
Facebook's Exhibit No. 1018 
001

MOBILEIRON, INC. - EXHIBIT 1022 
Page 001



~
~

~
~

~
 ~

~
~

~
 

~
€,~

'~
 
j

~
 ~~.

!,
~.tiae►mtrO

Facebook's Exhibit No. 1018 
002

MOBILEIRON, INC. - EXHIBIT 1022 
Page 002



Facebook's Exhibit No. 1018 
003

MOBILEIRON, INC. - EXHIBIT 1022 
Page 003



1 .

~~

Sri

Facebook's Exhibit No. 1018 
004

MOBILEIRON, INC. - EXHIBIT 1022 
Page 004



t.

~ ~~

Facebook's Exhibit No. 1018 
005

MOBILEIRON, INC. - EXHIBIT 1022 
Page 005



ERROR CODING FOR
n r-~i~-unn~Tin onn~rc~c•nr~c~

Facebook's Exhibit No. 1018 
006

MOBILEIRON, INC. - EXHIBIT 1022 
Page 006



ELECTRICAL SCIENCE
A Series of Monographs and Texts

Editors: Henry G. Booker and Nicholas DeClaris
A complete list of titles in this series appears at the end of this volume

CtP 4 Sip ~9?4

Facebook's Exhibit No. 1018 
007

MOBILEIRON, INC. - EXHIBIT 1022 
Page 007



ERROR CODING
FO R

~ ' AR ITH M ETI C
PR CESS RS0 0
T.~ R. N. Rao Department of Electrical Engineering

University of Maryland, College Park
'a 1

ACADEMIC PRESS New York and London • 1974

A Subsidiary of Harcourt Brace Jovanovich, Publishers

Facebook's Exhibit No. 1018 
008

MOBILEIRON, INC. - EXHIBIT 1022 
Page 008



A ~~~
.~ ~ ~

1~~~-

COPYRIGHT D LI~4, BY ACADEMIC PRESS, INC.
ALL RIGHTS RESERVED.
NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANS I'1TED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.24/28 Oval Road, London NWl

Library of Congress Cataloging in Publication Data

Rao, Thammavarapu R N Date
Error coding for arithmetic processors.

(Electrical science)
Includes bibliographical references.
I. Error-correcting codes (Information theory)

2. Computer arithmetic and logic units. I. Title.
QA268.R36 1974 519.4 73-22381
ISBN 0-12-580750-3

PRINTED IN THE UNITED STATES OF AMERICA

Facebook's Exhibit No. 1018 
009

MOBILEIRON, INC. - EXHIBIT 1022 
Page 009



S'~

t7"

d
To

Rajyalaxmi

Ramakrishna, Chandrika, and Radhika

~►'-.
c-

,-,.~
:~

Facebook's Exhibit No. 1018 
010

MOBILEIRON, INC. - EXHIBIT 1022 
Page 010



«~~~ ~~ ~~~ ~~ao~ ~~ao~

~~a ZS ~e~~°~

What I have heard or seen
from many a scholar,
a pious hope it has been
to render it crystal clear.

Translated from Bammera Pothanna's "Bhagavatham."
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Foreword

Computation without error remains an illusive goal of considerable
importance in certain critical applications which require sophisticated
and extensive computation with a high degree of system reliability.
Recent advances in solid state technology have provided individual
devices with exceptional reliability. In some systems, this improvement
in device reliability has obtained suf~'icient systems reliability. However,

i in others, the large number of devices required has negated the improve-
ment in reliability at the systems level. Such problems can be solved by
the unlikely development of a perfect device which never fails. In the
absence of such a device, one can expect greater use of the techniques

f: ', of fault-tolerant computing to obtain improved systems reliability.

~~ Such improvement is not obtained without cost in performance or

'~, equipment, but in some applications, the cost is justifiable.
t The technology of fault-tolerant computing is, at the present time, in

~; its infancy and much development is still needed. In particular, more
~ research and development directed toward realizable implementations

'~ is needed. There exists a substantial amount of literature on the subject,
but the number of successful applications remains limited. However,
the need for fault-tolerant computing will probably increase rather than
decrease in the future.

Professor Rao, in this book, considers arithmetically invariant

xi
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xli FOREWORD

codes, which is an important technique of fault-tolerant computing. He
has surveyed the extensive literature on the subject and organized it
in a form which should be extremely useful to researchers in this area.

HARVEY L. GARNER

Moore School of Electrical Engineering
University of Pennsylvania
Philadelphia, Pennsylvania

Facebook's Exhibit No. 1018 
016

MOBILEIRON, INC. - EXHIBIT 1022 
Page 016



JORD

Pre ace
. He
;d it
irea.

:NER

>ring
ania
ania

Since the early work of Diamond (1955), there has been continuous
progress in arithmetic coding theory. This field derives its strength
and vitality from the classical works of Brown (1960), Peterson (1961),
Chien (1964-1972), Massey (1964), Garner (1966), and others.

The purpose of this book is to combine the available knowledge
on arithmetic codes and bring it under one cover for the benefit of
students and researchers in this field of specialization. The presentation
here includes the necessary mathematical background and error control
preliminaries in order for this book to serve as a viable text in an
advanced undergraduate or a graduate level course. The preliminary
drafts of this book have been used for a graduate course in arithmetic
coding and are presently being used in a new (modified version of the
above) course entitled "Arithmetic Codes and Fault-Tolerant Com-
puting " at the University of Maryland.

