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FOREWORD 

The Federal Information Processing Standards Publication Series of the National Institute 
of Standards and Technology (NIST) is the official series of publications relating to 
standards and guidelines adopted and promulgated under the provisions of the Federal 
Information Security Management Act (FISMA) of 2002.  

Comments concerning FIPS publications are welcomed and should be addressed to the 
Director, Information Technology Laboratory, National Institute of Standards and 
Technology, 100 Bureau Drive, Stop 8900, Gaithersburg, MD 20899-8900. 

Cita Furlani, Director 
Information Technology Laboratory 

This Standard specifies a suite of algorithms that can be used to generate a digital signature.  
Digital signatures are used to detect unauthorized modifications to data and to authenticate the 
identity of the signatory. In addition, the recipient of signed data can use a digital signature as 
evidence in demonstrating to a third party that the signature was, in fact, generated by the 
claimed signatory.  This is known as non-repudiation, since the signatory cannot easily repudiate 
the signature at a later time. 

Key words: computer security, cryptography, digital signatures, Federal Information Processing 
Standards, public key cryptography. 
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Federal Information Processing Standards Publications (FIPS PUBS) are issued by the National 
Institute of Standards and Technology (NIST) after approval by the Secretary of Commerce 
pursuant to Section 5131 of the Information Technology Management Reform Act of 1996 
(Public Law 104-106), and the Computer Security Act of 1987 (Public Law 100-235). 

1. : Digital Signature Standard (DSS) (FIPS 186-3). 

2. : Computer Security. Subcategory. Cryptography. 

3. : This Standard specifies algorithms for applications requiring a digital 
signature, rather than a written signature. A digital signature is represented in a computer as a 
string of bits. A digital signature is computed using a set of rules and a set of parameters that 
allow the identity of the signatory and the integrity of the data to be verified.  Digital signatures 
may be generated on both stored and transmitted data. 

Signature generation uses a private key to generate a digital signature; signature verification uses 
a public key that corresponds to, but is not the same as, the private key.  Each signatory 
possesses a private and public key pair. Public keys may be known by the public; private keys 
are kept secret. Anyone can verify the signature by employing the signatory�s public key.  Only 
the user that possesses the private key can perform signature generation. 

A hash function is used in the signature generation process to obtain a condensed version of the 
data to be signed; the condensed version of the data is often called a message digest. The 
message digest is input to the digital signature algorithm to generate the digital signature. The 
hash functions to be used are specified in the Secure Hash Standard (SHS), FIPS 180-3. FIPS 

 digital signature algorithms  be used with an appropriate hash function that is 
specified in the SHS. 

The digital signature is provided to the intended verifier along with the signed data. The 
verifying entity verifies the signature by using the claimed signatory�s public key and the same 
hash function that was used to generate the signature. Similar procedures may be used to 
generate and verify signatures for both stored and transmitted data. 

4. Secretary of Commerce. 
i 
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5. Department of Commerce, National Institute of Standards and 
Technology, Information Technology Laboratory, Computer Security Division. 

6.  This Standard is applicable to all Federal departments and agencies for the 
protection of sensitive unclassified information that is not subject to section 2315 of Title 10, 
United States Code, or section 3502 (2) of Title 44, United States Code. This Standard  be 
used in designing and implementing public key-based signature systems that Federal 
departments and agencies operate or that are operated for them under contract. The adoption and 
use of this Standard is available to private and commercial organizations. 

7. A digital signature algorithm allows an entity to authenticate the integrity of 
signed data and the identity of the signatory. The recipient of a signed message can use a digital 
signature as evidence in demonstrating to a third party that the signature was, in fact, generated 
by the claimed signatory. This is known as non-repudiation, since the signatory cannot easily 
repudiate the signature at a later time. A digital signature algorithm is intended for use in 
electronic mail, electronic funds transfer, electronic data interchange, software distribution, data 
storage, and other applications that require data integrity assurance and data origin 
authentication. 

8.  A digital signature algorithm may be implemented in software, firmware, 
hardware or any combination thereof.  NIST has developed a validation program to test 
implementations for conformance to the algorithms in this Standard.  Information about the 
validation program is available at http://csrc.nist.gov/cryptval. Examples for each digital 
signature algorithm are available at http://csrc.nist.gov/groups/ST/toolkit/examples.html. 

