
and manipulating negative numbers is an important topic; for an introduction, consult the
book by Koren [706].

The techniques described in §14.2 are commonly referred to as the classical algorithms for
multiple-precision addition, subtraction, multiplication, and division. These algorithms are
the most useful for integers of the size used for cryptographic purposes. For much larger
integers (on the order of thousands of decimal digits), more efficient methods exist. Al-
though not of current practical interest, some of these may become more useful as security
requirements force practitioners to increase parameter sizes. A brief description of one of
these methods follows.

The classical algorithm for multiplication (Algorithm 14.12) takes O(n?) bit operations for
multiplying two n-bit integers. A recursive algorithm due to Karatsuba and Ofman [661]
reduces the complexity of multiplying two n-bit integers to O(n'-58). This divide-and-
conguer method is based on the following simple observation. Suppose that = and y are n-
bitintegers and n = 2t. Thenz = 2%x1 +z¢ and y = 2%y, +yo, where 1, y; are the t high-
order bits of z and y, respectively, and g, yo are the ¢ low-order bits. Furthermore, z -y =
u'222t4—u12t+u0 where ug = Zo Yo, U2 = 1 -y and u; = (:l:o-l-l‘l) . (y() +y1) — Uy —Ug.
It follows that z - y can be computed by performing three multiplications of ¢-bit integers
(as opposed to one multiplication with 2¢-bit integers) along with two additions and two
subtractions. For large values of ¢, the cost of the additions and subtractions is insignifi-
cant relative to the cost of the multiplications. With appropriate modifications, ug, 2; and
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§14.8 Notes and further references 631

(zo + z1) - (Yo + 1) can each be computed similarly. This procedure is continued on the
intermediate values until the size of the integers reaches the word size of the computing de-
vice, and multiplication can be efficiently accomplished. Due to the recursive nature of the
algorithm, a number of intermediate results must be stored which can add significant over-
head, and detract from the algorithm’s efficiency for relatively small integers. Combining
the Karatsuba-Ofman method with classical multiplication may have some practical signif-
icance. For a more detailed treatment of the Karatsuba-Ofman algorithm, see Knuth [692],
Kog [698], and Geddes, Czapor, and Labahn [445]. ‘

Another commonly used method for multiple-precision integer multiplication is the discrete

. Fourier transform (DFT). Although mathematically elegant and asymptotically better than
the classical algorithm, it does not appear to be superior for the size of integers of practical
importance to cryptography. Lipson [770] provides a well-motivated and easily readable
treatment of this method.

The identity given in Note 14.18 was known to Karatsuba and Ofman [661].

§14.3
There is an extensive literature on methods for multiple-precision modular arithmetic. A
detailed treatment of methods for performing modular multiplication can be found in Knuth
[692]. Kog [698] and Bosselaers, Govaerts, and Vandewalle [176] provide comprehensive
but brief descriptions of the classical method for modular multiplication.

Montgomery reduction (Algorithm 14.32) is due to Montgomery [893], and is one of the
most widely used methods in practice for performing modular exponentiation (Algorithm
14.94). Dussé and Kaliski [361] discuss variants of Montgomery’s method. Montgomery
reduction is a generalization of a much older technique due to Hensel (sece Shand and
Vuillemin [1119] and Bosselaers, Govaerts, and Vandewalle [176]). Hensel’s observation
is the following. If m is an odd positive integer less than 2% (k a positive integer) and T is
some integer such that 2% < T' < 22%, then Ry = (T + gom)/2, where go = T mod 2
is an integer and Ry = 727! mod m. More generally, R; = (R;_; + gim)/2, where
¢; = R;_1 mod 2is an integer and R; = N2~*+! mod m. Since T’ < 22, it follows that
Ri_1 < 2m.

Barrett reduction (Algorithm 14.42) is due to Barrett [75]. Bosselaers, Govaerts, and Van-
dewalle [176] provide a clear and concise description of the algorithm along with motiva-
tion and justification for various choices of parameters and steps, and compare three alter-
native methods: classical (§14.3.1), Montgomery reduction (§14.3.2), and Barrett reduction
(§14.3.3). This comparison indicates that there is not a significant difference in performance
between the three méthods, provided the precomputation necessary for Montgomery and
Barrett reduction is ignored. Montgomery exponentiation is shown to be somewhat better
than the other two methods. The conclusions are based on both theoretical analysis and
machine implementation for various sized moduli. Kog, Acar, and Kaliski [700] provide a
more detailed comparison of various Montgomery multiplication algorithms; see also Nac-
cache, M’Raihi, and Raphaeli [915]. Naccache and M’silti [917] provide proofs for the
correctness of Barrett reduction along with a possible optimization.

