
ARCHIVED PUBLICATION

The attached publication,

FIPS Publication 186­3 (dated June 2009),

was superseded on July 19, 2013 and is provided here only
for historical purposes.

For the most current revision of this publication, see:
http://csrc.nist.gov/publications/PubsFIPS.html.

1 BLACKBERRY 2003
FACEBOOK V. BLACKBERRY

IPR2019-00923

MOBILEIRON, INC. - EXHIBIT 1036
Page 001

FEDERAL INFORMATION PROCESSING STANDARDS

ECURITY

2

MOBILEIRON, INC. - EXHIBIT 1036
Page 002

FOREWORD

The Federal Information Processing Standards Publication Series of the National Institute
of Standards and Technology (NIST) is the official series of publications relating to
standards and guidelines adopted and promulgated under the provisions of the Federal
Information Security Management Act (FISMA) of 2002.

Comments concerning FIPS publications are welcomed and should be addressed to the
Director, Information Technology Laboratory, National Institute of Standards and
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900.

Cita Furlani, Director
Information Technology Laboratory

This Standard specifies a suite of algorithms that can be used to generate a digital signature.
Digital signatures are used to detect unauthorized modifications to data and to authenticate the
identity of the signatory. In addition, the recipient of signed data can use a digital signature as
evidence in demonstrating to a third party that the signature was, in fact, generated by the
claimed signatory. This is known as non-repudiation, since the signatory cannot easily repudiate
the signature at a later time.

Key words: computer security, cryptography, digital signatures, Federal Information Processing
Standards, public key cryptography.

3

MOBILEIRON, INC. - EXHIBIT 1036
Page 003

Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235).

1. : Digital Signature Standard (DSS) (FIPS 186-3).

2. : Computer Security. Subcategory. Cryptography.

3. : This Standard specifies algorithms for applications requiring a digital
signature, rather than a written signature. A digital signature is represented in a computer as a
string of bits. A digital signature is computed using a set of rules and a set of parameters that
allow the identity of the signatory and the integrity of the data to be verified. Digital signatures
may be generated on both stored and transmitted data.

Signature generation uses a private key to generate a digital signature; signature verification uses
a public key that corresponds to, but is not the same as, the private key. Each signatory
possesses a private and public key pair. Public keys may be known by the public; private keys
are kept secret. Anyone can verify the signature by employing the signatory�s public key. Only
the user that possesses the private key can perform signature generation.

A hash function is used in the signature generation process to obtain a condensed version of the
data to be signed; the condensed version of the data is often called a message digest. The
message digest is input to the digital signature algorithm to generate the digital signature. The
hash functions to be used are specified in the Secure Hash Standard (SHS), FIPS 180-3. FIPS

 digital signature algorithms be used with an appropriate hash function that is
specified in the SHS.

The digital signature is provided to the intended verifier along with the signed data. The
verifying entity verifies the signature by using the claimed signatory�s public key and the same
hash function that was used to generate the signature. Similar procedures may be used to
generate and verify signatures for both stored and transmitted data.

4. Secretary of Commerce.
i

4

MOBILEIRON, INC. - EXHIBIT 1036
Page 004

5. Department of Commerce, National Institute of Standards and
Technology, Information Technology Laboratory, Computer Security Division.

6. This Standard is applicable to all Federal departments and agencies for the
protection of sensitive unclassified information that is not subject to section 2315 of Title 10,
United States Code, or section 3502 (2) of Title 44, United States Code. This Standard be
used in designing and implementing public key-based signature systems that Federal
departments and agencies operate or that are operated for them under contract. The adoption and
use of this Standard is available to private and commercial organizations.

7. A digital signature algorithm allows an entity to authenticate the integrity of
signed data and the identity of the signatory. The recipient of a signed message can use a digital
signature as evidence in demonstrating to a third party that the signature was, in fact, generated
by the claimed signatory. This is known as non-repudiation, since the signatory cannot easily
repudiate the signature at a later time. A digital signature algorithm is intended for use in
electronic mail, electronic funds transfer, electronic data interchange, software distribution, data
storage, and other applications that require data integrity assurance and data origin
authentication.

8. A digital signature algorithm may be implemented in software, firmware,
hardware or any combination thereof. NIST has developed a validation program to test
implementations for conformance to the algorithms in this Standard. Information about the
validation program is available at http://csrc.nist.gov/cryptval. Examples for each digital
signature algorithm are available at http://csrc.nist.gov/groups/ST/toolkit/examples.html.

Agencies are advised that digital signature key pairs be used for other purposes.

9. Digital signature implementations that comply with
this Standard employ cryptographic algorithms, cryptographic key generation algorithms,
and key establishment techniques that have been approved for protecting Federal government
sensitive information. Approved cryptographic algorithms and techniques include those that are
either:

a. specified in a Federal Information Processing Standard (FIPS),

b. adopted in a FIPS or a NIST Recommendation, or

c. specified in the list of approved security functions for FIPS 140-2.

10. Export Control: Certain cryptographic devices and technical data regarding them are
subject to Federal export controls. Exports of cryptographic modules implementing this Standard
and technical data regarding them must comply with these Federal regulations and be licensed by
the Bureau of Industry and Security of the U.S. Department of Commerce. Information about
export regulations is available at: http://www.bis.doc.gov.

11. : The algorithms in this Standard may be covered by U.S. or foreign patents.

ii

5

MOBILEIRON, INC. - EXHIBIT 1036
Page 005

12. Implementation Schedule: This Standard becomes effective immediately upon
approval by the Secretary of Commerce. A transition strategy for validating algorithms
and cryptographic modules will be posted on NIST�s Web page at
http://csrc.nist.gov/groups/STM/cmvp/index.html under Notices. The transition plan
addresses the transition by Federal agencies from modules tested and validated for
compliance to FIPS 186-2 to modules tested and validated for compliance to FIPS 186-3
under the Cryptographic Module Validation Program. The transition plan allows Federal
agencies and vendors to make a smooth transition to FIPS 186-3.
13. : Federal Information Processing Standard (FIPS) 186-3 Digital Signature
Standard (affixed).

14. The following documents are referenced in this Standard.

a. FIPS PUB 140-2, Security Requirements for Cryptographic Modules.

b. FIPS PUB 180-3, Secure Hash Standard.

c. ANS X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the
Financial Services Industry (rDSA).

d. ANS X9.62-2005, Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA).

e. ANS X9.80, Prime Number Generation, Primality Testing and Primality Certificates.

f. Public Key Cryptography Standard (PKCS) #1, RSA Encryption Standard.

g. Special Publication (SP) 800-57, Recommendation for Key Management.

h. Special Publication (SP) 800-89, Recommendation for Obtaining Assurances for Digital
Signature Applications.

i. Special Publication (SP) 800-90, Recommendation for Random Number Generation
Using Deterministic Random Bit Generators.

j. Special Publication (SP) 800-102, Recommendation for Digital Signature Timeliness

k. IEEE Std. 1363-2000, Standard Specifications for Public Key Cryptography.

15. : The security of a digital signature system is dependent on maintaining the
secrecy of the signatory�s private keys. Signatories , therefore, guard against the disclosure
of their private keys. While it is the intent of this Standard to specify general security
requirements for generating digital signatures, conformance to this Standard does not assure that
a particular implementation is secure. It is the responsibility of an implementer to ensure that
any module that implements a digital signature capability is designed and built in a secure
manner.

Similarly, the use of a product containing an implementation that conforms to this Standard does
not guarantee the security of the overall system in which the product is used. The responsible

iii

6

MOBILEIRON, INC. - EXHIBIT 1036
Page 006

authority in each agency or department assure that an overall implementation provides an
acceptable level of security.

Since a standard of this nature must be flexible enough to adapt to advancements and
innovations in science and technology, this Standard will be reviewed every five years in order
to assess its adequacy.

16. : The Federal Information Security Management Act (FISMA) does not
allow for waivers to Federal Information Processing Standards (FIPS) that are made mandatory
by the Secretary of Commerce.

17. : This publication is available by accessing
http://csrc.nist.gov/publications/. Other computer security publications are available at the same
web site.

iv

7

MOBILEIRON, INC. - EXHIBIT 1036
Page 007

ENERATION

ARAMETER

ECRET

ECRET ENERATION
ENERATION AND

v

8

MOBILEIRON, INC. - EXHIBIT 1036
Page 008

 AND

A.1.1.1 Validation of the Probable Primes p and q that were Generated Using
SHA-1 as Specified in Prior Versions of this Standard 32

A.1.1.2 Generation of the Probable Primes p and q Using an Approved Hash
Function .. 33

A.1.1.3 Validation of the Probable Primes p and q that were Generated Using
an Approved Hash Function ... 35

A.1.2.1 Construction of the Primes p and q Using the Shawe-Taylor Algorithm
... 36

A.1.2.2 Validation of the DSA Primes p and q that were Constructed Using the
Shawe-Taylor Algorithm .. 39

ENERATOR

ENERATION

ECRET ENERATION

ENERATION

B.3.2.1 Get the Seed .. 53

B.3.2.2 Construction of the Provable Primes p and q 54

vi

9

MOBILEIRON, INC. - EXHIBIT 1036
Page 009

ECRET

J
HAWE

D.1.1.1 Choice of Key Lengths ... 85

D.1.1.2 Choice of Underlying Fields ... 85

D.1.1.3 Choice of Basis for Binary Fields ... 86

D.1.1.4 Choice of Curves... 87

D.1.1.5 Choice of Base Points ... 87

D.1.2.1 Curve P-192 .. 88

D.1.2.2 Curve P-224 .. 88

D.1.2.3 Curve P-256 .. 89

vii

10

MOBILEIRON, INC. - EXHIBIT 1036
Page 010

D.1.2.4 Curve P-384 .. 89

D.1.2.5 Curve P-521 .. 90

D.1.3.1 Degree 163 Binary Field... 91

D.1.3.2 Degree 233 Binary Field... 92

D.1.3.3 Degree 283 Binary Field... 94

D.1.3.4 Degree 409 Binary Field... 95

D.1.3.5 Degree 571 Binary Field... 97

ANDOM (P
(P

(B
(B

viii

11

MOBILEIRON, INC. - EXHIBIT 1036
Page 011

EQUIRED

ix

12

MOBILEIRON, INC. - EXHIBIT 1036
Page 012

This Standard defines methods for digital signature generation that can be used for the protection
of binary data (commonly called a message), and for the verification and validation of those
digital signatures. Three techniques are approved.

(1) The Digital Signature Algorithm (DSA) is specified in this Standard. The specification
includes criteria for the generation of domain parameters, for the generation of public and
private key pairs, and for the generation and verification of digital signatures.

(2) The RSA digital signature algorithm is specified in American National Standard (ANS)
X9.31 and Public Key Cryptography Standard (PKCS) #1. FIPS 186-3 approves the use
of implementations of either or both of these standards, but specifies additional
requirements.

(3) The Elliptic Curve Digital Signature Algorithm (ECDSA) is specified in ANS X9.62.
FIPS 186-3 approves the use of ECDSA, but specifies additional requirements.
Recommended elliptic curves for Federal Government use are provided herein.

This Standard includes requirements for obtaining the assurances necessary for valid digital
signatures. Methods for obtaining these assurances are provided in NIST Special Publication
(SP) 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications.

1

13

MOBILEIRON, INC. - EXHIBIT 1036
Page 013

Approved FIPS-approved and/or NIST-recommended. An algorithm or technique
that is either 1) specified in a FIPS or NIST Recommendation, or 2)
adopted in a FIPS or NIST Recommendation or 3) specified in a list of
NIST approved security functions.

Assurance of domain Confidence that the domain parameters are arithmetically correct.
parameter validity

Assurance of Confidence that an entity possesses a private key and any associated
possession keying material.

Assurance of public Confidence that the public key is arithmetically correct.
key validity

Bit string An ordered sequence of 0�s and 1�s. The leftmost bit is the most
significant bit of the string. The rightmost bit is the least significant bit
of the string.

Certificate A set of data that uniquely identifies a key pair and an owner that is
authorized to use the key pair. The certificate contains the owner�s
public key and possibly other information, and is digitally signed by a
Certification Authority (i.e., a trusted party), thereby binding the
public key to the owner.

Certification Authority The entity in a Public Key Infrastructure (PKI) that is responsible for
(CA) issuing certificates and exacting compliance with a PKI policy.

Claimed signatory From the verifier�s perspective, the claimed signatory is the entity that
purportedly generated a digital signature.

Digital signature The result of a cryptographic transformation of data that, when
properly implemented, provides a mechanism for verifying origin
authentication, data integrity and signatory non-repudiation.

Domain parameter seed A string of bits that is used as input for a domain parameter generation
or validation process.

Domain parameters Parameters used with cryptographic algorithms that are usually
common to a domain of users. A DSA or ECDSA cryptographic key
pair is associated with a specifc set of domain parameters.

2

14

MOBILEIRON, INC. - EXHIBIT 1036
Page 014

Entity An individual (person), organization, device or process. Used
interchangeably with �party�.

Equivalent process Two processes are equivalent if, when the same values are input to
each process (either as input parameters or as values made available
during the process or both), the same output is produced.

Hash function A function that maps a bit string of arbitrary length to a fixed length
bit string. Approved hash functions are specified in FIPS 180-3 and
are designed to satisfy the following properties:

1. (One-way) It is computationally infeasible to find any input that
maps to any new pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find any
two distinct inputs that map to the same output.

Hash value See �message digest�.

Intended signatory An entity that intends to generate digital signatures in the future.

Key A parameter used in conjunction with a cryptographic algorithm that
determines its operation. Examples applicable to this Standard
include:

1. The computation of a digital signature from data, and

2. The verification of a digital signature.

Key pair A public key and its corresponding private key.

Message The data that is signed. Also known as �signed data� during the
signature verification and validation process.

Message digest The result of applying a hash function to a message. Also known as
�hash value�.

Non-repudiation A service that is used to provide assurance of the integrity and origin
of data in such a way that the integrity and origin can be verified and
validated by a third party as having originated from a specific entity in
possession of the private key (i.e., the signatory).

Owner A key pair owner is the entity that is authorized to use the private key
of a key pair.

Party An individual (person), organization, device or process. Used
interchangeably with �entity�.

Per-message secret
number

A secret random number that is generated prior to the generation of
each digital signature.

3

15

MOBILEIRON, INC. - EXHIBIT 1036
Page 015

Public Key A framework that is established to issue, maintain and revoke public
Infrastructure (PKI) key certificates.

Prime number A string of random bits that is used to determine a prime number with
generation seed the required characteristics.

Private key A cryptographic key that is used with an asymmetric (public key)
cryptographic algorithm. For digital signatures, the private key is
uniquely associated with the owner and is not made public. The
private key is used to compute a digital signature that may be verified
using the corresponding public key.

Probable prime An integer that is believed to be prime, based on a probabilistic
primality test. There should be no more than a negligible probability
that the so-called probable prime is actually composite.

Provable prime An integer that is either constructed to be prime or is calculated to be
prime using a primality-proving algorithm.