Agencies are advised that digital signature key pairs  be used for other purposes. 

9. Digital signature implementations that comply with 
this Standard  employ cryptographic algorithms, cryptographic key generation algorithms, 
and key establishment techniques that have been approved for protecting Federal government 
sensitive information. Approved cryptographic algorithms and techniques include those that are 
either: 

a. specified in a Federal Information Processing Standard (FIPS), 

b. adopted in a FIPS or a NIST Recommendation, or 

c. specified in the list of approved security functions for FIPS 140-2. 

10. Export Control: Certain cryptographic devices and technical data regarding them are 
subject to Federal export controls. Exports of cryptographic modules implementing this Standard 
and technical data regarding them must comply with these Federal regulations and be licensed by 
the Bureau of Industry and Security of the U.S. Department of Commerce. Information about 
export regulations is available at: http://www.bis.doc.gov. 

11. : The algorithms in this Standard may be covered by U.S. or foreign patents. 

ii 
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12. Implementation Schedule: This Standard becomes effective immediately upon 
approval by the Secretary of Commerce. A transition strategy for validating algorithms 
and cryptographic modules will be posted on NIST�s Web page at 
http://csrc.nist.gov/groups/STM/cmvp/index.html under Notices. The transition plan 
addresses the transition by Federal agencies from modules tested and validated for 
compliance to FIPS 186-2 to modules tested and validated for compliance to FIPS 186-3 
under the Cryptographic Module Validation Program. The transition plan allows Federal 
agencies and vendors to make a smooth transition to FIPS 186-3. 
13. : Federal Information Processing Standard (FIPS) 186-3 Digital Signature 
Standard (affixed). 

14.  The following documents are referenced in this Standard. 

a. FIPS PUB 140-2, Security Requirements for Cryptographic Modules. 

b. FIPS PUB 180-3, Secure Hash Standard. 

c. ANS X9.31-1998, Digital Signatures Using Reversible Public Key Cryptography for the 
Financial Services Industry (rDSA). 

d. ANS X9.62-2005, Public Key Cryptography for the Financial Services Industry: The 
Elliptic Curve Digital Signature Algorithm (ECDSA). 

e. ANS X9.80, Prime Number Generation, Primality Testing and Primality Certificates. 

f. Public Key Cryptography Standard (PKCS) #1, RSA Encryption Standard. 

g. Special Publication (SP) 800-57, Recommendation for Key Management. 

h. Special Publication (SP) 800-89, Recommendation for Obtaining Assurances for Digital 
Signature Applications. 

i. Special Publication (SP) 800-90, Recommendation for Random Number Generation 
Using Deterministic Random Bit Generators. 

j. Special Publication (SP) 800-102, Recommendation for Digital Signature Timeliness 

k. IEEE Std. 1363-2000, Standard Specifications for Public Key Cryptography. 

15. : The security of a digital signature system is dependent on maintaining the 
secrecy of the signatory�s private keys. Signatories , therefore, guard against the disclosure 
of their private keys. While it is the intent of this Standard to specify general security 
requirements for generating digital signatures, conformance to this Standard does not assure that 
a particular implementation is secure.  It is the responsibility of an implementer to ensure that 
any module that implements a digital signature capability is designed and built in a secure 
manner. 

Similarly, the use of a product containing an implementation that conforms to this Standard does 
not guarantee the security of the overall system in which the product is used. The responsible 

iii 
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authority in each agency or department  assure that an overall implementation provides an 
acceptable level of security. 

Since a standard of this nature must be flexible enough to adapt to advancements and 
innovations in science and technology, this Standard will be reviewed every five years in order 
to assess its adequacy. 

16. : The Federal Information Security Management Act (FISMA) does not 
allow for waivers to Federal Information Processing Standards (FIPS) that are made mandatory 
by the Secretary of Commerce.    

17. : This publication is available by accessing 
http://csrc.nist.gov/publications/. Other computer security publications are available at the same 
web site. 

iv 
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This Standard defines methods for digital signature generation that can be used for the protection 
of binary data (commonly called a message), and for the verification and validation of those 
digital signatures. Three techniques are approved. 

(1) The Digital Signature Algorithm (DSA) is specified in this Standard. The specification 
includes criteria for the generation of domain parameters, for the generation of public and 
private key pairs, and for the generation and verification of digital signatures. 

