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certificate, in the public-key database, contains a lot more than his public key. It con-
tains information about Bob—his name, address, and so on—and it is signed by some-
one Alice trusts: Trent (usually known as a certification authority, or CA). By signing
both the key and the information about Bob, Trent certifies that the information
about Bob is correct and that the public key belongs to Bob. Alice checks Trent’s sig-
nature and then uses the public key, secure in the knowledge that it is Bob’s and no
one else’s. Certificates play an important role in a number of public-key protocols
such as PEM [825] (see Section 24.10) and X.509 [304] (see Section 24.9).

A complicated noncryptographic issue surrounds this type of system. What is the
meaning of certification? Or, to put it another way, who is trusted to issue certifi-
cates to whom? Anyone may sign anyone else’s certificate, but there needs to be
some way to filter out questionable certificates: for example, certificates for employ-
ees of one company signed by the CA of another company. Normally, a certification
chain transfers trust: A single trusted entity certifies trusted agents, trusted agents
certify company CAs, and company CAs certify their employees.

Here are some more things to think about:

— What level of trust in someone’s identity is implied by his certificate?

— What are the relationships between a person and the CA that certified
his public key, and how can those relationships be implied by the cer-
tificate?

— Who can be trusted to be the “single trusted entity” at the top of the
certification chain?

— How long can a certification chain be?

Ideally, Bob would follow some kind of authentication procedure before the CA
signs his certificate. Additionally, some kind of timestamp or an indication of the
certificate’s validity period is important to guard against compromised keys [461].

Timestamping is not enough. Keys may be invalidated before they have expired,
either through compromise or for administrative reasons. Hence, it is important the
CA keep a list of invalid certificates, and for users to regularly check that list. This
key revocation problem is still a difficult one to solve.

And one public-key/private-key pair is not enough. Certainly any good imple-
mentation of public-key cryptography needs separate keys for encryption and digi-
tal signatures. This separation allows for different security levels, expiration times,
backup procedures, and so on. Someone might sign messages with a 2048-bit key
stored on a smart card and good for twenty years, while they might use a 768-bit key
stored in the computer and good for six months for encryption.

And a single pair of encryption and signature keys isn’t enough, either. A private
key authenticates a relationship as well as an identity, and people have more than
one relationship. Alice might want to sign one document as Alice the individual,
another as Alice, vice-president of Monolith, Inc., and a third as Alice, president of
her community organization. Some of these keys are more valuable than others, so
they can be better protected. Alice might have to store a backup of her work key
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8.12 Public-key Key Management 187

with the company’s security officer; she doesn’t want the company to have a copy of
the key she signed her mortgage with. Just as Alice has multiple physical keys in her
pocket, she is going to have multiple cryptographic keys.

Distributed Key Management

In some situations, this sort of centralized key management will not work. Per-
haps there is no CA whom Alice and Bob both trust. Perhaps Alice and Bob trust
only their friends. Perhaps Alice and Bob trust no one.

Distributed key management, used in PGP (see Section 24.12), solves this prob-
lem with introducers. Introducers are other users of the system who sign their
friends’ public keys. For example, when Bob generates his public key, he gives
copies to his friends: Carol and Dave. They know Bob, so they each sign Bob’s key
and give Bob a copy of the signature. Now, when Bob presents his key to a stranger,
Alice, he presents it with the signatures of these two introducers. If Alice also
knows and trusts Carol, she has reason to believe that Bob’s key is valid. If she
knows and trusts Carol and Dave a little, she has reason to believe that Bob’s key is
valid. If she doesn’t know either Carol or Dave, she has no reason to trust Bob’s key.

Over time, Bob will collect many more introducers. If Alice and Bob travel in sim-
ilar circles, the odds are good that Alice will know one of Bob’s introducers. To pre-
vent against Mallory’s substituting one key for another, an introducer must be sure
that Bob’s key belongs to Bob before he signs it. Perhaps the introducer should
require the key be given face-to-face or verified over the telephone.

The benefit of this mechanism is that there is no CA that everyone has to trust.
The down side is that when Alice receives Bob’s public key, she has no guarantee
that she will know any of the introducers and therefore no guarantee that she will
trust the validity of the key.
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CHAPTER 11

Mathematical
Background

11.1 INFORMATION THEORY

Modern information theory was first published in 1948 by Claude Elmwood Shan-
non [1431,1432]. (His papers have been reprinted by the IEEE Press [1433].) For a
good mathematical treatment of the topic, consult [593]. In this section, I will just
sketch some important ideas. '

Entropy and Uncertainty

Information theory defines the amount of information in a message as the mini-
mum number of bits needed to encode all possible meanings of that message,
assuming all messages are equally likely. For example, the day-of-the-week field in
a database contains no more than 3 bits of information, because the information can
be encoded with 3 bits:

000 = Sunday
001 = Monday
010 = Tuesday
011 = Wednesday
100 = Thursday
101 .= Friday
110 = Saturday

111 is unused

If this information were represented by corresponding ASCII character strings, it
would take up more memory space but would not contain any more information.
Similarly, the “sex” field of a database contains only 1 bit of information, even
though it might be stored as one of two 6-byte ASCII strings: “MALE” or “FEMALE.”

Formally, the amount of information in a message M is measured by the entropy
of a message, denoted by H(M). The entropy of a message indicating sex is 1 bit; the
entropy of a message indicating the day of the week is slightly less than 3 bits. In
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general, the entropy of a message measured in bits is log, n, in which n is the num- '
ber of possible meanings. This assumes that each meaning is equally likely. t

The entropy of a message also measures its uncertainty. This is the number of |
plaintext bits needed to be recovered when the message is scrambled in ciphertext .
in order to learn the plaintext. For example, if the ciphertext block “QHP*5M” is |
either “MALE” or “FEMALE,” then the uncertainty of the message is 1. A cryptan- |
alyst has to learn only one well-chosen bit to recover the message. : |

Rate of a Language
For a given language, the rate of the language is

r=H(M|)/N

!
|
in which N is the length of the message. The rate of normal English takes various “|
values between 1.0 bits/letter and 1.5 bits/letter, for large values of N. Shannon, in

[1434], said that the entropy depends on the length of the text. Specifically he indi- !
cated a rate of 2.3 bits/letter for 8-letter chunks, but the rate drops to between 1.3 i,
and 1.5 for 16-letter chunks. Thomas Cover used a gambling estimating technique i
and found an entropy of 1.3 bits/character [386]. (I'll use 1.3 in this book.) The abso- !
lute rate of a language is the maximum number of bits that can be coded in each i
character, assuming each character sequence is equally likely. If there are L charac- &
ters in a language, the absolute rate is:

R=1log, L

This is the maximum entropy of the individual characters.

For English, with 26 letters, the absolute rate is log, 26, or about 4.7 bits/letter. It
should come as no surprise to anyone that the actual rate of English is much less
than the absolute rate; natural language is highly redundant.

The redundaney of a language, denoted D, is defined by:

D=R-r

Given that the rate of English is 1.3, the redundancy is 3.4 bits/letter. This means
that each English character carries 3.4 bits of redundant information.

An ASCII message that is nothing more than printed English has 1.3 bits of infor-
mation per byte of message. This means it has 6.7 bits of redundant information,
giving it an overall redundancy of 0.84 bits of information per bit of ASCII text, and
an entropy of 0.16 bits of information per bit of ASCII text. The same message in
BAUDOT, at 5 bits per character, has a redundancy of 0.74 bits per bit and an
entropy of 0.26 bits per bit. Spacing, punctuation, numbers, and formatting modify
these results.

Security of a Cryptosystem

Shannon defined a precise mathematical model of what it means for a cryptosystem
to be secure. The goal of a cryptanalyst is to determine the key K, the plaintext P, or
both. However, he may be satisfied with some probabilistic information about P:
whether it is digitized audio, German text, spreadsheet data, or something else.
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11.1 Information Theory 2350

In most real-world cryptanalysis, the cryptanalyst has some probabilistic infor-
mation about P before he even starts. He probably knows the language of the plain-
text. This language has a certain redundancy associated with it. If it is a message to
Bob, it probably begins with “Dear Bob.” Certainly “Dear Bob” is more probable
than “e8T&g [,m.” The purpose of cryptanalysis is to modify the probabilities asso-
ciated with each possible plaintext. Eventually one plaintext will emerge from the
pile of possible plaintexts as certain (or at least, very probable).

There is such a thing as a cryptosystem that achieves perfect secrecy: a cryp-
tosystem in which the ciphertext yields no possible information about the plaintext
(except possibly its length). Shannon theorized that it is only possible if the number
of possible keys is at least as large as the number of possible messages. In other
words, the key must be at least as long as the message itself, and no key can be
reused. In still other words, the one-time pad (see Section 1.5} is the only cryptosys-
tem that achieves perfect secrecy.

Perfect secrecy aside, the ciphertext unavoidably yields some information about the
corresponding plaintext. A good cryptographic algorithm keeps this information to a
minimum; a good cryptanalyst exploits this information to determine the plaintext.

Cryptanalysts use the natural redundancy of language to reduce the number of
possible plaintexts. The more redundant the language, the easier it is to cryptana-
lyze. This is the reason that many real-world cryptographic implementations use a
compression program to reduce the size of the text before encrypting it. Compres-
sion reduces the redundancy of a message as well as the work required to encrypt
and decrypt.

The entropy of a cryptosystem is a measure of the size of the keyspace, K. It is
approximated by the base two logarithm of the number of keys:

H(K)=1og, K

A cryptosystem with a 64-bit key has an entropy of 64 bits; a cryptosystem with
a 56-bit key has an entropy of 56 bits. In general, the greater the entropy, the harder
it is to break a cryptosystem.

Unicity Distance

For a message of length n, the number of different keys that will decipher a cipher-
text message to some intelligible plaintext in the same language as the original
plaintext (such as an English text string) is given by the following formula [712,95]:

ZH(K) -nD _ 1

Shannon [1432] defined the unicity distance, U, also called the unicity point, as an
approximation of the amount of ciphertext such that the sum of the real informa-
tion (entropy) in the corresponding plaintext plus the entropy of the encryption key
equals the number of ciphertext bits used. He then went on to show that ciphertexts
longer than this distance are reasonably certain to have only one meaningful decryp-
tion. Ciphertexts significantly shorter than this are likely to have multiple, equally
valid decryptions and therefore gain security from the opponent’s difficulty in
choosing the correct one.
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236 CHapTEr 11 Mathematical Background

For most symmetric cryptosystems, the unicity distance is defined as the entropy
of the cryptosystem divided by the redundancy of the language.

U =H(K)/D

Unicity distance does not make deterministic predictions, but gives probabilistic
results. Unicity distance estimates the minimum amount of ciphertext for which it
is likely that there is only a single intelligible plaintext decryption when a brute-.
force attack is attempted. Generally, the longer the unicity distance, the better the
cryptosystem. For DES, with a 56-bit key, and an ASCII English message, the unicity
distance is about 8.2 ASCII characters or 66 bits. Table 11.1 gives the unicity dis-
tances for varying key lengths. The unicity distances for some classical cryptosys-
tems are found in [445].

Unicity distance is not a measure of how much ciphertext is required for crypt-
analysis, but how much ciphertext is required for there to be only one reasonable
solution for cryptanalysis. A cryptosystem may be computationally infeasible to
break even if it is theoretically possible to break it with a small amount of cipher-
text. (The largely esoteric theory of relativized cryptography is relevant here
[230,231,232,233,234,235).) The unicity distance is inversely proportional to the
redundancy. As redundancy approaches zero, even a trivial cipher can be unbreak-
able with a ciphertext-only attack.

Shannon defined a cryptosystem whose unicity distance is infinite as one that has
ideal secrecy. Note that an ideal cryptosystem is not necessarily a perfect cryp-
tosystem, although a perfect cryptosystem would necessarily be an ideal cryptosys- [
tem. If a cryptosystem has ideal secrecy, even successful cryptanalysis will leave
some uncertainty about whether the recovered plaintext is the real plaintext.

Information Theory in Practice

While these concepts have great theoretical value, actual cryptanalysis seldom
proceeds along these lines. Unicity distance guarantees insecurity if it’s too small
but does not guarantee security if it’s high. Few practical algorithms are absolutely
impervious to analysis; all manner of characteristics might serve as entering wedges

Table 11.1
Unicity Distances of ASCH Text Encrypted
with Algorithms with Varying Key Lengths

Key Length (in bits) Unicity Distance (in characters) I
40 5.9 i
56 8.2 |
64 94 |
80 11.8 !
128 18.8
256 37.6 \
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11.2 Complexity Theory 237

to crack some encrypted messages. However, similar information theory considera-
. tions are occasionally useful, for example, to determine a recommended key change
' interval for a particular algorithm. Cryptanalysts also employ a variety of statistical
and information theory tests to help guide the analysis in the most promising direc-
tions. Unfortunately, most literature on applying information theory to cryptanaly-
sis remains classified, including the seminal 1940 work of Alan Turing.

Confusion and Diffusion
The two basic techniques for obscuring the redundancies in a plaintext message

are, according to Shannon, confusion and diffusion [1432].

Confusion obscures the relationship between the plaintext and the ciphertext.
f This frustrates attempts to study the ciphertext looking for redundancies and sta-
' tistical patterns. The easiest way to do this is through substitution. A simple sub-
stitution cipher, like the Caesar Cipher, is one in which every identical letter of
plaintext is substituted for a single letter of ciphertext. Modern substitution ciphers
are more complex: A long block of plaintext is substituted for a different block of
ciphertext, and the mechanics of the substitution change with each bit in the plain-
text or key. This type of substitution is not necessarily enough; the German Enigma
is a complex substitution algorithm that was broken during World War II.

Diffusion dissipates the redundancy of the plaintext by spreading it out over the
ciphertext. A cryptanalyst looking for those redundancies will have a harder time
finding them. The simplest way to cause diffusion is through transposition (also
called permutation). A simple transposition cipher, like columnar transposition,
simply rearranges the letters of the plaintext. Modern ciphers do this type of per-
mutation, but they also employ other forms of diffusion that can diffuse parts of the
message throughout the entire message.

Stream ciphers rely on confusion alone, although some feedback schemes add dif-
fusion. Block algorithms use both confusion and diffusion. As a general rule, diffu-
sion alone is easily cracked (although double transposition ciphers hold up better
than many other pencil-and-paper systems).

11.2 CompLEXITY THEORY

Complexity theory provides a methodology for analyzing the computational com-
plexity of different cryptographic techniques and algorithms. It compares crypto-
graphic algorithms and techniques and determines their security. Information
theory tells us that all cryptographic algorithms (except one-time pads) can be bro-
ken. Complexity theory tells us whether they can be broken before the heat death
of the universe.

Complexity of Algorithms
An algorithm’s complexity is determined by the computational power needed to

execute it. The computational complexity of an algorithm is often measired by two
variables: T (for time complexity) and S (for space complexity, or memory require-
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ment). Both T and § are commonly expressed as functions of n, where n is the size
of the input. (There are other measures of complexity: the number of random bits,
the communications bandwidth, the amount of data, and so on.)

Generally, the computational complexity of an algorithm is expressed in what is
called “big O” notation: the order of magnitude of the computational complexity.
It’s just the term of the complexity function which grows the fastest as n gets larger;
all lower-order terms are ignored. For example, if the time complexity of a given
algorithm is 4n? + 7n + 12, then the computational complexity is on the order of n?,
expressed O(n?).

Measuring time complexity this way is system-independent. You don’t have to
know the exact timings of various instructions or the number of bits used to repre-
sent different variables or even the speed of the processor. One computer might be
50 percent faster than another and a third might have a data path twice as wide, but
the order-of-magnitude complexity of an algorithm remains the same. This isn't
cheating; when you’re dealing with algorithms as complex as the ones presented |
here, the other stuff is negligible {is a constant factor) compared to the order-of- |
magnitude complexity.

This notation allows you to see how the input size affects the time and space
requirements. For example, if T= O(n), then doubling the input size doubles the run-
ning time of the algorithm. If T= O(27), then adding one bit to the input size doubles
the running time of the algorithm {within a constant factor).

Generally, algorithms are classified according to their time or space complexities.

An algorithm is constant if its complexity is independent of n: O(1). An algorithm is
linear, if its time complexity is O(n). Algorithms can also be quadratic, cubic, and so
on. All these algorithms are polynomial; their complexity is O({n™), when m is a con- |
stant. The class of algorithms that have a polynomial time complexity are called
polynomial-time algorithms. ‘

Algorithms whose complexities are O(t"?)), where t is a constant greater than 1 and '
fin) is some polynomial function of n, are called exponential. The subset of expo-
nential algorithms whose complexities are O(c™), where c is a constant and f{n) is
more than constant but less than linear, is called superpolynomial.

Ideally, a cryptographer would like to be able to say that the best algorithm to
break this encryption algorithm is of exponential-time complexity. In practice, the
strongest statements that can be made, given the current state of the art of compu-
tational complexity theory, are of the form “all known cracking algorithms for this
cryptosystem are of superpolynomial-time complexity.” That is, the cracking algo-
rithms that we know are of superpolynomial-time complexity, but it is not yet pos-
sible to prove that no polynomial-time cracking algorithm could ever be discovered.
Advances in computational complexity may some day make it possible to design
algorithms for which the existence of polynomial-time cracking algorithms can be
ruled out with mathematical certainty.

As n grows, the time complexity of an algorithm can make an enormous differ-
ence in whether the algorithm is practical. Table 11.2 shows the running times for
different algorithm classes in which n equals one million. The table ignores con-
stants, but also shows why ignoring constants is reasonable.
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Table 11.2
Running Times of Different Classes of Algorithms
# of Operations Time at

Class Complexity for n=10° 10° O/S
Constant Of1) 1 1 psec.
Linear Ofn) 10° 1 sec.
Quadratic O(n?) 1O 11.6 days
Cubic - Ol 10 32,000 yrs.
Exponential 0(27) 10301080 10%1906 times the age

of the universe

Assuming that the unit of “time” for our computer is a microsecond, the com-
puter can complete a constant algorithm in a microsecond, a linear algorithm in a
second, and a quadratic algorithm in 11.6 days. It would take 32,000 years to com-
plete a cubic algorithm; not terribly practical, but a computer built to withstand the
next ice age would deliver a solution eventually. Performing the exponential algo-
rithm is futile, no matter how well you extrapolate computing power, parallel pro-
cessing, or contact with superintelligent aliens.

Look at the problem of a brute-force attack against an encryption algorithm. The
time complexity of this attack is proportional to the number of possible keys, which
is an exponential function of the key length. If n is the length of the key, then the
complexity of a brute-force attack is O(27). Section 12.3 discusses the controversy
surrounding a 56-bit key for DES instead of a 112-bit key. The complexity of a brute-
force attack against a 56-bit key is 2%; against a 112-bit key the complexity is 2!'2.
The former is possible; the latter isn’t.

Complexity of Problems

Complexity theory also classifies the inherent complexity of problems, not just
the complexity of particular algorithms used to solve problems. (Excellent intro-
ductions to this topic are [600,211,1226]; see also [1096,27,739].) The theory looks at
the minimum time and space required to solve the hardest instance of a problem on
a theoretical computer known as a Turing machine. A Turing machine is a finite-
state machine with an infinite read-write memory tape. It turns out that a Turing
machine is a realistic model of computation.

Problems that can be solved with polynomial-time algorithms are called tractable,
because they can usually be solved in a reasonable amount of time for reasonable-
sized inputs. (The exact definition of “reasonable” depends on the circumstance.)
Problems that cannot be solved in polynomial time are called intractable, because
calculating their solution quickly becomes infeasible. Intractable problems are
sometimes just called hard. Problems that can only be solved with algorithms that
are superpolynomial are computationally intractable, even for relatively small val-
ues of n.
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It gets worse. Alan Turing proved that some problems are undecidable. It is im-
possible to devise any algorithm to solve them, regardless of the algorithm’s time
complexity.

Problems can be divided into complexity classes, which depend on the complex-
ity of their solutions. Figure 11.1 shows the more important complexity classes and
their presumed relationships. (Unfortunately, not much about this material has
been proved mathematically.)

On the bottom, the class P consists of all problems that can be solved in polyno-
mial time. The class NP consists of all problems that can be solved in polynomial
time only on a nondeterministic Turing machine: a variant of a normal Turing
machine that can make guesses. The machine guesses the solution to the problem—
either by making “lucky guesses” or by trying all guesses in parallel—and checks its
guess in polynomial time.

NP’s relevance to cryptography is this: Many symmetric algorithms and all public-
key algorithms can be cracked in nondeterministic polynomial time. Given a
ciphertext C, the cryptanalyst simply guesses a plaintext, X, and a key, k, and in
polynomial time runs the encryption algorithm on inputs X and k and checks
whether the result is equal to C. This is important theoretically, because it puts an
upper bound on the complexity of cryptanalysis for these algorithms. In practice, of
course, it is a deterministic polynomial-time algorithm that the cryptanalyst seeks.
Furthermore, this argument is not applicable to all classes of ciphers; in particular,
it is not applicable to one-time pads—for any C, there are many X, k pairs that yield
C when run through the encryption algorithm, but most of these Xs are nonsense,
not legitimate plaintexts.
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Figure 11.1 Complexity classes.
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The class NP includes the class P, because any problem solvable in polynomial
time on a deterministic Turing machine is also solvable in polynomial time on a
nondeterministic Turing machine; the guessing stage can simply be omitted.