Pseudorandom A process or data produced by a process is said to be pseudorandom
when the outcome is deterministic, yet also effectively random as long
as the internal action of the process is hidden from observation. For
cryptographic purposes, �effectively� means �within the limits of the
intended security strength.�

Public key A cryptographic key that is used with an asymmetric (public key)
cryptographic algorithm and is associated with a private key. The
public key is associated with an owner and may be made public. In the
case of digital signatures, the public key is used to verify a digital
signature that was signed using the corresponding private key.

Random number A device or algorithm that can produce a sequence of random numbers
generator that appears to be statistically independent and unbiased.

Security strength A number associated with the amount of work (that is, the number of
operations) that is required to break a cryptographic algorithm or
system. Sometimes referred to as a security level.

Used to indicate a requirement of this Standard.

Used to indicate a strong recommendation, but not a requirement of
this Standard.

Signatory The entity that generates a digital signature on data using a private
key.

Signature generation The process of using a digital signature algorithm and a private key to
generate a digital signature on data.

4

16

MOBILEIRON, INC. - EXHIBIT 1036
Page 016

Signature validation The (mathematical) verification of the digital signature and obtaining
the appropriate assurances (e.g., public key validity, private key
possession, etc.).

Signature verification The process of using a digital signature algorithm and a public key to
verify a digital signature on data.

Signed data The data or message upon which a digital signature has been
computed. Also, see �message�.

Subscriber An entity that has applied for and received a certificate from a
Certificate Authority.

Trusted third party An entity other than the owner and verifier that is trusted by the owner
(TTP) or the verifier or both. Sometimes shortened to �trusted party�.

Verifier The entity that verifies the authenticity of a digital signature using the
public key.

ANS American National Standard.

CA Certification Authority.

DSA Digital Signature Algorithm; specified in this Standard.

ECDSA Elliptic Curve Digital Signature Algorithm; specified in ANS X9.62.

FIPS Federal Information Processing Standard.

NIST National Institute of Standards and Technology.

PKCS Public Key Cryptography Standard.

PKI Public Key Infrastructure.

RBG Random Bit Generator; specified in SP 800-90.

RSA Algorithm developed by Rivest, Shamir and Adelman; specified in
ANS X9.31 and PKCS #1.

SHA Secure Hash Algorithm; specified in FIPS 180-3.

SP NIST Special Publication

TTP Trusted Third Party.

5

17

MOBILEIRON, INC. - EXHIBIT 1036
Page 017

L

a mod n

b a mod n

counter

d

domain_parameter_seed

e

g

 (a, b)

 (M)

index

k

(L, N)

 (a, b)

 (a)

M

m

N

The unique remainder r, 0 r (n � 1), when integer a is divided by
the positive integer n. For example, 23 mod 7 = 2.

There exists an integer k such that b � a = kn; equivalently, a mod n
= b mod n.

The counter value that results from the domain parameter generation
process when the domain parameter seed is used to generate DSA
domain parameters.

1. For RSA, the private signature exponent of a private key.

2. For ECDSA, the private key.

A seed used for the generation of domain parameters.

The public verification exponent of an RSA public key.

One of the DSA domain parameters; g is a generator of the q-order
cyclic group of GF(p)*; that is, an element of order q in the
multiplicative group of GF(p).

Greatest common divisor of the integers a and b.

The result of a hash computation (message digest or hash value) on
message M using an approved hash function.

A value used in the generation of g to indicate its intended use (e.g.,
for digital signatures).

For DSA and ECDSA, a per-message secret number.

For DSA, the length of the parameter p in bits.

The associated pair of length parameters for a DSA key pair, where L
is the length of p, and N is the length of q.

The least common multiple of the integers a and b.

The length of a in bits.

The message that is signed using the digital signature algorithm.

For ECDSA, the degree of the finite field GF .m2

For DSA, the length of the parameter q in bits.

6

18

MOBILEIRON, INC. - EXHIBIT 1036
Page 018

x

n 1. For RSA, the modulus; the bit length of n is considered to be the
key size.

2. For ECDSA, the order of the base point of the elliptic curve; the
bit length of n is considered to be the key size.

(n, d) An RSA private key, where n is the modulus, and d is the private
signature exponent.

(n, e) An RSA public key, where n is the modulus, and e is the public
verification exponent.

nlen The length of the RSA modulus n in bits.

p 1. For DSA, one of the DSA domain parameters; a prime number
that defines the Galois Field GF(p) and is used as a modulus in the
operations of GF(p).

2. For RSA, a prime factor of the modulus n.

q 1. For DSA, one of the DSA domain parameters; a prime factor of
p � 1.

2. For RSA, a prime factor of the modulus n.

Q An ECDSA public key.

r One component of a DSA or ECDSA digital signature. See the
definition of (r, s).

(r, s) A DSA or ECDSA digital signature, where r and s are the digital
signature components.

s One component of a DSA or ECDSA digital signature. See the
definition of (r, s).

seedlen The length of the domain_parameter_seed in bits.

SHAx(M) The result when M is the input to the SHA-x hash function, where
SHA-x is specified in FIPS 180-3.

The DSA private key.

y The DSA public key.

Bitwise logical �exclusive-or� on bit strings of the same length; for
corresponding bits of each bit string, the result is determined as
follows: 0 0 = 0, 0 1 = 1, 1 0 = 1, or 1 1 = 0.

Example: 01101 11010 = 10111
+ Addition.

7

19

MOBILEIRON, INC. - EXHIBIT 1036
Page 019

Multiplication.

/ Division.

a || b The concatenation of two strings a and b. Either a and b are both bit
strings, or both are byte strings.

a The ceiling of a: the smallest integer that is greater than or equal to
a. For example, 5 = 5, 5.3 = 6, and �2.1 = �2.

a The floor of a; the largest integer that is less than or equal to a. For
example, 5 = 5, 5.3 = 5, and -2.1 . = -3.

|a| The absolute value of a; |a| is � a if a < 0; otherwise, it is simply a.
For example, |2| = 2, and |�2| = 2.

[a, b] The interval of integers between and including a and b. For example,
[1, 4] consists of the integers 1, 2, 3 and 4.

{, a, b, �} Used to indicate optional information.

0x The prefix to a bit string that is represented in hexadecimal characters.

8

20

MOBILEIRON, INC. - EXHIBIT 1036
Page 020

A digital signature is an electronic analogue of a written signature; the digital signature can be
used to provide assurance that the claimed signatory signed the information. In addition, a
digital signature may be used to detect whether or not the information was modified after it was
signed (i.e., to detect the integrity of the signed data). These assurances may be obtained whether
the data was received in a transmission or retrieved from storage. A properly implemented
digital signature algorithm that meets the requirements of this Standard can provide these
services.

A digital signature algorithm includes a signature generation process and a signature verification
process. A signatory uses the generation process to generate a digital signature on data; a verifier
uses the verification process to verify the authenticity of the signature. Each signatory has a
public and private key and is the owner of that key pair. As shown in Figure 1, the private key is
used in the signature generation process. The key pair owner is the only entity that is authorized
to use the private key to generate digital signatures. In order to prevent other entities from
claiming to be the key pair owner and using the private key to generate fraudulent signatures, the

9

21

MOBILEIRON, INC. - EXHIBIT 1036
Page 021

private key must remain secret. The approved digital signature algorithms are designed to
prevent an adversary who does not know the signatory�s private key from generating the same
signature as the signatory on a different message. In other words, signatures are designed so that
they cannot be forged. A number of alternative terms are used in this Standard to refer to the
signatory or key pair owner. An entity that intends to generate digital signatures in the future
may be referred to as the intended signatory. Prior to the verification of a signed message, the
signatory is referred to as the claimed signatory until such time as adequate assurance can be
obtained of the actual identity of the signatory.

The public key is used in the signature verification process (see Figure 1). The public key need
not be kept secret, but its integrity must be maintained. Anyone can verify a correctly signed
message using the public key.

For both the signature generation and verification processes, the message (i.e., the signed data) is
converted to a fixed-length representation of the message by means of an approved hash
function. Both the original message and the digital signature are made available to a verifier.

A verifier requires assurance that the public key to be used to verify a signature belongs to the
entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a
verifier requires assurance that the signatory is the actual owner of the public/private key pair
used to generate and verify a digital signature. A binding of an owner�s identity and the owner�s
public key be effected in order to provide this assurance.

A verifier also requires assurance that the key pair owner actually possesses the private key
associated with the public key, and that the public key is a mathematically correct key.

By obtaining these assurances, the verifier has assurance that if the digital signature can be
correctly verified using the public key, the digital signature is valid (i.e., the key pair owner
really signed the message). Digital signature validation includes both the (mathematical)
verification of the digital signature and obtaining the appropriate assurances. The following are
reasons why such assurances are required.

1. If a verifier does not obtain assurance that a signatory is the actual owner of the key pair
whose public component is used to verify a signature, the problem of forging a signature
is reduced to the problem of falsely claiming an identity. For example, anyone in
possession of a mathematically consistent key pair can sign a message and claim that the
signatory was the President of the United States. If a verifier does not require assurance
that the President is actually the owner of the public key that is used to mathematically
verify the message�s signature, then successful signature verification provides assurance
that the message has not been altered since it was signed, but does not provide assurance
that the message came from the President (i.e., the verifier has assurance of the data�s
integrity, but source authentication is lacking).

2. If the public key used to verify a signature is not mathematically valid, the arguments
used to establish the cryptographic strength of the signature algorithm may not apply.
The owner may not be the only party who can generate signatures that can be verified

10

22

MOBILEIRON, INC. - EXHIBIT 1036
Page 022

with that public key.

3. If a public key infrastructure cannot provide assurance to a verifier that the owner of a
key pair has demonstrated knowledge of a private key that corresponds to the owner�s
public key, then it may be possible for an unscrupulous entity to have their identity (or an
assumed identity) bound to a public key that is (or has been) used by another party. The
unscrupulous entity may then claim
to be the source of certain messages
signed by that other party. Or, it
may be possible that an
unscrupulous entity has managed to
obtain ownership of a public key
that was chosen with the sole
purpose of allowing for the
verification of a signature on a
specific message.

Technically, a key pair used by a digital
signature algorithm could also be used for
purposes other than digital signatures (e.g.,
for key establishment). However, a key pair
used for digital signature generation and
verification as specified in this Standard

 be used for any other purpose. See
SP 800-57 on Key Usage for further
information.

A number of steps are required to enable a
digital signature generation or verification
capability in accordance with this Standard.
All parties that generate digital signatures

perform the initial setup process as
discussed in Section 3.1. Digital signature
generation be performed as discussed
in Section 3.2. Digital signature verification
and validation be performed as
discussed in Section 3.3.

Figure 2 depicts the steps that are
performed prior to generating a digital
signature by an entity intending to act as a

Signatory

11

23

MOBILEIRON, INC. - EXHIBIT 1036
Page 023

signatory.

For the DSA and ECDSA algorithms, the intended signatory first obtain appropriate
domain parameters, either by generating the domain parameters itself, or by obtaining domain
parameters that another entity has generated. Having obtained the set of domain parameters, the
intended signatory obtain assurance of the validity of those domain parameters; approved
methods for obtaining this assurance are provided in SP 800-89. Note that the RSA algorithm
does not use domain parameters.

Each intended signatory obtain a digital signature key pair that is generated as specified for
the appropriate digital signature algorithm, either by generating the key pair itself or by
obtaining the key pair from a trusted party. The intended signatory is authorized to use the key
pair and is the owner of that key pair. Note that if a trusted party generates the key pair, that
party needs to be trusted not to masquerade as the owner, even though the trusted party knows
the private key.

After obtaining the key pair, the intended signatory (now the key pair owner) obtain (1)
assurance of the validity of the public key and (2) assurance that he/she actually possesses the
associated private key. Approved methods for obtaining these assurances are provided in SP
800-89.

A digital signature verifier requires assurance of the identity of the signatory. Depending on the
environment in which digital signatures are generated and verified, the key pair owner (i.e., the
intended signatory) may register the public key and establish proof of identity with a mutually
trusted party. For example, a certification authority (CA) could sign credentials containing an
owner�s public key and identity to form a certificate after being provided with proof of the
owner�s identity. Systems for certifying
credentials and distributing certificates are
beyond the scope of this Standard. Other means
of establishing proof of identity (e.g., by
providing identity credentials along with the
public key directly to a prospective verifier) are
allowed.

Figure 3 depicts the steps that are performed by
an intended signatory (i.e., the entity that
generates a digital signature).

Prior to the generation of a digital signature, a
message digest be generated on the
information to be signed using an appropriate
approved hash function.

12

24

MOBILEIRON, INC. - EXHIBIT 1036
Page 024

Depending on the digital signature algorithm to be used, additional information be
obtained. For example, a random per-message secret number be obtained for DSA and
ECDSA.

Using the selected digital signature algorithm, the signature private key, the message digest, and
any other information required by the digital signature process, a digital signature be
generated in accordance with this Standard.

The signatory may optionally verify the digital signature using the signature verification process
and the associated public key. This optional verification serves as a final check to detect
otherwise undetected signature generation computation errors; this verification may be prudent
when signing a high-value message, when multiple users are expected to verify the signature, or
if the verifier will be verifying the signature at a much later time.

Figure 4 depicts the digital signature verification and validation process that are performed by a
verifier (e.g., the intended recipient of the signed data and associated digital signature). Note that
the figure depicts a successful verification and validation process (i.e., no errors are detected).

In order to verify a digital signature, the verifier obtain the public key of the claimed
signatory, (usually) based on the claimed identity. If DSA or ECDSA has been used to generate
the digital signature, the verifier also obtain the domain parameters. The public key and
domain parameters may be obtained, for example, from a certificate created by a trusted party
(e.g., a CA) or directly from the claimed signatory. A message digest be generated on the
data whose signature is to be verified (i.e., not on the received digital signature) using the same
hash function that was used during the digital signature generation process. Using the
appropriate digital signature algorithm, the domain parameters (if appropriate), the public key
and the newly computed message digest, the received digital signature is verified in accordance
with this Standard. If the verification process fails, no inference can be made as to whether the
data is correct, only that in using the specified public key and the specified signature format, the
digital signature cannot be verified for that data.

Before accepting the verified digital signature as valid, the verifier have (1) assurance of
the signatory�s claimed identity, (2) assurance of the validity of the domain parameters (for DSA
and ECDSA), (3) assurance of the validity of the public key, and (4) assurance that the claimed
signatory actually possessed the private key that was used to generate the digital signature at the
time that the signature was generated. Methods for the verifier to obtain these assurances are
provided in SP 800-89. Note that assurance of domain parameter validity may have been
obtained during initial setup (see Section 3.1).

If the verification and assurance processes are successful, the digital signature and signed data
be considered valid. However, if a verification or assurance process fails, the digital

signature be considered invalid. An organization�s policy govern the action to be
taken for an invalid digital signature. Such policy is outside the scope of this Standard.

