
~ 1

t ~ ~ O

h [µ 3J ':

:~' ~ ~i rỳ ` t~ ' S
{

l f ?.i~ .i ?'i _.

~alfi~ed . ~ Ie~leze
Paul ~1 ~~a~10or~~cllot

Scott ~a, ~ anstorle
Facebook's Exhibit No. 1005

0001

MOBILEIRON, INC. - EXHIBIT 1011
Page 001

Computer Sciences
Applied Mathematics
Engio~eering

H.1\DBOOI~ o~~

Gr~~pto~raph~: in particular public-kc~- cr~~pto~raplry, has eme~~~ed in tl~e
last 20 ~e~u~s as an iml~or~~ant d~isciplia~e that is not onl~~ the subject of an
ruorn~o~~s ~unount of research. but pro~~ides the i'oundation for information
secu~~iri~ in mama a~~plicatioils. Sta►~~dards are emel,~ia~~ to meet thi° demands
Eor crypto raphic prot~cction in most areas of data communications. Public-
ke~~ cr~-ptograpliir tecl»~iqu~~•~ arr no~~~~ in ~~~idespr~ad usr in industry:
c~peciall~~ in the financial ser~~ices indu~u~~~. in the public sector. and b~
indi~~id~~al~s fir their per~o»al ~»-i~~ac}~. .;~~ch a~ iii electronic nail. 'I~his
H~uidbook ~~~~ill ser~~c ;~~ a ~~alusll>l~~ r~~fe~•ci~ce for tl~e no~~i~e as ~~~c11 as for
the expert ~~~ho nec~ls a «~idi•r scope of co~~erage within the area o(~
crypt~ograph~~. It is a necess~u~~ and timc~l~ wide for prolessio~ials ~~~~ho
practice the art of~ crvptoyraph~.

Tl~e Handbook of Applied Cryptography pr~~~ides a treatment that
iti multifunctional:
• It ser~-e~ as an introduction to tl~~: more practical aspects of

both com~eutional and public-ke~~ cry-l~to;rapli}
• l~ i~ a ~~aluable source of the latest tc~cha~iyues and algorithms

COI' l~ll' ~C170L15 (]T~lCl1U011('1'

• It prop°ides an integrated treatment of the field, ~~~hile still
prrs~~ntin each majo~~ topic as a .~clf-contained ~~nit

• It pro~~ides a mathen~~atic~l u~ratinent to accompan~~
practical discussions

• It contains ~ nou~h ah~,u~~iction to be a ~~a~luable relerencc for
th~~oreticiv~s ~~~hilc ro~~<<~iuing enou~l~ det~iil to aceu~tll~~ allo~~
implcmeiitation of the al ~~ri~hms dis~~u.~~ed

This is th~~ deliniti~~e c~~pt~~,raph~~ rcicrcncc that no~iee as ~~~f~ll as r:~perienced
~I~~~~~°toper,. cl~~~i~ n~~r._ rc,~•a~nc~rs. cn~~inrc~rs. ro~l~put~°r sci~•nti,t,. and
~~Iathrmatici~uls alike sill find indispens~il~lc~.

Facebook's Exhibit No. 1005
0002

MOBILEIRON, INC. - EXHIBIT 1011
Page 002

Facebook's Exhibit No. 1005
0003

MOBILEIRON, INC. - EXHIBIT 1011
Page 003

HANDBOOK of

. .{ ~,
~ S:.r

a

~~~.,
'P,, ' ''+. y..

~.r.~

Facebook's Exhibit No. 1005 
0004

MOBILEIRON, INC. - EXHIBIT 1011 
Page 004



The CRC Press Series on

1

Series Editor

Kenneth H. Rosen, Ph.D.
AT&T Bell Laboratories

Charles J. Colbourn and Jeffery H. Dinitz, The CRC
Handbook of Combinatorial Designs

Steven Furino, Ying Miao, and Jianxing Yin,
Frames and Resolvable Designs:
Uses, Constructions, and Existence

Daryl D. Harms, Miroslav Kraetzl, Charles J. Colbourn,
and Stanley J. Devitt, Network Reliability:
Experiments with A Symbolic Algebra Environment

Richard A. Mollie, Quadratics

Douglas R. Stinson, Cryptography: Theory and Practice

Facebook's Exhibit No. 1005 
0005

MOBILEIRON, INC. - EXHIBIT 1011 
Page 005



H~ND~OOK of

A1fredJ. Menezes
Paul C, van Oorschot

ScottA. Vanstone

~,C

CRC Press
Boca K~ton New York London Tokyo

Facebook's Exhibit No. 1005 
0006

MOBILEIRON, INC. - EXHIBIT 1011 
Page 006



~~~ 6. ~
~aJ ~~~ 3
~ ~q~
~ ~~

NOV 1 9 1996

RIGHT ~F~~ s

Library of Congress Catalogin~•in-Publication Data

Menezes, A. J. (Alfred J.), 1965—
Handbook of applied cryptography /Alfred Menezes, Paul van Oorschot,

Scott Vanstone.
p, cm. -- (CRC Press series on discrete mathematics and its

applications)
Includes bibliographical references and index.
ISBN 0-8493-8523-7 (alk. paper)
1. Computers--Access control--Handbooks, manuals, etc.

2. Cryptography--Handbooks, manuals, etc. I. Van Oorschot, Paul C.
II. Vanstone, Scott A. III. Title. IV. Series: Discrete
mathematics and its applications.
QA76.9.A25M463 1996
005.8'2--dc20 96-27609

CIP

This book contains informarion obtained from authentic and highly regarded sources. Reprinted material is quoted withpernussion, and sources aze indicated. A wide variety of references are listed. Reasonable efforts have been made to publishreliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materialsor for the consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,including photocopying, microfilming, and recording, or by any information storage or retrieval system, without priorpernussion in writing from the publisher.
The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works,or for resale. Specific permission must be obtained in writing from CRC Press for such copying.
Direct all inquiries to CRC Press, Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

D 1997 by CRC Press, Inc.

No claim to original U.S. Government works
dnternational Standard Book Number 0-8493-8523-7
Library of Congress Card Number 96-27609
Prineed in the [Jnited States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

Facebook's Exhibit No. 1005
0007

MOBILEIRON, INC. - EXHIBIT 1011
Page 007

To Archie and Lida Menezes

To Cornelis Henricus van Oorschot
and Maria Anna Buys van Vugt

To Margret and Gordon Vanstone

Facebook's Exhibit No. 1005
0008

MOBILEIRON, INC. - EXHIBIT 1011
Page 008

Contents in Brief

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
A

Table of Contentsv
List of Tablesxv
List of Figures ... xix
Forewordxxi
Preface xxiii
Overview of Cryptography:..1
Mathematical Background 49
Number-Theoretic Reference Problems 87
Public-Key Parameters133
Pseudorandom Bits and Sequences 169
Stream Ciphers191
Block Ciphers223
Public-Key Encryption283
Hash Functions and Data Integrity321
Identification and Entity Authentication385
Digital Signatures425
Key Establishment Protocols489
Key Management Techniques:..543
EfficientImplementadon 591
Patents and Standards635
Bibliography of Papers from Selected Cryptographic Forums663
References703
Index755

iv

Facebook's Exhibit No. 1005
0009

MOBILEIRON, INC. - EXHIBIT 1011
Page 009

Tale of Contents

List of Tables xv
i, List of Figures xix

Foreword by R.L. Rivest xxi
Preface xxiii

1 Overview of Cryptography 1
1.1 Introduction 1
1.2 Information security and cryptography 2
1.3 Background on functions 6

1.3.1 Functions (1-1, one-way, trapdoor one-way) 6
1.3.2 Permutations . 10
1.3.3 Involutions . 10

1.4 Basic terminology and concepts . 11
1.5 Symmetric-key encryption 15

1.5.1 Overview of block ciphers and stream ciphers 15
1.5.2 Substitution ciphers and transposition ciphers 17
1.5.3 Composition of ciphers 19
1.5.4 Stream ciphers 20
1.5.5 The key space 21

1.6 Digital signatures '. 22
1.7 Authentication and identification 24

1..7.1 Identification . 24
1.72 Data origin authentication 25

1.8 Public-key cryptography 25
1.8.1 Public-key encryption . ~. 25
1.8.2 The necessity of authentication in public-key systems 27
1.8.3 Digital signatures from reversible public-key encryption . 28
1.8.4 Symmetric-key vs. public-key cryptography . 31

1.9 Hash functions 33
1.10 Protocols and mechanisms . 33
1.11 Key establishment, management, and certification . 35

1.11.1 Key management through symmetric-key techniques 36
1.11.2 Key management through public-key techniques . 37
1.11.3 Trusted third parties and public-key certificates 39

1.12 Pseudorandom numbers and sequences 39
1.13 Classes of attacks and security models 41

1.13.1 Attacks on encryption schemes 41
1.13.2 Attacks on protocols 42
1.13.3 Models for evaluating security 42
1.13.4 Perspective for computational security . 44

1.14 Notes and further references 45

v

Facebook's Exhibit No. 1005
0010

MOBILEIRON, INC. - EXHIBIT 1011
Page 010

VI Table of Contents

2 Mathematical Background 49
2.1 Probability theory 50

2.1.1 Basic definitions 50
2.1.2 Conditional probability 51
2.13 Random variables 51
2.1.4 Binomial distribution 52
2.1.5 Birthday attacks 53
2.1.6 Random mappings 54

2.2 Information theory 56
2.2.1 Entropy 56
2.2.2 Mutual information 57

2.3 Complexity theory . 57
2.3.1 Basic definitions 57
2.3.2 Asymptotic notation 58
2.3.3 Complexity classes . 59
2.3.4 Randomized algorithms 62

2.4 Number theory 63
2.4.1 The integers 63
2.4.2 Algorithms iq 7G 66
2.4.3 The integers modulo n . 67
2.4.4 Algorithms in 7Ln 71
2.4.5 The Legendre and Jacobi symbols 72
2.4.6 Blum integers 74

2.5 Abstract algebra . 75
2.5.1 Groups . 75
2.5.2 Rings 76
2.5.3 Fields .. . 77
2.5.4 Polynomial rings . 78
2.5.5 Vector spaces 79

2.6 Finite fields 80
2.6.1 Basic properties 80
2.6.2 The Euclidean algorithm for polynomials 81
2.6.3 Arithmetic of polynomials .. . 83

2.7 Notes and further references . 85

3 Number-Theoretic Reference Problems 87
3.1 Introduction and overview . 87
3.2 The integer factorization problem 89

3.2.1 Trial division . 90
3.2.2 Pollard's rho factoring algorithm . 91
3.2.3 Pollard's P — 1 factoring algorithm 92
3.2.4 Elliptic curve factoring . 94
3.2.5 Random square factoring methods 94
3.2.6 Quadratic sieve factoring . 95
3.2.7 Number field sieve factoring . 98

3.3 The RSA problem . 98
3.4 The quadratic residuosity problem . 99
3.5 Computing square roots in 7Gn . 99

3.5.1 Case (i): ~ prime . . 100
3.5.2 Case (ii): n composite . 101

Facebook's Exhibit No. 1005
0011

MOBILEIRON, INC. - EXHIBIT 1011
Page 011

Table of Contents VU

3.6 The discrete logarithm problem . 103
3.6.1 Exhaustive search . 104
3.6.2 Baby-step giant-step algorithm . . 104
3.6.3 Pollard's rho algorithm for logarithms . . 106
3.6.4 Pohlig-Hellman algorithm 107
3.6.5 Index-calculus algorithm . . 109
3.6.6 Discrete logarithm problem in subgroups of 7L~ . 113

3.7 The Diffie-Hellman problem . . 113
~ 3.8 Composite moduli . . . 114

3.9 Computing individual bits . 114
3.9.1 The discrete logarithm problem in 7GP —individual bits 116
3.9.2 The RSA problem —individual bits . . . 116

~ 3.9.3 The Rabin problem —individual bits . . 117
3.10 The subset sum problem . . . 117

3.10.1 The L3-lattice basis reduction algorithm . 118
3.10.2 Solving subset sum problems of low density . . 120
3.10.3 Simultaneous diophantine approximation 121

3.11 Factoring polynomials over finite fields . 122
3.11.1 Square-free factorization . . 123
3.11.2 Berlekamp's Q-matrix algorithm . . 124

3.12 Notes and further references . . 125

4 Public-Key Parameters 133
4.1 Introduction . 133

4.1.1 Generating large prime numbers naively . . 134
4.1.2 Distribution of prime numbers . . 134

4.2 Probabilistic primality tests . . 135
4.2.1 Fermat's test . . 136
4.2.2 Solovay-Strassen test . 137
42.3 Miller-Rabin test . . . 138
4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin 140

4.3 (True) Primality tests . . 142
4.3.1 Testing Mersenne numbers . . 142
4.3.2 Primality testing using the factorization of n — 1 . . 143
4.3.3 Jacobi sum test : . . 144
4.3.4 Tests using elliptic curves . . 145

4.4 Prime number generation . : 145
4.4.1 Random search for probable primes .. . 145
4.4.2 Strong primes . 149
4.4.3 NIST method for generating DSA primes . . 150
4.4.4 Constructive techniques for provable primes . 152-

4.5 Irreducible polynomials over 7L~, . . 154
4.5.1 Irreducible polynomials . 154
4.5.2 Irreducible trinomials . 157
4.5.3 Primitive polynomials . 157

4.6 Generators and elements of high order . 160
4.6.1 Selecting a prime p and generator of 7LP . 164

4.7 Notes and further references . . 165

Facebook's Exhibit No. 1005
0012

MOBILEIRON, INC. - EXHIBIT 1011
Page 012

viii Table of Contents

5 Pseudorandom Bits and Sequences • 169
5.1 Introduction 169

5.1.1 Background and Classification . . 170
5.2 Random bit generation . 171
5.3 Pseudorandom bit generation . 173

5.3.1 ANSI X9.17 generator . 173
5.3.2 FIPS 186 generator . . 174

5.4 Statistical tests . . ~. 175
5.4.1 The normal and chi-square distributions . 176
5.4.2 Hypothesis testing . 179
5.4.3 Golomb's randomness postulates . . 180
5.4.4 Five basic tests . 181
5.4.5 Maurer's universal statistical test . 183

5.5 Cryptographically secure pseudorandom bit generation . 185
5.5.1 RSA pseudorandom bit generator . 185
5.5.2 Blum-Blum-Shub pseudorandom bit generator . . 186

5.6 Notes and further references . . 187

6 Stream Ciphers 191
6.1 Introduction 191

6.1.1 Classification . 192
6.2 Feedback shift registers . 195

6.2.1 Linear feedback shift registers . 195
6.2.2 Linear complexity . 198
6.2.3 Berlekamp-Massey algorithm . 200
62.4 Nonlinear feedback shift registers . 202

6.3 Stream ciphers based on LFSRs .203
6.3.1 Nonlinear combination generators .205
6.3.2 Nonlinear filter generators . 208
6.3.3 Clock-controlled generators . 209 .

6.4 Other stream ciphers . .212
6.4.1 SEAL .213

6.5 Notes and further references . .216

7 Block Ciphers 223
7.1 Introduction and overview . .223
7.2 Background and general concepts .224

7.2.1 Introduction to block ciphers . . 224
7.2.2 Modes of operation . 228
7.2.3 Exhaustive key search and multiple encryption .233

7.3 ~ Classical ciphers and historical development .237
7.3.1 Transposition ciphers (background) _ 238
7.3.2 Substitution ciphers (background) .238
7.3.3 Polyalphabetic substitutions and Vigen~re ciphers (historical) . 241
7.3.4 Polyalphabetic cipher machines and rotors (historical) . .242
7.3.5 Cryptanalysis of classical ciphers (historical) .245

7.4 DES . 250
7.4.1 Product ciphers and Feistel ciphers . . 250
7.4.2 DES algorithm . . 252
7.4.3 DES properties and strength . 256

Facebook's Exhibit No. 1005
0013

MOBILEIRON, INC. - EXHIBIT 1011
Page 013

Table of Contents ix

7.5 FEAL . 259
7.6 IDEA . 263
7.7 SAFER; RCS, and other block ciphers . . 266

7.7.1 SAFER . . 266
7.7.2 RCS . 269
7.7.3 Other block ciphers . 270

7.8 Notes and further references . . 271

~ 8 Public-Key Encryption 283
8.1 Introduction . 283

8.1.1 Basic principles . 284
8.2 RSA public-key encryption . 285

8.2.1 Description . . 286~
8.2.2 Security of RSA . 287
8.23 RSA encryption in practice ..290

8.3 Rabin public-key encryption . . 292
8.4 ElGamal public-key encryption . 294

8.4.1 Basic ElGamal encryption . 294
8.4.2 Generalized E1Gama1 encryption . . 297

8.5 McEliece public-key encryption . . 298
8.6 Knapsack public-key encryption . . 300

8.6.1 Merkle-Hellman knapsack encryption . 300
8.6.2 Chor-Rivest knapsack encryption . 302

8.7 Probabilistic public-key encryption . 306
8.7.1 Goldwasser-Micali probabilistic encryption . 307
8.7.2 Blum-Goldwasser probabilistic encryption . . 308
8.73 Plaintext-aware encryption . . 311

8.8 Notes and further references . . 312

9 Hash Functions and Data Integrity 321
9.1 Introduction . 321
9.2 Classification and framework . ~ . . 322

9.2.1 General classification . 322
9.2.2 Basic properties and definitions . 323
9.2.3 Hash properties required for specific applications . "327
9.2.4 One-way functions and compression functions . . . 327
9.2.5 Relationships between properties . 329
9.2.6 Other hash function properties and applications . 330

9.3 Basic constructions and general results . 332
9.3.1 General model for iterated hash functions . 332
9.3.2 General constructions and extensions . 333
9.3,3 Formatting and initialization details . 334
9.3.4 Security objectives and basic attacks . . 335
9.3.5 Bitsizes required for practical security . 337

9.4 Unkeyed hash functions (MDCs) . 338
9.4.1 Hash functions based on block ciphers . . 338
9.4.2 Customized hash functions based on NID4 . . 343
9.4.3 Hash functions based on modular arithmetic . . 351

9.5 Keyed hash functions (MACs) . 352
9.5.1 MACs based on block ciphers . 353

Facebook's Exhibit No. 1005
0014

MOBILEIRON, INC. - EXHIBIT 1011
Page 014

x Table of Contents

9.5.2 Constructing MACs from MDCs . . 354
9.5.3 Customized MACs . . 356
9.5.4 MACS for stream ciphers . 358

9.6 Data integrity and message authentication . . 359
9.6.1 Background and definitions . 359
9.6.2 Non-malicious vs. malicious threats to data integrity . . 362
9.6.3 Data integrity using a MAC alone . 364
9.6.4 Data integrity using an MDC and an authentic channel 364
9.6.5 Data integrity combined with encryption . . 364 +

9.7 Advanced attacks on hash functions . . 368
9.7.1 Birthday attacks . 369
9.7.2 Pseudo-collisions and compression function attacks . 371
9.7.3 Chaining attacks . 373
9.7.4 Attacks based on properties of underlying cipher . 375

9.8 Notes and further references . . 376

10 Identification and Entity Authentication 385
10.1 Introduction . 385

10.1.1 Identification objectives and applications . 386
10.12 Properties of identification protocols . . 387

10.2 Passwords (weak authentication) . 388
10.2.1 Fixed password schemes: techniques . 389
10.2.2 Fixed password schemes: attacks . 391 ~
10.2.3 Case study - iJIVIX passwords 393
10.2.4 PINs and passkeys . 394
10.2.5 One-time passwords (towards strong authentication) . . 395

10.3 Challenge-response identification (strong authentication) . 397 '.
10.3.1 Background on time-variant parameters . 397
10.3.2 Challenge-response by symmetric-key techniques . 400 h
10.3.3 Challenge-response by public-key techniques .403

10.4 Customized and'zero-knowledge identification protocols .405
10.4.1 Overview of zero-knowledge concepts : .405
10.4.2. Feige-Fiat-Shamir identification protocol .410
10.4.3 GQ identification protocol . 412
10.4.4 Schnorr identification protocol . . 414
10.4.5 Comparison: Fiat-Shamir, GQ, and Schnorr '. . 416

10.5 Attacks on identification protocols . 417'
10.6 Notes and further references . . 420

11 Digital Signatures 425
11.1 Introduction .425
11.2 A framework for digital signature mechanisms .426

11.2.1 Basic definitions .426
11.2.2 Digital signature schemes with appendix . .428
11.2.3 Digital signature schemes with message recovery . 430
11.2.4 Types of attacks on signature schemes . 432

11.3 RSA and related signature schemes .433
1.1.3.1 The RSA signature scheme .433
11.3.2 Possible attacks on RSA signatures .434
11.3.3 RSA signatures in practice . .435

Facebook's Exhibit No. 1005
0015

MOBILEIRON, INC. - EXHIBIT 1011
Page 015

Table of Contents XI

11.3.4 The Rabin public-key signature scheme .438
11.3.5 ISO/IEC 9796 formatting . 442
11.3.6 PKCS #1 formatting . 445

i 11.4 Fiat-Shamir signature schemes . 447
11.4.1 Feige-Fiat-Shamir signature scheme . 447
11.4.2 GQ signature scheme . 450

11.5 The DSA and related signature schemes . .451
11.5.1 The Digital Signature Algorithm (DSA) . 452

' 11.5.2 The ElGamal signature scheme .454
11.5.3 The Schnorr signature scheme . 459
11.5.4 The E1Gama1 signature scheme with message recovery . 460

11.6 One-time digital signatures . 462
11.6.1 The Rabin one-time signature scheme . 462
11.6.2 The Merkle one-time signature scheme . 464
11.6.3 Authentication trees and one-time signatures . . 466
11.6.4 The GMR one-time signature scheme . 468

11.7 Other signature schemes . . 471
11.7.1 Arbitrated digital signatures . 472
11.7.2 ESIGN . . . 473

11.8 Signatures with additional functionality . 474
11.8.1 Blind signature schemes . 475
11.8.2 Undeniable signature schemes . .476
11.8.3 Fail-stop signature schemes .478 .

11.9 Notes and further references . .481

12 Key Establishment Protocols 489
12.1 Introduction . 489
12.2 Classification and framework .490

12.2.1 General classification and fundamental concepts . . .490
12.2.2 Objectives and properties '. .493
12.2.3 Assumptions and adversaries in key establishment protocols . . 495

12.3 Key transport based on symmetric encryption . . 497
12.3.1 Symmetric key transport and derivation without a server . 497
12.3.2 Kerberos and related server-based protocols . 500

12.4 Key agreement based on symmetric techniques . 505
12.5 Key transport based on public-key encryption . . 506

12.5.1 Key~transport using PK encryption without signatures . . 507
12.5.2 Protocols combining PK encryption and signatures . 509
12.5.3 Hybrid key transport protocols using PK encryption . . 512

12.6 Key agreement based on asymmetric techniques . 515
12.6.1 Diffie-Hellman and related key agreement protocols . . 515
12.6.2 Implicitly-certified public keys . . 520
12.6.3 Diffie-Hellman protocols using implicitly-certified keys . . 522

12.7 Secret sharing . 524
12.7.1 Simple shared control schemes . . 524
12.7.2 Threshold schemes . . 525
12.7.3 Generalized secret sharing . 526

12.8 Conference keying 528
12.9 Analysis of key establishment protocols . . 530

12.9.1 Attack strategies and classic protocol flaws . 530

Facebook's Exhibit No. 1005
0016

MOBILEIRON, INC. - EXHIBIT 1011
Page 016

xii Table of Contents

12.9.2 Analysis objectives and methods . . 532
12.10 Notes and further references . . 534

13 Key Management Techniques 543
13.1 Introduction . 543 ~

.13.2 Background and basic concepts . 544
1.3.2.1 Classifying keys by algorithm type and intended use . . 544
13.2.2 Key management objectives, threats, and policy . 545
13.2.3 Simple key establishment models . . . 546
13.2.4 Roles of third parties . . 547
13.2.5 Tradeoffs among key establishment protocols . 550

13.3 Techniques for distributing confidential keys . 551
13.3.1 Key layering and cryptoperiods . 551
13.3.2 Key translation centers and symmetric-key certificates . . 553

13.4 Techniques for distributing public keys . 555
13.4.1 Authentication trees . 556
13.4.2 Public-key certificates . 559
13.4.3 Identity-based systems . . 561
13.4.4 Implicitly-certified public keys . . 562
13.4.5 Comparison of techniques for distributing public keys . . 563

13.5 Techniques for controlling key usage . 567
13.5.1 Key separation and constraints on key usage . . 567
13.5.2 Techniques for controlling use of symmetric keys . 568

13.6 Key management involving multiple domains . . 570
13.6.1 Trust between two domains . 570
13.6.2 Trust models involving multiple certification authorities . . 572
13.6.3 Certificate distribution and revocation . 576

13.7 Key life cycle issues . . 577
13.7.1 Lifetime protection requirements . . 578 `,.
13.7.2 Key management life cycle . 578 ''

13.8 Advanced trusted third party services . 581 ~;
13.8.1 Trusted timestamping service . 581 ~` ~
13.8.2 Non-repudiation and notarization of digital signatures . 582
13.8.3 Key escrow . 584

13.9 Notes and further references 586

14 Efficient Implementation 591
14.1 Introduction . 591
14:2 Multiple-precision integer arithmetic . 592

142.1 Radix representation . . 592
14.2.2 Addition and subtraction . . 594
14.2.3 Multiplication . 595
14.2.4 Squaring . 596
14.2.5 Division . 598

14.3 Multiple-precision modular arithmetic . . 599
14.3.1 Classical modular multiplication . . 600
14.3.2 Montgomery reduction . . 600
14.3.3 Barrett reduction . . 603
14.3.4 Reduction methods for moduli of special form . . 605

14.4 Greatest common divisor algorithms . 606 }

Facebook's Exhibit No. 1005
0017

MOBILEIRON, INC. - EXHIBIT 1011
Page 017

Table of Contents Xlll

14.4.1 Binary gcd algorithm . . 606
14.4.2 Lehmer's gcd algorithm . 607
14.4.3 Binary extended gcd algorithm . . 608

14.5 Chinese remainder theorem for integers . 610
14.5.1 Residue number systems . . 611
14.5.2 Garner's algorithm . .612

14.6 Exponentiation .613
14.6.1 Techniques for general exponentiation . . 614
14.6.2 Fixed-exponent exponentiation algorithms . . 620
14.6.3 Fixed-base exponentiation algorithms . 623

14.7 Exponent recoding . 627
14.7.1 Signed-digit representation . . 627
14.7.2 String-replacement representation . 628

14.8 Notes and further references . . .630

15 Patents and Standards 635
15.1 Introduction . . 635
15.2 Patents on cryptographic techniques . . 635

152.1 Five fundamental patents . . 636
15.2.2 Ten prominent patents . 638
15.2.3 Ten selected patents . 641
15.2.4.Orderingand acquiring patents . . 645

15.3 Cryptographic standards645
15.3.1 International standards -cryptographic techniques . . 645
15.3.2 Banking security standards (ANSI, ISO) . . 648
15.3.3 International security architectures and frameworks . 653
15.3.4 U.S. government standards (FIPS) . 654
15.3.5 Internet standards and RFCs . 655
15.3.6 De facto standards . 656
15.3.7 Ordering and acquiring standards . 656

15.4 Notes and further references . . 657

A Bibliography of Papers from Selected Cryptographic Forums 663
A.1 AsiacrypdAuscrypt Proceedings . . 663
A.2 Crypto Proceedings . 667
A3 Eurocrypt Proceedings . 684
A.4 Fast Software-Encryption Proceedings . 698
A.5 Journal of Cryptology papers . 700

References 703
Index 755

Facebook's Exhibit No. 1005
0018

MOBILEIRON, INC. - EXHIBIT 1011
Page 018

List of Tables

1.1 Some information security objectives 3
1.2 Reference numbers comparing relative magnitudes . 44
1.3 Prefixes used for various powers of 10 45

2.1 Bit complexity of basic operations in 7L . 66
2.2 Extended Euclidean algorithm (example) . 67
2.3 Orders of elements in 7621 69
2.4 Computation of 55ss mod 1234 . ". 72
2.5 Bit complexity of basic operations in 7Gn 72
2.6 Jacobi symbols of elements in 7L21 74
2.7 The subgroups of 7G19 76
2.8 Complexity of basic operations in]F'p~. 84
2.9 The powers of x modulo f (x) = x4 -I- x + 1 . 86

3.1 Some computational problems of cryptographic relevance 88
3.2 Pollard's rho algorithm (example) . 107
3.3 Running time estimates for numbers factored with QS . 127

4.1 Smallest strong pseudoprimes . 140
4.2 Known Mersenne primes . . 143
4.3 Upper bounds on plot for sample values of k and t 147
4.4 Number of Miller-Rabin iterations required so that p~,t < (2)$0 148
4.5 Upper bounds on the error probability of incremental search . 149
4.6 Irreducible trinomials of degree ~n over 7G2, 1 < m < 722 . 158
4.7 Irreducible trinomials of degree ~ over 7G2, 723 < rrL < 1478 . . 159
4.8 Primitive polynomials over 7L2 . . . 161
4.9 Primitive polynomials of degree 7n ouer 7G2, 2""' - 1 a Mersenne prime . 162

5.1 Selected percentiles of the standard normal distribution . 177
5.2 Selected percentiles of the x2 (chi-square} distribution . . 178
5.3 Mean and variance of Xu for Maurer's universal statistical test . 184

6.1 Berlekamp-Massey algorithm (example) .202

7.1 Estimated roughness constant rip for various languages . 250
7.2 DES initial permutation and inverse (IP and IP-1) .253
73 DES per-round functions: expansion E and permutation P . 253
7.4 DES key schedule bit selections (PC 1 and PC2) . 256
7.5 DES weak keys . .258
7.6 DES -pairs of semi-weak keys . .258
7.7 DES strength against various attacks . 259
7.8 DES S-boxes . 260
7.9 FEAL functions f, fK . . . 261
7.10 FEAL strength against various attacks . 262
7.11 IDEA decryption subkeys derived from encryption subkeys . 265
7.12 IDEA encryption sample: round subkeys and ciphertext . 265

xv

Facebook's Exhibit No. 1005
0019

MOBILEIRON, INC. - EXHIBIT 1011
Page 019

XVI List of Tables

7.13 IDEA decryption sample: round subkeys and variables . 266
7.14 RCS magic constants . . 270

8.1 Public-key encryption schemes and related computational problems .284

9.1 Resistance properties required for specified data integrity applications . . 327
9.2 Design objectives for n-bit hash functions (t-bit MAC key) . 335
9.3 Upper bounds on strength of selected hash functions . . 339
9.4 Summary of selected hash functions based on n-bit block ciphers . 340
9.5 Summary of selected hash functions based on MD4 . 345
9.6 Test vectors for selected hash functions . 345
9.7 Notation for MD4-family algorithms . . 345
9.8 RIPEMD-160 round function definitions . 349
9.9 RIPEMD-160 word-access orders and rotate counts . 351
9.10 Properties of various types of authentication . 362
9.11 Definition of preimage and collision attacks . 372

10.1 Bitsize of password space for various character combinations . 392
10.2 Time required to search entire password space . 392
10.3 Identification protocol attacks and counter-measures . 418

11.1 Notation for digital signature mechanisms . 427
11.2 Definition of sets and functions for modified-Rabin signatures . 440
11.3 ISO/IEC 9796 notation .442
11.4 PKCS #1 notation .445
11.5 Variations of the E1Gama1 signing equation .457
11.6 The elements of 1F25 as powers of a generator .459
11.7 Notation for the Rabin one-time signature scheme .463
11.8 Parameters and signatures for Merkle's one-time signature scheme .467
11.9 Parameters and signatures for Merkle's one-time signature scheme . 467

12.1 Authentication summary -various terms and related concepts .492
12.2 Key transport protocols based on symmetric encryption .497
12.3 Selected key transport protocols based on public-key encryption . . 507
12.4 Selected key agreement protocols . 516
12.5 Selected MTI key agreement protocols . . 518

13.1 Private, public, symmetric, and secret keys . . 544
13.2 Types of algorithms commonly used to meet specified objectives . 545
13.3 Key protection requirements: symmetric-key vs. public-key systems . . 551

14.1 Signed-magnitude and two's complement representations of integers . 594
14.2 Multiple-precision subtraction (example) . . 595
14.3 Multiple-precision multiplication (example) . 596
14.4 Multiple-precision squaring (example) . 597
14.5 Multiple-precision division (example) . . . 598
14.6 Multiple-precision division after normalization (example) . 599
14.7 Montgomery reduction algorithm (example) . 602
14.8 Montgomery multiplication (example) . 603
14.9 Reduction modulo m = bt - c (example) . 605
14.10 Lehmer's gcd algorithm (example) . . 609
14.11 Single-precision computations in Lehmer's gcd algorithm (example) . 609

Facebook's Exhibit No. 1005
0020

MOBILEIRON, INC. - EXHIBIT 1011
Page 020

List of Tables XVII

14.12 Binary extended gcd algorithm (example) . 610
14.13 Inverse computation using the binary extended gcd algorithm (example) . 611
14.14 Modular representations (example) . . 612
14.15 Sliding-window exponentiation (example) . 617
14.16 Number of squarings and multiplications for exponentiation algorithms . 617
14.17 Single-precision multiplications required by Montgomery exponentiation 620
14..18 Binary vector-addition chain exponentiation (example) . 623
14.19 Fixed-base Euclidean method for exponentiation (example) . 625
14.20 Signed-digit exponent recoding (example) . 628

15.1 Five fundamental U.S.. cryptographic patents . . 636
15.2 Ten prominent U.S. cryptographic patents . 638
15.3 Ten selected U.S. cryptographic patents . 641
15.4 ISO and ISO/IEC standards for generic cryptographic techniques . 646
15.5 Characteristics of retail vs. wholesale banking transactions . . 648
15.6 ANSI encryption and banking security standards . . 649
15.7 ISO banking security standards 652

f 15.8 ISO and ISO/IEC security architectures and frameworks . . 653
15.9 Selected security-related U.S. FIPS Publications . 654
15.10 Selected Internet RFCs . . 655
15.11 PKCS specifications 656

Facebook's Exhibit No. 1005
0021

MOBILEIRON, INC. - EXHIBIT 1011
Page 021

List of Figures

9

1.1 A taxonomy of cryptographic primitives . . . : 5
1.2 A function 7
13 A bijection and its inverse 8
1.4 An involution . 11
1.5 A simple encryption scheme 12
1.6 Two-party communication using encryption . ' . 13
1.7 Two-party encryption with a secure channel for key exchange 16
1.8 Composition of two functions 19
1.9 Composition of two involutions 19
1.10 A signing and verification function for a digital signature scheme 22
1.11 Encryption using public-key techniques 26
1.12 Schematic use ofpublic-key encryption 27
1.13 An impersonation attack on a two-party communication 28
1.14 A digital signature scheme with message recovery 29
1.15 Keying relationships in a simple 6-party network . 36
1.16 Key management using a trusted third party (TTP) . 36
1.17 Key management using public-key techniques 37
1.18 Impersonation by an active adversary 38
1.19 Authentication of public keys by a TTP 38

2.1 A functional graph 55
2.2 Conjectured relationship between some complexity classes 62

4.1 Relationships between Fermat, Euler, and strong liars . 141

S.1 The normal distribution N(0,1) 176
5.2 The x2 (chi-square) distribution with v = 7 degrees of freedom . 177

6.1 General model of a synchronous stream cipher 193
6.2 General model of a binary additive stream cipher . 194
6.3 General model of aself-synchronizing stream cipher . . 194
6.4 A linear feedback shift register (LFSR) , 196
6.5 The LFSR (4,1 ~- D + D4) . . . 197
6.6 Linear complexity profile of a 20-periodic sequence . . . 200
6.7 A feedback shift register (FSR) 202
6.8 A nonlinear combination generator 205
6.9 The Geffe generator . . .206
6.10 The summation generator . . 207
6.11 A nonlinear filter generator208
6.12 The alternating step generator .210
6.13 The shrinking generator . 211

7.1 Common modes of operation for an ~-bit block cipher . .229
7.2 Multiple encryption . 234
7.3 The Jefferson cylinder .243

xix

Facebook's Exhibit No. 1005
0022

MOBILEIRON, INC. - EXHIBIT 1011
Page 022

xx List of Figures

7.4 A rotor-based machine . 244
7.5 Frequency of single characters in English text . 247
7.6 Frequency of 15 common digrams in English text . 248
7.7 Substitution-permutation (SP) network . . 251
7.8 DES input-output . . 252
7.9 DES computation path . 254
7.10 DES inner function f . 255
7.11 IDEA computation path . 263
7.12 SAFER K-64 computation path ., . . 267

8.1 Bellare-Rogaway plaintext-aware encryption scheme . 312

9.1 Simplified classification of cryptographic hash functions . . 324
9.2 General model for an iterated hash function . 332
93 Three single-length, rate-one MDCs based on block ciphers . 340
9.4 Compression function of MDC-2 hash function . 342
9.5 Compression function of MDC-4 hash function . 344
9.6 CBC-based MAC algorithm . 353
9.7 The Message Authenticator Algorithm (MAA) . . 357
9.8 Three methods for providing data integrity using hash functions . 360.

10.1 Use of one-way function for password-checking . 390
10.2 UNIx crypt password mapping . 394
10.3 Functional diagram of ahand-held passcode generator . . 403

11.1 A taxonomy of digital signature schemes . . 428
11.2 Overview of a digital signature scheme with appendix . 429 ~'
11.3 Overview of a digital signature scheme with message recovery . 431 •?
11.4 Signature scheme with appendix from one providing message recovery . 432
11.5 Signature and verification processes for ISO/IEC 9796. . 443
11.6 Signature and verification processes for PKCS #1 . 446
11.7 An authentication tree for the Merkle one-time signature scheme . 467 ~
11.8 A full binary authentication tree of level2 for the GMR scheme .471

12.1 Simplified classification of key establishment techniques . .491
12.2 Summary of Beller-Yacobi protocol (2-pass) . 515

13.1 Simple key distribution models (symmetric-key) . . 546
13.2 In-line, on-line, and off-line third parties . 548
13.3 Third party services related to public-key certification . 549
13.4 Key management: symmetric-key vs. public-key encryption . . 552
13.5 A binary tree . 557
13.6 An authentication tree 558
13.7 Key management in different classes of asymmetric signature systems . . 564
13.8 Establishing trust between users in distinct domains . 571
13.9 Trust models for certification . . 574
13.10 Key management life cycle . . 579
13.11 Creation and use of LEAF for key escrow data recovery . 585

Facebook's Exhibit No. 1005
0023

MOBILEIRON, INC. - EXHIBIT 1011
Page 023

Fare v~rord
by R.L. Rivest

As we draw near to closing out the twentieth century, we see quite clearly that the
information-processing and telecommunications revolutions now underway will continue
vigorously into the twenty-first. We interact and transact by directing flocks of digital pack-
ets towards each other through cyberspace, carrying love notes, digital cash, and secret cor-
porate documents. Our personal and economic lives rely more and more on our ability to
let such ethereal carrier pigeons mediate at a distance what we used to do with face-to-face
meetings, paper documents, and a firm handshake. Unfortunately, the technical wizardry
enabling remote collaborations is founded on broadcasting everything as sequences of ze-
ros and ones that one's own dog wouldn't recognize. What is to distinguish a digital dol-
lar when it is as easily reproducible as the spoken word? How do we converse privately
when every syllable is bounced off a satellite and smeared over an entire continent? How
should a bank know that it really is Bill Gates requesting from his laptop in Fiji a transfer of
$10,000,000,000 to another bank? Fortunately, the magical mathematics of cryptography
can help. Cryptography provides techniques for keeping information secret, for determin-
ing that information has not been tampered with, and for determining who authored pieces
of information.

Cryptography is fascinating because of the close ties it forges between theory and prac-
tice, and because today's practical applications of cryptography are pervasive and critical
components of our information-based society. Information-protection protocols designed
on theoretical foundations one year appear in products and standards documents the next.
Conversely, new theoretical developments sometimes mean that last year's proposal has a
previously unsuspected weakness. While the theory is advancing vigorously, there are as
yet few true guarantees; the security of many proposals depends on unproven (if plausible)
assumptions. The theoretical work refines and improves the practice, while the practice
challenges and inspires the theoretical work. When a system is "broken," our knowledge
improves, and next year's system is improved to repair the defect. (One is reminded of the
long and intriguing battle between the designers of bank vaults and their opponents.)

Cryptography is also fascinating because of its game-like adversarial nature. A good
cryptographer rapidly changes sides back and forth in his or her thinking, from attacker
to defender and back. Just as in a game of chess, sequences of moves and counter-moves
must be considered until the current situation is understood. Unlike chess players, cryptog-
raphersmust also consider all the ways an adversary might try to gain by breaking the rules
or violating expectations. (Does it matter if she measures how long I am computing? Does
it matter if her "random" number isn't one?)

The current volume is a major contribution to the field of cryptography. It is a rigorous
encyclopedia of known techniques, with an emphasis on those that are both (believed to be)
secure and practically useful. It presents in a coherent manner most of the important cryp-
tographic tools one needs to implement secure cryptographic systems, and explains many
of the cryptographic principles and protocols o~ existing systems. The topics covered range
from low-level considerations such asrandom-number generation and efficient modular ex-
ponentiation algorithms and medium-level items such as public-key signature techniques,
to higher-level topics such as zero-knowledge protocols. This book's excellent organiza-
tion and style allow it to serve well as both aself-contained tutorial and an indispensable
desk reference.

xxi

Facebook's Exhibit No. 1005
0024

MOBILEIRON, INC. - EXHIBIT 1011
Page 024

xxii Foreword

In documenting the state of afast-moving field, the authors have done incredibly well
at providing error-free comprehensive content that is up-to-date. Indeed, many of the chap-
ters, such as those on hash functions or key-establishment protocols, break new ground in
both their content and their unified presentations. In the trade-off between comprehensive
coverage and exhaustive treatment of individual items, the authors. have chosen to write
simply and directly, and thus efficiently, allowing each element to be explained together
with their important details, caveats, and comparisons.

While motivated by practical applications, the authors have clearly written a book that
will be of as much interest to researchers and students as it is to practitioners, by includ-
ing ample discussion of the underlying mathematics and associated theoretical consider-
ations. The essential mathematical techniques and requisite notions are presented crisply
and clearly, with illustrative examples. The insightful historical notes and extensive bib-
liography make this book a superb stepping-stone to the literature. (I was very pleasantly
surprised to find an appendix with complete programs for the CRYPTO and EUROCRYPT
conferences!)
It is a pleasure to have been asked to provide the foreword for this book. I am happy

to congratulate the authors on their accomplishment, and to inform the reader that he/she is
looking at a landmark in the development of the field. ,

Ronald L. Rivest
Webster Professor of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Facebook's Exhibit No. 1005
0025

MOBILEIRON, INC. - EXHIBIT 1011
Page 025

Preface

This book is intended as a reference for professional cryptographers, presenting the
' techniques and algorithms of greatest interest to the current practitioner, along with the sup-

i porting motivation and background material. It also provides a comprehensive source from
which to learn cryptography, serving both students and instructors. In addition, -the rigor-
ous treatment, breadth, and extensive bibliographic material should make it an important
reference for research professionals.

Our goal was to assimilate the existing cryptographic knowledge of industrial interest
~ into one consistent, self-contained volume accessible to engineers in practice, to computer

scientists and mathematicians in academia, and to motivated non-specialists with a strong
desire to learn cryptography. Such a task is beyond the scope of each of the following: re-
search papers, which by nature focus on narrow topics using very specialized (and often
non-standard) terminology; survey papers, which typically address, at most, a small num-
ber of major topics at a high level; and (regretably also) most books, due to the fact that
many book authors lack either practical experience or familiarity with the research litera-
ture or both. Our intent was to provide a detailed presentation of those areas of cryptogra-

~ phy which we have found to be of greatest practical utility in our own industrial experience,
while maintaining a sufficiently formal approach to be suitable both as a trustworthy refer-
ence for those whose primary interest is further research, and to provide a solid foundation
for students and others first learning the subject.

Throughout each chapter, we emphasize the relationship between various aspects of
~ cryptography. Background sections commence most chapters, providing a framework and

perspective for the techniques which.follo~v. Computer source code (e.g. C code) for algo-
rithmshas been intentionally omitted, in favor of algorithms specified in sufficient detail to
allow direct implementation without consulting secondary references. We believe this style

~ of presentation allows a better understanding of how algorithms actually work, while at the
same time avoiding low-level implementation-specific constructs (which some readers will
invariably be unfamiliar with) of various currently-popular programming languages.

The presentation also strongly delineates what has been established as fact (by math-
ematical arguments) from what is simply current conjecture. To avoid obscuring the very

i applied nature of the subject, rigorous proofs of correctness are in most cases omitted; how-
' ever, references given in the Notes section at the end of each chapter indicate the original

or recommended sources for these results. The trailing Notes sections also provide infor-
mation (quite detailed in places) on various additional techniques not addressed in the main
text, and provide a survey of research activities and theoretical results; references again in-
dicate where readers may pursue particular aspects in greater depth. Needless to say, many
results, and indeed some entire research areas, have been given far less attention than they
warrant, or have been omitted entirely due to lack of space; we apologize in advance for
such major omissions, and hope that the most significant of these are brought to our atten-
tion.

To provide an integrated treatment of cryptography spanning foundational motivation
through concrete implementation, it is useful to consider a hierarchy of thought ranging
from conceptual ideas and end-user services, down to the tools necessary to complete ac-
tual implementations. Table 1 depicts the hierarchical structure around which this book is
organized. Corresponding to this, Figure 1 illustrates how these hierarchical levels map

Facebook's Exhibit No. 1005
0026

MOBILEIRON, INC. - EXHIBIT 1011
Page 026

XXlV Preface

Information Security Objectives
Confidentiality
Data integrity
Authentication (entity and data origin)
Non-repudiation

Cryptographic functions
Encryption Chapters 6, 7, 8
Message authentication and data integrity techniques Chapter 9
Identification/entity authentication techniques Chapter 10
Digital signatures Chapter 11

Cryptographic building blocks
Stream ciphers Chapter 6
Block ciphers (symmetric-key) Chapter 7
Public-key encryption Chapter 8
One-way hash functions (unkeyed) Chapter 9
Message authentication codes Chapter 9
Signature schemes (public-key, symmetric-key) Chapter 11

Utilities
Public-key parameter generation Chapter 4
Pseudorandom bit generation Chapter 5
Efficient algorithms for discrete arithmetic Chapter 14

Foundations
Introduction to cryptography Chapter 1
Mathematical background Chapter 2
Complexity and analysis of underlying problems Chapter 3

Infrastructure techniques and commercial aspects
Key establishment protocols Chapter 12
Key installation and key management Chapter 13
Cryptographic patents Chapter 15
Cryptographic standards Chapter 15

Table 1: Hierarchical levels of applied cryptography.

onto the various chapters, and their inter-dependence.
Table 2 lists the chapters of the book, along with the primary authors) of each who

should be contacted by readers with comments on specific chapters. Each chapter was writ-
ten to provide aself-contained treatment of one major topic. Collectively, however, the
chapters have been designed and carefully integrated to be entirely complementary with
respect to definitions, terminology, and notation. Furthermore, there is essentially no du-
plication of material across chapters; instead, appropriate cross-chapter references are pro-
vided where relevant.

While it is not intended that this book be read linearly from front to back, the material
has been arranged so that doing so has some merit. Two primary goals motivated by the
"handbook" nature of this project were to allow easy access to stand-alone results, and to al-
low results and algorithms to be easily referenced (e.g., for discussion or subsequent cross-
reference). To facilitate the ease of accessing and referencing results, items have been cate-
gorizedand numbered to a large extent, with the following classes of items jointly numbered
consecutively in each chapter: Definitions, Examples, Facts, Notes, Remarks, Algorithms,
Protocols, and Mechanisms. In more traditional treatments, Facts are usually identified as
propositions, lemmas, or theorems. We use numbered Notes for additional technical points,

Facebook's Exhibit No. 1005
0027

MOBILEIRON, INC. - EXHIBIT 1011
Page 027

m m
co

nf
id

en
tia

lity

da
ta

 in
te

gr
ity

au

th
en

tic
at

io
n

no
n-

re
pu

di
at

io
n

en
cr

yp
tio

n
da

ta
 in

te
gr

ity

m
es

sa
ge

id

en
tif

ica
tio

n
di

gi
ta

l
te

ch
ni

qu
es

au

th
en

tic
at

io
n

sig
na

tu
re

s
C

ha
pt

er
s

6,
7,

8
C

ha
pt

er
 9

C

ha
pt

er
 9

C

ha
pt

er
 1

0
C

ha
pt

er
 1

1

~1 ~
~

J x

st
re

am
 c

ip
he

rs

bl
oc

k
ci

ph
er

s
en

cr
yp

tio
n

ha
sh

 fu
nc

tio
ns

ha

sh
 fu

nc
tio

ns

si
gn

at
ur

es

si
gn

at
ur

es
O

(s
ym

m
et

ric
-k

ey
)

(p
ub

lic
-k

ey
)

(u
nk

ey
ed

)
(k

ey
ed

)
(p

ub
lic

-k
ey

)
(s

ym
m

et
ric

-k
ey

)
C

ha
pt

er
 6

C

ha
pt

er
 ?

C

ha
pt

er
 8

C

ha
pt

er
 9

C

ha
pt

er
 9

C

ha
pt

er
 1

1
C

ha
pt

er
 1

1

.o 0̀
ra

nd
om

p

nu
m

be
r

pu
bl

ic
-k

ey
F

,
ge

ne
ra

tio
n

~

pa
ra

m
et

er
s

C
ha

pt
er

 5

C
ha

pt
er

 4

ef
f ic

ie
nt

pu

bl
ic

-k
ey

i m
pl

em
en

ta
tio

n
es

ta
bl

is
hm

en
t o

f s
ec

re
t k

ey
s

se
cu

rit
y

fo
un

da
tio

ns
C

ha
pt

er
 1

4
C

ha
pt

er
 1

2
C

ha
pt

er
 3

pa
te

nt
s

an
d

m
at

h
in

tro
du

ct
io

n
st

an
da

rd
s

ke
y

m
an

ag
em

en
t

ba
ck

gr
ou

nd
C

ha
pt

er
 1

5
C

ha
pt

er
 1

3
C

ha
pt

er
 2

C

ha
pt

er
 1

k c

Facebook's Exhibit No. 1005
0028

MOBILEIRON, INC. - EXHIBIT 1011
Page 028

xxvi Preface

Chapter Primary Author
AJM PVO SAV

1. Overview of Cryptography
2. Mathematical Background
3. Number-Theoretic Reference Problems
4. Public-Key Parameters
5. Pseudorandom Bits and Sequences
6. Stream Ciphers
7. Block Ciphers
8. Public-Key Encryption
9. Hash Functions and Data Integrity

10. Identification and Entity Authentication
11. Digital Signatures
12. Key Establishment Protocols
13. Key Management Techniques
14. Efficient Implementation
15. Patents and Standards
— Overall organization

=r.

i

Table 2: Primary authors of each chapter.

while numbered Remarks identify non-technical (often non-rigorous) comments, observa-
tions, and opinions. Algorithms, Protocols and Mechanisms refer to techniques involving
a series of steps. Examples, Notes, and Remarks generally begin with parenthetical sum-
mary titles to allow faster access, by indicating the nature of the content so that the entire
item itself need not be read in order to determine this. The use of a large number of small
subsections is also intended to enhance the handbook nature and accessibility to results.

Regarding the partitioning of subject areas into chapters, we have used what we call a
functional organization (based onfunctions ofinterest toend-users). For example, all items
related to entity authentication are addressed in one chapter. An alternative would have been
what may be called an academic organization, under which perhaps, all protocols based on
zero-knowledge concepts (including both a subset of entity authentication protocols and
signature schemes) might be covered in one chapter. We believe that a functional organi-
zation is more convenient to the practitioner, who is more likely to be interested in options
available for an entity authentication protocol (Chapter 10) or a signature scheme (Chapter
11), than to be seeking azero-knowledge protocol with unspecified end-purpose.
In the front matter, atop-level Table of Contents (giving chapter numbers and titles

only) is provided, as well as a detailed Table of Contents (down to the level of subsections,
e.g., §5.1.1). This is followed by a List of Figures, and a List of Tables. At the start of each
chapter, a brief Table of Contents (specifying section number and titles only, e.g., §5.1, §5.~,)
is also given for convenience.