Mohan and Adiga [890] describe a special case of Algorithm 14.47 where b = 2.

Hong, Oh, and Yoon [561] proposed new methods for modular multiplication and modu-
lar squaring. They report improvements of 50% and 30%, respectively, on execution times
over Montgomery’s method for multiplication and squaring. Their approach to modular
multiplication interleaves multiplication and modular reduction and uses precomputed ta-
bles such that one operand is always single-precision. Squaring uses recursion and pre-
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§14.4

§14.5

computed tables and, unlike Montgomery's method, also integrates the multiplication and
reduction steps.

The binary ged algorithm (Algorithm 14.54) is due to Stein [1170]. An analysis of the al-
gorithm is given by Knuth [692]. Harris [542] proposed an algorithm for computing ged’s
which combines the classical Euclidean algorithm (Algorithm 2.104) and binary operations;
the method is called the binary Euclidean algorithm.

Lehmer’s gcd algorithm (Algorithm 14.57), due to Lehmer [743], determines the ged of two
positive multiple-precision integers using mostly single-precision operations. This has the
advantage of using the hardware divide in the machine and only periodically resorting to
an algorithm such as Algorithm 14.20 for a multiple-precision divide. Knuth [692] gives a
comprehensive description of the algorithm along with motivation of its correctness. Co-
hen [263] provides a similar discussion, but without motivation. Lehmer’s gcd algorithm
is readily adapted to the extended Euclidean algorithm (Algorithm 2.107).

According to Sorenson [1164], the binary gcd algorithm is the most efficient method for
computing the greatest common divisor. Jebelean [633] suggests that Lehmer’s gcd algo-
rithm is more efficient. Sorenson [1164] also describes a k-ary version of the binary gcd
algorithm, and proves a worst-case running time of O(n?/ Ig n) bit operations for comput-
ing the ged of two n-bit integers.

The binary extended ged algorithm was first described by Knuth [692], who attributes it to
Penk. Algorithm 14.61 is due to Bach and Shallit [70], who also give a comprehensive and
clear analysis of several gcd and extended ged algorithms. Norton [934] described a version
of the binary extended ged algorithm which is somewhat more complicated than Algorithm
14.61. Gordon [516] proposed a method for computing modular inverses, derived from the
classical extended Euclidean algorithm (Algorithm 2.107) with multiple-precision division
replaced by an approximation to the quotient by an appropriate power of 2; no analysis of
the expected running time is given, but observed results on moduli of specific sizes are de-
scribed.

The Montgomery inverse of a mod m is defined to be a~12¢ mod m where t is the bitlength
of m. Kaliski [653] extended ideas of Guyot [534] on the right-shift binary extended Eu-
clidean algorithm, and presented an algorithm for computing the Montgomery inverse.

Let ms, 1 < 7 < t, be a set of pairwise relatively prime positive integers which define a
residue number system (RNS). If n = H:=1 m; then this RNS provides an effective method
for computing the product of integers modulo n where the integers and the product are rep-
resented in the RNS. If n is a positive integer where the m; do not necessarily divide n,
then a method for performing arithmetic modulo n entirely within the RNS is not obvious.
Couveignes [284] and Montgomery and Silverman [895] propose an interesting method for
accomplishing this. Further research in the area is required to determine if this approach is
competitive with or better than the modular multiplication methods described in §14.3.

Algorithm 14.71 is due to Garner [443]. A detailed discussion of this algorithm and vari-
ants of it are given by Knuth [692]; see also Cohen [263]. Algorithm 2.121 for applying
the Chinese remainder theorem is due to Gauss; see Bach and Shallit [70]. Gauss’s algo-
rithm is a special case of the following result due to Nagasaka, Shiue, and Ho [918]. The
solution to the system of linear congruences z = a; (mod m;), 1 < i < t, for pair-

wise relative prime moduli m;, is equivalent to the solution to the single linear congru-
ence (35, M)z = i aibiM; (mod M) where M = [[i_, mi, M; = M/m;
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§14.8 Notes and further references 633

for 1 < i < t, for any choice of integers b; where ged (b;, M;) = 1. Notice that if
St biM; =1 (mod M), thenb; = M;' (mod m;), giving the special case discussed
in Algorithm 2.121. Quisquater and Couvreur [1016} were the first to apply the Chinese
remainder theorem to RSA decryption and signature generation.