13

25

MOBILEIRON, INC. - EXHIBIT 1036
Page 025

Obtain Assurance that the Owner

14

26

MOBILEIRON, INC. - EXHIBIT 1036
Page 026

A DSA digital signature is computed using a set of domain parameters, a private key x, a per-
message secret number k, data to be signed, and a hash function. A digital signature is verified
using the same domain parameters, a public key y that is mathematically associated with the
private key x used to generate the digital signature, data to be verified, and the same hash
function that was used during signature generation. These parameters are defined as follows:

p a prime modulus, where 2L�1 < p < 2L, and L is the bit length of p. Values for L are
provided in Section 4.2.

q a prime divisor of (p � 1), where 2N�1 < q < 2 N, and N is the bit length of q. Values for N
are provided in Section 4.2.

g a generator of the subgroup of order q mod p, such that 1 < g < p.
x the private key that must remain secret; x is a randomly or pseudorandomly generated

integer, such that 0 < x < q, i.e., x is in the range [1, q�1].

y the public key, where y = gx mod p.

k a secret number that is unique to each message; k is a randomly or pseudorandomly
generated integer, such that 0 < k < q, i.e., k is in the range [1, q�1].

This Standard specifies the following choices for the pair L and N (the bit lengths of p and q,
respectively):

L = 1024, N = 160

L = 2048, N = 224

L = 2048, N = 256

L = 3072, N = 256

Federal Government entities generate digital signatures using use one or more of these
choices.

An approved hash function, as specified in FIPS 180-3, be used during the generation of
digital signatures. The security strength associated with the DSA digital signature process is no
greater than the minimum of the security strength of the (L, N) pair and the security strength of
the hash function that is employed. Both the security strength of the hash function used and the
security strength of the (L, N) pair meet or exceed the security strength required for the
digital signature process. The security strength for each (L, N) pair and hash function is provided

15

27

MOBILEIRON, INC. - EXHIBIT 1036
Page 027

in SP 800-57.

SP 800-57 provides information about the selection of the appropriate (L, N) pair in accordance
with a desired security strength for a given time period for the generation of digital signatures.
An (L, N) pair be chosen that protects the signed information during the entire expected
lifetime of that information. For example, if a digital signature is generated in 2009 for
information that needs to be protected for five years, and a particular (L, N) pair is invalid after
2010, then a larger (L, N) pair be used that remains valid for the entire period of time that
the information needs to be protected.

It is recommended that the security strength of the (L, N) pair and the security strength of the
hash function used for the generation of digital signatures be the same unless an agreement has
been made between participating entities to use a stronger hash function. When the length of the
output of the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of
the hash function output block be used in any calculation using the hash function output
during the generation or verification of a digital signature. A hash function that provides a lower
security strength than the (L, N) pair ordinarily be used, since this would reduce the
security strength of the digital signature process to a level no greater than that provided by the
hash function.

A Federal Government entity other than a Certification Authority (CA) use only the first
three (L, N) pairs (i.e., the (1024, 160), (2048, 224) and (2048, 256) pairs). A CA use an (L,
N) pair that is equal to or greater than the (L, N) pairs used by its subscribers. For example, if
subscribers are using the (2048, 224) pair, then the CA use either the (2048, 224), (2048,
256) or (3072, 256) pair. Possible exceptions to this rule include cross certification between
CAs, certifying keys for purposes other than digital signatures and transitioning from one key
size or algorithm to another. See SP 800-57 for further guidance.

DSA requires that the private/public key pairs used for digital signature generation and
verification be generated with respect to a particular set of domain parameters. These domain
parameters may be common to a group of users and may be public. A user of a set of domain
parameters (i.e., both the signatory and the verifier) have assurance of their validity prior to
using them (see Section 3). Although domain parameters may be public information, they
be managed so that the correct correspondence between a given key pair and its set of domain
parameters is maintained for all parties that use the key pair. A set of domain parameters may
remain fixed for an extended time period.

The domain parameters for DSA are the integers p, q, and g, and optionally, the
domain_parameter_seed and counter that were used to generate p and q (i.e., the full set of
domain parameters is (p, q, g {, domain_parameter_seed, counter})).

16

28

MOBILEIRON, INC. - EXHIBIT 1036
Page 028

Domain parameters may be generated by a trusted third party (a TTP, such as a CA) or by an
entity other than a TTP. Assurance of domain parameter validity be obtained prior to key
pair generation, digital signature generation or digital signature verification (see Section 3).

The integers p and q be generated as specified in Appendix A.1. The input to the
generation process is the selected values of L and N (see Section 4.2); the output of the
generation process is the values for p and q, and optionally, the values of the
domain_parameter_seed and counter.

The generator g be generated as specified in Appendix A.2.

The security strength of a hash function used during the generation of the domain parameters
 meet or exceed the security strength associated with the (L, N) pair. Note that this is more

restrictive than the hash function that can be used for the digital signature process (see Section
4.2).

Each digital signature key pair be correctly associated with one specific set of domain
parameters (e.g., by a public key certificate that identifies the domain parameters associated with
the public key). The domain parameters be protected from unauthorized modification until
the set is deactivated (if and when the set is no longer needed). The same domain parameters
may be used for more than one purpose (e.g., the same domain parameters may be used for both
digital signatures and key establishment). However, using different values for the generator g
reduces the risk that key pairs generated for one purpose could be accidentally used
(successfully) for another purpose.

Each signatory has a key pair: a private key x and a public key y that are mathematically related
to each other. The private key be used for only a fixed period of time (i.e., the private key
cryptoperiod) in which digital signatures may be generated; the public key may continue to be
used as long as digital signatures that were generated using the associated private key need to be
verified (i.e., the public key may continue to be used beyond the cryptoperiod of the associated
private key). See SP 800-57 for further guidance.

A digital signature key pair x and y is generated for a set of domain parameters (p, q, g {,
domain_parameter_seed, counter}). Methods for the generation of x and y are provided in
Appendix B.1.

17

29

MOBILEIRON, INC. - EXHIBIT 1036
Page 029

Guidance on the protection of key pairs is provided in SP 800-57. The secure use of digital
signatures depends on the management of an entity�s digital signature key pair as follows:

1. The validity of the domain parameters be assured prior to the generation of the key
pair, or the verification and validation of a digital signature (see Section 3).

2. Each key pair be associated with the domain parameters under which the key pair
was generated.

3. A key pair only be used to generate and verify signatures using the domain
parameters associated with that key pair.

4. The private key be used only for signature generation as specified in this Standard
and be kept secret; the public key be used only for signature verification and
may be made public.

5. An intended signatory have assurance of possession of the private key prior to or
concurrently with using it to generate a digital signature (see Section 3.1).

6. A private key be protected from unauthorized access, disclosure and modification.

7. A public key be protected from unauthorized modification (including substitution).
For example, public key certificates that are signed by a CA may provide such protection.

8. A verifier be assured of a binding between the public key, its associated domain
parameters and the key pair owner (see Section 3).

9. A verifier obtain public keys in a trusted manner (e.g., from a certificate signed by a
CA that the entity trusts, or directly from the intended or claimed signatory, provided that
the entity is trusted by the verifier and can be authenticated as the source of the signed
information that is to be verified).

10. Verifiers be assured that the claimed signatory is the key pair owner, and that the
owner possessed the private key that was used to generate the digital signature at the time
that the signature was generated (i.e., the private key that is associated with the public
key that will be used to verify the digital signature) (see Section 3.3).

11. A signatory and a verifier have assurance of the validity of the public key (see
Sections 3.1 and 3.3).

A new secret random number k be generated prior to the generation of each digital
signature for use during the signature generation process. This secret number be protected
from unauthorized disclosure and modification.

k 1 k 1 is the multiplicative inverse of k with respect to multiplication modulo q; i.e., 0 < < q

18

30

MOBILEIRON, INC. - EXHIBIT 1036
Page 030

k 1and 1 = (k) mod q. This inverse is required for the signature generation process (see Section
k 14.6). A technique is provided in Appendix C.1 for deriving from k.

k 1k and may be pre-computed, since knowledge of the message to be signed is not required for
k 1the computations. When k and are pre-computed, their confidentiality and integrity be

protected.

Methods for the generation of the per-message secret number are provided in Appendix B.2.

The intended signatory have assurances as specified in Section 3.1.

Let N be the bit length of q. Let (N, outlen) denote the minimum of the positive integers N
and outlen, where outlen is the bit length of the hash function output block.

The signature of a message M consists of the pair of numbers r and s that is computed according
to the following equations:

r = (gk mod p) mod q.

z = the leftmost (N, outlen) bits of (M).

k 1s = ((z + xr)) mod q.

When computing s, the string z obtained from (M) be converted to an integer. The
conversion rule is provided in Appendix C.2.

Note that r may be computed whenever k, p, q and g are available, e.g., whenever the domain
parameters p, q and g are known, and k has been pre-computed (see Section 4.5), r may also be
pre-computed, since knowledge of the message to be signed is not required for the computation
of r. Pre-computed k, k-1 and r values be protected in the same manner as the the private
key x until s has been computed (see SP 800-57).

The values of r and s be checked to determine if r = 0 or s = 0. If either r = 0 or s = 0, a
new value of k be generated, and the signature be recalculated. It is extremely
unlikely that r = 0 or s = 0 if signatures are generated properly.

The signature (r, s) may be transmitted along with the message to the verifier.

Signature verification may be performed by any party (i.e., the signatory, the intended recipient
or any other party) using the signatory�s public key. A signatory may wish to verify that the
computed signature is correct, perhaps before sending the signed message to the intended
recipient. The intended recipient (or any other party) verifies the signature to determine its

19

31

MOBILEIRON, INC. - EXHIBIT 1036
Page 031

authenticity.

Prior to verifying the signature of a signed message, the domain parameters, and the claimed
signatory�s public key and identity be made available to the verifier in an authenticated
manner. The public key may, for example, be obtained in the form of a certificate signed by a
trusted entity (e.g., a CA) or in a face-to-face meeting with the public key owner.

Let M , r , and s be the received versions of M, r, and s, respectively; let y be the public key of
the claimed signatory; and let N be the bit length of q. Also, let (N, outlen) denote the
minimum of the positive integers N and outlen, where outlen is the bit length of the hash
function output block.

The signature verification process is as follows:

1. The verifier check that 0 < r < q and 0 < s < q; if either condition is violated, the
signature be rejected as invalid.

2. If the two conditions in step 1 are satisfied, the verifier computes the following:

w = (s)�1 mod q.

z = the leftmost (N, outlen) bits of (M).

u1 = (zw) mod q.

u2 = ((r)w) mod q.

v = (((g)u1 (y)u2) mod p) mod q.

A technique is provided in Appendix C.1 for deriving (s)�1 (i.e., the multiplicative
inverse of s mod q).

The string z obtained from (M) be converted to an integer. The conversion
rule is provided in Appendix C.2.

3. If v = r , then the signature is verified. For a proof that v = r when M = M, r = r, and s
= s, see Appendix E.

4. If v does not equal r , then the message or the signature may have been modified, there
may have been an error in the signatory�s generation process, or an imposter (who did not
know the private key associated with the public key of the claimed signatory) may have
attempted to forge the signature. The signature be considered invalid. No inference
can be made as to whether the data is valid, only that when using the public key to verify
the signature, the signature is incorrect for that data.

5. Prior to accepting the signature as valid, the verifier have assurances as specified in
Section 3.3.

An organization�s policy may govern the action to be taken for invalid digital signatures. Such
policy is outside the scope of this Standard. Guidance about determining the timeliness of

20

32

MOBILEIRON, INC. - EXHIBIT 1036
Page 032

digitally signed messages is addressed in SP 800-102, Recommendation for Digital Signature
Timeliness.

21

33

MOBILEIRON, INC. - EXHIBIT 1036
Page 033

The use of the RSA algorithm for digital signature generation and verification is specified in
American National Standard (ANS) X9.31 and Public Key Cryptography Standard (PKCS) #1.
While each of these standards uses the RSA algorithm, the format of the ANS X9.31 and PKCS
#1 data on which the digital signature is generated differs in details that make the algorithms
non-interchangeable.

An RSA digital signature key pair consists of an RSA private key, which is used to compute a
digital signature, and an RSA public key, which is used to verify a digital signature. An RSA key
pair used for digital signatures only be used for one digital signature scheme (e.g., ANS
X9.31, RSASSA-PKCS1 v1.5 or RSASSA-PSS; see Sections 5.4 and 5.5). In addition, an RSA
digital signature key pair be used for other purposes (e.g., key establishment).

An RSA public key consists of a modulus n, which is the product of two positive prime integers
p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values
(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly
considered to be the length of the modulus n in bits (nlen).

The corresponding RSA private key consists of the same modulus n and a private key exponent d
that depends on n and the public key exponent e. Thus, the RSA private key is the pair of values
(n, d) and is used to generate digital signatures. Note that an alternative method for representing
(n, d) using the Chinese Remainder Theorem (CRT) is allowed.

In order to provide security for the digital signature process, the two integers p and q, and the
private key exponent d be kept secret. The modulus n and the public key exponent e may
be made known to anyone. Guidance on the protection of these values is provided in SP 800-57.

This Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and
3072 bits. Federal Government entities generate digital signatures using one or more of
these choices.

An approved hash function, as specified in FIPS 180-3, be used during the generation of
key pairs and digital signatures. When used during the generation of an RSA key pair (as
specified in this Standard), the length in bits of the hash function output block meet or
exceed the security strength associated with the bit length of the modulus n (see SP 800-57).

The security strength associated with the RSA digital signature process is no greater than the
minimum of the security strength associated with the bit length of the modulus and the security
strength of the hash function that is employed. The security strength for each modulus length and
hash function used during the digital signature process is provided in SP 800-57. Both the
security strength of the hash function used and the security strength associated with the bit length
of the modulus n meet or exceed the security strength required for the digital signature

22

34

MOBILEIRON, INC. - EXHIBIT 1036
Page 034

process.

It is recommended that the security strength of the modulus and the security strength of the hash
function be the same unless an agreement has been made between participating entities to use a
stronger hash function. A hash function that provides a lower security strength than the security
strength associated with the bit length of the modulus ordinarily be used, since this
would reduce the security strength of the digital signature process to a level no greater than that
provided by the hash function.

Federal Government entities other than CAs use only the first two choices (i.e., nlen =
1024 or 2048) during the timeframes indicated in SP 800-57. A CA use a modulus whose
length nlen is equal to or greater than the moduli used by its subscribers. For example, if the
subscribers are using nlen = 2048, then the CA use nlen 2048. SP 800-57 provides
further information about the selection of the bit length of n. Possible exceptions to this rule
include cross certification between CAs, certifying keys for purposes other than digital
signatures and transitioning from one key size or algorithm to another.

Criteria for the generation of RSA key pairs are provided in Appendix B.3.1.

When RSA parameters are randomly generated (i.e., the primes p and q, and optionally, the
public key exponent e), they be generated using an approved random or pseudorandom
number generator (see SP 800-90). The resulting (pseudo) random numbers be used as
seeds for generating RSA parameters (e.g., the (pseudo) random number is used as a prime
number generation seed). Prime number generation seeds be kept secret or destroyed when
the modulus n is computed. If the prime number generation seeds are retained, they only be
used as evidence that the generated values (i.e., p and q) were determined in an arbitrary manner,
and the seeds be protected in a manner that is (at least) equivalent to the protection required
for the private key.

The secure use of digital signatures depends on the management of an entity�s digital signature
key pair. Key pair management requirements for RSA are provided in Section 4.4.2,
requirements 4 � 11. Note that the first three requirements in Section 4.4.2, which address the
relationship between domain parameters and key pairs, are not applicable to RSA.