The first two chapters provide the student with a minimal mathe-
matical background in algebra, number theory, and error control
techniques. Simple mathematical models for registers, arithmetic
processors, and elementary arithmetic operations are introduced.
Chapter 3 introduces arithmetic codes, definitions, and code classifi-
cations. Single-error detection using AN codes and separate codes is
also presented. Chapters 4 and 5 cover single-error-correcting codes using

xiii
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AN codes and separate codes, respectively. A section on byte-error
correction using higher radix codes is included in Chapter 4. In Chapter
6 we introduce code conversion algorithms leading to a presentation
of the large distance codes, namely, Barrows—Mandelbaum codes and
Chien—Hong—Preparata codes. Chapter 7 begins with the systematic
nonseparate category of codes and covers codes for burst errors and
iterative errors. We conclude the book with a presentation of codes
and their applications in Chapter 8.
I truly believe that I was very fortunate in having the opportunity

to study under Professor Harvey L. Garner at the University of Michigan.
I have benefited from and been profoundly influenced by his works,
thoughts, and teachings. Many fundamental definitions and notations
and much terminology used in this book reflect this background and
ini~uence. '

This book contains a number of sections which report on the results
of our research on "Residue Codes and Application to Arithmetic
Processors " during the years 1967-1972. This research was made
possible by grants from the National Science Foundation and the
National Aeronautics and Space Administration. I acknowledge
very gratefully the initial guidance and valuable suggestions on the
subject matter of this book given by Professor Robert T. Chien of the
University of Illinois. The comments and suggestions from Professor
Oscar N. Garcia of South Florida University and Dr. Se June Hong
of the IBM Corporation on portions of this book have been most
helpful.

Finally I wish to thank my wife, Rajyalaxmi, for her understanding
nature and constant encouragement without which this book would '
not have been possible.

T. R. N. Rao
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2 ARITHMETIC PROCESSORS
AND ERROR CONTROL
PRELIMINARIES

This chapter introduces the subject of arithmetic processors and
error control techniques. In the first section, we define arithmetic
processors (AP), arithmetic operations, and a model to describe their
functional behavior. In the second section, logic faults, which are the
cause of errors (both numerical and logical), are discussed. The origin
and nature of logic faults are discussed. Then arithmetic weight of
errors (or error numbers) is introduced. In Section 2.3, some error
control techniques, namely, triple modular redundancy (TMR) as well
as duplication and switching, are introduced.

2.1 ARITHMETIC PROCESSORS AND DIGITAL COMPUTERS

A digital computer is divided, for convenience, into a number of
functional units (or subsystems), such as arithmetic processor (AP),
control unit (CU), memory unit (MU), input/output unit (I/O unit),
program unit (PU), etc. (see Figure 2.1). These divisions are useful
from the point of view of computer organization and design. The
various units are connected together appropriately to enable processing
of the information required of it. Stated briefly, the function of the

39
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4O 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

memory units) is to store data, instructions, and intermediary results
and to enable transfer of these to the arithmetic unit or I/O unit as
required. The control unit handles the supervisory functions such as
providing reference signals (or clock pulses) to initiate or terminate
the various functions of these units. The I/O units provide the ability
t.o communicate with the outside world. It may consist of tape readers
or card readers and punch tape or punch card equipment. The arith-
metic processor receives data (or operands) and operation commands
(or instructions) from the memory and control units and performs the
needed processing. The results of these operations are stored in the

Arithmetic I~ Memory ~ I/O
processor ~ ~~ unit unit

Control
unit

Figurc 2.1 An organization of the functional units of a computer.

specified memory locations or retained in tl~e arithmetic registers which
are included as part of an AP. The nature and complexity of these
various functional units depend on the class of problems they are to
solve, and the instruction re~sertoire. Besides, the speed-=cost trade-offs
play a significant part in the makeup of each functional_ unit. No less
important are factors such as the tyke of number system used, the
arithmetic procedures (or algorithms) built in, the maintenance circuits
(if any provided), and the required "reliability " or "dependability "
of operation of the entire system. Therefore, any general characteriz~.-
tion of any unit such as an AP will not be meaningful for any special-
purpose computer operation but applies only in a rather general way.
Since our interest here lies in (the error control coding for) arithmetic
processors, we discuss their organization next.
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2.1 ARITHMETIC PROCESSORS AND DIGITAL COMPUTERS 41

Organization of an arithmetic processor

An arithmetic processor is the part of a computer that provides the
logic circuits required to perform arithmetic operations such as ADD,
SUBTRACT, MULTIPLY, DIVIDE, SQUARE-ROOT, etc. There are a number of
other operations such as complement, shift, rotate, and scale which are
classified at times as arithmetic operations and are performed by
arithmetic units of large- and medium-sized computers. In order to
perform these operations, an AP usually consists of a number of registers
to store operands, intermediate results (partial sums or partial products),
and logic blocks such as adders, division logic, over$ow detection logic,
shift—rotate logic, and in addition, several gating and decoding and
control logic blocks.

A sample organization of a small arithmetic processor is shown in
Figure 2.2. This setup shows four arithmetic registers, called accumulator,
addend, augend (or multiplicand), and multiplier—quotient registers.
Parallel adder, complement, and shift—rotate logic blocks are shown.