(2) The RSA digital signature algorithm is specified in American National Standard (ANS) 
X9.31 and Public Key Cryptography Standard (PKCS) #1. FIPS 186-3 approves the use 
of implementations of either or both of these standards, but specifies additional 
requirements. 

(3) The Elliptic Curve Digital Signature Algorithm (ECDSA) is specified in ANS X9.62. 
FIPS 186-3 approves the use of ECDSA, but specifies additional requirements. 
Recommended elliptic curves for Federal Government use are provided herein. 

This Standard includes requirements for obtaining the assurances necessary for valid digital 
signatures. Methods for obtaining these assurances are provided in NIST Special Publication 
(SP) 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications. 

1
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Approved FIPS-approved and/or NIST-recommended. An algorithm or technique 
that is either 1) specified in a FIPS or NIST Recommendation, or 2) 
adopted in a FIPS or NIST Recommendation or 3) specified in a list of 
NIST approved security functions. 

Assurance of domain Confidence that the domain parameters are arithmetically correct. 
parameter validity 

Assurance of Confidence that an entity possesses a private key and any associated 
possession keying material. 

Assurance of public Confidence that the public key is arithmetically correct. 
key validity 

Bit string An ordered sequence of 0�s and 1�s. The leftmost bit is the most 
significant bit of the string. The rightmost bit is the least significant bit 
of the string. 

Certificate A set of data that uniquely identifies a key pair and an owner that is 
authorized to use the key pair. The certificate contains the owner�s 
public key and possibly other information, and is digitally signed by a 
Certification Authority (i.e., a trusted party), thereby binding the 
public key to the owner. 

Certification Authority The entity in a Public Key Infrastructure (PKI) that is responsible for 
(CA) issuing certificates and exacting compliance with a PKI policy. 

Claimed signatory From the verifier�s perspective, the claimed signatory is the entity that 
purportedly generated a digital signature. 

Digital signature The result of a cryptographic transformation of data that, when 
properly implemented, provides a mechanism for verifying origin 
authentication, data integrity and signatory non-repudiation. 

Domain parameter seed  A string of bits that is used as input for a domain parameter generation 
or validation process. 

Domain parameters Parameters used with cryptographic algorithms that are usually 
common to a domain of users. A DSA or ECDSA cryptographic key 
pair is associated with a specifc set of domain parameters. 

2
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Entity An individual (person), organization, device or process. Used 
interchangeably with �party�. 

Equivalent process Two processes are equivalent if, when the same values are input to 
each process (either as input parameters or as values made available 
during the process or both), the same output is produced. 

Hash function A function that maps a bit string of arbitrary length to a fixed length 
bit string. Approved hash functions are specified in FIPS 180-3 and 
are designed to satisfy the following properties: 

1. (One-way) It is computationally infeasible to find any input that 
maps to any new pre-specified output, and 

2. (Collision resistant) It is computationally infeasible to find any 
two distinct inputs that map to the same output. 

Hash value See �message digest�. 

Intended signatory An entity that intends to generate digital signatures in the future.  

Key A parameter used in conjunction with a cryptographic algorithm that 
determines its operation. Examples applicable to this Standard 
include: 

1. The computation of a digital signature from data, and 

2. The verification of a digital signature. 

Key pair A public key and its corresponding private key. 

Message The data that is signed. Also known as �signed data� during the 
signature verification and validation process. 

Message digest The result of applying a hash function to a message. Also known as 
�hash value�. 

Non-repudiation A service that is used to provide assurance of the integrity and origin 
of data in such a way that the integrity and origin can be verified and 
validated by a third party as having originated from a specific entity in 
possession of the private key (i.e., the signatory). 

Owner A key pair owner is the entity that is authorized to use the private key 
of a key pair. 

Party An individual (person), organization, device or process. Used 
interchangeably with �entity�. 

Per-message secret 
number 

A secret random number that is generated prior to the generation of 
each digital signature. 

3
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Public Key A framework that is established to issue, maintain and revoke public 
Infrastructure (PKI) key certificates. 

Prime number A string of random bits that is used to determine a prime number with 
generation seed the required characteristics. 

Private key A cryptographic key that is used with an asymmetric (public key) 
cryptographic algorithm. For digital signatures, the private key is 
uniquely associated with the owner and is not made public.  The 
private key is used to compute a digital signature that may be verified 
using the corresponding public key. 