If all NP problems are solvable in polynomial time on a deterministic machine,
then P = NP. Although it seems obvious that some NP problems are much harder
than others (a brute-force attack against an encryption algorithm versus encrypt-
ing a random block of plaintext), it has never been proven that P = NP (or that
P = NP). However, most people working in complexity theory believe that they
are unequal. ' ’

Stranger still, specific problems in NP can be proven to be as difficult as any prob-
lem in the class. Steven Cook [365] proved that the Satisfiability problem (given a
propositional Boolean formula, is there a way to assign truth values to the variables
that makes the formula true?) is NP-complete. This means that, if Satisfiability is
solvable in polynomial time, then P = NP. Conversely, if any problem in NP can be
proven not to have a deterministic polynomial-time algorithm, the proof will show
that Satisfiability does not have a deterministic polynomial-time algorithm either.
No problem is harder than Satisfiability in NP.

Since Cook’s seminal paper was published, a huge number of problems have been
shown to be equivalent to Satisfiability; hundreds are listed in [600], and some
examples follow. By equivalent, I mean that these problems are also NP-complete;
they are in NP and also as hard as any problem in NP. If their solvability in deter-
ministic polynomial time were resolved, the P versus NP question would be solved.
The question of whether P = NP is the central unsolved question of computational
complexity theory, and no one expects it to be solved anytime soon. If someone
showed that P = NP, then most of this book would be irrelevant: As previously
explained, many classes of ciphers are trivially breakable in nondeterministic poly-
nomial time. If P = NP, they are breakable by feasible, deterministic algorithms.

Further out in the complexity hierarchy is PSPACE. Problems in PSPACE can be
solved in polynomial space, but not necessarily polynomial time. PSPACE includes
NP, but some problems in PSPACE are thought to be harder than NP. Of course, this
isn’t proven either. There is a class of problems, the so-called PSPACE-complete
problems, with the property that, if any one of them is in NP then PSPACE = NP and
if any one of them is in P then PSPACE = P.

And finally, there is the class of problems called EXPTIME. These problems are
solvable in exponential time. The EXPTIME-complete problems can actually be
proven not to be solvable in deterministic polynomial time. It has been shown that
P does not equal EXPTIME,

NP-Complete Problems

Michael Garey and David Johnson compiled a list of over 300 NP-complete prob-
lems [600]. Here. are just a few of them:

— Traveling Salesman Problem. A traveling salesman has to visit n dif-
ferent cities using only one tank of gas (there is a maximum distance
he can travel). Is there a route that allows him to visit each city
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exactly once on that single tank of gas? (This is a generalization of the
Hamiltonian Cycle problem—see Section 5.1.)°

— Three-Way Marriage Problem. In a room are n men, n women, and n
clergymen (priests, rabbis, whatever). There is also a list of acceptable
marriages, which consists of one man, one woman, and one clergy-
man willing to officiate. Given this list of possible triples, is it possi-
ble to arrange n marriages such that everyone is either marrying one
person or officiating at one marriage?

— Three-Satisfiability. Thete is a list of n logical statements, each with
three variables. For example: if (x and y) then z, (x and w) or (not z), if
((not u and not x) or (z and (u or not x)) then (not z and u) or x), and so
on. Is there a truth assignment for all the variables that satisfies all
the statements? (This is a special case of the Satisfiability problem
previously mentioned. |

11.3 NuMBER THEORY

This isn’t a book on number theory, so I'm just going to sketch a few ideas that
apply to cryptography. If you want a detailed mathematical text on number theory, )l
consult one of these books: [1430,72,1171,12,959,681,742,420]. My two favorite ;
books on the miathematics of finite fields are [971,1042]. See also [88,1157, &

1158,1060].

Modular Arithmetic
You all learned modular arithmetic in school; it was called “clock arithmetic.” |
Remember these word problems? If Mildred says she’ll be home by 10:00, and she’s
13 hours late, what time does she get home and for how many years does her father
ground her? That’s arithmetic modulo 12. Twenty-three modulo 12 equals 11. .

(10 + 13) mod 12 =23 mod 12 = 11 mod 12
Another way of writing this is to say that 23 and 11 are equivalent, modulo 12:
10+ 13 = 11 (mod 12)

Basically, a = b {mod n) if a = b + kn for some integer k. If a is non-negative and b |
is between 0 and n, you can think of b as the remainder of a when divided by n. ;
Sometimes, b is called the residue of a, modulo n. Sometimes a is called congruent |
to b, modulo n (the triple equals sign, =, denotes congruence). These are just differ- .
ent ways of saying the same thing. '

The set of integers from 0 to n — 1 form what is called a complete set of residues
modulo n. This means that, for every integer a, its residue modulo n is some num-
ber from O ton — 1.

The operation a mod n denotes the residue of g, such that the residue is some inte-
ger from 0 to n — 1. This operation is modular reduction. For example, 5 mod 3 =2.

This definition of mod may be different from the definition used in some pro-
gramming languages. For example, PASCAL’s modulo operator sometimes returns a
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11.3 Number Theory 243

negative number. It returns a number between —(n — 1) and n — 1. In C, the % oper-
ator returns the remainder from the division of the first expression by the second,;
this can be a negative number if either operand is negative. For all the algorithms in
this book, make sure you add n to the result of the modulo operator if it returns a
negative number.

Modular arithmetic is just like normal arithmetic: It’s commutative, associative,
and distributive. Also, reducing each intermediate result modulo n1 yields the same
result as doing the whole calculation and then reducing the end result modulo n.

(a + b) mod n = ((a mod n) + (b mod n)) mod n

{a — b) mod n = ({a mod n) — (b mod n)) mod n

{a*b) mod n = ({a mod n)*{b mod n)) mod n

{a*(b + c]) mod n = ({(a*b) mod n) + ((a*c) mod n))

mod n

Cryptography uses computation mod n a lot, because calculating discrete loga-

rithms and square roots mod 11 can be hard problems. Modular arithmetic is also eas-
ier to work with on computers, because it restricts the range of all intermediate
values and the result. For a k-bit modulus, n, the intermediate results of any addi-
tion, subtraction, or multiplication will not be more than 2k-bits long. So we can

perform exponentiation in modular arithmetic without generating huge intermedi-
ate results. Calculating the power of some number modulo some number,

a*mod n,

is just a series of multiplications and divisions, but there are speedups. One kind of
speedup aims to minimize the number of modular multiplications; another kind
aims to optimize the individual modular multiplications. Because the operations
are distributive, it is faster to do the exponentiation as a stream of successive mul-
tiplications, taking the modulus every time. It doesn’t make much difference now,
but it will when you're working with 200-bit numbers.

For example, if you want to calculate a® mod n, don’t use the naive approach and
perform seven multiplications and one huge modular reduction:

{a*a*a*a*a*a*a*a) mod n

Instead, perform three smaller multiplications and three smaller modular reductions:
((a*> mod nf* mod n)> mod n

By the same token,
a'®* mod n = (((a®> mod nf* mod n)* mod nf* mod n

Computing a* mod n, where x is not a power of 2, is only slightly harder. Binary
notation expresses x as a sum of powers of 2: 25 is 11001 in binary, so 25 = 2¢+ 23+
27 S0 |

a® mod n = (a*a®) mod n = (a*a®*a'®) mod n
= (ax([a®PP~(((a*}P)?) mod n = ((({a*+af*)’)*+a) mod n
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With judicious storing of intermediate results, you only need six multiplications:
(({({({a* mod n)*a) mod n)* mod n)* mod n}* mod n)*a) mod n '

This is called addition chaining [863], or the binary square and multiply method.
It uses a simple and obvious addition chain based on the binary representation. In C,

it looks like:
unsigned long ge2{unsigned long x, unsigned long y, unsigned long n) {
unsigned long s,t,u;
N EAsiss

SHEH ISR 1 =RV

while(u) { [
if(udl) s = (s*t)%n;
ur>=1;
t = (t*t)%n;

}

return(s);

}
Another, recursive, algorithm is:

unsigned long fast_exp(unsigned long x, unsigned long y, unsigned Tong N) { [
unsigned long tmp;
if(y==1) return(x % N);
if (17(x&1)) |
tmp = fast_exp(x,y/2,N);
return ((tmp*tmp)sN);
}

else {
tmp = fast_exp(x,(y-1)/2,N);
tmp = (tmp*tmp)%N;
tmp = (tmp*x)&N;

return (tmp);

}

This technique reduces the operation to, on the average, 1.5+k operations, if k is
the length of the number x in bits. Finding the calculation with the fewest opera-
tions is a hard problem (it has been proven that the sequence must contain at least
k — 1 operations), but it is-not too hard to get the number of operations down to
1.1+k or better, as k grows. |

An efficient way to do modular reductions many times using the same n is Mont-
gomery’s method [1111]. Another method is called Barrett’s algorithm {87]. The soft-
ware performance of these two algorithms and the algorithm previously discussed is
in [210]: The algorithm I've discussed is the best choice for singular modular reduc-
tions; Barrett’s algorithm is the best choice for small arguments; and Montgomery’s !
method is the best choice for general modular exponentiations. (Montgomery’s
method can also take advantage of small exponents, using something called mixed

- arithmetic.) |
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11.3 Number Theory 245

The inverse of exponentiation modulo n is calculating a discrete logarithm. 1’11
discuss this shortly.

Prime Numbers

A prime number is an integer greater than 1 whose only factors are 1 and itself:
No other number evenly divides it. Two is a prime number. So are 73, 2521,
2365347734339, and 27°%%° — 1. There are an infinite number of primes. Cryptog-
raphy, especially public-key cryptography, uses large primes (512 bits and even
larger) often.

Evangelos Kranakis wrote an excellent book on number theory, prime numbers,
and their applications to cryptography [896]. Paulo Ribenboim wrote two excellent
references on prime numbers in general [1307,1308].

Greatest Common Divisor

Two numbers are relatively prime when they share no factors in common other
than 1. In other words, if the greatest common divisor of a and n is equal to 1. This
is written:

ged{a,n) =1

The numbers 15 and 28 are relatively prime, 15 and 27 are not, and 13 and 500 are.
A prime number is relatively prime to all other numbers except its multiples.

One way to compute the greatest common divisor of two numbers is with Euclid’s
algorithm. Euclid described the algorithm in his book, Elements, written around 300
B.C. He didn’t invent it. Historians believe the algorithm could be 200 years older. It
is the oldest nontrivial algorithm that has survived to the present day, and it is still
a good one. Knuth describes the algorithm and some modern modifications [863].

InC:

/* returns gcd of x and y */

int gcd (int x, int y)
{
int g;

kA ETG0))
S e

if (y < 0)
VAS Y6

SRRy R==H0))
ERROR;

g% ¥

while (x

g=

X5

X

y
}

return g;

Facebook's Exhibit No. 1008
0103

MOBILEIRON, INC. - EXHIBIT 1020
Page 103



246 CHAPTER 11 Mathematical Background

This algorithm can be generalized to return the ged of an array of m numbers:
/* returns the gcd of x1, x2...xm */

int multiple_gcd (int m, int *x)
{ :

size t i,
int g;

if (m<1)
return 0;
g = x[0];
for: Ci=1; idms ++1) {
g = gcd(g, x[il);
/* optimization, since for random x[i], g==1 60% of -the time: */
TR NE=N1R) '
return 1;
}
return g;
}

Inverses Modulo a Number

Remember inverses? The multiplicative inverse of 4 is 1/4, because 4+1/4=1.In
the modulo world, the problem is more complicated:

4+x =1 (mod 7)
This equation is equivalent to finding an x and k such that
4x =7k +1

where both x and k are integers.
The general problem is finding an x such that

1={(a*x)modn
This is also written as
a? = x (mod n)
The modular inverse problem is a lot more difficult to solve. Sometimes it has a

solution, sometimes not. For example, the inverse of 5, modulo 14, is 3. On the
other hand, 2 has no inverse modulo 14.

In general, a! = x (mod n) has a unique solution if a and n are relatively prime. If
a and n are not relatively prime, then ¢! = x (mod n) has no solution. If n is a prime
number, then every number from 1 to n — 1 is relatively prime to n and has exactly
one inverse modulo n in that range.

So far, so good. Now, how do you go about finding the inverse of a modulo n?
There are a couple of ways. Euclid’s algorithm can also compute the inverse of a
number modulo n. Sometimes this is called the extended Euclidean algorithm.

Here's the algorithm in C++:

fidefine isfven(x) (x & 0x01 = 0)
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fdefine is0dd(x) (x & 0x01)
fdefine swap(x,y) (X A=y, y r=x, x *=y)

void ExtBinEuclid(int *u, int *v, int *ul, int *uZ, int *u3)

{

]

/7 warning: u and v will be swapped if u < v
UnB! (3, Bl n?s Heds

if ( *u < *v ) swap(*u,*v);
for (k = 0; isEven(*u) && isEven(*v); ++k) {
*u dd=1; *y D= 1;
) :
HUANSET 28 SRR =S FRETI=T Ky (R = NANR RS =Ry
do {
‘ do {
if (isEven(*u3)) {
if (is0dd{*ul) || is0dd(*u2)) {
*yl 4= *V; kY2 += *y;
}
RS2 SN AU D= S k13 ESS =
} .
if (isEven(t3) || *u3 < t3) |
swap(*ul,tl); swap(*u2,t2); swap(*u3,t3);
}
} while (isEven(*u3));
while (*ul < tl || *u2 < t2) {
ZUIEES R VERZ (M2 = R
}
*ul -= tl; *u2 -= t2; *u3 -= t3;
} while (t3 > 0);
while (*ul >= *v && *u2 >= *u) {
*yl -= *y; *y2 -= *y;
}
*y <= k; *v <<= k; *u3 <<= k;

main(int argc, char **argv) {

int a, b, gcd;

1 Birie < & 1)K
cerr << "Usage: xeuclid u v" << endl;
return -1;
}
int u = atoi(argv(l]);
int v = atoi(argv[2]);
if(u<c=0]] v<=0){
cerr << "Arguments must be positive!" << endl;
return -2;

}
// warning: u and v will be swapped if u < v
ExtBintuclid(&u, &v, &a, &b, &gcd);
GO USSR R G T (8
KLKhKM) * " Ky " =" <K ged <L endl;

if (ged = 1)
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ot

cout << "the inverse of " <K v << " mod " < u <L "is: "
<Cu - b << endl;
return 0;
}

I’m not going to prove that it works or give the theory behind it. Details can be
found in [863], or in any of the number theory texts previously listed.

The algorithm is iterative and can be slow for large numbers. Knuth showed that
the average number of divisions performed by the algorithm is:

.843+log, (n) + 1.47

Solving for Coefficients

Euclid’s algorithm can be used to solve this class of problems: Given an array of m
variables x,, X, . . . X, find an array of m coefficients, uy, 1 . - . i1, such that

WX+ .. U Xy =1

Fermat’s Little Theorem
If m is a prime, and a is not a multiple of m, then Fermat’s little theorem says

ass S hod )]

(Pierre de Fermat, pronounced “Fair-ma,” was a French mathematician who lived
from 1601 to 1665. This theorem has nothing to do with his last theorem.)

The Euler Totient Funcvtion

There is another method for calculating the inverse modulo n, but it’s not always
possible to use it. The reduced set of residues mod n is the subset of the complete
set of residues that is relatively prime to n. For example, the reduced set of residues
mod 12 is {1,5,7,11}. If n is prime, then the reduced set of residues mod n is the set
of all numbers from 1 to n — 1. The number 0 is never part of the reduced set of
residues for any n not equal to 1.
The Euler totient function, also called the Euler phi function and written as ¢(n),
is the number of elements in the reduced set of residues modulo n. In other words, .
¢(n) is the number of positive integers less than n that are relatively prime to n (for i
any n greater than 1). (Leonhard Euler, pronounced “Oiler,” was a Swiss mathe-
matician who lived from 1707 to 1783.)
If n is prime, then ¢(n) = n — 1. If n = pqg, where p and g are prime, then ¢(n) =
(p — 1){g — 1). These numbers appear in some public-key algorithms; this is why.
According to Euler’s generalization of Fermat’s little theorem, if gcd(a,n) =1, then |

a® mod n=1
Now it is easy to compute ¢! mod n: |
x=a%""1modn |

For example, what is the inverse of 5, modulo 7? Since 7 is prime, ¢(7)=7 — 1 =6. |
So, the inverse of 5, modulo 7, is ]
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5¢-'mod7=5"mod 7 =3
Both methods for calculating inverses can be extended to solve for x in the general
problem (if ged(a,n) = 1):
(a*x)modn=b
Using Euler’s generalization, solve
x=(b*a® 1) mod n
Using Euclid’s algorithm, solve
x = (b*{a mod n)) mod n

In general, Euclid’s algorithm is faster than Euclid’s generalization for calculating
inverses, especially for numbers in the 500-bit range. If gcd(a,n) # 1, all is not lost. In
this general case, (a*x) mod n = b, can have multiple solutions or no solution.

Chinese Remainder Theorem

If you know the prime factorization of n, then you can use something called the
Chinese remainder theorem to solve a whole system of equations. The basic version
of this theorem was discovered by the first-century Chinese mathematician, Sun Tse.

In general, if the prime factorization of n is p,*p,*. . .*p,, then the system of equa-
tions

(x mod p;) = a;, wherei=1,2, ...,

has a unique solution, x, where x is less than n. (Note that some primes can appear
more than once. For example, p; might be equal to p,.) In other words, a number (less
than the product of some primes) is uniquely identified by its residues mod those
primes.

For example, use 3 and 5 as primes, and 14 as the number. 14 mod 3 = 2, and 14
mod 5 = 4. There is only one number less than 3+5 = 15 which has those residues:
14. The two residues uniquely determine the number. ’

So, for an arbitrary a < p and b < g (where p and g are prime), there exists a unique
x, where x is less than pq, such that

x = a{mod p), and x = b (mod g)
To find this x, first use Euclid’s algorithm to find u, such that
u+g = 1 (mod p)
Then compute:
x =(({a - b)*u) mod p)*q + b
Here is the Chinese remainder theorem in C:

/* r is the number of elements in arrays m and u;
m is the array of (pairwise relatively prime) moduli
u is the array of coefficients
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return value is n such than n == u[kl#m[k] (k=0..r-1) and
n < m0)*mf1]1*...*m{r-11]
3/

/* totient() is left as an exercise to the reader. */

int chinese_remainder (size_t r, int *m, int *u)

{

Shiziel Ealils

int modulus;

int n; ;
modulus = 1; i

R GIEER R E R AT
modulus *= m[i];

n=20;
for (i=0; i<r; ++i) {
n += uli] * modexp(modulus / m[i], totient(mlil),
mlil);
n %= modulus;
}

return n; |
) :

The converse of the Chinese remainder theorem can also be used to find the solu-
tion to the problem: if p and g are primes, and p is less than g, then there exists a
unique x less than pg, such that

a = x (mod p), and b = x (mod g}
If a 2 b mod p, then |
x=(((a - (b mod pJ)+u) mod p)+q + b i
If a < b mod p, then |
x=(({a+p - (b mod p))*u) mod p}xq + b

Quadratic Residues |
If p is prime, and a is greater than 0 and less than p, then a is a quadratic residue ‘
mod p if
x* = a (mod p), for some x
Not all values of a satisfy this property. For a to be a quadratic residue modulo n,
it must be a quadratic residue modulo all the prime factors of n. For example, if p =
7, the quadratic residues are 1, 2, and 4:
1?=1=1|mod 7)
22=4 =4 (mod 7|
3?=9 =2 (mod 7|

a
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4*=16 =2 (mod 7)
5=26=4/(mad-7|
6*=36 = 1 {mod 7]
Note that each quadratic residue appears twice on this list.
There are no values of x which satisfy any of these equations:
x* =3 (mod.7)
x* =5 (med 7)
x? =6 (mod 7)

The quadratic nonresidues modulo 7, the numbers that are not quadratic residues,
are 3, 5, and 6.

Although I will not do so here, it is easy to prove that, when p is odd, there are
exactly (p — 1)/2 quadratic residues mod p and the same number of quadratic non-
residues mod p. Also, if a is a quadratic residue mod p, then a has exactly two square
roots, one of them between 0 and (p — 1)/2, and the other between [p — 1}/2 and
(p — 1). One of these square roots is also a quadratic residue mod p; this is called the
principal square root.

If n is the product of two primes, p and g, there are exactly (p — 1)(q — 1)/4
quadratic residues mod n. A quadratic residue mod n is a perfect square modulo n.
This is because to be a square mod n, the residue must be a square mod p and a

square mod g. For example, there are six quadratic residues mod 35: 1, 4, 9, 11, 16,
29. Each quadratic residue has exactly four square roots.

Legendre Symbol
The Legendre symbol, written L{a,p), is defined when a is any integer and p is a

prime greater than 2. It is equal to 0, 1, or ~1.
L{a,p) = 0 if a is divisible by p.
L(a,p) = 1 if a is a quadratic residue mod p.
L{a,p) =1 is a is a quadratic nonresidue mod p.

One way to calculate L{a,p) is:
L{a,p) = a? "2 mod p
Or you can use the following algorithm:
1. If'a = 1, then L{a.p]=1

2. If a is even, then L{a,p) = L(a/2,p)*(~1)#"* - 18 .
3. If a is odd {and # 1), then L{a,p) = L(p mod a,a)*(-1) - "o - 1+

Note that this is also an efficient way to determine whether a is a quadratic residue
mod p (when p is prime).

B R e A e R
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i R

Jacobi Symbol .