From control unit

- -/ ,~~ ~ ______- Algorithm
~ ~ !~` ___ control~ ~ Addend Augend

i ~.
f .'~ ~~~ ~ '~.,

Input ~ 
Padded ~ Comp. ~~'~, ~~ , i%, i Ob~

put
bus ~ ~Le ~~~,. ~~ i ~ i~~. i~ i~ ~ i~ i

~̀ Accumulator ''Multi-Quo ~i~ ~ ~ ~..
'' d~" ~ ~ ~ i,.,, ~~,

Shift-rotate ------ ~
~ ia9~~ ~~

Figure 2.2 Sample organization of arithmetic processors.
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42 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

Also indicated are an algorithm controller which receives the operation
command from the control unit, and control signals to the logic blocks.
These organizations come in a great variety and differ enormously in
complexity. For the purpose of understanding the operation of an AP,
we resort in the next section to a simple model which characterizes, in
a rather general way, its operation from the point of view of error
control coding logic. In this discussion one has to keep in mind the
objective of this study, which is error control coding and not the design
aspects of an AP. We discuss an organization only to enable a good
understanding of the error control techniques presented later.

A simple model for arithmetic processors

An AP can be described by the inputs (operands and the operation
command) .and outputs (the sum or product, etc.). We can assume,
without loss of generality, that one or more of the operands have
already been supplied to the AP, and are stored in the appropriate
registers; and the input required in such cases may be simply an opera-
tion command. "Shift right five times the contents of an accumulator"
is an example of that type of instruction. For instructions such as ADn,
generally one operand such as an augend is already available in the
accumulator (or augend register), and another will be an input to the
AP. Similarly, the outputs may simply be posted in one or more

~ registers of the AP and can be retrieved from it on a separate operation
command. Therefore, a block diagram of the type shown in Figure 2.3
can serve as a model for an AP.

Without any loss of generality, the input operand B, the internal
operand A (available initially in the register A), and the results R
are each assumed to be of n binary digits (bits). The opcode for ~ may
be k bits long, where k must be sufficiently large to accommodate all
the possible operations of an AP. (Note that the number of different
operation commands must be less than or equal to 2k). Further, we
could denote the results R by R = ~(A, B). R is the result of the specified
operation ~ (when the input operand is B and the internal operand is A).

Facebook's Exhibit No. 1018 
022

MOBILEIRON, INC. - EXHIBIT 1022 
Page 022



4RIES 2.1 ARITHMETIC PROCESSORS AND DIGITAL COMPUTERS 43

ltlOri (

)GIGS. Operation command: ¢ j~

ly in ~ R: Results
APB Register A `~' ('4~ B)

Operand:8
;S~ 121 ~ _ Operand A

error
l the
:Sign Figure 2.3 A model for an arithmetic processor.

;000I

The outputs R are numerical and/or logical results. The interpretation
of the outputs as to the nature of their values is left to the control

- function. If ~ is the ADv instruction, then R may represent the sum,
A + B modulo m, denoted as ~ A + B~,,, , where m = 2" for 2's comple-
ment binary logic, or m = 2" — 1 for 1's complement binary logic.'

~tion If ~ denotes "cyclic shift left register A by one place," then R may
ume, represent the contents of register A after the execution of the instruc-
have tion. If the register A represents the integer A (where 0 < A < 2") before

~riate the cyclic shift, the integer value of A after the shift equals ~ 2A ~ Zn _ 1 ~
pera- which may also represent the numerical value of R. If ~ represents an
.tor " operation, say "clear and add " (cLAD), then the register A will be
ADD, replaced by the operand B. If ~ represents MULTIPLY, then R may
1 the ~;. represent the n most significant binary digits of the product of A and B.
~ the `~ The least significant bits may be stored in one of the specified arithmetic
more registers.
ation The discussion above is intended as an overall view of the operations
e 2.3 of the arithmetic units. A sample of operations has been given in Table

2.1. The seven operations listed first may be termed "elementary," and
ernal the rest "compound."
lts R A compound operation can be performed by repeated use of one
~aY or more of the elementary operations; for example, MULTirLY can be

to all realized by repeated nDD, SHIFT operations. Therefore a number of
Brent medium-sized computers may not have any "built-in " compound
r, we
cified t For formulas which characterize these elementary operations and for examples
is A). ~ the reader is advised to see Section 1.3 and in particular Table 1.4.
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44 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

Table 2.1 Arithmetic operation commands

Elementary operations

ADD ~ ann
susTRncT (Complement and Add) ~su~
SHIFT RT° ~SHR

SHIFT LT ~SHL
CYCLE LT ~CYL
CLEAR and ADD ~cian
STORE ACC ~STA

Compound operations
MULTIPLY FLOATING PT. ADD

DIVIDE SCALE

SQUARE-ROOT COMPARE

° We discussed previously in Chapter 1 two
types of sxiFT xT operations. One is "Logical
Shift Rt" and the other "Arith Shift Rt."

operations, but only a good set of elementary operations. Further, an
elementary operation may be assumed to use a logic block or logic
circuit just once. There are exceptions to this; for example, in the serial
ADD operation, a single full adder stage is repeatedly used. This aspect
of single-use or multiple-use of a logic block is an important concern
for error control coding and is therefore discussed in detail in Chapter 7
in the section on iterative errors.

Further, if an effective error-correcting scheme is available for all
,~ elementary operations, then one could say that all arithmetic operations
~ ~ can be error controlled, Then the elementary operations that are more

amenable to error control coding become an important part of our
study.

2.2 NATURE AND ORIGIN OF ERRORS IN AP's

The words errors, logic faults, component failures, malfunctions, and
troubles have been defined and used previously by different authors.
Unfortunately there is no uniformity in their definitions. Before we
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RTES 2.2 NATURE AND ORIGIN OF ERRORS IN aP•S 45

attempt some definitions of our own here, it may be appropriate to
make a clear distinction between the words component, logic element,
logic network, functional unit, etc. (See Figure 2.4.)

/ Digital \
computer

Ex: IBM 7090

Functional unit
Ex: AP, MU, CU, etc.