The intended signatory have assurances as specified in Section 3.1. Prior to accepting a digital
signature as valid, the verifier have assurances as specified in Section 3.3.

ANS X9.31, Digital Signatures Using Reversible Public Key Cryptography for the Financial

23

35

MOBILEIRON, INC. - EXHIBIT 1036
Page 035

Services Industry (rDSA), was developed for the American National Standards Institute by the
Accredited Standards Committee on Financial Services, X9. See http://www.x9.org for
information about obtaining copies of ANS X9.31 and any associated errata. The following
discussions are based on the version of ANS X9.31 that was approved in 1998.

Methods for the generation of the private prime factors p and q are provided in Appendix B.3.

In ANS X9.31, the length of the modulus n is allowed in increments of 256 bits beyond a
minimum of 1024 bits. Implementations claiming conformance to FIPS 186-3 include one
or more of the modulus sizes specified in Section 5.1.

Two methods for the generation of digital signatures are included in ANS X9.31. When the
public signature verification exponent e is odd, the digital signature algorithm is commonly
known as RSA; when the public signature verification exponent e is even, the digital signature
algorithm is commonly known as Rabin-Williams. This Standard (i.e., FIPS 186-3) adopts the
use of RSA, but does not adopt the use of Rabin-Williams.

During signature verification, the extraction of the hash value H(M) from the data structure IR
 be accomplished by either:

Selecting the hashlen bytes of the data structure IR that immediately precedes the two
bytes of trailer information, where hashlen is the length in bytes of the hash function
used, regardless of the length of the padding, or

If the hash value H(M) is selected by its location with respect to the last byte of padding
(i.e., 0xBA), including a check that the hash value is followed by only two bytes
containing the expected trailer value.

ANS X9.31 contains an annex on random number generation. However, implementations of
ANS X9.31 use the approved random number generation methods specified in SP 800-90.

Annexes in ANS X9.31 provide informative discussions of security and implementation
considerations.

Public-Key Cryptography Standard (PKCS) #1, RSA Cryptography Standard, defines
mechanisms for encrypting and signing data using the RSA algorithm. PKCS #1 v2.1 specifies
two digital signature processes and corresponding formats: RSASSA-PKCS1-v1.5 and
RSASSA-PSS. Both signature schemes are approved for use, but additional constraints are
imposed beyond those specified in PKCS #1 v2.1.

(a) Implementations that generate RSA key pairs use the criteria and methods in
Appendix B.3 to generate those key pairs,

(b) Only approved hash functions be used.

(c) Only two prime factors p and q be used to form the modulus n.

24

36

MOBILEIRON, INC. - EXHIBIT 1036
Page 036

(d) Random numbers be generated in accordance with SP 800-90.

(e) For RSASSA-PSS, the length of the salt (sLen) be: 0 sLen hlen, where hlen is
the length of the hash function output block.

(f) For RSASSA-PKCS-v1.5, when the hash value is recovered from the encoded message
EM during the verification of the digital signature1, the extraction of the hash value
be accomplished by either:

Selecting the rightmost (least significant) bits of EM, based on the size of the hash
function used, regardless of the length of the padding, or

If the hash value is selected by its location with respect to the last byte of padding,
including a check that the hash value is located in the rightmost (least significant)
bytes of EM (i.e., no other information follows the hash value in the encoded
message).

Note: PKCS #1 was initially developed by RSA Laboratories in 1991 and has been revised as
multiple versions. At the time of the approval of FIPS 186-3, three versions of PKSC #1 were
available: version 1.5, version 2.0 and version 2.1. This Standard references only version 2.1.

1 PKCS #1, v2.1 provides two methods for comparing the hash values: by comparing the encoded messages EM and
EM , and by extracting the hash value from the decoding of the encoded message (see the Note in PKCS #1, v2.1).
Step (f) above applies to the latter case.

25

37

MOBILEIRON, INC. - EXHIBIT 1036
Page 037

ANS X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Standard (ECDSA), was developed for the American National Standards
Institute by the Accredited Standards Committee on Financial Services, X9. Information about
obtaining copies of ANS X9.62 is available at http://www.x9.org. The following discussions are
based on the version of ANS X9.62 that was approved in 2005. This version of ANS X9.62
be used, subject to the transition period referenced in the implementation schedule of this
Standard.

ANS X9.62 defines methods for digital signature generation and verification using the Elliptic
Curve Digital Signature Algorithm (ECDSA). Specifications for the generation of the domain
parameters used during the generation and verification of digital signatures are also included in
ANS X9.62. ECDSA is the elliptic curve analog of DSA. ECDSA keys be used for any
other purpose (e.g., key establishment).

ECDSA requires that the private/public key pairs used for digital signature generation and
verification be generated with respect to a particular set of domain parameters. These domain
parameters may be common to a group of users and may be public. Domain parameters may
remain fixed for an extended time period.

Domain parameters for ECDSA are of the form (q, FR, a, b {, domain_parameter_seed}, G, n,
h), where q is the field size; FR is an indication of the basis used; a and b are two field elements
that define the equation of the curve; domain_parameter_seed is the domain parameter seed and
is an optional bit string that is present if the elliptic curve was randomly generated in a verifiable
fashion, G is a base point of prime order on the curve (i.e., G = (xG, yG)), n is the order of the
point G, and h is the cofactor (which is equal to the order of the curve divided by n).

This Standard specifies five ranges for n (see Table 1). For each range, a maximum cofactor size
is also specified. Note that the specification of a cofactor h in a set of domain parameters is
optional in ANS X9.62, whereas implementations conforming to this Standard (i.e., FIPS 186-3)

 specify the cofactor h in the set of domain parameters. Table 1 provides the maximum sizes
for the cofactor h.

26

38

MOBILEIRON, INC. - EXHIBIT 1036
Page 038

2

160 - 223 210

224 - 255 214

256 - 383 216

384 - 511 224

 512 232

ECDSA is defined for two arithmetic fields: the finite field GFp and the finite field GF . Form2

the field GFp , p is required to be an odd prime.

NIST Recommended curves are provided in Appendix D of this Standard (i.e., FIPS 186-3).
Three types of curves are provided:

1. Curves over prime fields, which are identified as P-xxx,

2. Curves over Binary fields, which are identified as B-xxx, and

3. Koblitz curves, which are identified as K-xxx,

where xxx indicates the bit length of the field size.

Alternatively, ECDSA domain parameters may be generated as specified in ANS X9.62; when
ECDSA domain parameters are generated (i.e., the NIST Recommended curves are not used),
the value of G be generated canonically (verifiably random). An approved hash function,
as specified in FIPS 180-3, be used during the generation of ECDSA domain parameters.
When generating these domain parameters, the security strength of a hash function used
meet or exceed the security strength associated with the bit length of n (see footnote 2 below).

An approved hash function, as specified in FIPS 180-3, is required during the generation of
domain parameters. The security strength of the hash function used meet or exceed the
security strength associated with the bit length of n. The security strengths for the ranges of n
and the hash functions are provided in SP 800-57. It is recommended that the security strength
associated with the bit length of n and the security strength of the hash function be the same

2 The NIST Recommended curves were generated prior to the formulation of this guidance and using SHA-1, which
was the only approved hash function available at that time. Since SHA-1 was considered secure at the time of
generation, the curves were made public, and SHA-1 will only be used to validate those curves, the NIST
Recommended curves are still considered secure and appropriate for Federal government use.

27

39

MOBILEIRON, INC. - EXHIBIT 1036
Page 039

unless an agreement has been made between participating entities to use a stronger hash
function; a hash function that provides a lower security strength than is associated with the bit
length of n be used. If the length of the output of the hash function is greater than the
bit length of n, then the leftmost n bits of the hash function output block be used in any
calculation using the hash function output during the generation or verification of a digital
signature.

Normally, a CA use a bit length of n whose assessed security strength is equal to or
greater than the assessed security strength associated with the bit length of n used by its
subscribers. For example, if subscribers are using a bit length of n with an assessed security
strength of 112 bits, then CAs use a bit length of n whose assessed security strength is
equal to or greater than 112 bits. SP 800-57 provides further information about the selection of a
bit length of n. Possible exceptions to this rule include cross certification between CAs,
certifying keys for purposes other than digital signatures and transitioning from one key size or
algorithm to another. However, these exceptions require further analysis.

Each ECDSA key pair be correctly associated with one specific set of domain parameters
(e.g., by a public key certificate that identifies the domain parameters associated with the public
key). The domain parameters be protected from unauthorized modification until the set is
deactivated (if and when the set is no longer needed). The same domain parameters may be used
for more than one purpose (e.g., the same domain parameters may be used for both digital
signatures and key establishment). However, using different domain parameters reduces the risk
that key pairs generated for one purpose could be accidentally used (successfully) for another
purpose.

An ECDSA key pair consists of a private key d and a public key Q that is associated with a
specific set of ECDSA domain parameters; d, Q and the domain parameters are mathematically
related to each other. The private key is normally used for a period of time (i.e., the
cryptoperiod); the public key may continue to be used as long as digital signatures that have been
generated using the associated private key need to be verified (i.e., the public key may continue
to be used beyond the cryptoperiod of the associated private key). See SP 800-57 for further
guidance.

ECDSA keys only be used for the generation and verification of ECDSA digital signatures.

A digital signature key pair d and Q is generated for a set of domain parameters (q, FR, a, b {,
domain_parameter_seed}, G, n, h). Methods for the generation of d and Q are provided in

28

40

MOBILEIRON, INC. - EXHIBIT 1036
Page 040

Appendix B.4.

The secure use of digital signatures depends on the management of an entity�s digital signature
key pair as specified in Section 4.4.2.

A new secret random number k be generated prior to the generation of each digital
signature for use during the signature generation process. This secret number be protected
from unauthorized disclosure and modification. Methods for the generation of the per-message
secret number are provided in Appendix B.5.

k 1 k 1 is the multiplicative inverse of k with respect to multiplication modulo n; i.e., 0 < < n
k 1and 1 = (k) mod n. This inverse is required for the signature generation process. A technique

k 1is provided in Appendix C.1 for deriving from k.

k 1k and may be pre-computed, since knowledge of the message to be signed is not required for
k 1the computations. When k and are pre-computed, their confidentiality and integrity be

protected.

An ECDSA digital signature (r, s) be generated as specified in ANS X9.62, using:

1. Domain parameters that are generated in accordance with Section 6.1.1,

2. A private key that is generated as specified in Section 6.2.1,

3. A per-message secret number that is generated as specified in Section 6.3,

4. An approved hash function as discussed below, and

5. An approved random number generator as specified in SP 800-90.

An ECDSA digital signature be verified as specified in ANS X9.62, using the same domain
parameters and hash function that were used during signature generation.

An approved hash function, as specified in FIPS 180-3, be used during the generation of
digital signatures. The security strength associated with the ECDSA digital signature process is
no greater than the minimum of the security strength associated with the bit length of n and the
security strength of the hash function that is employed. Both the security strength of the hash
function used and the security strength associated with the bit length of n meet or exceed
the security strength required for the digital signature process. The security strengths for the
ranges of the bit lengths of n and for each hash function is provided in SP 800-57.

29

41

MOBILEIRON, INC. - EXHIBIT 1036
Page 041

It is recommended that the security strength associated with the bit length of n and the security
strength of the hash function be the same unless an agreement has been made between
participating entities to use a stronger hash function. When the length of the output of the hash
function is greater than the bit length of n, then the leftmost n bits of the hash function output
block be used in any calculation using the hash function output during the generation or
verification of a digital signature. A hash function that provides a lower security strength than
the security strength associated with the bit length of n ordinarily be used, since this
would reduce the security strength of the digital signature process to a level no greater than that
provided by the hash function.

The intended signatory have assurances as specified in Section 3.1. Prior to accepting a
signature as valid, the verifier have assurances as specified in Section 3.3.

30

42

MOBILEIRON, INC. - EXHIBIT 1036
Page 042

Finite field cryptography (FFC) is a method of implementing discrete logarithm cryptography
using finite field mathematics. DSA, as specified in this Standard, is an example of FFC. The
Diffie-Hellman and MQV key establishment algorithms specified in SP 800-56A can also be
implemented as FFC.

The domain parameters for FFC consist of the set of values (p, q, g {, domain_parameter_seed,
counter}). This appendix specifies techniques for the generation of the FFC domain parameters
p, q and g and performing an explicit domain parameter validation. During the generation
process, the values for domain_parameter_seed and counter are obtained.

This section provides methods for generating the primes p and q that fulfill the criteria specified
in Sections 4.1 and 4.2. One of these methods be used when generating these primes. A
method is provided in Appendix A.1.1 to generate random candidate integers and then test them
for primality using a probabilistic algorithm. A second method is provided in Appendix A.1.2
that constructs integers from smaller integers so that the constructed integer is guaranteed to be
prime.

During the generation, validation and testing processes, conversions between bit strings and
integers are required. Appendix C.2 provides methods for these conversions.

Previous versions of this Standard contained a method for the generation of the domain
parameters p and q using SHA-1 and probabilistic methods. This method is no longer approved
for domain parameter generation; however, the validation process for this method is provided in
Appendix A.1.1.1 to validate previously generated domain parameters.

A method for the generation and validation of the primes p and q using probabilistic methods is
provided in Appendix A.1.1.2 and is based on the use of an approved hash function; this method

 be used for generating probable primes. The validation process for this method is provided
in Appendix A.1.1.3.

The probabilistic methods use a hash function and an arbitrary seed (domain_parameter_seed).
Arbitrary seeds could be anything, e.g., a user�s favorite number or a random or pseudorandom
number output by a random number generator (see SP 800-90). The domain_parameter_seed
determines a sequence of candidates for p and q in the required intervals that are then tested for
primality using a probabilistic primality test (see Appendix C.3). The test determines that the
candidate is either not a prime (i.e., it is a composite integer) or is �probably a prime� (i.e., there
is a very small probability that a composite integer will be declared to be a prime). p and q
be the first candidate set that passes the primality tests. Note that the domain_parameter_seed

31

43

MOBILEIRON, INC. - EXHIBIT 1036
Page 043

 be unique for every unique set of domain parameters that are generated using the same
method.

p q

This prime validation algorithm is used to validate that the primes p and q that were generated by
the prime generation algorithm specified in previous versions of this Standard. The algorithm
requires the values of p, q, domain_parameter_seed and counter, which were output from the
prime generation algorithm.

Let be the SHA-1 hash function specified in FIPS 180-3. The following process or its
equivalent be used to validate p and q for this method.

1. p, q The generated primes p and q.

2. domain_parameter_seed A seed that was used to generate p and q.

3. counter A count value that was determined during generation.

1. status The status returned from the validation procedure, where
status is either or .

1. If ((p) 1024) or ((q) 160), then return .

2. If (counter > 4095), then return .

3. seedlen = (domain_parameter_seed).

4. If (seedlen < 160), then return

5. computed_q = (domain_parameter_seed) ((domain_parameter_seed +
1) mod 2seedlen).