At the end of the book, we have included a list of papers presented at each of the Crypto,
Eurocrypt, AsiacrypdAuscrypt and Fast Software Encryption conferences to date, as well
as a list of all papers published in the Journal of Cryptology up to Volume 9. These are
in addition to the References section, each entry of which is cited at least once in the body
of the handbook. Almost all of these references have been verified for correctness in their
exact titles, volume and page numbers, etc. Finally, an extensive Index prepared by the
authors is included. The Index begins with a List of Symbols.

Our intention was not to introduce a collection of new techniques and protocols, but

Facebook's Exhibit No. 1005
0029

MOBILEIRON, INC. - EXHIBIT 1011
Page 029

Preface xxvii

rather to selectively present techniques from those currently available in the public domain.
Such a consolidation of the literature is necessary from time to time. The fact that many
good books in this field include essentially no more than what is covered here in Chapters
7, 8 and 11 (indeed, these might serve as an introductory course along with Chapter 1) illus-
trates that the field has grown tremendously in the past 15 years. The mathematical foun-
dationpresented in Chapters 2 and 3 is hard to find in one volume, and missing from most
cryptography texts. The material in Chapter 4 on generation ofpublic-key parameters, and
in Chapter 14 on efficient implementations, while well-known to a small body of specialists
and available in the scattered literature, has previously not been available in general texts.
The material in Chapters 5 and 6 on pseudorandom number generation and stream ciphers
is also often absent (many texts focus entirely on block ciphers), or approached only from
a theoretical viewpoint. Hash functions (Chapter 9) and identification protocols (Chapter
10) have only recently been studied in depth as specialized topics on their own, and along
with Chapter 12 on key establishment protocols, it is hard to find consolidated treatments
of these now-mainstream topics. Key management techniques as presented in Chapter 13
have traditionally not been given much attention by cryptographers, but are of great impor-
tance in practice. A focused treatment of cryptographic patents and a concise summary of
cryptographic standards, as presented in Chapter 15, are also long overdue.
In most cases (with some historical exceptions), where algorithms are known to be in-

secure> we have chosen to leave out specification of their details, because most such tech-
niques are of little practical interest. Essentially all of the algorithms included have been
verified for correctness by independent implementation, confirming the test vectors speci-
fied.

Acknowledgements
This project would not have been possible without the tremendous efforts put forth by our
peers who have taken the time to read endless drafts and provide us with technical correc-
tions, constructive feedback, and countless suggestions. In particular, the advice of our Ad-
visory Editors has been invaluable, and it is impossible to attribute individual credit for their
many suggestions throughout this book. Among our Advisory Editors, we would particu-
larly like to thank:

Mihir Bellare Don Coppersmith
Burt Kaliski Peter Landrock
Chris Mitchell Tatsuaki Okamoto
Gus Simmons Miles Smid
Yacov Yacobi

Dorothy Denning Walter Fumy
Arjen Lenstra Ueli Maurer
Bart Preneel Ron Rivest
Jacques Stern Mike Wiener

In addition, we gratefully acknowledge the exceptionally large number of additional indi-
viduals who have helped improve the quality of this volume, by providing highly appreci-
ated feedback and guidance on various matters. These individuals include:

Carlisle Adams
Simon Blackburn
Colin Boyd
Ed Dawson
Whit Diffie
Luis Encinas
Shuhong Gao
Jovan Golic

Rich Ankney
Ian Blake
Jorgen Brandt
Peter de Rooij
Hans Dobbertin
Warwick Ford
Will Gilbert
Dieter Gollmann

Tom Berson
Antoon Bosselaers
Mike Burmester
Yvo Desmedt
Carl Ellison
Amparo Fuster
Marc Girault
Li Gong

Facebook's Exhibit No. 1005
0030

MOBILEIRON, INC. - EXHIBIT 1011
Page 030

xxviii Preface

Carrie Grant Blake Greenlee Helen Gustafson
Darrel Hankerson Anwar Hasan Don Johnson
Mike Just Andy Klapper Lars Knudsen
Neal Koblitz ~etin Koh Judy Koeller
Evangelos Kranakis David Kravitz Hugo Krawczyk
Xuejia Lai Charles Lam Alan Ling
S. Mike Matyas Willi Meier Peter Montgomery
Mike Mosca Tim Moses Serge Mister
Volker Mueller David Naccache James Nechvatal
Kaisa Nyberg Andrew Odlyzko Richard Outerbridge
Walter Penzhorn Birgit Pfitzmann Kevin Phelps
Leon Pintsov Fred Piper Carl Pomerance
Matt Robshaw ' Peter Rodney Phil Rogaway
Rainer Rueppel Mahmoud Salmasizadeh ~ Roger Schlafly
Jeff Shallit Jon Sorenson Doug Stinson
Andrea Vanstone Serge Vaudenay Klaus Vedder
Jerry Veeh Fausto Vitini Lisa Yin
Robert Zuccherato

We apologize to those whose names have inadvertently escaped this list. Special thanks are
due to Carrie Grant, Darrel Hankerson, Judy Koeller, Charles Lam, and Andrea Vanstone.
Their hard work contributed greatly to the quality of this book, and it was truly a pleasure
working with them. Thanks also to the folks at. CRC Press, including Tia Atchison, Gary
Bennett, Susie Carlisle, Nora Konopka, Mary Kugler, Amy Morrell, Tim Pletscher, Bob
Stern, and Wayne Yuhasz. The second author would also like to thank his colleagues past
and present at Nortel Secure Networks (Bell-Northern Research), many of whom are men-
tioned above, for their contributions on this project, and in particular Brian O'Higgins for
his encouragement and support; all views expressed, however, are entirely that of the au-
thor.

Any errors that remain are, of course, entirely our own. We would be grateful if readers
who spot errors, missing references or credits, or incorrectly attributed results would contact
us with details. It is our hope that this volume facilitates further advancement of the field,
and that we have helped play a small part in this. .

Alfred J. Menezes
Paul C. van Oorschot
Scott A. Vanstone

Facebook's Exhibit No. 1005
0031

MOBILEIRON, INC. - EXHIBIT 1011
Page 031

Chapter�
Overview of Cryptography

Contents in Brief

1.1 Introduction . 1
1.2 Information security and cryptography 2
1.3 Background on functions . 6
1.4 Basic terminology and concepts 11
1.5 Symmetric-key encryption . 15
1.6 Digital signatures . 22
1.7 Authentication and identification 24
1.8 Public-key cryptography . 25
1.9 Hash functions . 33
1.10 Protocols and mechanisms . 33
1.11 Key establishment, management, and certification 35
1.12 Pseudorandom numbers and sequences 39
1.13 Classes of attacks and security models 41
1.14 Notes and further references . 45

1.1 Introduction

Cryptography has a long and fascinating history. The most complete non-technical account
of the subject is Kahn’sThe Codebreakers. This book traces cryptography from its initial
and limited use by the Egyptians some 4000 years ago, to the twentieth century where it
played a crucial role in the outcome of both world wars. Completed in 1963, Kahn’s book
covers those aspects of the history which were most significant (up to that time) to the devel-
opment of the subject. The predominant practitioners of the art were those associated with
the military, the diplomatic service and government in general. Cryptography was used as
a tool to protect national secrets and strategies.

The proliferation of computers and communications systems in the 1960s brought with
it a demand from the private sector for means to protect information in digital form and to
provide security services. Beginning with the work of Feistel at IBM in the early 1970s and
culminating in 1977 with the adoption as a U.S. Federal Information Processing Standard
for encrypting unclassified information, DES, the Data Encryption Standard, is the most
well-known cryptographic mechanism in history. It remains the standard means for secur-
ing electronic commerce for many financial institutions around the world.

The most striking development in the history of cryptographycame in 1976 when Diffie
and Hellman publishedNew Directions in Cryptography. This paper introduced the revolu-
tionary concept of public-key cryptography and also provided a new and ingenious method

1

MOBILEIRON, INC. - EXHIBIT 1011
Page 032

§1.2 Information security and cryptography 3

privacy
or confidentiality

keeping information secret from all but those who are autho-
rized to see it.

data integrity ensuring information has not been altered by unauthorized or
unknown means.

entity authentication
or identification

corroboration of the identity of an entity (e.g., a person, a
computer terminal, a credit card, etc.).

message
authentication

corroborating the source of information; also known as data
origin authentication.

signature a means to bind information to an entity.
authorization conveyance, to another entity, of official sanction to do or be

something.
validation a means to provide timeliness of authorization to use or ma-

nipulate information or resources.
access control restricting access to resources to privileged entities.
certification endorsement of information by a trusted entity.
timestamping recording the time of creation or existence of information.
witnessing verifying the creation or existence of information by an entity

other than the creator.
receipt acknowledgement that information has been received.
confirmation acknowledgement that services have been provided.
ownership a means to provide an entity with the legal right to use or

transfer a resource to others.
anonymity concealing the identity of an entity involved in some process.
non-repudiation preventing the denial of previous commitments or actions.
revocation retraction of certification or authorization.

Table 1.1: Some information security objectives.

offense to open mail for which one is not authorized. It is sometimes the case that security
is achieved not through the information itself but through the physical document recording
it. For example, paper currency requires special inks and material to prevent counterfeiting.

Conceptually, the way information is recorded has not changed dramatically over time.
Whereas information was typically stored and transmitted on paper, much of it now re-
sides on magnetic media and is transmitted via telecommunications systems, some wire-
less. What has changed dramatically is the ability to copy and alter information. One can
make thousands of identical copies of a piece of information stored electronically and each
is indistinguishable from the original. With information on paper, this is much more diffi-
cult. What is needed then for a society where information is mostly stored and transmitted
in electronic form is a means to ensure information security which is independent of the
physical medium recording or conveying it and such that the objectives of information se-
curity rely solely on digital information itself.

One of the fundamental tools used in information security is the signature. It is a build-
ing block for many other services such as non-repudiation, data origin authentication, iden-
tification, and witnessing, to mention a few. Having learned the basics in writing, an indi-
vidual is taught how to produce a handwritten signature for the purpose of identification.
At contract age the signature evolves to take on a very integral part of the person’s identity.
This signature is intended to be unique to the individual and serve as a means to identify,
authorize, and validate. With electronic information the concept of a signature needs to be

MOBILEIRON, INC. - EXHIBIT 1011
Page 033

64 Ch. 2 Mathematical Background

2.82 Definition (division algorithm for integers) If a and b are integers with b ≥ 1, then or-
dinary long division of a by b yields integers q (the quotient) and r (the remainder) such
that

a = qb+ r, where 0 ≤ r < b.

Moreover, q and r are unique. The remainder of the division is denoted a mod b, and the
quotient is denoted a div b.

2.83 Fact Let a, b ∈ Z with b �= 0. Then a div b = �a/b� and a mod b = a− b�a/b�.

2.84 Example If a = 73, b = 17, then q = 4 and r = 5. Hence 73 mod 17 = 5 and
73 div 17 = 4. �

2.85 Definition An integer c is a common divisor of a and b if c|a and c|b.

2.86 Definition A non-negative integer d is the greatest common divisor of integers a and b,
denoted d = gcd(a, b), if

(i) d is a common divisor of a and b; and
(ii) whenever c|a and c|b, then c|d.

Equivalently, gcd(a, b) is the largest positive integer that divides both a and b, with the ex-
ception that gcd(0, 0) = 0.

2.87 Example The common divisors of 12 and 18 are {±1,±2,±3,±6}, and gcd(12, 18) = 6.
�

2.88 Definition A non-negative integer d is the least common multiple of integers a and b, de-
noted d = lcm(a, b), if

(i) a|d and b|d; and
(ii) whenever a|c and b|c, then d|c.

Equivalently, lcm(a, b) is the smallest non-negative integer divisible by both a and b.

2.89 Fact If a and b are positive integers, then lcm(a, b) = a · b/ gcd(a, b).

2.90 Example Since gcd(12, 18) = 6, it follows that lcm(12, 18) = 12 · 18/6 = 36. �

2.91 Definition Two integersa and b are said to be relatively prime or coprime if gcd(a, b) = 1.

2.92 Definition An integer p ≥ 2 is said to be prime if its only positive divisors are 1 and p.
Otherwise, p is called composite.

The following are some well known facts about prime numbers.

2.93 Fact If p is prime and p|ab, then either p|a or p|b (or both).

2.94 Fact There are an infinite number of prime numbers.

2.95 Fact (prime number theorem) Let π(x) denote the number of prime numbers≤ x. Then

lim
x→∞

π(x)

x/ lnx
= 1.

MOBILEIRON, INC. - EXHIBIT 1011
Page 034

68 Ch. 2 Mathematical Background

(iv) (transitivity) If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n).
(v) If a ≡ a1 (mod n) and b ≡ b1 (mod n), then a + b ≡ a1 + b1 (mod n) and
ab ≡ a1b1 (mod n).

The equivalence class of an integer a is the set of all integers congruent to a modulo
n. From properties (ii), (iii), and (iv) above, it can be seen that for a fixed n the relation of
congruence modulo n partitions Z into equivalence classes. Now, if a = qn + r, where
0 ≤ r < n, then a ≡ r (mod n). Hence each integer a is congruent modulo n to a unique
integer between 0 and n−1, called the least residue of amodulo n. Thus a and r are in the
same equivalence class, and so r may simply be used to represent this equivalence class.

2.113 Definition The integers modulo n, denoted Zn, is the set of (equivalence classes of) in-
tegers {0, 1, 2, . . . , n− 1}. Addition, subtraction, and multiplication in Zn are performed
modulo n.

2.114 Example Z25 = {0, 1, 2, . . . , 24}. In Z25, 13 + 16 = 4, since 13 + 16 = 29 ≡ 4
(mod 25). Similarly, 13 · 16 = 8 in Z25. �

2.115 Definition Let a ∈ Zn. The multiplicative inverse of a modulo n is an integer x ∈ Zn
such that ax ≡ 1 (mod n). If such an x exists, then it is unique, and a is said to be invert-
ible, or a unit; the inverse of a is denoted by a−1.

2.116 Definition Let a, b ∈ Zn. Division of a by bmodulon is the product of a and b−1 modulo
n, and is only defined if b is invertible modulo n.

2.117 Fact Let a ∈ Zn. Then a is invertible if and only if gcd(a, n) = 1.

2.118 Example The invertible elements in Z9 are 1, 2, 4, 5, 7, and 8. For example, 4−1 = 7
because 4 · 7 ≡ 1 (mod 9). �

The following is a generalization of Fact 2.117.

2.119 Fact Let d = gcd(a, n). The congruence equation ax ≡ b (mod n) has a solution x if
and only if d divides b, in which case there are exactly d solutions between 0 and n − 1;
these solutions are all congruent modulo n/d.

2.120 Fact (Chinese remainder theorem, CRT) If the integers n1, n2, . . . , nk are pairwise rela-
tively prime, then the system of simultaneous congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

has a unique solution modulo n = n1n2 · · ·nk.

2.121 Algorithm (Gauss’s algorithm) The solution x to the simultaneous congruences in the
Chinese remainder theorem (Fact 2.120) may be computed as x =

∑k
i=1 aiNiMi mod n,

where Ni = n/ni and Mi = N
−1
i mod ni. These computations can be performed in

O((lg n)2) bit operations.

MOBILEIRON, INC. - EXHIBIT 1011
Page 035

§2.4 Number theory 69

Another efficient practical algorithm for solving simultaneous congruences in the Chinese
remainder theorem is presented in §14.5.

2.122 Example The pair of congruences x ≡ 3 (mod 7), x ≡ 7 (mod 13) has a unique solu-
tion x ≡ 59 (mod 91). �

2.123 Fact If gcd(n1, n2) = 1, then the pair of congruencesx ≡ a (mod n1), x ≡ a (mod n2)
has a unique solution x ≡ a (mod n1n2).

2.124 Definition The multiplicative group of Zn is Z∗n = {a ∈ Zn | gcd(a, n) = 1}. In
particular, if n is a prime, then Z∗n = {a | 1 ≤ a ≤ n− 1}.

2.125 Definition The order of Z∗n is defined to be the number of elements in Z∗n, namely |Z∗n|.

It follows from the definition of the Euler phi function (Definition 2.100) that |Z∗n| =
φ(n). Note also that if a ∈ Z∗n and b ∈ Z∗n, then a · b ∈ Z∗n, and so Z∗n is closed under
multiplication.

2.126 Fact Let n ≥ 2 be an integer.

(i) (Euler’s theorem) If a ∈ Z∗n, then aφ(n) ≡ 1 (mod n).
(ii) If n is a product of distinct primes, and if r ≡ s (mod φ(n)), then ar ≡ as (mod n)

for all integers a. In other words, when working modulo such an n, exponents can
be reduced modulo φ(n).

A special case of Euler’s theorem is Fermat’s (little) theorem.

2.127 Fact Let p be a prime.

(i) (Fermat’s theorem) If gcd(a, p) = 1, then ap−1 ≡ 1 (mod p).
(ii) If r ≡ s (mod p − 1), then ar ≡ as (mod p) for all integers a. In other words,

when working modulo a prime p, exponents can be reduced modulo p− 1.
(iii) In particular, ap ≡ a (mod p) for all integers a.

2.128 Definition Let a ∈ Z∗n. The order of a, denoted ord(a), is the least positive integer t such
that at ≡ 1 (mod n).

2.129 Fact If the order of a ∈ Z∗n is t, and as ≡ 1 (mod n), then t divides s. In particular,
t|φ(n).

2.130 Example Let n = 21. Then Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}. Note that
φ(21) = φ(7)φ(3) = 12 = |Z∗21|. The orders of elements in Z∗21 are listed in Table 2.3. �

a ∈ Z∗21 1 2 4 5 8 10 11 13 16 17 19 20
order of a 1 6 3 6 2 6 6 2 3 6 6 2

Table 2.3: Orders of elements in Z∗21.

2.131 Definition Let α ∈ Z∗n. If the order of α is φ(n), then α is said to be a generator or a
primitive element of Z∗n. If Z∗n has a generator, then Z∗n is said to be cyclic.

MOBILEIRON, INC. - EXHIBIT 1011
Page 036

§2.5 Abstract algebra 75

2.159 Example (Blum integer) For the Blum integer n = 21, Jn = {1, 4, 5, 16, 17, 20} and
Q̃n = {5, 17, 20}. The four square roots of a = 4 are 2, 5, 16, and 19, of which only 16 is
also in Q21. Thus 16 is the principal square root of 4 modulo 21. �

2.160 Fact If n = pq is a Blum integer, then the function f : Qn −→ Qn defined by f(x) =
x2 mod n is a permutation. The inverse function of f is:

f−1(x) = x((p−1)(q−1)+4)/8 mod n.

2.5 Abstract algebra

This section provides an overview of basic algebraic objects and their properties, for refer-
ence in the remainder of this handbook. Several of the definitions in §2.5.1 and §2.5.2 were
presented earlier in §2.4.3 in the more concrete setting of the algebraic structure Z∗n.

2.161 Definition A binary operation ∗ on a set S is a mapping from S × S to S. That is, ∗ is a
rule which assigns to each ordered pair of elements from S an element of S.

2.5.1 Groups

2.162 Definition A group (G, ∗) consists of a set G with a binary operation ∗ on G satisfying
the following three axioms.

(i) The group operation is associative. That is, a∗ (b∗ c) = (a∗ b)∗ c for all a, b, c ∈ G.
(ii) There is an element 1 ∈ G, called the identity element, such that a ∗ 1 = 1 ∗ a = a

for all a ∈ G.
(iii) For each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such that
a ∗ a−1 = a−1 ∗ a = 1.

A groupG is abelian (or commutative) if, furthermore,

(iv) a ∗ b = b ∗ a for all a, b ∈ G.

Note that multiplicative group notation has been used for the group operation. If the
group operation is addition, then the group is said to be an additive group, the identity ele-
ment is denoted by 0, and the inverse of a is denoted−a.

Henceforth, unless otherwise stated, the symbol ∗ will be omitted and the group oper-
ation will simply be denoted by juxtaposition.

2.163 Definition A groupG is finite if |G| is finite. The number of elements in a finite group is
called its order.

2.164 Example The set of integers Z with the operation of addition forms a group. The identity
element is 0 and the inverse of an integer a is the integer −a. �

2.165 Example The set Zn, with the operation of addition modulo n, forms a group of order
n. The set Zn with the operation of multiplication modulo n is not a group, since not all
elements have multiplicative inverses. However, the setZ∗n (see Definition 2.124) is a group
of order φ(n) under the operation of multiplication modulo n, with identity element 1. �

MOBILEIRON, INC. - EXHIBIT 1011
Page 037

76 Ch. 2 Mathematical Background

2.166 Definition A non-empty subset H of a groupG is a subgroup of G if H is itself a group
with respect to the operation ofG. IfH is a subgroup ofG andH �= G, thenH is called a
proper subgroup of G.

2.167 Definition A groupG is cyclic if there is an elementα ∈ G such that for each b ∈ G there
is an integer i with b = αi. Such an element α is called a generator of G.

2.168 Fact IfG is a group and a ∈ G, then the set of all powers of a forms a cyclic subgroup of
G, called the subgroup generated by a, and denoted by 〈a〉.

2.169 Definition Let G be a group and a ∈ G. The order of a is defined to be the least positive
integer t such that at = 1, provided that such an integer exists. If such a t does not exist,
then the order of a is defined to be∞.

2.170 Fact Let G be a group, and let a ∈ G be an element of finite order t. Then |〈a〉|, the size
of the subgroup generated by a, is equal to t.

2.171 Fact (Lagrange’s theorem) IfG is a finite group andH is a subgroup ofG, then |H| divides
|G|. Hence, if a ∈ G, the order of a divides |G|.

2.172 Fact Every subgroup of a cyclic group G is also cyclic. In fact, if G is a cyclic group of
order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

2.173 Fact Let G be a group.

(i) If the order of a ∈ G is t, then the order of ak is t/ gcd(t, k).
(ii) If G is a cyclic group of order n and d|n, then G has exactly φ(d) elements of order
d. In particular,G has φ(n) generators.

2.174 Example Consider the multiplicative groupZ∗19 = {1, 2, . . . , 18} of order 18. The group
is cyclic (Fact 2.132(i)), and a generator is α = 2. The subgroups of Z∗19, and their gener-
ators, are listed in Table 2.7. �

Subgroup Generators Order

{1} 1 1
{1, 18} 18 2
{1, 7, 11} 7, 11 3

{1, 7, 8, 11, 12, 18} 8, 12 6
{1, 4, 5, 6, 7, 9, 11, 16, 17} 4, 5, 6, 9, 16, 17 9
{1, 2, 3, . . . , 18} 2, 3, 10, 13, 14, 15 18

Table 2.7: The subgroups of Z∗19.

2.5.2 Rings

2.175 Definition A ring (R,+,×) consists of a set R with two binary operations arbitrarily de-
noted+ (addition) and× (multiplication) on R, satisfying the following axioms.

(i) (R,+) is an abelian group with identity denoted 0.

MOBILEIRON, INC. - EXHIBIT 1011
Page 038

§2.5 Abstract algebra 77

(ii) The operation× is associative. That is, a× (b× c) = (a× b)× c for all a, b, c ∈ R.
(iii) There is a multiplicative identity denoted 1, with 1 �= 0, such that 1×a = a×1 = a

for all a ∈ R.
(iv) The operation× is distributive over+. That is, a× (b+ c) = (a× b) + (a× c) and
(b+ c)× a = (b× a) + (c× a) for all a, b, c ∈ R.

The ring is a commutative ring if a× b = b× a for all a, b ∈ R.

2.176 Example The set of integers Z with the usual operations of addition and multiplication is
a commutative ring. �

2.177 Example The set Zn with addition and multiplication performed modulo n is a commu-
tative ring. �

2.178 Definition An element a of a ring R is called a unit or an invertible element if there is an
element b ∈ R such that a× b = 1.

2.179 Fact The set of units in a ring R forms a group under multiplication, called the group of
units of R.

2.180 Example The group of units of the ring Zn is Z∗n (see Definition 2.124). �

2.5.3 Fields

2.181 Definition A field is a commutative ring in which all non-zero elements have multiplica-
tive inverses.

2.182 Definition The characteristic of a field is 0 if

m times︷ ︸︸ ︷
1 + 1 + · · ·+ 1 is never equal to 0 for any

m ≥ 1. Otherwise, the characteristic of the field is the least positive integer m such that∑m
i=1 1 equals 0.

2.183 Example The set of integers under the usual operations of addition and multiplication is
not a field, since the only non-zero integers with multiplicative inverses are 1 and−1. How-
ever, the rational numbersQ, the real numbers R, and the complex numbers C form fields
of characteristic 0 under the usual operations. �

2.184 Fact Zn is a field (under the usual operations of addition and multiplication modulo n) if
and only if n is a prime number. If n is prime, then Zn has characteristic n.

2.185 Fact If the characteristicm of a field is not 0, thenm is a prime number.

2.186 Definition A subset F of a field E is a subfield of E if F is itself a field with respect to
the operations of E. If this is the case, E is said to be an extension field of F .

MOBILEIRON, INC. - EXHIBIT 1011
Page 039

§2.6 Finite fields 81

2.209 Fact (existence and uniqueness of finite fields)

(i) IfF is a finite field, thenF contains pm elements for some prime p and integerm ≥ 1.
(ii) For every prime power order pm, there is a unique (up to isomorphism) finite field of

order pm. This field is denoted by Fpm , or sometimes by GF (pm).

Informally speaking, two fields are isomorphic if they are structurally the same, al-
though the representation of their field elements may be different. Note that if p is a prime
then Zp is a field, and hence every field of order p is isomorphic to Zp. Unless otherwise
stated, the finite field Fp will henceforth be identified with Zp.

2.210 Fact If Fq is a finite field of order q = pm, p a prime, then the characteristic of Fq is p.
Moreover, Fq contains a copy of Zp as a subfield. Hence Fq can be viewed as an extension
field of Zp of degreem.

2.211 Fact (subfields of a finite field) LetFq be a finite field of order q = pm. Then every subfield
of Fq has order pn, for some n that is a positive divisor ofm. Conversely, if n is a positive
divisor ofm, then there is exactly one subfield of Fq of order pn; an element a ∈ Fq is in
the subfield Fpn if and only if ap

n

= a.

2.212 Definition The non-zero elements ofFq form a group under multiplication called the mul-
tiplicative group of Fq , denoted by F∗q .

2.213 Fact F∗q is a cyclic group of order q − 1. Hence aq = a for all a ∈ Fq.

2.214 Definition A generator of the cyclic group F∗q is called a primitive element or generator
of Fq .

2.215 Fact If a, b ∈ Fq , a finite field of characteristic p, then

(a+ b)p
t
= ap

t
+ bp

t
for all t ≥ 0.

2.6.2 The Euclidean algorithm for polynomials

Let Zp be the finite field of order p. The theory of greatest common divisors and the Eu-
clidean algorithm for integers carries over in a straightforward manner to the polynomial
ring Zp[x] (and more generally to the polynomial ring F [x], where F is any field).

2.216 Definition Let g(x), h(x) ∈ Zp[x], where not both are 0. Then the greatest common divi-
sor of g(x) and h(x), denoted gcd(g(x), h(x)), is the monic polynomial of greatest degree
in Zp[x] which divides both g(x) and h(x). By definition, gcd(0, 0) = 0.

2.217 Fact Zp[x] is a unique factorization domain. That is, every non-zero polynomial f(x) ∈
Zp[x] has a factorization

f(x) = af1(x)
e1f2(x)

e2 · · · fk(x)
ek ,

where the fi(x) are distinct monic irreducible polynomials in Zp[x], the ei are positive in-
tegers, and a ∈ Zp. Furthermore, the factorization is unique up to rearrangement of factors.

The following is the polynomial version of the Euclidean algorithm (cf. Algorithm 2.104).

MOBILEIRON, INC. - EXHIBIT 1011
Page 040

§3.6 The discrete logarithm problem 103

3.6 The discrete logarithm problem

The security of many cryptographic techniques depends on the intractability of the discrete
logarithm problem. A partial list of these includes Diffie-Hellman key agreement and its
derivatives (§12.6), ElGamal encryption (§8.4), and the ElGamal signature scheme and its
variants (§11.5). This section summarizes the current knowledge regarding algorithms for
solving the discrete logarithm problem.

Unless otherwise specified, algorithms in this section are described in the general set-
ting of a (multiplicatively written) finite cyclic group G of order n with generator α (see
Definition 2.167). For a more concrete approach, the reader may find it convenient to think
of G as the multiplicative group Z∗p of order p − 1, where the group operation is simply
multiplication modulo p.

3.48 Definition Let G be a finite cyclic group of order n. Let α be a generator of G, and let
β ∈ G. The discrete logarithm of β to the base α, denoted logα β, is the unique integer x,
0 ≤ x ≤ n− 1, such that β = αx.

3.49 Example Let p = 97. Then Z∗97 is a cyclic group of order n = 96. A generator of Z∗97 is
α = 5. Since 532 ≡ 35 (mod 97), log5 35 = 32 in Z∗97. �
The following are some elementary facts about logarithms.

3.50 Fact Let α be a generator of a cyclic group G of order n, and let β, γ ∈ G. Let s be an
integer. Then logα(βγ) = (logα β + logα γ) mod n and logα(β

s) = s logα β mod n.

The groups of most interest in cryptography are the multiplicative groupF∗q of the finite
field Fq (§2.6), including the particular cases of the multiplicative group Z∗p of the integers
modulo a prime p, and the multiplicative group F∗2m of the finite field F2m of characteristic
two. Also of interest are the group of units Z∗n where n is a composite integer, the group
of points on an elliptic curve defined over a finite field, and the jacobian of a hyperelliptic
curve defined over a finite field.

3.51 Definition The discrete logarithm problem (DLP) is the following: given a prime p, a
generator α of Z∗p, and an element β ∈ Z∗p, find the integer x, 0 ≤ x ≤ p − 2, such that
αx ≡ β (mod p).

3.52 Definition The generalized discrete logarithm problem (GDLP) is the following: given a
finite cyclic groupG of order n, a generatorα ofG, and an element β ∈ G, find the integer
x, 0 ≤ x ≤ n− 1, such that αx = β.

The discrete logarithm problem in elliptic curve groups and in the jacobians of hyper-
elliptic curves are not explicitly considered in this section. The discrete logarithm problem
in Z∗n is discussed further in §3.8.

3.53 Note (difficulty of the GDLP is independent of generator) Let α and γ be two generators
of a cyclic groupG of ordern, and let β ∈ G. Let x = logα β, y = logγ β, and z = logα γ.
Then αx = β = γy = (αz)y. Consequently x = zy mod n, and

logγ β = (logα β) (logα γ)
−1 mod n.

This means that any algorithm which computes logarithms to the base α can be used to
compute logarithms to any other base γ that is also a generator of G.

MOBILEIRON, INC. - EXHIBIT 1011
Page 041

104 Ch. 3 Number-Theoretic Reference Problems

3.54 Note (generalization of GDLP) A more general formulation of the GDLP is the following:
given a finite groupG and elementsα, β ∈ G, find an integer x such that αx = β, provided
that such an integer exists. In this formulation, it is not required that G be a cyclic group,
and, even if it is, it is not required that α be a generator ofG. This problem may be harder to
solve, in general, than GDLP. However, in the case whereG is a cyclic group (for example
ifG is the multiplicative group of a finite field) and the order of α is known, it can be easily
recognized whether an integer x satisfying αx = β exists. This is because of the following
fact: if G is a cyclic group, α is an element of order n in G, and β ∈ G, then there exists
an integer x such that αx = β if and only if βn = 1.

3.55 Note (solving the DLP in a cyclic groupG of order n is in essence computing an isomor-
phism between G and Zn) Even though any two cyclic groups of the same order are iso-
morphic (that is, they have the same structure although the elements may be written in dif-
ferent representations), an efficient algorithm for computing logarithms in one group does
not necessarily imply an efficient algorithm for the other group. To see this, consider that
every cyclic group of order n is isomorphic to the additive cyclic group Zn, i.e., the set of
integers {0, 1, 2, . . . , n − 1} where the group operation is addition modulo n. Moreover,
the discrete logarithm problem in the latter group, namely, the problem of finding an inte-
ger x such that ax ≡ b (mod n) given a, b ∈ Zn, is easy as shown in the following. First
note that there does not exist a solution x if d = gcd(a, n) does not divide b (Fact 2.119).
Otherwise, if d divides b, the extended Euclidean algorithm (Algorithm 2.107) can be used
to find integers s and t such that as + nt = d. Multiplying both sides of this equation by
the integer b/d gives a(sb/d) + n(tb/d) = b. Reducing this equation modulo n yields
a(sb/d) ≡ b (mod n) and hence x = (sb/d) mod n is the desired (and easily obtainable)
solution.

The known algorithms for the DLP can be categorized as follows:

1. algorithms which work in arbitrary groups, e.g., exhaustive search (§3.6.1), the baby-
step giant-step algorithm (§3.6.2), Pollard’s rho algorithm (§3.6.3);

2. algorithms which work in arbitrary groups but are especially efficient if the order of
the group has only small prime factors, e.g., Pohlig-Hellman algorithm (§3.6.4); and

3. the index-calculus algorithms (§3.6.5) which are efficient only in certain groups.

3.6.1 Exhaustive search

The most obvious algorithm for GDLP (Definition 3.52) is to successively computeα0, α1,
α2, . . . until β is obtained. This method takes O(n) multiplications, where n is the order
of α, and is therefore inefficient if n is large (i.e. in cases of cryptographic interest).

3.6.2 Baby-step giant-step algorithm

Let m = �
√
n�, where n is the order of α. The baby-step giant-step algorithm is a time-

memory trade-off of the method of exhaustive search and is based on the following observa-
tion. If β = αx, then one can write x = im+j, where 0 ≤ i, j < m. Hence, αx = αimαj ,
which implies β(α−m)i = αj . This suggests the following algorithm for computing x.

MOBILEIRON, INC. - EXHIBIT 1011
Page 042

§3.6 The discrete logarithm problem 107

3.61 Example (Pollard’s rho algorithm for logarithms in a subgroup ofZ∗383) The elementα =
2 is a generator of the subgroupG of Z∗383 of order n = 191. Suppose β = 228. Partition
the elements ofG into three subsets according to the rule x ∈ S1 if x ≡ 1 (mod 3), x ∈ S2
if x ≡ 0 (mod 3), and x ∈ S3 if x ≡ 2 (mod 3). Table 3.2 shows the values of xi, ai, bi,
x2i, a2i, and b2i at the end of each iteration of step 2 of Algorithm 3.60. Note that x14 =
x28 = 144. Finally, compute r = b14 − b28 mod 191 = 125, r−1 = 125−1 mod 191 =
136, and r−1(a28 − a14) mod 191 = 110. Hence, log2 228 = 110. �

i xi ai bi x2i a2i b2i

1 228 0 1 279 0 2
2 279 0 2 184 1 4
3 92 0 4 14 1 6
4 184 1 4 256 2 7
5 205 1 5 304 3 8
6 14 1 6 121 6 18
7 28 2 6 144 12 38
8 256 2 7 235 48 152
9 152 2 8 72 48 154
10 304 3 8 14 96 118
11 372 3 9 256 97 119
12 121 6 18 304 98 120
13 12 6 19 121 5 51
14 144 12 38 144 10 104

Table 3.2: Intermediate steps of Pollard’s rho algorithm in Example 3.61.

3.62 Fact Let G be a group of order n, a prime. Assume that the function f : G −→ G de-
fined by equation (3.2) behaves like a random function. Then the expected running time of
Pollard’s rho algorithm for discrete logarithms inG isO(

√
n) group operations. Moreover,

the algorithm requires negligible storage.

3.6.4 Pohlig-Hellman algorithm

Algorithm 3.63 for computing logarithms takes advantage of the factorization of the ordern
of the groupG. Let n = pe11 p

e2
2 · · · p

er
r be the prime factorization of n. If x = logα β, then

the approach is to determinexi = x mod p
ei
i for 1 ≤ i ≤ r, and then use Gauss’s algorithm

(Algorithm 2.121) to recover x mod n. Each integer xi is determined by computing the
digits l0, l1, . . . , lei−1 in turn of its pi-ary representation: xi = l0+l1pi+ · · ·+lei−1p

ei−1
i ,

where 0 ≤ lj ≤ pi − 1.
To see that the output of Algorithm 3.63 is correct, observe first that in step 2.3 the

order of α is q. Next, at iteration j of step 2.4, γ = αl0+l1q+···+lj−1q
j−1

. Hence,

β = (β/γ)n/q
j+1

= (αx−l0−l1q−···−lj−1q
j−1

)n/q
j+1

= (αn/q
j+1

)xi−l0−l1q−···−lj−1q
j−1

= (αn/q
j+1

)ljq
j+···+le−1q

e−1

= (αn/q)lj+···+le−1q
e−1−j

= (α)lj ,

the last equality being true because α has order q. Hence, logα β is indeed equal to lj .

MOBILEIRON, INC. - EXHIBIT 1011
Page 043

108 Ch. 3 Number-Theoretic Reference Problems

3.63 Algorithm Pohlig-Hellman algorithm for computing discrete logarithms

INPUT: a generator α of a cyclic groupG of order n, and an element β ∈ G.
OUTPUT: the discrete logarithm x = logα β.

1. Find the prime factorization of n: n = pe11 p
e2
2 · · · p

er
r , where ei ≥ 1.

2. For i from 1 to r do the following:
(Compute xi = l0 + l1pi + · · ·+ lei−1p

ei−1
i , where xi = x mod p

ei
i)

2.1 (Simplify the notation) Set q←pi and e←ei.
2.2 Set γ←1 and l−1←0.
2.3 Compute α←αn/q .
2.4 (Compute the lj) For j from 0 to e− 1 do the following:

Compute γ←γαlj−1q
j−1

and β←(βγ−1)n/q
j+1

.
Compute lj← logα β (e.g., using Algorithm 3.56; see Note 3.67(iii)).

2.5 Set xi←l0 + l1q + · · ·+ le−1qe−1.

3. Use Gauss’s algorithm (Algorithm 2.121) to compute the integer x, 0 ≤ x ≤ n− 1,
such that x ≡ xi (mod p

ei
i) for 1 ≤ i ≤ r.

4. Return(x).

Example 3.64 illustrates Algorithm 3.63 with artificially small parameters.

3.64 Example (Pohlig-Hellman algorithm for logarithms in Z∗251) Let p = 251. The element
α = 71 is a generator of Z∗251 of order n = 250. Consider β = 210. Then x = log71 210
is computed as follows.

1. The prime factorization of n is 250 = 2 · 53.
2. (a) (Compute x1 = x mod 2)

Compute α = αn/2 mod p = 250 and β = βn/2 mod p = 250. Then x1 =
log250 250 = 1.

(b) (Compute x2 = x mod 53 = l0 + l15 + l252)

i. Compute α = αn/5 mod p = 20.
ii. Compute γ = 1 and β = (βγ−1)n/5 mod p = 149. Using exhaustive

search,5 compute l0 = log20 149 = 2.
iii. Compute γ = γα2 mod p = 21 and β = (βγ−1)n/25 mod p = 113.

Using exhaustive search, compute l1 = log20 113 = 4.
iv. Compute γ = γα4·5 mod p = 115 and β = (βγ−1)(p−1)/125 mod p =
149. Using exhaustive search, compute l2 = log20 149 = 2.

Hence, x2 = 2 + 4 · 5 + 2 · 52 = 72.
3. Finally, solve the pair of congruences x ≡ 1 (mod 2), x ≡ 72 (mod 125) to get
x = log71 210 = 197. �

3.65 Fact Given the factorization of n, the running time of the Pohlig-Hellman algorithm (Al-
gorithm 3.63) is O(

∑r
i=1 ei(lgn+

√
pi)) group multiplications.

3.66 Note (effectiveness of Pohlig-Hellman) Fact 3.65 implies that the Pohlig-Hellman algo-
rithm is efficient only if each prime divisor pi ofn is relatively small; that is, if n is a smooth

5Exhaustive search is preferable to Algorithm 3.56 when the group is very small (here the order of α is 5).

MOBILEIRON, INC. - EXHIBIT 1011
Page 044

§3.6 The discrete logarithm problem 109

integer (Definition 3.13). An example of a group in which the Pohlig-Hellman algorithm
is effective follows. Consider the multiplicative group Z∗p where p is the 107-digit prime:

p = 227088231986781039743145181950291021585250524967592855

96453269189798311427475159776411276642277139650833937.

The order of Z∗p is n = p− 1 = 24 · 1047298 · 2247378 · 3503774. Since the largest prime
divisor of p − 1 is only 350377, it is relatively easy to compute logarithms in this group
using the Pohlig-Hellman algorithm.

3.67 Note (miscellaneous)

(i) If n is a prime, then Algorithm 3.63 (Pohlig-Hellman) is the same as baby-step giant-
step (Algorithm 3.56).

(ii) In step 1 of Algorithm 3.63, a factoring algorithm which finds small factors first (e.g.,
Algorithm 3.9) should be employed; if the order n is not a smooth integer, then Al-
gorithm 3.63 is inefficient anyway.

(iii) The storage required for Algorithm 3.56 in step 2.4 can be eliminated by using instead
Pollard’s rho algorithm (Algorithm 3.60).

3.6.5 Index-calculus algorithm

The index-calculus algorithm is the most powerful method known for computing discrete
logarithms. The technique employed does not apply to all groups, but when it does, it of-
ten gives a subexponential-time algorithm. The algorithm is first described in the general
setting of a cyclic groupG (Algorithm 3.68). Two examples are then presented to illustrate
how the index-calculus algorithm works in two kinds of groups that are used in practical
applications, namely Z∗p (Example 3.69) and F∗2m (Example 3.70).

The index-calculus algorithm requires the selection of a relatively small subset S of
elements of G, called the factor base, in such a way that a significant fraction of elements
ofG can be efficiently expressed as products of elements from S. Algorithm 3.68 proceeds
to precompute a database containing the logarithms of all the elements in S, and then reuses
this database each time the logarithm of a particular group element is required.

The description of Algorithm 3.68 is incomplete for two reasons. Firstly, a technique
for selecting the factor baseS is not specified. Secondly, a method for efficiently generating
relations of the form (3.5) and (3.7) is not specified. The factor base S must be a subset of
G that is small (so that the system of equations to be solved in step 3 is not too large), but
not too small (so that the expected number of trials to generate a relation (3.5) or (3.7) is
not too large). Suitable factor bases and techniques for generating relations are known for
some cyclic groups includingZ∗p (see §3.6.5(i)) andF∗2m (see §3.6.5(ii)), and, moreover, the
multiplicative group F∗q of a general finite field Fq .

3.68 Algorithm Index-calculus algorithm for discrete logarithms in cyclic groups

INPUT: a generator α of a cyclic groupG of order n, and an element β ∈ G.
OUTPUT: the discrete logarithm y = logα β.

1. (Select a factor base S) Choose a subset S = {p1, p2, . . . , pt} ofG such that a “sig-
nificant proportion” of all elements in G can be efficiently expressed as a product of
elements from S.

2. (Collect linear relations involving logarithms of elements in S)

MOBILEIRON, INC. - EXHIBIT 1011
Page 045

Chapter

Public-Key Parameters

Contents in Brief
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Introduction . 133
Probabilistic primality tests . 135
(1~ue) Primality tests 142
Prime number generation . 145
Irreducible polynomials over 7LP 154
Generators and elements of high order . 1G0
Notes and further references 1G5

4.y Introduction

The efficient generation of public-key parameters is a prerequisite in public-key systems.
'~ ! A specific example is the requirement of a prime number p to define a finite field 7Gp for

use in the Diffie-Hellman key agreement protocol and its derivatives (§ 12.6). In this case,
an element of high order in 7Gp is also required. Another example is the requirement of
primes p and q for an RSA modulus n = pq (§8.2). In this case, the prime must be of

f sufficient size, and be "random" in the sense that the probability of any particular prime
being selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. Prime numbers may be
required to have certain additional properties,. in order that they do not make the associated
cryptosystems susceptible to specialized attacks. A third example is the requirement of an
irreducible polynomial f (x) of degree m over the finite field 7Gp for constructing the finite
field IFpm . In this case; an element of high order in IFp„~ is also required.

Chapter outline
The remainder of §4.1 introduces basic concepts relevant to prime number generation and
summarizes some results on the distribution of prime numbers. Probabilistic primality tests,
the most important of which is the Miller-Rabin test, are presented in §4.2. True primality

~ tests by which arbitrary integers can be proven to be prime are the topic of §4.3; since these
tests are generally more computationally intensive than probabilistic primality tests, they
are not described in detail. §4.4 presents four algorithms for generating prime numbers,
strong primes, and provable primes. §4.5 describes techniques for constructing irreducible
and primitive polynomials, while §4.6 considers the production of generators and elements
of high orders in groups. §4.7 concludes with chapter notes and references.

3

133

Facebook's Exhibit No. 1005
0032

MOBILEIRON, INC. - EXHIBIT 1011
Page 046

i34 Ch. 4 Public-Key Parameters

4.1.1 Generating large prime numbers naively
To motivate the organization of this chapter and introduce many of the relevant concepts,
the problem of generating large prime numbers is first considered. The most natural method
is to generate a random number n of appropriate size, and check if it is prime. This can
be done by checking whether n is divisible by any of the prime numbers < ~, While
more efficient methods are required in practice, Eo motivate further discussion consider the
following approach:

1. Generate as candidate a random odd number n .of appropriate size.
2. Test n for primality.
3. If n is composite, return to the first step.
A slight modification is to consider candidates restricted to some search sequence start-

ing from n•, a trivial search sequence which may be used is n, n ~- 2, n -I- 4, n -{- 6, , . .. Us-
ing specific search sequences may allow one to increase the expectation that a candidate is
prime, and to find primes possessing certain additional desirable properties a priori.
In step 2, the test for primality might be either a test which proves that the candidate

is prime (in which case the outcome of the generator is called a provable prirree), or a test
which establishes a weaker result, such as that n is "probably prime" (in which case the out-
come of the generator is called a probable prime). In the latter case, careful consideration
must be given to the exact meaning of this expression. So-called probabilistic primality
tests typically determine, with mathematical certainty, which candidates n are composite,
but do not provide a mathematical proof that n is prime in the case when such a number is
declared to be "probably" so. In the latter case, however, when used properly one may often
be able to draw conclusions more than adequate for the purpose at hand. For this reason,
such tests are more properly called compositeness tests than probabilistic primality tests.
True primality tests, which allow one to conclude with mathematical certainty that a num-
ber is prime, also exist, but generally require considerably greater computational resources.

While (true) primality tests can determine (with mathematical certainty) whether a typ-
ically random candidate number is prime, other techniques exist whereby candidates n are
specially constructed such that it can be established by mathematical reasoning whether a
candidate actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniques for prime number generation is the use
of randomness. Candidates are typically generated as a function of a random input. The
technique used to judge the primality of the candidate, however, may or may not itself use
random numbers. If it does not, the technique is deterministic, and the result is reproducible;
if it does, the technique is said to be randomized. Both deterministic and randomized prob-
abilistic primality tests exist.
In some cases, prime numbers are required which have additional properties. For ex-

ample, to make the extraction of discrete logarithms in 7GP resistant to an algorithm due to
Pohlig and Hellman (§3.6.4), it is a requirement that p —1 have a large prime divisor. Thus
techniques for generating public-key parameters, such as prime numbers, of special form
need to be considered.

4.1.2 Distribution of prime numbers
Let ~r(~.) denote the number of primes in the interval [2, ~]. The prime number theorem
(Fact 2.95) states that ~r(x) ~~n ~ .1 In other words, the number of primes in the interval

E ,

lIf f (~) and g(~) are two functions, then f (x) ~ g(x) means that lim~~~ 9~ = 1.

Facebook's Exhibit No. 1005
0033

MOBILEIRON, INC. - EXHIBIT 1011
Page 047

X 4.2 Probabilistic primality tests i35

(2, x] is approximately equal to IR ~ . The prime numbers are quite uniformly distributed, as
the following three results illustrate.

4.1 Fact (Dirichlet theorem) If gcd(a, n) = 1, then there are infinitely many primes congruent
to a modulo n.

A more explicit version of Dirichlet's theorem is the following.

~ 4.2 Fact Let ~r(~, n, a) denote the number of primes in the interval (2, x] which are congruent
to a modulo n, where gcd(a, n) = 1. Then

~(x~ n~ a~ ,,,
x

~(n)ln x~
In other words, the prime numbers are roughly uniformly distributed among the ~(~c) con-
gruence classes in 7Ln, for any value of n. .

4.3 Fact (approximation for the nth prime number) Let pn denote the nth prime number. Then
per, N n In n. More explicitly,

n In n G pn < n(ln n + In Inn) for n > 6.

4.2 Probabilistic primality tests
The algorithms in this section are methods by which arbitrary positive integers are tested to
provide partial information regarding their primality. More specifically, probabilistic pri-
mality tests have the following framework. For each odd positive integer n, a set W (n) C
7Ln is defined such that the following properties hold.:

(i) given a E 7G~,, it can be checked in deterministic polynomial time whether a E W (n) ;
(ii) if n is prime, then W (n) = 0 (the empty set); and
(iii) if n is composite, then #W (n) > 2 .

4.4 DefinitiOn If n is composite, the elements of W (n) are called witnesses to the compos-
iteness of n, and the elements of the complementary set L(n) = 7Gn \ W(n) are called
liars.

A probabilistic primality test utilizes these properties of the sets W (n) in the following
manner. Suppose that n is an integer whose primality is to be determined. An integer a E
7Gn is chosen at random, and it is checked if a E W (n). The test outputs "composite" if
a E W (n), and outputs "prime" if a ¢ W (n). If indeed a E W (n), then n is said to fail the
primality testfor the base a; in this case, n is surely composite. If a ¢ W (n), then n is said
to pass the primaliry test for the base a; in this case, no conclusion with absolute certainty
can be drawn about the primality of n, and the declaration "prime" may be inconect.2

Any single execution of this test which declazes "composite" establishes this with cer-
tainty. On the other hand, successive independent runs of the test all of which return the an-
swer "prime" allow the confidence that the input is indeed prime to be increased to whatever
level isdesired —the cumulative probability of error is multiplicative over independent tri-
als. If the testis run t times independently on the composite number n, the probability that
n is declared "prime" all t times (i.e., the probability of error) is at most (2)t.

2This discussion illustrates why a probabilistic primality test is more properly called.a compositeness test.

Facebook's Exhibit No. 1005
0034

MOBILEIRON, INC. - EXHIBIT 1011
Page 048

136 Ch. 4 Public-Key Parameters

4.5 Definition An integer n which is believed to be prime on the basis of a probabilistic pri-
mality testis called a probable prime.

'Itvo probabilistic primality tests are covered in this section: the Solovay-Strassen test
(§4.2.2) and the Miller-Rabin test (§4.23). For historical reasons, the Fermat test is first
discussed in §4.2.1; this test is not truly a probabilistic primality test since it usually fails
to distinguish between prime numbers and special composite integers called Carmichael
numbers.

4.2.1 Fermat's test
Fermat's theorem (Fact 2.127) asserts that if n is a prime and a is any integer,l < a < n —1,
then an-1 - 1 (mod n). Therefore, given an integer n whose primality is under question,
finding any integer a in this interval such that this equivalence is not true suffices to prove
that n is composite.

4.6 Definition Let n be an odd composite integer. An integer a, 1 < a < n — 1, such that
an-1 ~ 1 (mod n) is called a Fermat witness (to compositeness) for n.

Conversely, finding an integer a between 1 and n — 1 such that an-1 - 1 (mod n)
makes n appear to be a prime i'n the. sense that it satisfies Fermat's theorem for the base a.
This motivates the following definition and Algorithm 4.9.

4.7 Definition Let n be an odd composite integer and let a be an integer, 1 < a < n — 1.
Then n is said to be a pseudoprime to the base a if an-1 - 1 (mod n). The integer a is
called a Fermat liar (to primality) for n.

4.8 Example (pseudoprime) The composite integer n = 341 (= 11 x 31) is a pseudoprime
to the base 2 since 2340 = 1 (mod 341). ❑

4.9 Algorithm Fermat primality test

FERMAT(n,t)
INPUT: an odd integer n > 3 and security parameter t > 1.
OUTPUT: an answer "prime" or "composite" to the question: "Is n prime?"