Logic block (network)
Ex: adder, shift register, counter, etc.

Logic element
Ex: NAND, OR, AND, flip-flop, etc.

Component
Ex: resistor, transistor, lead terminal, etc.

an
~gic
rial
sect
ern
~r 7

all
ons
ore
our

end
ors.
we

Figure 2.4 Subdivisions of a digital computer.

A component is the smallest building block of a digital computer, for
example, a resistor, transistor, diode, or lead terminal. A logic element
refers to a logic gate such as rrArrn, ox, AND, NOT, or a flip-flop. A logic
network (or logic block) refers to a combinational network such as an
adder, a com~lementer, an overflow detector, or a sequential network
such as a shift register or a binary counter. Logic networks may vary
in size considerably from one to another. A functional unit consists of
a number of logic networks interconnected to perform any operation
from a comprehensive set of operations. Functional units refer to large
units such as an arithmetic processor, a control unit, or a memory unit.

Logic faults and their classifications

A ~logic fault or simply a fault is a deviation of logic variables from
their specified values at one or more points of a logic network. Logic
faults in an AP may be grouped broadly into two categories:
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46 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

1. Control logic faults, which are due to failures' or malfunctions
in the control logic. As an example, a logic fault in the operation
command decoder lets a wrong algorithm (~' instead of ~) be
executed.
2. Arithmetic logic faults, which include logic faults in an adder,
or division logic block, etc.

Both categories of faults relate to logic faults within the processor. If
{ wrong inputs have been applied, that would constitute faults outside

~' ' the premise of AP but are logic faults of the control processor or memory
unit. Our concern is directed mainly toward obtaining error-free arith-
metic processing through detection, location, and correction of errors
originating in an AP. The techniques and codes studied for this purpose
can also be used for error control of other functional units in an

~ ~ _
j;

I, '#

i

; ,.
(s
i; 1,;

fi.

appropriate manner.
A logic fault was defined previously to be a deviation of logic vari-

ables from their specified values at one or more points of a logic net-
work. Afault may invert a binary variable from 1 to a 0, from 0 to a 1,
or force it to assume a constant logic value (such as stuck-at-1 or stuck-
at-0). These faults are naturally caused by component failures) or
malfunctions in a logic network. The origins of logic faults are related
to component failures or malfunctions, electrical noise, overheating,
etc., while the ef~'ects of logic faults are the errors in the outputs (or
numerical results) of the AP.

The faults may be classified as temporary or permanent, single fault
or multiple fault, single-use or multiple-use. This classification is based
on the origin, nature, or use of the faulty network. A temporary fault
is usually caused by a component malfunction or electromagnetic noise
interference; its ei~'ects (the errors) .cannot be reproduced under the
program control. A permanent fault is often caused by a component
,failure, and its effects are reproducible. A single fault refers to one error-

j' A component failure is the permanent destruction of a component such as a
shorted or an open diode, or a grounded lead. A component malfunction is a
temporary misbehavior due to outside noise interference, or overheating, or a
marginal component.
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RIES 2.2 NATURE AND ORIGIN OF ERRORS IN AP's 47

ons inducing event, a multiple fault (double or triple, etc.) refers to several
:ion single faults occurring simultaneously. The effects of a multiple fault
be may be described as the cumulative effect of the individual single faults.

A fault (either single or multiple) can be classified as simple (local) or
der, complex (distributed) depending on its effect on the errors. A simple

fault causes minimal damage on the outputs, or in other words, may
produce an error of the type ±2'; a complex fault causes extensive

~. If damage. Thus, a fault in a logic element, depending on the intricacy
side of the location of that logic element, is either simple or complex. By
gory this definition, control faults are often classified as complex. This
ith- classification is based 'on the damage wrought on the results of an
rors elementary operation or by the error value E, and more precisely, by
>ose its arithmetic weight W(E), to be defined later.

an The types of errors produced by a fault also differ from one opera-
tion to another. If an operation does not require the use of a faulty

ari- network, then the fault is virtually inactive for the duration of that
net- operation. Another operation may use that faulty network just once,
a 1, and still another operation may require repeated use. of the same faulty
ick- network. Thus a logic fault will have different levels of damage on the

~r output results of elementary operations and complex operations. This
ited ~ fact should be borne in mind by the error control coding designer. As
~ng~ an example, a simple fault may be dt~e to a component failure in the
(or carry generation logic of the ith stage of a parallel adder, so that the

error generated (in the addition operation) has a value E _ ±2'. (The
ault error word may have several successive nonzero positions, but we call
used the error a single error. A later section has precise definitions of arith-
ault metic weights and single and double errors.) A complex fault in the
oise same stage of an adder could be a cause for both the carry and sum to
the be in error. Tn the latter case, the error value E - ± 2' ± 2'-1 (E here

gent may be a single error or double error, depending on its error magnitude
ror- ~ E ~ ). An important aspect to be noted here is that a fault becomes

simple or complex' depending on the role of the logic element thatas a contains the fault or the failed component. Another point of interestis a
~

is the need for preventing complex faults by suitable logic design. Thisor a
objective can often conflict with the natural, time-old objective of the
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48 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

logic design, which is to realize logic circuits at minimal cost. An error
' ' control objective is to limit logic faults to simple and single-use cate-

gories, as far as possible, by design and by use of algorithms. This
constraint is likely to limit the size of fanout of a logic element and
increase the cost of hardware of the processor. This price, however,
may be reasonable in view of the overall costs of alternative approaches
such as the triple modular redundancy (TMR) or duplication and
switching methods, which are described in Section 2.3.