6. Set the first and last bits of computed_q equal to 1 (i.e., the 159th and 0th bits).

7. Test whether or not computed_q is prime as specified in Appendix C.3. If
(computed_q q) or (computed_q is not prime), then return

8. offset = 2.

9. For i = 0 to counter do

9.1 For j = 0 to 6 do

Vj = ((domain_parameter_seed + offset + j) mod 2seedlen).

9.2 W = V0 + (V1 2160) + (V2 2320) + (V3 2480) + (V4 2640) + (V5 2800) +

32

44

MOBILEIRON, INC. - EXHIBIT 1036
Page 044

((V6 mod 263) 2960).

9.3 X = W + 21023. Comment: 0 W < 2L�1.

9.4 c = X mod 2q.

9.5 computed_p = X � (c � 1). Comment: computed_p 1 (mod 2q).

9.6 If (computed_p < 21023), then go to step 9.8.

9.7 Test whether or not computed_p is prime as specified in Appendix C.3. If
computed_p is determined to be prime, then go to step 10.

9.8 offset = offset + 7.

10. If ((i counter) or (computed_p p) or (computed_p is not prime)), then return

11. Return .

p q
This method uses an approved hash function and may be used for the generation of the primes p
and q for any application (e.g., digital signatures or key establishment). The security strength of
the hash function be equal to or greater than the security strength associated with the (L, N)
pair.

An arbitrary domain_parameter_seed of seedlen bits is also used, where seedlen be equal
to or greater than N.

The generation process returns a set of integers p and q that have a very high probability of being
prime. For another entity to validate that the primes were generated correctly using the validation
process in Appendix A.1.1.3, the value of the domain_parameter_seed and the counter used to
generate the primes must also be returned and made available to the validating entity; the
domain_parameter_seed and counter need not be kept secret. Let be the selected hash
function, and let outlen be the bit length of the output block, where outlen be equal to or
greater than N.

The following process or its equivalent be used to generate p and q for this method.

1. L The desired length of the prime p (in bits).

2. N The desired length of the prime q (in bits).

3. seedlen The desired length of the domain parameter seed; seedlen be
equal to or greater than N.

1. status The status returned from the generation procedure, where status is

33

45

MOBILEIRON, INC. - EXHIBIT 1036
Page 045

either or . If is returned as the status,
either no values for the other output parameters be returned, or
invalid values be returned (e.g., zeros or Null strings).

2. p, q The generated primes p and q.

3. domain_parameter_seed

(Optional) A seed that was used to generate p and q.

4. counter (Optional) A count value that was determined during generation.

1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If
the pair is not in the list, then return

2. If (seedlen < N), then return

3. n = L outlen � 1.

4. b = L � 1 � (n outlen).

5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed.

6. U = (domain_parameter_seed) mod 2N�1.

7. q = 2N�1 + U + 1 � (U mod 2).

8. Test whether or not q is prime as specified in Appendix C.3.

9. If q is not a prime, then go to step 5.

10. offset = 1.

11. For counter = 0 to (4L � 1) do

11.1 For j = 0 to n do

Vj = (domain_parameter_seed + offset + j) mod 2seedlen).

11.2 W = V0 + (V1 2outlen) + + (Vn�1 2(n�1) outlen) + ((Vn mod 2b) 2n outlen).

11.3 X = W + 2L�1. Comment: 0 W < 2L�1; hence, 2L�1 X < 2L .

11.4 c = X mod 2q.

11.5 p = X � (c � 1). Comment: p 1 (mod 2q).

11.6 If (p < 2L�1), then go to step 11.9.

11.7 Test whether or not p is prime as specified in Appendix C.3.

11.8 If p is determined to be prime, then return and the values of p, q and
(optionally) the values of domain_parameter_seed and counter.

34

46

MOBILEIRON, INC. - EXHIBIT 1036
Page 046

11.9 offset = offset + n + 1. Comment: Increment offset; then, as part of
the loop in step 11, increment counter; if
counter < 4L, repeat steps 11.1 through 11.8.

12. Go to step 5.

p q

This prime validation algorithm is used to validate that the integers p and q were generated by
the prime generation algorithm given in Appendix A.1.1.2. The validation algorithm requires the
values of p, q, domain_parameter_seed and counter, which were output from the prime
generation algorithm. Let be the hash function used to generate p and q, and let outlen
be its output block length.

The following process or its equivalent be used to validate p and q for this method.

1. p, q The generated primes p and q.

3. domain_parameter_seed The domain parameter seed that was used to generate p and
q.

4. counter A count value that was determined during generation.

1. status The status returned from the validation procedure, where
status is either or .

1. L = (p).

2. N = (q).

3. Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If the
pair is not in the list, return .

4. If (counter > (4L � 1)), then return .

5. seedlen = (domain_parameter_seed).

6. If (seedlen < N), then return

7. U = (domain_parameter_seed) mod 2N�1.

8. computed_q = 2N�1 + U + 1 � (U mod 2).

9. Test whether or not computed_q is prime as specified in Appendix C.3. If (computed_q
q) or (computed_q is not prime), then return

35

47

MOBILEIRON, INC. - EXHIBIT 1036
Page 047

10. n = L outlen � 1.

11. b = L � 1 � (n outlen).

12. offset = 1.

13. For i = 0 to counter do

13.1 For j = 0 to n do

Vj = ((domain_parameter_seed + offset + j) mod 2seedlen).

13.2 W = V0 + (V1 2outlen) + + (Vn�1 2(n�1) outlen) + ((Vn mod 2b) 2n outlen).

13.3 X = W + 2L�1.

13.4 c = X mod 2q.

13.5 computed_p = X � (c � 1).

13.6 If (computed_p < 2L�1), then go to step 13.9

13.7 Test whether or not computed_p is prime as specified in Appendix C.3.

13.8 If computed_p is determined to be a prime, then go to step 14.

13.9 offset = offset + n + 1.

14. If ((i counter) or (computed_p p) or (computed_p is not a prime)), then return

15. Return

Primes can be generated so that they are guaranteed to be prime. The following algorithm for
generating p and q uses an approved hash function and an arbitrary seed (firstseed) to construct p
and q in the required intervals. The security strength of the hash function be equal to or
greater than the security strength associated with the (L, N) pair.

Arbitrary seeds can be anything, e.g., a user�s favorite number or a random or pseudorandom
number that is output from a random number generator. Note that the firstseed must be unique to
produce a unique set of domain parameters. Candidate primes are tested for primality using a
deterministic primality test that proves whether or not the candidate is prime. The resulting p and
q are guaranteed to be primes.

p q
For each set of domain parameters generated, an arbitrary initial seed (firstseed) of at least
seedlen bits be determined, where seedlen be N.

The generation process returns a set of integers p and q that are guaranteed to be prime. For

36

48

MOBILEIRON, INC. - EXHIBIT 1036
Page 048

another entity to validate that the primes were generated correctly (using the validation process
in Appendix A.1.2.2), the value of the firstseed, the two computed seeds (pseed and qseed) and
the counters used to generate the primes (pgen_counter and qgen_counter) must be made
available to the validating entity; the seeds and the counters need not be kept secret. The domain
parameters for DSA are identified in Section 4.3 as (p, q, g {, domain_parameter_seed,
counter}). When using the Shawe-Taylor algorithm for generating p and q, the
domain_parameter_seed consists of three seed values (firstseed, pseed, and qseed), and the
counter consists of the pair of counter values (pgen_counter and qgen_counter).

Let be the selected hash function (see Appendix A.1.2), and let outlen be the bit length
of the output block of that hash function.

The following process or its equivalent be used to generate firstseed for this constructive
method.

1. N The length of q in bits.

2. seedlen The length of firstseed, where seedlen N.

1. status The status returned from the generation procedure, where status is
either or If is returned, then
either no firstseed value be provided or an invalid value
be returned.

2. firstseed The first seed generated.

1. firstseed = 0.

2. Check that N is in the list of acceptable (L, N) pairs (see Section 4.2). If not, then
return .

3. If (seedlen < N), then return .

4. While firstseed < 2N�1.

Get an arbitrary sequence of seedlen bits as firstseed.

5. Return and the value of firstseed.

Note: This routine could be incorporated into the beginning of the constructive prime generation
procedure in Appendix A.1.2.1.2. However, this was not done in this specification so that the
validation process in Appendix A.1.2.2 could also call the constructive prime generation

37

49

MOBILEIRON, INC. - EXHIBIT 1036
Page 049

procedure and provide the value of firstseed as input.

The following process or its equivalent be used to generate p and q for this constructive
method.

1. L The requested length for p (in bits).
2. N The requested length for q (in bits).

3. firstseed The first seed to be used. This was obtained as specified in
Appendix A.1.2.1.1.

1. status The status returned from the generation procedure, where status is
either or If is returned, then
either no other values be returned, or invalid values be
returned.

2. p, q The requested primes.

3. pseed, qseed (Optional) Computed seed values that were used to generate p and
q. The entire seed for the generation of p and q consists of
firstseed, pseed and qseed.

4. pgen_counter, qgen_counter

(Optional) The count values that were determined during generation.

1. Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If
the pair is not in the list, return .

Comment: Use the Shawe-Taylor random
prime routine in Appendix C.6 to generate
random primes.

2. Using N as the length and firstseed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain q, qseed and qgen_counter. If

 is returned, then return .

3. Using L / 2 + 1 as the length and qseed as the input_seed, use the random prime
routine in Appendix C.6 to obtain p0 , pseed, and pgen_counter. If is
returned, then return .

4. iterations = L / outlen �1.

38

50

MOBILEIRON, INC. - EXHIBIT 1036
Page 050

5. old_counter = pgen_counter.

Comment: Generate a (pseudo) random x in
the interval [2L 1, 2L].

6. x = 0.

7. For i = 0 to iterations do

x = x + ((pseed + i) 2 i * outlen).

8. pseed = pseed + iterations + 1.

9. x = 2L 1 + (x mod 2L�1).

Comment: Generate p, a candidate for the
prime, in the interval [2L 1, 2L].

10. t = x / (2qp0) .

11. If (2tqp0 + 1) > 2L, then t = 2L 1 / (2qp0) .

12. p = 2tqp0 + 1.

13. pgen_counter = pgen_counter + 1.

Comment: Test p for primality; choose an
integer a in the interval [2, p�2].

14. a = 0

15. For i = 0 to iterations do

a = a + ((pseed + i) 2 i * outlen).

16. pseed = pseed + iterations + 1.

17. a = 2 + (a mod (p�3)).

18. z = a2tq mod p.

19. If ((1 = (z�1, p)) and (1 = z p0 mod p)), then return and the values
of p, q and (optionally) pseed, qseed, pgen_counter, and qgen_counter.

20. If (pgen_counter > (4L + old_counter)), then

21. t = t + 1.

22. Go to step 11.

Validation of the DSA Primes p q

The validation of the primes p and q that were generated by the method described in Appendix
A.1.2.1.2 may be performed if the values of firstseed, pseed, qseed, pgen_counter and

39

51

MOBILEIRON, INC. - EXHIBIT 1036
Page 051

qgen_counter were saved and are provided for use in the following algorithm.

The following process or its equivalent be used to validate p and q for this constructive
method.

1. p, q The primes to be validated.

2. firstseed, pseed, qseed Seed values that were used to generate p and q.

3. pgen_counter, qgen_counter
The count values that were determined during generation.

1. status The status returned from the validation procedure, where
status is either or

1. L = (p).

2. N = (q).

3 Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If
the pair is not in the list, then return

4. If (firstseed < 2N�1), then return .

5. If (2N q), then return).

6. If (2L p), then return .

7. If ((p � 1) mod q 0), then return .

8. Using L, N and firstseed, perform the constructive prime generation procedure in
Appendix A.1.2.1.2 to obtain p_val, q_val, pseed_val, qseed_val, pgen_counter_val,
and qgen_counter_val. If is returned, or if (q_val q) or (qseed_val
qseed) or (qgen_counter_val qgen_counter) or (p_val p) or (pseed_val pseed)
or (pgen_counter_val pgen_counter), then return

9. Return

40

52

MOBILEIRON, INC. - EXHIBIT 1036
Page 052

The generator g depends on the values of p and q. Two methods for determining the generator g
are provided; one of these methods be used. The first method, discussed in Appendix
A.2.1, may be used when complete validation of the generator g is not required; it is
recommended that this method be used only when the party generating g is trusted to not
deliberately generate a g that has a potentially exploitable relationship to another generator g .
For example, it must be hard to determine an exponential relationship between the generators
such that g = (g)x mod p for a known value of x. (Note: Read (g)x as g prime to the x.)

Appendix A.2.2 provides a method for partial validation when the method of generation in
Appendix A.2.1 is used. The second method for generating g, discussed in Appendix A.2.3,
be used when validation of the generator g is required; the method for the validation of a
generator determined using the method in Appendix A.2.3 is provided in Appendix A.2.4.

This method is used to determine a value for g, based on the values of p and q. It may be used
when validation of the generator g is not required. The correct generation of g cannot be
completely validated (see Appendix A.2.2). Note that this generation method for g was also
specified in previous versions of this Standard.

The following process or its equivalent be used to generate the generator g for this method.

1. p, q The generated primes.

1. g The requested value of g.

1. e = (p � 1)/q.

2. Set h = any integer satisfying 1 < h < (p � 1), such that h differs from any value
previously tried. Note that h could be obtained from a random number generator or
from a counter that changes after each use.

3. g = he mod p.

4. If (g = 1), then go to step 2.

5. Return g.

The order of the generator g that was generated using Appendix A.2.1 can be partially validated

41

53

MOBILEIRON, INC. - EXHIBIT 1036
Page 053

by checking the range and order, thereby performing a partial validation of g.

The following process or its equivalent be used when partial validation of the generator g is
required:

1. p, q, g The domain parameters.

1. status The status returned from the generation routine, where status is either
or

1. Verify that 2 g (p�1). If not true, return

2. If (gq = 1 mod p), then return

3. Return

The non-existence of a potentially exploitable relationship of g to another generator g (that is
known to the entity that generated g, but may not be known by other entities) cannot be checked.
In this sense, the correct generation of g cannot be completely validated.

The generation of g is based on the values of p, q and domain_parameter_seed (which are
outputs of the generation processes in Appendix A.1). When p and q were generated using the
method in Appendix A.1.1.2, the domain_parameter_seed value must have been returned from
the generation routine. When p and q were generated using the method in Appendix A.1.2.1, the
firstseed, pseed, and qseed values must have been returned from the generation routine; in this
case, domain_parameter_seed = firstseed || pseed || qseed be used in the following process.

This method of generating a generator g can be validated (see Appendix A.2.4).

This generation method supports the generation of multiple values of g for specific values of p
and q. The use of different values of g for the same p and q may be used to support key
separation; for example, using the g that is generated with index = 1 for digital signatures and
with index = 2 for key establishment.

Let be the hash function used to generate p and q (see Appendix A.1). The following
process or its equivalent be used to generate the generator g.

1. p, q The primes.

2. domain_parameter_seed The seed used during the generation of p and q.

42

54

MOBILEIRON, INC. - EXHIBIT 1036
Page 054

3. index The index to be used for generating g. index is a bit string
of length 8 that represents an unsigned integer.