1. For i from 1 to t do the following:
1.1 Choose a random integer a, 2 < a < n — 2.
1.2 Compute r = an-1 mod n using Algorithm 2.143.
1.3 If r ~ 1 then return("composite").

2. Return("prime").

If Algorithm 4.9 declares "composite", then n is certainly composite. On the, other
hand, if the algorithm declares "prime" then no proof is provided that n is indeed prime.
Nonetheless, since pseudoprimes for a given base a are known to be rare, Fermat's test
provides a correct answer on most inputs; this, however, is quite distinct from providing
a correct answer most of the time (e.g., if run with different bases) on every input. In fact,

`""~, it does not do the latter because there are (even rarer) composite numbers which are pseu-
t i; doprimes to every base a for which gcd(a, n) = 1.

Facebook's Exhibit No. 1005
0035

MOBILEIRON, INC. - EXHIBIT 1011
Page 049

~ 4.2 Probabilistic primality tests 137

4.10 Definition , A Carmichael number n is a composite integer such that a"`-1 - 1 (mod n)
' for all integers a which satisfy gcd(a, n) = 1.

If n is a Carmichael number, then the only Fermat witnesses for n are those integers
a, 1 < a < n — 1, for which gcd(a, n) > 1. Thus, if the prime factors of n are all large,
then with high probability the Fermat test declares that n is "prime", even if the number of
iterations t is large. This deficiency in the Fermat test is removed in the Solovay-Strassen
and Miller-Rabin probabilistic primality tests by relying on criteria which are stronger than
Fermat's theorem.

This subsection is concluded with some facts about Carmichael numbers. If the prime
factorization of n is known, then Fact 4.11 can be used to easily determine whether n is a
Carmichael number.

4.11 Fact (necessary and sufficient conditions for Carmichael numbers) A composite integer
n is a Carmichael number if and only if the following two conditions are satisfied:

(i) n is square-free, i.e., n is not divisible by the square of any prime; and
(ii) p — 1 divides n — 1 for every prime divisor p of n.

A consequence of Fact 4.11 is the following.

4.12 Fact Every Carmichael number is the product of at least three distinct primes.

4.13 Fact (bounds for the number of Carmichael numbers)
(i) There are an infinite number of Carmichael numbers. In fact, there are more than

n2~7 Carmichael numbers in the interval [2, n~, once n is sufficiently-large.
(ii) The best upper bound known for C(n), the number of Carmichael numbers < n, is:

C~n~<nl—{l+0(1)}]nlnln~c/lnlnn forn~oo.

The smaltest Carmichael number is n = 561 = 3 x 11 x 17. Carmichael numbers are
relatively scarce; there are only 105212 Carmichael numbers < 1015.

~~
4.2.2 Solovay-Strassen test

The Solovay-Strassen probabilistic primality test was the first such test popularized by the
advent ofpublic-key cryptography, in particular the RSA cryptosystem. There is no longer
any reason to use this test, because an alternative is available (the Miller-Rabin test) which.
is both more efficient and always at least as correct (see Note 4.33). Discussion is nonethe-
less included for historical completeness and to clarify this exact point, since many people
continue to reference this test.

Recall (§2.4.5) that ~~~ denotes the Jacobi symbol, and is equivalent to the Legendre
symbol if n is prime. The Solovay-Strassen test is based on the following fact.

:r

>t
g
t,

4.14 Fact (Euler's criterion) Let n be an odd prime. Then a~~'-1~~2 - ~n~ (mod n) for all
integers a which satisfy gcd(a, ~) = 1.

Fact 4.14 motivates the following definitions.

~- 4.15 Definition Let n be an odd composite integer and let a be an integer, 1 < a < n — 1.
(i) If either gcd(a, n) > 1 or a~n-1~~2 ~ ~n~ (mod n), then a is called an Eulerwitness

(to compositeness) for rc.

Facebook's Exhibit No. 1005
0036

MOBILEIRON, INC. - EXHIBIT 1011
Page 050

138 Ch. 4 Public-Key Parameters

(ii) Otherwise, i.e., if gcd(a, n) = 1 and a~n-1>~2 = ~~~ (mod ~), then n is said to be
an Euler pseudoprime to the base a. (That is, n acts like a prime in that it satisfies
Euler's criterion for the particular base a.) The integer a is called an Euler liar (to
primality) for n.

4.16 Example (Euler pseudoprime) The composite integer 91(= 7 x 13) is an Euler pseudo-
prime to the base 9 since 945 - 1 (mod 91) and ~91~ = 1. ❑

Euler's criterion (Fact 4.14) can be used as a basis for a probabilistic primality test be-
cause of the following result.

4.17 Fact Let n be an odd composite integer. Then at most ~(n)/2 of all the numbers a, 1 <
a < n — 1, are Euler liars foi n (Definition 4.15). Here, ~ is the Euler phi function (Defi-
nition 2.100).

4.18. Algorithm Solovay-Strassen probabilistic primality test
SOLOVAY-STRASSEN(n,t)
INPUT: an odd integer ~ > 3 and security parameter t > 1.
OUTPUT: an answer "prime" or "composite" to the question: "Is n prime?"

1. For i from 1 to t do the following:
1.1 Choose a random integer a, 2 < a < n — 2. .
1.2 Compute r = a~n-1)/z mod n using Algorithm 2.143.
1.3 If r ~ 1 and r # n — 1 then return("composite").
1.4 Compute the Jacobi symbol s = ~n~ using Algorithm 2.149.
1.5 If r ~ s (mod n) then return ("composite").

2. Return("prime").

If gcd(a, n) = d, then d is adivisor of r = a~n-1>~2 mod n. Hence, testing whether
r ~ 1 is step 1.3, eliminates the necessity of testing whether gcd(a, n) ~ 1. If Algo-
rithm 4.18 declares "composite", then n is certainly composixe because prime numbers do
not violate Euler's criterion (Fact 4.14). Equivalently, if n is actually prime, then the algo-rithm always declares "prime". On the other hand, if n is actually composite, then since the
bases a in step 1.1 are chosen independently during each iteration of step 1, Fact 4.17 can be
used to deduce the following probability of the algorithm erroneously declaring "prime".

4.19 Fact (Solovay-Strassen error-probability bound Let n be an odd composite integer. Theprobability that SOLOVAY-STRASSEN(n,t) declares n to be "prime" is less than (2)t.

4.2.3 Miller-Rabin test
The probabilistic primality test used most in practice is the Miller-Rabin test, also known
as the strong pseudoprime test. The test is based on the following fact.

4.20 Fact Let n be an odd prime, and let n — 1 = 23r where r is odd. Let a be any integer
such that gcd(a, n) = 1. Then either a"' - 1 (mod n~ or a2'T - —1 (mod n) for somej,0< j <s-1.

Fact 4.20 motivates the following definitions.

Facebook's Exhibit No. 1005
0037

MOBILEIRON, INC. - EXHIBIT 1011
Page 051

§4.2 Probabilistic primality tests. 139

4.21 Definition Let n be an odd composite integer and let n — 1 = 23r where r is odd. Let a
be an integer in the interval [l, n — 1].

(i) If a'' ~ 1 (mod ~,) and if a2''' ~ —1 (mod n) for all j, 0 < j < s — 1, then a is
called a strong witness (to compositeness) for n. '

(ii) Otherwise, i.e., if either aT - 1 (mod n) or a2''' - —1 (mod n) for some j, 0 <
j .< s — 1, then n is said to be a strong pseudoprime to the base a. (That is, n acts
like a prime in that it satisfies Fact 4.20 for the particular base a.) The integer a is
called a strong liar (to primality) for n.

4.22 Example (strong pseudoprime) Consider the composite integer n = 91(= 7 x 13). Since
91 — 1 = 90 = 2 x 45, s = 1 and r = 45. Since 9'' = 945 - 1 (mod 9i), 91 is a strong
pseudoprime to the base 9. The set of all strong liars for 91 is:

. ' {1, 9,10,12,16,17, 22, 29, 38, 53, 62, 69, 74, 75, 79, 81, 82, 90}.

Notice that the number of strong liars for 91 is 18 =x(91)/4, where ~ is the Euler phi
function (cf. Fact 4.23). ❑

Fact 4.20 can be used as a basis for a probabilistic primality test due to the following result.

4.23 Fact If n is an odd composite integer, then at most 4 of all the numbers a, 1 < a < n —1,
are strong liars for n. In fact, if n ~ 9, the number of strong liars for n is at most ~(n) /4,
where ~ is the Euler phi function (Definition 2.100).

4.24 Algot'ithm Miller-Rabin probabilistic primality test

MILLER-RABIN(n,t)
~~ INPUT: an odd integer n > 3 and security ,parameter t > 1.

OUTPUT: an answer "prime" or "composite" to the question: "Is n prime?"
1. Write n — 1 = 23r such that r is odd.
2. For i from 1 to t do the following:

2.1 Choose a random integer a, 2 < a < n — 2.
f 2.2 Compute y = a'' mod n using Algorithm 2.143.

2.3 If y ~ 1 and y # n — 1 then do the following:
j~l.
While j < s — 1 and y ~ n — 1 do the following:

' ' Compute y~y2 mod n.
If y = 1 then return("composite").
j~j~-1.

If y ~ n — 1 then return ("composite").
3. Return("prime").

Algorithm 4.24 tests whether each base a satisfies the conditions of Definition 4.21(1).
In the fifth line of step 2.3, if y = 1, then a2'"' - 1 (mod n). Since it is also the case that
az'-lr ~ fl (mod n), it follows from Fact 3.18 that n is composite (in fact gcd(a2'-1T
1, n) is anon-trivial factor of n). In the seventh line of step 2.3, if y ~ n — 1, then a is a
strong witness for n. If Algorithm 4.24 declares "composite", then n is certainly compos-
ite because prime numbers do not violate Fact 4.20. Equivalently, if n is actually prime,
then the algorithm always declares "prime". On the other hand, if n is actually composite,
then Fact 4.23 can be used to deduce the following probability of the algorithm erroneously
declaring "prime".

Facebook's Exhibit No. 1005
0038

MOBILEIRON, INC. - EXHIBIT 1011
Page 052

140 Ch. 4 Public-Key Parameters

4.25 Fact (Miller-Rabin error-probability bound) For any odd composite integer n, the proba-
bility that MILLER-RABIN(n,t) declares n to be "prime" is less than (4)t

4.26 Remark (number of strong liars) For most composite integers n, the number of strong
liars for n is actually much smaller than the upper bound of ~(n)/4 given in Fact 4.23.
Consequently, the Miller-Rabin error-probability bound is much smaller than (4)t for most
positive integers n.

4.27 Example (some composite integers have very few strong liars) The only strong liars for
the composite integer n = 105 (= 3 x 5 x ?) are 1 and 104. More generally, if k > 2 and
n is the product of the first k odd primes, there are only 2 strong liars for n, namely 1 and
n -1. ❑

4.28 Remark (fixed bases in Miller-Rabin) If al and a2 are strong liars for n, their product
ala2 is very likely, but not certain, to also be a strong liar for n. A strategy that is some-
times employed is to fix the bases a in the Miller-Rabin algorithm to be the first few primes
(composite bases are ignored because of the preceding statement), instead of choosing them
at random.

4.29 Definition Let pl, p2, . . . , pt denote the first t primes. Then ~t is defined to be the small-
estpositive composite integer which is a strong pseudoprime to all the bases pl, p2, . • • , pt•

The numbers ~t can be interpreted as follows: to determine the primality of any integer
n < fit, it is sufficient to apply the Miller-Rabin algorithm to n with the bases a being the
first t prime numbers. With this choice of bases, the answer returned by Miller-Rabin is
always correct. Table 4.1 gives the value of ~t for 1 < t < 8.

t 'tic
1 Zo47
2 1373653
3 25326001
4 3215031751
5 2152302898747
6 3474749660383
7 341550071728321
8 341550071728321

Table 4.1: Smallest strong pseudoprimes. The table lists values of fit, the smallest positive composite
integer that is a strong pseudoprime to each of the first t prime bases, for 1 < t < 8.

4.2.4 Comparison: Fermat, Solovay-Strassen, and Miller-Rabin
Fact 4.30 describes the relationships between Fermat liars, Euler liars, and strong liars (see
Definitions 4.7, 4.15, and 4.21).

4.30 Fact Let n be an odd composite integer.
(i) If a is an Euler liar for n, then it is also a Fermat liar for n.
(ii) If a is a strong liar for n, then it is also an Euler liar for n.

Facebook's Exhibit No. 1005
0039

MOBILEIRON, INC. - EXHIBIT 1011
Page 053

~ 4.2 Probabilistic primality tests 147

4.31 Example (Fermat, Euler, strong liars) Consider the composite integer n = 65 (= 5 x
13). The Fermat liars for 65 are {1, 8,12,14,18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64}.
The Euler liars for 65 are {1, 8,14,18, 47, 51, 57, 64}, while the strong liars for 65 are
{1, 8,18, 47, 57, 64}. ❑

For a fixed composite candidate n, the situation is depicted in Figure 4.1. This set-

= i
Fermat liars for n

_~
Euler liars for n

strong liars for n

Figure 4,-1: Relationships between Fermat, Euler, and strong liars for a composite integer n.

ties the question of the relative accuracy of the Fermat, Solovay-Strassen, and Miller-Rabin
tests, not only in the sense of the relative correctness of each test on a fixed candidate n, but
also in the sense that given n, the specified containments hold for each randomly chosen
base a. Thus, from a correctness point of view, the Miller-Rabin testis never worse than the
Solovay-Strassen test, which in turn is never worse than the Fermat test. As the following
result shows, there are, however, some composite integers n for which the Solovay-Strassen
and Miller-Rabin tests are equally good.

4.32 Fact If n - 3 (mod 4), then a is an Euler liar for n if and only if it is a strong liar for n.

What remains is a comparison of the computational costs. While the Miller-Rabin test
may appear more complex, it actually requires, at worst, the same amount of computation
as Fermat's test in terms of modular multiplications; thus the Miller-Rabin testis better than

3 Fermat's test in all regards. At worst, the sequence of computations defined in MILLER-
RABIN(n,l)requires the equivalent of computing a~'~-1>~2 mod n. It is also the case that
MILLER-RABIN(n,l) requires less computation than SOLOVAY-STRASSEN(n,l), the
latter requiring the computation of a~"-1~~2 mod n and possibly a further Jacobi symbol
computation. For this reason, the Solovay-Strassen is both computationally and conceptu-
ally more complex.

4.33 Note (Miller-Rabin is better than Solovay-Strassen) In summary, both the Miller-Rabin
and Solovay-Strassen tests are correct in the event that either their input is actually prime,
or that they declare their input composite. There is, however, no reason to use the Solovay-
Strassen test (nor the Fermat test) over the Miller-Rabin test. The reasons for this are sum-
marized below.

(i) The Solovay-Strassen test is computationally more expensive.
(ii) The Solovay-Strassen test is harder to implement since it also involves Jacobi symbol

computations.
(iii) The error probability for Solovay-Strassen is bounded above by (2)t, while the error

probability for Miller-Rabin is bounded above by (4) t

Facebook's Exhibit No. 1005
0040

MOBILEIRON, INC. - EXHIBIT 1011
Page 054

142 Ch. 4 Public-Key Parameters

(iv) Any strong liar for n is also an Euler liar for n. Hence,- from a correctness point of
view, the Miller-Rabin test is never worse than the Solovay-Strassen test.

4.3 (True) Primality tests
The primality tests in this section are methods by which positive integers can be proven
to be prime, and are often referred to as primality proving algorithms. These prirnality
tests are generally more computationally intensive than the probabilistic primality tests of
X4.2. Consequently, before applying one of these tests to a candidate prime n, the candidate
should be subjected to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).

4.34 Definition An integer n which is believed to be prime on the basis of a primality proving
algorithm is called a provabCe prime.

4.3.1 Testing Mersenne numbers
Efficient algorithms are known for testing primality of some special classes of numbers,
such as Mersenne numbers and Fermat numbers. Mersenne primes n are useful because
the arithmetic in the field 7Gn for such n can be implemented very efficiently (see § 14.3.4).
The Lucas-Lehmer test for Mersenne numbers (Algorithm 4.37) is such an algorithm.

4.35 Definition Lets > 2 be an integer. A Mersenne number is an integer of the form 2S —1
If 2S — 1 is prime, then it is called a Mersenne prime.

The following are necessary and sufficient conditions for a Mersenne number to be prime.

4.36 Fact Let s .> 3. The Mersenne number n = 2S — 1 is prime if and only if the following
two conditions are satisfied:

(i) s is prime; and
(ii) the sequence of integers defined by ~o = 4 and uk+l = (uk — 2) mod n for l~ > 0

satisfies us_2 = 0.

Fact 4.36 leads to the following deterministic polynomial-time algorithm for dctermin-
ing (with certainty) whether a Mersenne number is prime.

4.37 Algorithm Lucas-Lehmer primality test for Mersenne numbers

INPUT: a Mersenne number n = 2S — 1 with s > 3.
OUTPUT: an answer "prime" or "composite" to the question: "Is n prime?"

1. Use trial division to check if s has any factors between 2 and L~~ . If it does, then
return ("composite").

2. Set uE-4.
3. For k from 1 to s — 2 do the following: compute u~(u2 — 2) mod n.
4. If v, = 0 then return("prime"). Otherwise, return("composite").

It is unknown whether there are infinitely many Mersenne primes. Table 4.2 lists the
33 known Mersenne primes.

Facebook's Exhibit No. 1005
0041

MOBILEIRON, INC. - EXHIBIT 1011
Page 055

j4.3 (True) Primality tests 143

Index
j

M~ decimal
digits

1 2 1
2 3 1
3 5 2
4 7 3
5 13 4
6 17 6
7 19 6
8 31 10
9 61 19
10 89 27
11 107 33
12 127 39
13 521 157
14 607 183
15 1279 386
16 2203 664
17 2281 687

Index
j

M~ decimal
digits

18 3217 969
19 4253 1281
20 4423 1332
21 9689 2917
22 9941 2993
23 11213 3376
24 19937 6002
25 21701 6533
26 23209 6987
27 44497 13395
28 86243 25962
29 110503 33265
30 132049 39751
31 216091 65050
32? 756839 227832
33? 859433 258716

Table 4.2: Known Mersenne primes. The table shows the 33 known exponents M~, 1 G j G 33, for
which 2M~ —1 is a Mersenne prime, and also the number of decimal digits in 2M~ —1. The question
marks after j = 32 and j = 33 indicate that it is not known whether there are any other exponents s
between M31 and these numbers for which 2S — 1 is prime.

4.3.2 Primality testing using the factorization of n —1
This section presents results which can be used to prove that an integer n is prime, provided
that the factorization or a partial factorization of n-1 is known. It may seem odd to consider
a technique which requires the factorization of ~, — 1 as a subproblem — if integers of this
size can be factored, the primality of n itself could be determined by factoring n. However,
the factorization of n —1 may be easier to compute if ~, has a special form, such as a Fermat
number n = 22k -~ 1. Another situation where the factorization of n — 1 may be easy to
compute is when the candidate n is "constructed" by specific methods (see §4.4.4).

4.38 Fact Let ~ > 3 be an integer. Then n is prime if and only if there exists an integer a
satisfying:

(i) a't-1 - 1 (mod n); and
(ii) a~~'-1~~9 ~ 1 (mod n) for each prime divisor q of n — 1.

This result follows from the fact that 7G;~ has an element of order n — 1 (Definition 2.128)
if and only if n is prime; an element a satisfying conditions (i) and (ii) has order n — 1.

4.39 Note (primality test based on Fact 4.38) If n is a prime, the number of elements of order
n — 1 is precisely ~(n — 1). Hence, to prove a candidate n prime, one simply chooses
an integer a E 7L~, at random and uses Fact 4.38 to check if a has order n — 1. If this is
the case, then n is certainly prime. Otherwise, another a E 7Ln is selected and the test is
repeated. If n is indeed prime, the expected number of iterations before an element a of

! order n — 1 is selected is O(ln lnn); this follows since (n — 1)/~(n — 1) < 6lnlnnfor

Facebook's Exhibit No. 1005
0042

MOBILEIRON, INC. - EXHIBIT 1011
Page 056

144 Ch. 4 Public-Key Parameters

n > 5 (Fact 2.102). Thus, if such an a is not found after a "reasonable" number (for ex-
ample, 121n In n) of iterations, then n is probably composite and should again be subjected
to a probabilistic primality test such as Miller-Rabin (Algorithm 4.24).3 This method is, in
effect, a probabilistic compositeness test.

The next result gives a method for proving primality which requires knowledge of only
a partial factorization of n — 1.

4.40 Fact (Pocklington's theorem) Let n > 3 be an integer, and let n = RF -I-1 (i.e. F divides
n — 1) where the prime factorization of F is F = ~~=1 q~' . If there exists an integer a
satisfying:

(i) a"-1 - 1 mod n~; and
(ii) gcd(a~~—l~~q~ — 1, n) = 1 for each j, 1 < j < t,

then every prime divisor p of n is congruent to 1 modulo F. It follows that if F > ~ —1,
then n is prime.

If ~ is indeed prime, then the following result establishes that most integers a satisfy ~
conditions (i) and (ii) of Fact 4.40, provided that the prime divisors of F > ~ — 1 are
sufficiently large.

4.41 Fact Let ~, = RF + 1 be an odd prime with F > ~ — 1 and gcd(R, F) = 1. Let the
distinct primp factors of F be ql, q2, . . . , qt. Then the probability that a randomly selected
base a, 1 < ~ < n — 1, satisfies both: (i) an-1 - 1 (mod n); and (ii) gcd(a~n-1)/4~ _
1, ~) = 1 for each j, 1 < j < t, is ~t_1(1 — 1/q~) > 1 — ~t 1/q~.

7 — — .7=1

Thus, if the factorization of a divisor F > ~ — 1 of n — 1 is known, one simply
chooses random integers a in the interval [2, n — 2~ until one is found satisfying conditions
(i) and (ii) of Fact 4.40, implying that n is prime. If such an a is not found after a "rea-
sonable" number of iterations,4 then n is probably composite.and should be subjected to a
probabilistic primality test (footnote 3 also applies here). This method is, in effect, a prob-
abilistic compositeness test.

The next result gives a method for proving primality which only requires the factoriza-
tion of adivisor F of n —1 that is greater than 3 n. For an example of the use of Fact 4.42,
see Note 4.63.

4.42 Fact Let ~ > 3 be an odd integer. Let n = 2RF -I- 1, and suppose that there exists an
integer a satisfying both: .(i) an-1 - 1 (mod n~; and (ii) gcd(a~"-1>~4 — 1', n~ = 1 for
each prime divisor q of F. Let ~ > 0 and y be defined by 2R = ~F -~ y and 0 < y < F.
If F > 3 n and if y2 — 4~ is neither 0 nor a perfect square, then n is prime.

4.3.3 Jacobi sum test
The Jacobi sum test is another true primality test. The basic idea is to test a set of con-
gruences which are analogues of Fermat's theorem (Fact 2.127(1)) in certain cyclotomic
rings. The running time of the Jacobi sum test for determining the primality of an integer
~ is O((ln n~c In In In n.~ bit operations for some constant c. This is "almost' a polynomial-
time algorithm since the exponent In In In ~, acts like a constant for the range of values for

3 Another approach is to run both algorithms in pazallel (with an unlimited number of iterations), until one of
them stops with a definite conclusion "prime" or "composite".

4The number of iterations maybe taken to be T where PT < (2) loo and where P — 1— rj~ _ 1(1-1 /q~).

Facebook's Exhibit No. 1005
0043

MOBILEIRON, INC. - EXHIBIT 1011
Page 057

X4.4 Prime number generation 145

n of interest. For example, if n < 2512, then In In Inn , < 1.78. The version of the 7a-
cobi sum primality test used in practice is a randomized algorithm which terminates within
O (k(ln n~c In In In n~ steps with probability at least 1 — (2) ~ for every k > 1, and always
gives a correct answer. One drawback of the algorithm is that it does not produce a "certifi-
cate" which would enable the answer to be verified in much shorter time than running the
algorithm itself.

The Jacobi sum testis, indeed, practical in the sense that the primality of numbers that
are several hundred decimal digits long can be handled in just a few minutes on a com-
puter. However, the test is not as easy to program as the probabilistic Miller-Rabin test
(Algorithm 4.24), and the resulting code is not as compact. The details of the algorithm are
complicated and are not given here; pointers to the literature are given in the chapter notes
on page 166.

4.3.4 Tests using elliptic curves
Elliptic curve primality proving algorithms are based on an elliptic curve analogue of Pock-
lington's theorem (Fact 4.40). The version of the algorithm used in practice is usually re-
ferred to as Atkin's test or the Elliptic Curve Primaliry Proving algorithm (ECPP). Under
heuristic arguments, the expected running time of this algorithm for proving the primality
of an integer n has been shown to be O((ln n)6+E) bit operations for any e > 0. Atkin's
test has the advantage over the Jacobi sum test (§4.3.3) that it produces a short certificate of
primaliry which can be used to efficiently verify the primality of the number. Atkin's test
has been used to prove the primality of numbers more than 1000 decimal digits long.

The details of the algorithm are complicated and are not presented here; pointers to the
literature are given in the chapter notes on page 166.

4.4 Prime number generation
This section considers algorithms for the generation of prime numbers for cryptographic
purposes. Four algorithms are presented: Algorithm 4.44 for generating probable primes
(see Definition 4.5), Algorithm 4.53 for generating strong primes (see Definition 4.52), Al-
gorithm 4.56 for generating probable primes p and q suitable for use in the Digital Signature
Algorithm (DSA), and Algorithm 4.62 for generating provable primes (see Definition 4.34).

4.43 Note (prime generation vs. primality testing) Prime number generation differs from pri-
mality testing as described in §4.2 and X4.3, but may and typically does involve the latter.
The former allows the construction of candidates of a fixed form which may lead to more
efficient testing than possible for random candidates.

4.4. ndom search for probable primes
By the prime number theorem (Fact 2.95), the proportion of (positive) integers < x that
are prime is approximately 1/ In x. Since half of all integers < x are even, the proportion
of odd integers < x that are prime is approximately 2/ In x. For instance, the proportion
of all odd integers < 2512 that are prime is approximately 2/(512 • ln(2)) . ~̂ 1/177. This
suggests that a reasonable strategy for selecting a random k-bit (probable) prime is to re-
peatedly pick random k-bit odd integers n until one is found that is declared to be "prime"

Facebook's Exhibit No. 1005
0044

MOBILEIRON, INC. - EXHIBIT 1011
Page 058

146 Ch. 4 Public-Key Parameters

by MILLER-RABIN(n,t) (Algorithm 4.24) for an appropriate value of the security param-
eter t (discussed below).
If a random k-bit odd integer n is divisible by a small prime, it is less computationally

expensive to rule out the candidate n by trial division than by using the Miller-Rabin test.
Since the probability that a random integer n has a small prime divisor is relatively large,
before applying the Miller-Rabin test, the candidate n should be tested for small divisors
below apre-determined bound B. This can be done by dividing n by all the primes below
B, or by computing greatest common divisors of n and (pre-computed) products of several
of the primes < B. The proportion of candidate odd integers n not ruled out by this trial
division is ~3~ p<B (1— P) which, by Merten's theorem, is approximately 1.12/ In B (here
p ranges over prime values). For example, if B = 256, then only 20% of candidate odd
integers n pass the trial division stage, i.e., 80%are discarded before the more costly Miller-i
Rabin test is performed.

4.44 AlgoCithm Random search for a prime using the Miller-Rabin test

RANDOM-SEARCH(k,t)
INPUT: the required bitlength k of the prime, and a security parameter t. (See Note 4.49
for guidance on selecting t.)
OUTPUT: a random k-bit probable prime.

1. Generate an odd k-bit integer n at random.
F 2. Use trial division to determine whether n is divisible by any odd prime < B (see

Note 4.45 for guidance on selecting B). If it is then go to step 1.
3. If MILLER-RABIN(n,t) (Algorithm 4.24) outputs "prime" then return(n).

Otherwise, go to step 1.

4.45 Note (optimal trial division bound B) Let E denote the time for a full k-bit modular ex-
ponentiation, and let D denote the time required for ruling out one small prime as divisor
of a k-bit integer. (The values E and D depend on the particular implementation of long-
integer arithmetic.) Then the trial division bound B that minimizes the expected running
time of Algorithm 4.44 for generating a k-bit prime isroughly B = EID. A more accurate
estimate of the optimum choice for B can be obtained experimentally. The odd primes up
to B can be precomputed and stored in a table. If memory is scarce, a value of B that is
smaller than the optimum value may be used.

Since the Miller-Rabin test does not provide a mathematical proof that a number is in-
deedprime, the number n returned by Algorithm 4.44 is a probable prime (Definition 4.5).
It is important, therefore, to have an estimate of the probability that n is in fact composite.

4.46 Definition The probability that RANDOM-SEARCH(k,t) (Algorithm 4.44) returns a
composite number is denoted by p~,t.

4.47 Note (remarks on estimating p~,t) It is tempting to conclude directly from Fact 4.25 that
p~,t < (4)t. This reasoning is flawed (although typically the conclusion will be correct in
practice) since it does not take into account the distribution of the primes. (For example, if
the candidate n were chosen from a set S of composite numbers, the probability of error is
1.) The following discussion elaborates on this point. Let X represent the event that n is

~'~~ ~ composite, and let Yt denote the event than MILLER-RABIN(n,t) declares n to be prime.
~ Then Fact 4.25 states that P(Y ~ X) < (4)t. What is relevant, however, to the estimation of

pk,t is the quantity P(X ~Yt). Suppose that candidates n are drawn uniformly and randomly

Facebook's Exhibit No. 1005
0045

MOBILEIRON, INC. - EXHIBIT 1011
Page 059

t~4.4 Prime numbergenerafion >47

from a set S of odd numbers, and suppose p is the probability that n is prime (this depends
on the candidate set S). Assume also that 0 < p < 1. Then by Bayes' theorem (Fact 2.10):

' PAX ~~t) = 1'(X)P~~'tl X) P(~'tl X) 1 (~ t~'~Y) ~ 1'~1't) C p \4) '
since P(Yt) > P. Thus the probability P(X ~Yt) may be considerably larger than (4)t if p is
small. However, the error-probability of Miller-Rabin is usually far smaller than (4)t (see
Remark 4.26). Using better estimates for P(Yt~X) and estimates on the number of k-bit
prime numbers, it has been shown that p~,t is, in fact, smaller than (4)t for all sufficiently
large k. A more concrete result is the following: if candidates n are chosen at random from
the set of odd numbers in the interval [3, x], then P(X ~Yt) < (4)t for all x > lOso

Further refinements for P(Yt ~X) allow the following explicit upper bounds on pk,t for
various values of k and t. 5

4.48 Fact (some upper bounds on pk,t in Algorithm 4.44)

(i) pk,l < k242—~ fork > 2.
(ii) p~,t < k3/22tt-1/242— tk for (t = 2, k > 88) or (3 < t < k/9, k > 27).
(iii) p~,t C o k2—st + 7 k15/42—~~2-2t -~ 12k2—~~4-3t for k~9 < t < k~4, k > 21.
~i~) P~,c < 7kls/42—k/a—zt fort > k/4, k > 21. — —

For example, if k = 512 and t = 6, then Fact 4.48(ii) gives ps12,6 < (2)$$• In other
words, the probability that RANDOM-SEARCH(512,6) returns a 512-bit composite integer
is less than (2)$$. Using more advanced techniques, the upper bounds on p~,t given by
Fact 4.48 have been improved. These upper bounds arise from complicated formulae which
are not given here. Table 43 lists some improved upper bounds on pk,t for some sample
values of k and t. As an example, the probability that RANDOM-SEARCH(500,6) returns
a composite number is < (2)92. Notice that the values of pk,t implied by the table are
considerably smaller than (4 ~t _ ~ 2~2t

t
k 1 2 3 4 5 6 7 8 9 10

100 5 14 20 25 29 33 36 39 41 44
150 8 20 28 34 39 43 47 51 54 57
200 11 25 34 41 47 52 57 61 65 69
250 14 29 39 47 54 60 65 70 75 79
300 19• 33 44 53 60 67 73 78 83 88
350 28 38 48 58 66 73 80 86 91 97
400 37 46 55 63 72 80 87 93 99 105
450 46 54 62 70 78 85 93 100 106 112
500 56 63 70 78 85 92 99 106 113 119
550 65 72 79 86 93 100 107 113 119 126
600 75 82 88 95 102 108 115 121 127 133

Table 4.3: Upper bounds on p~,t for sample values of k and t. An entry j corresponding to k and t
implies p~,t < (2)~.

SThe estimates of p~,t presented in the remainder of this subsection were derived for the situation where Al-
gorithm 4.44 does not use trial division by small primes to rule out some candidates n. Since trial division never
rules out a prime, it can only give a better chance of rejecting composites. Thus the error probability p~,t might
actually be even smaller than the estimates given here.

Facebook's Exhibit No. 1005
0046

MOBILEIRON, INC. - EXHIBIT 1011
Page 060

r

148 Ch. 4 Public-Key Parameters

4.49 Note (controlling the error probability) In practice, one is usually willing to tolerate an er-
rorprobability of (2)80 when using .Algorithm 4.44 to generate probable primes. For sam-
ple values of k, Table 4.4 lists the smallest value of t that can be derived from Fact 4.48
for which pk,t < (z)80• For example, when generating 1000-bit probable primes, Miller-
Rabin with t = 3 repetitions suffices. Algorithm 4.44 rules out most candidates n either
by trial division (in step 2) or by performing just one iteration of the Miller-Rabin test (in
step 3). For this xeason, the only effect of selecting a larger security parameter t on the run-
ningtime of the algorithm will likely be to increase the time required in the final stage when
the (probable) prime is chosen.

k t k t k t k t k t
100 27 500 6 900 3 1300 2 1700 2
.150 18 550 5 950 3 1350 2 1750 2
200 15 600 5 1000 3 1400 2 1800 2
250 12 650 4 1050 3 1450 2 1850 2
300 9 700 4 1100 3 1500 2 1900 2
350 8 750 4 1150 3 1550 2 1950 2
400 7 800 4 1200 3 1600 2 2000 2
450 6 850 3 1250 3 1650 2 2050 2

Table 4.4: For sample k, the smallest t from Fact 4.48 is given for which p~,t < (2)80

4.50 Remark (Miller-Rabin test with base a = 2) The Miller-Rabin test involves exponenti-
ating the base a; this may be performed using the repeated square-and-multiply algorithm
(Algorithm 2.143). If a = 2, then multiplication by a is a simple procedure relative to mul-
tiplying by a in general. One optimization of Algorithm 4.44 is, therefore, to fix the base
a = 2 when first performing the Miller-Rabin test in step 3. Since most composite numbers
will fail the Miller-Rabin test with base a = 2, this modification will lower the expected
running time of Algorithm 4.44.

4.51 Note (incremental search)
(i) An alternative technique to generating candidates 'n at random in step 1 of Algo-

rithm 4.44 is to first select a random k-bit odd number no, and then test the s numbers
n = no, no -~ 2, no -I-- 4, ... , no + 2 (s — 1) for primality. If all these s candidates are
found to be composite, the algorithm is said to have failed. Ifs = c • In 2k where c is a
constant, the probability gk,t,s that this incremental search variant of Algorithm 4.44
returns a composite number has been shown to be less than Sk32-~ for some con-
stant S. Table 4.5 gives some explicit bounds on this error probability for k = 500 and
t < 10. Under reasonable number-theoretic assumptions, the probability of the algo-
rithm failing has been shown to be less than 2e-2c for large k (here, e ~ 2:71828).

(ii) Incremental search has the advantage that fewer random bits are required. Further-
more, the trial division by small primes- in step 2 of Algorithm 4.44 can be accom-
plished very efficiently as follows. First the values R[p] = no mod p are computed
for each odd prime p < B. Each time 2 is added to the current candidate, the values
in the table R are updated as R[p~ ~ (R[p] + 2) mod p. The candidate passes the trial
division stage if and only if none of the R[p] values equal 0.

(iii) If B is large, an alternative method for doing the trial division is to initialize a table
S[i~~0 for 0 < i < (s — 1~; the entry S[i] corresponds to the candidate no + 2i.
For each odd prime P < B, no mod P is computed. Let j be the smallest index for

Facebook's Exhibit No. 1005
0047

MOBILEIRON, INC. - EXHIBIT 1011
Page 061

34.4 Prime numbergeneration 149

t
c 1 2 3 4 5 6 7 8 9 10
1 17 37 51 63 72 81 89 96 103 110
5 13 32 46 58 68 77 85 92 99 105

10 11 30 44 56 66 75 83 90 97 103

Tab/e 4.5: Upper bounds on the error probability of incremental search (Note 4.51) for k = 500
and sample values of c and t. Arc entry j corresponding to c and t implies gsoo,t,s < (2)~, where
s = c • In 2soo

which (no -I- 2j) - 0 (mod p). Then S[j) and each pth entry after it are set to 1. A
candidate no -I- 2i then passes the trial division stage if and only if S[i] = 0. Note
that the estimate for the optimal trial division bound B given in Note 4.45 does not
apply here (nor in (ii)) since the cost of division is amortized over all candidates.

4.4.2. Strong primes
The RSA cryptosystem (§8.2) uses a modulus of the form n = pq, where p and q are dis-
tinct odd primes. The primes p and q must be of sufficient size that factorization of their
product is beyond computational reach. Moreover, they should be random primes in the
sense that they be chosen as a function of a random input through a process defining a pool
of candidates of sufficient cardinality that an exhaustive attack is infeasible. In practice, the
resulting primes must also be of apre-determined bitlength, to meet system specifications.
The discovery of the RSA cryptosystem led to the consideration of several additional con-
straints onthe choice of p and q which are necessary to ensure the resulting RSA system safe
from cryptanalytic attack, and the notion of a strong prime (Definition 4.52) was defined.
These attacks are described at length in Note 8.8(iii); as noted there, it is now believed that
strong primes offer little protection beyond that offered by random primes, since randomly
selected primes of the sizes typically used in RSA moduli today will satisfy the constraints
with high probability. On the other hand, they are no less secure, and require only minimal
additional running time to compute; thus, there is little real additional cost in using them.

4.52 Definition A prime number p is said to be a strong prime if integers T, s, and t exist such
that the following three conditions are satisfied:

(i) p — 1 has a large prime factor, denoted r;
(ii) p + 1 has a large prime factor, denoted s; and
(iii) r — 1 has a large prime factor, denoted t.

In Definition 4.52, a precise qualification of "large" depends on specific attacks that should
be guarded against; for further details, see Note 8.8(iii).

Facebook's Exhibit No. 1005
0048

MOBILEIRON, INC. - EXHIBIT 1011
Page 062

150 Ch. 4 PuBlic-Key Parameters

4.53 AlgoPithm Gordon's algorithm for generating a strong prime

SiJMMARY: a strong prime p is generated.
1. Generate two large random primes s and t of roughly equal bitlength (see Note 4.54).
2. Select an integer io. Find the first prime in the sequence Zit + 1, for i = io n zo ~-

1, io -I- 2, . . . (see Note 4.54). Denote this prime by r = 2it + 1.
3. Compute po = (2sr-2 mod r)s — 1.
4. Select an integer jo. Find the first prime in the sequence po -}- 2 jrs, for j = jo ~ ~o -~

1, jo + 2, . . . (see Note 4.54). Denote this prime by p = po + 2jrs.
5. Return(p).

Justification. To see that the prime P returned by Gordon's algorithm is indeed a strong
prime, observe first (assuming r ~ s) that sr-1 - 1 (mod r); this follows from Fermat's
theorem (Fact 2.127). Hence, Po - 1 (mod r) and po - —1 (mod s). Finally (cf. Defi-
nition 4.52),

(i) p — 1 = po + 2 jrs — 1 - 0 (mod r), and hence p — 1 has the prime factor r;
(ii) P ~- 1 = po + 2 jrs -I- 1 - 0 (mod s), and hence P -{- 1 has the prime factor s; and
(iii) r — 1 = 2it - 0 (mod t), and hence r — 1 has the prime factor t.

4.54 Note (implementing Gordon's algorithm)
(i) The primes s and t required in step 1 can be probable primes. generated by Algo-

rithm 4.44. The Miller-Rabin test (Algorithm 4.24) can be used to test each candidate
for primality in steps 2 and 4, after ruling out candidates that are divisible by a small
prime less than some bound B. See Note 4.45 for guidance on selecting B. Since the
Miller-Rabin test is a probabilistic primality test, the output of this implementation
of Gordon's algorithm is a probable prime.

(ii) By carefully choosing the sizes of primes s, t and parameters io, jo, one can control
the exact bitlength of the resulting prime p. Note that the bitlengths of r and s will
be about half that of p, while the bitlength of t will be slightly less than that of r.

4.55 Fact (running time of Gordorc's algorithm) If the Miller-Rabin test is the primality test used
in steps 1, 2, and 4, the expected time Cordon's algorithm takes to find a strong prime is only
about 19% more than the expected time Algorithm 4.44 takes to find a random prime.

4.4.3 NIST method for generating DSA primes
Some public-key schemes require primes satisfying various specific conditions. For exam-
ple, the NIST Digital Signature Algorithm (DSA of §11.5.1) requires two primes p and q
satisfying the following three conditions:

(i) 21ss ~ q ~ 2160; that is, q is a 160-bit prime;.
(ii) 2L-1 < p < 2L for a specified L, where L = 512 -}- 64l for some 0 < l < 8; and
(iii) q divides p — 1.

This section presents an algorithm for generating such primes p and q. In the following,
H denotes the SHA-1 hash function (§9.53) which maps bitstrings of bitlength < 264 to
160-bit hash-codes. Where required, an integer x in the range 0 < x < 29 whose binary
representation is x —x9_129-1 ~- xy _ 229-2 -I- • • • -E- x222 -}-x12-}- xo should be converted
to the g-bit sequence ~xy_lxy_2 • • • ~Zxlxp), and vice versa.

Facebook's Exhibit No. 1005
0049

MOBILEIRON, INC. - EXHIBIT 1011
Page 063

34.4 Prime number generation 151

4.56 Algorithrll NIST method for generating DSA primes

INPUT: an integer 1, 0 < l C 8.
OiJTPUT: a 160-bit prime q-and an L-bit prime p, where L = 512 -I- 64l and q~(p - 1).

1. Compute L = 512 + 641. Using long division of (L - 1) by 160, find n, b such that
L - 1 = 160n -}- b, where 0 G b < 160.

2. Repeat the following:
2.1 Choose a random seeds (not necessarily secret) of bitlength g > 160.
2.2 Compute U = H(s)~H((s + 1) mod 29).
2.3 Form q from U by setting to 1 the most significant and least significant bits of

U. (Note that q is a 160-bit odd integer.)
2.4 Test q for primality using MILLER-RABIN(q,t) fort > 18 (see Note 4.57).

Until q is found to be a (probable) prime.
3. Set it-0, j~-2.
4. While i < 4096 do the following:

4.1 For k from 0 to n do the following: set YkF-H((s + j + k) mod 2g).
4.2 For the integer W defined below, let X = W -I- 2L-1. (X is an L-bit integer.)

W = Vo -F V12~so + V22s2o ,+, • • • + Un_~2~so(n-i) + ~U~, mod 2b~2iso~,

4.3 Compute c = X mod 2q and set p = X - (c-1). (Note that p - 1 (mod 2q).)
4.4 If p > 2L-1 then do the following:

Test p for primality using MILLER-RABIN(p,t) fort > 5 (see Note 4.57).
If p is a (probable) prime then return(q,p).

4.5 Seti~i+l, j~j+n+l.
5. Go to step 2.

4.57 Note (choice of primality test in Algorithm 4.56)
(i) The FIPS 186 document where Algorithm 4.56 was originally described only speci-

fies that a robust primality test be used in steps 2.4 and 4.4, i.e., a prirnality test where
the probability of a composite integer being declared prime is at most (2)80. If the
heuristic assumption is made that q is a randomly chosen 160-bit integer then, by Ta-
ble 4.4, MILLER-RABIN(q,18) is a robust test for the primality of q. If p is assumed
to be a randomly chosen L-bit integer, then by Table 4.4, MILLER-RABIN(P,5) is
a robust test for the primality of p. Since the Miller-Rabin test is a probabilistic pri-
mality test, the output of Algorithm 4.56 is a probable prime.

(ii) To improve performance, candidate primes q and p should be subjected to trial divi-
sion by all odd primes less than some bound B before invoking the Miller-Rabin test.
See Note 4.45 for guidance on selecting B.

4.58 Note ("weak" primes cannot be intentionally constructed) Algorithm 4.56 has the feature
that the random seed s is not input to the prime number generation portion of the algorithm
itself, but rather to an unpredictable and uncontrollable randomization process (steps 2.2
and 4.1), the output of which is used as the actual random seed. This precludes manipulation
of the input seed to the prime number generation. If the seed s and counter i are made public,
then anyone can verify that q and P were generated using the approved method. This feature
prevents a central authority who generates P and q as system-wide parameters for use in the
DSA from intentionally constructing "weak" primes q and P which it could subsequently
exploit to recover other entities' private keys.

Facebook's Exhibit No. 1005
0050

MOBILEIRON, INC. - EXHIBIT 1011
Page 064

152 Ch. 4 Public-Key Parameters

4.4.4 Constructive techniques for provable primes
Maurer's algorithm (Algorithm 4.62) generates random provable primes that are almost
uniformly distributed over the set of all primes of a specified size. The expected time for
generating a prime is only slightly greater than that for generating a probable prime of equal
size using Algorithm 4.44 with security parameter t = 1. (In practice, one may wish to
choose t > 1 in Algorithm 4.44; cf. Note 4.49.)

The main idea behind Algorithm 4.62 is Fact 4.59, which is a slight modification of
Pocklington's theorem (Fact 4.40) and Fact 4.41.

4.59 Fact Let n > 3 be an odd integer, and suppose that ~ = 1-}- 2Rq where q is an odd prime.
Suppose further that q > R. ~

(i) If there exists an integer a satisfying a~-1 - 1 (mod n) and gcd(a2R - 1, n) = 1,
then n is prime.

(ii) If ~c is prime, the probability that a randomly selected base a, 1 < a < n-1, satisfies
i a'L-1 - 1 mod n) and gcd(a2R - 1, n) = l is (1 - l~q).

Algorithm 4.62 recursively generates an odd prime q, and then chooses random integers R,
R < q, until n = 2Rq -I- 1 can be proven prime using Fact 4.59(i) for some base a. By
Fact 4.59(ii) the proportion of such bases is 1 - 1~q for prime n. On the other hand, if n is
composite, then most bases a will fail to satisfy the condition a'~-1 - 1 (mod n).

4.60 Note (description of constants c and rrt in Algorithm 4.62)
(i) The optimal value of the constant c defining the trial division bound B = ckZ in

step 2 depends on the implementation of long-integer arithmetic, and is best deter-
mined experimentally (cf. Note 4.45).

(~i) The constant m = 20 ensures that I is at least 20 bits long and hence the interval
from which R is selected, namely [I -{- 1, 2I], is sufficiently large (for the values of
k of practical interest) that it most likely contains at least one value R for which n =
2Rq -}- 1 is prime.

4.61 Note (relative size T of q with respect to n) The relative size r of q with respect to n is de-
fined to be T = lg q~ lg n. In order to assure that the generated prime n is chosen randomly
with essentially uniform distribution from the set of all k-bit primes, the size of the prime
factor q of ~c - 1 must be chosen according to the probability distribution of the largest
prime factor of a randomly selected k-bit integer. Since q must be greater than R in order
for Fact 4.59 to apply, the relative size r of q is restricted to being in the interval [2 ,1] . It can
be deduced from Fact 3.7(i) that the cumulative probability distribution of the relative size
r of the largest prime factor of a large random integer, given that r is at least 2 , is (1-I- lg r)
for 2 < r < 1. In step 4 of Algorithm 4.62, the relative size r is generated according to this
distribution by selecting a random number s E [0, 1] and then setting r = 2s-1. If k < 2m
then r is chosen to be the smallest permissible value, namely 2, in order to ensure that the
interval from which R is selected is sufficiently large (cf. Note 4.60(ii)).

Facebook's Exhibit No. 1005
0051

MOBILEIRON, INC. - EXHIBIT 1011
Page 065

X 4.4 Prime number generation i53

4.62 Algorithm Maurer's algorithm for generating provable primes

PROVABLE~RIME(k)
INPUT: a positive integer k.
OUTPUT: a k-bit prime number n.

1. (If k is small, then test random integers by trial division. A table of small primes m.ay
be precomputed for this purpose.)
If k < 20 then repeatedly do the following:

1.1 Select a random k-bit odd integer n.
1.2 Use trial division by all primes less than ~ to determine whether n is prime.
1.3 If n is prime then return(n).

2. Set cF0.1 and m~20 (see Noce 4.60).
3. (Trial division bound) Set Bic • k2 (see Note 4.60).
4. (Generate r, the size of q relative ton —see Note 4.61) If k > 2m then repeatedly

do the following: select a random number s in the interval [0, 1], set r~2s-1, until
(k — rk) > m. Otherwise (i.e. k < 2m), set rE-0.5.

5. Compute q<—PROVABLE~R.IME(lr ~ k~ + 1).

7. success~0.
8. While (success = 0) do the following:

8.1 (select a candidate integer n) Select a random integer R in the interval [I
1, 2I] and set n~2Rq + 1.

8.2 Use trial division to determine whether n is divisible by any prime number < B.
If it is not then do the following:

Select a random integer a in the interval [2, n — 2].
Compute bean-1 mod n.
If b = 1 then do the following:

Compute b~a2R rnod n and d~ gcd(b — 1, n).
If d = 1 then successFl.

9. Return(n).

4.63 Note (improvements to Algorithm 4.62)

(i) A speedup can be achieved by using Fact 4.42 instead of Fact 4.59(i) for proving
n = 2Rq -I-1 prime in step 8.2 of Maurer's algorithm —Fact 4.42 only requires that
q be greater than ~.

(ii) If a candidate n passes the trial division (in step 8.2), then aMiller-Rabin test (Algo-
rithm 4.24) with the single base a = 2 should be performed on n; only if ~e passes
this test should the attempt to prove its primality (the remainder of step 8.2) be under-
takPn. This leads to a faster implementation due to the efficiency of the Miller-Rabin
test with a single base a = 2 (cf. Remark 4.50).

(iii) Step 4 requires the use of real number arithmetic when computing 2s-1. To avoid
these computations, one can precompute and store a list of such values for a selection
of random numbers s E [0, 1].

4.64 Note (provable primes vs. probable primes) Probable primes are advantageous over prov-
able primes in that Algorithm 4.44 for generating probable primes with t = 1 is slightly
faster than Maurer's algorithm. Moreover, the latter requires more run-time memory due

Facebook's Exhibit No. 1005
0052

MOBILEIRON, INC. - EXHIBIT 1011
Page 066

154 Ch. 4 Public-Key Parameters

to its recursive nature. Provable primes are preferable to probable primes in the sense that
the former have zero error probability. In any cryptographic application, however, there
is always anon-zero error probability of some catastrophic failure, such as the adversary
guessing a secret key or hardware failure. Since the error probability of probable primes
can be efficiently brought down to acceptably low levels (see Note 4.49 but note the depen-
dence on t), there appears to be no reason for mandating the use of provable primes over
probable primes.

4.5 Irreducible polynomials o~rer 7~p
Recall (Definition 2.190) that a polynomial f (x) E 7Gp[x] of degree m > 1 is said to be
irreducible over 7Gp if it cannot be written as a product of two polynomials in 7Gp [x] each
having degree less than m. Such a polynomial f (x) can be used to represent the elements
of the finite field IFPm as IFPm = 7G~[x]l(f (x)), the set of all polynomials in 7GP[x] of de-
greeless than m where the addition and multiplication of polynomials is performed modulo
f (x) (see §2.6.3). This section presents techniques for constructing irreduciblepolynomials
over 7Gp, where p is a prime. The characteristic two finite fields IF2m are of particular inter-
est for cryptographic applications because the arithmetic in these fields can be efficiently
performed both in software and in hardware. Thus, attention in the section will be focused
on irreducible polynomials over 7G2.