The Jacobi symbol, written J(a,n), is a generalization of the Legendre symbol to
composite moduli; it is defined for any integer a and any odd integer n. The function
shows up in primality testing. The Jacobi symbol is a function on the set of reduced
residues of the divisors of n and can be calculated by several formulas [1412]. "J;his is

one method:

Definition 1: J(a,n) is only defined if n is odd.
Definition 2: J{0,n) = 0.
Definition 3: If n is prime, then the Jacobi symbol J(a,n) = 0 if n divides a.

Definition 4: If n is prime, then the Jacobi symbol J(a,n)=1if aisa
quadratic residue modulo n.

Definition 5: If n1 is prime, then the Jacobi symbol J{a,n) =1 if a is a
quadratic nonresidue modulo n.

Definition 6: If n is composite, then the Jacobi symbol J(a,n) = J{a,p:)
* ... * Jla,pm), where p; . .. py, is the prime factorization of n.

The following algorithm computés the Jacobi symbol recursively:

Rule 1: J(1,n)=1

Rule 2: J{a*b,n} = J{a,n}*](b,n)

Rule 3: J(2,n) = 1 if (n®> — 1)/8 is even, and -1 otherwise

Rule 4: J{a,n) =]((a mod n),n)

Rule 5: J{a,by*b,) =J{a,b,)*](a,b,)

Rule 6: If the greatest common divisor of 2 and b= 1, and a and b are

odd:

Rule 6a: J(a,b) =J{b,a) if (a — 1)(b — 1)/4 is even

Rule 6b: J(a,b) =-J(b,a) if (a — 1){b — 1)/4 is odd
Here is the algorithm in C:

/* This algorithm computes the Jacobi symbol recursively */

int jacobi(int a, int b)
{

int g;
assert(odd(b));
if (@ > b) a %= b; /* by Rule 4 */
if (a == 0) return 0; /* by Definition 1 */
if (a == 1) return 1; /* by Rule 1 */
if (a < 0)

if (((b-1)/2 % 2 = 0)

_—

il

|
l

.
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return jacobi(-a,b);
else
return -jacobi(-a,b);

if (a %2 ==20)/*a1is even x/
if (((b*b - 1)/8) % 2 = Q)
return +jacobi(a/2, b)
else
return -jacobi(a/2, b) /* by Rule 3 and Rule 2 */
g = gcd(a,b);

assert(odd(a)); /* this is guaranteed by the (a % 2 == 0)
EE SN

if (g == a) /* a exactly divides b */
return 0; /* by Rule 5 */
else if (g 1= 1)
return jacobi(g,b) * jacobi(a/g, b); /* by Rule 2 */
else if (((a-1)*(b-1)/4) % 2 == 0)
return +jacobi(b,a); /* by Rule 6a */
else
return -jacobitb,a); /* by Rule 6b */
}

If n is known to be prime beforehand, simply compute a* - 2l mod n instead of
running the previous algorithm; in this case J(a,n) is equivalent to the Legendre
symbol.

The Jacobi symbol cannot be used to determine whether a is a quadratic residue
mod n (unless n is prime, of course). Note that, if J(a,n) = 1 and n is composite, it is
not necessarily true that a is a quadratic residue modulo n. For example:

J(7,143) =J(7,11)+](7,13) = (-1)(-1) = 1

However, there is no integer x such that x* = 7 (mod 143).

Blum Integers

If p and g are two primes, and both are congruent to 3 modulo 4, then n = pq is
sometimes called a Blum integer. If n is a Blum integer, each quadratic residue has
exactly four square roots, one of which is also a square; this is the principal square
root. For example, the principal square root of 139 mod 437 is 24. The other three
square roots are 185, 252, and 413.

Generators
If p is a prime, and g is less then p, then g is a generator mod p if

for each b from 1 to p — 1, there exists some a where g = b (mod p).

Another way of saying this is that g is primitive with respect to D.
For example, if p=11, 2 is a generator mod 11: '

210=1024 =1 (mod 11)
2 2=J(tyod 1)
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98 =256 = 3 (mod 11)
2’=4 =4 (mod 11)
2*=16 =5 (mod 11}
99 =512 = 6 (mod 11)
27=128 = 7 (mod 11)
28 =8 =8 (mod 11)
26=64 =9 (mod 11)
25=32 =10 (mod 11)

Every number from 1 to 10 can be expressed as 2° (mod p).
For p = 11, the generators are 2, 6, 7, and 8. The other numbers are not generators.

For example, 3 is not a generator because there is no solution to

3% =2 (mod 11)
In general, testing whether a given number is a generator is not an easy problem. It
is easy, however, if you know the factorization of p — 1. Let qy, g, - . ., gy be the dis-

tinct prime factors of p - 1. To test whether a number g is a generator mod p, calculate
g(P ~1)/q mod p

for all valuesof g=qy, qy, . . ., qn-

If that number equals 1 for some value of g, then g is not a generator. If that value
does not equal 1 for any values of g, then g is a generator.

For example, let p=11. The prime factors of p— 1 = 10 are 2 and 5. To test whether
2 is a generator:

201 -15 (mod 11} = 4
201-12 (mod 11) = 10

Neither result is 1, so 2 is a generator.
To test whether 3 is a generator:

311 -5 (mod 11) =9
kb=l (re Gl 1L =l
Therefore, 3 is not a generator. ‘
If you need to find a generator mod p, simply choose a random number from 1 to

p — 1 and test whether it is a generator. Enough of them will be, so you’ll probably
find one fast.

Computing in a Galois Field

Don'’t be alarmed; that’s what we were just doing. If n is prime or the power of a | 1
large prime, then we have what mathematicians call a finite field. In honor of that |
fact, we use p instead of n. In fact, this type of finite field is so exciting that mathe-
maticians gave it its own name: a Galois field, denoted as GF(p). (Evariste Galois
was a French mathematician who lived in the early nineteenth century and did a lot
of work in number theory before he was killed at age 20 in a duel.)

Facebook's Exhibit No. 1008
0112

MOBILEIRON, INC. - EXHIBIT 1020
Page 112



11.4 Factoring 2585

In a Galois field, addition, subtraction, multiplication, and division by nonzero
elements are all well-defined. There is an additive identity, 0, and a multiplicative
identity, 1. Every nonzero number has a unique inverse (this would not be true if p
were not prime). The commutative, associative, and distributive laws are true. ‘

Arithmetic in a Galois field is used a great deal in cryptography. All of the num-
ber theory works; it keeps numbers a finite size, and division doesn’t have any
rounding errors. Many cryptosystems are based on GF(p), where p is a large prime.

To make matters even more complicated, cryptographers also use arithmetic
modulo irreducible polynomials of degree n whose coefficients are integers modulo
g, where g is prime. These fields are called GF{g?). All arithmetic is done modulo
plx), where p(x) is an irreducible polynomial of degree n.

The mathematical theory behind this is far beyond the scope of the book,
although I will describe some cryptosystems that use it. If you want to try to work
more with this, GF(2%) has the following elements: 0, 1, x, x + 1, x}, x*+ |, x>+ x, x>

+ x + 1. There is an algorithm for computing inverses in GF(27) that is suitable for
parallel implementation [421].
When talking about polynomials, the term “prime” is replaced by “irreducible.” A
_polynomial is irreducible if it cannot be expressed as the product of two other poly-
nomials (except for 1 and itself, of course). The polynomial x* + 1 is irreducible over
the integers. The polynomial x* + 2x? + x is not; it can be expressed as x{x + 1)(x + 1).

A polynomial that is a generator in a given field is called primitive; all its coeffi-
cients are relatively prime. We’ll see primitive polynomials again when we talk
about linear-feedback shift registers (see Section 16.2}.

Computation in GF(2”) can be quickly implemented in hardware with linear-
feedback shift registers. For that reason, computation over GF(2%) is often quicker
than computation over GF(p). Just as exponentiation is much more efficient in
GF(27), so is calculating discrete logarithms [180,181,368,379]. If you want to learn
more about this, read [140]. ~

For a Galois field GF(2?), cryptographers like to use the trinomial p(x) = x" + x + 1
as the modulus, because the long string of zeros between the x* and x coefficients
makes it easy to implement a fast modular multiplication [183]. The trinomial
must be primitive, otherwise the math does not work. Values of n less than 1000
[1649,1648] for which x* + x + 1 is primitive are:

1,3,4,6,9, 15,22, 28, 30, 46, 60, 63, 127, 153, 172, 303, 471, 532,
865, 900

There exists a hardware implementation of GF(2'”") where p(x) = x'*" + x + 1
[1631,1632,1129]. Efficient hardware architectures for implementing exponentia-
tion in GF(27) are discussed in [147].

11.4 FACTORING
Factoring a number means finding its prime factors.

10=2+5
60 =2+2+3+5
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g

252601 =41+61+101
218 —1=3391+23279+65993+1868569+1066818132868207

The factoring problem is one of the oldest in number theory. It’s simple to factor
a number, but it’s time-consuming. This is still true, but there have been some
major advances in the state of the art.

Currently, the best factoring algorithm is:

Number field sieve (NFS) [953] [see also [952,16,279]). The general num-
ber field sieve is the fastest-known factoring algorithm for numbers
larger than 110 digits or so [472,635]. It was impractical when originally
proposed, but that has changed due to a series of improvements over the
last few years [953]. The NFS is still too new to have broken any factor-
ing records, but this will change soon. An early version was used to fac-
tor the ninth Fermat number: 2°'* + 1 [955,954].

Other factoring algorithms have been supplanted by the NFS:

Quadratic sieve (QS) [1257,1617,1259]. This is the fastest-known algo-
rithm for numbers less than 110 decimal digits long and has been used
extensively [440]. A faster version of this algorithm is called the multi-
ple polynomial quadratic sieve [1453,302]. The fastest version of this i

- algorithm is called the double large prime variation of the multiple poly-
nomial quadratic sieve.
Elliptic curve method (ECM) [957,1112,1113]. This method has been ,
used to find 43-digit factors, but nothing larger. |
Pollard’s Monte Carlo algorithm [1254,248]. (This algorithm also appears ;
in volume 2, page 370 of Knuth [863].) |
Continued fraction algorithm. See [1123,1252,863]. This algorithm isn’t 1
even in the running.
Trial division. This is the oldest factoring algorithm and consists of test-
ing every prime number less than or equal to the square root of the can- ]
didate number. 1

See [251] for a good introduction to these different factoring algorithms, except for
the NFES. The best discussion of the NFS is [953]. Other, older references are [505,
1602,1258]. Information on parallel factoring can be found in [250].
If n is the number being factored, the fastest QS variants have a heuristic asymp-
totic run time of: |
el + 0f1)in (a(1/211n (n (a))1/2) 14

|
The NFS is much faster, with a heuristic asymptotic time estimate of: |
/1923 + O{L)ln ) /3N tn (in (m))i2/3) {

|4

|
!
In 1970, the big news was the factoring of a 41-digit hard number [1123]. (A “hard” i
number is one that does not have any small factors and is not of a special form that i ‘

Facebook's Exhibit No. 1008
0114

MOBILEIRON, INC. - EXHIBIT 1020
Page 114



11.4 Factoring 257

allows it to be factored more easily.) Ten years later, factoring hard numbers twice
that size took a Cray computer just a few hours [440].

In 1988, Carl Pomerance designed a modular factoring machine, using custom
VLSI chips [1259]. The size of the number you would be able to factor depends on"
how large a machine you can afford to build. He never built it.

In 1993, a 120-digit hard number was factored using the quadratic sieve; the cal-
culation took 825 mips-years and was completed in three months real time [463].
Other results are [504].

Today’s factoring attempts use computer networks [302,955]. In factoring a 116-
digit number, Arjen Lenstra and Mark Manasse used 400 mips-years—the spare
time on an array of computers around the world for a few months.

In March 1994, a 129-digit (428-bit) number was factored using the double large
prime variation of the multiple polynomial QS [66] by a team of mathematicians led
by Lenstra. Volunteers on the Internet carried out the computation: 600 people and
1600 machines over the course of eight months, probably the largest ad hoc multi-
processor ever assembled. The calculation was the equivalent of 4000 to 6000 mips-
years. The machines communicated via electronic mail, sending their individual
results to a central repository where the final steps of analysis took place. This com-
putation used the QS and five-year-old theory; it would have taken one-tenth the
time using the NFES [949]. According to [66]: “We conclude that commonly used 512-
bit RSA moduli are vulnerable to any organization prepared to spend a few million
dollars and to wait a few months.” They estimate that factoring a 512-bit number
would be 100 times harder using the same technology, and only 10 times harder
using the NES and current technology [949].

To keep up on the state of the art of factoring, RSA Data Security, Inc. set up the
RSA Factoring Challenge in March 1991 [532]. The challenge consists of a list of
hard numbers, each the product of two primes of roughly equal size. Each prime was
chosen to be congruent to 2 modulo 3. There are 42 numbers in the challenge, one
each of length 100 digits through 500 digits in steps of 10 digits (plus one additional
number, 129 digits long). At the time of writing, RSA-100, RSA-110, RSA-120, and
RSA-129 have been factored, all using the QS. RSA-130 might be next (using the
NES), or the factoring champions might skip directly to RSA-140.

This is a fast-moving field. It is difficult to extrapolate factoring technology
because no one can predict advances in mathematical theory. Before the NFS was
discovered, many people conjectured that the QS was asymptotically as fast as any
factoring method could be. They were wrong.

Near-term advances in the NFES are likely to come in the form of bringing down
the constant: 1.923. Some numbers of a special form, like Fermat numbers, have a
constant more along the lines of 1.5 [955,954]. If the hard numbers used in public-
key cryptography had that kind of constant, 1024-bit numbers could be factored
today. One way to lower the constant is to find better ways of representing numbers
as polynomials with small coefficients. The problem hasn’t been studied very exten-
sively yet, but it is probable that advances are coming [949].

For the most current results from the RSA Factoring Challenge, send e-mail to
challenge-info@rsa.com.
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Square Roots Modulo n

If n is the product of two primes, then the ability to calculate square roots mod n !
is computationally equivalent to the ability to factor n [1283,35,36,193]. In other .
words, someone who knows the prime factors of n can easily compute the square :
roots of a number mod n, but for everyone else the computation has been proven to
be as hard as computing the prime factors of n.

11.5 PRIME NUMBER GENERATION

Public-key algorithms need prime numbers. Any reasonably sized network needs
lots of them. Before discussing the mathematics of prime number generation, I will
answer a few obvious questions.

1. If everyone needs a different prime number, won’t we run out? No. In fact,
there are approximately 10" primes 512 bits in length or less. For numbers
near n, the probability that a random number is prime is approximately
one in In n. So the total number of primes less than n is n/(In n). There are
only 1077 atoms in the universe. If every atom in the universe needed a bil-
lion new primes every microsecond from the beginning of time until now,
you would only need 10'” primes; there would still be approximately 10!
512-bit primes left.

2. What if two people accidentally pick the same prime number? It won't
happen. With over 10*! prime numbers to choose from, the odds of that
happening are significantly less than the odds of your computer sponta-
neously combusting at the exact moment you win the lottery.

3. If someone creates a database of all primes, won’t he be able to use that
database to break public-key algorithms? Yes, but he can’t do it. If you
could store one gigabyte of information on a drive weighing one gram, then
a list of just the 512-bit primes would weigh so much that it would exceed
the Chandrasar limit and collapse into a black hole. .. so you couldn’t
retrieve the data anyway. |

But if factoring numbers is so hard, how can generating prime numbers be easy?
The trick is that the yes/no question, “Is n prime?” is a much easier question to
answer than the more complicated question, “What are the factors of n¢”

The wrong way to find primes is to generate random numbers and then try to fac-
tor them. The right way is to generate random numbers and test if they are prime.
There are several probabilistic primality tests; tests that determine whether a num-
ber is prime with a given degree of confidence. Assuming this “degree of confi-
dence” is large enough, these sorts of tests are good enough. I've heard primes
generated in this manner called “industrial-grade primes”: These are numbers that
are probably prime with a controllably small chance of error,

Assume a test is set to fail once in 2°° tries. This means that there is a 1 in 10*
chance that the test falsely indicates that a composite number is prime. (The test |

R R R B A
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will never falsely indicate that a prime number is composite.) If for some reason you
need more confidence that the number is prime, you can set the failure level even
lower. On the other hand, if you consider that the odds of the number being com- .
posite are 300 million times less than the odds of winning top prize in a state lot-
tery, you might not worry about it so much. :

Overviews of recent developments in the field can be found in [1256,206]. Other
important papers are [1490,384,11,19,626,651,911].

Solovay-Strassen

Robert Solovay and Volker Strassen developed a probabilistic primality testing
algorithm [1490]. Their algorithm uses the Jacobi symbol to test if p is prime:

(1) Choose a random number, g, less than p.

(2) If the ged(a,p) # 1, then p fails the test and is composite.
(3) Calculate j = a? -2 mod p.

(4) Calculate the Jacobi symbol J(a,p).

{5) If j #Ja,p), then p is definitely not prime.

{6) If j = J(a,p), then the likelihood that p is not prime is no more than 50
percent.

A number a that does not indicate that p is definitely not prime is called a wit-
ness. If p is composite, the odds of a random a being a witness is no less than 50 per-
cent. Repeat this test t times, with ¢ different random values for a. The odds of a
composite number passing all ¢ tests is no more than one in 2.

Lehmann

Another, simpler, test was developed independently by Lehmann [903). Here it
tests if p is prime: :

(1) Choose a random number a less than p.

{2) Calculate a? -2 mod p.

(3) If a?='* = 1 or —1 {mod p), then p is definitely not prime.

(4) If a? -2 = 1 or -1 (mod p), then the likelihood that p is not prime is no
more than 50 percent.

Again, the odds of a random a being a witness to p’s compositeness is no less than
50 percent. Repeat this test ¢t times. If the calculation equals 1 or —1, but does not
always equal 1, then p is probably prime with an error rate of 1 in 2.

Rabin-Miller

The algorithm everyone uses—it’s easy—was developed by Michael Rabin, based
in part on Gary Miller’s ideas [1093,1284]. Actually, this is a simplified version of
the algorithm recommended in the DSS proposal [1149,1154].
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Choose a random number, p, to test. Calculate b, where b is the number of times |
2 divides p -1 (i.e., 2? is the largest power of 2 that divides p — 1). Then calculate m,
such that p=1+2"*m,

(1) Choose a random number, a, such that a is less than p.

(2) Setj=0 and set z=a™ mod p.

(3) fz=1, orif z=p— 1, then p passes the test and may be prime.

(4) If >0 and z = 1, then p is not prime. '

(5) Setj=j+1.Ifj<bandz#p-1,setz=z"mod p and go back to step (4). If
z=p— 1, then p passes the test and may be prime.

(6) If j=band z#p - 1, then p is not prime.

The odds of a composite passing decreases faster with this test than with previous
ones. Three-quarters of the possible values of a are guaranteed to be witnesses. This
means that a composite number will slip through ¢ tests no more than %' of the time,
where t is the number of iterations. Actually, these numbers are very pessimistic.
For most random numbers, something like 99.9 percent of the possible a values are
witnesses [96]. ‘

There are even better estimations [417]. For n-bit candidate primes (where n is more
than 100), the odds of error in one test are less than 1 in 4n2w2 - And for a 256-bit
n, the odds of error in six tests are less than 1 in 2%, More theory is in [418]. |

Practical Considerations
In real-world implementations, prime generation goes quickly.

(1} Generate a random n-bit number, p.

|
|
(2) Set the high-order and low-order bit to 1. {The high-order bit ensures that |

the prime is of the required length and the low-order bit ensures that it
is odd.)

(3} Check to make sure p is not divisible by any small primes: 3, 5, 7, 11, and & 1
so on. Many implementations test p for divisibility by all primes less than |
256. The most efficient is to test for divisibility by all primes less than
2000 [949]. You can do this efficiently using a wheel [863].

(4) Perform the Rabin-Miller test for some random a. If p passes, generate
another random a and go through the test again. Choose a small value of a
to make the calculations go quicker. Do five tests [651]. {One might seem
like enough, but do five.) If p fails one of the tests, generate another p and 2 1
try again.

Another option is not to generate a random p each time, but to incrementally
search through numbers starting at a random point until you find a prime. |
Step (3) is optional, but it is a good idea. Testing a random odd p to make sure it is 1% |
not divisible by 3, 5, and 7 eliminates 54 percent of the odd numbers before you get 1
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to step (4). Testing against all primes less than 100 eliminates 76 percent of the odd

numbers; testing against all primes less than 256 eliminates 80 percent. In general,

the fraction of odd candidates that is not a multiple of any prime less than n is
1.12/In n. The larger the n you test up to, the more precomputation is required

before you get to the Rabin-Miller test.

One implementation of this method on a Sparc IT was able to find 256-bit primes
in an average of 2.8 seconds, 512-bit primes in an average of 24.0 seconds, 768-bit
primes in an average of 2.0 minutes, and 1024-bit primes in an average of 5.1 min-
utes [918].

Strong Primes

If n is the product of two primes, p and g, it may be desirable to use strong primes
for p and g. These are prime numbers with certain properties that make the product
n difficult to factor by specific factoring methods. Among the properties suggested
have been [1328,651]:

The greatest common divisor of p — 1 and g — 1 should be small.

Both p — 1 and g — 1 should have large prime factors, respectively p’ and .
Both p’ — 1 and g”- 1 should have large prime factors.

Both p + 1 and g + 1 should have large prime factors.

Both (p — 1)/2 and (g — 1)/2 should be prime [182]. (Note that if this
condition is true, then so are the first two.)

Whether strong primes are necessary is a subject of debate. These properties were
designed to thwart some older factoring algorithms. However, the fastest factoring
algorithms have as good a chance of factoring numbers that meet these criteria as
they do of factoring numbers that do not [831].