Probable prime An integer that is believed to be prime, based on a probabilistic 
primality test. There should be no more than a negligible probability 
that the so-called probable prime is actually composite.  

Provable prime An integer that is either constructed to be prime or is calculated to be 
prime using a primality-proving algorithm. 

Pseudorandom A process or data produced by a process is said to be pseudorandom 
when the outcome is deterministic, yet also effectively random as long 
as the internal action of the process is hidden from observation. For 
cryptographic purposes, �effectively� means �within the limits of the 
intended security strength.� 

Public key A cryptographic key that is used with an asymmetric (public key) 
cryptographic algorithm and is associated with a private key. The 
public key is associated with an owner and may be made public. In the 
case of digital signatures, the public key is used to verify a digital 
signature that was signed using the corresponding private key. 

Random number A device or algorithm that can produce a sequence of random numbers 
generator that appears to be statistically independent and unbiased. 

Security strength A number associated with the amount of work (that is, the number of 
operations) that is required to break a cryptographic algorithm or 
system. Sometimes referred to as a security level. 

Used to indicate a requirement of this Standard. 

Used to indicate a strong recommendation, but not a requirement of 
this Standard. 

Signatory The entity that generates a digital signature on data using a private 
key. 

Signature generation The process of using a digital signature algorithm and a private key to 
generate a digital signature on data. 

4
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Signature validation The (mathematical) verification of the digital signature and obtaining 
the appropriate assurances (e.g., public key validity, private key 
possession, etc.). 

Signature verification The process of using a digital signature algorithm and a public key to 
verify a digital signature on data. 

Signed data The data or message upon which a digital signature has been 
computed. Also, see �message�. 

Subscriber An entity that has applied for and received a certificate from a 
Certificate Authority. 

Trusted third party An entity other than the owner and verifier that is trusted by the owner 
(TTP) or the verifier or both. Sometimes shortened to �trusted party�. 

Verifier The entity that verifies the authenticity of a digital signature using the 
public key. 

ANS American National Standard. 

CA Certification Authority. 

DSA Digital Signature Algorithm; specified in this Standard.  

ECDSA Elliptic Curve Digital Signature Algorithm; specified in ANS X9.62. 

FIPS Federal Information Processing Standard. 

NIST National Institute of Standards and Technology. 

PKCS Public Key Cryptography Standard. 

PKI Public Key Infrastructure. 

RBG Random Bit Generator; specified in SP 800-90. 

RSA Algorithm developed by Rivest, Shamir and Adelman; specified in 
ANS X9.31 and PKCS #1. 

SHA Secure Hash Algorithm; specified in FIPS 180-3. 

SP NIST Special Publication 

TTP Trusted Third Party. 

5
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L 

a mod n 

b a mod n 

counter 

d 

domain_parameter_seed 

e 

g 

 (a, b) 

 (M) 

index 

k 

(L, N) 

 (a, b) 

 (a) 

M 

m 

N 

The unique remainder r, 0  r  (n � 1), when integer a is divided by 
the positive integer n. For example, 23 mod 7 = 2. 

There exists an integer k such that b � a = kn; equivalently, a mod n 
= b mod n. 

The counter value that results from the domain parameter generation 
process when the domain parameter seed is used to generate DSA 
domain parameters. 

1. For RSA, the private signature exponent of a private key. 

2. For ECDSA, the private key. 

A seed used for the generation of domain parameters. 

The public verification exponent of an RSA public key. 

One of the DSA domain parameters; g is a generator of the q-order 
cyclic group of GF(p)*; that is, an element of order q in the 
multiplicative group of GF(p). 

Greatest common divisor of the integers a and b. 

The result of a hash computation (message digest or hash value) on 
message M using an approved hash function. 

A value used in the generation of g to indicate its intended use (e.g., 
for digital signatures). 

For DSA and ECDSA, a per-message secret number. 

For DSA, the length of the parameter p in bits. 

The associated pair of length parameters for a DSA key pair, where L
is the length of p, and N is the length of q. 

The least common multiple of the integers a and b. 

The length of a in bits. 

The message that is signed using the digital signature algorithm.

For ECDSA, the degree of the finite field GF .m2 

For DSA, the length of the parameter q in bits. 