The arithmetic in finite fields can usually be implemented more efficiently if the irre-
duciblepolynomial chosen has few non-zero terms. Irreducible trinomials, i.e., irreducible
polynomials having exactly three non-zero terms, are considered in §4.52. Primitive poly-
nomials, i.e., irreducible polynomials f (x) of degree m in 7GP [~] for which ~ is a generator
of IF~,,,~ ,the multiplicative. group of the finite field]E'p~ = 7GP [~] l (f (~)) (Definition 2.228),
are the topic of §4.5.3. Primitive polynomials are also used in the generation of linear feed-
back shift register sequences having the maximum possible period, (Fact 6.12).

,,

~ ~ 4.5. ducible polynomials
If f (x) E 7Lp [x] is irreducible over 7GP and a is anon-zero element in 7Gp, then a • f (~) is also
irreducible over 7Gp. Hence it suffices to restrict attention to monic polynomials in 7Lp[~~,
i.e., polynomials whose leading coefficient is 1. Observe also that if f (~) is an irreducible

I polynomial, then its constant term must be non-zero. In particular, if f (x) E 7L2[~~, then
R its constant term must be 1.` i ; There is a formula for computing exactly the number of monic irreducible polynomi-
I als in 7Lp [x] of a fixed degree. The Mobius function, which is defined next, is used in this

E ~;.; formula.

4.65 Definition Let m be a positive integer. The Mobius function µ is. defined by

1, if m = 1,
µ(m) = 0, if m is divisible by the square of a prime,

(-1)~, if m is the product of k distinct primes.

4.66 Example (Mobius function) The following table gives the values of the Mobius function
µ(m) for the first 10 values of m:

Facebook's Exhibit No. 1005
0053

MOBILEIRON, INC. - EXHIBIT 1011
Page 067

§4.5 Irreducible polynomials over~p 155

0~000000000~
~~Q~~Q~Q~000

4.f:7 Fact (number of monic irreducible polynomials) Let p be a prime and m a positive integer.

(i) The number NP (m) of monic irreducible polynomials of degree m in ~p [x] is given
by the following formula:

dim

where the summation ranges over,al~l positive divisors d of m.
(ii) The probability of a random monic polynomial of degree ra in 7Gp [~] being irreducible

over 7Lp is roughly ~. More specifically, the number N~,(7n) satisfies

1 ~ N~ (m) N 1
2m — P'"' m

Testing irreducibility of polynomials in 7Gp[x] is significantly simpler than testing pri-
mality of integers. A polynomial can be tested for irreducibility by verifying that it has no
irreducible factors of degree < L 2~ . The following result leads to an efficient method (Al-
gorithm 4.69) for accomplishing this.

4.68 Fact Let p be a prime and let l~ be a positive integer.
(i) The product of all monic irreducible polynomials in 7GP[x] of degree dividing k is

k
equal to xT' — ~.

(ii) Let f (~) be a polynomial of degree m in 7Lp[~]. Then f (x) is irreducible over 7G~, if

and only if gcd(f (x), x~'~ — x) = 1 for each i, 1 < i < L 2 ~ .

4.69 Algorithm Testing a polynomial for irreducibility

INPUT: a prime p and a monic polynomial f (x) of degree m in 7Lp[x].
OUTPUT: an answer to the question: "Is f (x) irreducible over 7Lp?"

1. Set v,(x)<—x.
2. For i from 1 to L 2 J do the following:

2.1 Compute'u(x)<--u(x)p mod f (x) using Algorithm 2.227. (Note that w(x) is a
polynomial in ~~[x] of degree less than m.)

' 2.2 Compute d(x) = gcd(f (x), u(x) — x) (using Algorithm 2.218).
2.3 If d(x) ,~ 1 then return("reducible").

3. Return("irreducible").

Fact 4.67 suggests that one method for finding an irreducible polynomial of degree m
in 7L~,[x) is to generate a random monic polynomial of degree m in 7Gp[~], test it for irre-
ducibility, and continue until an irreducible one is found (Algorithm 4.70). The expected
number of polynomials to be tried before an irreducible one is found is approximately m.

Facebook's Exhibit No. 1005
0054

MOBILEIRON, INC. - EXHIBIT 1011
Page 068

156 Ch. 4 Public-Key Parameters

4.70 Algorithm Generating a random monic irreducible polynomial over ~P

INPUT: a prime p and a positive integer m.
OUTPUT: a monic irreducible polynomial f (~) of degree 7n in 7LP [x]

1. Repeat the following:
1.1 (Generate a random monic polynomial of degree m in 7Gp[x])

Randomly select integers ao, al, a2i . . . , a.,,,,_ 1 between 0 and p -1 with ao ~
0. Let f (x) bethepolynomial f (x) _ ~"''+a~,,,—lx'"''-1-}- • • •+a2x2-}-alx-I-ao.

1.2 Use Algorithm 4.69 to test whether f (x) is irreducible over 7G~.
Until f (x) is irreducible.

2. Return(f (x)).

It is known that the expected degree of the irreducible factor of least degree of a random
.polynomial of degree m in 7Gp[x] is O(lg m). Hence for each choice off (x), the expected
number of times steps 2.1 — 2.3 of Algorithm 4.69 are iterated is O(lg m). Each iteration
takes O((lg p)m2) 7G~,-operations. These observations, together with Fact 4.67(ii), deter-
mine the running time for Algorithm 4.70.

4.71 Fact Algorithm 4.70 has an expected running time of O(m3(Ig m)(1gP)) gyp-operations.

Given one irreducible polynomial of degree m over 7GP, Note 4.74 describes a method,
which is more efficient than Algorithm 4.70, for randomly generating additional such poly-
nomials,

4.72 Defin'ttlon Let 1Fq be a finite field of characteristic p, and let a E 1~4. A minimum polyno-
mial of a over 7Gp is a monic polynomial of least degree in 7Gp [~] having a as a root.

4.73 Fact Let IFq be a finite field of order q = p""', and let a E IFy.
(i) The minimum polynomial of a over 7G~„ denoted ma (x), is unique.
(ii) ma(x) is irreducible over 7Lp.
(iii) The degree of ma (~) is a divisor of m.
(iv) Let t be the smallest positive integer such that apt = a. (Note that such a t exists

since, by Fact 2.213, ap'~ = a.) Then
t—i

z=o

4.74 Note (generating new irreducible polynomials from a given one) Suppose that f (y) is a
given irreducible polynomial of degree m over 7Gp. The finite field lEpm can then be repre-
sented as]E'pm = 7GP[y]/(f (y)). A random monic irreducible polynomial of degree m over
7GP can be efficiently generated as follows. First generate a random element a E]F'pm and
then, by repeated exponentiation by p, determine the smallest positive integer t for which
apt = a. If t < m, then generate a new random element a E 1FPm and repeat; the probabil-
ity that t < m is known to be at most (lg m) /q"`~2. If indeed t = 7n, then compute m~ (~)
using the formula (4.1). Then ma(~) is a random monic irreducible polynomial of degree
m in 7GP [x]. This method leas an expected running time of O(~n3 (lg p)) 7LP-operations (com-
pare with Fact 4.71).

Facebook's Exhibit No. 1005
0055

MOBILEIRON, INC. - EXHIBIT 1011
Page 069

§4.5 Irreducible polynomials over7GP

4.5.2 Irreducible trinomials

157

If a polynomial f (x) in 7G2 [x] has an even number of non-zero terms, then f (1) = 0, whence
(x + 1) is a factor of f (x). Hence, the smallest number of non-zero terms an irreducible
polynomial of degree > 2 in 7G2 [~] can have is three. An irreducible trinomial of degree 7rc
in 7G2 [x~ must be of the form x'"' + xk ~-1, where 1 < k < m —1. Choosing an irreducible
trinomial f (x) E 7L2 [x~ of degree m to represent the elements .of the finite field lF2m =
7G2[x]/(f (x)) can lead to a faster implementation of the field arithmetic. The following
facts are sometimes of use when searching for irreducible trinomials.

4.75 Fact Let m be a positive integer, and let k denote an integer in the interval [l, m — 1].

(i) If the trinomial ~"" ~- x~ -{- 1 is irreducible over 7L2 then so is ~r"~ -I- x"''— ~ -I- 1.
(ii) If m - 0 (mod 8), there is no irreducible trinomial of degree m in 7G2[x].
(iii) Suppose that either m - 3 (mod 8) or m - 5 (mod 8). Then a necessary condition

for ~"'~ -{- xk + 1 to be irreducible over 7G2 is that either k or m — k must be of the
form 2d for some positive divisor d of m.

Tables 4.6 and 4.7 list an irreducible trinomial of degree m over 7L2 for each m < 1478
for which -such a trinomial exists.

4.5.3 Primitive polynomials
Primitive polynomials were introduced at.the beginning of §4.5. Let f (x) E 7L~,[x] be an
irreducible polynomial of degree m. If the factorization of the integer p'"'' —1 is known, then
Fact 4.76 yields an efficient algorithm (Algorithm 4.77) for testing whether or not f (x) is
a primitive polynomial. If the factorization of p'"'' — 1 is unknown, there is no efficient
algorithm known for performing this test.

4.7F Fact Let p be a prime and let the distinct prime factors of p""' — 1 be rl, r2i ... , rt. Then
an irreducible polynomial f (x) E 7GP [x] is primitive if and only if for each i, 1 < i < t:

x~7~"'-1~/r , ~ 1 (mod f ~~))-

(That is, x is an element of orderp"L — 1 in the field 7LP[x]/(f (x)).)

4.77 Algorithm Testing whether an irreducible polynomial is primitive

INPUT: a prime p, a positive integer rn, the distinct. prime factors rl, r2i ... , rt of p"` =1,
and a monic irreducible polynomial f (x) of degree m in 7Lp [x].
OUTPUT: an answer to the question: "Is f (x) a primitive polynomial?"

1. For i from 1 to t do the following:
1.1 Compute l(.C.~ _.G'~Pm-l~~T` mod f (x) (using Algorithm 2.227).
12 If l(x) = 1 then return("not primitive").

2. Return("primitive")

There are precisely ~(p'"Z — 1) /m monic primitive polynomials of degree m in 7G~, (x]
(Fact 2.230), where ~ is the Euler phi function (Definition 2.100). Since the number of
monic irreducible polynomials of degree m in 7LP [x] is roughly p'n/m (Fact 4.67(ii)), it fol-
lows that the probability of a random monic irreducible polynomial of degree m in 7Gp [x]

Facebook's Exhibit No. 1005
0056

MOBILEIRON, INC. - EXHIBIT 1011
Page 070

158 Ch. 4 Public-Key Parameters

m k ~n. k ~n. k m k m lc art k ~m. k
2 1 93 2 193 15 295 48 402 171 508 9 618 295
3 1 94 21 194 87 297 5 404 65 510 69 620 9
4 1 95 I1 196 3 300 5 406 141 511 10 622 297
5 2 97 6 198 9 302 41 407 71 513 26 623 68
6 1 98 11 199 34 303 1 409 87 514 67 625 133
7 1 100 LS 201 14 305 102 412 147 516 21 ' 626 251
9 1 102 29 202 55 308 15 414 13 518 33 628 223

10 3 103 9 204 27 310 93 415 102 519 79 631 307
11 2 105 4 207 43 313 79 417 107 521 32 633 101
12 3 106 IS 209 6 314 15 418 199 522 39 634 39
14 5 108 17 210 7 316 63 420 7 524 167 636 217
15 1 110 33 212 105 318 45 422 149 526 97 639 16
17 3 111 10 214 73 319 36 423 25 527 47 641 11
18 3 113 9 215 23 321 31 425 12 529 42 642 119
20 3 118 33 217 45 322 67 426 63 532 1 646 249
21 2 119 8 218 11 324 51 428 105 534 161 647 5
22 1 121 18 220 7 327 34 431 120 537 94 649 37
23 5 123 2 223 33 329 SO 433 33 538 195 650 3
25 3 124 19 225 32 330 99 436 165 540 9 651 14
28 1 126 21 228 113 332 89 438 65 543 16 652 93
29 2 127 1 231 26 333 2 439 49 545 122 654 33
30 1 129 5 233 74 337 55 441 7 550 193 655 88
31 3 130 3 234 31 340 45 444 81 551 135 657 38
33 10 132 17 236 5 342 125 446 105 553 39 658 55
34 7 134 57 238 73 343 75 447 73 556 153 660 .11
35 2 .135 11 239 36 345 22 449 134 558 73 662 21
36 9 137 21 241 70 346 63 450 47 559 34 663 107
39 4 140 15 242 95 348 103 455 38 561 71 665 33
41 3 142 21 244 111 350 53 457 16 564 163 668 147
42 7 145 52 247 82 351 34 458 203 566 153 670 153
44 5 146 71 249 35 353 69 460 19 567 28 671 15
46 1 147 14 250 103 354 99 462 73 569 77 673 28
47 5 148 27 252 15 358 57 463 93 570 67 676 31
49 9 150 53 253 46 359 68 465 31 574 13 679 66
52 3 151 3 255 52 362 63 468 27 575 146 682 171
54 9 153 1 257 12 364 9 470 9 577 25 684 209
55 7 154 15 258 71 366 29 47] 1 580 237 686 197
57 4 155 62 260 15 367 21 473 200 582 85 687 13
58 19 156 9 263 93 369 91 474 191 583 130 689 14
60 1 159 31 265 42 370 139 476 9 585 88 690 79
62 29 161 18 266 47 372 111 478 12l 588 35 692 299
63 1 162 27 268 25 3Z5 16 479 104 590 93 694 169
65 18 166 37 270 53 377 41 481 138 593 86 695 177
66 3 167 6 271 58 378 43 484 105 594 19 697 267
68 9 169 34 273 23 380 47 486 81 596 273 698 215
71 6 170 11 274 67 382 81 487 94 599 30 700 75
73 25 172 1 276 63 383 90 489 83 601 201 702 37
74 35 174 13 278 5 385 6 490 219 602 215 705 17
76 21 175 6 279 5 386 83 492 7 604 105 708 15
79 9 177 8 281 93 388 159 494 17 606 165 7L1 92
81 4 1'78 31 282 35 390 9 495 76 607 105 713 41
84 5 180 3 284 53 391 28 497 78 609 31 714 23
86 21 182 81 286 69 393 7 498 155 610 127 716 183
87 13 183 56 287 71 394 ~]35 500 27 612 81 718 165
89 38 l85 24 289 21 396 25 503 3 614 45 719 150
90 27 186 11 292 37 399 26 505 156 615 211 721 9
92 21 191 9 294 33 401 152 506 23 617 200 722 231

Table 4.6: Irreducible trinomials x"` -I- x~ ~- 1 over ~2. For each m, 1 < m < 722, for which an
irreducible trinomial of degree min ~2 [~] exists, the table lists the smallest k for which ~"' + ~~ + 1
is irreducible over 7G2.

Facebook's Exhibit No. 1005
0057

MOBILEIRON, INC. - EXHIBIT 1011
Page 071

§4.5 Irreducible polynomials over 159

Tn, k m k rn k m k m k rrz k m k
724 207 831 49 937 217 1050 159 1159. 66 1265 119 1374 609
726 5 833 149 938 207 1052 291 1161 365 1266 7 1375 52
727 180 834 15 942 45 1054 105 1164 19 1268 345 1377]00
729 58 838 61 943 24 1055 24 1166 189 1270 333 1380 183
730 147 839 54 945 77 1057 198 1167 133 1271 17 1383 130
732 343 841 144 948 189 1058 27 1169 114 1273 l68 1385 12
735 44 842 47 951 260 1060 439 1170 27 1276 217 1386 219
737 5 844 105 953 168 1062 49 1174 133 1278 189 1388 11
738 347 845 2 954 131 1063 168 1175 476 1279 216 1390 129
740 135 846 105 956 305 1065 463 1177 16 1281 229 1391 3
742 85 847 136 959 143 1071 7 1178 375 1282 231 1393 300
743 90 849 253 961 18 1078 361 1180 25 1284 223 1396 97
745 258 850 111 964 103 1079 230 1182 77 1286 153 1398 601
746 351 852 159 966 201 1081 24 1183 87 1287 470 1399 55
748 19 855 29 967 36 1082 407 1185 134 1289 99 1401 92
750 309 857 119 969 31]084 189 1186 171 1294 201 1402 127
751 18 858 207 972 7 1085 62 1188 75 1295 38 1404 81
753 158 860 35 975 19 1086 189 1190 233 1297 198 1407 47
754 19 861 14 977 15 1087 112 1191 196 1298 399 1409 194
756 45 862 349 979 178 1089 91 1193 173 1300 75 1410 383
758 233 865 1 982 177 1090 79 1196 281 1302 77 1412 125
759 98 866 75 983 230]092 23 1198 405 1305 326 1414 429
761 3 868 145 985 222 1094 57 1199 114 1306 39 1415 282
762 83 870 30l 986 3 1095 139 1201 171 1308 495 1417 342
767 168 871 378 988 121 1097 14 1202 287 1310 333 1420 33
769 120 873 352 990 161 1098 83 1204 43 1311 476 1422 49
772 7 876 149 991 39 1100 35 1206 513 1313 164 1423 15
774 185 879 11 993 62 1102 117 1207 273 1314 19 1425 28
775 93 881 78 994 223 1103 65 1209 118 1319 129 1426 103
777 29 882 99 996 65 1105 21 1210 243 1321 S2 1428 27
778 375 884 173 998 101 1106 195 1212 203 1324 337 1430 33
780 13 887 147 999 59 1108 327 1214 257 1326 397 1431 17
782 329 889 127 1001 17 1110 417 1215 302 1327 277 1433 387
783 68 890 183 1007 75 1111 13 1217 393 1329 73 1434 363
785 92 892 31 1009 55 1113 107 1218 91 1332 95 1436 83
791 30 894 173 1010 99 1116 59 1220 413 1334 617 1438 357
793 253 895 l2 1012 115 1119 283 1223 255 1335 392 1441 322
794 143 897]13 1014 385 1121 62 1225 234 1337 75 1442 395
798 53 898 207 1015 186 1122 427 1226 167 1338 315 1444 595
799 25 900 1 1020 135 1126 105 1228 27 1340 125 1446 421
801 217 902 21 1022 317 1127 27 1230 433 1343 348 1447 195
804 75 903 35 1023 7 1129 103 1231 105 1345 553 1449 13
806 21 905 Ill 1025 294 1130 S51 1233 151 1348 553 1452 315
807 7 906 123 1026 35 1134 129 1234 427 1350 237 1454 297
809 15 908 143 1028 119 1135 9 1236 49 1351 39 1455 52
810 159 911 204 1029 98 1137 277 1238 153 1353 371 1457 314
812 29 913 91 1030 93 1138 31 1239 4 1354 255 1458 243
8t4 21 916 183 1031 68 1140 141 1241 54 1356 131 1460 185
815 333 918 77 1033 108 1142 357 1242 203 1358 117 1463 575
817 52 919 36 1034 75 1145 227 1246 25 1359 98 1465 39
818 119 921 221 1036 411 1146 131 1247 14 1361 56 1466 311
820 123 924 31 1039 21 1148 23 1249 187 1362 655 1468 181
822 17 926 365 1041 412 1151 : 90 1252 97 1364 239 1470 49
823 9 927 403. 1042 439 1153 241 1255 589 1366 1 1471 25
825 38 930 31 1044 41 1154 75 1257 289 1367 134 1473 77
826 255 932 177 1047 10 1156 307 1260 21 1369 88 1476 21
828 189 935 417 1049 141 1158 245 1263 77 1372 181 1478 69

Tab/e 4.7: Irreducible trinomials ~'" -~-~~" -~ 1 over 7G2. For each Tn, 723 < m < 1478, for which an
irreducible trinomial of degree min 7G2 [~] exists, the table gives the smallest k for which x~ -F x~` -{-1
is irreducible over ~z.

Facebook's Exhibit No. 1005
0058

MOBILEIRON, INC. - EXHIBIT 1011
Page 072

160 Ch. 4 Public-Key Parameters

being primitive is approximately ~(p"` — 1)~p"'~. Using the lower bound for the Euler phi
function (Fact 2.102), this probability can be seen to be at least 1/(6lnlnp"L). This sug-
gests the following algorithm for generating primitive polynomials.

c ;3 '
i

f

„ ~~~ii

I
l';
;'

3

4.78 Algorithm Generating a random monic primitive polynomial over 7LP

INPUT: a prime p, integer m > 1, and the distinct prime factors rl, r2i . . . , rt of p~ — 1
OUTPUT: a monic primitive polynomial f (x) of degree m in 7G~,[x].

1. Repeat the following:
1.1 Use Algorithm 4.70 to generate a random monic irreducible polynomial f (x)

of degree 7rc in 7L~,[~].
1.2 Use Algorithm 4.77 to test whether f (x) is primitive.

Until f (x~ is primitive.
2. Return(f (x)).

For each m, 1 < m < 229, Table 4.8 lists a polynomial of degree m that is primitive
over 7G2. If there exists a primitive trinomial f (x) = x"~ -I- x~ + 1, then the trinomial with
the smallest k is listed. If no primitive trinomial exists, then a primitive pentanomial of the
form f (x) = x"'~ ~-- x~l -{- xk2 ~- x~3 -I- 1 is listed.
If p""' — 1 is prime, then Fact 4.76 implies that every irreducible polynomial of de-

gree m in 7G~, [x] is also primitive. Table 4.9 gives either a primitive trinomial or a primitive
pentanomial of degree m over 7G2 where m is an exponent of one of the first 27 Mersenne
primes (Definition 4.35).

4.6 Generators and elements of high order
Recall (Definition 2.169) that if G is a (multiplicative) finite group, the order of an element
a E G is the least positive integer t such that at = 1. If there are n elements in G, and if
a E G is an element of order n, then G is said to be cyclic and a is called a generator or a
primitive element of G (Definition 2.167). Of special interest for cryptographic applications
are the multiplicative group 7G~, of the integers modulo a prime p, and the multiplicative
group IFZm of the finite Geld IF2~ of characteristic two; these groups are cyclic (Fact 2.213).
Also of interest is the group 7G~ (Definition 2.124), where n is the product of two distinct
odd primes. This section deals with the problem of finding generators and other elements
of high order in 7Lp, IF2m , and 7Ln. See X2.5.1 for background in group theory and X2.6 for
background in finite fields.

Algorithm 4.79 is an efficient method for determining the order of a group element,
given the prime factorization of the group order n. The correctness of the algorithm follows
from the fact that the order of an element must divide n (Fact 2.171).

Facebook's Exhibit No. 1005
0059

MOBILEIRON, INC. - EXHIBIT 1011
Page 073

X4.6 Generators and elements of high order

m
k or

(kl, kz~ ks) m
k or

~ki, kz, ks) 'm,
k or

(ki, k2> ~s) m
k or

~ki~ k2, ks)
2 1 59 22, 21, 1 116 71, 70, 1 .173 100, 99, 1
3 1 60 1 117 20, 18, 2 174 13
4 1 61 16, I5, 1 118 33 175 6
5 2 62 57, 56, 1 119 8 176 119, 118,]
6 1 63 1 120 118, 111, 7 177 8
7 1 64 4, 3, 1 121 18 178 87
8 6, 5, 1 65 18 122 60, 59, 1 179 34, 33, 1
9 4 66 10, 9, 1 123 2 180 37, 36, 1

10 3 67 10, 9, 1 124 37 181 7, 6, 1
11 2 68 9 125 108, 107, 1 182 128, 127,
12 7, 4, 3 69 29, 27, 2 126 37, 36, 1 183 56
13 4, 3> 1 '10 16, 15, 1 127 1 ~ 184 102, 101, 1
14 12, 11, 1 71 6. 128 29, 27, 2 185 24
15 1 72 53, 47, 6 129 5 1$6 23, 22, 1
16 5, 3, 2 73 25 1'~0 3 187 58, 57, I
17 3 74 16, 15, 1 131 48, 47, 1 188 74, 73, 1
18 7 75 11, 10, 1 132 29 189 127,]26, 1
19 6, 5, 1 76 36, 35, 1 133 52, 51, 1 190 18, 17, 1
20 3 77 31, 30, 1 134 57 191 9
21 2 78 20, 19, 1 135 11 192 28, 27, 1
22 1 79 9 136 126,125, 1 193 l5
23 5 80 38, 37, 1 137 21 194 87
24 4, 3, 1 81 4 138 8, 7, 1 195 10, 9, 1
25 3 82 38, 35, 3 139 8, 5, 3 196 66, 65, 1
26 8, 7, 1 83 46, 45, 1 140 29 197 62, 61, 1
27 8, 7, 1 84 13 141 32, 31, 1] 98 65
28 3 85 28, 27, 1 142 21 199 34
29 2 86 13, 12, 1 143 21, 20, 1 200 42, 41, 1
30 16, 15, 1 87 13 144 70, 69, 1 201 14
31 3 88 72,71,1 145 52 202 55
32 28, 27, 1 89 38 146 60, 59, 1 203 8, 7, 1
33 13 90 19, 18, 1 147 38, 37, 1 204 74, 73, 1
34 15, 14, 1 91 84, 83, 1 148 27 205 30, 29, 1
35 2 92 13, 12, 1 149 110, 109, 1 206 29, 28, 1
36 11 93 2 150 53 207 43
37 12, 10, 2 94 21 151 3 208 62, 59, 3
38 6, 5, 1 95 I1 152 66, 65, 1 209 6
39 4 96 49, 47, 2 153 1 210 35, 32, 3
40 21, 19, 2 97 6 154 129, 127, 2 211 46, 45, 1
41 3 98 11 155 32, 31, 1 212 105
42 23, 22, 1 99 47, 45, 2 156 116, 115, 1 213 8, 7, 1
43 6, 5, 1 100 37 157 27, 26, 1 214 49, 48, 1
44 27, 26, 1 101 7, 6, 1 158 27, 26, 1 215 23
45 4, 3, 1 102 77, 76, 1 159 3l 216 196, 195, 1
46 21, 20, 1 103 9 160 19, 18, 1 217 45
47 5 104 11, 10, 1 161 IS 218 11
48 28, 27, 1 105 16 162 88, 87, 1 219 19, 18, 1
49 9 106 15 163 60, 59, 1 220 15> 14, 1
50 27, 26, 1 107 65, 63, 2 164 14, 13, 1 221 35, 34, 1
51 16, I5, 1 108 31 165 31, 30, 1 222 92, 91, 1
52 3 109 7, 6, 1 166 39, 38, 1 223 33
53 16, 15,.1 110 13, 12, 1 . 167 6 224 31, 30, 1
54 37, 36, 1 111 10 168 17, 15, 2 225 32
55 24 112 45, 43, 2 169 34 226 58, 57, 1
56 22, 21, 1 113 9 170 23 227 46, 45, l
57 7 114 82, 81, 1 171 19, 18, 1 228 148, 147, l
58 19 115 15, 14, 1 172 7 229 64, 63, 1

i61

Table 4.8: Primitive polynomials over 7G2. For each m, 1 < ~n < 229, an exponent k is given for
which the trinomial ~""' -I- x~ -I-1 is primitive over 7G2. If no such trinomial exists, a triple of exponents
(kl , k2, k3) is given for which the pentanomial x"' -I- ~~' + xkz -~ x~3 + 1 is primitive over 7G2.

Facebook's Exhibit No. 1005
0060

MOBILEIRON, INC. - EXHIBIT 1011
Page 074

162 Ch. 4 Public-Key Parameters

,7 m k ~kl~ k2, ks)
1 2 1
2 3 1
3 5 2
4 7 1, 3
5 13 none (4,3,1)
6 17 3, 5, 6
7 19 none (5,2,1)
8 31 3, 6> 7, 13
9 61 none (43,26,14)
10 89 38
11 107 none (82,57,31)
12 127 1> 7, 15, 30, 63
13 521 32, 48, 158, 168
14 607 105, 147, 273
15 1279 216, 418
16 2203 none (1656,1197,585)
17 2281 715,915,1029
18 3217 67,576
19 4253 none (3297,2254,1093)
20 4423 271, 369, 370, 649, 1393, 1419, 2098
21 9689 84, 471, 1836, 2444, 4187
22 9941 none (7449,4964,2475)
23 11213 none (8218,6181,2304)
24 19937 881, 7083, 9842
25 21701 none (15986,11393,5073)
26 23209 1530,6619,9739
27 44497 8575,21034

Table 4.9: Primitive polynomials of degree m over 7L2, 2"'' -1 a Mersenrce prime. For each exponent
m = M~ of the first 27 Mersenne primes, the table lists all values of k, 1 < k < m12, for which.
the trinorttial x""' -I- x~ -}- 1 is irreducible over 7G2. If no'such trinomial exists, a triple of exponents
(kl, k2, k3) is listed such that the pentanomial x""' -}- ~~`1 + ~~"2 -f- x~3 -I- 1 is irreducible over 7G2.

4.79 Algorithm Determining the order of a group element

i INPUT: a (multiplicative) finite group G of order n, an element a E G, and the prime fac-
torization n = pilp22 . . .pk'~,
OUTPUT: the order t of a.

F 1. Set tE-n.
~ 2. For i from 1 to k do the following:

2.1 Set tit e{/p2
' ', 2.2 Compute al~at.

+ } 2.3 While al ~ 1 do the following: compute al E-ap~ and set tit • pi.
I ~ 3. Return(t).

Suppose now that G is a cyclic group of order n. Then for any divisor d of n the number
of elements of order d in G is exactly ~(d) (Fact 2.173(ii)), where ~ is the Euler phi function
(Definition 2.100). In particular, G has exactly ~(n) generators, and hence the probability
of a random element in G being a generator is ~(n)/n. Using the lower bound for the Eu-
ler phi function (Fact 2.102), this probability can be seen to be at least 1~(61n1n~). This

Facebook's Exhibit No. 1005
0061

MOBILEIRON, INC. - EXHIBIT 1011
Page 075

§4.6 Generators and elements of high order 163

suggests the following efficient randomized algorithm for finding a generator of a cyclic
group.

4.80 Algorithm Finding a generator of a cyclic group

INPUT: a cyclic group G of order n, and the prime factorization n = ~i1p22 . . , pkk .
OUTPiTT: a generator a of G.

1. Choose a random element a in G.
2. For i from 1 to k do the following:

2.1 Compute bt—cx"~~'~ .
2.2 If b = 1 then go to step 1.

3. Return(a).

4.81 Note (group elements of high order) In some situations it may be desirable to have an el-.
ement of high order, and not a generator. Given a generator a in a cyclic group G of order
n, and given a divisor d of n, an element ~ of order d in G can be efficiently obtained as
follows: ,Q = an d. If q is a prime divisor of the order n of a cyclic group G, then the fol-
lowing method finds an element /~ E G of order q without first having to find a generator
of G: select a random element g E G and compute ,Q = gn~4; repeat until f~ ~ 1.

s 4.82 Note (generators of]F2m) There are two basic approaches to finding a generator of lF'2„~ .
Both techniques require the factorization of the order of IF2,,,, namely 2"~ — 1.

(i) Generate a monic primitive polynomial f (x) of degree m over 7G2 (Algorithm 4.78).
The finite field IFZm can then be represented as 7L2[x]/(f (x)); the set of all polyno-
mials over 7G2 modulo f (x), and the element a = x is a generator.

(ii) Select the method for representing elements of]FZm first. Then use Algorithm 4.80
with G = IF2„~ and n = 2"'' — 1 to find a generator a of IF2,.~.

If n = pq, where P and q are distinct odd primes, then 7Gn is anon-cyclic group of order
~(n) _ (p — 1)(q — 1). The maximum order of an element in 7G~ is lcm(p — 1, q — 1).
Algorithm 4.83 is a method for generating such an element which requires the factorizations
ofp—landq-1.

j 4:83 Algorithm Selecting an element of maximum order in fin, where n = Pq

INPUT: two distinct odd primes, p, q, and the factorizations of P — 1 and q — 1.
OUTPUT: an element a of maximum order lcm(P — 1, q — 1~ in 7L~, where n = pq.

1. Use Algorithm 4.80 with G = 7GP and n = p — 1 to find a generator a bf 7L~,.
2. Use Algorithm 4.80 with G = 7L4 and n = q — 1 to find a generator b of 7L9.
3. Use Gauss's algorithm (Algorithm 2.121) to find an integer a, 1 < cx < n = 1,

satisfying a - a (mod p) and a - b (mod q).
4. Return(a).

Facebook's Exhibit No. 1005
0062

MOBILEIRON, INC. - EXHIBIT 1011
Page 076

164 Ch. 4 Public-Key Parameters

4.6.1 Selecting a prime p and generator of 7Lp
In cryptographic applications for which a generator of 7LP is required, one usually has the
flexibility of selecting the prime p. To guard against the Pohlig-Hellman algorithm for com-
putingdiscrete logarithms (Algorithm 3.63), a security requirement is that p —1 should con-
tain a "large" prime factor q. In this context, "large" means that the quantity ~ represents
an infeasible amount of computation; for example, q > 21so This suggests the following
algorithm for selecting appropriate parameters (p, a).

4.84 Algorithm Selecting a k-bit prime p and a generator a of 7GP

INPUT: the required bitlength k of the prime and a security parameter t.
OUTPUT: a k-bit prime p such that p — 1 has a prime factor > t, and a generator a of 7Gp.

1. Repeat the following:
1.1 Select a random k-bit prime p (for example, using Algorithm 4.44).
1.2 Factor p — 1.

Until p — 1 has a prime factor > t.
2. Use Algorithm 4.80 with G = 7LP and n = p — 1 to find a generator a of 7Lp.
3. Return(p,a).

Algorithm 4.84 is relatively inefficient ~s it requires the use of an integer factorization
algorithm in step 1.2. An alternative approach is to generate the prime p by first choosing
a large prime q and then selecting relatively small integers R at random until p = 2Rq + 1
is prime. Since p — 1 = 2Rq, the factorization of p — 1 can be obtained by factoring R. A
particularly convenient situation occurs by imposing the condition R = 1. In this case the
factorization of p — 1 is simply 2q. Furthermore, since ~(P — 1) _ ~(2q) _ ~(2)~(q) _
q — 1, the probability that a randomly selected element a E 7Lp is a generator is ~ ,:. 2.

4.85 Definition A safe prime p is a prime of the form p = 2q -}- 1 where q is prime.

Algorithm 4.86 generates a safe (probable) prime ~ and a generator of 7G~,.

4.86 Algorithm Selecting a k-bit safe prime p and a generator a of 7G~

INPUT: the required bitlength k of the prime.
OUTPUT: a !c-bit safe prime p and a generator a of 7Lp.

1. Do the following:
1.1 Select a random (k — 1)-bit prime q (for example, using Algorithm 4.44).
1.2 Compute pE-2q + 1, and test whether p is prime (for example, using trial divi-

sion by small primes and Algorithm 4.24).
Until p is prime.

2. Use Algorithm 4.80 to find a generator a of 7Gp.
3. Return(~,a).

Facebook's Exhibit No. 1005
0063

MOBILEIRON, INC. - EXHIBIT 1011
Page 077

t~4.7 Notes and further references 165

4.7 Notes and further references
X4.1

§42

Several books provide extensive treatments of primality testing including those by Bres-
soud [198], Bach and Shallit [70], and Koblitz [697]. The book:by Kranakis [710] offers
a more theoretical approach. Cohen [263] gives a comprehensive treatment of modern pri-
mality tests. See also the survey articles by A. Lenstra [747] and A. Lenstra and H. Lenstra
[748]. Facts 4.1 and 4.2 were proven in 1837 by Dirichlet. For proofs of these results, see
Chapter 16 of Ireland and Rosen [572]. Fact 4.3 is due to Rosser and. Schoenfeld [1070].
Bach and Shallit [70] have further results on the distribution of prime numbers.-_

Fact 4.13(1) was proven by Alford, Granville, and Pomerance [24]; see also Granville [521].
Fact 4.13(ii) is due to Pomerance, Selfridge, and Wagstaff [996]. Pinch [974] showed that
there are 105212 Carmichael numbers up to 1015

The Solovay-Strassen probabilistic primality test (Algorithm 4.18) is due to Solovay and
Strassen [1163], as modified by Atkin and Larson [57].
Fact 4.23 was proven independently by Monier [892] and Rabin [1024]. The Miller-Rabin
test (Algorithm 4.24) originated in the work of Miller [876] who presented it as a non-
probabilistic polynomial-time algorithm assuming the correctness of the Extended Rieman
Hypothesis (ERH). Rabin [1021, 1024] rephrased Miller's algorithm as a probabilistic pri-
mality test. Rabin's algorithm required a small number of gcd computations. The Miller-
Rabin test (Algorithm 4.24) is a simplification of Rabin's algorithm which does not require
any gcd computations, and is due to Knuth [692, p379]. Arazi [55], making use of Mont-
gomery modular multiplication (~ 14.3.2), showed how the Miller-Rabin test can be imple-
mented by "divisionless modular exponentiations" only, yielding a probabilistic primality
test which does not use any division operations.

Miller [876], appealing fo the work of Ankeny [32], proved under assumption of the Ex-
tended Riemann Hypothesis that, if n is an odd composite integer, then its least strong wit-
ness is less than c(ln n)2, where c is some constant. Bach [63] proved that this constant
may be taken to be c = 2; see also Bach [64]. As a consequence, one can test n for pri-
mality in D((lg n)5) bit operations by executing the Miller-Rabin algorithm for all bases
a < 2(ln n)2. This gives a deterministic polynomial-time algorithm for primality testing,

' k under the assumption that the ERH is true.

Table 4.1 is from Jaeschke [630], building on earlier work of Pomerance, Selfridge, and
Wagstaff [996]. Arnault [56] found the following 46-digit composite integer

n = 1195068768795265792518361315725116351898245581

that is a strong pseudoprime to all the 11 prime bases up to 31. Arnault also found a 337-
digit composite integer which is a strong pseudoprime to all 46 prime bases up to 199.

The Miller-Rabin test (Algorithm 424) randomly generates t independent bases a and tests
~ to see if each is a strong witness for n. Let n be an odd composite integer and let t =

2 lg n~ . In situations where random bits are scarce, one may choose instead to generate
a single random base a and use the bases a, a -}- 1, . . . , a + t — 1. Bach [66] proved that
for a randomly chosen integer a, the probability that a, a + 1, .. . , a ~- t — 1 are all strong

- liars for n is bounded above by n-1/4+0(1); in other words, the probability that the Miller-
`! Rabin algorithm using these bases mistakenly declares an odd composite integer "prime"

is at most n-1 j4+°(1). peralta and Shoup [969] later improved this bound to ~,-1~2+°(1)

Facebook's Exhibit No. 1005
0064

MOBILEIRON, INC. - EXHIBIT 1011
Page 078

F.~

§4.3

Ch. 4 Public-Key Parameters

Monier [892] gave exact formulas for the number of Fermat liars, Euler liars, and strong
liars 'for composite integers. One consequence of Monier's formulas is the following im-
provement (in the case where n is not a prime power) of Fact 4.17 (see &ranakis [710,
p.68]). If n > 3 is an odd composite integer having r distinct prime factors, and if n - 3

(mod 4); then there are at most ~(n)/2''-1 Euler liars for n. Another consequence is the
following improvement (in the case where n has at least three distinct prime factors) of
Fact 4.23. If n > 3 is an odd composite integer having r distinct prime factors, then there
are at most ~(n) /2T-1 strong liars for n. Erdos and Pomerance [373] estimated the averag~
number of Fermat liars, Euler liars, and strong liars for composite integers. Fact 4.30(ii) was
proven independently by Atkin and Larson [57], Monier [892], and Pomerance, Selfridge,
and Wagstaff [996].
Pinch [975] reviewed the probabilistic primality tests used in the Mathematica, Maple V,
Axiom, and Parr/GP computer algebra systems. Some of these systems use a probabilistic
primality test known as the Lucas test; a description of this test is provided by Pomerance,
Selfridge, and Wagstaff [996].

If a number n is composite, providing anon-trivial divisor of n is evidence of its composite-
ness that can be verified in polynomial time (by long division). In other words, the decision
problem "is n composite?" belongs to the complexity class NP (cf. Example 2.65). Pratt
[1000] used Fact 4.38 to show that this decision problem is also in co-NP. That is, if n is
prime there exists some evidence of this (called a certificate of primality) that can be veri-
fied in polynomial time. Note that the issue here is not in finding such evidence, but rather
in determining whether such evidence exists which, if found, allows efficient verification.
Pomerance [992] improved Pratt's results and showed that every prime n has a certificate
of primality which requires O(ln n) multiplications modulo n for its verification.
Primality of the Fermat number F~ = 22~` -I- 1 can be determined in deterministic polyno-
mial time by Pepin's test: fork > 2, Fk is prime if and only if 5~Fk-1~~2 - —1 (mod F~).
For the history behind Pepin's test and the Lucas-Lehmer test (Algorithm 4.37), see Bach
and Shallit [70].
In Fact 4.38, the integer a does not have to be the same for all q. More precisely, Brillhart
and Selfridge [212] showed that Fact 4.38 can be refined as follows: an integer n > 3 is
prime if and only if for each prime divisor q of n — 1, there exists an integer aq such that
ay-1 - 1 (mod n) and aqn-1~~9 ~ 1 (mod n). The same is true of Fact 4.40, which is
due to Pocklington [981]. For a proof of Fact 4.41, see Maurer [818]. Fact 4.42 is due to
Brillhart, Lehmer, and Selfridge [210]; a simplified proof is given by Maurer [818].
The original Jacobi sum test was discovered by Adleman, Pomerance, and Rumely [16].
The algorithm was simplified, both theoretically and algorithmically, by Cohen and H.
Lenstra [265]. Cohen and A. Lenstra [264] give an implementation report of the Cohen-
Lenstra Jacobi sum test; see also Chapter 9 of Cohen [263]. Further improvements of the
Jacobi sum test are reported by Bosma and van der Hulst [174].
Elliptic curves were first used for primality proving by Goldwasser and Kilian [477], who
presented a randomized algorithm which has an expected running time of O((ln n)$) bit
operations for most inputs n. Subsequently, Adleman and Huang [13] designed a primality
proving algorithm using hyperelliptic curves of genus two whose expected running time
is polynomial for all inputs n. This established that the decision problem "is n prime?"
is in the complexity class RP (Definition 2.77(ii)). The Goldwasser-Kilian and Adleman-
Huang algorithms are inefficient in practice. Atkin's test, and an implementation of it, is
extensively described by Atkin and Morain [58]; see also Chapter 9 of Cohen [263]. The

Facebook's Exhibit No. 1005
0065

MOBILEIRON, INC. - EXHIBIT 1011
Page 079

§4.7 Notes and further references

§4.4

§4.5

167

largest number proven prime as of 1996 by a general purpose primality proving algorithm is
a 1505-decimal digit number, accomplished by Morain [903] using Atkin's test. The total
time for the computation was estimated to be 4 years of CPU time distributed among 21
SUN 3/60 workstations. See also Morain [902] for an implementation report on Atkin's
test which was used to prove the primality of the 1065-decimal digit number (2353s ~-1)/3.

A proof of Merten's theorem can be found in Hardy and Wright [540]. The optimal trial di-
vision bound (Note 4.45) was derived by Maurer [818]. The discussion (Note 4.47) on the
probability P(X ~Yt) is from Beauchemin et al. [81]; the result mentioned in the last sen-
tence of this note is due to Kim and Pomerance [673]. Fact 4.48 was derived by Damgard,
Landrock, and Pornerance [300], building on earlier work of Erdos and Pomerance [373],
Kim and Pomerance [673], and Damgard and Landrock [299]. Table 4.3 is Table 2 of Dam-
gard, Landrock, and Pomerance [300]. The suggestions to first do a Miller-Rabin test with
base a = 2 (Remark 4.50) and to do an incremental search (Note 4.51) in Algorithm 4.44
were made by Brandt, Damgard, and Landrock [187]. The error and failure probabilities
for incremental search (Note 4.51(i)) were obtained by Brandt and Damgard [186]; consult
this paper for more concrete estimates of these probabilities.

Algorithm 4.53 for generating strong primes is due to Gordon [514, 513]. Gordon originally
proposed computingpo = (s""-1 _ rs-1) mod rs in step 3. Kaliski (personal communica-
tion, April 1996) proposed the modified formulapo = (2s"'-2 mod r)s - 1 which can be
computed more efficiently. Williams and Schmid [1249] proposed an algorithm for gener-
ating strong primes p with the additional constraint that P - 1 = 2q where q is prime; this
algorithm is not as efficient as Cordon's algorithm. Hellman and Bach [550] recommended
an additional constraint on strong primes, specifying that s - 1 (where s is a large prime
factor of P -{-1) must have a large prime factor (see § 15.23(v)); this thwarts cycling attacks
based on Lucas sequences.

The NIST method for prime generation (Algorithm 4.56) is that recommended by the KIST
Federal Information Processing Standards Publication (PIPS) 186 [406].

Fact 4.59 and Algorithm 4.62 for provableprime generation are derived from Maurer [818].
Algorithm 4.62 is based on that of Shawe-Taylor [1123]. Maurer notes that the total diver-
sity of reachable primes using the. original version of his algorithm is roughly 10% of all
primes. Maurer also presents a more complicated algorithm for generating provable primes
with a better diversity than Algorithm 4.62, and provides extensive implementation details
and analysis of the expected running time. Maurer [812] provides heuristic justification that
Algorithm 4.62 generates primes with virtually uniform distribution. Mihailescu [870] ob-
served that Maurer's algorithm can be improved by using the Eratosthenes sieve method
for trial division (in step 8.2 of Algorithm 4.62) and by searching for a prime n in an appro-
priateinterval of the arithmetic progression 2q-~ 1, 4q-}-1, 6q~-1, . . . instead of generating
R's at random until ~ = 2Rq + 1 is prime. The second improvement comes at the expense
of a reduction of the set of primes which may be produced by the algorithm. Mihailescu's
paper includes extensive analysis and an implementation report.

Lidl and Niederreiter [764] provide a comprehensive treatment of irreducible polynomials;
proofs of Facts 4.67 and 4.68 can be found there.

Algorithm 4.69 for testing a polynomial for irreducibility is due toBen-Or [109]. The fast-
est algorithm known for generating irreducible polynomials is due to Shoup [1131] and has
an expected running time of O (m3 1g m + m2 1g p) 7L~-operations. There is no determinis-
tic polynomial-time algorithm known for finding an irreducible polynomial of a specified

Facebook's Exhibit No. 1005
0066

MOBILEIRON, INC. - EXHIBIT 1011
Page 080

168

§4.6

Ch. 4 Public-Key Parameters

degree m in 7LP[~]. Adleman and Lenstra [14] give a deterministic algorithm that runs in
polynomial time under the assumption that the ERH is true. The best deterministic algo-
rithm known is due to Shoup [1129] and takes Q(m4~) 7L~-operations, ignoring powers
of log m and log p. Gordon [512] presents an improved method for computing minimum
polynomials of elements in IFZm .
Zierler and Brillhart [1271] provide a table of all irreducible trinomials of degree < 1000
in 7G2 [x]. Blake, Gao, and Lambert [146] extended this list to all irreducible trinomials of
degree < 2000 in 7L2[x]. Fact 4.75 is from their paper.
Table 4.8 extends a similar table by Stahnke [1168]. The primitive pentanomials ~"" + ~
xk' -I- xk2 -}- x~~ -~- 1 listed in Table 4.8 have the following properties: (i) kl = k2 -}- k3;
(ii) k2 > k3; and (iii) k3 is as small as possible, and for this particular value of k3, k2 is
as small as possible. The rational behind this form is explained in Stahnke's paper. For i
each m < 5000 for which the factorization of 2''"' — 1 is known, ZivkoviE [1275, 176]
gives a primitive trinomial in 7L2[x], one primitive polynomial in 7G2[x] having five non-
zero terms, and one primitive polynomial in 7G2 [x] having seven non-zero terms, provided
that such polynomials exist. The factorizations of 2"'' — 1 are known for all m < 510 and ~J
for some additional m < 5000. A list of such factorizations can be found in Brillhart et ~ j
al. [211] and updates of the list are available. by anonymous ftp from sable . ox . ac . uk
in the /pub/math/cunningham/ directory. Hansen and Mullen [538] describe some
improvements to Algorithm 4.78 for generating primitive polynomials. They also give ta-
bles of primitive polynomials of degree m in 7LP [x] for each prime power p'"'' < 1050 with x~
p < 97. Moreover, for each such p and m, the primitive polynomial of degree m over 7Lp ~
listed has the smallest number of non-zero coefficients among all such polynomials.
The entries of Table 4.9 were obtained from Zierler [1270] for Mersenne exponents M~,
1 < j < 23, and from Kurita and Matsumoto [719] for Mersenne exponents M~, 24 < j
27.
Let f (~) E 7Gp [~] be an irreducible polynomial of degree m, and consider the finite field
IFPm = ~ip[x]/(f (x)). Then f (x) is called a normal polynomial if the set {x, xp, x~'Z, ... ,
xpm-1 } forms a basis for IFpm over 7Lp; such a basis is called a normal basis. Mullin et
al. [911] introduced the concept of an optimal normal basis in order to reduce the hardware
complexity of multiplying field elements in the finite field lF2m . A VLSI implementation of
the arithmetic in lF2m which uses optimal normal bases is described by Agnew et al. [18]. A
normal polynomial which is also primitive is called a primitive normal polynomial. Dav-
enport [301] proved that for any prime p and positive integer m there exists a primitive
normal polynomial of degree m in 7LP[x]. See also Lenstra and Schoof [760] who general-
ized this result from prime fields 7LP to prime power fields IF4. Morgan and Mullen [905]
give a primitive normal polynomial of degree m over 7Lp for each prime power p"12 < 1050
with p < 97. Moreover, each polynomial has the smallest number ofnon-zero coefficients
among all primitive normal polynomials of degree m over 7Gp; in fact, each polynomial has
at most five non-zero terms.

No polynomial-time algorithm is known for finding generators, or even for testing whether
an element is a generator, of a finite field]FQ if the factorization of q —1 is unknown. Shoup
[1130] considered the problem of deterministically generating in polynomial time a subset
of lF9 that contains a generator, and presented a solution to the problem for the case where
the characteristic p of IFQ is small (e.g. p = 2). Maurer [818] discusses how his algorithm
(Algorithm 4.62) can be used to generate the parameters (p, a), where p is a provable prime
arnd a is a generator of 7LP.

Facebook's Exhibit No. 1005
0067

MOBILEIRON, INC. - EXHIBIT 1011
Page 081

Chapter

Pseudorandom Bits and Sequences

Contents in Brief

5.1 Introduction . 169
5.2 Random bit generation 171
5.3 Pseudorandom bit generation . 173
5.4 Statistical tests 175
5.5 Cryptographically secure pseudorandom bit generation . 185
5.6 Notes and further references 187

5.1 Introduction
The security of many cryptographic systems depends upon the generation of unpredictable
quantities. Examples include the keystream in the one-time pad (§ 1.5.4), the secret key
in the DES encryption algorithm (§11.5.1), the primes p,q in the RSA encryption (§8.2)
and digital signature (§11.3.1) schemes, the private key a in the DSA (11.5.1), and the
challenges used in challenge-response identification systems (§ 10.3). In all these cases, the
quantities generated must be of sufficient size and be "random" in the sense that the proba-
bility ofany particular value being selected must be sufficiently small to preclude an adver-
sary from gaining advantage through optimizing a search strategy based on such probability.
For example, the key space for DES has size 256. If a secret key k were selected using a
true random generator, an adversary would on average have to try 255 possible keys before
guessing the correct key k. If, on the other hand, a key k were selected by first choosing a
16-bit random secret s, and then expanding it into a 56-bit key k using a complicated but
publicly known function f ,the adversary wodld on average only need to try 215 possible
keys (obtained by running every possible value for s through the function f).

This chapter considers techniques for the generation of random and pseudorandom
bits and numbers. Related techniques for pseudorandom bit generation that are generally
discussed in the literature in the context of stream ciphers, including linear and nonlinear
feedback shift registers (Chapter 6) and the output feedback mode (OFB) of block ciphers
(Chapter 7), are addressed elsewhere in this book.

Ch outline
The remainder of §5.1 introduces basic concepts relevant to random and pseudorandom
bit generation. §5.2 considers techniques for random bit generation, while §5.3 considers
some techniques for pseudorandom bit generation. §5.4 describes statistical tests designed

169

Facebook's Exhibit No. 1005
0068

MOBILEIRON, INC. - EXHIBIT 1011
Page 082

170 Ch. 5 Pseudorandom Bits and Sequences

to measure the quality of a random bit generator. Cryptographically secure pseudorandom
bit generators are the topic of §5.5. §5.6 concludes with references and further chapter notes.