I recommend against specifically generating strong primes. The length of the
primes is much more important than the structure. Moreover, structure may be
damaging because it is less random.

This may change. New factoring techniques may be developed that work better
on numbers with certain properties than on numbers without them. If so, strong
primes may be required once again. Check current theoretical mathematics journals
for updates.

11.6 DiscRETE LOGARITHMS IN A FINITE FIELD
Modular exponentiation is another one-way function used frequently in cryptogra-
phy. Evaluating this expression is easy:

a*mod n

The inverse problem of modular exponentiation is that of finding the discrete log-
arithm of a number. This is a hard problem:
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Find x where ¢* = b (mod n).
For example:
If 3* = 15 mod 17, thenx=6

Not all discrete logarithms have solutions (remember, the only valid solutions are
integers). It’s easy to see that there is no solution, x, to the equation

3* =7 (mod 13)

It’s far more difficult to solve these problems using 1024-bit numbers.

Calculating Discrete Logarithms in a Finite Group

There are three main groups whose discrete logarithms are of interest to cryp-
tographers:

~— The multiplicative group of prime fields: GF(p)
— The multiplicative group of finite fields of characteristic 2: GF(27)
— Elliptic curve groups over finite fields F: EC(F)

The security of many public-key algorithms is based on the problem of finding
discrete logarithms, so the problem has been extensively studied. A good compre-
hensive overview of the problem, and the best solutions at the time, can be found in
[1189,1039]. The best current article on the topic is [934].

If p is the modulus and is prime, then the complexity of finding discrete loganthms
in GF(p) is essentially the same as factoring an integer n of about the same size, when
n is the product of two approximately equal-length primes [1378,934]. This is:

ell + 0L)iin (p)1/2)in f1n (p))I1/2)

The number field sieve is faster, with an heuristic asymptotic time estimate of
/1923 + 0[1)jiln 1) 1/3)in (1n (p))i2/3)

Stephen Pohlig and Martin Hellman found a fast way of computing discrete loga- i
rithms in GF(p) if p — 1 has only small prime factors [1253]. For this reason, only i
tields where p — 1 has at least one large factor are used in cryptography. Another '
algorithm [14] computes discrete logarithms at a speed comparable to factoring; it
has been expanded to fields of the form GF(p”) [716]. This algorithm was criticized
[727] for having some theoretical problems. Other articles [1588] show how difficult
the problem really is.

Computing discrete logarithms is closely related to factoring. If you can solve the |
discrete logarithm problem, then you can factor. (The converse has never been
proven to be true.) Currently, there are three methods for calculating discrete loga-
rithms in a prime field [370,934,648]: the linear sieve, the Gaussian integer scheme,
and the number field sieve.

The preliminary, extensive computing has to be done only once per field. After-
ward, individual logarithms can be quickly calculated. This can be a security disad-
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* vantage for systems based on these fields. It is important that different applications
use different prime fields. Multiple users in the same application can use a common
field, though.

In the world of extension fields, GF(27) hasn’t been ignored by researchers. An
algorithm was proposed in [727]. Coppersmith’s algorithm makes finding discrete
logarithms in fields such as GF(2'%’| reasonable and finding them in fields around
GF{2*®) possible [368]. This was based on work in [180]. The precomputation stage
of this algorithm is enormous, but otherwise it is nice and efficient. A practical
implementation of a less efficient version of the same algorithm, after a seven-hour
precomputation period, found discrete logs in GF(2!%") in several seconds each
[1130,180]. {This particular field, once used in some cryptosystems [142,1631, 1632},
is insecure.) For surveys of some of these results, consult [1189,1039].

More recently, the precomputations for GF(2?%), GF(2*%), and GF(2*!) are done,
and significant progress has been made towards GF(25%). These calculations are
being executed on an nCube-2 massively parallel computer with 1024 processors
[649,650]. Computing discrete logarithms in GF|25%) is still barely out of reach.

Like discrete logarithms in a prime field, the precomputation required to cal-
culate discrete logarithms in a polynomial field has to be done only once. Taher
ElGamal [520] gives an algorithm for calculating discrete logs in the field GF( pY).
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CHAPTER 17

Other Stream Ciphers
and Real Random-
Sequence Generators

17.1 RC4

RC4 is a variable-key-size stream cipher developed in 1987 by Ron Rivest for RSA
Data Security, Inc. For seven years it was proprietary, and details of the algorithm
were only available after signing a nondisclosure agreement.

In September, 1994 someone posted source code to the Cypherpunks mailing
list—anonymously. It quickly spread to the Usenet newsgroup sci.crypt, and via the
Internet to ftp sites around the world. Readers with legal copies of RC4 confirmed
compatibility. RSA Data Security, Inc. tried to put the genie back into the bottle,
claiming that it was still a trade secret even though it was public; it was too late. It
has since been discussed and dissected on Usenet, distributed at conferences, and
taught in cryptography courses.

RC4 is simple to describe. The algorithm works in OFB: The keystream is inde-
pendent of the plaintext. It has a 8 * 8 S-box: Sy, Sy, . .., Syss. The entries are a per-
mutation of the numbers O through 255, and the permutation is a function of the
variable-length key. It has two counters, i and j, initialized to zero.

To generate a random byte, do the following:

i=(i+1)mod 256

j=(j+8,) mod 256

swap S; and S;

t=(S;+ S;) mod 256

K=S,
The byte K is XORed with the plaintext to produce ciphertext or XORed with the

ciphertext to produce plaintext. Encryption is fast—about 10 times faster than DES.

Initializing the S-box is also easy. First, fill it linearly: §o=0, S; =1, . . ., Sy55 =255.

E: Then fill another 256-byte array with the key, repeating the key as necessary to fill
: the entire array: Ko, Ky, . . . , Kyss. Set the index j to zero. Then:
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for i =0 to 255:
j=(j+S;+K;) mod 256
swap S; and S;

And that’s it. RSADSI claims that the algorithm is immune to differential and
linear cryptanalysis, doesn’t seem to have any small cycles, and is highly non- !
linear. (There are no public cryptanalytic results. RC4 can be in about 2%
(256! x 256?) possible states: an enormous number.| The S-box slowly evolves with
use: i ensures that every element changes and j ensures that the elements change
randomly. The algorithm is simple enough that most programmers can quickly
code it from memory.

It should be possible to generalize this idea to larger S-boxes and word sizes. The
previous version is 8-bit RC4. There’s no reason why you can’t define 16-bit RC4
with a 16 * 16 S-box (100K of memory) and a 16-bit word. You’d have to iterate the ;
initial setup a lot more times—65,536 to keep with the stated design—but the
resulting algorithm should be faster. '

RC4 has special export status if its key length is 40 bits or under (see Section 13.8).

This special export status has nothing to do with the secrecy of the algorithm,
although RSA Data Security, Inc. has hinted for years that it does. The name is
trademarked, so anyone who writes his own code has to call it something else. Var- ¢
ious internal documents by RSA Data Security, Inc. have not yet been made public
[1320,1337]. |

So, what’s the deal with RC4? It’s no longer a trade secret, so presumably anyone '
can use it. However, RSA Data Security, Inc. will almost certainly sue anyone who
uses unlicensed RC4 in a commercial product. They probably won'’t win, but they {

will certainly make it cheaper for a company to license than fight. ¢
RC4 is in dozens of commercial cryptography products, including Lotus Notes, v
Apple Computer’s AOCE, and Oracle Secure SQL. It is part of the Cellular Digital i

Packet Data specification [37].

17.2 SEAL f

SEAL is a software-efficient stream cipher designed at IBM by Phil Rogaway and ¢
Don Coppersmith [1340]. The algorithm was optimized for 32-bit processors: To run
well it needs eight 32-bit registers and a cache of a few kiloytes. Using a relatively
slow operation, SEAL preprocesses the key operation into a set of tables. These
tables are then used to speed up encryption and decryption.

o g,

Pseudo-random Function Family

One novel feature of SEAL is that is isn’t really a traditional stream cipher: it is a |
pseudo-random function family. Given a 160-bit key k, and a 32-bit n, SEAL stretches
n into an L-bit string k(n). L can take any value less than 64 kilobytes. SEAL is sup- {

posed to enjoy the property that if k is selected at random, then k(n) should be com-
putationally indistinguishable from a random L-bit function of n. |
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The practical effect of SEAL being a pseudo-random function family is that it is
useful in applications where traditional stream ciphers are not. With most stream
ciphers you generate a sequence of bits in one direction: Knowing the key and a posi-
tion i, the only way to determine the ith bit generated is to generate all the bits up
until the ith one. But a pseudo-random function family is different: You get easy
access at any desired position in the key stream. This is very useful.

Imagine you need to secure a hard drive. You want to encrypt each and every 512-
byte sector. With a pseudo-random function family like SEAL, you can encrypt the
contents of sector n by XORing it with k(n). It is as though the entire disk is XORed
with a long pseudo-random string, where any piece of that long string can be com-
puted without any trouble.

A pseudo-random function family also simplifies the synchronization problem
encountered with standard stream ciphers. Suppose you send encrypted messages
over a channel that sometimes drops messages. With a pseudo-random function fam-
ily, you can encrypt under k the nth message you transmit, x,, as n together with the
XOR of x, and k(n). The receiver doesn’t need to store any state to recover x,, nor does
he need to worry about lost messages affecting the message decryption process.

Description of SEAL

The inner loop of SEAL is shown by Figure 17.1. Three key-derived tables, called
R, S, and T, drive the algorithm. The preprocessing step maps the key k, to these
tables using a procedure based on SHA (see Section 18.7). The 2-kilobyte table, T, is
a9 * 32 bit S-box.

SEAL also uses four 32-bit registers, A, B, C, and D, whose initial values are deter-
mined by 1 and the k-derived tables R and T. These registers get modified over sev-
eral iterations, each one involving 8 rounds. In each round 9 bits of a first register
(either A, B, C, or D) are used to index into table T. The value retrieved from T is
then added to or XORed with the contents of a second register: again one of 4, B, C,
or D. The first register is then circularly shifted by nine positions. In some rounds
the second register is further modified by adding or XORing it with the (now shifted)
first register. After 8 rounds of this, A, B, C, and D are added to the keystream, each
masked first by adding or XORing it with a certain word from S. The iteration is
completed by adding to A and C additional values dependent on n, ny, n,, ns, ny;
exactly which one depends on the parity of the iteration number.

The important ideas in this design seem to be:

1. Use a large, secret, key-derived S-box (T).
2. Alternate arithmetic operations which don’t commute (addition and XOR).

3. Use an internal state maintained by the cipher which is not directly man-
ifest in the data stream (the n, values which modify A and C at the end of
each iteration).

4. Vary the round function according to the round number, and vary the iter-
ation function according to the iteration number.
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Figure 17.1 The inner loop of SEAL. f

SEAL requires about five elementary machine operations to encrypt each byte of
text. It runs at 58 megabits per second on a 50 megahertz 486 machine. This is prob- :
ably the fastest software algorithm in the book.

On the other hand, SEAL must preprocess its key into internal tables. These tables
total roughly 3 kilobytes in size, and their calculation takes about 200 SHA compu-
tations. Thus, SEAL is not appropriate to use in situations where you don’t have the 4
time to perform the key setup or you don’t have the memory to store the tables.

Security of SEAL

SEAL is a new algorithm and has yet to be subjected to any published cryptanaly- {
sis. This suggests caution. However, SEAL seems to be well thought through. Its ;
peculiarities do, in the end, make a good deal of sense. And Don Coppersmith is gen-
erally regarded as the world’s cleverest cryptanalyst. ]

Patents and Licenses

SEAL is being patented [380]. Anyone wishing to license SEAL should contact the ¢
Director of Licenses, IBM Corporation, 500 Columbus Ave., Thurnwood, NY, 10594.

17.3 WAKE (

WAKE is the Word Auto Key Encryption algorithm, invented by David Wheeler
[1589]. It produces a stream of 32-bit words which can be XORed with a plaintext
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—— -

stream to produce ciphertext, or XORed with a ciphertext stream to produce plain-
text. And it’s fast.

WAKE works in CFB; the previous ciphertext word is used to generate the next
key word. It also uses an S-box of 256 32-bit values. This S-box has a special prop-
erty: The high-order byte of all the entries is a permutation of all possible bytes, and
the low-order 3 bytes are random.

First, generate the S-box entries, S, from the key. Then initialize four registers
with the key (or with another key): aq, by, ¢o, and d;. To generate a 32-bit keystream
word, K;:

Kj:dj

The ciphertext word C; is the plaintext word, P; XORed with K.
Then, update the four registers:

a; .1 = Mfa, d;)

'bi+1=M(b1"ai+l’
Civ1=M(cyb; )
div1=M(dsc;.

Function M is
Mlxy)=(x+y)>>8® Six + y) A 255

This is shown in Figure 17.2. The operation >> is a right shift, not a rotation. The
low-order 8 bits of x + y are the input into the S-box. Wheeler gives a procedure for

r _('?_ C

Figure 17.2 Wake.
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generating the S-box, but it isn't really complete. Any algorithm to generate random
bytes and a random permutation will work.

WAKE’s biggest asset is that it is fast. However, it’s insecure against a chosen-
plaintext or chosen-ciphertext attack. It is being used in the current version of Dr. ;
Solomon’s Anti-Virus program.

17.4 FEEDBACK WITH CARRY SHIFT REGISTERS

A feedback with carry shift register, or FCSR, is similar to a LESR. Both have a shift 4
register and a feedback function; the difference is that a FCSR also has a carry reg-
ister (see Figure 17.3). Instead of XORing all the bits in the tap sequence, add the ,
bits together and add in the contents of the carry register. The result mod 2
becomes the new bit. The result divided by 2 becomes the new content of the carry }
register.

Figure 17.4 is an example of a 3-bit FCSR tapped at the first and second bit. Its ini-
tial value is 001, and the initial contents of the carry register is 0. The output bit is
the right-most bit of the shift register.

Shift Register Carry Register
001
100
010
101
110
Il
(8 )5 1

— 0 DO O O

Shift Register [

Output Bit
Suminile L ene b4 bg bz bl —f

—»  Sum

] |

Sum Div 2

FYYYVYYY

Figure 17.3 Feedback with carry shift register.
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101 1
010 1
001 1
000 1
100 0

Note that the final internal state (including the contents of the carry register) is
the same as the second internal state. The sequence cycles at this point, and has a
period of 10.

There are a few things to note here. First, the carry register is not a single bit; it is
a number. The size of the carry register must be at least log,t, where t is the number
of taps. There are only two taps in the previous example, so the carry register only
has to be 1 bit wide. If there were four taps, the carry register would have to be 2 bits
wide, and could be either 0, 1, 2, or 3.

Second, there is an initial transient before the FCSR settles down into its repeat-
ing period. In the previous example, only one state never repeated. For larger and
more complicated FCSRs, there may be more.

Third, the maximum period of a FCSR is not 2° — 1, where 2 is the length of the
shift register. The maximum period is g — 1, where g is the connection integer. This
number gives the taps and is defined by:

q=2q; +22qy + 2*°qe + . . . + 2*q, - 1

(Yes, the g;s are numbered from left to right.] And even worse, g has to be a prime
for which 2 is a primitive root. The rest of this discussion assumes q is of this form.
In this example, g =2+0+4+1 +8+1 - 1=11. And 11 is a prime with 2 as a prim-
itive root. So the maximum period is 10.
Not all initial states give you the maximum period. For example, look at the
FCSR when the initial value is 101 and the carry register is set to 4.

Output Bit
Sum Mod 2 o s by

Sum Div 2

Figure 17.4 3-bit FCSR.
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— 8
Shift Register Carry Register ‘
101 4
) & !
111 1 f‘

At this point the register spits out a neverending stream of 1s.

Any initial state will result in one of four things. First, it is part of the maximum '
period. Second, it will fall into the maximum period after an initial transient. Third, ,
it will fall into a sequence of all zeros after an initial transient. Fourth, it will fall f
into a sequence of all ones after an initial transient. |

There is a mathematical formula for determining what will happen to a given ini- 3
tial state, but it’s much easier to just test it. Run the FCSR for a while. (If m is the
initial memory, and ¢ is the number of taps, then logy(t) + logy(m) + 1 steps are
enough.) If it degenerates into a neverending stream of Os or 1s within n bits, where
n is the length of the FCSR, don’t use it. If it doesn’t, then use it. Since the initial i
state of a FCSR corresponds to the key of the stream cipher, this means that a FCSR-
based generator will have a set of weak keys. |

Table 17.1 lists all connection integers less than 10,000 for which 2 is a primitive /
root. These all have maximum period g — 1. To turn one of these numbers into a tap !
sequence, calculate the binary expansion of g + 1. For example, 9949 would trans-
late to taps on bits 1, 2, 3, 4, 6, 7, 9, 10, and 13, because

9950 =213 4210 4+ 92 4+ 97 426 + 24 + 2% + 22 + 2!

Table 17.2 lists all the 4-tap tap sequences that result in a maximal-length FCSR
for shift register lengths of 32 bits, 64 bits, and 128 bits. Each of the four values, g,
b, ¢, and d, combine to generate ¢, a prime for which 2 is primitive.

gq=2+2t+2°+24-1

s e

Any of these tap sequences can be used to create a FCSR with period g - 1.

The idea of using FCSRs for cryptography is still very new; it is being pioneered
by Andy Klapper and Mark Goresky [844,845,654,843,846]. Just as the analysis of
LFSRs is based on the addition of primitive polynomials mod 2, analysis of FCSRs is {
based on addition over something called the 2-adic numbers. The theory is well

beyond the scope of this book, but there seems to be a 2-adic analog for everything. |
Just as you can define linear complexity, you can define 2-adic complexity. There is
even a 2-adic analog to the Berlekamp-Massey algorithm. What this means is that |

the list of potential stream ciphers has just doubled—at least. Anything you can do

with a LESR you can do with a FCSR. |
There are further enhancements to this sort of idea, ones that involve multiple %

carry registers. The analysis of these sequence generators is based on addition over i

the ramified extensions of the 2-adic numbers [845,846].

|
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17.5 Stream Ciphers Using FCSRs 405

17.5 STrREAM CiPHERS UsiNG FCSRs

There aren’t any FCSR stream ciphers in the literature; the theory is still too new."
In the interests of getting the ball rolling, I propose some here. [ am taking two dif-
ferent tacks: I am proposing FCSR stream ciphers that are identical to previously
proposed LFSR generators, and I am proposing stream ciphers that use both FCSRs
and LESRs. The security of the former can probably be analyzed using 2-adic num-
bers; the latter cannot be analyzed using algebraic techniques—they can probably
only be analyzed indirectly. In any case, it is important to choose LFSRs and FCSRS
whose periods are relatively prime.

All this will come later. Right now I know of no implementation or analysis of any
of these ideas. Wait some years and scan the literature before you trust any of them.

Cascade Generators

There are two ways to use FCSRs in a cascade generator:

— FCSR Cascade. The Gollmann cascade with FCSRs instead of LFSRs.

— LFSR/FCSR Cascade. The Gollmann cascade with the generators
alternating between LFSRs and FCSRs.

FCSR Combining Generators

These generators use a variable number of LESRs and/or FCSRs, and a variety of
functions to combine them. The XOR operation destroys the algebraic properties of
FCSRs, so it makes sense to use it to combine them. The generator, shown in Figure
17.5, uses a variable number of FCSRs. Its output is the XOR of the outputs of the
individual FCSRs.

Other generators along similar lines are:

— FCSR Parity Generator. All registers are FCSRs and the combining
function is XOR.

— LFSR/FCSR Parity Generator. Registers are a mix of LFSRs and
FCSRs and the combining function is XOR.

— FCSR Threshold Generator. All registers are FCSRs and the combin-
ing function is the majority function.

— LFSR/FCSR Threshold Generator. Registers are a mix of LFSRs and
FCSRs and the combining function is the majority function.

— FCSR Summation Generator. All registers are FCSRs and the com-
bining function is addition with carry.