Errors and arithmetic weight

Component failures or malfunctions produce logic faults. The logic
faults generate erroneous results, or errol-s. Errors are thus the deviations
in the outputs (numerical or logical) of the arithmetic processor. An
error is said to occur in an operation ~ of AP whenever the actual output
R' _ (r„ _ 1, r„ _ 2 , ... , ro) differs from the expected value It = (rn-1,
ri_ 2, . .., ro) specified by the designer. Therefore, the error word E
(also called damage pattern or error pattern [1]) is

_ fie„-i~e,~-z, . . . ,eo)=R —R (2.1)

where e~ = r~ — r~ for i = 0, 1, 2, . .. , n — 1. If we consider only binary _
outputs, r~ and ri can only be 0 or 1, and consequently e; can be 0, 1,
or —1.

EXAMPLE

Actual output
R' _ (110001), R' = bl(~t')

specified output `~a
It = (101101), R = SI(R)

error word
E _ (011100)

where 1 denotes —1 in the error word.
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For each error word E, we define an error value E (or hereafter
error) given by

and

n-1

= o

For the example above, the error E = SI(E) = SI(011100) = 16 — 8 —
4 = 4. This mapping 8j of error words into errors is a conversion of the
n-tuples into integer. values, and is not cone-to-one correspondence.
As examples, the error words (01 t 100), (001100), and (000100) all
correspond to the same error E = 4. The one most significant property
of an error is its arithmetic weight, which is defined as follows.

The arithmetic weight fi of an integer N, denoted W(N) (in radix r),
is defined as the minimum number of terms in an expression of the form

where a~ ~ 0, ~ a; ~ < r (see Peterson [2, Chapter 15j).
Since binary arithmetic processors and binary codes are of special

interest, we may restate the definition above for binary systems. The
binary arithmetic weight of N is the minimum number of terms in an
expression of the form

where a~ = 1 or —1. For instance, the decimal number 31 has a binary
representation 11111, but that is certainly not in a minimal form. Its
minimal form is 100001 (1 denotes —1). Hence W(31) = 2, the number
of terms in a minimal form. There may be more than one minimal form
for a number N. For instance, 25 = 01 1001 and 25 = 101001. While the
binary arithmetic weight of 31 is 2, its ternary arithmetic weight is 3,
since 31 = 33 + 3 + 1 is a minimal form. Thus the arithmetic weight
of a number depends very much on the radix notation used. In order
to simplify our notation, we observe the following. Unless spec~cally
stated otherwise, we will assume an arithmetic weight to refer to the
binary arithmetic weight.

'~ The arithmetic weight is also referred to as Peterson weight in some instances.
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An important property of the arithmetic weight is that

W(N) = W(— N) (2.6)

This can be very trivially observed from the expression (2.4) where each
k k

a; can be negative or positive. If N = ~ air", then —N = ~ (—a~)r~'
=i ~=i

and both Nand —N have exactly the same number of terms in their
minimal forms. Another important property of the arithmetic weight
is the triangular inequality given as

W(Nl + N2) < W(Nt) + W(NZ) (2.7)

This is clear if we consider addition of the numbers Nl and N2 which
are initially in their minimal forms. Cancellation of nonzero terms or
carries may occur, but the number of nonzero terms of the sum cannot
possibly exceed the sum of the number of nonzero terms of Nl and NZ .
As said before, the minimal form (or minimal weight form) for N is not
unique. As another example, a decimal number 19 = 24 + 22 — 1 =
24 + 2 + 1. Reitwiesner [3] has shown that if an integer is given in
such a form that the coefficients ai a~+l = 0 for i = 0, 1, ... , n — 2 in
the expression

n-1
N = ~ ai r`, aL = 0, 1, or —1

=o

then it is called the nonadjacent form (NAF) and it is also a minimal
weight form. In Section 6.1 the interested reader can find further dis-
cussion on NAF and algorithms for conversion to these forms. An
algorithm to determine by inspection the arithmetic weight of an integer
expressed in binary form is available in the work of Garcia [4].

DEFINITION 2.1

Given integers NI and Nz ,the arithmetic distance between Nl and
N2, denoted D(Nl, NZ), is given by W(Nl —NZ) = W(N2 — Nl).

Let the specified (or correct) .result and the actual (or possibly
erroneous) result of an operation be Nl and N2 , respectively. If the
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2.2 NATURE AND ORIGIN OF ERRORS IN AP's 51

arithmetic distance between Nl and N2 is d, then a d-fold arithmetic
error (or an error of weight d) is said to have occurred. If E in (2.3) is
such that W(E) = d, then a d-fold arithmetic error E is said to have
occurred. When two numbers are added, failure in one of the flip-$ops
of the accumulator or in one of the carry stages of the parallel adder
may affect several consecutive bit positions in the sum due to carry
propagation; the arithmetic weight and distance are explicitly defined
to treat such errors as single errors.

Errors in finite ring arithmetic

Due to the finite size of the arithmetic registers, adders, and so on,
the operands Nl and NZ are limited to a finite range of values. Let Z,„
denote the finite ring of integers modulo m, namely {0, 1, .. . , m — 1}.t
The additive inverse of N in Z,,, is often called the complement of N,
and is denoted by N = m —Nand

N - —N (mod m)

The arithmetic weight as defined earlier satisfies W(N) = W(— N).
However, for ~V and N in Z,,, , W(N) may not be equal to W(N). As
an example, consider Z63 , where 32 = 63 — 32 = 31. We have

W(32) = 1, W(32) = W(31) = 2

This is an undesirable feature, since error magnitude does riot uniquely
specify its arithmetic weight. A shorted inverter in the jth stage of an
adder may generate errors of + 2' and — 2' at different times, and
therefore cause errors of different weight. To alleviate this difficulty,
Rao and Garcia [5] have introduced modular arithmetic weights for
numbers in a finite ring.