5.1.1 Background and Classification
5.'1 Definition A random bit generator is a device or algorithm which outputs a sequence of

statistically independent and unbiased binary digits.

5.2 Remark (random bits vs. random numbers).A random bit generator can be used to gener-
ate (uniformly distributed) random numbers. For example, a random integer in the interval
[0, n] can be obtained by generating a random bit sequence of length Llg n~ -f- 1, and con-
verting it to an integer; if the resulting integer exceeds n, one option is to discard it and
generate a new random bit sequence.

§5.2 outlines some physical sources of random bits that are used in practice. Ideally,
secrets required in cryptographic algorithms and protocols should be generated with a (true)
random bit generator. However, the generation of random bits is an inefficient procedure in
most practical environments. Moreover, it may be impractical to securely store and transmit
a large number of random bits if these are required in applications such as the one-time pad
(§6.1.1). In such situations, the problem can be ameliorated by substituting a random bit
generator with a pseudorandom bit generator.

5.3 Definition A pseudorandom bit generator (PRBG) is a deterministic) algorithm which,
given a truly random binary sequence of length k, outputs a binary sequence of length l » k
which "appears" to be random. The input to the PRBG is called the seed, while the output
of the PRBG is called a pseudorandom bit sequence. ~

The output of a PRBG is root random; in fact, the number of possible output sequences is at
most a small fraction, namely 2k /2l, of all possible binary sequences of length 1. The intent
is to take a small truly random sequence and expand it to a sequence of much larger length,
in such a way that an adversary cannot efficiently distinguish between output sequences of
the PRBG and truly random sequences of length 1. §5.3 discusses ad-hoc techniques for
pseudorandom bit generation. In order to gain confidence that such generators are secure, ~'
they should be subjected to a variety of statistical tests designed to detect the specific char- ~:
acteristics expected of random sequences. A collection of such tests is given in X5.4. As
the following example demonstrates, passing these statistical tests is a necessary but not ~
sufficient condition for a generator to be secure.

g

5.4 Example (linear cong'ruential generators) A linear congruential generator produces a
pseudorandom sequence of numbers xl, x2i x3, . .. according to the linear recurrence

xn = ax~,_1 -{- b mod m, n > 1;

a, b, and m are parameters which characterize the generator, while xo is the (secret) seed.
While such generators are commonly used for simulation purposes and probabilistic algo-
rithms, and pass the statistical tests of §5.4, they are predictable and hence entirely insecure
for cryptographic purposes: given a partial output sequence, the remainder of the sequence
can be reconstructed even if the parameters a, b, and m are unknown. ❑

1Deterministic here means that given the same initial seed, the generator will always produce the same output
sequence.

Facebook's Exhibit No. 1005
0069

MOBILEIRON, INC. - EXHIBIT 1011
Page 083

§5.2 Random bit generation 171

A minimum security requirement for a pseudorandom bit generator is that the length
k of the random seed should be sufficiently large so that a search over 2~ elements (the
total number of possible seeds) is infeasible for the adversary. Two general requirements
are that the output sequences of a PRBG should be statistically indistinguishable from truly
random sequences, and the output bits should be unpredictable to an adversary with limited
computational resources; these requirements are captured in Definitions 5.5 and 5.6.

5.5 Definition A pseudorandom bit generator is said to pass all polynomial-time2 statistical
tests if no polynomial-time algorithm can distinguish between an output sequence of the
generator and a truly random sequence of the same length with probability significantly
greater that 2.

5.6 Definition A pseudorandom bit generator is said to pass the next-bit test if there is no
polynomial-time algorithm which, on input of the first l bits of an output sequence s, can
predict the (l + 1)St bit of s with probability significantly greater than 2.

Although Definition 5.5 appears to impose a more stringent security requirement on
pseudorandom bit generators than Definition 5.6 does, the next result asserts that they are,
in fact, equivalent.

5.7 Fact (universality of the next-bit test) A pseudorandom bit generator passes the next-bit
test if and only if it passes all polynomial-time statistical tests.

5.8 Definition A PRBG that passes the next-bit test (possibly under some plausible but un-
proved mathematical assumption such as the intractability of factoring integers) is called a
cryptographically secure pseudorandom bit generator (CSPRBG).

5.9 Remark (asymptotic nature of Definitions S.S, 5.6, and 5.8.) Each of the three definitions
above are given in complexity-theoretic terms and are asymptotic in nature because the no-.
tion of "polynomial-time" is meaningful for asymptotically large inputs only; the resulting
notions of security are relative in the same sense. In Definitions 5.5, 5.6, 5.8, and Fact 5.7,
a pseudorandom bit generator is actually a family of such PRBGs. Thus the theoretical se-
curity results for a family of PRBGs are only an indirect indication about the security of
individual members.

Two cryptographically secure pseudorandom bit generators are presented in §5.5.

5.2 Random bit generation
A (true) random bit generator requires a naturally occurring source of randomness. De-
signing ahardware device or software program to exploit this randomness and produce a
bit sequence that is free of biases and correlations is a difficult task. Additionally, for cryp-
tographicapplications, the generator must not be subject to observation or manipulation by
an adversary. This section surveys some potential sources of random bits.

Random bit generators based on natural sources of randomness are subject to influence
by external factors, and also to malfunction. It is imperative that such devices be tested
periodically, for example by using the statistical tests of §5.4.

2The running time of the test is bounded by a polynomial in.the length l of the output sequence.

Facebook's Exhibit No. 1005
0070

MOBILEIRON, INC. - EXHIBIT 1011
Page 084

172 Ch. 5 Pseudorandom Bits and Sequences

(i) Hardware-based generators
Hardware-based random bit generators exploit the randomness which occurs in some phys-
ical phenomena. Such physical processes may produce bits that are biased or correlated, in
which case they should be subjected to de-skewing techniques mentioned in (iii) below.
Examples of such physical phenomena include:

1. elapsed time between emission of particles during radioactive decay;
2. thermal noise from a semiconductor diode or resistor;
3. the frequency instability of a free running oscillator;
4. the amount a metal insulator semiconductor capacitor is charged during a fixed period

of time;
5. air turbulence within a sealed disk drive which causes random fluctuations in disk

drive sector read latency times; and ~
6. sound from a microphone or video input from a camera.

Generators based on the first two phenomena would, in general, have to be built externally
to the device using the random bits, and hence may be subject to observation or manipula-
tion by an adversary. Generators based on oscillators and capacitors can be built on VLSI
devices; they can be enclosed in tamper-resistant hardware, and hence shielded from active
adversaries.

(ii) Software-based generators
Designing a random bit generator in software is even more difficult than doing so in hard-
ware. Processes upon which software random bit generators may be based include:

1. the system clock;
2. elapsed time between keystrokes or mouse movement;
3. content of inpudoutput buffers;
4. user input; and
5. operating system values such as system load and network statistics.

The behavior of such processes can vary considerably depending on various factors, such
as the computer platform. It may also be difficult to prevent an adversary from observing or
manipulating these processes. For instance, if the adversary has a rough idea of when a ran-
domsequence was generated, she can guess the content of the system clock at that time with
a high degree of accuracy. Awell-designed software random bit generator should utilize as
many good sources of randomness as are available. Using many sources guards against the
possibility of a few of the sources failing, or being observed or manipulated by an adver-
sary. Each source should be sampled, and the sampled sequences should be combined using -
a complex mixing function; one recommended technique for accomplishing this is to apply
a cryptographic hash function such as SHA-1 (Algorithm 9.53) or MDS (Algorithm 9.51) to
a concatenation of the sampled sequences. The purpose of the mixing function is to distill i
the (true) random bits from the sampled sequences.

(iii) De-skewing
A natural source of random bits may be defective in that the output bits may be biased (the
probability of the source emitting a 1 is not equal to 2) or correlated (the probability of
the source emitting a 1 depends on previous bits emitted). There are various techniques for
generating truly random bit sequences from the output bits of such a defective generator;
such techniques are called de-skewing techniques.

Facebook's Exhibit No. 1005
0071

MOBILEIRON, INC. - EXHIBIT 1011
Page 085

X5.3 Pseudorandom bit generation i 73

5.10 Example (removing biases in output bits) Suppose that a generator produces biased but
uncorrelated bits. Suppose that the probability of a 1 is p, and the probability of a 0 is 1— p,
where p is unknown but fixed, 0 < p < 1. If the output sequence of such a generator is
grouped into pairs of bits, with a 10 pair transformed to a 1, a 01 pair transformed to a 0, and
00 and 11 pairs discarded, then the resulting sequence is both unbiased and uncorrelated. ❑

A practical (although not provable) de-skewing technique is to pass sequences whose
bits are biased or correlated through a cryptographic hash function such as SHA-1 or MDS.

5.3 Pseudorandom bit generation
A one-way function f (Definition 1.12) can ~be utilized to generate pseudorandom bit se-
quences (Definition 5.3) by first selecting a random seed s, and then applying the function to
the sequence of values s, s-}-1, s-I-2, . . . ;the output sequence is f (s), f (s+l), f (s-I-2),

~ Depending on the properties of the one-way function used, it may be necessary to only keep
a few bits of the output values f (s -{- i) in order to remove possible correlations between
successive values. Examples of suitable one-way functions f include a cryptographic hash
function such as SHA-1 (Algorithm 9.53), or a block cipher such as DES (§7.4) with secret
key k.

~ Although such ad-.hoc methods have not been proven to be cryptographically secure,
they appear sufficient for most applications. Two such methods for pseudorandom bit and
number generation which have been standardized are presented in §5.3,1 and §53.2. Tech-
niques for the cryptographically secure generation of pseudorandom bits are given in §5.5.

5.3.1 ANSI X9.1'7 generator
Algorithm 5.11 is a U.S. Federal Information Processing Standard (PIPS) approved method
from the ANSI X9.17 standard for the purpose of pseudorandomly generating keys and
initialization vectors for use with DES. E~ denotes DES E-D-E two-key triple-encryption
(Definition 7.32) under a key k; the key k should be reserved exclusively for use in this
algorithm.

1 5.11 AlgoYithm ANSI X9.17 pseudorandom bit generator

INPUT: a random (and secret) 64-bit seed s, integer m, and DES E-D-E encryption key k.
OUTPUT: m pseudorandom 64-bit strings xl, x2i . . . , ~,,,,.

~ 1. Compute the intermediate value I = Ek (D), where D is a 64-bit representation of
the date/time to as fine a resolution as is available.

2. For i from 1 to m do the following:

2.2 sF-Ek(xi ~ I).
Return(xi, x2, . . . , x,,,,).

Each output bitstring xi may be used as an initialization vector (IV) for one of the DES
modes of operation (§7.2.2). To obtain a DES key from xi, every eighth bit of xi should be

~ reset to odd parity (cf: §7.4.2).

Facebook's Exhibit No. 1005
0072

MOBILEIRON, INC. - EXHIBIT 1011
Page 086

174 Ch. 5 Pseudorandom Bits and Sequences

5.3.2 FIPS 186 generator
The algorithms presented' in this subsection are FIPS-approved methods for pseudorandom-
ly generating the secret parameters for the DSA (Algorithm 11.5.1). Algorithm 5.12 gen=
erates a DSA private key a, while Algorithm 5.14 generates the per-message secrets k to
be used in signing messages. Both algorithms use a secret seed s which should be ran-
domly.generated, and utilize aone-way function constructed by using either SHA-1 (Algo-
rithm 9.53) or DES (Algorithm 7.82), respectively described in Algorithms 5.15 and 5.16.

5.12 Algorithm FIPS 186 pseudorandom number generator for DSA private keys

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers al, a2, . . . , a,,,, in the interval [0, q - 1] which may
be used as DSA private keys.

1. If Algorithm 5.15 is to be used in step 4.3 then select an arbitrary integer b, 160 <
b < 512; if Algorithm 5.16 is to be used then set bF-160.

2. Generate a random (and secret) b-bit seed s.
3. Define the 160-bit string t = 67452301 efcdab89 98badcfe 10325476 c3d2e1f0 (in

hexadecimal). '
4. For i from 1 to m do the following:

4.1 (optional user input) Either select a b-bit string' yZ, or set yz~0.
4.2 z%<-(s + yZ) mod 26.
4.3 ai~G(t, zi) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.4 sF-(1 + s + a2) mod 26. -

5. Return(al, a2i ... , a~,,,).

5.13 Note (optional user input) Algorithm 5.12 permits a user to augment the seed s with ran-
dom or pseudorandom strings derived from alternate sources. The user may desire to do
this if she does not trust the quality or integrity of the random bit generator which may be
built into a cryptographic module implementing the algorithm.

5.14 Algorithm FIPS 186 pseudorandom number generator for DSA per-message secrets

INPUT: an integer m and a 160-bit prime number q.
OUTPUT: m pseudorandom numbers kl, k2i . . . , k,~ in the interval [0, q - 1] which may
be used as the per-message secret numbers k in the DSA.

1. If Algorithm 5.15 is to be used in step 4.1 then select an integer b, 160 < b < 512;
if Algorithm 5.16 is to be used then set b~160.

2. Generate a random (and secret) b-bit seeds.
3. Define the 160-bit string t = efcdab89 98badcfe 10325476 c3d2e1f0 67452301 (in

hexadecimal).
4. For i from 1 to m do the following:

4.1 ktiF-G(t, s) mod q. (G is either that defined in Algorithm 5.15 or 5.16.)
4.2 s~(1 -I- s -~ ki) mod 2b.

5. Return(kl, k2i . . . , k,,,,).

Facebook's Exhibit No. 1005
0073

MOBILEIRON, INC. - EXHIBIT 1011
Page 087

X5.4 Statistical tests 175

5.'15 Algorithm FIPS 186 one-way function using SHA-1

INPUT: a 160-bit string tand a b-bit string c, 160 < b < 512.
OUTPUT: a 160-bit string denoted G(t, c).

~ 1. Break up t into five 32-bitblocks: t = H1~~H2~~H3 ~~H4 ~ ~H5 •
2. Pad c with 0's to obtain a 512-bit message block: X~cIIQ512—b

3. Divide X into 16 32-bit words: ~oxl ...x15, and set mil.
4. Execute step 4 of SHA-1 (Algorithm 9.53).. -(This alters the Hi's.)
5. The output is the concatenation: G(t, c) = Hl I I H2 I I Hs I I H4 ~ ~ Hs

5.16 Algorithm FIPS 186 one-way function using DES

INPUT: two 160-bit strings t and c.
~ OUTPUT: a 160-bit string denoted G(t, c).

1. Break up t into five 32-bit blocks: t = to IIt1IIt2IIt3IIt4•
2. Break up c into five 32-bitblocks: c = co~~el ~~c2 ~~c3 ~~c4•
3. For i from 0 to 4 do the following: x2 <—ti ~ ca.

i 4. For i from 0 to 4 do the following:
4.1 bl~c~2+4~mod5> ba~~(Z+s)mod5•
4.2 al<—xz, a2t--x~i+l~mod5 ~ x(i-~-4)moas•
4.3 AFal ~~a2, Bt—bi ~~b2, where bi denotes the 241east significant bits of bl.
4.4 Use DES with key B to encrypt A: y2F—DESB(A).
4.5 Break up yz into two 32-bzt blocks: yz = Li~~Ri•

5. For i from 0 to 4 do the following: zi<—Li ~ R(i+2)mod5 ~ I'(i+s)mod5•
6.. The output is the concatenation: G(t, c) = zo ~~zl ~~z2 ~~z3 ~~z4•

5.4 Statistical tests
This section presents some tests designed to measure the quality of a generator purported
to be a random bit generator (Definition 5.1). While it is impossible to give a mathematical
proof that a generator is indeed a random bit generator, the tests described here help detect.
certain kinds of weaknesses the generator may have. This is accomplished by taking a sam-
ple output sequence of the generator and subjecting it to various statistical tests: Each statis-
tical test determines whether the sequence possesses a certain attribute that a truly random
sequence would be likely to exhibit; the conclusion of each test is not definite, but rather
probabilistic. An example of such an attribute is that the sequence should have roughly the

~ ~ same number of 0's as 1's. If the sequence is deemed to have failed any one of the statistical
tests, the generator may be rejected as being non-random; alternatively, the generator may
be subjected to further testing. On the other hand, if the.sequence passes all of the statisti-
cal tests, the generator is accepted as being random. More precisely, the term "accepted"
should be replaced by "not rejected", since passing the tests merely provides probabilistic
evidence that the generator produces sequences which have certain characteristics of ran-
dom sequences.

§5.4.1 and §5.4:2 provide some relevant background in statistics. §5.43 establishes
some notation and lists Golomb's randomness postulates. Specific statistical tests for ran-

~~ dourness are described in X5.4.4 and X5.4.5.~:
~,
€;
) ,

Facebook's Exhibit No. 1005
0074

MOBILEIRON, INC. - EXHIBIT 1011
Page 088

i 76 Ch. 5 Pseudorandom Bits and Sequences

5.4.1 The normal and chi-square distributions
The normal and x2 distributions are widely used in statistical applications.

5.17 Definition If the result X of an experiment can be any real number, then X is said to be
a continuous random variable.

5.18 Definition A probability density function of a continuous random variable X is a function
f (~) which can be integrated and satisfies:

(i) f (x) > 0 for all x E I[~;
(ii) f ~ f (x) dx = 1; and

(iii) for all a, b E][~, P(a < X < b) = fa f (x) dx.

(i) The normal distribution
The normal distribution arises in practice when a large number of independent random vari-
ables having the same mean and variance are summed.

5.19 Definition A (continuous) random variable X has a normal distribution with mean µ and
variance ~2 if its probability density function is defined by

zl
f ~x~ — Q 12~r eXp { —(

2a2N~~ l —oo G x < oo.
f

Notation: X.is said to be N(µ,Q2). If X is N(0,1), then X is said to have a standard
normal distribution.

A graph of the N(0,1) distribution is given in Figure 5.1: The graph is symmetric

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

f(x)

0 c
-3 -2 -1 0 1 2 X 3

Figure 5. y: The normal distribution N(0,1).

about the vertical axis, and hence P(X > x) — P(X < —x) for any x. Table 5.1 gives
some percentiles for the standard normal distribution. For example, the entry (a = 0.05,

~' x = 1.6449) means that if X is N(0,1), then X exceeds 1.6449 about 5% of the time.
Fact 5.20 can be used to reduce questions about a normal distribution to questions about

the standard normal distribution.

Facebook's Exhibit No. 1005
0075

MOBILEIRON, INC. - EXHIBIT 1011
Page 089

§5.4 Statistical tests 177

a 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005
x 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905

Table 5.1: Selected percentiles of the standard normal distribution. If X is a random variable having
a standard normal distribution, then P(X > x) = a.

5.20 Fact If the random variable X is N(µ, QZ), then the random variable Z = (X — µ)~Q is
N(0,1).

(ii) The X2 distribution
The x2 distribution can be used to compare the goodness-of-fit of the observed frequencies
of events to their expected frequencies under a hypothesized distribution. The X2 distribu-
tion with v degrees of freedom arises in practice when the squazes of v independent random
variables having standard normal distributions are summed.

5.21 Definition A (continuous) random variable X has a x2 (chi-square) distribution with v
degrees of freedom if its probability density function is defined by

1
f ~x) =

r(v~2~2v12x~y12~—~e—~la ~ 0 < x < oo,

0, x < 0,

where t is the gamma function. 3 The mean and variance of this distribution are µ = v,
and Q2 = 2v.

A graph of the X2 distribution with v = 7 degrees of freedom is given in Figure 5.2.
Table 5.2 gives some percentiles of the x2 distribution for various degrees of freedom. For

0.12

0.1

0.08

a.os

o.on

0.02

0
0

f(x)

5 10 15 20
x

Figure 5.2: The x2 (chi-square) distribution with v = 7 degrees of freedom.

example, the entry in row v = 5 and column a = 0.05 is ~ = 11.0705; this means that if
X has a X2 distribution with 5 degrees of freedom, then X exceeds 11.0705 about 5% of
the time.

3The gamma function is defined by P(t) = fo xt-le-xdx, fort > 0.

Facebook's Exhibit No. 1005
0076

MOBILEIRON, INC. - EXHIBIT 1011
Page 090

178 Ch. 5 Pseudorandom Bits and Sequences

a
v 0.100 0.050 0.025 0.010 0.005 0.001

1 2.7055 3.8415 5.0239 6.6349 7.8794 10.8276
2 4.6052 5.9915 7.3778 9.2103 10.5966 13.8155
3 6.2514 7.8147. 9.3484 11.3449 12.8382 162662
4 7.7794 9.4877 11.1433 13.2767 14.8603 18.4668
5 9.2364 11.0705 12.8325 15.0863 16.7496 20.5150
6 10.6446 12.5916 14.4494 16.8119 18.5476 22.4577
7 12.0170 14.0671 16.0128 18.4753 20.2777 24.3219
8 13.3616 15.5073 17.5345 20.0902 21.9550 26.1245
9 14.6837 16.9190 19.0228 21.6660 23.5894 27.8772

10 15.9872 18.3070 20.4832 23.2093 25.1882 29.5883
11 17.2750 19.6751 21.9200 24.7250 26.7568 31.2641
12 18.5493 21.0261 23.3367 26.2170 28.2995 32.9095
13 19.8119 223620 24.7356 27.6882 29.8195 34.5282
14 21.0641 23.6848 26.1189 29.1412 31.3193 36.1233
15 22.3071. 24.9958 27.4884 30.5779 32.8013 37.6973
16 23.5418 26.2962 28.8454 31.9999 34.2672 39.2524
17 24.7690 27.5871 30.1910 33.4087 35.7185 40.7902
18 25.9894 28.8693 31.5264 34.8053 37.1565 42.3124
19 27.2036 30.1435 32.8523 36.1909 38.5823 43.8202
20 28.4120 31.4104 34.1696 37.5662 39.9968 45.3147
21 29.6151 32.6706 35.4789 38.9322 41.4011 46.7970
22 30.8133 33.9244 36.7807 40.2894 42.7957 48.2679
23 32.0069 35.1725 38.0756 41.6384 44.1813 49.7282
24 33.1962 36.4150 39.3641 42.9798 45.5585 51.1786
25 34.3816 37.6525 40.6465 443141 46.9279 52.6197
26 35.5632 38.8851 41.9232 45.6417 48.2899 54.0520
27 36.7412 40.1133 43.1945 44.9629 49.6449 55.4760
28 37.9159 41.3371 44.4608 48.2782 50.9934 56.8923
29 39.0875 42.5570 45.7223 49.5879 52.3356 58.3012
30 40.2560 43.7730 46.9792 50.8922 53.6720 59.7031
31 41.4217 44.9853 48.2319 52.1914 55.0027 61.0983
63 77.7454 82.5287 86.8296 92.0100 95.6493 103.4424

127 147.8048 154.3015 160.0858 166.9874 171.7961 181.9930
255 284.3359 293.2478 301.1250 310.4574 316.9194 330.5197
511 552.3739 564.6961 575.5298 588.2978 597.0978 615.5149

1023 1081.3794 1098.5208 1113.5334 1131,1587 1143.2653 1168.4972

Tab/e 5.2: Selected percentiles of the xz (chi-square) distribution. A (v, a)-entry of x in the table
has the following meaning: if X is a random variable having a x2 distribution with v degrees of
freedom, then P(X > x) = a.

Facebook's Exhibit No. 1005
0077

MOBILEIRON, INC. - EXHIBIT 1011
Page 091

§5.4 Statistical tests 179

Fact 5.22 relates the normal distribution to the XZ distribution.

5.22 Fact If the random variable X is N(µ, a2), Q2 > 0, then the random variable Z = (X —
µ)2/~2 has a X2 distribution with 1 degree of freedom. In particular, if X is N(0,1), then
Z = X2 has a X2 distribution with 1 degree of freedom.

5.4.2 Hypothesis testing
A statistical hypothesis, denoted Ho, is an assertion about a distribution of one or more ran-
domvariables. Atest of astatistical hypothesis is a procedure, based upon observed values
of the random variables, that leads to the acceptance or rejection of the hypothesis Ho. The
test only provides a measure of the strength of the evidence provided by the data against
the hypothesis; hence, the conclusion of the testis not definite, but rather probabilistic.

5.23 Definition The sig►zificance level a of the test of a statistical hypothesis Ho is the proba-
bility of rejecting Ho when it is true.

In this section, Ho will be the hypothesis that a given binary sequence was produced
by a random bit generator. If the significance level a of a test of Ho is too high, then the test
may reject sequences that were, in fact, produced by a random bit generator (such an error
is called a Type I error). On the other hand, if the significance level of a test of Ho is too
]ow, then there is the danger that the test may accept sequences even though they were not
produced by a random bit generator (such an error is called a Type II error).4 It is, therefore,
important that the test be carefully designed to have a significance level that is appropriate
for the purpose at hand; a significance level a between 0.001 and 0.05 might be employed
in practice.

A statistical test is implemented by specifying a statistic on the random sample.5 Statis-
ticsare generally chosen so that they can be efficiently computed, and so that they (approxi-
mately)follow an N(0,1) or a x2 distribution (see §5.4.1). The value of the statistic for the
sample output sequence is computed and compared with the value expected for a random
sequence as described below.

1. Suppose that a statistic X for a random sequence follows a x2 distribution with v
degrees of freedom, and suppose that the statistic can be expected to take on larger
values for nonrandom sequences. To achieve a significance level of cr, a threshold
value x~ is chosen (using Table 5.2) so that P(X > x«) = a. If the value XS of the
statistic for the sample output sequence satisfies XS > ~~, then the sequence fails the
test; otherwise, it passes the test. Such a test is called aone-sided test. For example,
if v = 5 and a = 0.025, then xa = 12.8325, and one expects a random sequence to
fail the test only 2.5% of the time.

2. Suppose that a statistic X for a random sequence follows an N(0,1) distribution, and
suppose that the statistic can be expected to take on both larger and smaller values for
nonrandom sequences. To achieve a significance level of a, a threshold value xa is
chosen (using Table 5~.1) so that P(X > xa) = P(X < —xa) = a/2. If the value

4Actually, the probability /3 of a Type II error may be completely independent of a. If the generator is not a
random bit generator, the probability (j depends on the nature of the defects of the generator, and is usually difficult
to determine in practice. For this reason, assuming that the probability of a Type II error is proportional to a is a
useful intuitive guide when selecting an appropriate significance level for a test.

5A statistic is a function of the elements of a random sample; for example, the number of 0's in a binary se-
quence is a statistic.

Facebook's Exhibit No. 1005
0078

MOBILEIRON, INC. - EXHIBIT 1011
Page 092

180 Ch. 5 Pseudorandom Bits and Sequences

XS of the statistic for the sample output sequence satisfies XS > ~~ or XS < —tea,
then the sequence fails the test; otherwise, it passes the test. Such a test is called a
two-sided test. For example, if a =. 0.05, then xa = 1.96, and one expects a random
sequence to fail the test only 5% of the time.

5.4.3 Golomb's randomness postulates
Golomb's randomness postulates (Definition 5.28) are presented here for historical reasons
— they were one of the first attempts to establish some necessary conditions for a periodic
pseudorandom sequence to look random. It is emphasized that these conditions are far from
being sufficient for such sequences to be considered random. Unless otherwise stated, all
sequences are binary sequences.

5.24 Definition Let s = so, sl, s2, , . . be an infinite sequence. The subsequence consisting of
the first n terms of s is denoted by s~ = so,•sl, .. . , s~,_1.

5.25 Definition The sequence s = so, sl, s2i .. . is said to be N-periodic if sz = s1+N for
all i > 0. The sequence s is periodic if it is N-periodic for some positive integer N. The
period of a periodic sequence s is the smallest positive integer N for which s is N-periodic.
If s is a periodic sequence of period N, then the cycle of s is the subsequence sl̀'.

5.26 Definition Let s be a sequence. A run of s is a subsequence of s consisting of consecutive
0's or consecutive 1's which is neither preceded nor succeeded by the same symbol. A run
of 0's is called a gap, while a run of 1's is called a block.

5.27 Definition Let s = sp, sl, s2, .. . be a periodic sequence of period N. The autocorrela-
tion function of s is the integer-valued function C(t~ defined as

1 N-1
C~t~ = N ~ ~2si — 1J • ~2si+t — 1J, for 0 < t < N — 1.

i=o

The autocorrelation function C(t) measures the amount of similarity between the se-
quence sand ashift of s by t positions. If s is a random periodic sequence of period N,
then ~N • C(t) ~ can be expected to be quite small for all values of t, 0 < t < N.

5.28 Definition Let s be a periodic sequence of period N. Golomb s randomness postulates
are the following.
R1: In the cycle sN of s, the number of 1's differs from the number of 0's by at most 1.
R2: In the cycle s~', at least half the runs have length 1, at least one-fourth have length

2, at least one-eighth have length 3, etc., as long as the number of runs so i~~dicated
exceeds 1. Moreover, for each of these lengths, there are (almost) equally many; gaps
and blocks.s ~ -'.

R3: The autocorrelation function C(t) is two-valued. That is for some integer K,
N-1

i=o

r ~, lft=~,(2si+t-1~ ~ K, . if1<t<N-

6Postulate R2 implies postulate Rl.

Facebook's Exhibit No. 1005
0079

MOBILEIRON, INC. - EXHIBIT 1011
Page 093

§5.4 Statistical tests 181

5.29 Definition A binary sequence which satisfies Golomb's randomness postulates is called
a pseudo-noise sequence or a pn-sequence.

Pseudo-noise sequences arise in practice as output sequences ofmaximum-length lin-
ear feedback shift registers (cf. Fact 6.14).

5.30 Example (pn-sequence) Consider the periodic sequence s ofperiod N = 15 with cycle

si5 = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1,1,1,1, 0, 1.

The following shows that the sequence s satisfies Golomb's randomness postulates..

R1: The number of 0's in s15 is 7, while the number of 1's is 8.
R2: s15 has 8 runs. There are 4 runs of length 1 (2 gaps and 2 blocks), 2 runs of length 2

(1 gap and 1 block),1 run of length 3 (1 gap), and 1 run of length 4 (1 block).
R3: The autocorrelation function C(t) takes on two values: C(0) = 1 and C(t) _ —115

forl<t<14,

Hence, s is a pn-sequence.

5.4.4 Five basic tests
Let s = so, sl, s2i ... , sn_1 be a binary sequence of length n. This subsection presents
five statistical tests that are commonly used for determining whether the binary sequence
s possesses some specific characteristics that a truly random sequence would be likely to
exhibit. It is emphasized again that the outcome of each testis not definite, but rather prob=
abilistic. If a sequence passes all five tests, there is no guarantee that it was indeed produced
by a random bit generator (cf. Example 5.4).

(i) Frequency test (monobit test)

The purpose of this testis to determine whether the number of 0's and 1's in s are approxi-
mately the same, as would be expected for a random sequence. Let no, nl denote the num-
ber of 0's and 1's in s, respectively. The statistic used is

2

n

which approximately follows a x2 distribution with 1 degree of freedom if n > 10. 7

(ii) Serial test (twp-bit test)

The purpose of this test is to determine whether the number of occurrences of 00, 01, 10,
and 11 as subsequences of s are approximately the same, as would be expected for a random
sequence. Let no, nl denote the number of 0's and 1's in s, respectively, and let moo, ~oi>
nlo, nll denote the number of occurrences of 00, O1, 10, 11 in s, respectively. Note that

noo -F not + nio -I- nll = (n — 1) since the subsequences are allowed to overlap. The
statistic used is

Xz = n 4 1 ~noo +not + nio + nii~ — n ~no + ni~ + 1 (5.2)

which approximately follows a x2 distribution with 2 degrees of freedom if n > 21.

~In practice, it is recommended that the length n of the sample output sequence be much larger (for example,
n ~> 10000) than the minimum specified for each test in this subsection.

Facebook's Exhibit No. 1005
0080

MOBILEIRON, INC. - EXHIBIT 1011
Page 094

182 Ch. 5 Pseudorandom Bits and Sequences

(iii) Poker test
Let m be a positive integer such that L,-~ J ~J • ~2"~~, and let k = L m~ . Divide the sequence
s into knon-overlappingparts each of length ~n, and let ~,z be the number of occurrences of
the ith type of sequence of length Trt, 1 < i < 2m. The poker test determines whether the
sequences of length m each appear approximately the same number of times in s, as would
be expected for a random sequence. The statistic used is

Z
m 2~.,~

z-1

which approximately follows a x2 distribution with 2"ib - 1 degrees of freedom. Note that
the poker test is a generalization of the frequency test: setting m = 1 in the poker test yields
the frequency test.

(iv) Runs test
The purpose of the runs test is to determine whether the number of runs (of either zeros or
ones; see Definition 526) of various lengths in the sequence s is as expected for a random
sequence. The expected number of gaps (or blocks) of length i in a random sequence of
length n is ei = (n-i-►-3~~2i+2. Let k be equal to the largest integer i for which ei > 5. Let
8;,, G;, be the number of blocks and gaps, respectively, of length i in s for each i, 1 < i < k.
The statistic used is

X _ ~. (Bi - e2)2 + ~. (Gi - ez)2
(5.44 L e2 Z_1 eti

which approximately follows a x2 distribution with 2k - 2 degrees of freedom.

(v) Autocorrelation test
The purpose of this testis to check for correlations between the sequence s and (non-cyclic)
shifted versions of it. Let d be a fixed integer, l < d < Ln/2~ .The number of bits in s not
equal to their d-shifts is A(d) _ ~2 0 -1 sites;,+d, where ~ denotes the XOR operator.
The statistic used is

X5 = 2 I A(d) - n 2 d I /~. (5.5)
\ /

which approximatelq follows an N(0,1) distribution if n - d > 10. Since small values of
A(d) are as unexpected as large values of A(d), a two-sided test should be used.

5.31 Example (basic statistical tests) Consider the (non-random) sequence s of length n =
160 obtained by replicating the following sequence four times:

11100 01100 01000 10100 11101 11100 10010 01001.

(i) (frequency test) no = 84, nl = 76, and the value of the statistic Xl is 0.4.
(ii) (serial test) noo = 44, nol = 40, No = 40, nll = 35, and the value of the statistic

XZ is 0.6252.
(iii) (poker test) Here m =.3 and k = 53. The blocks 000, 001, 010, 011, 100, 101, 110,

111 appear 5, 10, 6, 4, 12, 3, 6, and 7 times, respectively, and the value of the statistic
X3 is 9.6415.

(iv) (runs test) Here el = 20.25, e2 = 10.0625, e3 = 5, and k = 3. There are 25, 4, 5
blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respec-
tively. The value of the statistic X4 is 31.7913.

Facebook's Exhibit No. 1005
0081

MOBILEIRON, INC. - EXHIBIT 1011
Page 095

~5.e Statistical tests 183

(v) (autocorrelation test) If d = 3, then A(3) = 35. The value of the statistic X5 is
=6.9434.

For a significance level of a = 0.05, the threshold values for Xl, X2, X3, X4, and X5 are
3.8415, 5.9915, 14.0671, 9.4877, and 1.96, respectively (see Tables 5.1 and 52). Hence,
the given sequence s passes the frequency, serial, and poker tests, but fails the runs and
autocorrelationtests. ❑

5.32 Note (FIPS 140-1 statistical tests for randomness) FIPS 140-1 specifies four statistical
tests for randomness. Instead of making the user select appropriate significance levels for
these tests, explicit bounds are provided that the computed value of a statistic must satisfy.
A single bitstring s of length 20000 bits, output from a generator, is subjected to each of the
following tests. If any of the tests fail, then the generator fails the test.

(i) mortobit test. The number nl of 1's in s should satisfy 9654 < nl < 10346.
(ii) poker test. The statistic X3 defined by equation (5.3) is computed for m = 4. The

poker test is passed if 1.03 < X3 < 57.4.
(iii) runs test. The number BZ and Gti of blocks and gaps, respectively, of length i in s are

counted for each i, 1 < i < 6. (For the purpose of this test, runs of length greater
than 6 are considered to be of length 6.) The runs test is passed if the 12 counts BZ,
Gi, 1 < i < 6, are each within the corresponding interval specified by the following
table.

Length of run Required interval
1 2267 — 2733
2 1079 — 1421
3 502 — 748
4 223 — 402
5 90 — 223
6 90 — 223

(iv) long run test. The long run test is passed if there are no runs of length 34 or more.

For high security applications, FIPS 140-1 mandates that the four tests be performed each
time the random bit generator is powered up. FIPS 140-1 allows these tests to be substituted
by alternative tests which provide equivalent or superior randomness checking.

5.4.5 Maurer's universal statistical test
The basic idea behind Maurer's universal statistical test is that it should not be possible to
significantly compress (without loss of information) the output sequence of a random bit
generator. Thus, if a sample output sequence s of a bit generator can be significantly com-
pressed, the generator should be rejected as being defective. Instead of actually compress-
ing the sequence s, the universal statistical test computes a quantity that is related to the
length of the compressed sequence.

The universality of Maurer's universal statistical test arises because it is able to detect
any one of a very general class of possible defects a bit generator might have. This class
includes the five defects that are detectable by the basic tests of §5.4.4. A drawback of the
universal statistical. test over the five basic tests is that it requires a much longer sample
output sequence in order to be effective. Provided that the required output sequence can be
efficiently generated, this drawback is not a practical concern since the universal statistical
test itself is very efficient.

Algorithm 5.33 computes the statistic Xu for a sample output sequence s = so, sl, .. . ,
s~,_1 to be used in the universal statistical test. The parameter L is first chosen from the

Facebook's Exhibit No. 1005
0082

MOBILEIRON, INC. - EXHIBIT 1011
Page 096

184

L ~c v2

1 0.7326495 0.690
2 1.5374383 1.338
3 2.4016068 1.901
4 3.3112247 2.358
5 4.2534266 2.705
6 5.2177052 2.954
7 6.1962507 3.125
8 7.1836656 3.238

Ch. 5 Pseudorandom Bits and Sequences

L Ec vi

9 8.1764248 3.311
10 9.1723243 3.356
11 10.170032 3.384
12 11.168765 3.401
13 12.168070 3.410
14 13.167693 3.416
15 14.167488 3.419
16 15.167379 3.421

Table 5.3: Mean µ and variance Q2 of the statistic Xu for random sequences, with parameters L,
K as Q -> oo. The variance of Xu is QZ = c(L, K)2 • Qi /K, where c(L, K) ~ 0.7 - (0.8/L) -I-
(1.6 -I- (12.8/L)) • K-4~L for K > 2L.

interval [6,16] . The sequence s is then partitioned into non-overlapping L-bit blocks, with
any leftover bits discarded; the total number of blocks is Q ~-K, where Q and K are defined
below. For each i,1 < i < Q~-K, let bi be the integer whose binary representation is the ith

block. The blocks are scanned in order. A table T is maintained so that at each stage T [j] is
'the position of the last occurrence of the block corresponding to integer j, 0 < j < 2L -1.
The first Q blocks of s are used to initialize table T; Q should be chosen to be at least 10.2E
in order to have a high likelihood that each of the 2L L-bit blocks occurs at least once in
the first Q blocks. The remaining K blocks are used to define the statistic Xu as follows.
For each i, Q -{- 1 < i < Q -~ K, let AZ = i - T [bz]; Ati is the number of positions since
the last occurrence of block bti. Then

1 Q+x
Xu = K ~ lg Ai. (5.6)

i=Q+1

~ ~! K should be at least 1000.2E (and, hence, the sample sequence s should be at least (1010
% ' ±' 2L ~ L) bits in length). Table 5.3 lists the mean µ and variance a~2 of Xu for random se-
;i quences for some sample choices of L as Q -~ oo.!.~ 3i
i

z ~ 5.33 Algorithm Computing the statistic Xu for Maurer's universal statistical test

INPUT: a binary sequence s = so, sl, . . . , s~,_1 of length n, and parameters L, Q, K.
OUTPUT: the value of the statistic X~, for the sequence s.

1. Zero the table T. For j from 0 to 2L - 1 do the following: T [j]F-0.
~ 2. Initialize the table T. For i from 1 to Q do the following: T [bi] F-i.
i 3. sumE-0.

4. For ifrom Q -I- 1 to Q -I- K do the following:
4.1 sum~sum + lg(i - T [b2]).
4.2 T[bti]f-i.

. ~ 5. X,~~sum/K.
6. Return(Xu).

Maurer's universal statistical test uses the computed value of Xu for the sample output
sequence s in the manner prescribed by Fact 5.34. To test the sequence s, a two-sided test
should be used with a significance level a between 0.001 and 0.01 (see §5.4.2).

Facebook's Exhibit No. 1005
0083

MOBILEIRON, INC. - EXHIBIT 1011
Page 097

§ 5.5 Cryptographically secure pseudorandom bif generation 185

5.34 Fact Let X~ be the statistic defined in (5.6) having mean µ and variance QZ as given in
Table 5.3. Then, for random sequences, the statistic Zu = (Xu — µ)~Q approximately
follows~n N(0,1) distribution.

5.5 Cryptographocally secure pseudorandom bit
generation

Two cryptographically secure pseudorandom bit generators (CSPRBG —see Definition 5.8)
are presented in this section. The security of each generator relies on the presumed in-
tractability of an underlying number-theoretic problem. The modular multiplications that
these generators use make them relatively slow compared to the (ad-hoc) pseudorandom
bit generators of §5.3. Nevertheless they may be useful in some circumstances, for exam-
ple, generating pseudorandom bits on hardware devices which already have the circuitry for
performing modular multiplications. Efficient techniques for implementing modular mul-
tiplication are presented in § 14.3.

5.5.1 RSA pseudorandom bit generator
The RSA pseudorandom bit generator is a CSPRBG under the assumption chat the RSA
problem is intractable (§3.3; see also §3.9.2).

5.35 AlgoYithm RSA pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence zl, z2 i ... , z~ of length l is generated.

1. Setup. Generate two secret RSA-like primes p and q (cf. Note 8.8), and compute n =
pq and ~ _ (p — 1)(q — 1). Select a random integer e, 1 < e < ~, such that

2. Select a random integer ~o (the seed) in the interval [1, n — 1].
3. For i from 1 to l do the following:

3.1 xi<—xi_1 mod 7t.

3.2 zip- the least significant bit of xi.
4. The output sequence is zl, z2i ... , z~.

5.36 Note (efficiency of the RSA PRBG) If e = 3 is chosen (cf. Note 8.9(ii)), then generating
each pseudorandom bit zz requires one modular multiplication and one modular squaring.
The efficiency of the generator can be improved by extracting the j least significant bits
of ~ti in step 3.2, where j =. c lg lg n and c is a constant. Provided that n is sufficiently
large, this modified generator is also cryptographically secure (cf. Fact 3.87). For amod-
ulus ~ of a fixed bitlength (e.g., 1024 bits); an explicit range of values of c for which the
resulting generator remains cryptographically secure (cf. Remark 5.9) under the intractabil-
ity assumption of the RSA problem has not been determined.

The following modification improves the efficiency of the RSA PRBG.

Facebook's Exhibit No. 1005
0084

MOBILEIRON, INC. - EXHIBIT 1011
Page 098

186 Ch. 5 Pseudorandom Bits and Sequences

5.37 Algorithm Micali-Schnorr pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence is generated.
1. Setup. Generate two secret RSA-like primes p and q (cf. Note 8.8), and compute n =

pq and ~ _ (p -1) (q -1). Let N = llg nJ -I--1(the bitlength of n). Select an integer
e, 1 < e < ~, such that gcd(e, ~) = 1 and 80e < N. Let k = ~N(1 - e) J and
r =N-k.

2. Select a random sequence xo (the seed) of bitlength r.
3. Generate a pseudorandom sequence of length k • 1. For i from 1 to l do the following:

3.1 yti~xi_1 mod n.
3.2 ~iF- the r most significant bits of y2.
3.3 zif- the k least significant bits of ya,

4. The output sequence is zl ~~ z2 ~~ ' ' ' ~~ zl, where ~) denotes concatenation.

5.38 Note (efficiency of the Micali-Schnorr PRBG) Algorithm 5.37 is more efficient than the
RSA PRBG since LN(1 - e)J bits are generated per exponentiation by e. For example,
if e = 3 and N = 1024, then k = 341 bits are generated per exponentiation. Moreover,
each exponentiation requires only one modular squaring of an r = 683-bit number, and one
modular multiplication.

5.39 Note (security of the Micali-Schnorr PRBG) Algorithm 5.37 is cryptographically secure
under the assumption that the following is [rue: the distribution xe mod n for random r-bit
sequences ~ is indistinguishable by all polynomial-time statistical tests from the uniform
distribution of integers in the interval [0, n -1]. This assumption is stronger than requiring
that the RSA problem be intractable.

5.5. m-Blum-Shub pseudorandom bit generator
The Blum-Blum-Shub pseudorandom bit generator (also known as the x2 mod n genera-
tor or the BBS generator) is a CSPRBG under the assumption that integer factorization is
intractable (§3.2). It forms the basis for the Blum-Goldwasser probabilistic public-key en-
cryption scheme (Algorithm 8.55).

5.40 Algorithm Blum-Blum-Shub pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence zl, zz, ... , zl of length l is generated.
1. Setup. Generate two large secret random (and distinct) primes p and q (cf. Note 8.8),

each congruent to 3 modulo 4, and compute n = pq.
2. Select a random integers (the seed) in the interval [1, n -1] such that gcd(s, n) = 1,

and compute xo ~-s2 mod n.
3. For i from 1 to l do the following:

3.1 x;,~~i_1 mod n.
3.2 ziF- the least significant bit of xti.

4. The output sequence is zl, z2, . . . , zt.

Facebook's Exhibit No. 1005
0085

MOBILEIRON, INC. - EXHIBIT 1011
Page 099

§5.6 Notes and further references 187

5.41 Note (efficiency of the Blum-Blum-Shub PRBG) Generating each pseudorandom bit zi re-
quiresone modular squaring. The efficiency of the generator can be improved by extracting

a the j least significant bits of ~i in step 3.2, where j = c lg lg n and c is a constant. Provided
~ that n is sufficiently large, this modified generator is also cryptographically secure. For a
'~ modulus n of a fixed bitlength (eg. 1024 bits), an explicit range of values of c for which

the resulting generator is cryptographically secure (cf. Remark 5.9) under the intractability
assumption of the integer factorization problem has not been determined.

5.6 Notes and further references
§s. i

Chapter 3 of Knuth [692] is the definitive reference for the classic (non-cryptographic) gen-
eration of pseudorandom numbers. Knuth [692, pp.142-166] contains an extensive discus-
sion of what it means for a sequence to be random. Lagarias [724] gives a survey of theo-
retical results on pseudorandom number generators. Luby [774] provides a comprehensive
and rigorous overview of pseudorandom generators.

For a study of linear congruential generators (Example 5.4), see Knuth [692, pp.9-25].
PlumsteadBoyar [979, 980] showed how to.predict the output of a linear congruential gen-
erator given only a few elements of the output sequence, and when the parameters a, b,
and m of the generator are unknown. Boyar [180] extended her method and showed that
linear multivariate congruential generators (having recurrence equation xn = alx~,_1 +
a2xn_2 ~- • ~ • ~- aix~,—1 ~- b mod m), and quadratic congruential.generators (having recur-
rence equation x~, = a~~_1 -I- bxn-1 ~- c mod m) are cryptographically insecure. Finally,
Krawczyk [713] generalized these results and showed how the output of any multivariate
polynomial congruential generator can be efficiently predicted. A truncated linear congru-
ential generator is one where a fraction of the least significant bits of the ~i are discarded.
Frieze et al. [427] showed that - these generators can be efficiently predicted if the genera-
torparameters a, b, and m are known. Stern [1173] extended this method to the case where
only m is known. Boyar [179] presented an efficient algorithm for predicting linear congru-
ential generators when O(log log m) bits are discarded, and when the parameters a, b, and
m are unknown. No efficient prediction algorithms are known for truncated multivariate
polynomial congruential generators. For a summary of cryptanalytic attacks on congruen-
tial generators, see Brickell and Odlyzko [209, pp.523-526].
For a formal definition of a statistical test (Definition 5.5), see Yao [1258]. Fact 5.7 on
the universality of the next-bit test is due to Yao [1258]. For a proof of Yao's result, see
Kranakis [710] and §12.2 of Stinson [1178]. A proof of a generalization of Yao's result
is given by Goldreich, Goldwasser, and Micali [468]. The notion of a cryptographically
secure pseudorandom bit generator (Definition 5.8) was introduced by Blum and Micali
[166]. Blum and Micali also gave a formal description of the next-bit test (Definition 5.6),
and presented the first cryptographically secure pseudorandombit generator whose security
is based on the discrete logarithm problem (see page 189). Universal tests were presented
by Schrift and Shamir [1103] for verifying the assumed properties of a pseudorandom gen-
erator whose output sequences are not necessarily uniformly distributed.

The first provably secure pseudorandom number generator was proposed by Shamir [1112],.
Shamir proved that predicting the next number of an output sequence of this generator is
equivalent to inverting the RSA function. However, even though the numbers as a whole
may be unpredictable, certain parts of the number (for example, its least significant bit) may

Facebook's Exhibit No. 1005
0086

MOBILEIRON, INC. - EXHIBIT 1011
Page 100

188 Ch. 5 Pseudorandom Bits and Sequences

§5.2

be biased or predictable. Hence, Shamir's generator is not cryptographically secure in the
sense of Definition 5.8.

Agnew [17] proposed a VLSI implementation of a random bit generator consisting of two
identical metal insulator semiconductor capacitors close to each other. The cells are charged
over the same period of time, and then a 1 or 0 is assigned depending on which cell has
a greater charge. Fairfield, Mortenson, and Coulthart [382] described an LSI random bit
generator based on the frequency instability of a free running oscillator. Davis, Ihaka, and
Fenstermacher [309] used the unpredictability of air turbulence occurring in a sealed disk
drive as a random bit generator. The bits are extracted by measuring the variations in the
time to access disk blocks. Fast Fourier Transform (FFT) techniques are then used to re-
move possible biases and correlations. A sample implementation generated 100 random
bits per minute. For further guidance on hardware and software-based techniques for gen-
erating random bits, see RFC 1750 [1043].
The de-skewing technique of Example 5.10 is due to von Neumann [1223]. Elias [370]
generalized von Neumann's technique to a more efficient scheme (one where fewer bits
are discarded). Fast Fourier Transform techniques for removing biases and correlations are
described by Brillinger [213]. For further ways of removing correlations, see Blum [161],
Santha and Vazirani [1091], Vazirani [1217], and Chor and Goldreich [258].

§5.3
The idea ofusing aone-way function f for generating pseudorandom bit sequences is due to
Shamir [1112]. Shamir illustrated why it is difficult to prove that such ad-hoc generators are
cryptographically secure without imposing some further assumptions on f .Algorithm 5.11
is from Appendix C of the ANSI X9.17 standard [37] ; it is one of the approved methods for
pseudorandom bit generation listed in FIPS 186 [406]. Meyer and Matyas [859, pp.316-
317] describe another DES-based pseudorandom bit generator whose output is intended for
use as data-encrypting keys. The four algorithms of §5.3.2 for generating DSA parameters
are from FTPS 186.