— LFSR/FCSR Summation Generator. Registers are a mix of LESRs and
FCSRs and the combining function is addition with carry.
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Table 17.1
Connection Integers for Maximal-period FCSRs !
g 653 1549 2477 3539
5 659 1571 2531 3547 [
11 661 1619 2539 3557
13 677 1621 2549 3571 I
19 701 1637 2557 3581
29 709 1667 2579 3613 r
37 757 1669 2621 3637
53 773 1693 2659 3643 ’
59 787 1733 2677 3659
61 797 1741 2683 3677 {
67 821 1747 2693 3691
83 827 1787 2699 3701 |
101 829 1861 2707 3709
107 853 1867 2741 3733
131 859 1877 2789 3779 !
139 877 1901 2797 3797
149 883 1907 2803 3803 it
163 907 1931 2819 3851
173 941 1949 2837 3853 b
179 947 1973 2843 3877 ?
181 1019 1979 2851 3907 }
197 1061 1987 2861 3917 |
o1 1091 1997 2909 3923 L
207 1109 2027 2939 3931
269 1117 2029 2957 3947 |
293 1123 2053 2963 3989 ‘
BT 1171 2069 3011 4003 |
347 1187 2083 3019 4013
349 i 2099 3037 4019
373 1229 2131 3067 4021
379 1237 2141 3083 4091
389 1259 2213 3187 4093 !
419 1277 2001 3203 4099 ,
421 1283 2237 3253 4133 t
443 1291 2243 3299 4139
461 1301 : 2267 3307 4157 i
467 1307 2269 3323 4219
491 1373 2293 3347 4229 }
509 1381 - 2309 3371 4243
523 1427 2333 3413 4253 It
541 1451 2339 3461 4259
547 1453 2357 3467 4261
557 1483 2371 3469 4283 i
563 1493 2389 3491 4349 ;
587 1499 2437 3499 4357
613 1523 2459 3517 4363 ‘
619 1531 2467 3533 4373 :

|
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407

-
Table 17.1 (Cont.)
Connection Integers for Maximal-period FCSRs

4397 5693 6781 VA 8861
4451 5701 6803 7757 8867
4483 5717 6827 7789 8923
4493 5741 6829 7829 8933
4507 5749 6869 7853 8963
4517 5779 6883 7877 8971
4547 5813 6899 7883 9011
4603 5827 6907 7901 9029
4621 5843 6917 7907 9059
4637 5851 6947 7933 9173
4691 5869 6949 7949 9181
4723 5923 6971 8053 9203
4787 5939 7013 8069 9221
4789 5987 7019 8093 9227
4813 6011 7027 8117 9283
4877 6029 7043 8123 9293
4933 6053 7069 8147 9323
4957 6067 7109 8171 9341
4973 6101 7187 8179 9349
4987 6131 7211 8219 9371
5003 6173 7219 8221 9397
5011 6197 7229 8237 9419
5051 6203 7237 8243 9421
5059 6211 7243 8269 9437
5077 6229 7253 8291 9467
5099 6269 7283 8293 9491
5107 6277 7307 8363 9533
5147 6299 7331 8387 9539
5171 6317 7349 8429 9547
5179 6323 7411 8443 9587
5189 6373 7451 8467 9613
5227 6379 7459 8539 9619
5261 6389 7477 8563 9629
5309 6397 7499 8573 9643
5333 6469 7507 8597 9661
5387 6491 7517 8627 9677
5443 6547 7523 8669 9733
5477 6619 7541 8677 9749
5483 6637 7547 8693 9803
5501 6653 7549 8699 9851
5507 6659 7573 8731 9859
5557 6691 7589 8741 9883
5563 6701 7603 8747 9901
5573 6709 7621 8803 9907
5651 6733 7643 8819 9923
5659 6763 7669 8821 9941
5683 6779 7691 8837 9949
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Table 17.2
Tap Sequences for Maximal-length FCSRs

(32, 6, 3, 2] (64, 24, 19, 2] (64, 59, 28, 2| (96, 55, 53, 2| |
(32, 7, 5, 2) (64, 25, 3, 2) (64, 59, 38, 2| (96, 56, 9, 2) ‘
(32, 8, 3, 2) (64, 25, 4, 2) (64, 59, 44, 2 (96, 56, 51, 2|
(32, 13, 8, 2| (64, 25, 11, 2| (64, 60, 49, 2 |96, 57, 3, 2)
(32, 13, 12, 2) (64, 25, 19, 2] (64, 61, 51, 2] 196, 57, 17, 2|
(32, 15, 6, 2| (64, 27, 5, 2) (64, 63, 8, 2) (96, 57, 47, 2| :
(32, 16, 2, 1] (64, 27, 16, 2| (64, 63, 13, 2 (96, 58, 35, 2| 1
(32, 16, 3, 2| (64, 27, 22, 2] |64, 63, 61, 2] 196, 59, 46, 2|
(32, 16, 5, 2| (64, 28, 19, 2| 196, 60, 29, 2|
139, 17, 5, 2 (64, 28, 25, 2| (96, 15, 5, 2 (96, 60, 41, 2 |
(32, 19, 2, 1 (64, 29, 16, 2| (96, 21, 17, 2| (96, 60, 45, 2| z
(32, 19, 5, 2| (64, 29, 28, 2| (96, 25, 19, 2 196, 61, 17, 2|
(32, 19, 9, 2| (64, 31, 12, 2| 196, 25, 20, 2] (96, 63, 20, 2|
(32, 19, 12, 2) (64, 32, 21, 2| (96, 29, 15, 2| 196, 65, 12, 2|
(32, 19, 17, 2) (64, 35, 29, 2| 196, 29, 17, 2| |96, 65, 39, 2|
(32,°20,:17, 2} (64, 36, 7, 2) (96, 30, 3, 2) |96, 65, 51, 2)
(32,21, 9, 2) (64, 37, 2, 1) 196, 32, 21, 2| |96, 67, 5, 2)
(32, 21, 15, 2) (64, 37, 11, 2| 196, 32, 27, 2| 196, 67, 25, 2|
(32, 23, 8, 2) (64, 39, 4, 2) (96, 33, 5, 2) |96, 67, 34, 2|
(32, 23, 21, 2) (64, 39, 25, 2| {96, 35, 17, 2| |96, 68, 5, 2)
(32, 25, 5, 2) 164, 41, 5, 2) (96, 35, 33, 2 (96, 68, 19, 2|
(32, 25, 12, 2) (64, 41, 11, 2| (96, 39, 21, 2| (96, 69, 17, 2)
(32, 27, 25, 2) (64, 41, 27, 2 (96, 40, 25, 2| 196, 69, 36, 2|
(32, 29, 19, 2) (64, 43, 21, 2| (96, 41, 12, 2| {96, 70, 23, 2
(32, 29, 20, 2) (64, 43, 28, 2| (96, 41, 27, 2| 96, 71, 6, 2)
(32, 30, 3, 2) (64, 45, 28, 2| (96, 41, 35, 2| {96, 71, 40, 2)
(32, 30, 7, 2) (64, 45, 41, 2) (96, 42, 35, 2| {96, 72, 53, 2
(32, 31, 5, 2) (64, 47, 5, 2) (96, 43, 14, 2| (96, 73, 32, 2)
(32, 31, 9, 2 (64,47, 21, 2] (96, 44, 23, 2| (96, 77, 27, 2
(32, 31, 30, 2) (64, 47, 30, 2| (96, 45, 41, 2| (96,77, 31, 2]

(64, 49, 19, 2] (96, 47, 36, 2| (96, 77, 32, 2]
(64, 3,2, 1) (64, 49, 20, 2| (96, 49, 31, 2| (96, 77, 33, 2
(64, 14, 3, 2) 64, 52, 29, 2| (96, 51,-30, 2| (96, 77,71, 2)
|64, 15, 8, 2) |64, 53, 8, 2) (96, 53, 17, 2| (96, 78, 39, 2]
{64,172, (64, 53, 43, 2| 196, 53, 19, 2) (96, 79, 4, 2)
(64, 17,9, 2) (64, 56, 39, 2| |96, 53, 32, 2| (96, 81, 80, 2]
(64, 17, 16, 2 (64, 56, 45, 2| (96, 53, 48, 2| (96, 83, 14, 2]
(64, 19, 2, 1) (64, 59, 5, 2) |96, 54, 15, 2| (96, 83, 26, 2)
(64, 19, 18, 2) (64, 59, 8, 2) |96, 55, 44, 2| (96, 83, 54, 2]

Facebook's Exhibit No. 1008

0133

MOBILEIRON, INC. - EXHIBIT 1020

Page 133



17.5 Stream Ciphers Using FCSRs

Table 17.2 (Cont.)

Tap Sequences for Maximal-length FCSRs

409

(96, 83, 60, 2)
(96, 83, 65, 2)
(96, 83, 78, 2)
(96, 84, 65, 2
(96, 85, 17, 2
(96, 85, 31, 2
(96, 85, 76, 2)
(96, 85, 79, 2)
(96, 86, 39, 2)
(96, 86, 71, 2)
(96, 87,9, 2)

(96, 87, 44, 2)
(96, 87, 45, 2)
96, 88, 19, 2|
96, 88, 35, 2)
(96, 88, 43, 2)
96, 88, 79, 2)
(96, 89, 35, 2)
96, 89, 51, 2|
96, 89, 69, 2|
(96, 89, 87, 2)
(96, 92, 51, 2)
(96, 92, 71, 2)
196, 93, 32, 2)
196, 93, 39, 2)
196, 94, 35, 2)
96, 95, 4, 2)

96, 95, 16, 2)
(96, 95, 32, 2)
96, 95, 44, 2)
96, 95, 45, 2.

(128, 5, 4, 2
(128, 15, 4, 2)
128, 21, 19, 2)
(128, 25, 5, 2)
(128, 26, 11, 2)
(128, 27, 25, 2

(128, 31, 25, 2|
(128, 33, 21, 2
(128, 35, 22, 2)
(128, 37, 8, 2)
(128, 41, 12, 2)
1128, 42, 35, 2)
128, 43, 25, 2|
1128, 43, 42, 2|
(128, 45, 17, 2)
128, 45, 27, 2]
128, 49, 9, 2)
128, 51, 9, 2)
128, 54, 51, 2|
128, 55, 45, 2]
128, 56, 15, 2]
128, 56, 19, 2|
(128, 56, 55, 2]
(128, 57, 21, 2|
(128, 57, 37, 2
(128, 59, 29, 2
(128, 59, 49, 2
(128, 60, 57, 2
(128, 61, 9, 2)
1128, 61, 23,2}
(128, 61, 52, 2
(128, 63, 40, 2|
(128, 63, 62, 2|
(128, 67, 41, 2|
(128, 69, 33, 2|
(128, 71, 53, 2|
(128, 72, 15, 2|
(128, 72, 41, 2|
(128, 73, 5, 2
(128, 73, 65, 2|
(128, 73, 67, 2|
(128, 75, 13, 2)
(128, 80, 39, 2
(128, 80, 53, 2)

(128, 81, 55, 2|
(128, 82, 67, 2)
(128, 83, 60, 2)
(128, 83, 61, 2)
(128, 83, 77, 2)
(128, 84, 15, 2
(128, 84, 43, 2
(128, 85, 63, 2|
(128, 87, 57, 2)
(128, 87, 81, 2
(128, 89, 81, 2
(128, 90, 43, 2
(128, 91, 9, 2)
(128, 91, 13, 2
(128, 91, 44, 2
(128, 92, 35, 2
(128, 95, 94, 2
(128, 96, 23, 2
(128, 96, 61, 2|
(128, 97, 25, 2
(128, 97, 68, 2|
(128, 97, 72, 2)
(128, 97, 75, 2
(128, 99, 13, 2)
(128, 99, 14, 2)
(128, 99, 26, 2)
(128, 99, 54, 2)
(128, 99, 56, 2)
(128, 99, 78, 2)
(128, 100, 13, 2|
(128, 100, 39, 2|
(128, 101, 44, 2|
128, 101, 97, 2
128, 103, 46, 2)
(128, 104, 13, 2.
128, 104, 19, 2
(128, 104, 35, 2.
(128, 105, 7, 2}

(128, 105, 11, 2)
(128, 105, 31, 2|
[128, 105, 48, 2|
(128, 107, 40, 2|
(128, 107, 62, 2
(128, 107, 102, 2)
(128, 108, 35, 2|
(128, 108, 73, 2|
(128, 108, 75, 2
(128, 108, 89, 2|
(128, 109, 11, 2)
(128, 109, 108, 2
(128, 110, 23, 2)
(128, 111, 61, 2)
(128, 113, 59, 2)
(128, 114, 83, 2)
(128, 115, 73, 2)
(128, 117, 105, 2|
(128, 119, 30, 2)
(128, 119, 101, 2)
(128, 120, 9, 2)
(128, 120, 27, 2
(128, 120, 37, 2)
(128, 120, 41, 2|
(128, 120, 79, 2)
(128, 120, 81, 2)
(128, 121, 5, 2)
(128, 121, 67, 2)
(128, 121, 95, 2)
(128, 121, 96, 2)
(128, 123, 40, 2)
(128, 123, 78, 2)
(128, 124, 41, 2)
(128, 124, 69, 2)
(128, 124, 81, 2)
(128, 125, 33, 2)
(128, 125, 43, 2)
(128, 127, 121, 2|
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S~
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] Register-2 —F“»

Combining

i ——
[ Register3 [——» Function ‘)

[ Register-n }——>

Figure 17.5 Combining Generators.

LFSR/FCSR Summation/Parity Cascade

The theory is that addition with carry destroys the algebraic properties of LFSRs,
and that XOR destroys the algebraic properties of FCSRs. This generator combines
those ideas, as used in the LESR/FCSR Summation Generator and the LFSR/FCSR
Parity Generator just listed, with the Gollmann cascade.

The generator is a series of arrays of registers, with the clock of each array con-
trolled by the output of the previous array. Figure 17.6 is one stage of this generator.
The first array of LFSRs is clocked and the results are combined using addition with
carry. If the output of this combining function is 1, then the next array (of FCSRs| is
clocked and the output of those FCSRs is combined with the output of the previous [
combining function using XOR. If the output of the first combining function is 0, '
then the array of FCSRs is not clocked and the output is simply added to the carry
from the previous round. If the output of this second combmmg function is 1, then
the third array of LESRs is clocked, and so on. [

This generator uses a lot of registers: n+m, where 1 is the number of stages and m ,
is the number of registers per stage. I recommend n =10 and m=5. [

Alternating Stop-and-Go Generators i

These generators are stop-and-go generators with FCSRs instead of some LESRs.
Additionally, the XOR operation can be replaced with an addition with carry (see
Figure 17.7).

— FCSR Stop-and-Go Generator. Register-1, Register-2, and Register-3
are FCSRs. The combining operation is XOR.

— FPCSR/LFSR Stop-and-Go Generator. Register-1 is a FCSR, and Regis-
ters-2 and -3 are LFSRs. The combining operation is addition with

carry. |
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Figure 17.6 Concoction Generator.

— LFSR/FCSR Stop-and-Go Generator. Register-1 is a LFSR, and Regis-
ters-2 and -3 are FCSRs. The combining operation is XOR.

Shrinking Generators
There are four basic generator types using FCSRs:

— FCSR Shrinking Generator. A shrinking generator with FCSRs
instead of LFSRs.

— FCSR/LFSR Shrinking Generator. A shrinking generator with a LFSR
shrinking a FCSR.

— LFSR/FCSR Shrinking Generator: A shrinking generator with a FCSR
shrinking a LFSR.

Register-2
A
Register-1 b Combining .
J Function
Register-3
A

G

Figure 17.7 Alternating stop-and-go generators.
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— FCSR Self-Shrinking Generator. A self-shrinking generator with a
FCSR instead of a LFSR.

17.6 NONLINEAR-FEEDBACK SHIFT REGISTERS

It is easy to imagine a more complicated feedback sequence than the ones used in
LFSRs or FCSRs. The problem is that there isn’t any mathematical theory that can
analyze them. You'll get something, but who knows what it is? In particular, here
are some problems with nonlinear-feedback shift register sequences.

— There may be biases, such as more ones than zeros or fewer runs than
expected, in the output sequence.

— The maximum period of the sequence may be much lower than
expected.

— The period of the sequence might be different for different starting
values.

— The sequence may appear random for a while, but then “dead end”
into a single value. (This can easily be solved by XORing the nonlin-
ear function with the rightmost bit.)

On the plus side, if there is no theory to analyze nonlinear-feedback shift registers
for security, there are few tools to cryptanalyze stream ciphers based on them. We
can use nonlinear-feedback shift registers in stream-cipher design, but we have to be
careful.

In a nonlinear-feedback shift register, the feedback function can be anything you
want (see Figure 17.8).

fv
LA

Figure 17.8 A nonlinear-feedback shift register (probably insecure).
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i, h, ‘ b, S

Figure 17.9 3-bit nonlinear feedback shift register.

Figure 17.9 is a 3-bit shift register with the following feedback function: The new
bit is the first bit times the second bit. If it is initialized with the value 110, it pro-
duces the following sequence of internal states:

110
011
101
010
001
000
000

And so on forever.
The output sequence is the string of least significant bits:

011010000000....

This isn’t terribly useful.
It gets even worse. If the initial value is 100, it produces 010, 001, then repeats for-
ever at 000. If the initial value is 111, it repeats itself forever right from the start.
Some work has been done on computing the linear complexity of the product of
two LFSRs [1650,726,1364,630,658,659]. A construction that involved computing
LFSRs over a field of odd characteristic [310] is insecure [842].

17.7 OTHER STREAM CIPHERS

Many other stream ciphers have appeared in the literature here and there. Here are
some of them.

Pless Generator

This generator is designed around the capabilities of the J-K flip-flop [1250]. Eight
LFSRs drive four J-K flip-flops; each flip-flop acts as a nonlinear combiner for two of
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the LFSRs. To avoid the problem that knowledge of an output of the flip-flop identi-
fies both the source and value of the next output bit, clock the four flip-flops and
then interleave the outputs to yield the final keystream. ‘

This algorithm has been cryptanalyzed by attacking each of the four flip-flops
independently [1356]. Additionally, combining J-K flip-flops is cryptographically
weak; generators of this type succumb to correlation attacks [1451].

Cellular Automaton Generator

In [1608,1609], Steve Wolfram proposed using a one-dimensional cellular automa-
ton as a pseudo-random-number generator. Cellular automata is not the subject of
this book, but Wolfram’s generator consisted of a one-dimensional array of bits, a;,
ay, 4z, . .., g, . . ., dy, and an update function:

aK=ax-1 9D (ax v a4 1)

The bit is extracted from one of the a; values; which one really doesn’t matter.

The generator’s behavior appears to be quite random. However, there is a known-
plaintext attack against these generators [1052]. This attack works on a PC with val-
ues of n up to 500 bits. Additionally, Paul Bardell proved that the output of a cellular
automaton can also be generated by a linear-feedback shift register of equal length
and is therefore no more secure [83].

1/p Generator

This generator was proposed, and then cryptanalyzed, in [193]. If the internal state
of the generator at time ¢ is x,, then

X, ,1=bx, mod p

The output of the generator is the least significant bit of x, div p, where div is the
truncated integer division. For maximum period, the constants b and p should be
chosen so that p is prime and b is a primitive root mod p. Unfortunately, this gen-
erator isn’t secure. (Note that for b =2, an FCSR with a connection integer p outputs
the reverse of this sequence.)

crypi(1) .

The original UNIX encryption algorithm, crypt(1), is a stream cipher based on the '
same ideas as the Enigma. This is a 256-element, single-rotor substitution cipher
with a reflector. Both the rotor and the reflector are generated from the key. This
algorithm is far simpler than the World War II German Enigma and, for a skilled
cryptanalyst, very easy to break [1576,1299]. A public-domain UNIX program,
called Crypt Breakers Workbench (CBW), can be used to break files encrypted with

crypt(1).
Other Schemes

Another generator is based on the knapsack problem (see Section 19.2) [1363].
CRYPTO-LEGGO is insecure [301]. Joan Daemen has developed SubStream, Jam,
and StepRightUp [402]; they are all too new to comment on. Many other algorithms |
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17.8 System-Theoretic Approach to Stream-Cipher Design 415

are described in the literature, and even more are kept secret and incorporated
into equipment. '

17.8 SYSTEM-THEORETIC APPROACH TO STREAM-CIPHER
DESIGN

In practice, stream-cipher design is a lot like block-cipher design. It involves more
mathematical theory, but in the end a cryptographer proposes a design and then
tries to analyze it.

According to Rainer Rueppel, there are four different approaches to the construc-
tion of stream ciphers [1360,1362]:

— System-theoretic approach. Try to make sure that each design creates
a difficult and unknown problem for the cryptanalyst, using a set of
fundamental design principles and criteria.

— Information-theoretic approach. Try to keep the cryptanalyst in the
dark about the plaintext. No matter how much work the cryptanalyst
invests, he will never get a unique solution.

— Complexity-theoretic approach. Try to base the cryptosystem on, or
make it equivalent to, some known and difficult problem such as fac-
toring or taking discrete logarithms.

— Randomized approach. Try to generate an unmanageably large prob-
lem by forcing the cryptanalyst to examine lots of useless data in his
attempts at cryptanalysis.

The approaches differ in their assumptions about the capabilities and opportuni-
ties of the cryptanalyst, the definition of cryptographic success, and the notion of
security. Most of the research in this field is theoretical, but there are some good
stream ciphers among the impractical ones.

The system-theoretic approach was used in all the stream ciphers previously
listed; it produces most of the stream ciphers that are practical enough to be used in
the real world. A cryptographer designs keystream generators that have testable
security properties—period, distribution of bit patterns, linear complexity, and so
on—and not ciphers based on mathematical theory. The cryptographer also studies
various cryptanalytic techniques against these generators and makes sure the gen-
erators are immune to these attacks.

Over the years, the approach has resulted in a set of design criteria for stream
ciphers [1432,99,1357,1249]. These were discussed by Rueppel in [1362], in which
he details the theory behind them.

— Long period, no repetitions.

— Linear complexity criteria—large linear complexity, linear complex-
ity profile, local linear complexity, and so forth.
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— Statistical criteria such as ideal k-tuple distributions.

— Confusion—every keystream bit must be a complex transformation
of all or most of the key bits. '

— Diffusion—redundancies in substructures must be dissipated into ]
long-range statistics.

— Nonlinearity criteria for Boolean functions like mth-order correlation
immunity, distance to linear functions, avalanche criterion, and so on.

This list of design criteria is not unique for stream ciphers designed by the
system-theoretic approach; it is true for all stream ciphers. It is even true for all
block ciphers. The unique point about the system-theoretic approach is that stream ,
ciphers are designed to satisfy these goals directly. '

The major problem with these cryptosystems is that nothing can be proven about
their security; the design criteria have never been proved to be either necessary or
sufficient for security. A keystream generator may satisfy all the design principles,
but could still turn out to be insecure. Another could turn out to be secure. There is
still some magic to the process.