~' Since we are concerned only with the addition operation in Z„, _ {0, 1, ... , m — 1},
we need only to say that Z,„ is an additive Abelian group. Algebraic ring properties
will be of interest in consideration of both addition and multiplication operations.
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52 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

DEFINITION 2.2

The modular weight of an integer N E Z,,, , denoted by W,,,(N), is
given by

W,,,(N) = min(W(N), W(N))

In the binary representation for 31 E Z63 , we have the following:

W(31) = 2

31 = 63 — 31 = 32, W(32) = 1

Therefore, W,,,(31) = W,„(32) = 1.
Similarly, for Nl, NZ E Zm, the modular distance between Nl and

Nz , denoted as D,,,(Nl, N2), is given by W,,,(Nl — NZ). Also

In Z,,, , it is not true in general that

Wm~ ~ N~ + Na gy m) ~ N'm~N~) + l'~'m~N2) X2.8)

The triangular inequality (2.8) is an essential property, as we shall see
later, in establishing the correspondence between the "minimum
distance" of a code and its error detection and correction capabilities.

EXAMPLE

Let m = 51, Nl = N2 = 32 e Z51. We have then

u',n~32 + 32) = N'nt~ 1 64I s~) _ ~',n~ 13)
= min(W(13), W(51 — 13)) = 3

Also W,,,(32) = 1. Therefore

W,,,(~ 32 + 32 ~,,,) > W,,,(32) + W,n(32)

which contradicts (2.8). However, we have the following important
theorem.
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ARIES 2.2 NATURE AND ORIGIN OF ERRORS IN AP's 53

THEOREM 2.1

), is When m = r" (as in radix complement systems) or when rn = r" — 1
~ (as in diminished radix complement systems) the triangular inequality

(2.8) holds in Z,,,.

Proof

Let N1 denote Ni or —N= = N~ — m, for i = 1', 2 correspondingly,
whichever has the smallest arithmetic weight. This means that

Ni + Nz - Nl + N2 (mod m), ~ Ni ~ < m

and and
W(N~) = Wm(Ni) for i = 1, 2 (2.9)

Let the minimal form expansions of Ni and N2 be
n-1

Ni = ~ a~ r`, ~ ai ~ < r
`-~ (2.10)
n —i

?.g~ Ni —. ~ biY~~ Ibil ~ Y
i=0

l see Let S represent the sum of Ni and N2 modulo m such that ~ S ~ < m.
Zum In other words,
t10S. n-1 n-1

S = ~ c~ r` - ~ (a~ + b;)r` (mod m) ~ c~ ~ < r (2.11)
t =o ~=o

Thus the sum modulo m of Ni and NZ can be obtained by the propaga-
tion of carries or borrows as required. A carry or borrow from the
most significant position will be of magnitude r", which equals m (for.
the radix complement case) or m + 1 (for the diminished radix com-
plement case), and therefore can be discarded or propagated as an
end-around-carry or end-around-borrow. Consequently, the number
of nonzero c g's in the expression for S can be no greater than the total
number of nonzero terms in (2.10). Therefore the number of nonzero
terms in S represents the modular weight of the sum Ni + N? and

tant hence also equals the modular weight of ~ Nl + NZ ~ M . Therefore the
inequality (2.8) holds. Q.E.D.
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54 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

Massey and Garcia (6] show that the triangle inequality (2.8)
holds for m = 2" ± 1. By arguments similar to those in the proof of
Theorem 2.1, one can show that (2.8) holds also for m = 2" — 2' ± 2`
(n — 1 > j > i), i.e., for two end-around-carries or borrows. Therefore
we formally state the following

COROLLARY 2.2

When m = 2" — 2' ± 2` for n — 1 > j > i, the triangle inequality
(2.8) holds in Zm .

A note on distance and metric

It is important to note that the arithmetic distance and the modular
distance between integers are analogous to the well-known Hamming
distance between vectors or codewords in algebraic linear codes (see,
for instance [2, Chapter 1 ]). In the algebraic linear codes, the minimum
Hamming distance of a code relates to 'its error correcting properties.
In Chapter 4, we derive a similar relationship of minimum arithmetic
distance of an AN code to its error control properties.
In the use and understanding of the word distance some caution is

needed. Distance normally implies a real quantity satisfying the pro-
perties of a metric which are as follows:

D(x, y) >_ 0 equality holds iff x = y (positive definite)
D(x, y) = D(y, x) (symmetry)
D(x, y) + D(y, z) > D(x, z) (triangular inequality)

While Hamming and arithmetic distances are invariably metrics, the
modular distance is a metric only when the modulus m satisfies the
carry properties as required by Theorem 2.1 or Corollory 2.2. The
carry properties for a given m depend very much on the radix r of the
number system. Thus in the concept of modular distance, the modulus
m, the radix r, and the number of end-around caries are involved.
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(2, 8) For the purpose of this book, we assume that our interest is mainly in
if of such m and r that do not violate the metric properties. That means, the
-}- 2T finite rings Z,,, we are concerned with are assumed to be metric spaces.
More (Exceptions to this rule will be appropriately stated in the text.) In this

context, we use the term modular distance.