§5.4
Standard references on statistics include Hogg and Tanis [559] and Wackerly, Mendenhall,
and Scheaffer [1226]. Tables 5.1 and 5.2 were.generated using the Maple symbolic algebra
system [240]. Golomb's randomness postulates (§5.4.3) were proposed by Golomb [498].
The five statistical tests for local randomness outlined in §5.4.4 are from Beker and Piper
[84]. The serial test (§5.4.4(ii)) is due to Good [508]. It was generalized to subsequences of
length greater than 2 by Marsaglia [782] who called it the overlapping ~n-tuple test, and later
by Kimberley [674] who called it the generalized serial test. The underlying distribution
theories of the serial test and the runs test (§5.4.4(iv)) were analyzed by Good [507] and
Mood [897], respectively. Gustafson [531] considered alternative statistics for the runs test
and the autocorrelation twt (§5,4.4(v)).
There are numerous other statistical tests of local randomness. Many of these tests, includ-
ing the gap test, coupon collector's test, permutation test, run test, maximum-of t test, col-
lision test, serial test, correlation test, and spectral test are described by Knuth [692]. The
poker test as formulated by Knuth [692, p,62] is quite different from that of §5.4.4(iii). In
the former, a sample sequence is divided into m-bit blocks, each of which is further subdi-
videdinto l-bit sub-blocks (for some divisor l of m). The number of ~n-bit blocks having r
distinct l-bit sub-blocks (1 < r < m/l) is counted and compared to the corresponding ex-
pectednumbers for random sequences. Erdmann [372] gives a detailed exposition of many

Facebook's Exhibit No. 1005
0087

MOBILEIRON, INC. - EXHIBIT 1011
Page 101

F5.6 Nofes and further references

§5.5

189

of these tests, and applies them to sample output sequences of six pseudorandom bit gener-
ators. Gustafson et al. [533] describe a computer package which implements various statis-
tical tests for assessing the strength of a pseudorandom bit generator. Gustafson, Dawson,
and Golic [532] proposed a new repetition test which measures the number of repetitions of
l-bit blocks. The test requires a count of the number of patterns repeated, but does not re-
quirethe frequency of each pattern. For this reason, it is feasible to apply this test for larger
values of l (e.g. l = 64) than would be permissible by the poker test or Maurer's universal
statistical test (Algorithm 5.33). Two spectral tests have been developed, one based on the
discrete Fourier transform by Gait [437], and one based on the Walsh transform by Yuen
[1260]. For extensions of these spectral tests, see Erdmann [372] and Feldman [389]. .
FIPS 140-1 [401] specifies security requirements for the design and implementation of
cryptographic modules, including random and pseudorandom bit generators, for protecting
(U.S. government) unclassified information.
The universal statistical test (Algorithm 5.33) is due to Maurer. [813] and was motivated by
source coding algorithms of Elias [371] and Willems [1245]. The class of defects that the
test is able to detect consists of those that can be modeled by an ergodic stationary source
with limited memory; Maurer argues that this class includes the possible defects that could
occur in a practical implementation of a random bit generator. Table 53 is due to Maurer
[813], who provides derivations of formulae for the mean and variance of the statistic Xu.

Blum and Micali [166] presented the following general construction for CSPRBGs. Let D
be a finite set, and let f : D ~ D be a permutation that can be efficiently computed. Let
B: D ~ {0, 1} be a Boolean predicate with the property that B(x) is hard to compute
given only x E D, however, B(x) can be efficiently computed given y = f-1(x). The
output sequence zl, z2, . . . , z~ corresponding to a seed xo E D is obtained by computing
xz = f(x2_1), zz = B(xz), for 1 < i < 1. This generator can be shown to pass the
next-bit test (Definition 5.6). Blum and Micali [166] proposed the first concrete instance of
a CSPRBG, called the Blum-Micali generator. Using the notation introduced above, their
method can be described as follows. Let p be a large prime, and a a generator of 7GP. Define
D = 7L~, _ {1, 2, . , . , p — 1}. The function f : D -~ D is defined by f (x) = a~ mod p.
The function B : D ~ {0, 1} is defined by B(x) = 1 if 0 < log« x < (p — 1)/2, and
B (x) = 0 if log« x > (p-1) /2. Assuming the intractability of the discrete logarithm prob-
lem in 7L~, (§3.6; see also §3.9.1), the Blum-Micali generator was proven to satisfy the next-
bit test. Long and Wigderson [772] improved the efficiency of the Blum-Micali generator
by simultaneously extracting O(lg lg p) bits (cf. §3.9.1) from each x1. Kaliski [650, 651]
modified the Blum-1VIicali generator so that the security depends on the discrete logarithm
problem in the group of points on an elliptic curve defined over a finite field.
The RSA pseudorandom bit generator (Algorithm 5.35) and the improvement mentioned
in Note 5.36 are due to Alexi et al. [23]. The Micali-Schnorr improvement of the RSA
PRBG (Algorithm 5.37) is due to Micali and Schnorr [867], who'also described a method
that transforms any CSPRBG into one that can be accelerated by parallel evaluation. The
method of parallelization is perfect: m parallel processors speed the generation of pseudo-
random bits by a factor of m.
Algorithm 5.40 is due to Blum, Blum, and Shub [160], who showed that their pseudoran-
dom bit generator is cryptographically secure assuming the intractability of the quadratic
residuosity problem (§3.4). Vazirani and Vazirani [1218] established a stronger result re-
garding the security of this generator by proving it cryptographically secure under the
weaker assumption that integer factorization is intractable. The improvement mentioned in

Facebook's Exhibit No. 1005
0088

MOBILEIRON, INC. - EXHIBIT 1011
Page 102

190 Ch. 5 Pseudorandom Bits and Sequences

Note 5.41 is due to Vazirani and Vazirani. Alexi et al. [23] proved analogous results for the
modified-Rabin generator, which differs as follows from the Blum-Blum-Shub generator:
in step 3.1 of Algorithm 5.40, let x = xi_1 mod n; if x < n/2, then xi = x; otherwise,
~z=n—~.

Impagliazzo and Naor [569] devised efficient constructions for a CSPRBG and fora univer-
sal one-way hash function which are provably as secure as the subset sum problem. Fischer
and Stern [411] presented a simple and efficient CSPRBG which is provably as secure as
the syndrome decoding problem.
Yao [1258] showed how to obtain a CSPRBG using any one-way permutation. Levin [761]
generalized this result and showed how to obtain a CSPRBG using any one-way function.
For further refinements, see Goldreich, Krawczyk, and Luby [470], Impagliazzo, Levin,
and Luby [568], and Hastad [545].
A random function f : {0, 1 }n ~ {0,1 }n is a function which assigns independent and ran-
dom values f (~) E {0,1}n to all arguments x E {0,1}'~. Goldreich, Goldwasser, and
Micali [468] introduced a computational complexity measure of the randomness of func-
tions. They defined a function to bepoly-random if no polynomial-time algorithm can dis-
tinguish between values of the function and true random strings, even when the algorithm
is permitted to select the arguments to the function. Goldreich, Goldwasser, and Micali
presented an algorithm for constructing poly-random functions assuming the existence of
one-way functions. This theory was applied by Goldreich, Goldwasser, and Micali [467]
to develop provably secure protocols for the (essentially) storageless distribution of secret
identification numbers, message authentication with timestamping, dynamic hashing, and
identify friend or foe systems. Luby and Rackoff [776] showed how poly-random permu-
tations can be efficiently constructed from poly-random functions. This result was used,
together with some of the design principles of DES, to show how any CSPRBG can be
used to construct asymmetric-key block cipher which is provably secure against chosen-
plaintextattack. Asimplified and generalized treatment of Luby and Rackoff's construction
was given by Maurer [816].
Schnorr [1096] used L.uby and Rackoff's poly-random permutation generator to construct
a pseudorandom bit generator that was claimed to pass all statistical tests depending only
on a small fraction of the output sequence, even when infinite computational resources are
available. Rueppel [1079] showed that this claim is erroneous, and demonstrated that the
generator can be distinguished from a truly random bit generator using only a small num-
ber of output bits. Maurer and Massey [821] extended Schnorr's work, and proved the ex-
istence of pseudorandom bit generators that pass all statistical tests depending only on a
small fraction of the output sequence, even when infinite computational resources are avail-
able. The security of the generators does not rely on any unproved hypothesis, but rather
on the assumption that the adversary can access only a limited number of bits of the gener-
ated sequence. This work is primarily of theoretical interest since no such polynomial-time
generators are known.

Facebook's Exhibit No. 1005
0089

MOBILEIRON, INC. - EXHIBIT 1011
Page 103

Chapter�
Block Ciphers

Contents in Brief

7.1 Introduction and overview . 223
7.2 Background and general concepts 224
7.3 Classical ciphers and historical development 237
7.4 DES . 250
7.5 FEAL . 259
7.6 IDEA . 263
7.7 SAFER, RC5, and other block ciphers 266
7.8 Notes and further references . 271

7.1 Introduction and overview

Symmetric-key block ciphers are the most prominent and important elements in many cryp-
tographic systems. Individually, they provide confidentiality. As a fundamental building
block, their versatility allows construction of pseudorandom number generators, stream ci-
phers, MACs, and hash functions. They may furthermore serve as a central component in
message authentication techniques, data integrity mechanisms, entity authentication proto-
cols, and (symmetric-key)digital signature schemes. This chapter examines symmetric-key
block ciphers, including both general concepts and details of specific algorithms. Public-
key block ciphers are discussed in Chapter 8.

No block cipher is ideally suited for all applications, even one offering a high level of
security. This is a result of inevitable tradeoffs required in practical applications, including
those arising from, for example, speed requirements and memory limitations (e.g., code
size, data size, cache memory), constraints imposed by implementation platforms (e.g.,
hardware, software, chipcards), and differing tolerances of applications to properties of var-
ious modes of operation. In addition, efficiency must typically be traded off against security.
Thus it is beneficial to have a number of candidate ciphers from which to draw.

Of the many block ciphers currently available, focus in this chapter is given to a sub-
set of high profile and/or well-studied algorithms. While not guaranteed to be more secure
than other published candidate ciphers (indeed, this status changes as new attacks become
known), emphasis is given to those of greatest practical interest. Among these, DES is
paramount; FEAL has received both serious commercial backing and a large amount of in-
dependent cryptographic analysis; and IDEA (originally proposed as a DES replacement) is
widely known and highly regarded. Other recently proposed ciphers of both high promise
and high profile (in part due to the reputation of their designers) are SAFER and RC5. Ad-
ditional ciphers are presented in less detail.

223

MOBILEIRON, INC. - EXHIBIT 1011
Page 104

§7.3 Classical ciphers and historical development 239

(i) Mono-alphabetic substitution

Suppose the ciphertext and plaintext character sets are the same. Let m = m1m2m3 . . .
be a plaintext message consisting of juxtaposed charactersmi ∈ A, whereA is some fixed
character alphabet such as A = {A,B, . . . , Z}. A simple substitution cipheror mono-
alphabetic substitution cipheremploys a permutation e over A, with encryption mapping
Ee(m) = e(m1)e(m2)e(m3) Here juxtaposition indicates concatenation (rather than
multiplication), and e(mi) is the character to whichmi is mapped by e. This corresponds
to Definition 1.27.

7.48 Example (trivial shift cipher/Caesar cipher) A shift cipheris a simple substitution cipher
with the permutation e constrained to an alphabetic shift throughk characters for some fixed
k. More precisely, if |A| = s, andmi is associated with the integer value i, 0 ≤ i ≤ s− 1,
then ci = e(mi) = mi + k mod s. The decryption mapping is defined by d(ci) = ci −
k mod s. For English text, s = 26, and characters A through Z are associated with integers
0 through 25. For k = 1, the message m = HAL is encrypted to c = IBM. According to
folklore, Julius Caesar used the key k = 3. �

The shift cipher can be trivially broken because there are only s = |A| keys (e.g., s =
26) to exhaustively search. A similar comment holds for affine ciphers (Example 7.49).
More generally, see Fact 7.68.

7.49 Example (affine cipher – historical) The affine cipher on a 26-letter alphabet is defined by
eK(x) = ax+ b mod 26, where 0 ≤ a, b ≤ 25. The key is (a, b). Ciphertext c = eK(x) is
decrypted using dK(c) = (c− b)a−1 mod 26, with the necessary and sufficient condition
for invertibility that gcd(a, 26) = 1. Shift ciphers are a subclass defined by a = 1. �

7.50 Note (recognizing simple substitution) Mono-alphabetic substitution alters the frequency
of individual plaintext characters, but does not alter the frequency distribution of the overall
character set. Thus, comparing ciphertext character frequencies to a table of expected letter
frequencies (unigram statistics) in the plaintext language allows associations between ci-
phertext and plaintext characters. (E.g., if the most frequent plaintext character X occurred
twelve times, then the ciphertext character that X maps to will occur twelve times).

(ii) Polygram substitution

A simple substitution cipher substitutes for single plaintext letters. In contrast, polygram
substitution ciphersinvolve groups of characters being substituted by other groups of char-
acters. For example, sequences of two plaintext characters (digrams) may be replaced by
other digrams. The same may be done with sequences of three plaintext characters (tri-
grams), or more generally usingn-grams.

In full digram substitution over an alphabet of 26 characters, the key may be any of the
262 digrams, arranged in a table with row and column indices corresponding to the first and
second characters in the digram, and the table entries being the ciphertext digrams substi-
tuted for the plaintext pairs. There are then (262)! keys.

7.51 Example (Playfair cipher – historical) A digram substitution may be defined by arrang-
ing the characters of a 25-letter alphabet (I and J are equated) in a 5× 5matrixM . Adja-
cent plaintext characters are paired. The pair (p1, p2) is replaced by the digram (c3, c4) as
follows. If p1 and p2 are in distinct rows and columns, they define the corners of a subma-
trix (possiblyM itself), with the remaining corners c3 and c4; c3 is defined as the character
in the same column as p1. If p1 and p2 are in a common row, c3 is defined as the charac-
ter immediately to the right of p1 and c4 that immediately right of p2 (the first column is

MOBILEIRON, INC. - EXHIBIT 1011
Page 105

242 Ch. 7 Block Ciphers

7.56 Example (single mixed alphabet Vigenère) A simple substitution mapping defined by a
general permutation e (not restricted to an alphabetic shift), followed by a simple Vigenère,
is defined by the mapping ci = e(mi)+ki mod s, with inversemi = e−1(ci−ki) mod s.
An alternative is a simple Vigenère followed by a simple substitution: ci = e(mi+ki mod
s), with inversemi = e−1(ci)− ki mod s. �

7.57 Example (full Vigenère) In a simple Vigenère of periodt, replace the mapping defined by
the shift value ki (for shifting charactermi) by a general permutation ei of the alphabet. The
result is the substitution mapping ci = ei(mi), where the subscript i in ei is taken modulo
t. The key consists of t permutations e1, . . . , et. �

7.58 Example (running-key Vigenère) If the keystreamki of a simple Vigenère is as long as
the plaintext, the cipher is called a running-key cipher. For example, the key may be mean-
ingful text from a book. �

While running-key ciphers prevent cryptanalysis by the Kasiski method (§7.3.5), if the
key has redundancy, cryptanalysis exploiting statistical imbalances may nonetheless suc-
ceed. For example, when encrypting plaintext English characters using a meaningful text
as a running key, cryptanalysis is possible based on the observation that a significant pro-
portion of ciphertext characters results from the encryption of high-frequency running text
characters with high-frequency plaintext characters.

7.59 Fact A running-key cipher can be strengthened by successively enciphering plaintext un-
der two or more distinct running keys. For typical English plaintext and running keys, it
can be shown that iterating four such encipherments appears unbreakable.

7.60 Definition An auto-key cipheris a cipher wherein the plaintext itself serves as the key
(typically subsequent to the use of an initial priming key).

7.61 Example (auto-key Vigenère) In a running-key Vigenère (Example 7.58) with ans-char-
acter alphabet, define a priming keyk = k1k2 . . . kt. Plaintext charactersmi are encrypted
as ci = mi + ki mod s for 1 ≤ i ≤ t (simplest case: t = 1). For i > t, ci = (mi +
mi−t) mod s. An alternative involving more keying material is to replace the simple shift
by a full Vigenère with permutations ei, 1 ≤ i ≤ s, defined by the key ki or charactermi:
for 1 ≤ i ≤ t, ci = eki(mi), and for i > t, ci = emi−t(mi). �

An alternative to Example 7.61 is to auto-key a cipher using the resulting ciphertext
as the key: for example, for i > t, ci = (mi + ci−t) mod s. This, however, is far less
desirable, as it provides an eavesdropping cryptanalyst the key itself.

7.62 Example (Vernam viewed as a Vigenère) Consider a simple Vigenère defined byci =
mi + ki mod s. If the keystream is truly random and independent – as long as the plain-
text and never repeated (cf. Example 7.58) – this yields the unconditionally secure Vernam
cipher (Definition 1.39; §6.1.1), generalized from a binary to an arbitrary alphabet. �

7.3.4 Polyalphabetic cipher machines and rotors (historical)

The Jefferson cylinderis a deceptively simple device which implements a polyalphabetic
substitution cipher; conceived in the late 18th century, it had remarkable cryptographic

MOBILEIRON, INC. - EXHIBIT 1011
Page 106

§7.3 Classical ciphers and historical development 243

strength for its time. Polyalphabetic substitution ciphers implemented by a class of rotor-
based machines were the dominant cryptographic tool in World War II. Such machines, in-
cluding the Enigma machine and those of Hagelin, have an alphabet which changes con-
tinuously for a very long period before repeating; this provides protection against Kasiski
analysis and methods based on the index of coincidence (§7.3.5).

(i) Jefferson cylinder

The Jefferson cylinder(Figure 7.3) implements a polyalphabetic substitution cipher while
avoiding complex machinery, extensive user computations, and Vigenère tableaus. A solid
cylinder 6 inches long is sliced into 36 disks. A rod inserted through the cylinder axis allows
the disks to rotate. The periphery of each disk is divided into 26 parts. On each disk, the
letters A–Z are inscribed in a (different) random ordering. Plaintext messages are encrypted
in 36-character blocks. A reference bar is placed along the cylinder’s length. Each of the
36 wheels is individually rotated to bring the appropriate character (matching the plaintext
block) into position along the reference line. The 25 other parallel reference positions then
each define a ciphertext, from which (in an early instance of randomized encryption) one is
selected as the ciphertext to transmit.

A
S

Q
B

N

R C R L
X

S

T F R F
I

K D L M O
J E H Y

P

O W S Z

Figure 7.3: The Jefferson cylinder.

The second party possesses a cylinder with identically marked and ordered disks (1–
36). The ciphertext is decrypted by rotating each of the 36 disks to obtain characters along
a fixed reference line matching the ciphertext. The other 25 reference positions are exam-
ined for a recognizable plaintext. If the original message is not recognizable (e.g., random
data), both parties agree beforehand on an index 1 through 25 specifying the offset between
plaintext and ciphertext lines.

To accommodate plaintext digits 0–9 without extra disk sections, each digit is per-
manently assigned to one of 10 letters (a,e,i,o,u,y and f,l,r,s) which is encrypted as above
but annotated with an overhead dot, identifying that the procedure must be reversed. Re-
ordering disks (1 through 36) alters the polyalphabetic substitution key. The number of pos-
sible orderings is 36! ≈ 3.72× 1041. Changing the ordering of letters on each disk affords
25! further mappings (per disk), but is more difficult in practice.

(ii) Rotor-based machines – technical overview

A simplified generic rotor machine (Figure 7.4) consists of a number of rotors(wired code-
wheels) each implementing a different fixed mono-alphabetic substitution, mapping a char-
acter at its input face to one on its output face. A plaintext character input to the first rotor
generates an output which is input to the second rotor, and so on, until the final ciphertext
character emerges from the last. For fixed rotor positions, the bank of rotors collectively
implements a mono-alphabetic substitution which is the composition of the substitutions
defined by the individual rotors.

To provide polyalphabetic substitution, the encipherment of each plaintext character
causes various rotors to move. The simplest case is an odometer-like movement, with a
single rotor stepped until it completes a full revolution, at which time it steps the adjacent

MOBILEIRON, INC. - EXHIBIT 1011
Page 107

Chapter�
Hash Functions and Data Integrity

Contents in Brief

9.1 Introduction . 321
9.2 Classification and framework . 322
9.3 Basic constructions and general results 332
9.4 Unkeyed hash functions (MDCs) 338
9.5 Keyed hash functions (MACs) 352
9.6 Data integrity and message authentication 359
9.7 Advanced attacks on hash functions 368
9.8 Notes and further references . 376

9.1 Introduction

Cryptographic hash functions play a fundamental role in modern cryptography. While re-
lated to conventional hash functions commonly used in non-cryptographic computer appli-
cations – in both cases, larger domains are mapped to smaller ranges – they differ in several
important aspects. Our focus is restricted to cryptographichash functions (hereafter, simply
hash functions), and in particular to their use for data integrity and message authentication.

Hash functions take a message as input and produce an output referred to as ahash-
code, hash-result, hash-value, or simplyhash. More precisely, a hash functionhmaps bit-
strings of arbitrary finite length to strings of fixed length, sayn bits. For a domainD and
rangeRwith h : D→R and|D| > |R|, the function is many-to-one, implying that the exis-
tence ofcollisions (pairs of inputs with identical output) is unavoidable. Indeed, restricting
h to a domain oft-bit inputs (t > n), if h were “random” in the sense that all outputs were
essentially equiprobable, then about2t−n inputs would map to each output, and two ran-
domly chosen inputs would yield the same output with probability2−n (independent oft).
The basic idea of cryptographic hash functions is that a hash-value serves as a compact rep-
resentative image (sometimes called animprint, digital fingerprint, or message digest) of
an input string, and can be used as if it were uniquely identifiable with that string.

Hash functions are used for data integrity in conjunction with digital signature sch-
emes, where for several reasons a message is typically hashed first, and then the hash-value,
as a representative of the message, is signed in place of the original message (see Chap-
ter 11). A distinct class of hash functions, called message authentication codes (MACs),
allows message authentication by symmetric techniques. MAC algorithms may be viewed
as hash functions which take two functionally distinct inputs, a message and a secret key,
and produce a fixed-size (sayn-bit) output, with the design intent that it be infeasible in

321

MOBILEIRON, INC. - EXHIBIT 1011
Page 108

§9.2 Classification and framework 329

9.15 Example (one-wayness w.r.t. two inputs) Considerf(x, k) = Ek(x), whereE repre-
sents DES. This is not a one-way function of the joint input(x, k), because given any func-
tion valuey = f(x, k), one can choose any keyk ′ and computex′ = E−1k′ (y) yielding
a preimage(x′, k′). Similarly, f(x, k) is not a one-way function ofx if k is known, as
giveny = f(x, k) andk, decryption ofy usingk yieldsx. (However, a “black-box” which
computesf(x, k) for fixed, externally-unknownk is a one-way function ofx.) In contrast,
f(x, k) is a one-way function ofk; giveny = f(x, k) andx, it is not known how to find
a preimagek in less than about255 operations. (This latter concept is utilized in one-time
digital signature schemes – see§11.6.2.) �

9.16 Example (OWF - multiplication of large primes) For appropriate choices of primesp and
q, f(p, q) = pq is a one-way function: givenp andq, computingn = pq is easy, but given
n, findingp andq, i.e.,integer factorization, is difficult. RSA and many other cryptographic
systems rely on this property (see Chapter 3, Chapter 8). Note that contrary to many one-
way functions, this functionf does not have properties resembling a “random” function.�

9.17 Example (OWF - exponentiation in finite fields) For most choices of appropriately large
primesp and any elementα ∈ Z∗p of sufficiently large multiplicative order (e.g., a gen-
erator),f(x) = αx mod p is a one-way function. (For example,p must not be such that
all the prime divisors ofp − 1 are small, otherwise the discrete log problem is feasible by
the Pohlig-Hellman algorithm of§3.6.4.)f(x) is easily computed givenα, x, andp using
the square-and-multiply technique (Algorithm 2.143), but for most choicesp it is difficult,
given(y, p, α), to find anx in the range0 ≤ x ≤ p − 2 such thatαx mod p = y, due to
the apparent intractability of the discrete logarithm problem (§3.6). Of course, for specific
values off(x) the function can be inverted trivially. For example, the respective preimages
of 1 and−1 are known to be0 and(p− 1)/2, and by computingf(x) for any small set of
values forx (e.g.,x = 1, 2, . . . , 10), these are also known. However, foressentially all y
in the range, the preimage ofy is difficult to find. �

9.2.5 Relationships between properties

In this section several relationships between the hash function properties stated in the pre-
ceding section are examined.

9.18 Fact Collision resistance implies 2nd-preimage resistance of hash functions.

Justification. Supposeh has collision resistance. Fix an inputxj . If h does not have 2nd-
preimage resistance, then it is feasible to find a distinct inputxi such thath(xi) = h(xj),
in which case(xi, xj) is a pair of distinct inputs hashing to the same output, contradicting
collision resistance.

9.19 Remark (one-way vs. preimage and 2nd-preimage resistant) While the term “one-way”
is generally taken to mean preimage resistant, in the hash function literature it is some-
times also used to imply that a function is 2nd-preimage resistant or computationally non-
invertible. (Computationally non-invertibleis a more explicit term for preimage resistance
when preimages are unique, e.g., for one-way permutations. In the case that two or more
preimages exist, a function fails to be computationally non-invertible if any one can be
found.) This causes ambiguity as 2nd-preimage resistance does not guarantee preimage-
resistance (Note 9.20), nor does preimage resistance guarantee 2nd-preimage resistance
(Example 9.11); see also Remark 9.10. An attempt is thus made to avoid unqualified use of
the term “one-way”.

MOBILEIRON, INC. - EXHIBIT 1011
Page 109

§9.4 Unkeyed hash functions (MDCs) 347

(ii) MD5

MD5 (Algorithm 9.51) was designed as a strengthened version of MD4, prior to actual MD4
collisions being found. It has enjoyed widespread use in practice. It has also now been
found to have weaknesses (Remark 9.52).

The changes made to obtain MD5 from MD4 are as follows:

1. addition of a fourth round of 16 steps, and a Round 4 function
2. replacement of the Round 2 function by a new function
3. modification of the access order for message words in Rounds 2 and 3
4. modification of the shift amounts (such that shifts differ in distinct rounds)
5. use of unique additive constants in each of the4×16 steps, based on the integer part

of 232 · sin(j) for stepj (requiring overall, 256 bytes of storage)
6. addition of output from the previous step into each of the 64 steps.

9.51 Algorithm MD5 hash function

INPUT: bitstringx of arbitrary bitlengthb ≥ 0. (For notation, see Table 9.7.)
OUTPUT:128-bit hash-code ofx. (See Table 9.6 for test vectors.)

MD5 is obtained from MD4 by making the following changes.

1. Notation. Replace the Round 2 function by:g(u, v, w)
def
= uw ∨ vw.

Define a Round 4 function:k(u, v, w)
def
= v ⊕ (u ∨ w).

2. Definition of constants. Redefine unique additive constants:
y[j] = first 32 bits of binary valueabs(sin(j+1)), 0 ≤ j ≤ 63, wherej is in radians
and “abs” denotes absolute value. Redefine access order for words in Rounds 2 and
3, and define for Round 4:
z[16..31] = [1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12],
z[32..47] = [5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2],
z[48..63] = [0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9].
Redefine number of bit positions for left shifts (rotates):
s[0..15] = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22],
s[16..31] = [5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20],
s[32..47] = [4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23],
s[48..63] = [6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21].

3. Preprocessing. As in MD4.
4. Processing. In each of Rounds 1, 2, and 3, replace “B← (t ←↩ s[j])” by “B ←
B + (t←↩ s[j])”. Also, immediately following Round 3 add:
(Round 4) For j from 48 to 63 do the following:
t ← (A+k(B,C,D)+X[z[j]]+y[j]), (A,B,C,D)← (D,B+(t←↩ s[j]), B,C).

5. Completion. As in MD4.

9.52 Remark (MD5 compression function collisions) While no collisions for MD5 have yet
been found (cf. Table 9.3), collisions have been found for the MD5 compression function.
More specifically, these are called collisions for random IV. (See§9.7.2, and in particular
Definition 9.97 and Note 9.98.)

MOBILEIRON, INC. - EXHIBIT 1011
Page 110

348 Ch. 9 Hash Functions and Data Integrity

(iii) SHA-1

The Secure Hash Algorithm (SHA-1), based on MD4, was proposed by the U.S. National
Institute for Standards and Technology (NIST) for certain U.S. federal government appli-
cations. The main differences of SHA-1 from MD4 are as follows:

1. The hash-value is 160 bits, and five (vs. four) 32-bit chaining variables are used.
2. The compression function has four rounds instead of three, using the MD4 step func-

tionsf , g, andh as follows:f in the first,g in the third, andh in both the second and
fourth rounds. Each round has 20 steps instead of 16.

3. Within the compression function, each 16-word message block is expanded to an 80-
word block, by a process whereby each of the last 64 of the 80 words is the XOR of
4 words from earlier positions in the expanded block. These 80 words are then input
one-word-per-step to the 80 steps.

4. The core step is modified as follows: the only rotate used is a constant 5-bit rotate;
the fifth working variable is added into each step result; message words from the ex-
panded message block are accessed sequentially; andC is updated asB rotated left
30 bits, rather than simplyB.

5. SHA-1 uses four non-zero additive constants, whereas MD4 used three constants
only two of which were non-zero.

The byte ordering used for converting between streams of bytes and 32-bit words in the
official SHA-1 specification is big-endian (see Note 9.48); this differs from MD4 which is
little-endian.

9.53 Algorithm Secure Hash Algorithm – revised (SHA-1)

INPUT: bitstringx of bitlengthb ≥ 0. (For notation, see Table 9.7.)
OUTPUT:160-bit hash-code ofx. (See Table 9.6 for test vectors.)

SHA-1 is defined (with reference to MD4) by making the following changes.

1. Notation. As in MD4.
2. Definition of constants. Define a fifth IV to match those in MD4:h5 = 0xc3d2e1f0.

Define per-round integer additive constants:y1 = 0x5a827999,y2 = 0x6ed9eba1,
y3 = 0x8f1bbcdc,y4 = 0xca62c1d6. (No order for accessing source words, or spec-
ification of bit positions for left shifts is required.)

3. Overall preprocessing. Pad as in MD4, except the final two 32-bit words specifying
the bitlengthb is appended with most significant word preceding least significant.
As in MD4, the formatted input is16m 32-bit words:x0x1 . . . x16m−1. Initialize
chaining variables:(H1,H2,H3,H4,H5)← (h1, h2, h3, h4, h5).

4. Processing. For eachi from 0 tom − 1, copy theith block of sixteen 32-bit words
into temporary storage:X[j]← x16i+j , 0 ≤ j ≤ 15, and process these as below in
four 20-step rounds before updating the chaining variables:
(expand 16-word block into 80-word block; letXj denoteX[j])
for j from 16 to 79,Xj ← ((Xj−3⊕Xj−8⊕Xj−14⊕Xj−16)←↩ 1).
(initialize working variables) (A,B,C,D,E)← (H1,H2,H3,H4,H5).
(Round 1) For j from 0 to 19 do the following:
t ← ((A←↩ 5) + f(B,C,D) +E +Xj + y1),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 2) For j from 20 to 39 do the following:
t ← ((A←↩ 5) + h(B,C,D) +E +Xj + y2),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).

MOBILEIRON, INC. - EXHIBIT 1011
Page 111

§9.4 Unkeyed hash functions (MDCs) 349

(Round 3) For j from 40 to 59 do the following:
t ← ((A←↩ 5) + g(B,C,D) +E +Xj + y3),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(Round 4) For j from 60 to 79 do the following:
t ← ((A←↩ 5) + h(B,C,D) +E +Xj + y4),
(A,B,C,D,E)← (t, A,B ←↩ 30, C,D).
(update chaining values)
(H1,H2,H3,H4,H5)← (H1 +A,H2 +B,H3 + C,H4 +D,H5 +E).

5. Completion. The hash-value is:H1||H2||H3||H4||H5
(with first and last bytes the high- and low-order bytes ofH1,H5, respectively).

9.54 Remark (security of SHA-1) Compared to 128-bit hash functions, the 160-bit hash-value
of SHA-1 provides increased security against brute-force attacks. SHA-1 and RIPEMD-
160 (see§9.4.2(iv)) presently appear to be of comparable strength; both are considered
stronger than MD5 (Remark 9.52). In SHA-1, a significant effect of the expansion of 16-
word message blocks to 80 words in the compression function is that any two distinct 16-
word blocks yield 80-word values which differ in a larger number of bit positions, signif-
icantly expanding the number of bit differences among message words input to the com-
pression function. The redundancy added by this preprocessing evidently adds strength.

(iv) RIPEMD-160

RIPEMD-160 (Algorithm 9.55) is a hash function based on MD4, taking into account
knowledge gained in the analysis of MD4, MD5, and RIPEMD. The overall RIPEMD-160
compression function maps 21-word inputs (5-word chaining variable plus 16-word mes-
sage block, with 32-bit words) to 5-word outputs. Each input block is processed in parallel
by distinct versions (theleft line andright line) of the compression function. The 160-bit
outputs of the separate lines are combined to give a single 160-bit output.

Notation Definition

f(u, v, w) u⊕v⊕w
g(u, v, w) uv ∨ uw
h(u, v, w) (u ∨ v)⊕w
k(u, v, w) uw ∨ vw
l(u, v, w) u⊕(v ∨ w)

Table 9.8: RIPEMD-160 round function definitions.

The RIPEMD-160 compression function differs from MD4 in the number of words of
chaining variable, the number of rounds, the round functions themselves (Table 9.8), the
order in which the input words are accessed, and the amounts by which results are rotated.
The left and and right computation lines differ from each other in these last two items, in
their additive constants, and in the order in which the round functions are applied. This de-
sign is intended to improve resistance against known attack strategies. Each of the parallel
lines uses the same IV as SHA-1. When writing the IV as a bitstring, little-endian ordering
is used for RIPEMD-160 as in MD4 (vs. big-endian in SHA-1; see Note 9.48).

MOBILEIRON, INC. - EXHIBIT 1011
Page 112

Chapter _

Efficient Implementation

Contents in Brief

14.1 Introduction 591
14.2 Multiple-precision integer arithmetic . 592
14.3 1Vlultiple-precision modular arithmetic . . . 599
14.4 Greatest common divisor algorithms 606
14.5 Chinese remainder theorem for integers 610
14.6 Exponentiation G13
14.7 Exponent recoding 627
14.8 Notes and further references 630

14.1 introduction
Many public-key encryption and digital signature schemes, and some hash functions (see
§9.4.3), require computations in 7G,,,,, the integers modulo m (7n is a large positive integer
which may or may not be a prime). For example, the RSA, Rabin, and E1Gama1 schemes re-
quireefficient methods for perfornung multiplication and exponentiation in 7G„~. Although
7L.,,,, is prominent in many aspects of modern applied cryptography, other algebraic struc-
tures azealso important. These include, but are not limited to, polynomial rings, finite fields,
and finite cyclic groups. For example, the group formed by the points on an elliptic curve
over a finite field has considerable appeal for various cryptographic applications. The effi-
ciency of a particular cryptographic scheme based on any one of these algebraic structures
will depend on a number of factors, such as parameter size, time-memory tradeoffs, pracess-
ingpower available, software and/or hardware optimization, and mathematical algorithms.

This chapter is concerned primarily with mathematical algorithms for efficiently carry-
ing out computations in the underlying algebraic structure. Since many of the most widely
implemented techniques rely on 7G,,,,, emphasis is placed on efficient algorithms for per-
fornung the basic arithmetic operations in this structure (addition, subtraction, multiplica-
tion, division, and exponentiation).
In some cases, several algorithms will be presented which perform the same operation.

For example, a number of techniques for doing modular multiplication and exponentiation
are discussed in §14.3 and §14.6, respectively. Efficiency can be measured in numerous
ways; thus, it is difficult to definitively state which algorithm is the best. An algorithm may
be efficient in the time it takes to perform a certain algebraic operation, but quite inefficient
in the amount of storage it requires. One algorithm may require more code space than an-
other. Depending on the environment in which computations are to be performed, one algo-
rithm may be preferable over another. For example, current chipcard technology provides

591

Facebook's Exhibit No. 1005
0090

MOBILEIRON, INC. - EXHIBIT 1011
Page 113

592 Ch. 14 Efficient Implementation

very limited storage for both precomputed values and program code. For such applications,
an algorithm which is less efficient in time but very efficient in memory requirements may
be preferred.

The algorithms described in this chapter are those which, for the most part, have re-
ceivedconsiderable attention in the literature. Although some attempt is made to point out
their relative merits, no detailed comparisons are given.

Chapter outline
§ 14.2 deals with the basic arithmetic operations of addition, subtraction, multiplication,
squaring, and division for multiple-precision integers. § 14.3 describes the basic arithmetic
operations of addition, subtraction, and multiplication in 7G?17,. Techniques described for per-
forming modular reduction for an arbitrary modulus m are the classical method (§14.3.1),
Montgomery's method (§14.3.2), and Barrett's method (§14.33). §14.3.4 describes a re-
duction procedure ideally suited to moduli of a special form. Greatest common divisor
(gcd) algorithms are the topic of § 14.4, including the binary gcd algorithm (§ 14.4.1) and
Lehmer's gcd algorithm (§ 14.4.2). Efficient algorithms for performing extended gcd com-
putations are given in § 14.4.3. Modular inverses are also considered in § 14.4.3. Garner's
algorithm for implementing the Chinese remainder theorem can be found in § 14.5. § 14.6 is
a treatment of several of the most practical exponentiation algorithms. § 14.6.1 deals with
exponentiation in general, without consideration of any special conditions. § 14.6.21ooks
at exponentiation when the base is variable and the exponent is fixed. § 14.6.3 considers al-
gorithms which take advantage of a fixed-base element and variable exponent.' Techniques
involving representing the exponent innon-binary form are given in § 14.7; recoding the ex-
ponen~t may allow significant performance enhancements. § 14.8 contains further notes and
references.

14.2 Multiple-precision integer arithmetic ~~
This section deals with the basic operations performed on multiple-precision integers: ad-
dition, subtraction, multiplication, squaring, and division. The algorithms presented in this
section are commonly referred to as the classical methods.

14.2.1 Radix representation
Positive integers can be represented in various ways, the most common being base 10. For

~~ example, a = 123 base 10 means a = 1.102 -I- 2.101-{- 3.10°. For machine computations, ~
~` ' base 2 (binary representation) is preferable. If a = 1111011 base 2, then a = 26 + 25 +
3~ 24 -{-23 +0.22 -I-21+2°.
r
~t' ' 14.1 Fact If b > 2 is an integer, then any positive integer a can be expressed uniquely as a =

anb~ -I- a,~_1b~-1 ~- • • • +alb -I- ao, where az is an integer with 0 < c~~ < b for 0 < i < n,;i it —
gfi:" and an ~ 0.t

~ ~14.2 Definition The representation of a positive integer a as a sum of multiples of powers of ,
b, as given in Fact 14.1, is called the base b or radix b representation of a.

~ ;
f
i

Facebook's Exhibit No. 1005
0091

MOBILEIRON, INC. - EXHIBIT 1011
Page 114

§ 14.2 Multiple-precision integer arithmetic 593

14.3 Note (notation and terminology)
(i) The base b representation of a positive integer a given in Fact 14.1 is usually written

as a = (a~,a~,_1 • • • alao)b. The integers a;,, 0 < i < n, are called digits. ate, is
called the most significant digit or high-order digit; ao the least significant digit or
low-order digit. If 6 = 10, the standard notation is a = anan-1 • • • alao•

(ii) It is sometimes convenient to pad high-order digits of a base b representation with
0's; such a padded number will also be referred to as the base b representation.

(iii) If (a~,an-1 • • • alao)6 is the base b representation of a and an ~ 0, then the precision
or length of a is n -I-1. If n = 0, then a iscalled asingle-precision integer; otherwise,
a is amultiple-precision integer. a = 0 is also asingle-precision integer.

The division algorithm for integers (see Definition 2.82) provides an efficient method
for determining the base brepresentation of anon-negative integer, for a given base b. This
provides the basis for Algorithm 14.4:

14.4 Algorithm Radix b representation

INPUT: integers a and b, a > 0, b > 2.
OUTPUT: the base brepresentation a = (an • • • alao)b, where n > 0 and a,~ ~ 0 if n > 1.

1. iE-0, x~a, Q~- L bJ, ai~x — qb. (~~~ is the floor function; set page 49.)
2. While q > 0, do the following:

2.1 2E-2 + 1, xE—Q', q~- ~ 6~ , ai f-x - qb.
3. Return((aiai-1 • • • alao))•

14.5 Fact If (anan-1 • • • aiao)b is the base b representation of a and k is a positive integer,
~ then u u _) k is the base bk re resentation of a, where l - n + 1 k 1,(t t i • • • uiuo b P - ~~)~ ~ -

ui = ~~_o azk+~b~ for 0 < i < l - 1, and ut = ~~ p~ alk-{-j~•

14.6 Example (radix b representation) The base 2 representation of a = 123 is (1111011.)2.
~ The base 4 representation of a is easily obtained from its base" 2 representation by grouping

digits in pairs from the right: a =((1)2(11)2(10)2(11).2)4 = (1323)4. ❑

Representing negative numbers
Negative integers can be represented in several ways. Two commonly used methods are:

1. signed-magnitude representation
2. complement representation.

These methods are described below. The algorithms provided in this chapter all assume a
` signed-magnitude representation for integers, with the sign digit being implicit.

(i) Signed-magnitude representation
The sign of an integer (i.e., either positive or negative) and its magnitude (i.e., absolute
value) are represented separately in asigned-magnitude representation. Typically, a posi-
tive integer is assigned a sign digit 0, while a negative integer is assigned a sign digit b -1.
For n-digit radix b representations, only 2bn-1 sequences out of the b" possible sequences
are utilized: precisely bn-1-1 positive integers and bn-1-1 negative integers can be rep-

'~ resented, and 0 has two representations. Table 14.1 illustrates the binary signed-magnitude
representation of the integers in the range [7, -7].

Facebook's Exhibit No. 1005
0092

MOBILEIRON, INC. - EXHIBIT 1011
Page 115

594 Ch. 14 Efficient Implementation

Signed-magnitude representation has the drawback that when certain operations (such
as addition and subtraction) are performed, the sign digit must be checked to determine the
appropriate manner to perform the computation. Conditional branching of this type can be
costly when many operations are performed.

(ii) Complement representation
Addition and subtraction using complement representation do not require the checking of
the sign digit. Non-negative integers in the range [0, b'i-1 - 1] are represented by base b
sequences of length n with the high-order digit being 0. Suppose x is a positive integer
in this range represented by the sequence (x~,xn-1 • ~ - xlxo)b where x~, = 0. Then -x is
represented by the sequence x = (xnxn-1 ' ' ' x1x0) + 1 where xi = b-1- xi and -I- is the
standard addition with carry. Table 14.1 illustrates the binary complement representation of
the integers in the range [-7, 7~. In the binary case, complement representation is referred
to as two's complement representation.

Sequence Signed-
magnitude

Two's
complement

0111 7 7
0110 6 6
0101 5 5
0100 4 4
0011 3 3
0010 2 1
0001 1 1
0000 0 0

Sequence Signed-
magnitude

Two's
complement

1111 -7 -1
1110 -6 -2
1101 -5 -3
1100 4 -4
1011 -3 -5
1010 -2 -6
loos —i —7
1000 -0 -8

Table 14.1: Signed-magnitude and two's complement representations of integers in [-7, 7].

14.2.2 Addition and subtraction
Addition and subtraction are performed on two integers having the same number of base b
digits. To add or subtract two integers of different lengths, the smaller of the two integers
is first padded with 0's on the left (i.e., in the high-order positions).

14.7 Algorithm Multiple-precision addition

INPUT: positive integers x and y, each having n -I- 1 base b digits.
OUTPUT: the sum ~ -I- y = (wn+lwn • • • wlwo~b in radix b representation.

1. c~0 (c is the carry digit).
2. For i from 0 to n do the following:

2.1 waf-(xi + yz + c) mod b.
2.2 If (xz ~- y~ + c) < b then cF-0; otherwise c<-1.

.5 . 2Un.~ 1 E—C.

4. Return((wn+iw~a ~ ~ ~ wlwa))•

14.8 Note (computational efficiency) The base b should be chosen so that (xi -{- y2 + c) mod b
can be computed by the hardware on the computing device. Some processors have instruc-
tion sets which provide an add-with-carry to facilitate multiple-precision addition.

Facebook's Exhibit No. 1005
0093

MOBILEIRON, INC. - EXHIBIT 1011
Page 116

i4.2 Multiple-precision integer arithmetic 595

14.9 Algorithm Multiple-precision subtraction

INPUT: positive integers x and y, each having n -{- 1 base b digits, with x > y.
OUTPUT: the difference x — y = (wnwn-1 • • • wlwo~b in radix b representation.

1. cF-0.
2. For i from 0 to n do the following:

2.1 wi~(~2 — yz + c) mod b.
2.2 If (xi — yz + c) > 0 then c<-0; otherwise cf— — 1.

3. Return((wnw~-1 • • • wlwo~)•

14.10 Note (eliminating the requirement ~ > y) If the relative magnitudes of the integers ~
and y are unknown, then Algorithm 14.9 can be modified as follows. On termination of
the algorithm, if c = —1, then repeat Algorithm 14.9 with x = (00 • • ~ OO~b and y =
(wnwn-1 • • • wlwo)b. Conditional checking on the relative magnitudes of x and y can also
be avoided by using a complement representation (§ 14.2.1(ii)).

14.11 Example (modified subtraction) Let x = 3996879 and y = 4637923 in base 10, so that
x < y. Table 14.2 shows the steps of the modified subtraction algorithm (cf. Note 14.10). ❑

First execution of Algorithm 14.9
i 6 5 4 3 2 1 0
~z 3 9 9 6 8 7 9
yZ 4 6 3 7 9 2 3
wi 9 3 5 8 9 5 6

-i o o -1 -i o 0

Second execution of Algorithm 14.9
i 6 5 4 3 2 1 0
xti 0 0 0 0 0 0 0
yZ 9 3 5 8 9 5 6
wti 0 6 4 1 0 4 4
~ -i -1 -i -1 -i -1 -i

Table 14.2: Modified subtraction (see Example 14.11).

14.2.3 Multiplication
Let ~ and y be integers expressed in radix brepresentation: x = (xn~n-1 ' ' ' x1x0)b and
y = (ytyt—i • • • yiyo~b- The product ~ • y will have at most (n -~- t -{- 2~ base b digits. Al-
gorithm 14.12 is a reorganization of the standard pencil-and-paper method taught in grade
school. Asingle-precision multiplication means the multiplication of two base b digits. If
x~ and y~, .are two base b digits, then x~ • y;, can be written as x~ • y2 = (z~v)b, where ~ and
v are base b digits, and u may be 0.

14.12 Algorithm Multiple-precision multiplication

INPUT: positive integers ~ and y having n + 1 and t ~- 1 base b digits, respectively.
OUTPUT: the product x ~ y = (wn+t+i • • ~ 'wi'wo)b in radix b representation.

1. For i from 0 to (n + t + 1) do: wi~0.
2. For i from 0 to t do the following:

2.1 c~0.
2.2 For j from 0 to n do the following:

Compute (uv~b = wi+~ + x~ ' zJi -F c, and set wz+~ <—v, c~u.
2.3 wi+n+l~—u.

3. Return((wn+c+i • • • wlwo))•

Facebook's Exhibit No. 1005
0094

MOBILEIRON, INC. - EXHIBIT 1011
Page 117

596 Ch. 14 Efficient Implementation

14.13 Example (multiple-precision multiplication) Take x = x3x2xlxo = 9274 and y =

y2ylyo = 847 (base 10 representations), so that n = 3 and t = 2. Table 14.3 shows
the steps performed by Algorithm 14.12 to compute x • y = 7855078. O

i j c wi+~ -f- x~yi + c u v w~ w5 w4 w3 w2 wl wo

0 0 0 0+28-}-0 2 8 0 0 0 0 0 0 8

1 2 0+49-{-2 5 1 0 0 0 0 0 1 8
2 5 0+14+5 1 9 0 0 0 0 9 1 8

3 1 0 -}- 63 -f- 1 6 4 ~ €l 6 4 ~~ j $

1 0 0 1+16-~-0 1 7 0 0 6 4 9 7 8

1 1 9~-28-I-1 3 8 0 0 6 4 8 7 8
2 3 4 -I- 8 -}- 3 1 5 0 0 6 5 t3 7 8
3 1 6+ 36 -{- 1 4 3 0 4 3 ~ "` 8 7 t3

2 0 0 8+32 -►-0 4 0 0 4 3 ~ 0 7 8
1 4 5+56-{-4 6 5 0 4 3 5 0 7 8
2 6 3 -I- 16 -{- 6 2 5 0 4 ~ 5 0 r ~3

3 2 4 -}- 72 + 2 7 8 7 ~ 5 5 tl 7 f3

Table 14.3: Multiple-precision multiplication, (see Example 14.13).

14.14 Remark (pencil-and-paper method) The pencil-and-paper method for .multiplying x =
9274 and y = 847 would appear as

X ti 4 7
6 4 9 1 8 (row 1)

3 7 0 9 6 (row 2)
7 4 1 9 2 (row 3)

The shaded entries in Table 14.3 correspond to row 1, row 1 +row 2, and row 1 +row 2 +
row 3, respectively.

14.15 Note (computational efficiency of Algorithm 14.12)

(i) The computationally intensive portion of Algorithm 14.12 is step 2.2. Computing
wi+~ -~ x~ ' yZ +cis called the inner-product operation. Since w~.+~, x~, ya and c
are all base b digits, the result of an inner-product operation is at most (b —1) -I- (b —
1)2 + (b — 1) = b2 — 1 and, hence, can be represented by two base b digits.

(ii) Algorithm 14.12 requires (n + 1)(t -I- 1) single-precision multiplications.
(iii) It is assumed in Algorithm 14.12 that single-precision multiplications are part of the

instruction set on a processor. The quality of the implementation of this instruction
is crucial to an efficient implementation of Algorithm 14.12.

14.2.4 Squaring
In the preceding algorithms, (uv)6 has both u and v as single-precision integers. This nota-
tion is abused in this subsection by permitting u to be adouble-precision integer, such that
0 < u < 2(b — 1). The value v will always be single-precision.

Facebook's Exhibit No. 1005
0095

MOBILEIRON, INC. - EXHIBIT 1011
Page 118

§ 14.2 Multiple-precision infeger arithmetic 597

14.16 Algorithm Multiple-precision squaring

INPUT: positive integer ~ _ (xt-ixt-2 • • • xixo)b•
OUTPUT: x ~ x = x2 in radix b representation.

1. For i from 0 to (2t - 1) do: wiF-0.
2. For i from 0 to (t - 1) do the following:

2.1 (uv)bE-'w2z -f- xi • xz, w2z<--v, c~-u.
2.2 For j from (i + 1) to (t - 1) do the following:

(uv~6~'~a+~ + 2x~ • xi + c~ wi+~ E—v, c~u.
2.3 wi+tau.

3. (uv)t~wat-z -I- xt-i • xt-i, wat-a<--v, w2t_l~u.
4. Return((w2t-iw2t-2 ... wlwo~b).

14.17 Note (computational efficiency of Algorithm 14.16)
(i) (over/tow) In step 2.2, u can be larger than asingle-precision integer. Since w~:+~

is always set to v, wz+~ < b - 1. If c < 2(b - 1), then w2+~ + 2~~~z + c <
(b -1) + 2(b -1)2 + 2(b -1) _ (b -1) (2b+ 1), implying 0 < ~, < 2(b -1). This
value of u may exceed single-precision, and must be accommodated.

(ii) (nu►nber of operations) The computationally intensive part of the algorithm is step 2.
The number of single-precision multiplications is about (t2 + t)/2, discounting the
multiplication by 2. This is approximately one half of the single-precision multipli-
cations required by Algorithm 14.12 (cf. Note 14.15(ii)).

14.18 Note (squaring vs. multiplication in general) Squaring a positive integer ~ (i.e., computing
~2) can at best be no more than twice as fast as multiplying distinct integers x and y. To
see this, consider the identity xy = ((x+ y)2 - (x - y)2)/4. Hence, x • y can be computed
with two squarings (i.e., (~ -I- y)2 and (x - y)2). Of course, aspeed-up by a factor of 2 can
be significant in many applications.

14.19 Example (squaring) Table 14.4 shows the steps performed by Algorithm 14.16 in squar-
ing~=989. Here,t=3andb=l0. ❑

i j wzi -I- xi w1+~ -{- 2x~x2 -~ c u v ws w4 wa w2 wi wo
0 - 0+81 - 8 1 0 0 0 0 0 1

1 - ~ 0-I-2.8.9-}-8 15 2 0 0 0 0 2 1
2 - 0-}-2.9.9-I-15 17 7 0 0 0 7 2 1

17 7 0 0 17 7 2 1
1 - 7+64 - 7 1 0 0 17 1 2 1

2 - 17-I-2.9.8+7 16 8 0 0 8 1 2 1
16 8 0 16 8 1 2 1

2 - 16 -81 - 9 7 0 7 8 1 2 1
9 7 « i ~ 1 M i

Tab/e 14.4: Multiple-precision squaring (see Example 14.19).

Facebook's Exhibit No. 1005
0096

MOBILEIRON, INC. - EXHIBIT 1011
Page 119

.;

14.2.5 Division

Ch. 14 Efficient Implementation

Division is the most complicated and costly of the basic multiple-precision operations. ~1-
gorithm 14.20 computes the quotient q and remainder r in radix b representation when x is
divided by y.