On the other hand, breaking each of these keystream generators is a different
problem for a cryptanalyst. If enough different generators are out there, it may not
be worth the cryptanalyst’s time to try to break each one. He may better achieve
fame and glory by figuring out better ways to factor large numbers or calculating dis-
crete logarithms.

17.9 CoMPLEXITY-THEORETIC APPROACH TO STREAM-
CIPHER DESIGN

Rueppel also delineated a complexity-theoretic approach to stream-cipher design.

Here, a cryptographer attempts to use complexity theory to prove that his genera- +
tors are secure. Consequently, the generators tend to be more complicated, based on

the same sorts of hard problems as public-key cryptography. And like public-key
algorithms, they tend to be slow and cumbersome. 7

Shamir’s Pseudo-Random-Number Generator

Adi Shamir used the RSA algorithm as a pseudo-random-number generator [1417].
While Shamir showed that predicting the output of the pseudo-random-number gen- ,
erator is equivalent to breaking RSA, potential biases in the output were demon- f
strated in [1401,200].

Blum-Micali Generator

This generator gets its security from the difficulty of computing discrete loga-
rithms [200]. Let g be a prime and p be an odd prime. A key x,, starts off the process:

Xi,1=g%modp

The output of the generator is 1 if x; < (p — 1)/2, and 0 otherwise.
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-

If p is large enough so that computing discrete logarithms mod p is infeasible,
then this generator is secure. Additional theoretical results can be found in [1627,
986,985,1237,896,799].

RSA

This RSA generator [35,36] is a modification of [200]. The initial parameters are a
modulus N which is the product of two large primes p and g, an integer e which is
relatively prime to (p — 1) (g — 1), and a random seed %o, where x; is less than N.

X1 =x¢mod N

The output of the generator is the least significant bit of x;. The security of this
generator is based on the difficulty of breaking RSA. If N is large enough, then the
generator is secure. Additional theory can be found in [1569,1570,1571,30,354].

Blum, Blum, and Shub

The simplest and most efficient complexity-theoretic generator is called the
Blum, Blum, and Shub generator, after its inventors. Mercifully, we shall abbreviate
it to BBS, although it is sometimes called the quadratic residue generator [193].

The theory behind the BBS generator has to do with quadratic residues modulo n
(see Section 11.3). Here’s how it works.

First find two large prime numbers, p and g, which are congruent to 3 modulo 4.
The product of those numbers, n, is a Blum integer. Choose another random integer,
x, which is relatively prime to n. Compute

Xo=x>mod n

That’s the seed for the generator.
Now you can start computing bits. The ith pseudo-random bit is the least signifi-
cant bit of x;, where

X;=%;_,>modn

The most intriguing property of this generator is that you don’t have to iterate
through all i — 1 bits to get the ith bit. If you know p and ¢, you can compute the ith
bit directly.

b, is the least significant bit of x, where x, = x '™z = 1z~ 1)

This property means you can use this cryptographically strong pseudo-random-bit
generator as a stream cryptosystem for a random-access file.

The security of this scheme rests on the difficulty of factoring n. You can make n
public, so anyone can generate bits using the generator. However, unless a cryptan-
alyst can factor n, he can never predict the output of the generator—not even with a
statement like: “The next bit has a 51 percent chance of being a 1.”

More strongly, the BBS generator is unpredictable to the left and unpredictable to
the right. This means that given a sequence generated by the generator, a cryptana-
lyst cannot predict the next bit in the sequence nor the previous bit in the sequence.
This is not security based on some complicated bit generator that no one under-
stands, but the mathematics behind factoring n.
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This algorithm is slow, but there are speedups. As it turns out, you can use more
than the least significant bit of each x; as a pseudo-random bit. According to [1569,
1570,1571,35,36], if n is the length of x; the least significant log,n bits of x; can be
used. The BBS generator is comparatively slow and isn’t useful for stream ciphers.
However, for high-security applications, such as key generation, this generator is
the best of the lot.

17.10 OTHER APPROACHES TO STREAM-CIPHER DESIGN

In an information-theoretic approach to stream ciphers, the cryptanalyst is assumed
to have unlimited time and computing power. The only practical stream cipher that
is secure against an adversary like this is a one-time pad (see Section 1.5). Since bits
would be impractical on a pad, this is sometimes called a one-time tape. Two mag-
netic tapes, one at the encryption end and the other at the decryption end, would
have the same random keystream on them. To encrypt, simply XOR the plaintext
with the bits on the tape. To decrypt, XOR the ciphertext with the bits on the other,
identical, tape. You never use the same keystream bits twice. Since the keystream
bits are truly random, no one can predict the keystream. If you burn the tapes when
you are through with them, you've got perfect secrecy (assuming no one else has
copies of the tape).

Another information-theoretic stream cipher, developed by Claus Schnorr,
assumes that the cryptanalyst only has access to a limited number of ciphertext bits
[1395]. The results are highly theoretical and have no practical value, at least not yet.
For more details, consult [1361,1643,1193].

In a randomized stream cipher, the cryptographer tries to ensure that the crypt-
analyst has an infeasibly large problem to solve. The objective is to increase the
number of bits the cryptanalyst has to work with, while keeping the secret key
small. This can be done by making use of a large public random string for encryption
and decryption. The key would specify which parts of the large random string are to
be used for encryption and decryption. The cryptanalyst, not knowing the kéy, is
forced to pursue a brute-force search through the random string. The security of this
sort of cipher can be expressed by the average number of bits a cryptanalyst must
examine before the chances of determining the key improve over pure guessing.

Rip van Winkle Cipher

James Massey and Ingemar Ingemarsson proposed the Rip van Winkle cipher
[1011], so named because the receiver has to receive 2* bits of ciphertext before
attempting decryption. The algorithm, illustrated in Figure 17.10, is simple to
implement, provably secure, and completely impractical. Simply XOR the plaintext
with the keystream, and delay the keystream by 0 to 20 years—the exact delay is
part of the key. In Massey’s words: “One can easily guarantee that the enemy crypt- I
analyst will need thousands of years to break the cipher, if one is willing to wait mil-
lions of years to read the plaintext.” Further work on this idea can be found in
[1577,755].
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Figure 17.10 Rip van Winkle cipher.

Diffie’s Randomized Stream Cipher

This scheme was first proposed by Whitfield Diffie [1362]. The data are 2" random
sequences. The key is k, a random n-bit string. To encrypt a message, Alice uses the
kth random string as a one-time pad. She then sends the ciphertext plus the 2" ran-
dom strings over 27 + 1 different communications channels.

Bob knows k, so he can easily choose which one-time pad to decrypt the message
with. Eve has no choice but to examine the random sequences one at a time until
she finds the correct one-time pad. Any attack must examine an expected number
of bits which is in O{27). Rueppel points out that if you send n random strings
instead of 27, and if the key is used to specify a linear combination of those random
strings, the security is the same.

Maurer’s Randomized Stream Cipher

Ueli Maurer described a scheme based on XORing the plaintext with several large
public random-bit sequences [1034,1029,1030]. The key is the set of starting positions
within each sequence. This turns out to be provably almost secure, with a calculable
probability of being broken based on how much memory the attacker has at his dis-
posal, without regard to the amount of computing power he has. Maurer claims that
this scheme would be practical with about 100 different sequences of 10% random bits
each. Digitizing the face of the moon might be one way to get this many bits.

17.11 CASCADING MULTIPLE STREAM CIPHERS

If performance is no issue, there’s no reason not to choose multiple stream ciphers
and cascade them. Simply XOR the output of each generator with the plaintext to
get the ciphertext. Ucli Maurer’s result [see Section 15.7) says that if the generators
have independent keys, then the security of the cascade is at least as secure as the
strongest algorithm in the cascade. It is probably much more secure than that.

Stream ciphers can be combined in all the same ways as block ciphers (see Chap-
ter 15). Stream ciphers can be cascaded (see Section 15.7) with other stream ciphers,
or together with block ciphers.
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A clever trick is to use one algorithm, either a block or stream algorithm, to fre-
quently rekey a fast stream algorithm (which could even be a block algorithm in
OFB mode). The fast algorithm could be weak, since a cryptanalyst would never see
very much plaintext encrypted with any one key. ‘

There’s a trade-off between the size of the fast algorithm’s internal state (which
may impact security) and how often you can afford to rekey. The rekey needs to be
relatively fast; algorithms that have a long key setup routine aren’t suitable for this
kind of application. And the rekeying should be independent of the internal state of
the fast algorithm. ;

17.12 CHOOSING A STREAM CIPHER

If the study of stream ciphers offers any lessons, it’s that new types of attacks are
invented with alarming regularity. Classically, stream ciphers have been based on
considerable mathematical theory. This theory can be used to prove good properties
about the cipher, but can also be used to find new attacks against the cipher. I worry
about any stream cipher based solely on LFSRs for this reason.

I prefer stream ciphers that are designed more along the lines of block ciphers:
nonlinear transformations, large S-boxes, and so on. RC4 is my favorite, and SEAL
is a close second. I would be very interested in seeing cryptanalytic results against
my generators that combine LFSRs and FCSRs; this seems to be a very fruitful area
of stream-cipher research to mine for actual designs. Or, you can use a block cipher
in OFB or CFB to get a stream cipher.

Table 17.3 gives some timing measurements for some algorithms. These are
meant for comparison purposes only.

17.13 GENERATING MULTIPLE STREAMS FROM A SINGLE [
PSEUDO-RANDOM-SEQUENCE GENERATOR |

If you need to encrypt multiple channels of communications in a single box—
a multiplexer, for example—the easy solution is to use a different pseudo-random-
sequence generator for each stream. This has two problems: It requires more hard-
ware, and all the different generators have to be synchronized. It would be simpler
to use a single generator. A

Table 17.3
Encryption Speeds of Some [
Stream Ciphers on a 33MHz 486SX

Algorithm Encryption Speed (Megabytes/Second) !

A5 5
PIKE 62 ‘
RC4 164
SEAL 381 1
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17.14 Real Random-Sequence Generators 421

One solution is to clock the generator multiple times. If you want three indepen-
dent streams, clock the generator three times and send 1 bit into each stream. This
technique works, but you may have trouble clocking the generator as fast as you
would like. For example, if you can only clock the generator three times as fast as’
the data stream, you can only create three streams. Another way is to use the same
sequence for each channel—perhaps with a variable time delay. This is insecure.

A really clever idea [1489], patented by the NSA, is shown in Figure 17.11. Dump
the output of your favorite generator into an m-bit simple shift register. At each
clock pulse, shift the register one to the right. Then, for each output stream, AND
the register with a different m-bit control vector viewed as a unique identifier for
the desired output stream, then XOR all the bits together to get the output bit for
that stream. If you want several output streams in parallel, you need a separate con-
trol vector and an XOR/AND logic array for each output stream.

There are some things to watch out for. If any of the streams are linear combina-
tions of other streams, then the system can be broken. But if you are clever, this is
an easy and secure way to solve the problem.

17.14 REeAL RANDOM-SEQUENCE GENERATORS

Sometimes cryptographically secure pseudo-random numbers are not good enough.
Many times in cryptography, you want real random numbers. Key generation is a
prime example. It’s fine to generate random cryptographic keys based on a pseudo-

Generator
m-Bit )
Control Control Output Control l
Vector 1 Vector 2 Vectorn |
! ! Jo o
Bitwise Bitwise L Bitwise
AND AND AND
XOR XOR v XOR
Bits Bits Bits
Stream 1 Stream 2 Stream n

Figure 17.11 Multiple-bit generator.
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random sequence generator, but if an adversary gets a copy of that generator and the ‘
master key, the adversary can create the same keys and break your cryptosystem, no !
matter how secure your algorithms are. A random-sequence generator’s sequences
cannot be reproduced. No one, not even you, can reproduce the bit sequence out of
those generators.

There is a large philosophical debate over whether any of these techniques actu-
ally produces real random bits. I am not going to address that debate. The point here
is to produce bits that have the same statistical properties as random bits and are not
reproducible. .

The important thing about any real random-sequence generator is that it be
tested. There is a wealth of literature on this topic. Tests of randomness can be
found in [863,99]. Maurer showed that all these tests can be derived from trying to !
compress the sequence [1031,1032]. If you can compress a random sequence, then it
is not truly random.

Anyhow, what we have here is a whole lot of black magic. The primary point is to 1
generate a sequence of bits that your adversary is unlikely to guess. It doesn’t sound
like much, but it’s harder than you think. I can’t prove that any of these techniques
generates random bits. These techniques produce a sequence of bits that cannot be
easily reproduced. For some details, see [1375,1376,511].

RAND Tables

Back in 1955, when computers were still new, the Rand Corporation published a .
book that contained a million random digits [1289]. Their method is described in |
the book:

The random digits in the book were produced by rerandomization of a basic table
generated by an electronic roulette wheel. Briefly, a random frequency pulse
source, providing on the average about 100,000 pulses per second, was gated about
once per second by a constant frequency pulse. Pulse standardization circuits
passed the pulses through a 5-place binary counter. In principle the machine was
a 32-place roulette wheel which made, on the average, about 3000 revolutions per
trial and produced one number per second. A binary-to-decimal converter was
used which converted 20 of the 32 numbers (the other twelve were discarded) and
retained only the final digit of two-digit numbers; this final digit was fed into an ?
IBM punch to produce finally a punched card table of random digits.

The book goes on to discuss the results of various randomness tests on the data. i
It also suggests how to use the book to find a random number:

The lines of the digit table are numbered from 00000 to 19999, In any use of the
table, one should first find a random starting position. A common procedure for
doing this is to open the book to an unselected page of the digit table and blindly
choose a five-digit number; this number with the first digit reduced modulo 2 deter-
mines the starting line; the two digits to the right of the initially selected five-digit
number are reduced modulo 50 to determine the starting column in the starting ’
line. To guard against the tendency of books to open repeatedly at the same page »
and the natural tendency of a person to choose a number toward the center of the !
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page: every five-digit number used to determine a starting position should be
marked and not used a second time for this purpose.

The meat of the book is the “Table of Random Digits.” It lists them in 5-digit
groups—"10097 32533 76520 13586 . . .”—50 on a line and 50 lines on a page. The
table goes on for 400 pages and, except for a particularly racy section on page 283
which reads “69696,” makes for a boring read. The book also includes a table of
100,000 normal deviates.

The interesting thing about the RAND book is not its million random digits, but
that they were created before the computer revolution. Many cryptographic algo-
rithms use arbitrary constants—so-called “magic numbers.” Choosing magic num-
bers from the RAND tables ensures that they haven’t been specially chosen for
some nefarious reason. Khafre does this, for example.

Using Random Noise

The best way to collect a large number of random bits is to tap the natural ran-
domness of the real world. Often this method requires specialized hardware, but you
can play tricks with computers.

Find an event that happens regularly but randomly: atmospheric noise peaking at
a certain threshold, a toddler falling while learning to walk, or some such. Measure
the time interval between one event and the next event. Record it. Measure the time
interval between the second event and the third event. Record it as well. If the first
time interval is greater than the second, output 1 as the bit. If the second time inter-
val is greater than the first, output 0 as the event. Do it again for the next event.

Throw a dart at the New York Stock Exchange closing prices in your local news-
paper. Compare the closing price of the stock you hit with the closing price of the
stock directly above it. If the one you hit is more, output 0; if it less, output 1.

Hook a Geiger counter up to your computer, count emissions over a fixed time
interval, and keep the least significant bit. Or measure the time between successive
ticks. (Since the radioactive source is decaying, the average time between successive
ticks is continuously getting longer. You want to choose a source with the half life
long enough to make this negligible—like plutonium. Or, if you’re worried about
your health, you can apply appropriate statistical corrections.)

G. B. Agnew proposed a real random-bit generator, suitable for integration into a
VLSI device [21]. It is a metal insulator semiconduction capacitor (MISC). Two of
them are placed in close proximity, and the random bit is a function of the differ-
ence in charge between the two. Another random-number generator generates a ran-
dom-bit stream based on the frequency instability in a free-running oscillator [535].
A commercial chip from AT&T generates random numbers from the same phe-
nomenon [67]. M. Gude built a random-number generator that collected random
bits from physical phenomena, such as radioactive decay [668,669]. Manfield
Richter developed a random-number generator based on thermal noise from a semi-
conductor diode [1309].

Supposedly the time intervals between successive 2e4 light emissions from a
trapped mercury atom are random. Use that. Better yet, find a semiconductor com-
pany that makes random-number-generation chips; they are out there.
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There is also a random-number generator that uses the computer’s disk drive
[439]. It measures the time required to read a disk block and uses the variation in
that time as a random number source. It filters the timing data to remove structure
that comes from quantization, then applies a fast Fourier transform to vectors of the
numbers. This removes bias and correlation. Finally, it uses the spectral angles for
frequencies in (0, =}, normalized to the unit interval, as the random bits. A large part
of the variation in disk rotation speed is caused by air turbulence, so there is ran-
domness in the system. There are caveats, though. If you keep too many bits of the
output, you are using the fast Fourier transform as a random-number generator and
risk predictability. And it’s best to read the same disk block over and over, so that
your filtering doesn’t have to remove structure that comes from the disk-scheduler.
An implementation of this system was able to collect about 100 bits per minute
[439]. ‘

Using the Computer’s Clock

If you want a single random bit (or even a few), take the least significant bit from
any clock register. This might not be terribly random in a UNIX system because of
various potential synchronizations, but it works on some personal computers.

Beware of getting too many bits this way. Executing the same subroutine several
times in succession could easily skew bits generated in this manner. For example, if
each bit generation subroutine takes an even number of clock ticks to execute, you
will get an endless stream of the same bit out of the generator. If each subroutine
takes an odd number of clock ticks to execute, you will get an endless stream of
alternating bits out of the generator. Even if the resonance isn’t this obvious, the
resultant bit stream will be far from random.

One random-number generator works this way [918]:

Our truly random number generator...works by setting an alarm and then

incrementing a counter register rapidly in the CPU until an interrupt occurs. The

contents of the register are then XORed with the contents of an output buffer byte

{truncating the register’s data to 8 bits). After each byte of the output buffer is

filled, the buffer is further processed by doing a right, circular shift of each char- !
acter by 2 bits. This has the effect of moving the most active (and random) least |
significant bits into the most significant positions. The entire process is then
repeated 3 times. Finally each character of the buffer has been touched by the two
most random bits of the counter register after interrupts. That is 4n interrupts
have occurred where n is the number of desired random bytes.

This method is very sensitive to the randomness of system interrupts and the
granularity of the clock. The output looked pretty good when tested on.real UNIX
machines. s

Measuring Keyboard Latency

People’s typing patterns are both random and nonrandom. They are nonrandom
enough that they can be used as a means of identification, but they are random
enough that they can be used to generate random bits. Measure the time between

|
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17.14 Real Random-Sequence Generators 425

successive keystrokes, then take the least significant bits of those measurements.
These bits are going to be pretty random. This technique may not work on a UNIX
terminal, since the keystrokes pass through filters and other mechanisms before
they get to your program, but it will work on most personal computers.

Ideally, you only want to collect one random bit per keystroke. Collecting more
may skew the results, depending on how good a typist is sitting at the keyboard.
This technique is limited, though. While it’s easy to have someone type 100 words
or so when it is time to generate a key, it isn’t reasonable to ask the typist to type a
100,000-word essay to generate a keystream for a one-time pad.

Biases and Correlations

A major problem with all these systems is that there could be nonrandomness in
the generated sequence. The underlying physical processes might be random, but
many kinds of measuring instruments are between the digital part of the computer
and the physical process. Those instruments could easily introduce problems.

A way to eliminate bias, or skew, is to XOR several bits together. If a random bit
is biased toward 0 by a factor e, then the probability of O can be written as:

Pl0j=.5+e¢
XORing two of these bits together yields:
PO)=(5+ef+(5-¢ef=.5+2e
" By the same calculation, XORing 4 bits together yields:
P(0) = .5 + 8¢&*

XORing m bits will exponentially converge to an equal probability of 0 and 1. If you
know the maximum bias you are willing to accept for your application, you can cal-
culate how many bits you need to XOR together to get random bits below that bias.

An even better method is to look at the bits in pairs. If the 2 bits are the same, dis-
card them and look at the next pair. If the 2 bits are different, take the first bit as the
output of the generator. This eliminates bias completely. Other techniques for reduc-
ing bias use transition mappings, compression, and fast Fourier transforms [511].

The potential problem with both methods is that if there is a correlation between
adjacent bits, then these methods will increase the bias. One way to correct this is
to use multiple random sources. Take four different random sources and XOR the
bits together; or take two random sources, and look at those bits in pairs. -

For example, take a radioactive source and hook a Geiger counter to your com-
puter. Take a pair of noisy diodes and record as an event every time the noise
exceeds a certain peak. Measure atmospheric noise. Get a random bit from each and
XOR them together to produce the random bit. The possibilities are endless.

The mere fact that a random-number generator has a bias does not necessarily
mean that it is unusable. It just means that it is less secure. For example, consider
the problem of Alice generating a triple-DES 168-bit key. All she has is a random-bit
generator with a bias toward 0: It produces 55 percent Os and 45 percent ls. This
means that there are only 0.99277 bits of entropy per key bit, as opposed to 1 bit of
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entropy if the generator were perfect. Mallory, trying to break the key, can optimize
his brute-force search to try the most probable key first (000 . . . 0), and work toward
the least probable key (111 . . . 1). Because of the bias, Mallory can expect to find the
key in 2!” attempts. If there were no bias, Mallory would expect to make 21!
attempts. The resultant key is less secure, but not appreciably so.