§14.6 ,
Knuth [692] and Bach and Shallit [70] describe the right-to-left binary exponentiation meth-
od (Algorithm 14.76). Cohen [263] provides a more comprehensive treatment of the right-
to-left and left-to-right (Algorithm 14.79) binary methods along with their generalizations
to the k-ary method. Kog [698] discusses these algorithms in the context of the RSA public-
key cryptosystem. Algorithm 14.92 is the basis for Blakley’s modular multiplication algo-
rithm (see Blakley [149] and Kog {698]). The generalization of Blakley’s method to process
more than one bit per iteration (Note 14.93(iii)) is due to Quisquater and Couvreur [1016].
Quisquater and Couvreur describe an algorithm for modular exponentiation which makes
. use of the generalization and precomputed tables to accelerate multiplication in Z,.

For a comprehensive and detailed discussion of addition chains, see Knuth [692], where
various methods for constructing addition chains (such as the power tree and factor meth-
ods) are described. Computing the shortest addition chain for a positive integer was shown
to be an NP-hard problem by Downey, Leong, and Sethi [360]. The lower bound on the
length of a shortest addition chain (Fact 14.102) was proven by Schonhage [1101].

An addition sequence for positive integers a1 < az < --- < aj is an addition chain for
ax in which a1, ag, ... ,a5_1 appear. Yao [1257] proved that there exists an addition se-
quence fora; < as < -+ < ay of length less than lgay + ck - Igar/lglg(ar + 2)
for some constant ¢. Olivos [955] established a 1-1 correspondence between addition se-
quences of length [ for a; < az < - -+ < aj, and vector-addition chains of length I +k — 1
where vj4 (-1 = (@1,0s2, ... ,ax). These results are the basis for the inequality given in
Fact 14.107. Bos and Coster [173] described a heuristic method for computing vector-
addition chains. The special case of Algorithm 14.104 (Algorithm 14.88) is attributed by
ElGamal [368] to Shamir.

The fixed-base windowing method (Algorithm 14.109) for exponentiation is due to Brick-
ell et al. [204], who describe a number of variants of the basic algorithm. For b a positive
integer, let S be a set of integers with the property that any integer can be expressed in base
b using only coefficients from S. S is called a basic digit set for the base b. Brickell et al.
show how basic digit sets can be used to reduce the amount of work in Algorithm 14.109
without large increases in storage requirements. De Rooij [316] proposed the fixed-base
Euclidean method (Algorithm 14.113) for exponentiation; compares this algorithm to Algo-
rithm 14.109; and provides a table of values for numbers of practical importance. The fixed-
base comb method (Algorithm 14.117) for exponentiation is due to Lim and Lee [767]. For
a given exponent size, they discuss various possibilities for the choice of parameters h and
v, along with a comparison of their method to fixed-base windowing.

§14.7
The signed-digit exponent recoding algorithm (Algorithm 14.121) is due to Reitwiesner
[1031]. A simpler description of the algorithm was given by Hwang [566]. Booth [171]
described another algorithm for producing a signed-digit representation, but not necessar-
ily one with the minimum possible non-zero components. It was originally given in terms of
the additive group of integers where exponentiation is referred to as multiplication. In this
case, —g is easily computed from g. The additive abelian group formed from the points on
an elliptic curve over a finite field is another example where signed-digit representation is
very useful (see Morain and Olivos [904]). Zhang [1267] described a modified signed-digit
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representation which requires on average ¢/3 multiplications for a square-and-multiply al-
gorithm for ¢-bit exponents. A slightly more general version of Algorithm 14.121, given by
Jedwab and Mitchell [634], does not require as input a binary representation of the exponent
e but simply a signed-digit representation. For binary inputs, the algorithms of Reitwiesner
and Jedwab-Mitchell are the same. Fact 14.124 is due to Jedwab and Mitchell [634].

String-replacement representations were introduced by Gollmann, Han, and Mitchell [497],

. who describe Algorithms 14.128 and 14.130. They also provide an analysis of the expected

number of non-zero entries in an SR(k) representation for a randomly selected ¢-bit expo-
nent (see Note 14.132), as well as a complexity analysis of Algorithm 14.130 for various
values of ¢ and k. Lam and Hui [735] proposed an alternate string-replacement algorithm.
The idea is to precompute all odd powers g, g3, ¢%,. .. , 2"~ for some fixed positive in-
teger k. Given a ¢-bit exponent e, start at the most significant bit, and look for the longest
bitstring of bitlength at most k whose last digit is a 1 (i.e., this substring represents an odd
positive integer between 1 and 2% — 1). Applying a left-to-right square-and-multiply expo-
nentiation algorithm based on this scanning process results in an algorithm which requires,
atmost, [¢/k] multiplications. Lam and Hui proved that as ¢ increases, the average number
of multiplications approaches [t/(k + 1)].
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