14.20 Algorithm Multiple-precision division

INPUT: positive integers x = (xn ' ' ' x1x0~b~ y = (fit • • • yiyo)b With n > t > 1, yt ; 0.
OUTPUT: the quotient q = (qn-t • • • glqo)6 and remainder r = (rt • • • rlro)6 such that

1. For j from 0 to (n - t) do: q~~0.
2. While (x > yb"`-t~ do the following: qn-t~-4n-t -~-1, xF-~ - yb"`-t
3. For i from n down to (t -}- 1) do the following:

3.1 If x2 = yt then set qi-t-lt-b - 1; otherwise set qi-,t-1~ L(xib ~- xi-l~~yt~~•
3.2 While (9Z-t-i ~~Jtb -f- yt-i) > xzb2 + xi-ib -I- xti_2~ do: 4i-t-~F-42-t-i - 1.

z-t-i3.3 x~x - qi-t-lyb .
3.4 If x < 0 then set x~~ + ybZ-t-1 and qz_t-i~42-t-i - 1•

4. r~-x.
S. Return(q,r).

14.21 Example (multiple-precision division) Let x = 721948327, y = 84461, so that n = 8 and
t = 4. Table 14.5 illustrates the steps in Algorithm 14.20. The last row gives the quotient
q = 8547. and the remainder r = 60160. ❑

z 44 qs q2 qi 90 x$ x7 xs x5 ~q ~3 xa xl xo
- 0 0 0 0 0 7 2 1 9 4 8 3 2 7
8 0 9

8
0
0

0
0

0
0

7 2
4

1
6

9
2

4
6

8
0

3
3

2
2

7
7

7 8 5 0 0 4 0 2 9 8 2 7
6 8

8
5
5

5
4

0
0

~ 4 0
6

2
5

9
1

8
3

2
8

7
7

5 8
~3

5
5 ̀

4
~

8
7

6 5
Ei

1
0

3
1

8
~

7
€l

Table y4.5: Multiple-precision division (see Example 14.21).

14.22 Note (comments on Algorithm 14.20)
(i) Step 2 of Algorithm 14.20 is performed at most once if yt > L 2 J and b is even.
(ii) The condition n > t > 1 can be replaced by n > t > 0, provided one takes x~ . _

y~ = 0 whenever a subscript j < 0 in encountered in the algorithm.

14.23 Note (normalization) The estimate for the quotient digit qti-t-1 in step 3.1 of Algorithm
14.20 is never less than the true value of the quotient digit. Furthermore, ~f yt > ~2 J, then
step 3.2 is repeated no more than twice. If step 3.1 is modified so that qi-t-1~L(x2b2 ~-

~i-lb -f- xi_ 2)/(ytb -}- yt-1)~, then the estimate is almost always correct and step 3.2 is

Facebook's Exhibit No. 1005
0097

MOBILEIRON, INC. - EXHIBIT 1011
Page 120

§ 14.3 Multiple-precision modular arithmetic 599

never repeated more than once. One can always guarantee that yt > L 2 J by replacing the
integers ~, y by ax, ~y for some suitable choice of ~. The quotient of ~~ divided by ~y is
the same as that of x by y; the remainder is ~ times the remainder of ~ divided by y. If the
base b is a power of 2 (as in many applications), then the choice of a should be a power of 2;
multiplication by ~ is achieved by simply left-shifting the binary .representations of x and
y. Multiplying by a suitable choice of J~ to ensure that yt > ~ 2 ~ is called normalization.
Example 14.24 illustrates the procedure.

14.24 Example (normalized division) Take x = 73418 and y = 267. Normalize ~ and y by
multiplying each by ~ = 3. x' = 3x = 220254 and y' = 3y = 801. Table 14.6 shows
the steps of Algorithm 14.20 as applied to x' and y'. When x' is divided by y', the quotient
is 274, and the remainder is 780. When x is divided by y, the quotient is also 274 and the
remainder is 780/3 = 260. ❑

Z Q'3 Q'2 Q'1 QO ~5 ~4 ~3 x2 ~1 ~0

— 0 0 0 0 2 2 0 2 5 4
5 0 2 0 0 6 0 0 5 4
4 2 7 0 3 9 8 4
3 ~ 2 7 ~ 4 7. R 0

Table 14.6: Multiple-precision division after normalization (see Example 14.24).

14.25 Note (computational efficiency of Algorithm 14.20 with normalization)

(i) (multiplication count) Assuming that normalization extends the number of digits in
x by 1, each iteration of step 3 requires 1 + (t + 2) = t + 3single-precision multi-
plications. Hence, Algorithm 14.20 with normalization requires about (n — t) (t ~- 3)
single-precision multiplications.

(ii) (division count) Since step 3.1 of Algorithm 14.20 is executed n — t times, at most
n — tsingle-precision divisions are required when normalization is used.

14.3 Multiple-precision modular arithmetic

§ 14.2 provided methods for carrying out the basic operations (addition, subtraction, multi-
plication, squaring, and division) with multiple-precision integers. This section deals with
these operations in 7G.,,,,, the integers modulo m, where m is amultiple-precision positive
integer. (See §2.4.3 for definitions of ~,n and related operations.)

Let m = (mmm~_1 • • • mlmo)6 be a positive integer in radix b representation. Let
x = (x,~xn-1 • • • xlxo)b and y = (y~,y~,_1 • • • ylyo)6 be non-negative integers in base b
representation such that x < m and y < m. Methods described in this section are for
computing x + y mod m (modular addition), x — y mod rra (modular subtraction), and
x • y mod m (modular multiplication). Computing x-1 mod m (modular inversion) is ad-
dressed in § 14.43.

14.26 Definition If z is any integer, then z mod m (the integer remainder in the range [0, m —1]
after z is divided by 7n) is called the rrcodular reduction of z with respect to modulus m.

Facebook's Exhibit No. 1005
0098

MOBILEIRON, INC. - EXHIBIT 1011
Page 121

.~~

Modular addition and subtraction

Ch. 14 Efficient Implementation

As is the case for ordinary multiple-precision operations, addition and subtraction are the
simplest to compute of the modular operations.

14.27 Fact Let x and y be non-negative integers with x, y < m. Then:

(ii) if x > y, then 0 < ~ — y < m; and
(iii) if x < y, then 0 < x -I- m — y < m.

If x, y E 7G,,,,, then modular addition can be performed by using Algorithm 14.7 to add
x and y asmultiple-precision integers, with the additional step of subtracting m if (and only
i~ x -{- y > m. Modular subtraction is precisely Algorithm 14.9, provided x > y.

14.3.1 Classical modular multiplication
Modular multiplication is more involved than multiple-precision multiplication (§14.2.3),
requiring both multiple-precision multiplication and some method for perfornung modular
reduction (Definition 14.26). The most straightforward method for performing modular re-
duction is to compute the remainder on division by m, using amultiple-precision division
algorithm such as Algorithm 14.20; this is commonly referred to as the classical algorithm
for performing modular multiplication.

14.28 Algorithm Classical modular multiplication

INPUT: two positive integers x, y and a modulus m, all in radix b representation.
OUTPUT: ~ • y mod m.

1. Compute x • y (using Algorithm 14.12).
2. Compute the remainder r when x • y is divided by m (using Algorithm 14.20).
3. Return(r).

14.3.2 Montgomery reduction
Montgomery reduction is a technique which allows efficient implementation of modular
multiplication without explicitly carrying out the classical modular reduction step.

Let m be a positive integer, and let R and T be integers such that R > m, gcd(m, R) _
1, and 0 < T < mR. A method is described for computing TR-1 mod m without using
the classical method of Algorithm 14.28. TR-1 mod rn is called a Montgomery reduction
of T modulo m with respect to R. With a suitable choice of R, a Montgomery reduction
can be efficiently computed.

Suppose x and y are integers such that 0 < x, y < m. Let x = xR mod 7n and
y = yR mod m. The Montgomery reduction of xy is xyR-1 mod m = xyR mod m.
This observation is used in Algorithm 14.94 to provide an efficient method for modular
exponentiation.

To brie$y illustrate, consider computing x5 mod m for some integer x, l G ~ < m.
First compute x = ~R mod m. Then compute the Montgomery reduction of ~~, which is
A = x R-1 mod m. The Montgomery reduction of A2 is AZR-1 mod m = x4R-3 mod
m. Finally, the Montgomery reduction of(A2R-1 modm)xis(AZR-1)xR-1 mod m =
x5R-4 mod m = x5R mod m. Multiplying this value by R-1 mod m and reducing

Facebook's Exhibit No. 1005
0099

MOBILEIRON, INC. - EXHIBIT 1011
Page 122

~ 14.3 Multiple-precision modular arithmetic 601

modulo m gives x5 mod m. Provided that Montgomery reductions are more efficient to
compute than classical modular reductions, this method may be more efficient than com-
puting x5 mod m by repeated application of Algorithm 14.28.
If m is represented as a base b integer of length n, then a typical choice for R is b". The

condition R > m is clearly satisfied, but gcd(R, m) = 1 will hold only if gcd(b, m) = 1.
Thus, this choice of R is not possible for all moduli. For those moduli of practical interest
(such as RSA moduli), m will be odd; then b can be a power of 2 and R = bn will suffice.

Fact 14.29 is basic to the Montgomery reduction method. Note 14.30 then implies that
R = b"` is sufficient (but not necessary) for efficient implementation.

14.29 Fact. (Montgomery reduction) Given integers m and R where gcd(m, R) = 1, let m' _
—m-1 mod R, and let T be any integer such that 0 < T < mR. If U = Tm' mod R,
then (T + Um)/R is an integer and (T + Um)/R - TR-1 (mod m).

Justification. T + Um - T (mod m) and, hence, (T -}- Um)R-1 - TR-1 (mod m).
To see that (T + Um)R-1 is an integer, observe that U = Tm' -}- kR and m'm = —1-I- ZR
for some integers k and 1. It follows that (T -F Um)/R = (T -I-- (Tm' -~ kR)m)/R =
(T+T(-1+1R)+kRm)/R=lT+km.

14.30 Note (implications of Fact 14,29)
(i) (T + Um)/R is an estimate for TR-1 mod' m. Since T < mR and U < R, then

(T+Um)/R < (mR+mR)/R = 2m. Thus either (T+Um)/R = TR-1 mod m
or (T+Um) /R = (TR-1 mod m)+m (i.e., the estimate is within m of the residue).
Example 14.31 illustrates that both possibilities can occur.

(ii) If,all integers are represented in radix 6 and R = b'~, then TR-1 mod m can be
computed with two multiple-precision multiplications (i.e., U = T • m' and U • m)
and simple right-shifts of T + Um in order to divide by R.

14.31 Example (Montgomery reduction) Let m = 187, R = 190. Then R-1 mod m = 125,
m— L mod R = 63, and m' = 127. If T = 563, then U = Tm' mod R = 61 and
(T -I- Um)/R = 63 = TR-1 mod m. If T = 1125 then U = Tm' mod R = 185 and
(T + Um)/R = 188 = (TR-1 mod m) + m. ❑

Algorithm 14.32 computes the Montgomery reduction of T = (t2n-1 • • • tlto)6 when
R = bn and m = (mn-1 • • • mlmo)b• The algorithm makes implicit use of Fact 14.29
by computing quantities which have similaz properties to U = Tm' mod Rand T -{- Um,
although the latter two expressions are not computed explicitly.

14.32 Algorithm Montgomery reduction

INPUT: integers m = (mn_1 • • • mlmo)b with gcd(m, b) = 1, R = b~`, m' _ —Tn-1 mod
b, and T = (t2n_1 • • • tlto)b < mR.
OUTPUT: TR-1 mod m.

1. AST. (Notation: A = (a2n-1 • • • alao)b•)
2. For i from 0 to (n — 1) do the following:

2.1 uz~azm' mod b.
2.2 AAA + utimb~.

4. If A > ~rz then A~-A — m.
5. Return(A).

Facebook's Exhibit No. 1005
0100

MOBILEIRON, INC. - EXHIBIT 1011
Page 123

602 Ch. 14 Efficient Implementation
f

14.33 Note (comments on Montgomery reduction)
(i) Algorithm 1432 does not require m' _ —m-1 mod R, as Fact 14.29 does, but rather

m' _ —~a-1 mod b. This is due to the choice of R = bn.
(ii) Qt step 2.1 of the algorithm with i = 1, A has the property that a~ = 0, 0 < j < l —1.

Step 2.2 does not modify these values, but does replace ai by 0. It follows that in
step 3, A is divisible by bn.

(iii) Going into step 3, the value of A equals T plus some multiple of m (see step 2.2);
here A = (T + 1~m)/bn is an integer (see (ii) above) and A - TR-1 (mod m). It
remains to show that A is less than 2m, so that at step 4, a subtraction (rather than a
division) will suffice. Going into step 3, A = T+~ o u;,bim. But ~ o u~,b''m <
b'~~r-c = R7rc and T < Rm; hence, A < 2Rm. Going into step 4 (after division of A
by R), A < 2m as required.

14.34 Note (computational efficiency of Montgomery reduction) Step 2.1 and step 2.2 of Algo-
rithm 14.32 require a total of n -~- 1single-precision multiplications. Since these steps are
executed n times, the total number of single-precision multiplications is n(~ + 1). Algo-
rithm 14.32 does not require any single-precision divisions.

14.35 Example (Montgomery reduction) Let m = 72639, b = 10, R = 105, and T = 7118368.
Here n = 5, m' _ —m-1 mod 10 =1, T mod m = 72385, and TR-1 mod m = 39796.
Table 14.7 displays the iterations of step 2 in Algorithm 14.32. O

i u; =aim' mod 10 uambi A

— — — 7118368
0 8 581112 7699480
1 8 5811120 13510600
2 6 43583400 57094000
3 4 290556000 347650000
4 5 3631950000 3979600000

Table 14.7; Montgomery reduction algorithm (see Example 14.35).

Montgomery multiplication
Algorithm 14.36 combines Montgomery reduction (Algorithm 14.32) and multiple-precis-
ion multiplication (Algorithm 14.12) to compute the Montgomery reduction of the product
of two integers.

14.36 Algorithm Montgomery multiplication

INPUT: integers m = (mn_1 • • • mlma)b, x = (xn-1 • • • ~lxo)t, y = (yn—~ • • • y~~Jo~6
with 0 < ~, y < 7n, R = b~ with gcd(m, b) = 1, and m' _ —m-1 mod b.
OUTPUT: xyR-1 mod m.

1. AE-0. (Notation: A = (a~a~,_1 ~ ~ ~ alao~b~)
2. For i from 0 to (n — 1) do the following:

2.1 uti~(ao + xiyo)~n' mod b.
2.2 A~(A + x;,y + utirn)/b.

3. If A > m then AF—A — m.
4. Return(A).

Facebook's Exhibit No. 1005
0101

MOBILEIRON, INC. - EXHIBIT 1011
Page 124

~ 14.3 Multiple-precision modular arithmetic 603

14.37 Note (partial justification of Algorithm 14.36) Suppose at the ith iteration of step 2 that
0 < A < 2m-1. Step 2.2 replaces A with (A-}-xtiy+uZm)/b; but (A+xzy+uzm}/b <
(2m — 2 + (b — 1)(m — 1) -}- (b — 1)m)/b = 2m — 1 — (1/b). Hence, A < 2m — 1,
justifying step 3.

1.4.38 Note (computational efficiency of Algorithm 14.36) Since A -i- xiy -I- uim is a multiple of
b, only aright-shift is required to perform a division by b in step 2.2. Step 2.1 requires two
single-precision multiplications and step 22 requires 2n. Since step 2 is executed n times,
the total number of single-precision multiplications is n(2 -I- 2n) = 2n(n + 1).

14.39 Note (computing ~y mod m with N~ontgomery multiplication) Suppose ~, y, and m are
n-digit base b integers with 0 < ~, y < m. Neglecting the cost of the precomputation in
the input, Algorithm 14.36 computes ~yR-1 mod ~n with 2~(~c-~ l~ single-precision mul-
tiplications. Neglecting the cost to compute R2 mod 7rc and applying Algorithm 14.36 to
xyR-1 mod m and RZ mod m, xy mod m is computed in 4n(n -{-1)single-precision op-
erations. Using classical modular multiplication (Algorithm 14.28) would require 2n(~~{-1
single-precision operations and no precomputation. Hence, the. classical algorithm is supe-
riorfor doing a single modular multiplication; however, Montgomery multiplication is very
effective for performing modular exponentiation (Algorithm 14.94).

14.40 Remark (Montgomery reduction vs. Montgomery multiplication) Algorithm 14.36 (Mont-
gomery multiplication) takes as input two n-digit numbers and then proceeds to interleave
the multiplication and reduction steps. Because of this, Algorithm 14.36 is not able to take
advantage of the special case where the input integers are equal (i.e., squaring). On the other
hand, Algorithm 14.32 (Montgomery reduction) assumes as input the product of two inte-
gers, each of which has at most n digits. Since Algorithm 14.32 is independent of multiple-
precsion multiplication, afaster squaring algorithm such as Algorithm 14.16 may be used
prior fo the reduction step.

14.41 Example (Montgomery multiplication) In Algorithm 14.36, let m = ?2639, R = 105,
x = 5792, y = 1229. Here n = 5, m' _ —m-1 mod 10 = 1, and xyR-1 mod m =
39796. Notice that m and R are the same values as in Example 14.35, as is xy = 7118368.

.Table 14.8 displays the steps in Algarithm 14.36. ❑

2 5ti xi2J0 ui xilf 1Li17t A

0 2 18 8 2458 581112 58357
-1 9 81 8 11061 581112 65053
2 7 63 6 8603 435834 50949
3 5 45 4 6145 290556 34765
4 0 0 5 0 363195

Table i4.8: Montgomery multiplication (see Example 14.41).

14.3.3 Barrett reduction
Barrett reduction (Algorithm 14.42) computes r = ~ mod m given x and m. The algorithm
requires the precomputation of the quantity ~C = Lb2k /m~ ; it is advantageous if many reduc-
tions are performed with a single modulus. For example, each RSA encryption for one en-
tity requires reduction modulo that entity's public key modulus. The precomputation takes

Facebook's Exhibit No. 1005
0102

MOBILEIRON, INC. - EXHIBIT 1011
Page 125

604 Ch. 14 Efficient Implementation

a fixed amount of work, which is negligible in comparison to modular exponentiation cost.
Typically, the radix b is chosen to be close to the word-size of the processor. Hence, assume

b > 3 in Algorithm 14.42 (see Note 14,44 (ii)).

14.42 Algorithm Barrett modular reduction

INPUT: positive integers x = (x2k-1 ~ ~ ~ xixo~b+ m = (mk-i • • • mimo)b (with mk-1 ~
0), and µ = Lb2~/mJ .
OUTPUT: r = x mod m.

2. rlF-x mod b~+l, r2~g3 • m mod b~+l, rt-rl - r2.
3. If r < 0 then r<-r -I- bk+l.
4, While r > m do: r~r - m.
S. Return(r).

14.43 Fact By the division algorithm (Definition 2.82), there exist integers Q and R such that
x = Qm +Rand 0 < R < m. In step 1 of Algorithm 14.42, the following inequality is
satisfied: Q - 2 < Q3 < Q.

14.44 Note (partial justification of correctness of Barrett reduction)

(i) Algorithm 14.42 is based on the observation that lx/m~ can be written as Q =
L(x/bk-1)(b2k~m)(1/bk+l)~. Moreover, Q can be approximated by the quantity
q3 = L Lx/bk-1Jµ/bk+1J Fact 14.43 guarantees that q3 is never larger than the true
quotient Q, and is at most 2 smaller.

(ii) In step 2, observe that -b~+l < rl - r2 < bk+l, ri _ r2 - (Q _ q3~m + R
(mod bk+l), and 0 < (Q - q3)m + R < 3m < bk+l since m < bk and 3 < b. If
rl - r2 > 0, then rl - r2 = (Q - q3)m + R. If rl - r2 < 0, then rl - r2 ~- b~`+1 =

(Q - q3)m -I- R. In either case, step 4 is repeated at most twice since 0 < r < 3m.

14.45 Note (computational efficiency of Barrett reduction)
(i) All divisions performed in Algorithm 14.42 are simple right-shifts of the base b rep-

resentation.
(ii) Q2 is only used to compute q3. Since the k -}- 1 least significant digits of q2 are not

needed to determine 43, only a partial multiple-precision multiplication (i.e., ql • ~C)
is necessary. The only influence of the k + 1 least significant digits on the higher
order digits is the carry from position k + 1 to position k + 2. Provided the base b
is sufficiently large with respect to k, this carry can be accurately computed by only
calculating the digits at positions k and k-~ 1. 1 Hence, the k- l least significant digits
of q2 need not be computed. Since µ and ql have at most k + 1 digits, determining q3
requires at most (k + 1)2 - ~2~ _ (k2 + 5k + 2)/2 single-precision multiplications.

(iii) Instep 2 of Algorithm 14.42, r2 can also be computed by a partial multiple-precision
multiplication which evaluates only the least significant k + 1 digits of Q3 • m. This
can be done in at most ~k 21~ + ksingle-precision multiplications.

14.46 Example (Barrett reduction) Let b = 4, k = 3, x = (313221)6, and m = (233)6 (i.e.,
x = 3561 and m = 47). Then µ = L46/mJ = 87 = (1113)6, ql = l(313221)6/42J =
(3132)6, q2 = (3132)6 • (1113)6 = (10231302)6, q3 = (1023)6, rl = (3221)6, r2 =
(1023)y • (233)6 mod b4 = (3011)6, and r = rl - r2 = (210)6. Thus xmod m = 36. ❑

l If 6 > k, then the carry computed by simply considering the digits at position k — 1(and ignoring the carry
from position k — 2) will be in error by at most 1.

Facebook's Exhibit No. 1005
0103

MOBILEIRON, INC. - EXHIBIT 1011
Page 126

~ 14.3 Multiple-precision modular arithmetic

14.3.4 Reduction methods for moduli of special form

605

When the modulus has a special (customized) form, reduction techniques can be employed
to allow more efficient computation. Suppose that the modulus m is a t-digit base b positive
integer of the form m = bt — c, where c is an l-digit base b positive integer (for some
l < t). Algorithm 14.47 computes x mod m for any positive integer x by using only shifts,
additions, and single-precision multiplications of base b numbers.

14.47 Algorithm Reduction modulo m = b` — c

INPUT: a base b positive integer xand amodulus m = bt — c, where c is an-1 digit base b
integer for some l G t.
OUTPUT: r = x mod m.

1. goE—Lx/btu, roF—x — gobt, r~ro, if-0.
2. While qti > 0 do the following:

2.1 qi+1~LQi~~6t~~ rz+i~9'z~ - 4~+lbt •

2.2 iFi -}- 1, rE—r -}- r2.

3. While r > m do: r<—r — m.
4. Return(r).

14.48 Example (reduction modulo bt — c) Let b = 4, m = 935 = (32213)41 and x = 31085 =
(13211231)4. Since m = 45 — (1121)4, take c ._ (1121)4. Here t = 5 and l = 4.
Table 14.9 displays the quotients and remainders produced by Algorithm 14.47. At the be-
ginning of step 3, r = (102031)4. Since r > m, step 3 computes r — m = (3212)4. ❑

i q~_lc qi r~, r
0 — (132)4 (11231)4 (11231)4
1 (221232)4 (2)4 (21232)4 (33123)4
2 (2302)4 (0)4 (2302)4 (102031)4

Tab/e 14.9: Reduction modulo m = bt — c (see Example 14.48).

14.49 Fact (ter►nination) For some integers > 0, qs = 0; hence, Algorithm 14.47 terminates.

Justification. qic = qi+lbt -I-r~,+l, i > 0. Sincec < bt, q1 = (q~+lbt/c) -}-(ri+l/c~ 1 Q'{~.1•
Since the gti's are non-negative integers which strictly decrease as i increases, there is some
integers > 0 such that qs = 0.

14.50 Fact (correcrness) Algorithm 14.47 terminates with the correct residue modulo m.

Justification. Suppose that s is the smallest index i for which qi = 0 (i.e., qs = 0). Now,
~ = gobt + ro and qic = qi+lbt -I- rz+l, 0 < i < s — 1. Adding these equations gives

~ + (~z=o qz) ~ — (~a=o qz) bt + ~z_o ri. Since bt - c (mod m), it follows that

x - ~z=o ri (mod m). Hence, repeated subtraction of m from r = ~i_0 Tz gives the
correcC residue.

Facebook's Exhibit No. 1005
0104

MOBILEIRON, INC. - EXHIBIT 1011
Page 127

606 Ch. 14 Efficient Implementation

14.51 Note (computational efficiency of reduction modulo bt — c)

(i) Suppose that ~ has 2t base b digits. If l < t/2, then Algorithm 14.47 executes step 2

at most s = 3 times, requiring 2 multiplications by c. In general, if l is approxi-

mately (s — 2)t/(s — 1), then Algorithm 14.47 executes step 2 about s times. Thus,

Algorithm 14.47 requires about sl single-precision multiplications.

(ii) If c has few non-zero digits, then multiplication by c will be relatively inexpensive.

If c is large but has few non-zero digits, the number of iterations of Algorithm 14.47

will be greater, but each iteration requires a very simple multiplication.

14.52 Note (modifications) Algorithm 14.47 can be modified if m = bt + c for some positive

integer c < bt: in step 2.2, replace rF-r -{- ri with r~r -I- (-1)Lr;,.

14.53 Remark (using moduli of a special form) Selecting RSA moduli of the form bt f c for

small values of c limits the choices of primes p and q. Care must also be exercised when

selecting moduli of a special form, so that factoring is not made substantially easier; this is

because numbers of this form are more susceptible to factoring by the special number field

sieve (see §3.2.7). A similar statement can be made regarding the selection of primes of a

special form for cryptographic schemes based on the discrete logarithm problem.

14.4 Greatest common diuisor algorithms

Many situations in cryptography require the computation of the greatest common divisor

(gcd) of two positive integers (see Definition 2.86). Algorithm 2.104 describes the classical

Euclidean algorithm for this computation. For multiple-precision integeis, Algorithm 2.104

requires amultiple-precision division at step i.l which is a relatively expensive operation.

This section describes three methods for computing the gcd which are more efficient than

the classical approach using multiple-precision numbers. The first is non-Euclidean and

is referred to as the binary gcd algorithm (§14.4.1). Although it requires more steps than

the classical algorithm, the binary gcd algorithm eliminates the computationally expen-

sive division and replaces it with elementary shifts and additions. Lehmer's gcd algorithm

(§ 14.4.2) is a variant of the classical algorithm more suited to multiple-precision computa-

tions. Abinary version of the extended Euclidean algorithm is given in § 14.4.3.

14.4.1 Binary gcd algorithm

14.54 Algorithm Binary gcd algorithm

INPUT: two positive integers x and y with x > y.

OUTPUT: gcd(x, y).
1. gt-1.
2. While both x and y are even do the following: x<—~/2, yf-y/2, g~2g.

3. While x ~ 0 do the following:
3.1 While x is even do: x~xl2.
3.2 While y is even do: y~y/2.
3.3 tF~~ — y~/2.
3.4 If x > y then x~t; otherwise, yet.

4. Return(g • y).

Facebook's Exhibit No. 1005
0105

MOBILEIRON, INC. - EXHIBIT 1011
Page 128

§ 14.4 Greatest common divisor algorithms 607

14.55 Example (binary gcd algorithm) The following table displays the steps performed by Al-
gorithm 14.54 for computing gcd(1764, 868) = 28. ❑

x 1764. 441 112 7 7 7 7 7 0
y 868 217 217 217 105 49 21 7 7
g 1 4 4 4 4 4 4 4 4

14.56 Note (computational efficiency of Algorithm 14.54)

(i) If ~ and y are in radix 2 representation, then the divisions by 2 are simply right-shifts.
(ii) Step 3.3 for multiple-precision integers can be computed using Algorithm 14.9.

14.4.2 Lehmer's gcd algorithm
Algorithm 14.57 is a variant of the classical Euclidean algorithm (Algorithm 2.104) and
is suited to computations involving multiple-precision integers. It replaces many of the
multiple-precision divisions by simpler single-precision operations.

Let x and y be positive integers in radix b representation, with x > y. Without loss
of generality, assume that x and y have the same number of base b digits throughout Algo-
rithm 14.57; this may necessitate padding the high-order digits of y with 0's.

14.57- Algorithm Lehmer's gcd algorithm

INPUT: two positive integers x and y in radix b representation, with x > y.
OUTPUT: gcd(x, y).

1. While y > b do the following:
1.1 Set x, y to be the high-order digit of x, y, respectively (y could be 0).
1.2 A~1, B<--o, Coo, D~1.
1.3 While (y + C) ~ 0 and (y + D) ~ 0 do the following:

If q # q' then go to step 1.4.
tF-A — qC, ABC, Cwt, t~B — qD, BF—D, D~—t.
tax - qy, x~y> yf-t.

1.4 If B = 0, then TE-~ mod y; ~~y, y~T;
otherwise, T~Ax -I- By, ~c~Cx -I- Dy, xf-T, yF-u.

2. Compute v = gcd(x, y) using Algorithm 2.104.
3. Return(v).

14.58 Note (implementation notes for Algorithm 14.5

(i) T is amultiple-precision variable. A, B, C, D, and t are signed single-precision
variables; hence, one bit of each of these variables must be reserved for the sign.

(ii) The first operation of step 1.3 may result in overflow since 0 < x + A, y + D < b.
This possibility needs to be accommodated. One solution is to reserve two bits more
than the number of bits in a digit for each of ~ and y to accommodate both the sign
and the possible overflow.

(iii) The multiple-precision additions of step 1.4 are actually subtractions, since AB < 0
and CD < 0.

Facebook's Exhibit No. 1005
0106

MOBILEIRON, INC. - EXHIBIT 1011
Page 129

.~: Ch. 14 Efficient Implementation

14.59 Note (computational efficiency of Algorithm 14.5
(i) Step 1.3 attempts to simulate multiple-precision divisions by much simpler single-

precision operations. In each iteration of step 1.3, all computations are single preci-
sion. The number of iterations of step 1.3 depends on b.

(ii) The modular reduction in step 1.4 is amultiple-precision operation. The other op-
~rations are multiple-precision, but require only linear time since the multipliers are
single precision.

14.60 Example (Lehmer's gcd algorithm) Let b = 103, x = 768 454 923, and y = 542167 814.
Since b = 103, the high-order digits of x and y are x = 768 and y = 542, respectively.
Table 14.10 displays the values of the variables at various stages of Algorithm 14.57. The
single-precision computations (Step 1.3) when q = q' are shown in Table 14.11. Hence

14.4.3 Binary extended gcd algorithm
Given integers x and y, Algorithm 2.107 computes integers a and b such that ax -I- Iry = v,
where v = gcd(x, y). It has the drawback of requiring relatively costly multiple-precision
divisions when x and y are multiple-precision integers. Algorithm 14.61 eliminates this
requirement at the expense of more iterations.

14.61 Algorithm Binary extended gcd algorithm

INPUT: two positive integers x and y.
OUTPUT: integers a, b, and v such that a~ -I- by = v, where v = gcd(x, y).

1. gel.
2. While x and y are both even, do the following: x~x/2, y~y/2, g~2g.
3. u~-~, vE-y, AF-1, Bt-0, Ct-0, D~1.
4. While u is even do the following:

4.1. u~u/2.
4.2 If A - B - 0 (mod 2) then AF-A/2, BBB/2; otherwise, Af-(A + y)/2,

5. While v is even do the following:
5.1 vFv/2.
5.2 If C - D - 0 (mod 2) then CE-C/2, DAD/2; otherwise, Ct-(C + y)/2,

6. If u > v then uF-~ - v, AAA - C, Bf-B - D;
otherwise, vt-v - u, CSC - A, DAD - B.

7. If u = 0, then a~-C, b~D, and return(a, b, g • v); otherwise, go to step 4.

14.62 Example (binary extended gcd algorithm) Let x = 693 and y = 609. Table 14.12 dis-
playsthe steps in Algorithm 14.61 for computing integers a, b, v such that 693a-}-609b = v,
where v = gcd(69~, 609). The algorithm returns v = 21, a = -181, and b = 206. D

Facebook's Exhibit No. 1005
0107

MOBILEIRON, INC. - EXHIBIT 1011
Page 130

§ i4.4 Greafesf common divisor algorithms

x y q q' precision reference
768 454 923 542 167 814 1 1 single Table 14.11(1)

89 593 596 47 099 917 1 1 single Table 14.11(11)
42 493 679 4 606 238 10 8 multiple

4 606 238 1 037 537 5 2 multiple
1 037 537 456 090 — — multiple

456090 125 357 3 3 single Table 14.11(111)
34 681 10 657 3 3 single Table 14.11(iv)
10 (57 2 710 5 3 multiple
2 710 2 527 1 0 multiple
2 527 183 Algorithm 2.104

183 148 Algorithm 2.104
148 35 Algorithm 2.104

35 8 Algorithm 2.104
8 3 Algorithm 2.104
3 2 Algorithm 2.104
2 1 Algorithm 2.104
1 0 Algorithm 2.104

Table 14.10: Lehmer's gcd algorithm (see Example 14.60).

x y A B C D q q'

(i) 768 542 1 0 0 1 1 1
542 226 0 1 1 —1 2 2
226 90 1 —1 —2 3 2 2
90 46 —2 3 5 —7 1 2

(ii) 89 47 1 0 0 1 1 1
47 42 0 1 1 —1 1 1
42 5 1 —1 —1 2 10 5

(iii) 456 125 1 0 0 1 3 3
125 81 0 1 1 —3 1 1

81 44 1 —3 —1 4 1 1
44 37 —1 4 2 —7 1 1
37 7 2 —7 3 11 9 1

(iv) 34 10 1 U 0 1 3 3
10 4 0 1 1 —3 2 11

.~•

Tab/e 14.'11: Single-precision computations (see Example 14.60 and Table 14.10).

Facebook's Exhibit No. 1005
0108

MOBILEIRON, INC. - EXHIBIT 1011
Page 131

610 Ch. i4 Efficient Implementation

u v A B C D
693 609 1 0 0 1
84 609 1 —1 0 1
42 609 -305 — 347 0 1
21 609 457 — 520 0 1
21 588 457 —520 —457 521
21 294 457 —520 76 —86
21 147 457 —520 38 —43
21 126 457 —520 —419 477
21 63 457 —520 95 —108
21 42 457 —520 —362 412
21 21 457 —520 —181 206
0 21 638 —726 —181 206

Tebbe 14.72: The binary extended gcd algorithm with ~ = 693, y = 609 (see Example 14.62).

14.63 Note (computational efficiency of Algorithm 14.61)
(i) The only multiple-precision operations needed for Algorithm 14.61 are addition and

subtraction. Division by 2 is simply aright-shift of the binary representation.
(ii) •The number of bits needed to represent either u or v decreases by (at least)1, after at

most two iterations of steps 4 — 7; thus, the algorithm takes at most 2 (Llg x J + Llg y J ~-
2) such iterations.

14.64. Note (multiplicative inverses) Given positive integers m and a, it is often necessary to
find an integer z E 7G,,, such that az - 1 (mod m), if such an integer exists. z is called
the multiplicative inverse of a modulo m (see Definition 2.115). For example, construct-
ing the private key for RSA requires the computation of an integer d such that ed - 1
(mod (p — 1)(q — 1)) (see Algorithm 8.1). Algorithm 14.61 provides a computation-

ally efficient method for deternuning z given a and m, by setting x = m and y = a. If
gcd(x, y) = 1, then, at termination, z = D if D > 0, or z = m — D if D < 0; if
gcd(x, y) ~ 1, then a is not invertible modulo m. Notice that if m is odd, it is not nec-
essary to compute the values of A and C. It would appear that step 4 of Algorithm 14.61
requires both A and B in order to decide which casein step 4.2 is executed. But if r►z is odd
and B is even, then A must be even; hence, the decision can be made using the parities of
B and m.

Example 14.65 illustrates Algorithm 14.61 for computing a multiplicative inverse.

14.65 Example (multiplicative inverse) Let m = 383 and a = 271. Table 14.13 illustrates the
steps of Algorithm 14.61 for computing 271-1 mod 383 = 106. Notice that values for the
vaziables A and C need not be computed. ~ ❑

14.5 Chinese remainder theorem for integers
Fact 2.120 introduced the Chinese remainder theorem (CRT) and Fact 2.121 outlined an al-
gorithm for solving the associated system of linear congruences. Although the method de-
scribed there is the one found in most textbooks on elementary number theory, it is not the

Facebook's Exhibit No. 1005
0109

MOBILEIRON, INC. - EXHIBIT 1011
Page 132

§ 14.5 Chinese remainder theorem for integers 611

'iteration: 1 2 3 4 5 6 7 8 9 10
u 383 112 56 28 14 7 7 7 7 7
v 271 271 271 271 271 271 264 132 66 33
B 0 —1 —192 —96 —48 —24 —24 —24 —24 —24
D 1 1 1 1] 1 25 —179 —281 —332

iteration: 11 12 13 14 15 16 17 18 19
u 7 7 7 7 4 2 1 1 1
v 26 13 6 3 3 3 3 2 1
B —24 —24 —24 —24 41 —171 —277 —277 —277
D —308 —154 -130 —65 —65 —65 —65 212 106

Table 14.73: Inverse computation using the binary extended gcd algorithrrc (see Example 14.65).

method of choice for Large integers. Garner's algorithm (Algorithm 14.71) has some com-
putational advantages. § 14.5.1 describes an alternate (non-radix) representation for non-
negativeintegers, called a modular representation, that allows some computational advan-
tages compared to standard radix representations. Algorithm 14.71 provides a technique
for converting numbers from modular to base 6 representation.

14.5.1 Residue number systems
In previous sections, non-negative integers have been represented in radix b notation. An
alternate means is to use amixed-radix representation.

14.66 Fact Let B be a fixed positive integer. Let ml, m2i . .. , r►at be positive integers such that
gcd(mz, m~) = 1 for all i ~ j, and M = ~i=1 mi > B. Then each integer ~, 0 < ~ < B,
can be uniquely represented by the sequence of integers v(x~ _ (vl, v2i ... , vt~, where
v2 = ~ mod 7ng, 1 < i < t.

14.67 Definition Referring to Fact 14.66, v(~~ is called the modular representation or mixed-
radix representation of x for the moduli ml, rn2i ... , ~. The set of modular representa-
tions for all integers ~ in the range 0 < x < B is called a residue numbersystem.

Ifv(x) _ (vl, v2, ... , vt) andv(y) _ (ul, u2, . . . , ut), definev(x)-I-v(y) _ (wl, w2,
... , wt~ where wi = v~ -I- ua mod mi, and v(~~ • v(y~ _ (zl, z2i ... , zt ~ where zti =
va • ui mod mi.

14.68 Fact If0 < x, y < M, then v((x -{- y) mod M) = v(x) -I- v(y) and v((x • y) mod M) _
v(x) ~ v(y).

14.69 Example (modular representation) Let M = 30 = 2 x 3 x 5; here, t = 3, ml = 2, ml =
3, and m3 = 5. Table 14.14 displays each residue modulo 30 along with its associated
modular representation. As an example of Fact 14.68, note that 21 + 27 - 18 (mod 30)
and (I01) -I- (102) _ (003). Also 22 • 17 - 14 (mod 30) and (012) • (122) _ (024). ❑

14.70 IVo#e (computational efficiency of modular representation for RSA decryption) Suppose
that n = Pq, where P and q are distinct primes. Fact 14.68 implies that xd mod n can be
computed in a modular representation as vd(~); that is, if v(x~ _ (vl, v2~ with respect to
moduli ml = p, m2 = q, then vd(~) _ (vd mod p, v2 mod q). In geneial, computing

Facebook's Exhibit No. 1005
0110

MOBILEIRON, INC. - EXHIBIT 1011
Page 133

612 Ch. 14 Efficient Implementation

x v(~) x v(x) x v(x) ~ v(x) ~ v(x)

0 (000) 6 (001) 12 (002) 18 (003) 24 (004)
1 (111) 7 (112) 13 (113) 19 (114) 25 (110)
2 (022) 8 (023) 14 (024) 20 (020) 26 (021)
3 (103) 9 (104) 15 (100) 21 (101) 27 (102)
4 (014) 10 (010) 16 (011) 22 (012) 28 (013)
5 (120) 11 (121) 17 (122) 23 (123) 29 (124)

Table 14.14: Modular representations (see Example 14.69).

vd mod p and v2 mod q is faster than computing xd mod ~. For RSA, if p and q are part
of the private key, modular representation can be used to improve the performance of both
decryption and signature generation (see Note 14.75).

Converting an integer x from a base b representation to a modular representation is eas-
ily done by applying a modular reduction algorithm to compute vti = x mod mz, l < i < ~.

Modular representations of integers in ~M may facilitate some computational efficiencies,
provided conversion from a standard radix to modular representation and back are relatively
efficient operations. Algorithm 14.71 describes one way of converting from modular rep-
resentationback to a standard radix representation.

14.5.2 Garner's algorithm
Garner's algorithm is an efficient method for determining x, 0 < x < M, given v(~) _
(vl, v2i . .. , vt), the residues of x modulo the pairwise co-prime moduli ml, rn2, ... , mt.

14.71 Algorithm Garner's algorithm for CRT

INPUT: a positive integer M = ~i_1 mti > 1, with gcd(mti, m~) = 1 for all i ; j, and a
modular representation v(~) _ (vl, v2, . , . , vt) of x for the m2.
OUTPUT: the integer x in radix b representation.

1. For i from 2 to t do the following:
1.1 CiE-1.
1.2 For j from 1 to (i — 1) do the following:

uf-m~ 1 mod mi (use Algorithm 14.61).
C;, ~u • Ci mod mti.

2. u~vl, xF-u.
3. For i from 2 to t do the following: u~(v1 — x)Cz mod m~, x~x ~- u • ~~=i m~.
4. Return(x).

14.72 Fact x returned by Algorithm 14.71 satisfies 0 < x < M, x - vti (mod m;), 1 < i < t.

14.73 Example (earner's algorithm) Let ml = 5, m2 = 7, m3 = 11, m4 = 13, M =
~a 1 ma = 5005, and v(x) _ (2, 1, 3, 8). The constants Ci computed are CZ = 3,
C3 = 6, and C4 = 5. The values of (i, u, x) computed in step 3 of Algorithm 14.71 are
(1, 2, 2), (2, 4, 22), (3, 7, 267), and (4, 5,.2192). Hence, the modularrepresentation v(x) _
(2,1, 3, 8) corresponds to the integer x = 2192. ❑

Facebook's Exhibit No. 1005
0111

MOBILEIRON, INC. - EXHIBIT 1011
Page 134

~ 14.6 Exponentiation 613

14.74 Note (computational efficiency of Algorithm 14.71)
(i) If Garner's algorithm is used repeatedly with the same modulus M and the same fac-

tors of M, then step 1 can be considered as a precomputation, requiring the storage
oft — 1 numbers.

(ii) The classical algorithm for the CRT (Algorithm 2.121) typically requires a modular
reduction with modulus M, whereas Algorithm 14.71 does not. Suppose M is a kt-
bit integer and each mz is a k-bit integer. A modular reduction by M takes O((kt) 2)
bit operations, whereas a modular reduction by mi takes O(k2) bit operations. Since
Algorithm 14.71 only does modulaz reduction with mi, 2 < i < t, it takes O(tk2)
bit operations in total for the reduction phase, and is thus more efficient.

14.75 Note (RSA decryption and signature generation)
` (i) (special case of two moduli) Algorithm 14.71 is particularly efficient for RSA moduli

n = pq, where ml = p and m2 = q are distinct primes. Step 1 computes a single
value C2 = p 1 mod q. Step 3 is executed once: u = (v2 — vl)CZ mod q and
x = vl ~- up.

(ii) (RSA exponentiation) Suppose pand gare t-bit primes, and let n = pq. Let d be a 2t-
bit RSA private key. RSA decryption and signature generation compute xd mod n
for some x E 7G,,. Suppose that modular multiplication and squaring require k2 bit
operations for k-bit inputs, and that exponentiation with a k-bit exponent requires
about 2 k multiplications and squarings (see Note 14.78). Then computing xd mod n
requires about 2 (2t)3 = 12t3 bit operations. A more efficient approach is to compute
~dP mod P and xd9 mod q (where dP = d mod (p — 1) and d4 = d mod (q — 1)),
and then use Garner's algorithm to construct xd mod pq. Although this procedure
takes two exponentiations, each is considerably more efficient because the moduli
are smaller. Assuming that the cost of Algorithm 14.71 is negligible with respect to
the exponentiations, computing xd mod n is about 2 (2t)3/2(Zt3) = 4 times faster.

14.6 Exponentiation

One of the most important azithmetic operations for public-key cryptography is exponen-
tiation. The RSA scheme (§8.2) requires exponentiation in 7G~ for some positive integer
m, whereas Diffie-Hellman key agreement (§ 12.6.1) and the E1Gama1 encryption scheme
(§8.4) use exponentiation in 7G~ for some large prime p. As pointed out in §8.4.2, E1Gama1
encryption can be generalized to any finite cyclic group. This section discusses methods for
computing the exponential ge, where the base g is an element of a finite group G (§2.5.1)
and the exponent e is anon-negative integer. A reader uncomfortable with the setting of a
general group may consider G to be ~;n; that is, read ge as ge mod m.

An efficient method for multiplying two elements in the group G is essential to per-
forming efficient exponentiation. The most naive way to compute ge is to doe — 1 multi-
plications inthe group G. For cryptographic applications, the order of the group G typically
exceeds 21so elements, and may exceed 21024 Most choices of e are large enough that it
would be infeasible to compute ge using e — 1 successive multiplications by g.

There are two ways to reduce the time required to do exponzntiation. One way is to
decrease the time to multiply two elements in the group; the other is to reduce the number
of multiplications used to compute ge. Ideally, one would do both.

This section considers three types of exponentiation algorithms.

Facebook's Exhibit No. 1005
0112

MOBILEIRON, INC. - EXHIBIT 1011
Page 135

614 Ch. 14 Efficient Implementation

1. basic techniques for exponentiation. Arbitrary choices of the base g and exponent e
are allowed.

2. fared-exponentexponentiatiorc algorithms. The exponent e is fixed and arbitrary choi-
ces of the base g are allowed. RSA encryption and decryption schemes benefit from
such algorithms.

3. fixed-base exponentiation algorithms. The base g is fixed and arbitrary choices of
the exponent e are allowed. E1Gama1 encryption and signatures schemes and Diffie-
Hellman key agreement protocols benefit from such algorithms.

14.6.1 Techniques for general exponentiation
This section includes general-purpose exponentiation algorithms referred to as repeated
square-and-rrcultiply algorithms.

(i) Basic binary and k-ary exponentiation
Algorithm 14.76 is simply Algorithm 2.143 restated in terms of an arbitrary finite abelian
group G with identity element 1.

14.76 Algorithm Right-to-left binary exponentiation

INPUT: an element g E G and integer e > 1.
OUTPUT: ge. —

l. A~1, St—g.
2. While e ~ 0 do tl~e following:

2.1 If e is odd then AAA • S.
2.2 e~~e/2~.
2.3 Ife~OthenSFS•S.

3. Return(A).

14.77 Example (right-to-left binary exponentiation) The following table displays the values of
A, e, and S during each iteration of Algorithm 14.76 for computing g283. ❑

A 1 g 9s 9s 9ii 9a~ ga7 gal gz7 92as

e 283 141 70 35 17 8 4 2 1 0
s g 9a 9n ga gis 9sa 9sa 9iae 92ss _

14.78 Note (computational efficiency of Algorithm 14.76) Lett + 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1's in this representation. Algo-
rithm 14.76 performs t squarings and wt(e) — 1 multiplications. If e is randomly selected
in the range 0 < e < ~G~ = n, then about Llg nJ squarings and 2 (Llg n~ -~ 1) multiplica-
tions can be expected. (The assignment 1 •xis not counted as a multiplication, nor is the
operation 1 • 1 counted as a squaring.) If squaring •is approximately as costly as an arbi-
trary multiplication (cf. Note 14.18), then the expected amount of work is roughly 2 llg n~
multiplications.

Algorithm 14.76 computes A • S whenever e is odd. For some choices of g, A • g can
be computed more efficiently than A • S for arbitrary S. Algorithm 14.79 is a left-to-right
binary exponentiation which replaces the operation A • S (for arbitrary S~ by the operation
A • g (for fixed g).

Facebook's Exhibit No. 1005
0113

MOBILEIRON, INC. - EXHIBIT 1011
Page 136

~ 14.6 Exponentiation 615

14.79 Algorithm Left-to-right binary exponentiation

INPUT: g E G and a positive integer e = (etet-i • • • eieo)a•
OUTPUT: ge.

1. A~1.
2. For i from t down to 0 do the following:

2.1 AAA • A.
2.2 If ei = 1, then Af-A • g.

3. Return(A).

14.80 Example (left-to-right binary exponentiation) The following table displays the values of
~ A during each iteration of Algorithm 14.79 for computing 8283. Note that t = 8 and 283 =

(100011011)2. ❑

i 8 7 6 5 4 3 2 1 0
ei 1 0 0 0 1 1 0 1 1
A 9 gz ga gs gi7 9,35 970 9iai 9283

14.81 Note (computational efficiency of Algorithm 14.79) Lett + 1 be the bitlength of the bi-
nary representation of e, and let wt(e) be the number of 1's in this representation. Algo-
rithm 14.79 performs t -I- 1 squarings and wt(e) - 1 multiplications by g. The number of
squarings and multiplications is the same as in Algorithm 14.76 but, in this algorithm, mul-
tiplication is always with the fixed value g. If g has a special structure, this multiplication
may be substantially easier than multiplying two arbitrary elements. For example, a fre-
quentoperation in E1Gama1 public-key schemes is the computation of gk mod p, where g
is a generator of 7Gp and p is a large prime number. The multiple-precision computation A • g
can be done in linear time if g is chosen so that it can be represented by asingle-precision
integer {e.g., g = 2). If the radix b is sufficiently large, there is a high probability that such
a generator exists.

Algorithm 14.82, sometimes referred to as the window method for exponentiation, is a
generalization of Algorithm 14.79 which processes more than one bit of the exponent per
iteration.

14.82 Algorithm Left-to-right k-ary exponentiation

INPUT: Band e = (etet_1 • • • eleo)b, where b = 2k for some k > 1.
OUTPUT: ge.

1. Precomputation.
1.1 got-1.
1.2 For i from 1 to (2k - 1) do: gi<-gi_1 • g. (Thus, gi - g'.)

2. A~ 1.
3. For i from t down to 0 do the following:

3.1 AF-A
Zk.

3.2 AE-A • 9e; .
4. Return(A).

Facebook's Exhibit No. 1005
0114

MOBILEIRON, INC. - EXHIBIT 1011
Page 137

616 Ch. 14 Efficient Implementation

In Algorithm 14.83, Algorithm 14.82 is modified slightly to reduce the amount of pre-
computation. The following notation is used: fox each i, 0 < i < t, if eti ~ 0, then write
2a = Zh u;, where ui is odd; if ei = O, then let h~ = 0 and uz = 0.

14.83 Algorithm Modified left-to-right k-ary exponentiation

INPUT: Band e = (etet-1 • • • eleo)b, where b = 2'~ for some k > 1.
OUTPUT: ge.

1. Precomputation.

1.2 For i from 1 to (2~-1 - 1) do:.g2z+1~92i-i • 9a~
2. A~1.
3. For i from t down to 0 do:

A~(A2k-h' • gu,)2h'

4. Return(A).

14.84 Remark (right-to-left k-ary exponentiation) Algorithm 14.82 is a generalization of Algo-
rithm 14.79. In a similar manner, Algorithm 14.76 can be generalized to the k-ary case.
However, the optimization given in Algorithm 14.83 is not possible for the generalized
right-to-left k-ary exponentiation method.

(ii) Sliding-window exponentiation
Algorithm 14.85 also reduces the amount of precomputation compared to Algorithm 14.82
and, moreover, reduces the average number of multiplications performed (excluding squar-
ings). k is called the window size.