Error sets

ality We consider R, R', and E in (2.3) to be integers from Zm , and
proceed to define the classes of errors in Z,,, . We denote the set of all
errors in Z,„ of modular weight equal to d by V(m, c~, and the set of

~ all errors of weight less than or equal to d by U(m, d). The set of all
errors of modular weight 1 is called the set of single errors; modular
weight 2, the set of double errors, and so on. Also, U(m, d) equals theular union of the sets V(m, 1), V(m, 2), ... , V(m, d).

ning
(see,
num EXAMPLES
'ties. V(16, 1) = U(16, 1) _ {1, 2, 4, 8, 12, 14, 15}
zetic V(31, 1) = U(31, 1) _ {l, 2, 4, 8, 16, 15, 23, 27, 29, 30}

V(31, 2) _ {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22,>n is 
24, 25, 26, 28}pro-

U(31, 2) _ {V(31, 1), V(31, 2)} =all nonzero elements of Z31

2.3 ERROR CONTROL TECHNIQUES

the Logic faults in processors are caused by a number of possible
the events. Component failures and malfunctions are the most common;

The overheating; electromagnetic radiation, noise interference, and mechan-
'the ical shocks are some of the other causes. Logic faults generate errors
ulus in the results. These errors have been characterized and classified in

the preceding section according to their modular weight.
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56 2 ARITHMETIC PROCESSORS AND ERROR CONTROL PRELIMINARIES

We discuss here briefly some of -the techniques that are employed
to detect and correct these errors. These are also referred to as fault-
tolerance techniques [6] or error control techniques. The objective of
these techniques is to obtain a processor that is capable of performing
accurately despite the occurrence of logic faults, and thereby increase
the reliability, availability, or dependability of the system.

Reliable performance of digital processors is attainable by the
systematic application of two techniques.

The first technique involves selection of long-life, highly reliable
components; provision of liberal margins between component ratings
and the actual operating conditions; and application of proven methods
for the interconnection and packaging of these component parts.

The second technique is termed protective redundancy, and as the
name suggests, it requires the use of redundant equipment (hardware
and/or software). The redundant equipment is so designed to detect
and/or correct, "bypass," or "mask " the effects of the logic faults.
The protective redundancy techniques may be further divided into two
classes: massive redundancy and selective redundancy.
In the massive redundancy approach, the logic faults of a module,

such as a component, network, or processor, are masked by permanently
connected and parallel operating (fault-free) replicas of the faulty
module. As an example, a triplicated processor with the outputs applied
to majority vote-takers would mask any output errors due to a faulty
processor (see Figure 2.3). This approach is commonly known as
triple modular redundancy (TMR) [7, 8], and is discussed in the next
section. Other massive redundancy techniques are quadded logic as
discussed by Tryon [9], recursive nets [10], and adoptive logic elements
[11], among others.
In the category of selective redundancy we include all those that

require only a limited (or fractional) increase in hardware or software.
Error detection followed by fault diagnosis, and error detection and
correction through coding come under this category. Errors are detected
by the provision of error-detecting codes, or special monitoring circuits,
or by a periodic check through fault-recognition or diagnostic programs.
Use of hardware circuits for error detection has the advantage of
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ARIES 2.3 ERROR CONTROL TECHNIQUES 57

oyed instantaneous or concurrent diagnosis which may prevent system
cult- deterioration or propagation of errors by calling for an appropriate
re of corrective action. Periodic diagnosis requires an elaborate corrective
Wing ~ action, a "rollback" of the program, and interruption of the system
'ease operation for considerable periods of time. When faults are detected

by the fault detection circuits, or programs, a corrective action which
the eliminates the errors is followed. This corrective action will be in the

nature of one of the following:
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1. error correction by use oferror-correcting codes and associated
special-purpose error-decoding hardware and/or software;
2. diagnosis to determine the faulty element or module and its
replacement by a standby spare [12, 13];
3. reorganization or reconfiguration of the system to enable the
necessary computation of functions,. if not in a normal mode, in a
degraded mode (with loss of precision or speed). This method of
operation is often called graceful degradation.

There are some good books [7, 14, 17] and papers available on the
many different fault-tolerance techniques. This book is intended as a
summary of the recent advances in the theory and application of error
control codes for arithmetic processors. The arithmetic codes described
here are most appropriate for arithmetic operations such as aDD, s~N r,
COMPLEMENT, MULTIPLY, etc. They can also be useful in the control
of errors in transmission or in communication channels. The arithmetic
codes have a number of properties that parallel and are analogous to
those of such communication codes as Hamming codes [15] and cyclic
codes [2], but they have many distinct properties of their own, and
differ significantly in their algebraic structures.

Triple modular redundancy (TMR)

A TMR system is constructed from a nonredundant system So ,
replacing each logic block in So by three identical blocks and com-
biningtheir outputs in one or more majority vote-takers. (See Figure 2.5.)
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'~ , l —~- f~ f2 • • • —~ {~ 4

( cf)

0

0

-Y f~ f2 .. f~

fi V f2 V ••• f~ aV -~ 0

--~- f~ f2 ... f~

( b)

f~

~; Figure Z.5 (a) Nonredundant system So . (b) TMR version of (a).