Distilling Randomness

In general, the best way to generate random numbers is to find a whole lot of
seemingly random events and distill randomness from them. This randomness can
then be stored in a pool or reservoir that applications can draw on as needed. One-
way hash functions are ready-made for the job; they’re fast, so you can shovel quite
a bit through them without worrying too much about performance or the actual ran-
domness of each observation. Hash almost anything you can find that has at least
some randomness. Try:

— A copy of every keystroke
-— Mouse commands

— The sector number, time of day, and seek latency for every disk oper-
ation

— Actual mouse position

— Number of current scanline of monitor

- Contents of the actually displayed image
— Contents of FATs, kernel tables, and so on
— Access/modify times of /dev/tty

— CPU load

— Arrival times of network packets

— Input from a microphone

— /dev/audio without a microphone attached

If your system uses separate crystal oscillators for its CPU and time-of-day clocks, ,
try reading the time of day in a tight loop. On some (but not all] systems this will n
reflect the random phase jitter between the two oscillators. g

Since much of the randomness in these events is in their timing, use the most i
finely grained time-of-day clock you can find. A standard PC uses an Intel 8254
clock chip (or equivalent) driven at 1.1931818 megahertz, so reading the counter
register directly gives you 838-nanosecond resolution. To avoid skewing the results,
avoid taking your event samples on a timer interrupt.

Here is the process in C with MD5 (see Section 18.5) as the hash function:

char Randpool[16];

/* Call early and call often on a wide variety of random or semi-
* random system events to churn the randomness pool.
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* The exact format and length of randevent doesn’t matter as long as
* its contents are at least somewhat unpredictable.
B/
void churnrand(char *randevent,unsigned int randlen)
{
MD5_CTX md5;
MD5Init(&md5);
MD5Update(&md5,Randpool,sizeof(Randpool));
MD5Update(&md5, randevent,randlen);
MD5Final(Randpool,&md5);
}

After calling churnrand() enough to build up sufficient randomness in Randpool,
you can now generate random bits from it. MD5 again comes in handy, this time as
a counter-mode pseudo-random byte-stream generator.

long Randent;
void genrand(char *buf,unsigned int buflen)
{

MD5_CTX md5;

char tmp[16];

unsigned int n;

while(buflen != 0) {
/* Hash the pool with a counter */
MD5Init(&md5);
MD5Update(&md5,Randpool,sizeof(Randpool));
MD5Update(&md5, (unsigned char *)&Randcnt,sizeof(Randcnt));
MD5Final(tmp,&md5);
Randcnt++; /* Increment counter */

/* Copy 16 bytes or requested amount, whichever is Jess,
* to the user’s buffer */

n = (buflen <'16) ? buflen : 16;

memcpy (buf,tmp,n);

buf += n;

bufien —= n;

}

The hash function is crucial here for several reasons. First, it provides an easy way
to generate an arbitrary amount of pseudo-random data without having to call
churnrand() each time. In effect, the system degrades gracefully from perfect to prac-
tical randomness when the demand exceeds the supply. In this case it becomes the-
oretically possible to use the result from one genrand() call to determine a previous
or subsequent result. But this requires inverting MD5, which is computationally
infeasible.

This is important since the routine doesn’t know what each caller will do with
the random data it returns. Oné call might generate a random number for a protocol
that is sent in the clear, perhaps in response to a direct request by an attacker. The
very next call might generate a secret key for an unrelated session that the attacker
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wishes to penetrate. Obviously, it is very important that an attacker not be able to
deduce the secret key from the nonce.
One problem remains. There must be sufficient randomness in the Randpool|]
array before the first call to genrand(). If the system has been running for a while
with a local user typing on the keyboard, no problem. But what about a standalone
system that reboots automatically without seeing any keyboard or mouse input?
This is a tough one. A partial solution would require the operator to type for a
while after the very first reboot, and to create a seed file on disk before shutting
down to carry the randomness in Randseed|] across reboots. But do not save the
Randseed[] array directly. An attacker who steals this file could determine all of the i
results from genrand() after the last call to churnrand() prior to the file being created. '
The fix to this problem is to hash the Randseed|] array before storing it, perhaps.
by just calling genrand(). When the system reboots, you read in the seed file, pass it
to churnrand(), then promptly destroy it. Unfortunately, this does not deal with the - :
threat of someone stealing the seed file between reboots and using it to guess future I
values of the genrand() function. I see no solution to this problem other than to wait
until enough external random events have taken place after a reboot before allowing !
genrand|() to produce results.
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CHAPTER

Public-Key Digital
Signature Algorithms

20.1 DiIGITAL SIGNATURE ALGORITHM (DSA)

20

In August 1991, The National Institute of Standards and Technology (NIST) pro-
posed the Digital Signature Algorithm {DSA) for use in their Digital Signature Stan-

dard (DSS). According to the Federal Register [538]:

A Federal Information Processing Standard (FIPS) for Digital Signature Standard
(DSS) is being proposed. This proposed standard specifies a public-key digital sig-
nature algorithm (DSA) appropriate for Federal digital signature applications. The
proposed DSS uses a public key to verify to a recipient the integrity of data and
identity of the sender of the data. The DSS can also be used by a third party to
ascertain the authenticity of a signature and the data associated with it.

This proposed standard adopts a public-key signature scheme that uses a pair of
transformations to generate and verify a digital value called a signature.

This proposed FIPS is the result of evaluating a number of alternative digital sig-
nature techniques. In making the selection NIST has followed the mandate con-
tained in section 2 of the Computer Security Act of 1987 that NIST develop
standards to “. .. assure the cost-effective security and privacy of Federal infor-
mation and, among technologies offering comparable protection, on selecting the
option with the most desirable operating and use characteristics.”

Among the factors that were considered during this process were the level of
security provided, the ease of implementation in both hardware and software, the
ease of export from the U.S., the applicability of patents, impact on national secu-
rity and law enforcement and the level of efficiency in both the signing and veri-
fication functions. A number of techniques were deemed to provide appropriate
protection for Federal systems. The technique selected has the following desirable
characteristics:
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NIST expects it to be available on a royalty-free basis. Broader use of this
technique resulting from public availability should be an economic benefit to
the government and the public.

The technique selected provides for efficient implementation of the signature
operations in smart card applications. In these applications the signing opera-
tions are performed in the computationally modest environment of the smart
card while the verification process is implemented in a more computationally
rich environment such as a personal computer, a hardware cryptographic
module, or a mainframe computer.

Before it gets too confusing, let me review the nomenclature: DSA is the algo- |
rithm; the DSS is the standard. The standard employs the algorithm. The algorithm
is part of the standard. {

Reaction to the Announcement

NIST’s announcement created a maelstrom of criticisms and accusations. Unfor- !
tunately, it was more political than academic. RSA Data Security, Inc., purveyors of '
the RSA algorithm, led the criticism against DSS. They wanted RSA, and not
another algorithm, used as the standard. RSADSI makes a lot of money licensing the
RSA algorithm, and a royalty-free digital signature standard would directly affect
their bottom line. (Note: DSA is not necessarily free of patent infringements; 'l dis-
cuss that later.)

Before the algorithm was announced, RSADSI campaigned against a “common
modulus,” which might have given the government the ability to forge signatures.

When the algorithm was announced without this common modulus, they attacked

it on other grounds [154], both in letters to NIST and statements to the press. (Four {
letters to NIST appeared in [1326]. When reading them, keep in mind that at least |
two of the authors, Rivest and Hellman, had a financial interest in DSS’s not being ;
approved.) i

Many large software companies that already licensed the RSA algorithm came out !
against the DSS. In 1982, the government had solicited public-key algorithms for a
standard [537]. After that, there wasn’t a peep out of NIST for nine years. Companies i
such as IBM, Apple, Novell, Lotus, Northern Telecom, Microsoft, DEC, and Sun had
already spent large amounts of money implementing the RSA algorithm. They were
not interested in losing their investment. |

In all, NIST received 109 comments by the end of the first comment period on
February 28, 1992.

Let’s look at the criticisms against DSA, one by one.

1. DSA cannot be used for encryption or key distribution.
True, but not the point of the standard. This is a signature standard. NIST
should have a standard for public-key encryption. NIST is committing a
grave injustice to the American people by not implementing a public-key
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encryption standard. It is suspicious that this proposed digital signature
standard cannot be used for encryption. (As it turns out, though, it can—see
Section 23.3.) That does not mean that a signature standard is useless.

2. DSA was developed by the NSA, and there may be a trapdoor in the algo-
rithm.

Much of the initial comments were just paranoia: “NIST’s denial of
information with no apparent justification does not inspire confidence in
DSS, but intensifies concern that there is a hidden agenda, such as laying
the groundwork for a national public-key cryptosystem that is in fact vul-
nerable to being broken by NIST and/or NSA” [154]. One serious question
about the security of DSA was raised by Arjen Lenstra and Stuart Haber at
Bellcore. This will be discussed later.

3. DSA is slower than RSA [800].

True, more or less. Signature generation speeds are the same, but signa-
ture verification can be 10 to 40 times slower with DSA. Key generation,
however, is faster. But key generation is irrelevant; a user rarely does it. On
the other hand, signature verification is the most common operation.

The problem with this criticism is that there are many ways to play with
the test parameters, depending on the results you want. Precomputations
can speed up DSA signature generation, but don't always apply. Proponents
of RSA use numbers optimized to make their calculations easier; propo-
nents of DSA use their own optimizations. In any case, computers are get-
ting faster all the time. While there is a speed difference, it will not be
noticeable in most applications.

4. RSA is a de facto standard. :
Here are two examples of this complaint. From Robert Follett, the pro-
gram director of standards at IBM [570]:

IBM is concerned that NIST has proposed a standard with a different
digital signature scheme rather than adopting the international stan-
dard. We have been convinced by users and user organizations that the
international standards using RSA will be a prerequisite to the sales of
security products in the very near future.

From Les Shroyer, vice president and director, corporate MIS and
telecommunications, at Motorola [1444]:

. We must have a single, robust, politically-accepted digital signature
standard that is usable throughout the world, between both U.S. and
non-U.S., and Motorola and non-Motorola entities. The lack of other
viable digital signature technology for the last eight years has made
RSA a de facto standard. . . . Motorola and many other companies . . .
have committed millions of dollars to RSA. We have concern over the
interoperability and support of two different standards, as that situation
will lead to added costs, delays in deployment, and complication. . . .
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Many companies wanted NIST to adopt the ISO 9796, the international f
digital signature standard that uses RSA [762]. While this is a valid com- I
plaint, it is not a sufficient justification to make it a standard. A royalty-
free standard would better serve the U.S. public interest.

5. The DSA selection process was not public; sufficient time for analysis has
not been provided.

First NIST claimed that they designed the DSA; then they admitted that
NSA helped them. Finally, they confirmed that NSA designed the algo-
rithm. This worries many people; the NSA doesn’t inspire trust. Even so,
the algorithm is public and available for analysis; and NIST extended the
time for analysis and comment.

6. DSA may infringe on other patents. !
It may. This will be discussed in the section on patent issues. ’

7. The key size is too small. 2
This was the only valid criticism of DSS. The original implementation
set the modulus at 512 bits [1149]. Since the algorithm gets its security
from the difficulty of computing discrete logs in that modulus, this wor-
ried most cryptographers. There have since been advances in the problem
of calculating discrete logarithms in a finite field, and 512 bits is too short
for long-term security (see Section 7.2). According to Brian LaMacchia and (
Andrew Odlyzko, “. .. even 512-bit primes appear to offer only marginal ’_
security . . .” [934]. In response to this criticism, NIST made the key size
variable, from 512 bits to 1024 bits. Not great, but better. i

On May 19, 1994, the standard was finally issued [1154]. The issuing statement
said [542]; §
This standard is applicable to all Federal departments and agencies for the protec- {
tion of unclassified information. . . . This standard shall be used in designing and
implementing public-key based signature schemes which Federal departments
and agencies operate or which are operated for them under contract. Adoption and
use of this standard is available to private and commercial organizations.

Before you run out and implement this standard in your next product, read the
section on patent issues below.

Description of DSA

DSA is a variant of the Schnorr and ElGamal signature algorithms, and is fully
described in [1154]. The algorithm uses the following parameters:

p = a prime number L bits long, when L ranges from 512 to 1024 and is a

multiple of 64. (In the original standard, the size of p was fixed at 512

bits [1149]. This was the source of much criticism and was changed by |
NIST [1154].)

Facebook's Exhibit No. 1008
0157

MOBILEIRON, INC. - EXHIBIT 1020
Page 157



20.1 Digital Signature Algorithm (DSA) A87

g = a 160-bit prime factor of p — 1.

g =hP~ Y4 mod p, where h is any number less than p — 1 such that
h? -2 mod p is greater than 1.

x = a number less than g.
y=g"mod p.

The algorithm also makes use of a one-way hash function: H(m). The standard
specifies the Secure Hash Algorithm, discussed in Section 18.7.

The first three parameters, p, g, and g, are public and can be common across a net-
work of users. The private key is x; the public key is y.

To sign a message, m:

(1) Alice generates a random number, &, less than ¢.

(2) Alice generates

r=(g* mod p) mod g
s = (k™ (H{m) + xr)) mod g
The parameters r and s are her signature; she sends these to Bob.

(3) Bob verifies the signature by computing

w=s"'mod g

u; =(H(m) * w) mod g

u, = (rw) mod ¢

v=(g" * y*2) mod p) mod ¢

If v = 7, then the signature is verified.

Proofs for the mathematical relationships are found in [1154]. Table 20.1 provides
a summary.

Speed Precomputations

Table 20.2 gives sample software speeds of DSA [918].

Real-world implementations of DSA can often be speeded up through precompu-
tations. Notice that the value r does not depend on the message. You can create a
string of random k values, and then recompute r values for each of them. You can
also recompute k! for each of those k values. Then, when a message comes along,

you can compute s for a given r and k™.
This precomputation speeds up DSA considerably. Table 20.3 is a comparison of
DSA and RSA computation times for a particular smart card implementation

[1479].
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Table 20.1
DSA Signatures

Public Key: |
p 512-bit to 1024-bit prime (can be shared among a group of users) |
g 160-bit prime factor of p — 1 (can be shared among a group of users) |
g =hP-Y2mod p, where h is less than p — 1 and h? -4 mod p > 1 (can be shared
among a group of users|
y =g“mod p (a p-bit number)

Private Key:
< g (a 160-bit number)

x

Signing:
k choose at random, less than g
1 (signature) = (¢* mod p) mod g
§ (signature) = (k™! (H(m) + xr)) mod g

Verifying:
w = s'modqg
u, = (H{m)* w) mod g
u, = (rw)mod q

v = ({g" * y*2) mod p) mod g
If v = 1, then the signature is verified.

DSA Prime Generation

Lenstra and Haber pointed out that certain moduli are much easier to crack than

others [950]. If someone forced a network to use one of these “cooked” moduli, then

their signatures would be easier to forge. This isn't a problem for two reasons: These

moduli are easy to detect and they are so rare that the chances of using one when

choosing a modulus randomly are almost negligible—smaller, in fact, than the

chances of accidentally generating a composite number using a probabilistic prime

generation routine. |
In [1154] NIST recommended a specific method for generating the two primes, p

and g, where g divides p — 1. The prime p is L bits long, between 512 and 1024 bits

Table 20.2 |

DSA Speeds for Different Modulus Lengths |
with a 160-bit Exponent (on a SPARC II)

512 bits 768 bits 1024 bits

Sign 0.20 sec 0.43 sec 0.57 sec
Verify 0.35 sec 0.80 sec 1.27 sec I

i

|
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?
Table 20.3
Comparison of RSA and DSA Computation Times
DSA with
DSA RSA Common p, g, g

Global Computations Off-card (P) N/A Off-card (P)
Key Generation 14 sec Off-card (S) 4 sec
Precomputation 14 sec N/A 4 sec
Signature .03 sec 15 sec .03 sec
Verification 16 sec 1.5 sec 10 sec

1-5 sec off-card (P) 1-3 sec off-card (P)

Off-card computations were performed on an 8038633 MHz, personal computer. (P) indi-
cates public parameters off-card and (S) indicates secret parameters off-card. Both algorithms
use a 512-bit modulus.

long, in some multiple of 64 bits. The prime ¢ is 160 bits long. Let L — 1 = 160n + b,
where L is the length of p, and n and b are two numbers and b is less than 160.

(1) Choose an arbitrary sequence of at least 160 bits and call it S. Let g be the
length of S in bits.

(2) Compute U = SHA(S) @ SHA ((S + 1) mod 2%}, where SHA is the Secure
Hash Algorithm (see Section 18.7).

(3) Form g by setting the most significant bit and the least significant bit
of Uto 1.

(4) Check whether g is prime.
(5) If g is not prime, go back to step (1).
(6) Let C=0and N=2.
(7) Fork=0,1,...,n, let Vi=SHA ((S+ N + k) mod 2¢)
(8) Let W be the integer
W=V,+ 219V, ., 4+ 260e-1y 4 21ty mod 2°)
and let
X=W+2L-1
Note that X is an L-bit number.
(9) Let p=X —({X mod 2q) — 1). Note that p is congruent to 1 mod 2.
(10) If p <2t -1, then go to step (13).
{11) Check whether p is prime.
{12) If p is prime, go to step (15).
(13) LetC=C+1and N=N+n+1.
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(14) If C =4096, then go to step (1). Otherwise, go to step (7).
(15} Save the value of S and the value of C used to generate p and g.

In [1154], the variable S is called the “seed,” C is called the “counter,” and N the

“offset.”

~ The point of this exercise is that there is a public means of generating p and q.

For all practical purposes, this method prevents cooked values of p and ¢. If some-

one hands you a p and a g, you might wonder where that person got them. How-

ever, if someone hands you a value for S and C that generated the random p and g,

you can go through this routine yourself. Using a one-way hash function, SHA in *

the standard, prevents someone from working backwards from a p and g to gener-

ate an S and C. f
This security is better than what you get with RSA. In RSA, the prime numbers

are kept secret. Someone could generate a fake prime or one of a special form that f

makes factoring easier. Unless you know the private key, you won’t know that. {

Here, even if you don’t know a person’s private key, you can confirm that p and ¢ t

have been generated randomly. ‘

ElGamal Encryption with DSA

There have been allegations that the government likes the DSA because it is only
a digital signature algorithm and can’t be used for encryption. It is, however, possi- [
ble to use the DSA function call to do ElGamal encryption.
Assume that the DSA algorithm is implemented with a single function call: ;

DSAsign (p,q,9,k,x,h,r,s)

You supply the numbers p, ¢, g k, x, and h, and the function returns the signature
parameters: r and s.
To do ElGamal encryption of message m with public key y, choose a random num-

ber, k, and call

DSAsign (p,p,9,k,0,0,r,s)

o — - v

The value of r returned is a in the ElGamal scheme. Throw s away. Then, call
DSAsign (p,p,y,k,0,0,r,s)
Rename the value of r to be u; throw s away. Call

DSAsign (p,p,m,1,u,0,r,s)

Throw r away. The value of s returned is b in the E1Gamal scheme. You now have

the ciphertext, a and b. :
Decryption is just as easy. Using secret key x, and ciphertext messages a and b, call

DSAsign (p,p,a,x,0,0,r,s)
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The value r is a* mod p. Call that e. Then call
DSAsign (p,p,1,e,b,0,r,s)

The value s is the plaintext message, m.

This method will not work with all implementations of DSA. Some may fix the
values of p and g, or the lengths of some of the other parameters. Still, if the imple-
mentation is general enough, this is a way to encrypt using nothing more than digi-
tal signature function.

RSA Encryption with DSA
RSA encryption is even easier, With a modulus n, message m, and public key e, call

DSAsign (n,n,m,e,0,0,r,s)

The value of r returned is the ciphertext.
RSA decryption is the same thing, If d is the private key, then

DSAsign (n,n,m,d,0,0,r,s)

returns the plaintext as the value of r.

Security of DSA

At 512-bits, DSA wasn't strong enough for long-term security. At 1024 bits, it is.
The NSA, in its first public interview on the subject, commented to Joe Aber-
nathy of The Houston Chronicle on allegations about a trapdoor in DSS [363]:

Regarding the alleged trapdoor in the DSS. We find the term trapdoor somewhat
misleading since it implies that the messages sent by the DSS are encrypted and
with access via a trapdoor one could somehow decrypt (read) the message without
the sender’s knowledge.

The DSS does not encrypt any data. The real issue is whether the DSS is sus-
ceptible to someone forging a signature and therefore discrediting the entire sys-
tem. We state categorically that the chances of anyone—including NSA—forging
a signature with the DSS when it is properly used and implemented is infinitesi-
mally small.

Furthermore, the alleged trapdoor vulnerability is true for any public key-based
authentication system, including RSA. To imply somehow that this only affects
the DSS (a popular argument in the press) is totally misleading. The issue is one of
implementation and how one goes about selecting prime numbers. We call your
attention to a recent EUROCRYPT conference which had a panel discussion on the
issue of trapdoors in the DSS. Included on the panel was one of the Bellcore
researchers who initially raised the trapdoor allegation, and our understanding is
that the panel-—including the person from Bellcore—concluded that the alleged
trapdoor was not an issue for the DSS. Furthermore, the general consensus
appeared to be that the trapdoor issue was trivial and had been overblown in the
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press. However, to try to respond to the trapdoor allegation, at NIST’s request, we
have designed a prime generation process which will ensure that one can avoid
selection of the relatively few weak primes which could lead to weakness in using
the DSS. Additionally, NIST intends to allow for larger modulus sizes up to 1024
which effectively negates the need to even use the prime generation process to
avoid weak primes. An additional very important point that is often overlooked is
that with the DSS the primes are public and therefore can be subject to public
examination. Not all public key systems provide for this same type of examination.
The integrity of any information security system requires attention to proper
implementation. With the myriad of vulnerabilities possible given the differences
among users, NSA has traditionally insisted on centralized trusted centers as a way
to minimize risk to the system. While we have designed technical modifications to
the DSS to meet NIST’s requests for a more decentralized approach, we still would
emphasize that portion of the Federal Register notice for the DSS which states:

“While it is the intent of this standard to specify general security require-
ments for generating digital signatures, conformance to this standard does
not assure that a particular implementation is secure. The responsible
authority in each agency or department shall assure that an overall imple-
mentation provides an acceptable level of security. NIST will be working
with government users to ensure appropriate implementations.”