1. status The status returned from the generation routine, where status is either
or

2. g The value of g that was generated.

Note count is an unsigned 16-bit integer.

Comment: Check that a valid value of the index has
been provided (see above).

1. If (index is incorrect), then return

2. N = (q).

3. e = (p � 1)/q.

4. count = 0.

5. count = count + 1.

Comment: Check that count does not wrap around
to 0.

6. If (count = 0), then return .

Comment: the length of the
domain_parameter_seed has already been checked.
�ggen� is the bit string 0x6767656E.

7. U = domain_parameter_seed || �ggen� || index || count.

8. W = (U).

9. g = We mod p.

10. If (g < 2), then go to step 5. Comment: If a generator has not been found.

11. Return and the value of g.

This algorithm be used to validate the value of g that was generated using the process in
Appendix A.2.3, based on the values of p, q, domain_parameter_seed, and the appropriate value
of index. It is assumed that the values of p and q have been previously validated according to
Appendix A.1. Note that the method specified in Appendix A.2.3 for the generation of g was not
included in previous versions of this Standard; therefore, this validation method is not

43

55

MOBILEIRON, INC. - EXHIBIT 1036
Page 055

appropriate for that case.

The domain_parameter_seed is an output from the generation of p and q. When p and q were
generated using the method in Appendix A.1.1.2, the domain_parameter_seed must have been
returned from the generation routine and made available to the validating party. When p and q
were generated using the method in Appendix A.1.2.1, the firstseed, pseed, and qseed values
must have been returned from the generation routine and made available; firstseed, pseed, and
qseed be concatenated to form the domain_parameter_seed used in the following process.
Let be the hash function used to generate g (i.e., the hash function also used to generate
p and q).

The input index is the index number for the generator g. See Appendix A.2.3 for more details.

The following process or its equivalent be used to validate the generator g for this method.

1. p, q The primes.

2. domain_parameter_seed The seed used to generate p and q.

3. index The index used in Appendix A.2.3 to generate x. index is
a bit string of length 8 that represents an unsigned
integer.

4. g The value of g to be validated.

1. status The status returned from the generation routine, where
status is either or

Note count is an unsigned 16-bit integer.

Comment: Check that a valid value of the index has been
provided (see above).

1. If (index is incorrect), then return

2. Verify that 2 g (p�1). If not true, return .

3. If (gq 1 mod p), then return .

4. N = (q).

5. e = (p � 1)/q.

6. count = 0.

7. count = count + 1.

Comment: Check that count does not wrap around
to 0.

44

56

MOBILEIRON, INC. - EXHIBIT 1036
Page 056

8. If (count = 0), then return .

Comment: �ggen� is the bit string 0x6767656E.

9. U = domain_parameter_seed || �ggen� || index || count.

10. W = (U).

11. computed_g = We mod p.

12. If (computed_g < 2), then go to step 7. Comment: If a generator has not been found.

13. If (computed_g = g), then return , else return .

45

57

MOBILEIRON, INC. - EXHIBIT 1036
Page 057

Discrete logarithm cryptography (DLC) is divided into finite field cryptography (FFC) and
elliptic curve cryptography (ECC); the difference between the two is the type of math that is
used. DSA is an example of FFC; ECDSA is an example of ECC. Other examples of DLC are
the Diffie-Hellman and MQV key agreement algorithms, which have both FFC and ECC forms.

The most common example of integer factorization cryptography (IFC) is RSA.

This appendix specifies methods for the generation of FFC and ECC key pairs and secret
numbers, and the generation of IFC key pairs. All generation methods require the use of an
approved, properly instantiated random bit generator (RBG) as specified in SP 800-90; the RBG

 have a security strength equal to or greater than the security strength associated with the
key pairs and secret numbers to be generated. See SP 800-57 for guidance on security strengths
and key sizes.

This appendix does not indicate the required conversions between bit strings and integers. When
required by a process in this appendix, the conversion be accomplished as specified in
Appendix C.2.

An FFC key pair (x, y) is generated for a set of domain parameters (p, q, g {,
domain_parameter_seed, counter}). Two methods are provided for the generation of the FFC
private key x and public key y; one of these two methods be used. Prior to generating DSA
key pairs, assurance of the validity of the domain parameters (p, q and g) have been
obtained as specified in Section 3.1.

For DSA, the valid values of L and N are provided in Section 4.2.

In this method, 64 more bits are requested from the RBG than are needed for x so that bias
produced by the mod function in step 6 is negligible.

The following process or its equivalent may be used to generate an FFC key pair.

(p, q, g) The subset of the domain parameters that are used for this process. p, q
and g either be provided as integers during input, or be
converted to integers prior to use.

46

58

MOBILEIRON, INC. - EXHIBIT 1036
Page 058

1. status The status returned from the key pair generation process. The status will
indicate or an .

2. (x, y) The generated private and public keys. If an error is encountered during
the generation process, invalid values for x and y be returned, as
represented by Invalid_x and Invalid_y in the following specification. x
and y are returned as integers. The generated private key x is in the range
[1, q�1], and the public key is in the range [1, p�1].

1. N = (q); L = (p).

Comment: Check that the (L, N) pair is specified in
Section 4.2.

2. If the (L, N) pair is invalid, then return an indicator, Invalid_x, and
Invalid_y.

3. requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. Obtain a string of N+64 returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_x, and Invalid_y.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. x = (c mod (q�1)) + 1. Comment: 0 c mod (q�1) q�2 and implies that
1 x q�1.

7. y = gx mod p.

8. Return , x, and y.

In this method, a random number is obtained and tested to determine that it will produce a value
of x in the correct range. If x is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of x is obtained.

The following process or its equivalent may be used to generate an FFC key pair.

(p, q, g) The subset of the domain parameters that are used for this process. p, q
and g either be provided as integers during input, or be
converted to integers prior to use.

47

59

MOBILEIRON, INC. - EXHIBIT 1036
Page 059

1. status The status returned from the key pair generation process. The status will
indicate or an .

2. (x, y) The generated private and public keys. If an error is encountered during
the generation process, invalid values for x and y be returned, as
represented by Invalid_x and Invalid_y in the following specification. x
and y are returned as integers. The generated private key x is in the range
[1, q�1], and the public key is in the range [1, p�1].

1. N = (q); L = (p).

Comment: Check that the (L, N) pair is specified in
Section 4.2.

2. If the (L, N) pair is invalid, then return an indication, Invalid_x, and
Invalid_y.

3. requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. Obtain a string of N returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_x, and Invalid_y.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. If (c > q�2), then go to step 4.

7. x = c + 1.

8. y = gx mod p.

9. Return , x, and y.

DSA requires the generation of a new random number k for each message to be signed. Two
methods are provided for the generation of k; one of these two methods be used.

The valid values of N are provided in Section 4.2. Let (k, q) be a function that computes
the inverse of a (non-negative) integer k with respect to multiplication modulo the prime number
q. A technique for computing the inverse is provided in Appendix C.1.

In this method, 64 more bits are requested from the RBG than are needed for k so that bias

48

60

MOBILEIRON, INC. - EXHIBIT 1036
Page 060

produced by the mod function in step 6 is not readily apparent.

The following process or its equivalent may be used to generate a per-message secret number.

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1.

1. status The status returned from the secret number generation process. The status
will indicate or an .

k 1 k 12. (k,) The per-message secret number k and its mod q inverse, . If an error is
k 1encountered during the generation process, invalid values for k and

 be returned, as represented by Invalid_k and Invalid_k_inverse in
k 1the following specification. k and are in the range [1, q�1].

1. N = (q); L = (p).

Comment: Check that the (L, N) pair is specified in
Section 4.2.

2. If the (L, N) pair is invalid, then return an indication, Invalid_k, and
Invalid_k_inverse.

3. requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. Obtain a string of N+64 returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. k = (c mod (q�1)) + 1.

7. (status, k�1) = (k, q).

k 18. Return status, k, and .

In this method, a random number is obtained and tested to determine that it will produce a value
of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of k is obtained.

The following process or its equivalent may be used to generate a per-message secret number.

49

61

MOBILEIRON, INC. - EXHIBIT 1036
Page 061

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1.

1. status The status returned from the secret number generation process. The status
will indicate or an .

k 1 k 12. (k,) The per-message secret number k and its inverse, . If an error is
encountered during the generation process, invalid values for k and
k 1 be returned, as represented by Invalid_k and Invalid_k_inverse

k 1in the following specification. k and are in the range [1, q�1].

1. N = (q); L = (p).

Comment: Check that the (L, N) pair is specified in
Section 4.2).

2. If the (L, N) pair is invalid, then return an indication, Invalid_k, and
Invalid_k_inverse.

3. requested_security_strength = the security strength associated with the (L, N) pair;
see SP 800-57.

4. Obtain a string of N returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. If (c > q�2), then go to step 4.

7. k = c + 1.

k 18. (status,) = (k, q).

k 19. Return status, k, and .

Key pairs for IFC consist of a public key (n, e), and a private key (n, d), where n is the modulus
and is the product of two prime numbers p and q. The security of IFC depends on the quality and
secrecy of these primes and the private exponent d. The primes p and q be generated using
one of the following methods:

50

62

MOBILEIRON, INC. - EXHIBIT 1036
Page 062

A. Both p and q are randomly generated prime numbers (Random Primes), where p and q
 both be either :

1. Provable primes (see Appendix B.3.2), or

2. Probable primes (see Appendix B.3.3).

Using these methods, primes of 2048 or 3072 bits may be generated; primes of 1024 bits
 be generated using these methods. Primes of 1024 bits be generated using

conditions based on auxiliary primes (see Appendices B.3.4, B.3.5, or B.3.6).

B. Both p and q are randomly generated prime numbers that satisfy the following additional
conditions (Primes with Conditions):

 (p�1) has a prime factor p1

(p+1) has a prime factor p2

(q�1) has a prime factor q1

(q+1) has a prime factor q2

where p1, p2, q1 and q2 are called auxiliary primes of p and q.

Using this method, one of the following cases apply:

1. The primes p1, p2, q1, q2, p and q all be provable primes (see Appendix
B.3.4),

2. The primes p1, p2, q1 and q2 be provable primes, and the primes p and q
 be probable primes (see Appendix B.3.5), or

3 The primes p1, p2, q1, q2, p and q all be probable primes (see Appendix
B.3.6).

The minimum lengths for each of the auxiliary primes p1, p2, q1 and q2 are dependent on
nlen, where nlen is the length of the modulus n in bits. Note that nlen is also called the
key size. The lengths of the auxiliary primes may be fixed or randomly chosen, subject to
the restrictions in Table B.1. The maximum length is determined by nlen (the sum of the
length of each auxiliary prime pair) and whether the primes p and q are probable primes
or provable primes (e.g., for the auxiliary prime pair p1 and p2, (p1) + (p2) be
less than a value determined by nlen, whether p1 and p2 are generated to be probable or
provable primes)3.

3 For the probable primes p and q: (p1) + (p2) < (p) � log2((p)) � 6; similarly for (q1) + (q2) and
(q). For the provable primes p and q: (p1) + (p2) < (p)/2 � log2((p)) � 7; similarly for (q1) + (q2)

and (q). In each case, (p) = (q) = nlen/2.

51

63

MOBILEIRON, INC. - EXHIBIT 1036
Page 063

p1, p2, q1 q2

p1 p2
q1 q2

p1, p2, q1 q2 p, q p, q
1024 > 100 bits < 496 bits < 239 bits

2048 > 140 bits < 1007 bits < 494 bits

3072 > 170 bits < 1518 bits < 750 bits

For different values of nlen (i.e., different key sizes), the methods allowed for the generation of
p and q are specified in Table B.2.

Random Primes
1024 No Yes

2048 Yes Yes

3072 Yes Yes

In addition, all IFC keys meet the following criteria in order to conform to FIPS 186-3:

1. The public exponent e be selected with the following constraints:

(a) The public verification exponent e be selected prior to generating the primes
p and q, and the private signature exponent d.

(b) The exponent e be an odd positive integer such that:

216 < e < 2256.

Note that the value of e may be any value that meets constraint 1(b), i.e., e may be
either a fixed value or a random value.

2. The primes p and q be selected with the following constraints:

(a) (p�1) and (q�1) be relatively prime to the public exponent e.

(b) The private prime factor p be selected randomly and satisfy
(2)(2(nlen / 2) � 1) p (2nlen / 2� 1), where nlen is the appropriate length for the
desired security_strength.

(c) The private prime factor q be selected randomly and satisfy

52

64

MOBILEIRON, INC. - EXHIBIT 1036
Page 064

(2)(2(nlen / 2) � 1) q (2nlen / 2� 1), where nlen is the appropriate length for the
desired security_strength.

(d) |p � q| > 2(nlen / 2) � 100.

3. The private signature exponent d be selected with the following constraints after the
generation of p and q:

(a) The exponent d be a positive integer value such that
2nlen/ 2 < d < LCM(p�1, q�1), and

(b) d = e�1 mod (LCM(p�1, q�1)).

That is, the inequality in (a) holds, and 1 (ed) (mod LCM(p�1, q�1)).

In the extremely rare event that d 2nlen / 2, then new values for p, q and d be
determined. A different value of e may be used, although this is not required.

Any hash function used during the generation of the key pair be approved (i.e., specified in
FIPS 180-3).

An approved method that satisfies the constraints of Appendix B.3.1 be used for the
generation of IFC random primes p and q that are provably prime (see case A.1). One such
method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random seed is initially
required (see Appendix B.3.2.1); the length of the seed is equal to twice the security strength
associated with the modulus n. After the seed is obtained, the primes can be generated (see
Appendix B.3.2.2).

The following process or its equivalent be used to generate the seed for this method.

nlen The intended bit length of the modulus n.

status The status to be returned, where status is either or .

seed The seed. If status = , a value of zero is returned as the seed.

1. If nlen is not valid (see Section 5.1), then Return (, 0).

2. Let security_strength be the security strength associated with nlen, as specified in SP
800-57, Part 1.

3. Obtain a string seed of (2 * security_strength) bits from an that supports the

53

65

MOBILEIRON, INC. - EXHIBIT 1036
Page 065

security_strength.

4. Return (, seed).

p q
The following process or its equivalent be used to construct the random primes p and q (to
be used as factors of the RSA modulus n) that are provably prime:

nlen The intended bit length of the modulus n.

e The public verification exponent.

seed The seed obtained using the method in Appendix B.3.2.1.

status The status of the generation process, where status is either or
. When is returned, zero values be returned as the

other parameters.

p and q The private prime factors of n.

1. If nlen is neither 2048 nor 3072, then return (, 0, 0).

2. If ((e 216) OR (e 2256) OR (e is not odd)), then return (, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as specified in SP
800-57, Part 1.

4. If ((seed) 2 * security_strength), then return (, 0, 0).

5. working_seed = seed.

6. Generate p:

6.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable
prime construction method in Appendix C.10 to obtain p and pseed. If
is returned, then return (, 0, 0).

6.2 working_seed = pseed.

7. Generate q:

7.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable
prime construction method in Appendix C.10 to obtain q and qseed. If
is returned, then return (, 0, 0).

7.2 working_seed = qseed.