6
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x 

n 1. For RSA, the modulus; the bit length of n is considered to be the 
key size. 

2. For ECDSA, the order of the base point of the elliptic curve; the 
bit length of n is considered to be the key size. 

(n, d) An RSA private key, where n is the modulus, and d is the private 
signature exponent. 

(n, e) An RSA public key, where n is the modulus, and e is the public 
verification exponent. 

nlen The length of the RSA modulus n in bits. 

p 1. For DSA, one of the DSA domain parameters; a prime number 
that defines the Galois Field GF(p) and is used as a modulus in the 
operations of GF(p). 

2. For RSA, a prime factor of the modulus n. 

q 1. For DSA, one of the DSA domain parameters; a prime factor of  
p � 1. 

2. For RSA, a prime factor of the modulus n. 

Q An ECDSA public key. 

r One component of a DSA or ECDSA digital signature. See the 
definition of (r, s). 

(r, s) A DSA or ECDSA digital signature, where r and s are the digital 
signature components. 

s One component of a DSA or ECDSA digital signature. See the 
definition of (r, s). 

seedlen The length of the domain_parameter_seed in bits. 

SHAx(M) The result when M is the input to the SHA-x hash function, where 
SHA-x is specified in FIPS 180-3. 

The DSA private key. 

y The DSA public key. 

Bitwise logical �exclusive-or� on bit strings of the same length; for 
corresponding bits of each bit string, the result is determined as 
follows: 0  0 = 0, 0  1 = 1, 1  0 = 1, or 1  1 = 0. 

Example:  01101  11010 = 10111 
+ Addition. 

7

19

MOBILEIRON, INC. - EXHIBIT 1036 
Page 019



Multiplication. 

/ Division. 

a || b The concatenation of two strings a and b. Either a and b are both bit 
strings, or both are byte strings. 

a The ceiling of a: the smallest integer that is greater than or equal to 
a. For example, 5  = 5, 5.3  = 6, and �2.1  = �2. 

a The floor of a; the largest integer that is less than or equal to a. For 
example, 5  = 5, 5.3  = 5, and -2.1 . = -3. 

|a| The absolute value of a; |a| is � a if a < 0; otherwise, it is simply a. 
For example, |2| = 2, and |�2| = 2. 

[a, b] The interval of integers between and including a and b. For example, 
[1, 4] consists of the integers 1, 2, 3 and 4. 

{, a, b, �} Used to indicate optional information. 

0x The prefix to a bit string that is represented in hexadecimal characters. 

8
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A digital signature is an electronic analogue of a written signature; the digital signature can be 
used to provide assurance that the claimed signatory signed the information. In addition, a 
digital signature may be used to detect whether or not the information was modified after it was 
signed (i.e., to detect the integrity of the signed data). These assurances may be obtained whether 
the data was received in a transmission or retrieved from storage. A properly implemented 
digital signature algorithm that meets the requirements of this Standard can provide these 
services. 

A digital signature algorithm includes a signature generation process and a signature verification 
process. A signatory uses the generation process to generate a digital signature on data; a verifier 
uses the verification process to verify the authenticity of the signature. Each signatory has a 
public and private key and is the owner of that key pair. As shown in Figure 1, the private key is 
used in the signature generation process. The key pair owner is the only entity that is authorized 
to use the private key to generate digital signatures. In order to prevent other entities from 
claiming to be the key pair owner and using the private key to generate fraudulent signatures, the 

9
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private key must remain secret. The approved digital signature algorithms are designed to 
prevent an adversary who does not know the signatory�s private key from generating the same 
signature as the signatory on a different message.  In other words, signatures are designed so that 
they cannot be forged. A number of alternative terms are used in this Standard to refer to the 
signatory or key pair owner. An entity that intends to generate digital signatures in the future 
may be referred to as the intended signatory. Prior to the verification of a signed message, the 
signatory is referred to as the claimed signatory until such time as adequate assurance can be 
obtained of the actual identity of the signatory.  

The public key is used in the signature verification process (see Figure 1). The public key need 
not be kept secret, but its integrity must be maintained. Anyone can verify a correctly signed 
message using the public key. 

For both the signature generation and verification processes, the message (i.e., the signed data) is 
converted to a fixed-length representation of the message by means of an approved hash 
function. Both the original message and the digital signature are made available to a verifier.  