14.85 Algorithm Sliding-window exponentiation

INPUT: g, e = (etet_1 • • • eleo)2 with et = 1, and an integer k > 1.
OUTPUT: ge. -

1. Precomputation.
1.1 g1E-9, 92E-92•
12 For i from 1 to (2~-1 - 1) do: g2;,+1~-9a=-i • 9z•

2. AF1, iF-t.
3. While i > 0 do the following:

3.1 If e% = 0 then do: AF-A2, iii - 1.
3.2 Otherwise (ei # 0), find the longest bitstring etie;,_ 1 ~ ~ ~ el such that i - l -I-1 < k

and e~ = 1, and do the following:
A

F-A2z-~+~ ,
g~e;e;_l...ei.)a+ z4-Z - 1.

4. Return(A).

1.4.86 Example (sliding-window exponentiation) Take e = 11749 = (10110111100101)2 and
k = 3. Table 14.15 illustrates the steps of Algorithm 14.85. Notice that the sliding-window
method for this exponent requires three multiplications, corresponding to i = 7, 4, and 0.
Algorithm 14.79 would have required four multiplications for the same values of k and e. ❑

;~
7

Facebook's Exhibit No. 1005
0115

MOBILEIRON, INC. - EXHIBIT 1011
Page 138

~ 14.6 Exponentiation

i A Longest bitstring

13 1 101
10 g5 101
7 ~9s~ags = gas 111
4 ~9ns~s97 _ gss7 _
3 ~gss~\2 _ 9734

2 9,734\2 = 9,1468 1~1
O /91468`895 _ 911749

l J

617

Table 14.15: Sliding-window exponentiation with k = 3 and exponent e = (10110111100101)2.

14.87 Note (comparison of exponentiation algorith►ns) Lett + 1 be the bitlength of e, and let
l -{- 1 be the number of k-bit words formed from e; that is, l = ~(t -~ 1)~k~ — 1 = Lt~k~ .
Table 14.16 summarizes the number of squarings and multiplications required by Algo-
rithms 14.76, 14.79, 14.82, and 14.83. Analysis of the number of squarings and multipli-
cations for Algorithm 14.85 is more difficult, although it is the recommended method.

(i) (squarings forAlgorithm 14.82) The number of squarings for Algorithm 14.82 is lk.
Observe that lk = Lt/k~ k = t — (t mod k). It follows that t — (k — 1) < lk < t
and that Algorithm 14.82 can save up to k — 1 squarings over Algorithms 14.76 and
14.79. An optimal value for k in Algorithm 14.82 will depend on t.

(ii) (squarings forAlgorithm 14.83) The number of squarings for Algorithm 14.83 is l k+
h~ where0 < h~ < t mod~k. Sincet—(k-1) < lk < lk+hl < lk+(t mod k) = t
or t — (k —1) < lk + hl < t, the number of squarings for this algorithm has the-same
bounds as Algorithm 14.82.

Algorithm
Precomputation

squarings
Multiplications

sq mult worst case average case
14.76 0 0 t t t/2
14.79 0 0 t t t/2
14.82 1 2~ — 3 t —. (k — 1) < lk < t l — 1 l(2~" — 1)/2~`
14.83 1 2~'1 — 1 t — (k — Y) < lk + h~ < t l — 1 l(2~` — 1)/2k

Table 14.16: Number of squarings (sq) and rrcu/tiplications (mull) for exponentiation algorithms.

(iii) Simultaneous multiple exponentiation
There are a number of situations which require computation of the product of several ex-
ponentials with distinct bases and distinct exponents (for example, verification of E1Ga-
mal signatures; see Note 14.91). Rather than computing each exponential separately, Al-
gorithm 14.88 presents a method to do them simultaneously.

Let eo, el, ... , e~_ 1 be positive integers each of bitlength t; some of the high-order bits
of some of the exponents might be 0, but there is at least one eZ whose high-order bit is 1.
Form a k x t array EA (called the exponentarray) whose rows are the binary representations
of the exponents ez, 0 < i < k — 1. Let I~ be the non-negative integer whose binary
representation is the jth column, 1 < j < t, of EA, where low-order bits are at the top of
the column.

Facebook's Exhibit No. 1005
0116

MOBILEIRON, INC. - EXHIBIT 1011
Page 139

618 Ch. 14 Efficient fmplemenfation

14.88 Algorithm Simultaneous multiple exponentiation

INPUT: group elements goy 9i ~ • • ~ ~ 9~—i and non-negative t-bit integers eo, el, ... e~_1.
OUTPUT: 9o°9i1 . .

.9~k il.

1. Precomputation. For i from 0 to (2k — 1~: G2~ ~~=o g~' where i = (ik-1 • • • io~2•
2. A~ 1.
3. For i from 1 to t do the following: A<--A • A, A<—A • Grti.
4. Return(A).

14.89 Example (simultaneous rnultipleexponentiation) Inthis example, googiog24 is computed
using Algorithm 14.88. Let eo = 30 = (11110)2, el = 10 = (01010}2, and e2 = 24 =
(11000)2. The 3 x 5 array EA is:

1 1 1 1 0
0 1 0 1 0
1 1 0 0 0

The next table displays precomputed values from step 1 of Algorithm 14.88.

i 0 1 2 3 4 5 6 7
G2 1 go gi gogi ga gog2 gig2 gogig2

Finally, the value of A at the end of each iteration of step 3 is shown in the following table.
Here, Il = 5> I2 = 7, I3 = 1> I4 = 3, and I5 = 0.

i 1 2 3 4 5
¢1 gog2 3 3go91g2 7 2 69o9i92 15 5 1290 9192 30 10 2490 9i 92

14.90 Note (computational efficiency of Algorithm 14.88)
(i) Algorithm 14.88 computes go°gil • • . gkk it (where each ei is represented by t bits)

by performing t — 1 squarings and at most (2~ — 2) -I- t — 1 multiplications. .The
multiplication is trivial for any column consisting of a110's.

(ii) Not all of the Gi, 0 < i < 2k —1, need to be precomputed, but only for those i whose
binary representation is a column of EA.

14.91 Note (ElGamal signature verification) The signature verification equation for the EIGa-
mal signature scheme (Algorithm 11.64) is ah~""~ (a—"~T - rs (mod ~~ where P is a large
prime, a a generator of 7GP, as is the public key, and (r, s) is a signature for message m.
It would appear that three exponentiations and one multiplication are required to verify
the equation. If t = ~lg p~ and Algorithm 11.64 is applied, the number of squarings is
3(t — 1) and the number of multiplications is, on average, 3t/2. Hence, one would ex-
pect to perform about (9t — 4)/2 multiplications and squarings modulo p. Algorithm 14.88
can reduce the number of computations substantially if the verification equation is rewrit-
ten as ah~'"z>(a—a)Tr-3 - 1 (mod P). Taking 90 = a, 91 = ~'—"~ 92 = r, and eo =
h,(m) mod (p — 1), el = r mod (p — 1), e2 = —s mod (p — 1) in Algorithm 14.88, the
expected number of multiplications and squarings is (t —1) -I- (6 + (7t/8)) _ (15t+40)/8.
(For random exponents, one would expect that, on average, g of the columns of EA will be
non-zero and necessitate anon-trivial multiplication.) This is only about 25%more costly
than a single exponentiation computed by Algorithm 14.79.

Facebook's Exhibit No. 1005
0117

MOBILEIRON, INC. - EXHIBIT 1011
Page 140

j 14.6 Exponentiation

(iv) Additive notation

619

Algorithms 14.76 and 14.79 have been described in the setting of a multiplicative group.
Algorithm 14.92 uses the methodology of Algorithm 14.79 to perform efficient multiplica-
tion in an additive group G. (For example, the group formed by the points on an elliptic
curve over a finite field uses additive notation.) Multiplicarion in an additive group corre-
sponds to exponentiation in a multiplicative group.

14.92 Algorithm Left-to-right binary multiplication in an additive group
INPUT: g E G, where G is an additive group, and a positive integer e = (etet— i • • • ei eo) a
OUTPITT: e • g.

1. ADO.
2. For i frorn t down to 0 do the following:

2.1 AAA + A.
2.2 If ei = 1 then AAA -I- g.

3. Return(A).

14.93 Note (the additive group 7G,,,,)
(i) If G is the additive group 7L,,,,, then Algorithm 14.92 provides a method for doing

modular multiplication. For example, if a, b E 7L72, then a • b mod m can be com-
puted using Algorithm 14.92 by taking g = a and e = b, provided b is written in
binary.

(ii) If a, b E 7Gm,, then a < m and b < m. The accumulator A in Algorithm 14.92
never contains an integer as large as 2m; hence, modular reduction of the value in
the accumulator can be performed by a simple subtraction when A > m; thus no
divisions arexequired.

(iii) Algorithms 14.82 and 14.83 can also be used for modular multiplication. In the case
of the additive group 7G,,,,, the time required to do modular multiplication can be im-
proved at the expense of precomputing a table of residues modulo m. For aleft-to-
right k-ary exponentiation scheme, the table will contain 2k —1 residues modulo m.

(v) Montgomery exponentiation
The introductory remarks to § 14.3.2 outline an application of the Montgomery reduction
method for exponentiation. Algorithm 14.94 below combines Algorithm 14.79 and Al-
g_orithm 14.36 to give a Montgomery exponentiation algorithm for computing xe mod 7n.
Note the definition of m' requires that gcd(rrm, R) = 1. For integers u and v where 0
u, v <'m, define Mont(u, v) to be uvR-1 mod m as computed by Algorithm 14.36.

Facebook's Exhibit No. 1005
0118

MOBILEIRON, INC. - EXHIBIT 1011
Page 141

620 Ch. 14 Efficient Implementation

14.94 Algorithm Montgomery exponentiation

INPUT: m = (m~_1 ... rrzo~6, R = bl, m' _ -m-1 mod b, e = (et .. . eo)2 with et = 1,
and an integer x, 1 < x < m.
OUTPUT: xe mod m.

1. xE- Mont(x, R2 mod m), ASR mod m. (R mod m and R2 mod m may be pro-
vided as inputs.)

2. For i from t down to 0 do the following:

2.1 A~ Mont(A, A).
2.2 If ei = 1 then A~ Mont(A, x).

4. Return(A).

14.95 Example (Montgomery exponentiation) Let x, m, and R be integers suitable as inputs to
Algorithm 14.94. Let e = 11 = (1011)2; here, t = 3. The following table displays the
values of A mod m at the end of each iteration of step 2, and after step 3. ❑

i 3 2 1 0 Step 3
A mod m ~ ~ R-1 ~SR-4 ~11R-lo Mont(A,1) = xiiR-ii - xu

14.96 Note (computational efficiency of Montgomery exponentiation)

(i) Table 14.17 displays the average number ofsingle-precision multiplications required
for each step of Algorithm 14.94. The expected number of single-precision multipli-
cations to compute xe mod m by Algorithm 14.94 is 3l (l ~- 1) (t + 1).

(ii) Each iteration of step 2 in Algorithm 14.94 applies Algorithm 14.36 at a cost of 2l (l -}-
1) single-precision multiplications but no single-precision divisions. A similar algo-
rithm for modular exponentiation based on classical modular multiplication (Algo-
rithm 14.28) would similarly use 2l(l -}- 1) single-precision multiplications per iter-
ationbut also lsingle-precision divisions.

(iii) Any of the other exponentiation algorithms discussed in § 14.6.1 can be combined
with Montgomery reduction to give other Montgomery exponentiation algorithms.

Step 1 2 3
Number of Montgomery multiplications 1 2 t 1
Number of single-precision multiplications 2l(l -~ 1) 3tl(l -►- 1) l(l + 1)

Table 14.17: Average number of single-precision multiplications per step of Algorithm 14.94.

14. xed-exponent exponentiation algorithms
There are numerous situations in which a number of exponentiations by a fixed exponent
must be performed. Examples include RSA encryption and decryption, and E1Gamal de-
cryption: This subsection describes selected algorithms which improve the repeated square-
and-multiply algorithms of § 14.6.1 by reducing the number of multiplications.

Facebook's Exhibit No. 1005
0119

MOBILEIRON, INC. - EXHIBIT 1011
Page 142

§ 14.6 Exponentiation 621

(i) Addition chains
The purpose of an addition chain is to minimize the number of multiplications required for
an exponentiation.

14.97 Definition An addition chain V of length s for a positive integer e is a sequence uo, ul,
. . . , u8 of positive integers, and an associated sequence wl, . . . , ws of pairs wz = (il, i2),
0 < il, i2 < i, having the following properties:

(i) uo = 1 and us = e; and
(ii) for each ~i, 1 < i < s, uti = uz~ + uti2.

14.98 Algorithm Addition chain exponentiation

INPUT: a group elementg, an addition chain V = (uo, ul, ... , us) of length s for a positive
integer e, and the associated sequence wl, ... , ws, where wi = (il, i2).
OUTPUT: ge.

1. go<-g.
2. For i from 1 to s do: gzF-gil ' gi2
3. Return(gs).

14.99 Example (addition chain exponentiation) An addition chain of length 5 for e = 15 is
uo = 1, ul = 2, v,2 = 3, u3 = 6, u4 = 12, u5 = 15. The following table displays the
values of wi and g2 during each iteration of Algorithm 14.98 for computing g15 ❑

i 0 1 2 3 4 5
wz - (0, 0) (0, 1) (2, 2) (3, 3) (2, 4)

9i 9 92 93 96 91a gis

14.100 Remark (addition chains and binary representations) Given the binary representation of
an exponent e, it is a relatively simple task to construct an addition chain directly from this
representation. Chains constructed in this way generally do not provide the shortest addition
chain possible for the given exponent. The methods for exponentiation described in § 14.6.1
could be phrased in terms of addition chains, but this is typically not done.

14.101 Note (computational efficiency of addition chain exponentiation) Given an addition chain
of length s for the positive integer e, Algorithm 14.98 computes ge for any g E G, g ~ 1,
using exactly s multiplications.

14.102 Fact If l is the length of a shortest addition chain for a positive integer e, then l > (lg e -I-
lg wt(e) - 2.13), where wt(e) is the number of 1's in the binary representation of e. An
upper bound of (Llg e~ + wt(e) - 1) is obtained by constructing an addition chain for e
from its binary representation. Determining a shortest addition chain for e is known to be
an NP-hard problem.

Facebook's Exhibit No. 1005
0120

MOBILEIRON, INC. - EXHIBIT 1011
Page 143

622 Ch. 14 Efficient Implementation

(ii) Vector-addition chains
Algorithms 14.88 and 14.104 are useful for computing go gil • • • g~k it where go, 9i
gk-1 are arbitrary elements in a group G and eo, el, ... , ek _1 are fixed positive integers.
These algorithms can also be used to advantage when the exponents are not necessarily fixed
values (see Note 14.91). Algorithm 14.104 makes use of vector-addition chains.

14.103 Definition Let s and (c be positive integers and let vi denote a k-dimensional vector of
non-negative integers. An ordered set V = {v;, —k + 1 < i < s} is called a vector-
addition chain of length s and dimension k if V satisfies the following:

(i) Each vti, —k + 1 < i < 0, has a 0 in each coordinate position, except for coordinate
position i -}- k — 1, which is a 1. (Coordinate positions are labeled 0 through k — l.)

(ii) For each vz, 1 < i < s, there exists an associated pair of integers wZ = (il, i2) such
that —k + 1 < il, i2 < i and v2 = vZl -~ v~2 (il = i2 is allowed).

Example 14.105 illustrates a sample vector-addition chain. Let V = {v~ : —k + 1 <
i < s} be avector-addition chain of length s and dimension k with associated sequence
wl, . . . , ws. Algorithm 14.104 computes go°gil • • • g~'° it where vs = (eo, el, • • • , ek-1)•

14.104 Algorithm Vector-addition chain exponentiation

INPUT: group elements go, 9i, • • • ~ 9~—i and avector-addition chain V of length s and di-
mension kwith associated sequence wl, . . . , ws, where wi = (il, i2).
OUTPUT: eo el , , , ek-1 where v — (e el, • • • , ek-1)•90 9i 9k-1 3 — o,

1. For i from (—k + 1) to 0 do: ai~9i+~-1•
2. For i from 1 to s do: airmail ' ai2
3. Return(as).

14.105 Example (vector-addition chain exponentiation) Avector-addition chain V oflength s =
9 and dimension k = 3 is displayed in the following table.

41-2 'U-1 Z7p vl v2 Y13 714 v5 v6 v7 v8 v9

1 0 0 1 2 2 3 5 6 12 15 30
0 1 0 0 0 1 1 2 2 4 5 10
0 0 1 1 2 2 2 4 5 10 12 24

The following table displays the values of wi and ai during each iteration of step 2 in Al-
gorithm 14.104 for computing googiog24 Nine multiplications are required. ❑

i 1 2 3 4 5 6 7 8 9
wi (-2, 0) (1, 1) (-1, 2) (-2, 3) (3, 4) (1, 5) (6, 6) (4, 7) (8, 8)
ai 9ogz 9092 9o919a 9o9i92 9o9?9z 9o9i92 9o29i92° 90595922 9o°9i°924

14.106 Note (computational efficiency of vector-addition chain exponentiation)
i

(i) (multiplications) Algorithm 14.104 performs exactly s multiplications fora vector-
addition chain of length s. To compute go°gil • • • gk'` i' using Algorithm 14.104, one
would like to find avector-addition chain of length s and dimension k with vs =
(eo, el, . .. , e~_1), where s is as small as possible (see Fact 14.,107).

Facebook's Exhibit No. 1005
0121

MOBILEIRON, INC. - EXHIBIT 1011
Page 144

§ i4.6 Exponentiation 623

(ii) (storage) Algorithm 14.104 requires intermediate storage for the elements a;,, —k +
1 < i < t, at the tth iteration of step 2. If not all of these are required for succeeding
iterations, then they need not be stored. Algorithm 14.88 provides a special case of
Algorithm 14.104 where the intermediate storage is no larger than 2~ — 1 vectors of
dimension k.

14.107 Fact The minimum value of s in Note 14.106(1) satisfies the following bound, where M
max{ez : 0 < i < k — 1} and c is a constant:

s <k-1+1gM+ck•1gM/lglg(M+2).

14.108 Example (vector-addition chains from binary representations) The vector-addition chain
implicit in Algorithm 14.88 is not necessarily.of minimum length. The vector-addition
chain associated with Example 14.89 is displayed in Table 14.18. This chain is longer than
the one used in Example 14.105. The advantage of Algorithm 14.88 is that the vector-
addition chain does not have to be explicitly provided to the algorithm. In view of this,
Algorithm 14.88 can be applied more generally to situations where the exponents are not
necessarily fixed. ❑

'1J_2 4J_1 'Up 'Ul v2 X13 v4 v5 v6 v7 v8 v9 v10

1 0 0 1 1 1 2 3 6 7 14 15 30
0 1 0 1 1 0 0 1 2 2 4 5 10
0 0 1 0 1 1 2 3 6 6 12 12 24

Table 14.18: Binary vector-addition chain exponentiation (see Example 14.108).

14.6.3 Fixed-base exponentiation algorithms
Three methods are presented for exponentiation when the base g is fixed and the exponent
e varies. With a fixed base, precomputation can be done once and used for many exponen-
tiations. For example, Diffie-Hellman key agreement (Protocol 12.47) requires the compu-
tation of ate, where a is a fixed element in 7GP.

For each of the algorithms described in this section, {bo, bl, ... , bt} is a set of integers
for some t > 0, such that any exponent e > 1 (suitably bounded) can be written as e =
~i=o e1bz, where 0 ~ eti < h for some fixed positive integer h. For example, if e is any_
(t -I- 1)-digit base b integer with b > 2, then bti = b" and h =bare possible choices.

Algorithms 14.109 and 14.113 are two fixed-base exponentiation methods. Both re-
quire precomputation ofthe exponentials gb°, gb' , .. . , gb° , e.g., using one of the algorithms
from § 14.6.1. The precomputation needed for Algorithm 14.117 is more involved and is ex-
plicitly described in Algorithm 14.116.

(i) Fixed-base windowing method
Algorithm,14.109 takes as input the precomputed exponentials gti = gb~, 0 < i < t, and
positive integers, h and e = ~z=o eibi where 0 < e2 < h, 0 < i < t. The basis for the
algorithm is the observation that g ~;,=0 9i

e = t e: h-1 ~7 ~
— ~)=1 ~l lec=~ gti

Facebook's Exhibit No. 1005
0122

MOBILEIRON, INC. - EXHIBIT 1011
Page 145

624 Ch. 14 Efficient Implementation

14.109 Algorithm Fixed-base windowing method for exponentiation

INPUT: {9b° ~ 9b' , ... , 9b` }, e = ~i=o eZ bti, and h.
OUTPUT: ge.

1. A4-1, B~1.
2. For j from (h — 1) down to 1 do the following:

2.1 For each i for which ei = j do: BBB ~ gb=
2.2 AAA • B.

3. Return(A).

14.110 Example (fixed-base windowing exponentiation) Precompute the group elements gl, g4,
9is~ gs4 92ss To compute ge for e = 862 — (31132)41 take t = 4, h = 4, and bi = 4i for
0 < i < 4, in Algorithm 14.109. The following table displays the values of A and B at the
end of each iteration of step 2. ❑

~ II — I 3 I 2 ~ 1
B 1 g4y25s = 92so 92so9 = 9asi 9261916964 = 9341

A 1 92so g2so92si = 9szi 95219341 _ g862

14.111 Note (computational efficiency of faced-base windowing exponentiation)
(i) (number of multiplications) Suppose t + h > 2. Only multiplications where both

operands are distinct from 1 are counted. Step 2.2 is executed h —1 times, but at least
one of these multiplications involves an operand with value 1 (A is initialized to 1).
Since B is also initially 1, at most t multiplications are done in step 2.1. Thus, Algo-
rithm 14.109 computes ge with at most t + h — 2 multiplications (cf. Note 14.112).

(ii) (storage) Storage is required for the t -~ 1 group elements gi, 0 < i < t.

14.1 y 2 Note (a particular case) The most obvious application of Algorithm 14.109 is the case
where the exponent e is represented in radix b. If e = ~i=o eibz, then gti = gb', 0 < i < t,
are precomputed. If e is randomly selected from {0, 1, ... , rn —1}, then t -}-1 < ~logb m~
and, on average, b of the base b digits in e will be 0. In this case, the expected number of
multiplications is b ~ 1 ~logb 7n~ -~ b — 3. If m is a 512-bit integer and b = 32, then 128.8
multiplications are needed on average, 132 in the worst case; 103 values must be stored.

(ii) Fixed-base Euclidean method
Let {xo, xl, ... , xt} be a set of integers with t > 2. Define M to be an integer in the
interval [0, t] such that xM > x~, for a110 < i < t. Define N to be an integer in the interval
[0, t], N ~ M, such that enr > e~ for a110 < i < t, i ~ M.

14.113 Algorithm Fixed-base Euclidean method for exponentiation

INPUT: {gb0 ~ 9b1 ~~ 96` } and e = ~Z—o eZbz•
OUTPUT: ge.

1. For i from 0 to t do the following: gi~gb~, ~i~ei.
2. Determine the indices M and N for {xo, ~1i ... , xt}.
3. While xN ~ 0 do the following:

3.1 q~LxM~xNJ, 91vF-(9Nt)4 . gN> xM~xM mod xnr.

Facebook's Exhibit No. 1005
0123

MOBILEIRON, INC. - EXHIBIT 1011
Page 146

~3 i4.6 Exponentiation 625

3.2 Determine the indices M and N for {xo, xl, ... , xt}.
4. Return(gM).

14.114 Example (fixed-base Ettclidean method) This example repeats the computation of ge, e
862 done in Example 14.110, but now uses Algorithm 14.113. Take bo = 1, bl = 16, b2 =
256. Then e = (3, 5, 14)16. Precompute gl, gls~ g25s Table 14.19 illustrates the steps
performed by Algorithm 14.113. Notice that for this example, Algorithm 14.113 does 8

xo xl x2 M N 4' 90 gi g2
14 5 3 0 1 2 y 918 92ss

4 5 3 1 0 1 gls yl8 925s

4 1 3 0 2 1 91s gis g275

1 1 3 2 1 3 yls Sans 92~s

1 1 0 0 1 1 yls 9as2 g27s

0 1 0 1 0 — gls gz7s

Table 14.19: Fixed-base Euclidean method to compute g862 (see Example 14.114).

multiplications, whereas Algorithm 14.109 needs only 6 to do the same computation. Stor-
age requirements for Algorithm 14.113 are, however, smaller. The vector-addition chain
(Definition 14.103) corresponding to this example is displayed in the following table. ❑

~ v_ z ~ v_ 1 ~ v o ~ v 1 ~ v 2 ~ v s ~ v 4 ~ v 5 ~ v s ~ v ~ ~ v s ~
1 0 0 2 2 3 3 6 9 11 14
0 1 0 0 1 1 1 2 3 4 5
0 0 1 0 0 0 1 2 3 3 3

14.115 Note (fixed-base Euclidean vs. fixed-base windowing methods)
(i) In most cases, the quotient q computed in step 3.1 of Algorithm 14.113 is 1. For a

given base b, the computational requirements of this algorithm are not significantly
greater than those of Algorithm 14.109.

(ii) Since the division algorithm is logazithmic in the size of the inputs, Algorithm 14.113
can take advantage of a larger value of h than Algorithm 14.109. This results in less
storage for precomputed values.

(iii) Fixed-base comb method
Algorithm 14.117 computes ge where e = (etet_i • • • eleo)2, t > 1. Select an integer h,
1 < h < t -I-1 and compute a = ~(t -}-1) /h~ . Select an integer v, 1 < v < a, and compute
b = ~a/v~ . Clearly, ah > t + 1. Let X = Rh-1 ~ ~Rh—z I I ' ' ' I I Ro be a bitstring formed
from e by padding (if necessary) e on the left with 0's, so that X has bitlength ah and each
R;,, 0 < i < h —1, is a bitstring of length a. Form an h x a array EA (called the exponent
array) where row i of EA is the bitstring RZ, 0 < i < h — 1. Algorithm 14.116 is the
precomputation required for Algorithm 14.117.

Facebook's Exhibit No. 1005
0124

MOBILEIRON, INC. - EXHIBIT 1011
Page 147

626 Ch. 14 Efficient Implementation

14.116 AIgOt'ithm Precomputation for Algorithm 14.117

INPUT: group element g and parameters h, v, a, and b (defined above).
OUTPiJ'T: {G[j][i] : 1 < i < 2h, 0 < j < v}.

1. For i from 0 to (h — 1) do: git—g2'a.
2. For i from 1 to (2h — 1) (where i = (ih_1 • • • io)2), do the following:

2.1 ~i~0~ ~2~F ~~-0 9j .

2.2 For j from 1 to (v — 1) do: G[j][Z~<—(G[o~~2~)2'".
3. Return({G[j][i] : 1 < i < 2h, 0 < j < v}).

Let I~,k, 0 < k < b, 0 < j ~ v, be the integer whose binary representation is column
(jb + k) of EA, where column 0 is on the right and the least significant bits of a column are
at the top.

14.117 Algorithm Fixed-base comb method for exponentiation

INPUT: g, e and {G[j] [i] : 1 < i < 2h, 0 < j < v} (precomputed in Algorithm 14.116).
OUTPUT: ge.

1. A~-1.
2. For k from (b — 1) down to 0 do the following:

2.1 A4—A • A.
2.2 For j from (v — 1) down to 0 do: AF-G[,j] [I~,~] • A.

3. Return(A).

14.118 Example (fried-base comb method for exponentiation) Let t = 9 and h = 3; then a =
~10/3~ = 4. Let v = 2; then b = ~a/v~ = 2. Suppose the exponent input to Algo-
rithm 14.117 is e = (eye8 • • • eleo)2. Form the bitstring X = xllxlo • • • xlxo where
x;, = ez, 0 < i < 9, and x11 = xlo = 0. The following table displays the exponent
array EA.

Ii,i jl,o jo,l Io,o
xs xa xl xo
x~ xe x5 x4
iii Rio ~s ~s

The precomputed values from Algorithm 14.116 are displayed below. Recall that gz = g2`a
0 <i<3.

i 1 2 3 4 5 6 7

G[0][i] go gi gigo 9z gago gaga gagigo
G[1] [i] go 9i 9i90 92 9290 929i 9z9i9a

Finally, the following table displays the steps in Algorithm 14.117 for EA.

A = 90 9i19z2
~: j to ll l2
1 — 0 0 0
1 1 4x3 4x7 411
1 0 4~3 + xi 4x~ + ~s 4x11 + xs
() — Sxa -}- 2x1 8x7 + 2x5 8xi1 -1- 2~s
0 1 8x3 -F 2x1 -I- 4x2 8~7 -F 2x5 ~- 4x6 8x11 -{- 2xs -I- 4xlo
U 0 8x3 -~ 2~1 -}- 4x2 -I- xo Hx7 'F' 2x5 '-I' 4x6 'I' ~4 8x11 + 2x9 + 4xlo + x8

Facebook's Exhibit No. 1005
0125

MOBILEIRON, INC. - EXHIBIT 1011
Page 148

14.7 Exponent recoding 627

The last row of the table corresponds to g~==o ~~2~ = ge. ❑

14.119 Note (computational efficiency of fixed-base comb method)
(i) (number of multiplications) Algorithm 14.117 requires at most one multiplication for

each column of EA. The right-most column of EA requires a multiplication with the
initial value 1 of the accumulator A. The algorithm also requires a squaring of the
accumulator A for each k, 0 < k < b, except for k = b — 1 when A has value
1. Discounting multiplications by 1, the total number of non-trivial multiplications
(including squarings) is, at most, a + b — 2.

(ii) (storage) Algorithm 14.117 requires storage for the v(2h — 1) precomputed group
elements (Algorithm 14.116). If squaring is a relatively simple operation compared
to multiplication in the group, then some space-saving can be achieved by storing
only 2h — 1 group elements (i.e., only those elements computed in step 2.1 of Algo-
rithm 14.116).

(iii) (trade-offs) Since h and v are independent of the number of bits in the exponent, se- ,
lection of these parameters can be made based on the amount of storage available vs.
the amount of time (determined by multiplication) to do the computation.

14.7 Exponent recoding
Another approach to reducing the number of multiplications in the basic repeated square-
and-multiply algorithms (§14.6.1) is to replace the binary representation of the exponent e
with a representation which has fewer non-zero terms. Since the binary representation is
unique (Fact 14.1), finding a representation with fewer non-zero components necessitates
the use of digits besides 0 and 1. Transforming an exponent from one representation to an-
other is called exponent recoding. Many techniques for exponent recoding have been pro-
posed in the literature. This section describes two possibilities: signed-digit representation
(§ 14.7.1) and string-replacement representation (§ 14.7.2).

14.7.1 Signed-digit representation
14.120 Definition If e = ~Z_a di2z where dti E {0, 1, —1}, 0 < i < t, then (dt • • • dido)sD is

called asigned-digit representation with radix 2 for the integer e.

Unlike the binary representation, the signed-digit representation of an integer is not
unique. The binary representation is an example of a signed-digit representation. Let e be a
positive integer whose binary representation is (et+le~et_1 • • • eleo)2, with et+l = et = ~•
Algorithm 14.121 constructs asigned-digit representation for e having at most t ~- 1 digits
and the smallest possible number of non-zero terms.

Facebook's Exhibit No. 1005
0126

MOBILEIRON, INC. - EXHIBIT 1011
Page 149

628 Ch. 14 Efficient Implementation

14.121 Algorithm Signed-digit exponent recoding

INPUT: a positive integer e = (et+letet-1 • • • eleo)2 with et+l = et = 0.
OUTPUT: asigned-digit representation (dt • • • dldo)sD for e. (See Definition 14.120.)

1. co t-0.
2. For i from 0 to t do the following:

2.1 ci+i<— ~~ez -I- eZ+i -I- c2)/2~, di~ez ~- ci — 2ci+i•
3. Return((dt • • • dido)sD)•

14.122 Example (signed-digit exponent recoding) Table 14201ists all possible inputs to the ith

iteration of step 2, and the corresponding outputs. If e = (1101110111 2, then Algo-
rithm 14.121 produces the signed-digit representation e = (10010001001)SD where 1 =
—1. Notethate=29 +2g +26 -►-25 +24 -{-22 +2+1=210 -27 -23 -1. ❑

inputs ei 0 0 0 0 1 1 1 1
o 0 1 i o o f i

ei+~ 0 1 0 1 0 1 0 1
outputs c;+l 0 0 0 1 0 1 1 1

dti o 0 1 —1 1 —1 0 0

Table 14,20: Signed-digit exponent recoiling (see Example 14.122).

14.123 Definition A signed-digit representation of an integer e is said to be sparse if no two non-
zero entries are adjacent in the representation.

14.124 Fact (sparse signed-digit representation)
(i) Every integer e has a unique sparse signed-digit representation.
(ii) A sparse signed-digit representation fog e has the smallest number of non-zero entries

among all signed-digit representations for e.
(iii) The signed-digit representation produced by Algorithm 14.121 is sparse.

14.125 Note (computational efficiency of signed-digit exponent recoiling)
(i) Signed-digit exponent recoiling as per Algorithm 14.121 is very efficient, and can be

done by table look-up (using Table 14.20).
(ii) When e is given in a signed-digit representation, computing ge requires both g and

g-1. If g is a fixed base, then g-1 can be precomputed. For a variable base g, unless
g-1 can be computed very quickly, recoiling an exponent to signed-digit representa-
tion may not be worthwhile.

14. ring-replacement representation
14.126 Definition Let k > 1 be a positive integer. Anon-negative integer e is said to have a

k-ary string-replacement representation (ft—lft—a • - • fifo)sx(~)> denoted SR(k), if e =

~t-1 2i and f2~-1:0< <k for0<i<t-1.i=0 .fi .fi E i — ~ — ~ — —

Facebook's Exhibit No. 1005
0127

MOBILEIRON, INC. - EXHIBIT 1011
Page 150

14.7 Exponent recoding 629

14.127 Example (non-uniqueness of string-replacement representations) Astring-replacement
representation for anon-negative integer is generally not unique. The binary representa-
tion is a 1-ary string-replacement representation. If k = 3 and e = 987 = (1111011011)2,
then some other string-replacements of e are (303003003~sR(3), (1007003003)sR(3), and
(71003003) sR(3) • ❑

14.128 Algorithm k-ary string-replacement representation

INPUT: e = (et _let_2 • • • eleo)2 and positive integer k > 2.
OUTPUT: e = (ft-ift-2 • • • fifo)sR(~)~

1. For i from k down to 2 do the following: starting with the most significant digit of
e = (et _let_2 • • • eleo)2, replace each consecutive string of i ones with a string of
length i consisting of i — 1 zeros in the high-order string positions and the integer
2i — 1 in the low-order position.

2. Return((ft-lft-2 • • • flfo)SR(k))•

14.129 Example (k-ary string-replacement) Suppose e = (110111110011101)2 and k = 3. The
SR(3) representations of e at the end of each of the two iterations of Algorithm 14.128 are
(110007110000701)sR(3) and (030007030000701)sR(3)• ❑

14.130 Algorithm Exponentiation using an SR(k) representation

INPUT: an integer k > 2, an element g E G, and e = (ft-i ft-z • • • fi fo)sR(~)
OUTPUT: ge.

1. Precomputation. Set gl~g. For i from 2 to k do: g2~_1~-(g2:-~_1)z • g
2. A<-1.
3. For i from (t — 1) down to 0 do the following:

3.1 Af-A • A.
3.2 If fi ~ 0 then AAA • g f~ .

4. Return(A).

14.y 31 Example (SR(k) vs. left-to-right binary exponentiation) Let e = 987 =('1111011011)2
and consider the 3-ary string-replacement representation (0071003003)sR(3) • Computing
ge using Algorithm 14.79 requires 9 squarings and 7 multiplications. Algorithm 14.130
requires 2 squarings and 2 multiplications for computing g3 and g7, and then 7 squarings
and 3 multiplications for the main part of the algorithm. In total, the SR(3) for e computes
ge with 9 squa~'ings and 5 multiplications. ❑

14.132 Note (computational efficiency of Algorithm 14.130) The precomputation requires k — 1
squarings and k — 1 multiplications. Algorithm 14.128 is not guaranteed to produce an
SR(k) representation with a minimum number of non-zero entries, but in practice it seems
to give representations which are close to minimal. Heuristic arguments indicate that a ran-
domly selected t-bit exponent will be encoded with a suitably chosen value of k to an SR(k)
representation having about t/4 non-zero entries; hence, one expects to perform t-1 squar-
ings in step 3, and about t/4 multiplications.

Facebook's Exhibit No. 1005
0128

MOBILEIRON, INC. - EXHIBIT 1011
Page 151

630 Ch. 14 Efficient Implementation

14.8 Notes and further references
§1a.1

§ 14.2

This chapter deals almost exclusively with methods to perform operations in the integers
and the integers modulo some positive integer. When p is a prime number, 7L~ is called a
finite field (Fact 2.184). There are other finite fields which have significance in cryptogra-
phy. Of particular importance are those of characteristic two, lF2m. Perhaps the most useful
property of these structures is that squaring is a linear operator (i.e., if a, ,Q E IFZm, then
(a -I- ,(~) 2 = a2 -}- ,QZ). This property leads to efficient methods for exponentiation and for
inversion. Characteristic two finite fields have been used extensively in connection with
error-correcting codes; for example, see Berlekamp [118] and Lin. and Costello [769]. For
error-correcting codes, m is typically quite small (e.g., 1 < m < 16); for cryptographic
applications, m is usually much larger (e.g., m > 100).
The majority of the algorithms presented in this chapter are best suited to software imple-
mentations. There is a vast literature on methods to perform modular multiplication and
other operations in hardware. The basis for most hardware implementations for modular
multiplication is efficient methods for integer addition. In particular, carry-save adders and
delayed-carry adders are at the heart of the best methods to perform modular multiplica-
tion. The concept of a delayed-carry adder was proposed by Norris and Simmons [933] to
produce a hardware modular multiplier which computes the product of two t-bit operands
modulo a t-bit modulus in 2t clock cycles. Brickell [199] improved the idea to produce a
modular multiplier requiring only t -f- 7 clock cycles. Enhancements of Brickell's method
were given by Walter [1230]. Koh [699] gives a comprehensive survey of hardware meth-
ods for modular multiplication.

For a treatment of radix representations including mixed-radix representations, see Knuth
[692]. Knuth describes efficient methods for performing radix conversions. Representing
and manipulating negative numbers is an important topic; for an introduction, consult the
book by Koren [706].
The techniques described in ~ 14.2 are commonly referred to as the classical algorithms for
multiple-precision addition, subtraction, multiplication, and division. These algorithms are
the most useful for integers of the size used for cryptographic purposes. For much larger
integers (on the order of thousands of decimal digits), more efficient methods exist. Al-
though not of current practical interest, some of these may become more useful as security
requirements force practitioners to increase parameter sizes. A brief description of one of
these methods follows.
The classical algorithm for multiplication (Algorithm 14.12) takes O(n2) bit operations for
multiplying two n-bit integers. A recursive algorithm due to Karatsuba and Ofman [661]
reduces the complexity of multiplying two n-bit integers to O(n1~ 58). This divide-and-
conquermethod is based on the following simple observation. Suppose that ~ and y are n-
bitintegers and n = 2t. Then x = 2tx1 +xo and y = 2tyl -I-yo> where ~1i yl are the t high-
orderbits of x and y, respectively, and xo, yo are the tlow-order bits. Furthermore, x • y =
uz22t+u12t +moo whereuo = ~o•yo, u2 = xl •yi andul = (moo-I--~1J'~yo+yi)—uo—~2.
It follows that x • y can be computed by performing three multiplications of t-bit integers
(as opposed to one multiplication with 2t-bit integers) .along with two additions and two
subtractions. For large values of t, the cost of the additions and subtractions is insignifi-
cant relative to the cost of the multiplications. 'With appropriate modifications, moo, ul and

Facebook's Exhibit No. 1005
0129

MOBILEIRON, INC. - EXHIBIT 1011
Page 152

§ 14.8 Notes and further references

§ 14.3

631

(xo + xl) • (yo + yl) can each be computed similarly. This procedure is continued on the
intermediate values until the size of the integers reaches the word size of the computing de-
vice, and multiplication can be efficiently accomplished. Due to the recursive nature of the
algorithm, a number of intermediate results must be stored which can add significant over-
head, and detract from the algorithm's efficiency for relatively small integers. Combining
the Karatsuba-Ofman method with classical multiplication may have some practical signif-
icance. For a more detailed treatment of the Karatsuba-Ofman algorithm, see Knuth [692],
Koh [698], and Geddes, Czapor, and Labahn [445].

Another commonly used method for multiple-precision integex multiplication is the discrete
Fourier transform (DFT). Although mathematically elegant and asymptotically better than
the classical algorithm, it does not appear to be superior for the size of integers of practical
importance to cryptography. Lipson [770] provides awell-motivated and easily readable
treatment of this method.

The identity given in Note 14.18 was known to Karatsuba and Ofman [661].

There is an extensive literature on methods for multiple-precision modular arithmetic. A
detailed treatment of methods for performing modular multiplication can be found in Knuth
[692]. Koh [698] and Bosselaers, Govaerts, and Vandewalle [176] provide comprehensive
but brief descriptions of the classical method for modular multiplication.

Montgomery reduction (Algorithm 14.32) is due to Montgomery [893], and is one of the
most widely used methods in practice for performing modular exponentiation (Algorithm
14.94). Dusse and Kaliski [361] discuss variants of Montgomery's method. Montgomery.
reduction is a generalization of a much older technique due to Hensel (see Shand and
Vuillemin [1119] and Bosselaers, Govaerts, and Vandewalle [176]). Hensel's observation
is the following. If m is an odd positive integer less than 2~ (k a positive integer) and T is
some integer such that 2k < T < 22k, then Ro = (T -{- qom)/2, where qo = T mod 2
is an integer and Ro - T2-1 mod m. More generally, Rz = (R;_1 + q2m)/2, where
qi = R;_1 mod 2 is an integer and R;, - N2—i+l mod m. Since T < 22k, it follows that
R~_1 < 2m.

Barrett reduction (Algorithm 14.42) is due to Barrett [75]. Bosselaers, Govaerts, and Van-
dewalle [176] provide a clear and concise description of the algorithm along with motiva-
tion and justification for various choices of parameters and steps, and compare three alter-
nativemethods: classical (§ 14.3.1), Montgomery reduction (§ 14.3.2), and Barrett reduction
(§ 14.3.3). This comparison indicates that there is not a significant difference in performance
between the three methods, provided the precomputation necessary for Montgomery and
Barrett reduction is ignored. Montgomery exponentiation is shown to be somewhat better
than the other two methods. The conclusions are based on both theoretical analysis and
machine implementation for various sized moduli. Korn, Acar, and Kaliski [700] provide a
more detailed comparison of various Montgomery multiplication algorithms; see also Nac-
cache, M'Rai1~i, and Raphaeli [915]. Naccache and M'silti [917] provide proofs for the
correctness of Barrett reduction along with a possible optimization.

Mohan and Adiga [890] describe a special case of Algorithm 14.47 where b = 2.

Hong, Oh, and Yoon [561] proposed,riew methods for modular multiplication and modus
lar squaring. They report improvements of 50% and 30%> respectively, on execution times
over Montgomery's method for multiplication and squaring. Their approach to modular
multiplication interleaves multiplication and modular reduction and uses precomputed ta-
bles such that one operand is always single-precision. Squaring uses recursion and pre-

Facebook's Exhibit No. 1005
0130

MOBILEIRON, INC. - EXHIBIT 1011
Page 153

632

4.4

§ 14.5

Ch. 14 Efficient Implementation

computed tables and, unlike Montgomery's method, also integrates the multiplication and
reduction steps.

The binary gcd algorithm (Algorithm 14.54) is due to Stein [1170]. An analysis of the al-
gorithm is given by Knuth [692]. Harris [542] proposed an algorithm for computing gcd's
which combines the classical Euclidean algorithm (Algorithm 2.104) and binary operations;
the method is called the binary Euclidean algorithm.

Lehmer's gcd algorithm (Algorithm 14.57), due to Lehmer [743], determines the gcd of two
positive multiple-precision integers using mostly single-precision operations. This has the
advantage of using the hardware divide in the machine and only periodically resorting to
an algorithm such as Algorithm 14.20 for amultiple-precision divide. Knuth [692] gives a
comprehensive description of the algorithm along with motivation of its correctness. Co-
hen [263] provides a similar discussion, but without motivation. Lehmer's gcd algorithm
is readily adapted to the extended Euclidean algorithm (Algorithm 2.107).

.According to Sorenson [1164], the binary gcd algorithm is the most efficient method for
computing the greatest common divisor. Jebelea❑ [633] suggests that Lehmer's gcd algo-
rithm is more efficient. Sorenson [l l64] also describes a k-ary version of the binary gcd
algorithm, and proves aworst-case running time of O(n2~ lg n) bit operations for comput-
ing the gcd of two n-hit integers.

The binary extended gcd algorithm was first described by Knuth [692], who attributes it to
Penk. Algorithm 14.61 is due to Bach and Shallit [70], who also give a comprehensive and
clear analysis of several gcd and extended gcd algorithms. Norton [934] described a version
of the binary extended gcd algorithm which is somewhat more complicated than Algorithm
14.61. Gordon [5] 6] proposed a method for computing modular inverses, derived from the
classical extended Euclidean algorithm (Algorithm 2.107) with multiple-precision division
replaced by an approximation to the quotient by an appropriate power of 2; no analysis of
the expected running time is given, but observed results on moduli of specific sizes are de-
scribed.
The Montgomery inverse of amod m isdefined to be a-12t mod m where t is the bitlength
of m. Kaliski [653] extended ideas of Guyot [534] on the right-shift binary extended Eu-
clidean algorithm, and presented an algorithm for computing the Montgomery inverse.

Let rrcti, 1 < i < t, be a set of pairwise relatively prime positive integers which define a
residue number system (RNS). If n = jZi=1 mi then this RNS provides an effective method
for computing the product of integers modulo n where the integers and the product are rep-
resented in the RNS. If n is a positive integer where the mi do not necessarily divide n,
then a method for performing arithmetic modulo n entirely within the RNS is not obvious.
Couveignes [284] and Montgomery and Silverman [895] propose an interesting method for
accomplishing this. Further research in the area is required to determine if this approach is
competitive with or better than the modular multiplication methods described in § 14.3.
Algorithm 14.71 is due to Garner [443]. A detailed discussion of this algorithm and vari-
ants of it are given by Knuth [692]; see also Cohen [263]. Algorithm 2.121 for applying
the Chinese remainder theorem is due to Gauss; see Bach and Shallit [70]. Gauss's algo-
rithm is .a special case of the following result due to Nagasaka, Shiue, and Ho [918]. The
solution to the system of linear congruences x - ai (mod mz), 1 < i < t, for pair-
wise relative prime moduli mi, is equivalent to the solution to the single linear congru-
ence (~?-1 biMi)~ - ~?=1 azbiMi (mod M) where M = ~i=1 mY, Mz = M/mi

Facebook's Exhibit No. 1005
0131

MOBILEIRON, INC. - EXHIBIT 1011
Page 154

i4.8 Notes and further references

§ 14.6

§ 14.7

633

for 1 < i < t, for any choice of integers b$ where gcd (bi, Mz) = 1. Notice that if
~i=1 biMi = 1 (mod M), then bi - Mi 1 (mod mti~, giving the special case discussed
in Algorithm 2.121. Quisquater and Couvreur [1016] were the first to apply the Chinese
remainder theorem to RSA decryption and signature generation.

Knuth [692] and Bach and Shallit [70] describe the right-to-left binary exponentiation meth-
od (Algorithm 14.76). Cohen [263] provides a more comprehensive treatment of the right-
to-left and left-to-right (Algorithm 14.79) binary methods alongwith their generalizations
to the k-ary method. Koh [698] discusses these algorithms in the context of the RSA public-
key cryptosystem. Algorithm 14.92 is the basis for Blakley's modular multiplication algo-
rithm (see Blakley [149] and Koh [698]). The generalization of Blakley's method to process
more than :one bit per iteration (Note 14.93(iii)) is due to Quisquater and Couvreur [1016].
Quisquater and Couvreur describe an algorithm for modular exponentiation which makes
use of the generalization and precomputed tables to accelerate multiplication in 7L,,,,.

For a comprehensive and detailed discussion of addition chains, see Knuth [692], where
various methods for constructing addition chains (such as the power tree and factor meth-
ods)are described. Computing the shortest addition chain for a positive integer was shown
to be an NP-hard problem by Downey, Leong, and Sethi [360]. The lower bound on the
length of a shortest addition chain (Fact 14.102) was proven by Schonhage [1101].

An addition sequence for positive integers al < a2 < • • • < a~ is an addition chain for
ak in which al, a2i ... , ak_1 appear. Yao [1257] proved that there exists an addition se-
quence for al < a2 < • • • < ak of length less than lg a~ + ck • lg a~~ lg lg(a~ -}- 2~
for some constant c. Olivos [955] established a 1-1 correspondence between addition se-
quences of length l for al < a2 < • • • < a~ and vector-addition chains of length l -I- k — 1
where vl+k-1 = (al, a2i .. . , a~). These results are the basis for the inequality given in
Fact 14.107. Bos and Coster [173] described a heuristic method for computing vector-
addition chains. The special case of Algorithm 14.104 (Algorithm 14.88) is attributed by
E1Gamal [368] to Shamir.

The fixed-base windowing method (Algorithm 14.109) for exponentiation is due to Brick-
ell et al. [204], who describe a number of variants of the basic algorithm. For b a positive
integer, let S be a set of integers with the property that any integer can be expressed in base
b using only coefficients from S. S is called a basic digit set for the base b. Brickell et al.
show how basic digit sets can be used to reduce the amount of work in Algorithm 14.109
without large increases in storage requirements. De Rooij [316] proposed the fixed-base
Euclidean method (Algorithm 14.113) for exponentiation; compares this algorithm to Algo-
rithm 14.109; and provides a table of values for numbers of practical importance. The fixed-
basecomb method (Algorithm 14.117) for exponentiation is due to Lim and Lee [767J. For
a given exponent size, they discuss various possibilities for the choice of parameters h and
v, along with a comparison of their method to fixed-base windowing.

The signed-digit exponent recoding algorithm (Algorithm 14.121) is due to Reitwiesner
[1031]. A simpler description of the algorithm was given by Hwang [566]. Booth [171]
described another algorithm for producing asigned-digit representation, but not necessar-
ilyone with the minimum possible non-zero components. It was originally given in terms of
the additive group of integers where exponentiation is referred to as multiplication. In this
case, —g is easily computed from g. The additive abelian group formed from the points.on
an elliptic curve over a finite field is another example where signed-digit representation is
very useful (see Morain and Olivos [904]). Zhang [1267] described a modified signed-digit

Facebook's Exhibit No. 1005
0132

MOBILEIRON, INC. - EXHIBIT 1011
Page 155

634 Ch. i4 Efficient Implementation

representation which requires on average t/3 multiplications for asquare-and-multiply al-
gorithmfor t-bit exponents. A slightly more general version of Algorithm 14.121, given by
Jedwab and Mitchell [634], does not require as input a binazy representation of the exponent
e but simply asigned-digit representation. For binazy inputs, the algorithms of Reitwiesner
and Jedwab-Mitchell are the same. Fact 14.124 is due to Jedwab and Mitchell [634].
String-replacement representations were introduced by Gollmann, Han, and Mitchell [497],
who describe Algorithms 14.128 and 14.130. They also provide an analysis of the expected
number of non-zero entries in an SR(k) representation for a randomly selected t-bit expo-
nent (see Note 14.132), as well as a complexity analysis of Algorithm 14.130 for various
values of t and k. Lam and Hui [735] proposed an alternate string-replacement algorithm.
The idea is to precompute all odd powers g, g3, g5,.. . . , g2k-1 for some fixed positive in-
teger k. Given a t-bit exponent e, start at the most significant bit, and look for the longest
bitstring of bitlength at most k whose last digit is a 1 (i.e., this substring represents an odd
positive integer between 1 and 2k —1). Applying aleft-to-right square-and-multiply expo-
nentiation algorithm based on this scanning process results in an algorithm which requires,
at most, ~t/k~ multiplications. Lam and Hui proved that as t increases, the average number
of multiplications approaches ~t/(k + 1)~.

Facebook's Exhibit No. 1005
0133

MOBILEIRON, INC. - EXHIBIT 1011
Page 156