Finally, we have read all the arguments purporting insecurities with the DSS,
and we remain unconvinced of their validity. The DSS. has been subjected to
intense evaluation within NSA which led to its being endorsed by our Director of
Information Systems Security for use in signing unclassified data processed in
certain intelligence systems and even for signing classified data in selected sys-
tems. We believe that this approval speaks to the lack of any credible attack on
the integrity provided by the DSS given proper use and implementation. Based on
the technical and security requirements of the U.S. government for digital signa-
tures, we believe the DSS is the best choice. In fact, the DSS is being used in a
pilot project for the Defense Message System to assure the authenticity of elec-
tronic messages of vital command and control information. This initial demon-
stration includes participation from the Joint Chiefs of Staff, the military
services, and Defense Agencies and is being done in cooperation with NIST.

"I’'m not going to comment on the trustworthiness of the NSA. Take their com-
ments for what you think they’re worth.

Attacks against k

Each signature requires a new value of k, and that value must be chosen ran-
domly. If Eve ever recovers a k that Alice used to sign a message, perhaps by exploit-
ing some properties of the random-number generator that generated k, she can
recover Alice’s private key, x. If Eve ever gets two messages signed using the same
k, even if she doesn’t know what it is, she can recover x. And with x, Eve can gen-
erate undetectable forgeries of Alice’s signature. In any implementation of the DSA,
a good random-number generator is essential to the system’s security [1468].

> e
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Dangers of a Common Modulus

Even though the DSS does not specify a common modulus to be shared by every-
one, different implementations may. For example, the Internal Revenue Service is -
considering using the DSS for the electronic submission of tax returns. What if they
require every taxpayer in the country to use a common p and g2 Even though the
standard doesn’t require a common modulus, such an implementation accom.-
plishes the same thing. A common modulus too easily becomes a tempting target
for cryptanalysis. It is still too early to tell much about different DSS implementa-
tions, but there is some cause for concern.

Subliminal Channel in DSA

Gus Simmons discovered a subliminal channel in DSA [1468,1469] (see Section
23.3). This subliminal channel allows someone to embed a secret message in his sig-
nature that can only be read by another person who knows the key. According to
Simmons, it is a “remarkable coincidence” that the “apparently inherent short-
comings of subliminal channels using the ElGamal scheme can all be overcome” in
the DSS, and that the DSS “provides the most hospitable setting for subliminal
communications discovered to date.” NIST and NSA have not commented on this
subliminal channel; no one knows if they even knew about it. Since this subliminal
channel allows an unscrupulous implementer of DSS to leak a piece of the private
key with each signature, it is important to never use an implementation of DSS if
you don’t trust the implementer. :

Patents

David Kravitz, formetly of the NSA, holds a patent on DSA [897]. According to
NIST [538]:

NIST intends to make this DSS technique available world-wide on a royalty-free
basis to the public interest. We believe this technique is patentable and that no
other patents would apply to the DSS, but we cannot give firm assurances to such
effect in advance of issuance of the patent.

Even so, three patent holders claim that the DSA infringes on their patents:
Diffie-Hellman (see Section 22.1) [718], Merkle-Hellman (see Section 19.2) [720],
and Schnorr (see Section 21.3) [1398]. The Schnorr patent is the most troublesome.
The other two patents expire in 1997; the Schnorr patent is valid until 2008. The
Schnorr algorithm was not developed with government money; unlike the PKP
patents, the U.S. government has no rights to the Schnorr patent; and Schnorr
patented his algorithm worldwide. Even if the U.S. courts rule in favor of DSA, it is
unclear what other courts around the world would do. Is an international company
going to adopt a standard that may be legal in some countries but infringes on a
patent in others? This issue will take time to resolve; at the time of this writing it
isn’t even resolved in the United States.

In June 1993 NIST proposed to give PKP an exclusive patent license to DSA [541].
The agreement fell through after public outcry and the standard was issued without
any deal. NIST said [542]:
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... NIST has addressed the possible patent infringement claims, and has con-
cluded that there are no valid claims.

So the standard is official, lawsuits are threatened, and no one knows what to do.
NIST has said that it would help defend people sued for patent infringement, if they
were using DSA to satisfy a government contract. Everyone else, it seems, is on
their own. ANSI has a draft banking standard that uses DSA [60]. NIST is working
to standardize DSA within the government. Shell Oil has made DSA their interna-
tional standard. I know of no other proposed DSA standards.

20.2 DSA VARIANTS

This variant makes computation easier on the signer by not forcing him to compute ]
k™ [1135]. All the parameters are as in DSA. To sign a message, m, Alice generates {
two random numbers, k and d, both less than g. The signature is

r=(g* mod p) mod g

$=(H[m)+xr) * d mod q

t=kd mod g

Bob verifies the signature by computing

w=t/smod g
u, = (H(m) * w) mod g
11, = (rw) mod g
If r = ((g" * y"2) mod p} mod ¢, then the signature is verified. ;
This next variant makes computation easier on the verifier [1040,1629]. All the ]

parameters are as in DSA. To sign a message, m, Alice generates a random number,
k, less than g. The signature is

r=(g* mod p) mod ¢
s=k * (H{m)+ xr)? mod ¢
Bob verifies the signature by computing
u, = (H{m) * s) mod g
u, =(sr)mod g _
If r = ((g"1 * y"2) mod p) mod g, then the signature is verified.

Another DSA variant allows for batch verification; Bob can verify signatures in
batches [1135]. If they are all valid, he is done. If one isn’t valid, then he still has to
find it. Unfortunately, it is not secure; either the signer or the verifier can easily cre-
ate a set of bogus signatures that satisfy the batch criteria [974].

There is also a variant for DSA prime generation, one that embeds g and the

parameters used to generate the primes within p. Whether this scheme reduces |
the security of DSA is still unknown. J
i
i

Facebook's Exhibit No. 1008
0165

MOBILEIRON, INC. - EXHIBIT 1020
Page 165



20.3 Gost Digital Signature Algorithm 495
o

(1) Choose an arbitrary sequence of at least 160 bits and call it S. Let g be the
length of S in bits.

(2] Compute U = SHA(S) ® SHA ((S + 1) mod 28], where SHA is the Secure
Hash Algorithm (see Section 18.7).

(3) Form g by setting the most significant bit and the least significant bit of
Utol.

(4) Check whether g is prime.
(5) Let p be the concatenation of g, S, C, and SHA(S). C is set to 32 zero bits.
(6) p=p-(pmodg)+1.
(7) p=p+q.
(8) If the C in p is O x 7fffffff, go to step (1).
(9] Check whether p is prime.
(10) If p is composite, go to step (7).
The neat thing about this variant is that you don’t have to store the values of C

and § used to generate p and ¢; they are embedded within p. For applications with-
out a whole lot of memory, like smart cards, this can be a big deal.

20.3 GOST DIGITAL SIGNATURE ALGORITHM

This is a Russian digital signature standard, officially called GOST R 34.10-94 [656].
The algorithm is very similar to DSA, and uses the following parameters

p =a prime number, either between 509 and 512 bits long,
or between 1020 and 1024 bits long.

q = a 254- to 256-bit prime factor of p - 1.

a = any number less than p — 1 such that a?mod p = 1.

x = a number less than q.

v =a*mod p.

The algorithm also makes use of a one-way hash function: H(x). The standard
specifies GOST R 34.11-94 (see Section 18.11), a function based on the GOST sym-
metric algorithm (see Section 14.1) [657].

The first three parameters, p, g, and g, are public and can be common across a net-

work of users. The private key is x; the public key is y.
To sign a message, m

(1) Alice generates a random number, &, less than g
{2) Alice generates

r=(a* mod p) mod ¢

s = (xr + k(H(m))) mod ¢
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If H{m) mod g =0, then set it equal to 1. If r = 0, then choose another k and
start again. The signature is two numbers: r mod 22°¢ and s mod 22%. She
sends these to Bob.

(3) Bob verifies the signature by computing
- v=H{m)? *mod q
zy=(sv)mod g
zy=({g~1) * v)mod g
u= ((azl * y*2) mod p) mod g

If u =1z, then the signature is verified.

The difference between this scheme and DSA is that with DSA s = (xr + k™\(H[m)))
mod g, which leads to a different verification equation. Curious, though, is that ¢ is
256 bits. Most Western cryptographers seem satisfied with a g of around 160 bits.
Perhaps this is just a reflection of the Russian tendency to play it ultrasafe.
The standard has been in use since the beginning of 1995, and is not classified “for
special use”—whatever that means. ' {

20.4 DISCRETE LOGARITHM SIGNATURE SCHEMES

ElGamal, Schnorr (see Section 21.3), and DSA signature schemes are very similar. In
fact, they are just three examples of a general digital signature scheme based on the
Discrete Logarithm Problem. Along with thousands of other signature schemes,
they are part of the same family [740,741,699,1184].
Choose p, a large prime number, and g, either p — 1 or a large prime factor of p —
1. Then choose g, a number between 1 and p such that g7 = 1 (mod p). All these num-
bers are public, and can be common to a group of users. The private key is x, less
than g. The public key is y = g mod q.
To sign a message, m, first choose a random k less than and relatively prime to q.
If g is also prime, any k less than g works. First compute ; j

r=g*mod p
The generalized signature equation now becomes
ak=b+cxmod g §

The coefficients a, b, and ¢ can be any of a variety of things. Each line in Table 20.4
gives six possibilities.
To verify the signature, the receiver must confirm that

7%= phy ot

This is called the verification equation.
Table 20.5 lists the signature and verifications possible from just the first line of
potential values for a, b, and ¢, ignoring the effects of the +.

}
)
¢
i
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Table 20.4
Possible Permutations
of a, b, and ¢ (' = r mod q)

+r’ +s m
+r'm ts 1
+r'm +ms 1
tmr 1r's 1
tms r's 1

That's six different signature schemes. Adding the negative signs brings the total
to 24. Using the other possible values listed for a, b, and ¢ brings the total to 120.

ElGamal [518,519] and DSA [1154] are essentially based on equation (4). Other
schemes are based on equation (2 [24,1629]. Schnorr [1396,1397] is closely related to
equation (5), as is another scheme [1183]. And equation (1) can be modified to yield
the scheme proposed in [1630]. The rest of the equations are new.

There’s more. You can make any of these schemes more DSA-like by defining r as

r=(g* mod p) mod ¢
Keep the same signature equation and make the verification equation

i =a'bmod g

i, =a'cmod g

r = (g"ly"> mod p) mod g
(r mod g)* = gby° mod p

There are two other possibilities along these lines [740,741]; you can do this with
each of the 120 schemes, bringing the total to 480 discrete-logarithm-based digital
signature schemes. - ,

But wait—there’s more. Additional generalizations and variations can generate
more than 13,000 variants (not all of them terribly efficient) [740,741].

One of the nice things about using RSA for digital signatures is a features called
message recovery. When you verify an RSA signature you compute m. Then you
compare the computed m with the message and see if the signature is valid for that

Table 20.5

Discrete Logarithm Signature Schemes
Signature Equation Verification Equation
(1) 7k =s + mx mod g ?’ =y inadlp
(2) 7k =m + sx mod q r”=gm"y* mod p
(3) sk =r + mx mod q r*=gy" mod p
(4) sk=m +7xmod q = goyi ot p
(5) mk =s+rxmod q =gy modp
(6) mk =1+ sx mod g =gy modp
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message. With the previous schemes, you can’t recover m when you compute the
signature; you need a candidate m that you use in a verification equation. Well, as it
turns out it is possible to construct a message recovery variant for all the above sig-
nature schemes. ‘

To sign, first compute

r=mg*mod p

and replace m by 1 in the signature equation. Then you can reconstruct the verifi-
cation equation such that m can be computed directly.
You can do the same with the DSA-like schemes:

r=(mg* mod p) mod ¢

All the variants are equally secure, so it makes sense to choose a scheme that is
easy to compute with. The requirement to compute inverses slows most of these
schemes. As it turns out, a scheme in this pile allows computing both the signature
equation and the verification equation without inverses and also gives message
recovery. It is called the p-NEW scheme [1184].

r=mg*modp
s=k-rxmodq

And m is recovered (and the signature verified) by
- m=g'y'rmodp

Some variants sign two and three message blocks at the same time [740]; other
variants can be used for blind signatures [741].

This is a remarkable piece of research. All of the various discrete-logarithm-based
digital signature schemes have been put in one coherent framework. In my opinion
this finally puts to rest any patent dispute between Schnorr [1398] and DSA [897]:
DSA is not a derivative of Schnorr, nor even of ElGamal. All three are examples of
this general construction, and this general construction is unpatented.

20.5 ONG-SCHNORR-SHAMIR

This signature scheme uses polynomials modulo n [1219,1220]. Choose a large inte-
ger n (you need not know the factorization of n). Then choose a random integer, k&, }
such that k and n are relatively prime. Calculate h such that

h=-k?mod n=—(k!f*mod n

The public key is h and n; k is the private key.
To sign a message, M, first generate a random number, 7, such that r and n are rel- f
atively prime. Then calculate: ﬁ
S81=1/2 = (M/r+r) mod n :
Sy=k/2 * (M/r— 1) mod n l

|
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The pair, S, and S,, is the signature.
To verify a signature, confirm that
S*+h * 8$,> = M (mod n)

The version of the scheme described here is based on quadratic polynomials.
When it was first proposed in [1217], a $100 reward was offered for successful crypt-
analysis. It was proved insecure [1255,18], but its authors were not deterred. They
‘proposed a modification of the algorithm based on cubic polynomials, which is also
insecure [1255]. The authors then proposed a quartic version, which was also broken
[524,1255]. A variant which fixes these problems is in [1134].

20.6 ESIGN

ESIGN is a digital signature scheme from NTT Japan [1205,583]. It is touted as being
at least as secure and considerably faster than either RSA or DSA, with similar key
and signature lengths. ‘
The private key is a pair of large prime numbers, p and g. The public key is n, when
n=pq

H is a hash function that operates on a message, m, such that H{m) is between 0
and m — 1. There is also a security parameter, k, which will be discussed shortly.

(1) Alice picks a random number x, where x is less than pq.
(2) Alice computes:
w; the least integer that is larger than or equal to
(H{m) - x* mod nl/pq
8 =x + ((w/kx* ') mod p)pq

(3) Alice sends s to Bob.

(4) To verify the signature, Bob computes s* mod n. He also computes a, which
is the least integer larger than or equal to two times the number of bits of
n divided by 3. If H{m) is less than or equal to s* mod n, and if s* mod n is
less than H{m) + 27 then the signature is considered valid.

This algorithm works faster with precomputation. This precomputation can be
done at any time and has nothing to do with the message being signed. After pick-
ing x, Alice could break step (2) into two partial steps. The first can be precomputed.

(2a) Alice computes:

u=x*modn
v=1/(kx*"')mod p
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(2b) Alice computes:
w = the least integer that is larger than or equal to

(H(m) - ul/pq)
s =x+ (wv mod p)pq

For the size of numbers generally used, this precomputation speeds up the signa-
ture process by a factor of 10. Almost all the hard work is done in the precomputa-
tion stage. A discussion of modular arithmetic operations to speed ESIGN can be
found in [1625,1624]. This algorithm can also be extended to work with elliptic
curves [1206].

Security of ESIGN

When this algorithm was originally proposed, k was set to 2 [1215]. This was
quickly broken by Ernie Brickell and John DeLaurentis [261], who then extended
their attack to k = 3. A modified version of this algorithm [1203] was broken by
Shamir [1204]. The variant proposed in [1204] was broken in [1553]. ESIGN is the
current incarnation of this family of algorithms. Another new attack [963] does not
work against ESIGN,

The authors currently recommend these values for k: 8, 16, 32 64, 128, 256, 512, |
and 1024. They also recommend that p and q each be of at least 192 bits, making n i
at least 576 bits long. (I think n should be twice that length.) With these parameters, i
the authors conjecture that ESIGN is as secure as RSA or Rabin. And their analysis
shows favorable speed comparison to RSA, ElGamal, and DSA [582].

Patents

ESIGN is patented in the United States [1208], Canada, England, France, Germany,
and Italy. Anyone who wishes to license the algorithm should contact Intellectual
Property Department, NTT, 1-6 Uchisaiwai-cho, 1-chome, Chiyada-ku, 100 Japan.

20.7 CELLULAR AUTOMATA

A new and novel idea, studied by Papua Guam [665], is the use of cellular automata :
in public-key cryptosystems. This system is still far too new and has not been stud-
ied extensively, but a preliminary examination suggests that it may have a crypto-
graphic weakness similar to one seen in other cases [562]. Still, this is a promising
area of research. Cellular automata have the property that, even if they are invertible,
it is impossible to calculate the predecessor of an arbitrary state by reversing the rule
for finding the successor. This sounds a whole lot like a trapdoor one-way function.

e

20.8 OTHER PuBLIC-KEY ALGORITHMS

Many other public-key algorithms have been proposed and broken over the years.
The Matsumoto-Imai algorithm [1021] was broken in [450]. The Cade algorithm

_
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was first proposed in 1985, broken in 1986 [774], and then strengthened in the same

year [286]. In addition to these attacks, there are general attacks for decomposing

polynomials over finite fields [605). Any algorithm that gets its security from the .
composition of polynomials over a finite field should be looked upon with skepti-

cism, if not outright suspicion. '

The Yagisawa algorithm combines exponentiation mod p with arithmetic mod p
— 1 [1623]; it was broken in [256]. Another public-key algorithm, Tsujii-Kurosawa-
Itoh-Fujioka-Matsumoto [1548] is insecure [948]. A third system, Luccio-Mazzone
[993], is insecure [717]. A signature scheme based on birational permutations [1425]
was broken the day after it was presented [381]. Tatsuaki Okamoto has several sig-
nature schemes: one is provably as secure as the Discrete Logarithm Problem, and
another is provably as secure as the Discrete Logarithm Problem and the Factoring
Problem [1206]. Similar schemes are in [709].

Gustavus Simmons suggested J-algebras as a basis for public-key algorithms
[1455,145]. This idea was abandoned after efficient methods for factoring polynomi-
als were invented [951]. Special polynomial semigroups have also been studied
[1619,962], but so far nothing has come of it. Harald Niederreiter proposed a public-
key algorithm based on shift-register sequences [1166]. Another is based on Lyndon
words [1476] and another on propositional calculus [817]. And a recent public-key
algorithm gets its security from the matrix cover problem [82). Tatsuaki Okamoto
and Kazuo Ohta compare a number of digital signature schemes in [1212].

Prospects for creating radically new and different public-key cryptography algo-
rithms seem dim. In 1988 Whitfield Diffie noted that most public-key algorithms
are based on one of three hard problems [492,494]:

1. Knapsack: Given a set of unique numbers, find a subset whose sum is N,
2. Discrete logarithm: If p is a prime and g and M are integers, find x such that
g*= M (mod p).
3. Factoring: If N is the product of two primes, either
a) factor N,
b) given integers M and G, find d such that M? = C (mod N),
c) given integers e and C, find M such that M* = C (mod'N), or

d} given an integer x, decide whether there exists an integer y such that
x = y*(mod N).

According to Diffie [492,494], the Discrete Logarithm Problem was suggested by J.
Gill, the Factoring Problem by Knuth, and the knapsack problem by Diffie himself.

This narrowness in the mathematical foundations of public-key cryptography is
worrisome. A breakthrough in either the problem of factoring or of calculating dis-
crete logarithms could render whole classes of public-key algorithms insecure.
Diffie points out [492,494] that this risk is mitigated by two factors:

1. The operationslon which public key cryptography currently depends—mul-
tiplying, exponentiating, and factoring—are all fundamental arithmetic phenom-
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ena. They have been the subject of intense mathematical scrutiny for centuries
and the increased attention that has resulted from their use in public key cryp-
tosystems has on balance enhanced rather than diminished our confidence.

2. Our ability to carry out large arithmetic computations has grown steadily
and now permits us to implement our systems with numbers sufficient in size to
be vulnerable only to a dramatic breakthrough in factoring, logarithms, or root
extraction.

As we have seen, not all public-key algorithms based on these problems are secure.
The strength of any public-key algorithm depends on more than the computational
complexity of the problem upon which it is based; a hard problem does not necessar-
ily imply a strong algorithm. Adi Shamir listed three reasons why this is so [1415]:

1. Complexity theory usually deals with single isolated instances of a problem.
A cryptanalyst often has a large collection of statistically related problems to
solve—several ciphertexts encrypted with the same key.

2. The computational complexity of a problem is typically measured by its
worst-case or average-case behavior. To be useful as a cipher, the problem must be
hard to solve in almost all cases.

3. An arbitrarily difficult problem cannot necessarily be transformed into a
cryptosystem, and it must be possible to insert trapdoor information into the
problem so that a shortcut solution is possible with this information and only
with this information.
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