A verifier requires assurance that the public key to be used to verify a signature belongs to the 
entity that claims to have generated a digital signature (i.e., the claimed signatory). That is, a 
verifier requires assurance that the signatory is the actual owner of the public/private key pair 
used to generate and verify a digital signature. A binding of an owner�s identity and the owner�s 
public key  be effected in order to provide this assurance. 

A verifier also requires assurance that the key pair owner actually possesses the private key 
associated with the public key, and that the public key is a mathematically correct key. 

By obtaining these assurances, the verifier has assurance that if the digital signature can be 
correctly verified using the public key, the digital signature is valid (i.e., the key pair owner 
really signed the message). Digital signature validation includes both the (mathematical) 
verification of the digital signature and obtaining the appropriate assurances. The following are 
reasons why such assurances are required. 

1. If a verifier does not obtain assurance that a signatory is the actual owner of the key pair 
whose public component is used to verify a signature, the problem of forging a signature 
is reduced to the problem of falsely claiming an identity.  For example, anyone in 
possession of a mathematically consistent key pair can sign a message and claim that the 
signatory was the President of the United States. If a verifier does not require assurance 
that the President is actually the owner of the public key that is used to mathematically 
verify the message�s signature, then successful signature verification provides assurance 
that the message has not been altered since it was signed, but does not provide assurance 
that the message came from the President (i.e., the verifier has assurance of the data�s 
integrity, but source authentication is lacking). 

2. If the public key used to verify a signature is not mathematically valid, the arguments 
used to establish the cryptographic strength of the signature algorithm may not apply. 
The owner may not be the only party who can generate signatures that can be verified 

10

22

MOBILEIRON, INC. - EXHIBIT 1036 
Page 022



with that public key. 

3. If a public key infrastructure cannot provide assurance to a verifier that the owner of a 
key pair has demonstrated knowledge of a private key that corresponds to the owner�s 
public key, then it may be possible for an unscrupulous entity to have their identity (or an 
assumed identity) bound to a public key that is (or has been) used by another party. The 
unscrupulous entity may then claim 
to be the source of certain messages 
signed by that other party. Or, it 
may be possible that an 
unscrupulous entity has managed to 
obtain ownership of a public key 
that was chosen with the sole 
purpose of allowing for the 
verification of a signature on a 
specific message. 

Technically, a key pair used by a digital 
signature algorithm could also be used for 
purposes other than digital signatures (e.g., 
for key establishment). However, a key pair 
used for digital signature generation and 
verification as specified in this Standard 

 be used for any other purpose. See 
SP 800-57 on Key Usage for further 
information. 

A number of steps are required to enable a 
digital signature generation or verification 
capability in accordance with this Standard. 
All parties that generate digital signatures 

perform the initial setup process as 
discussed in Section 3.1. Digital signature 
generation  be performed as discussed 
in Section 3.2. Digital signature verification 
and validation  be performed as 
discussed in Section 3.3. 

Figure 2 depicts the steps that are 
performed prior to generating a digital 
signature by an entity intending to act as a 

Signatory 
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signatory. 

For the DSA and ECDSA algorithms, the intended signatory  first obtain appropriate 
domain parameters, either by generating the domain parameters itself, or by obtaining domain 
parameters that another entity has generated. Having obtained the set of domain parameters, the 
intended signatory  obtain assurance of the validity of those domain parameters; approved 
methods for obtaining this assurance are provided in SP 800-89. Note that the RSA algorithm 
does not use domain parameters. 

Each intended signatory obtain a digital signature key pair that is generated as specified for 
the appropriate digital signature algorithm, either by generating the key pair itself or by 
obtaining the key pair from a trusted party. The intended signatory is authorized to use the key 
pair and is the owner of that key pair. Note that if a trusted party generates the key pair, that 
party needs to be trusted not to masquerade as the owner, even though the trusted party knows 
the private key. 

After obtaining the key pair, the intended signatory (now the key pair owner)  obtain (1) 
assurance of the validity of the public key and (2) assurance that he/she actually possesses the 
associated private key. Approved methods for obtaining these assurances are provided in SP 
800-89. 