54

66

MOBILEIRON, INC. - EXHIBIT 1036
Page 066

8. If (|p � q| 2nlen/2 � 100), then go to step 7.

9. Zeroize the internally generated seeds:

9.1 pseed = 0;

9.2 qseed = 0;

9.3 working_seed = 0.

10. Return (, p, q).

An approved method that satisfies the constraints of Appendix B.3.1 be used for the
generation of IFC random primes p and q that are probably prime (see case A.2).

The following process or its equivalent be used to construct the random probable primes p
and q (to be used as factors of the RSA modulus n):

nlen The intended bit length of the modulus n.

e The public verification exponent.

status The status of the generation process, where status is either or
.

p and q The private prime factors of n. When is returned, zero values be
returned as p and q.

1. If nlen is neither 2048 nor 3072, return (, 0, 0).

2. If ((e 216) OR (e 2256) OR (e is not odd)), then return (, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as specified in SP
800-57, Part 1.

4. Generate p:

4.1 i = 0.

4.2 Obtain a string p of (nlen/2) bits from an that supports the security_strength.

4.3 If (p is not odd), then p = p + 1.

4.4 If ((p < (2)(2(nlen / 2) � 1)), then go to step 4.2.

4.5 If ((p 1, e) = 1), then

55

67

MOBILEIRON, INC. - EXHIBIT 1036
Page 067

4.5.1 Test p for primality as specified in Appendix C.3, using an appropriate
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.

4.5.2 If p is , then go to step 5.

4.6 i= i + 1.

4.7 If (i 5(nlen/2)), then return (, 0, 0)

Else go to step 4.2.

5. Generate q:

5.1 i = 0.

5.2 Obtain a string q of (nlen/2) bits from an that supports the security_strength

5.3 If (q is not odd), then q = q + 1.

5.4 If (|p � q| 2nlen/2 � 100), then go to step 5.2.

5.5 If ((q < (2)(2(nlen / 2) � 1)), then go to step 5.2.

5.6 If ((q 1, e) = 1) then

5.6.1 Test q for primality as specified in Appendix C.3, using an appropriate
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.

5.6.2 If q is , then return (, p, q).

5.7 i = i + 1.

5.8 If (i 5(nlen/2)), then return (, 0, 0)

Else go to step 5.2.

This section specifies an approved method for the generation of the IFC primes p and q with the
additional conditions specified in Appendix B.3.1, case B.1, where p, p1, p2, q, q1 and q2 are all
provable primes. For this method, a random seed is initially required (see Appendix B.3.2.1); the
length of the seed is equal to twice the security strength associated with the modulus n. After the
first seed is obtained, the primes can be generated.

Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively, in
accordance with Table B.1. The following process or its equivalent be used to generate the
provable primes:

nlen The intended bit length of the modulus n.

56

68

MOBILEIRON, INC. - EXHIBIT 1036
Page 068

e The public verification exponent.

seed The seed obtained using the method in Appendix B.3.2.1.

status The status of the generation process, where status is either or
. If is returned then zeros be returned as the values

for p and q.

p and q The private prime factors of n.

1. If nlen is neither 1024, 2048, nor 3072, then return (, 0, 0).

2. If ((e 216) OR (e 2256) OR (e is not odd)), then return (, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as specified in SP
800-57, Part 1.

4. If ((seed) 2 * security_strength), then return (, 0, 0).

5. working_seed = seed.

6. Generate p:

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed and e, use the
provable prime construction method in Appendix C.10 to obtain p, p1, p2 and pseed.
If is returned, return (, 0, 0).

6.2 working_seed = pseed.

7. Generate q:

7.1 Using L = nlen/2, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed and e, use
the provable prime construction method in Appendix C.10 to obtain q, q1, q2 and
qseed. If is returned, return (, 0, 0).

7.2 working_seed = qseed.

8. If (|p � q| 2nlen/2 � 100), then go to step 7.

9. Zeroize the internally generated seeds:

9.1 pseed = 0.

9.2 qseed = 0.

9.3 working_seed = 0.

10. Return (, p, q).

57

69

MOBILEIRON, INC. - EXHIBIT 1036
Page 069

This section specifies an approved method for the generation of the IFC primes p and q with the
additional conditions specified in Appendix B.3.1, case B.2, where p1, p2, q1 and q2 are provably
prime, and p and q are probably prime. For this method, a random seed is initially required (see
Appendix B.3.2.1); the length of the seed is equal to twice the security strength associated with
the modulus n. After the first seed is obtained, the primes can be generated.

Let bitlen1, bitlen2, bitlen3, and bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively in
accordance with Table B.1. The following process or its equivalent be used to construct p
and q.

nlen The intended bit length of the modulus n.

e The public verification exponent.

seed The seed obtained using the method in Appendix B.3.2.1.

status The status of the generation process, where status is either or
. If is returned then zeros be returned as the

values for p and q.

p and q The private prime factors of n.

1. If nlen is neither 1024, 2048, nor 3072, then return (, 0, 0).

2. If ((e 216) OR (e 2256) OR (e is not odd)), then return (, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as specified in
SP 800-57, Part 1.

4. If ((seed) 2 * security_strength), then return (, 0, 0).

Comment: Generate four primes p1, p2, q1 and q2
that are provably prime.

5. Generate p:

5.1 Using bitlen1 as the length, and seed as the input_seed, use the random prime
generation routine in Appendix C.6 to obtain p1 and prime_seed. If
is returned, the return (, 0, 0).

5.2 Using bitlen2 as the length, and prime_seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain p2 and a new value for
prime_seed. If is returned, the return (, 0, 0).

58

70

MOBILEIRON, INC. - EXHIBIT 1036
Page 070

5.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen,
e and security_strength, also obtaining Xp. If is returned, return
(, 0, 0).

6. Generate q:

6.1. Using bitlen3 as the length, and prime_seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain q1 and a new value for
prime_seed. If is returned, the return (, 0, 0).

6.2 Using bitlen4 as the length, and prime_seed as the input_seed, use the random
prime generation routine in Appendix C.6 to obtain q2 and a new value for
prime_seed. If is returned, the return (, 0, 0).

6.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen,
e and security_strength, also obtaining Xq. If is returned, return
(, 0, 0).

7. If ((|p � q| 2nlen/2 �100) OR (|Xp � Xq| 2nlen/2 � 100)), then go to step 6.

8. Zeroize the internally generated that are not returned:

8.1 Xp = 0.

8.2 Xq = 0.

8.3 prime_seed = 0.

8.4 p1 = 0.

8.5 p2 = 0.

8.6 q1 = 0.

8.7 q2 = 0.

9. Return (, p, q).

An approved method that satisfies the constraints of Appendix B.3.1 be used for the
generation of IFC primes p and q that are probably prime and meet the additional constraints of
Appendix B.3.1 (see case B.3). For this case, the prime factors p1, p2, q1 and q2 are also probably
prime.

Four random numbers Xp1, Xp2, Xq1 and Xq2 are generated, from which the prime factors p1, p2, q1
and q2 are determined. p1 and p2, and an additional random number Xp are then used to determine
p, and q1 and q2 and a random number Xq are used to obtain q. Let bitlen1, bitlen2, bitlen3, and
bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively chosen in accordance with Table B.1.

59

71

MOBILEIRON, INC. - EXHIBIT 1036
Page 071

The following process or its equivalent be used to generate p and q:

nlen The intended bit length of the modulus n.

e The public verification exponent.

status The status of the generation process, where status is either or
. If is returned then zeros be returned as the

values for p and q.

p and q The private prime factors of n.

1. If nlen is neither 1024, 2048, nor 3072, then return (, 0, 0).

2. If ((e 216) OR (e 2256) OR (e is not odd)), then return (, 0, 0).

3. Set the value of security_strength in accordance with the value of nlen, as specified in
SP 800-57, Part 1.

4. Generate p:

4.1 Generate an odd integer Xp1 of length bitlen1 bits, and a second odd integer Xp2
of length bitlen2 bits, using an approved random number generator that supports
the security_strength.

4.2 Sequentially search successive odd integers, starting at Xp1 until the first
probable prime p1 is found. Candidate integers be tested for primality as
specified in Appendix C.3. Repeat the process to find p2, starting at Xp2. The
probable primes p1 and p2 be the first integers that pass the primality test.

4.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen,
e and security_ strength, also obtaining Xp. If is returned, return
(, 0, 0).

5. Generate q:

5.1 Generate an odd integer Xq1 of length bitlen3 bits, and a second odd integer Xq2
of length bitlen4 bits, using an approved random number generator that supports
the security_strength.

5.2 Sequentially search successive odd integers, starting at Xq1 until the first
probable prime q1 is found. Candidate integers be tested for primality as
specified in Appendix C.3. Repeat the process to find q2, starting at Xq2. The
probable primes q1 and q2 be the first integers that pass the primality test.

5.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen,

60

72

MOBILEIRON, INC. - EXHIBIT 1036
Page 072

e and security_ strength, also obtaining Xq. If is returned, return
(, 0, 0).

6. If ((|Xp � Xq| 2nlen/2 �100) OR (|p � q| 2nlen/2 � 100))), then go to step 5.

7. Zeroize the internally generated values that are not returned:

7.1 Xp = 0.

7.2 Xq = 0.

7.3 Xp1 = 0.

7.4 Xp2 = 0.

7.5 Xq1 = 0.

7.6 Xq2 = 0.

7.7 p1 = 0.

7.8 p2 = 0.

7.9 q1 = 0.

7.10 q2 = 0.

8. Return (, p, q).

An ECC key pair d and Q is generated for a set of domain parameters (q, FR, a, b {,
domain_parameter_seed}, G, n, h). Two methods are provided for the generation of the ECC
private key d and public key Q; one of these two methods be used to generate d and Q.
Prior to generating ECDSA key pairs, assurance of the validity of the domain parameters (q, FR,
a, b {, domain_parameter_seed}, G, n, h) have been obtained as specified in Section 3.1.

For ECDSA, the valid bit-lengths of n are provided in Section 6.1.1. See ANS X9.62 for
definitions of the elliptic curve math and the conversion routines.

In this method, 64 more bits are requested from the RBG than are needed for d so that bias
produced by the mod function in step 6 is negligible.

The following process or its equivalent may be used to generate an ECC key pair.

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime number,

61

73

MOBILEIRON, INC. - EXHIBIT 1036
Page 073

and G is a point on the elliptic curve.

1. status The status returned from the key pair generation procedure. The status will
indicate or an .

2. (d, Q) The generated private and public keys. If an error is encountered during
the generation process, invalid values for d and Q be returned, as
represented by Invalid_d and Invalid_Q in the following specification. d is
an integer, and Q is an elliptic curve point. The generated private key d is
in the range [1, n�1].

1. N = (n).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an indication, Invalid_d, and Invalid_Q.

3. requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. Obtain a string of N+64 returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_d, and Invalid_Q.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. d = (c mod (n�1)) + 1.

7. Q = dG.

8. Return , d, and Q.

In this method, a random number is obtained and tested to determine that it will produce a value
of d in the correct range. If d is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of d is obtained.

The following process or its equivalent may be used to generate an ECC key pair.

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime number,
and G is a point on the elliptic curve.

62

74

MOBILEIRON, INC. - EXHIBIT 1036
Page 074

1. status The status returned from the key pair generation procedure. The status will
indicate or an .

2. (d, Q) The generated private and public keys. If an error is encountered during
the generation process, invalid values for d and Q be returned, as
represented by Invalid_d and Invalid_Q in the following specification. d is
an integer, and Q is an elliptic curve point. The generated private key d is
in the range [1, n�1].

1. N = (n).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an indication, Invalid_d, and Invalid_Q.

3. requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. Obtain a string of N returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_d, and Invalid_Q.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. If (c > n�2), then go to step 4.

7. d = c + 1.

8. Q = dG.

9. Return , d, and Q.

ECDSA requires the generation of a new random number k for each message to be signed. Two
methods are provided for the generation of k; one of these two methods be used.

The valid values of n are provided in Section 6.1.1. See ANS X9.62 for definitions of the elliptic
curve math and the conversion routines.

Let (k, n) be a function that computes the inverse of a (non-negative) integer k with
respect to multiplication modulo the prime number n. A technique for computing the inverse is
provided in Appendix C.1.

63

75

MOBILEIRON, INC. - EXHIBIT 1036
Page 075

In this method, 64 more bits are requested from the RBG than are needed for k so that bias
produced by the mod function in step 6 is not readily apparent.

The following process or its equivalent may be used to generate a per-message secret number.

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime
number, and G is a point on the elliptic curve.

1. status The status returned from the key pair generation procedure. The status will
indicate or an .

2. (k, k 1) The generated secret number k and its inverse k�1. If an error is
encountered during the generation process, invalid values for k and
k 1 be returned, as represented by Invalid_k and Invalid_k_inverse

k 1in the following specification. k and are integers in the range [1, n�1].

1. N = (q).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an indication, Invalid_k, and Invalid_k_inverse.

3. requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. Obtain a string of N+64 returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the non-negative integer c (see Appendix C.2.1).

6. k = (c mod (n�1)) + 1.

k 17. (status,) = (k, n).

k 18. Return status, k, and .

In this method, a random number is obtained and tested to determine that it will produce a value

64

76

MOBILEIRON, INC. - EXHIBIT 1036
Page 076

of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the
process is iterated until an acceptable value of k is obtained.

The following process or its equivalent may b used to generate a per-message secret number.

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h)

The domain parameters that are used for this process. n is a prime number,
and G is a point on the elliptic curve.

1. status The status returned from the key pair generation procedure. The status will
indicate or an .

2. (k, k 1) The generated secret number k and its inverse k�1. If an error is
k 1encountered during the generation process, invalid values for k and

 be returned, as represented by Invalid_k and Invalid_k_inverse in
k 1the following specification. k and are integers in the range [1, n�1].

1. N = (q).

Comment: Check that N is included in Table 1 of
Section 6.1.1.

2. If N is invalid, then return an indication, Invalid_k, and Invalid_k_inverse.

3. requested_security_strength = the security strength associated with N; see SP 800-57,
Part 1.

4. Obtain a string of N returned_bits from an with a security strength of
requested_security_strength or more. If an indication is returned, then
return an indication, Invalid_k, and Invalid_k_inverse.

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1).

6. If (c > n�2), then go to step 4.

7. k = c + 1.

8. (status, k�1) = (k, n).

k 19. Return status, k, and .

65

77

MOBILEIRON, INC. - EXHIBIT 1036
Page 077

This appendix contains routines for supplementary processes required for the implementation of
this Standard. Appendix C.1 is needed to produce the inverse of the per-message secret k (see
Section 4.5, and Appendices B.2.1, B.2.2, B.5.1 and B.5.2) and the inverse of the signature
portion s that is used during signature verification (see Section 4.7). The routines in Appendix
C.2 are required to convert between bit strings and integers where required in implementing this
Standard. Appendix C.3 contains probabilistic primality tests to be used during the generation of
DSA domain parameters and RSA key pairs. Appendices C.4 and C.5 contain algorithms
required during the Lucas probabilistic primality test of Appendix C.3.3 to check for a perfect
square and to compute the Jacobi symbol. Appendix C.6 contains the Shawe-Taylor algorithm
for the construction of primes. Appendix C.7 provides a process to perform trial division, as
required by the random prime generation routine in Appendix C.6. The sieve procedure in
Appendix C.8 is needed by the trial division routine in Appendix C.7. The trial division process
in Appendix C.7 and the sieve procedure in Appendix C.8 have been extracted from ANS X9.80,
Prime Number Generation, Primality Testing, and Primality Certificates. Appendix C.9 is
required during the generation of RSA key pairs. Appendix C.10 provides a method for
constructing provable primes for RSA (see Appendix B.3.2.2 and B.3.4).