Figure 2.Sa represents aseries-connected system with n functional
units fi, f2 , ... , f„ . Let us assume that the reliability of the unit f~
(for i = 1, 2, . . . , n), which is the probability that the unit f; is functioning
at a given time t, is P~ .The nonredundant system reliability Ro is given by

n

Ro = ~ P~ 2.12)
~= i

In the redundant system, if we assume the voters to be perfect (i.e., their
reliability to be 1), then the reliability of the ith voted triplet is

Pi + 3P~ (1 — P~) = 3P; — 2P~

The reliability of the redundant system of Figure 2.Sb is
n

R = ~ (3P? — 2P~) (2.13)
~ =1

If we assume each functional unit to be of the same reliability, i.e.,
P~ = P for all i, then

Ro = P", R = (3P2 — 2P3)"
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If the reliability of the redundant system is to be better than that of the
nonredundant system, then

R>Ro
or

~o

~tional
unit f~
Toning
iven by

(2.12)

.,their

or

3P2 — 2P3 > P

Since P is positive, it means that

3P -2P2 > 1
or

or
(2P2 — 3P + 1) < 0, i.e., (2P — 1)(P — 1) < 0

P >0.5

As long as the reliability of each functional unit is better than 0.5,
we could expect improvement in reliability by TMR. This statement is
made, of course, under the unrealistic assumption that the voters are
perfect. With imperfect voters, where each voter V has a reliability q,
system reliability R* is given by

R* = q"(3P2 — 2P3)" (2.14)t
Reliability improvement results if

or
q(3P2 — 2P3) > P

(2.13)

y, i.e.,

or
1 1q > P

(3P2 — 2P3) ' i.e., q ~ 3P — 2P2

t This formula as well as others in this section is only approximate and does not
take into account the cancellation of errors due to failures in successive units.
Therefore the actual reliability is slightly better than that given by the formula.
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Since 3P2 - 2P3 represents the reliability of a triplet, we have 0 <
(3P2 - 2P3) < 1. This leads us to conclude that q must be suf~'iciently
greater than P to obtain reliability improvement. The voters that are
imperfect contribute to the unreliability of the system by a factor q".
If this factor is to be improved, a TMR version with triplicated voters
is adopted. (See Figure 2.Sc.)

Figure 2.Sc

0

The reliability R** of the TMR system of Figure 2. Sc can be obtained
as

R** _ (3P2 - 2P3)(3P2g2 - 2P3g3)^-lq (2.15)

Equations (2.13)-(2.15) can be compared to obtain the conditions as
to how P and q must be related to obtain the necessary improvements
in reliability. These have been worked out in great detail with charts
and figures in the literature [11, 16).

Duplication and switching

~,j i Error detection is often a first step in error control coding. Duplica-
(t~ ~ . lion of the essential functional units and matching (or comparing)
~ ~}., ' ' outputs provide not only the needed error detection, but could also
I@ 4 ,provide the means of establishing an operational system in the presence

of logic faults. In case of a mismatch of the outputs from the d-uplicated

} ?

~:
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re 0 < units, a corrective action is initiated. The corrective action may be in
ciently the nature of a program interrupt, followed by a "system recovery"
iat are or a "reconfiguration process " and a diagnosis of the faulty unit. A
for q". reconfiguration process involves the location of the faulty unit or net-
voters work and its replacement by means of "switching" with a standby

spare. If a standby spare is not provided, then the reconfigured mode
of operation will not provide for matching of outputs, and therefore
will be unprotected from future errors. Such a mode of operation is
termed graceful degradation. Graceful degradation sometimes means
that the operational mode is now somewhat degraded in terms of
speed, accuracy, or precision.

~' ° In summary, the corrective procedures that follow the error detection
and eliminate the effects of the fault may be grouped as follows:

1. correction by the replacement of the faulty unit or network by
a standby spare, or an active spare [13];
2. system recovery through reconfiguration and switching. The
recovered system may operate in a degraded mode until such time

stained as the required maintenance on the failed unit is carried out and
it is returned to the system;
3. correction by the application of error-correcting codes such as(2.15) Hamming [15] or residue [2, 5] codes.

ons as
ements Error-correcting codes have been found to be useful in the detection
charts and correction of errors. These codes can be divided into two major

categories

1. parity-based codes or communication codes;
2. residue codes or arithmetic codes.

uplica- The communication codes [2, 15] are by far better known and well
paring) developed relative to the arithmetic codes. They are well suited for
ld also control of errors during transmission of data over a communication
-esence channel or for transmission of data from one section of a computer
~licated to another, but not for arithmetic operations. The arithmetic codes,
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on the other hand, are ideally suited for arithmetic operations and
' arithmetic processors and can also be used to control errors during

~ ~ ~ data transmission. In the next chapter we introduce fundamentals of
arithmetic codes.

PROBLEMS
i;

'' ~i
1. Obtain the arithmetic weight of the following numbers in radix

(a) r = 2, (b) r = 3, (c) r = 10 systems:
(i) 29, (ii) 199, (iii) 100.

2. Given m = 61, obtain the modular weight (r = 2) of numbers 29,
13, and 53.

3. Obtain the error 'sets V(61, 1), V(63, 2), and U(63, 2). (Use r = 2.)
4. Show that the triangular inequality given by (2.8) holds for m = 2" —

2"` — 2' for positive integers j, k, n such that j < k < n — 1.
5. Given P~ = P = 0.8, for i = 1, 2, ... , 5, n = 5, and voter reliability

q = 0.9, calculate the system reliability for the three cases given by
Figures 2.Sa-c.

6. Given n = 2 for Figures 2.Sb and c, derive a condition that makes
R** < R*.

7. A metric function d is areal-valued function satisfying
(i) d(x, y)>_ 0, d(x, y) = 0 iff x = y (positive definite),
(ii) d(x, y) = d(y, x) (symmetric),
(iii) d(x, y) 5 d(x, a) + d(z, y) (triangle inequality).
Show that the arithmetic distance (D) and the modular distance
(Dm) are metrics. Assume m = 2" — 2j ± 1 (n — 1 > j > 1).
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