A digital signature verifier requires assurance of the identity of the signatory. Depending on the 
environment in which digital signatures are generated and verified, the key pair owner (i.e., the 
intended signatory) may register the public key and establish proof of identity with a mutually 
trusted party. For example, a certification authority (CA) could sign credentials containing an 
owner�s public key and identity to form a certificate after being provided with proof of the 
owner�s identity. Systems for certifying 
credentials and distributing certificates are 
beyond the scope of this Standard. Other means 
of establishing proof of identity (e.g., by 
providing identity credentials along with the 
public key directly to a prospective verifier) are 
allowed. 

Figure 3 depicts the steps that are performed by 
an intended signatory (i.e., the entity that 
generates a digital signature). 

Prior to the generation of a digital signature, a 
message digest  be generated on the 
information to be signed using an appropriate 
approved hash function. 
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Depending on the digital signature algorithm to be used, additional information  be 
obtained. For example, a random per-message secret number be obtained for DSA and 
ECDSA. 

Using the selected digital signature algorithm, the signature private key, the message digest, and 
any other information required by the digital signature process, a digital signature  be 
generated in accordance with this Standard. 

The signatory may optionally verify the digital signature using the signature verification process 
and the associated public key. This optional verification serves as a final check to detect 
otherwise undetected signature generation computation errors; this verification may be prudent 
when signing a high-value message, when multiple users are expected to verify the signature, or 
if the verifier will be verifying the signature at a much later time. 

Figure 4 depicts the digital signature verification and validation process that are performed by a 
verifier (e.g., the intended recipient of the signed data and associated digital signature). Note that 
the figure depicts a successful verification and validation process (i.e., no errors are detected). 

In order to verify a digital signature, the verifier  obtain the public key of the claimed 
signatory, (usually) based on the claimed identity. If DSA or ECDSA has been used to generate 
the digital signature, the verifier  also obtain the domain parameters. The public key and 
domain parameters may be obtained, for example, from a certificate created by a trusted party 
(e.g., a CA) or directly from the claimed signatory. A message digest  be generated on the 
data whose signature is to be verified (i.e., not on the received digital signature) using the same 
hash function that was used during the digital signature generation process. Using the 
appropriate digital signature algorithm, the domain parameters (if appropriate), the public key 
and the newly computed message digest, the received digital signature is verified in accordance 
with this Standard. If the verification process fails, no inference can be made as to whether the 
data is correct, only that in using the specified public key and the specified signature format, the 
digital signature cannot be verified for that data. 

Before accepting the verified digital signature as valid, the verifier  have (1) assurance of 
the signatory�s claimed identity, (2) assurance of the validity of the domain parameters (for DSA 
and ECDSA), (3) assurance of the validity of the public key, and (4) assurance that the claimed 
signatory actually possessed the private key that was used to generate the digital signature at the 
time that the signature was generated. Methods for the verifier to obtain these assurances are 
provided in SP 800-89. Note that assurance of domain parameter validity may have been 
obtained during initial setup (see Section 3.1). 

If the verification and assurance processes are successful, the digital signature and signed data 
be considered valid. However, if a verification or assurance process fails, the digital 

signature  be considered invalid. An organization�s policy  govern the action to be 
taken for an invalid digital signature. Such policy is outside the scope of this Standard. 
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Obtain Assurance that the Owner 
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A DSA digital signature is computed using a set of domain parameters, a private key x, a per-
message secret number k, data to be signed, and a hash function. A digital signature is verified 
using the same domain parameters, a public key y that is mathematically associated with the 
private key x used to generate the digital signature, data to be verified, and the same hash 
function that was used during signature generation. These parameters are defined as follows: 

p a prime modulus, where 2L�1 < p < 2L, and L is the bit length of p. Values for L are 
provided in Section 4.2. 

q a prime divisor of (p � 1), where 2N�1 < q < 2 N, and N is the bit length of q. Values for N 
are provided in Section 4.2. 

g a generator of the subgroup of order q mod p, such that 1 < g < p. 
x the private key that must remain secret; x is a randomly or pseudorandomly generated 

integer, such that 0 < x < q, i.e., x is in the range [1, q�1]. 

y the public key, where y = gx mod p. 

k  a secret number that is unique to each message; k is a randomly or pseudorandomly 
generated integer, such that 0 < k < q, i.e., k is in the range [1, q�1]. 