This algorithm or an algorithm that produces an equivalent result be used to compute the
multiplicative inverse z�1 mod a, where 0 < z < a, 0 < z�1 < a, and a is a prime number. In this
Standard, z is either k or s, and a is either q or n.

1. z The value to be inverted mod a (i.e., either k or s).

2. a The domain parameter and (prime) modulus (i.e., either q or n).

1. status The status returned from this function, where the status is either
 or .

2. z�1 The multiplicative inverse of z mod a, if it exists.

1. Verify that a and z are positive integers such that z < a; if not, return an
indication.

2. Set i = a, j = z, y2 = 0, and y1 = 1.

3. quotient = i/j .

66

78

MOBILEIRON, INC. - EXHIBIT 1036
Page 078

4. remainder = i �(j * quotient).

5. y = y2 �(y1 * quotient).

6. Set i = j, j = remainder, y2 = y1, and y1 = y.

7. If (j > 0), then go to step 3.

8. If (i 1), then return an indication.

9. Return and y2 mod a.

An n-long sequence of bits { x1, , xn } is converted to an integer by the rule

n�1 n�2
{ x1, , xn } (x1 2) + (x2 2) + + (n1 2) + xn .

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding
integer, and the last bit corresponds to the least significant bit.

1. b1, b2, , bn The bit string to be converted.

1. C The requested integer representation of the bit string.

1. Let (b1, b2, , bn) be the bits of b from leftmost to rightmost.
n

n i)2. C 2(bi
i 1

3. Return C.

In this Standard, the binary length of an integer C is defined as the smallest integer n satisfying C
< 2n .

An integer x in the range 0 x < 2n may be converted to an n-long sequence of bits by using its
binary expansion as shown below:

67

79

MOBILEIRON, INC. - EXHIBIT 1036
Page 079

x = (x1 2n�1) + (x2 2n�2) + + (xn�1 2) + xn {x1, , xn}

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding
integer, and the last bit corresponds to the least significant bit.

1. C The non-negative integer to be converted.

1. b1, b2, , bn The bit string representation of the integer C.

1. Let (b1, b2, , bn) represent the bit string, where bi = 0 or 1, and b1 is the most
significant bit, while bn is the least significant bit.

2. For any integer n that satisfies C < 2n, the bits bi satisfy:

(n i)C
n

2 bi
i 1

3. Return b1, b2, , bn.

In this Standard, the binary length of the integer C is defined as the smallest integer n that
satisfies C < 2n .

A probabilistic primality test may be required during the generation and validation of prime
numbers. An approved robust probabilistic primality test be selected and used.

There are several probabilistic algorithms available. The Miller-Rabin probabilistic primality
tests described in Appendices C.3.1 and C.3.2 are versions of a procedure due to M.O. Rabin,
based in part on ideas of Gary L. Miller; one of these versions be used as the Miller-Rabin
test discussed below. For more information, see [4]. For these tests, let be an approved
random bit generator (see SP 800-90).

There are several Lucas probabilistic primality tests available; the version provided in [5] is
specified in Appendix C.3.3.

This Standard allows two alternatives for testing primality: either using several iterations of only
the Miller-Rabin test, or using the iterated Miller-Rabin test, followed by a single Lucas test. The
value of iterations (as used in Appendices C.3.1 and C.3.2) depends on the algorithm being used,
the security strength, the error probability used, the length (in bits) of the candidate prime and
the type of tests to be performed. Tables C.1, C.2 and C.3 list the minimum number of iterations

68

80

MOBILEIRON, INC. - EXHIBIT 1036
Page 080

of the Miller-Rabin tests that be performed.

As stated in Appendix F, if the definition of the error probability that led to the values of the
number of Miller-Rabin tests for p and q in Tables C.1, C.2 and C.3 is not conservative enough,
the prescribed number of Miller-Rabin tests can be followed by a single Lucas test. Since there
are no known non-prime values that pass the two test combination (i.e., the indicated number of
rounds of the Miller-Rabin test with randomly selected bases, followed by one round of the
Lucas test), the two test combination may provide additional assurance of primality over the use
of only the Miller-Rabin test. For DSA, the two-test combination may provide better
performance. However, the Lucas test is not required when testing the p1, p2, q1 and q2 values for
primality when generating RSA primes. See Appendix F for further information.

M-R Tests Only

p: 1024 bits
q: 160 bits

Error probability = 2 80

For p and q: 40 For p: 3

For q: 19

p: 2048 bits
q: 224 bits

Error probability = 2 112

For p and q: 56 For p: 3

For q: 24

p: 2048 bits
q: 256 bits

Error probability = 2 112

For p and q: 56 For p: 3

For q: 27

p: 3072 bits
q: 256 bits

Error probability = 2 128

For p and q: 64 For p: 2

For q: 27

M-R Tests Only

p1 , p2 , q1 and q2 > 100 bits

p and q: 512 bits

Error probability = 2 80

For p1 , p2 , q1 and q2 : 28

For p and q: 5

69

81

MOBILEIRON, INC. - EXHIBIT 1036
Page 081

p1 , p2 , q1 and q2 > 140 bits

p and q: 1024 bits

Error probability = 2 112

For p1 , p2 , q1 and q2 : 38

For p and q: 5

p1 , p2 , q1 and q2 > 170 bits

p and q: 1536 bits

Error probability = 2 �128

For p1 , p2 , q1 and, q2 : 41

For p and q: 4

RSA Digital Signatures using an error probability of 2–100

M-R Tests Only

p1 , p2 , q1 and q2 > 100 bits

p and q: 512

For p1 , p2 , q1 and q2 : 38

For p and q: 7

p1 , p2 , q1 and q2 > 140 bits

p and q: 1024 bits

For p1 , p2 , q1 and q2 : 32

For p and q: 4

p1 , p2 , q1 and q2 > 170 bits

p and q: 1536 bits

For p1 , p2 , q1 and q2 : 27

For p and q: 3

Let be an approved random bit generator (see SP 800-90).

1. w The odd integer to be tested for primality. This will be either p or
q, or one of the auxiliary primes p1, p2, q1 or q2.

2. iterations The number of iterations of the test to be performed; the value
 be consistent with Table C.1, C.2 or C.3.

1. status The status returned from the validation procedure, where status is
either or .

1. Let a be the largest integer such that 2a divides w 1.

70

82

MOBILEIRON, INC. - EXHIBIT 1036
Page 082

2. m = (w 1) / 2a.

3. wlen = (w).

4. For i = 1 to iterations do

4.1 Obtain a string b of wlen bits from an RBG.

Comment: Ensure that 1 < b < w 1.

4.2 If ((b 1) or (b w 1)), then go to step 4.1.

4.3 z = bm mod w.

4.4 If ((z = 1) or (z = w 1)), then go to step 4.7.

4.5 For j = 1 to a 1 do.

4.5.1 z = z2 mod w.

4.5.2 If (z = w 1), then go to step 4.7.

4.5.3 If (z = 1), then go to step 4.6.

4.6 Return

4.7 Continue. Comment: Increment i for the do-loop in
step 4.

5. Return

This method provides additional information when an error is encountered that may be useful
when generating or validating RSA moduli. Let be an approved random bit generator (see
SP 800-90).

1. w The odd integer to be tested for primality. This will be either p or
q, or one of the auxiliary primes p1, p2, q1 or q2.

2. iterations The number of iterations of the test to be performed; the value
 be consistent with Table C.1, C.2 or C.3.

1. status The status returned from the validation procedure, where status is
either ,

(returned with the factor), and
.

71

83

MOBILEIRON, INC. - EXHIBIT 1036
Page 083

1. Let a be the largest integer such that 2a divides w�1.

2. m = (w�1) / 2a.

3. wlen = (w).

4. For i = 1 to iterations do

4.1 Obtain a string b of wlen bits from an RBG.

Comment: Ensure that 1 < b < w�1.

4.2 If ((b 1) or (b w�1)), then go to step 4.1.

4.3 g = (b, w).

4.4 If (g > 1), then return and the
value of g.

4.5 z = bm mod w.
4.6 If ((z = 1) or (z = w � 1)), then go to step 4.15.

4.7 For j = 1 to a � 1 do.

4.7.1 x = z. Comment: x 1 and x w�1.

4.7.2 z = x2 mod w.
4.7.3 If (z = w�1), then go to step 4.15.

4.7.4 If (z = 1), then go to step 4.12.

4.8 x = z. Comment: x = b(w�1)/2 mod w and x w�1.

4.9 z = x2 mod w.

4.10 If (z = 1), then go to step 4.12.

4.11 x = z. Comment: x = b(w�1) mod w and x 1.

4.12 g = (x�1, w).

4.13 If (g > 1), then return and the
value of g.

4.14 Return

4.15 Continue. Comment: Increment i for the do-loop in
step 4.

5. Return

72

84

MOBILEIRON, INC. - EXHIBIT 1036
Page 084

The following process or its equivalent be used as the Lucas test.

C The candidate odd integer to be tested for primality.

status Where status is either or .

1. Test whether C is a perfect square (see Appendix C.4). If so, return ().

2. Find the first D in the sequence {5, �7, 9, �11, 13, �15, 17, } for which the Jacobi
Dsymbol = �1. See Appendix C.5 for an approved method to compute the Jacobi
C

DSymbol. If = 0 for any D in the sequence, return ().
C

3. K = C+1.

4. Let Kr Kr � 1 K0 be the binary expansion of K, with Kr = 1.

5. Set Ur = 1 and Vr = 1.

6. For i = r�1 to 0, do

6.1 Utemp = Ui+1 Vi+1 mod C.

Vi 1
2 DU i 1

2

6.2 Vtemp = mod C.
2

6.3 If (Ki = 1), then Comment: If Ki = 1, then do steps 6.3.1 and 6.3.2;
otherwise, do steps 6.3.3 and 6.3.4.

U Vtemp temp6.3.1 Ui = mod C.
2

V DUtemp temp6.3.2 Vi = mod C.
2

Else

6.3.3 Ui = Utemp.

6.3.4 Vi = Vtemp.

7. If (U0 = 0), then return (). Otherwise, return ().

Steps 6.2, 6.3.1 and 6.3.2 contain expressions of the form A/2 mod C, where A is an integer, and

73

85

MOBILEIRON, INC. - EXHIBIT 1036
Page 085

C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C may be calculated as
(A+C)/2 mod C. Alternatively, A/2 mod C = A·(C+1)/2 mod C, for any integer A, without regard
to A being odd or even.

The following algorithm may be used to determine whether an n-bit positive integer C is a
perfect square:

C The integer to be checked.

status Where status is either or .

1. Set n, such that 2n > C 2(n 1).

2. m = n/2 .

3. i = 0.

4. Select X0, such that 2m > X0 2(m 1).

5. Repeat

5.1 i = i + 1.

5.2 Xi = ((Xi�1)2 + C)/(2Xi�1).

Until (Xi)2 < 2m + C.

6. If C = Xi
2, then

status = .

Else

status = .

7. status.

1. By starting with X0 > (1/2) (C), X0 (C) is guaranteed to be less than X0 .
This inequality is maintained in step 5; i.e., Xi (C) < Xi for all i.

2. For i 1, 0 Xi (C) = (Xi�1 (C))2 / (2 Xi�1) < X0/2i .

In particular, 0 Xm (C) < 1. If (C) were an integer, then it would
be equal to the floor of Xm .

74

86

MOBILEIRON, INC. - EXHIBIT 1036
Page 086

3. In general, the inequality Xi (C) < 1 will occur for values of i that are much less
than m. To detect this, the fact that 2(m 1) (C) < Xi for all i 1 can be used,

Xi (C) = ((Xi)2 C)/(Xi + (C))

 ((Xi)2 C)/(2 (C))

 ((Xi)2 C)/(2m)

Thus, the condition (Xi)2 < 2m + C implies that Xi (C) < 1.

a This routine computes the Jacobi symbol .
n

a Any integer. For this Standard, the initial value is in the sequence {5, �7, 9, �11,

13, �15, 17, }, as determined by Appendix C.3.3.

n Any integer. For this Standard, the initial value is the candidate being tested, as
determined by Appendix C.3.3.

result The calculated Jacobi symbol.

1. a = a mod n. Comment: a will be in the range 0 a < n.

2. If a = 1, or n = 1, then return (1).

3. If a = 0, then return (0).

4. Define e and a1 such that a = 2e a1, where a1 is odd.

5. If e is even, then s = 1.

Else if ((n 1 (mod 8)) or (n 7 (mod 8))), then s = 1.

Else if ((n 3 (mod 8)) or (n 5 (mod 8)), then s = �1.

6. If ((n 3 (mod 4)) and (a1 3 (mod 4))), then s = �s.
7. n1 = n mod a1.

8. Return (s * Jacobi (n1, a1)). Comment: Call this routine recursively.

75

87

MOBILEIRON, INC. - EXHIBIT 1036
Page 087

Example: Compute the Jacobi symbol for a = 5 and n = 3439601197:

1. n is not 1, and a is not 1, so proceed to Step 2.

2. a is not 0, so proceed to Step 3.

3. 5 = 20 * 5, so e = 0, and a1 = 5.

4. e is even, so s = 1.

5. a1 is not congruent to 3 mod 4, so do not change s.
6. n1 = 2 = n mod 5.

7. Compute and return (1 * Jacobi(2, 5)). This calls Jacobi recursively. Compute the Jacobi
symbol for a = 2 and n = 5:

7.1 n is not 1, and a is not 1, so proceed to Step 7.2.

7.2 a is not 0, so proceed to Step 7.3.

7.3 2 = 21 * 1, so e = 1, and a1 = 1.

7.4 e is odd, and n 5 (mod 8), so set s = �1.

7.5 n is not 3 mod 4, and a1 is not 3 mod 4, so proceed to step 7.6.

7.6 n1 = 0 = n mod 1.

7.7 Return (�1 * Jacobi(0, 1) = �1). This calls Jacobi recursively. Compute the Jacobi
symbol for a = 0 and n = 1:

7.7.1 n = 1, so return 1.

Thus, Jacobi (0,1) = 1, so Jacobi (2,5) = �1*(1) = �1, and Jacobi (5, 3439601197) = 1* (�1) = �1.

This routine is recursive and may be used to construct a provable prime number using a hash
function.

Let be the selected hash function, and let outlen be the bit length of the hash function
output block. The following process or its equivalent be used to generate a prime number
for this constructive method.

ST_Random_Prime ():

1. length The length of the prime to be generated.

2. input_seed The seed to be used for the generation of the requested prime.

76

88

MOBILEIRON, INC. - EXHIBIT 1036
Page 088