This Standard specifies the following choices for the pair L and N (the bit lengths of p and q, 
respectively): 

L = 1024, N = 160 

L = 2048, N = 224 

L = 2048, N = 256 

L = 3072, N = 256 

Federal Government entities  generate digital signatures using use one or more of these 
choices. 

An approved hash function, as specified in FIPS 180-3,  be used during the generation of 
digital signatures. The security strength associated with the DSA digital signature process is no 
greater than the minimum of the security strength of the (L, N) pair and the security strength of 
the hash function that is employed. Both the security strength of the hash function used and the 
security strength of the (L, N) pair  meet or exceed the security strength required for the 
digital signature process. The security strength for each (L, N) pair and hash function is provided 
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in SP 800-57. 

SP 800-57 provides information about the selection of the appropriate (L, N) pair in accordance 
with a desired security strength for a given time period for the generation of digital signatures. 
An (L, N) pair  be chosen that protects the signed information during the entire expected 
lifetime of that information. For example, if a digital signature is generated in 2009 for 
information that needs to be protected for five years, and a particular (L, N) pair is invalid after 
2010, then a larger (L, N) pair  be used that remains valid for the entire period of time that 
the information needs to be protected. 

It is recommended that the security strength of the (L, N) pair and the security strength of the 
hash function used for the generation of digital signatures be the same unless an agreement has 
been made between participating entities to use a stronger hash function. When the length of the 
output of the hash function is greater than N (i.e., the bit length of q), then the leftmost N bits of 
the hash function output block  be used in any calculation using the hash function output 
during the generation or verification of a digital signature. A hash function that provides a lower 
security strength than the (L, N) pair ordinarily  be used, since this would reduce the 
security strength of the digital signature process to a level no greater than that provided by the 
hash function. 

A Federal Government entity other than a Certification Authority (CA)  use only the first 
three (L, N) pairs (i.e., the (1024, 160), (2048, 224) and (2048, 256) pairs). A CA  use an (L, 
N) pair that is equal to or greater than the (L, N) pairs used by its subscribers. For example, if 
subscribers are using the (2048, 224) pair, then the CA  use either the (2048, 224), (2048, 
256) or (3072, 256) pair. Possible exceptions to this rule include cross certification between 
CAs, certifying keys for purposes other than digital signatures and transitioning from one key 
size or algorithm to another. See SP 800-57 for further guidance. 

DSA requires that the private/public key pairs used for digital signature generation and 
verification be generated with respect to a particular set of domain parameters. These domain 
parameters may be common to a group of users and may be public. A user of a set of domain 
parameters (i.e., both the signatory and the verifier)  have assurance of their validity prior to 
using them (see Section 3). Although domain parameters may be public information, they 
be managed so that the correct correspondence between a given key pair and its set of domain 
parameters is maintained for all parties that use the key pair.  A set of domain parameters may 
remain fixed for an extended time period.  

The domain parameters for DSA are the integers p, q, and g, and optionally, the 
domain_parameter_seed and counter that were used to generate p and q (i.e., the full set of 
domain parameters is (p, q, g {, domain_parameter_seed, counter})). 
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Domain parameters may be generated by a trusted third party (a TTP, such as a CA) or by an 
entity other than a TTP. Assurance of domain parameter validity  be obtained prior to key 
pair generation, digital signature generation or digital signature verification (see Section 3). 

The integers p and q  be generated as specified in Appendix A.1. The input to the 
generation process is the selected values of L and N (see Section 4.2); the output of the 
generation process is the values for p and q, and optionally, the values of the 
domain_parameter_seed and counter. 

The generator g  be generated as specified in Appendix A.2. 

The security strength of a hash function used during the generation of the domain parameters 
 meet or exceed the security strength associated with the (L, N) pair. Note that this is more 

restrictive than the hash function that can be used for the digital signature process (see Section 
4.2). 

Each digital signature key pair  be correctly associated with one specific set of domain 
parameters (e.g., by a public key certificate that identifies the domain parameters associated with 
the public key). The domain parameters  be protected from unauthorized modification until 
the set is deactivated (if and when the set is no longer needed). The same domain parameters 
may be used for more than one purpose (e.g., the same domain parameters may be used for both 
digital signatures and key establishment). However, using different values for the generator g 
reduces the risk that key pairs generated for one purpose could be accidentally used 
(successfully) for another purpose. 

Each signatory has a key pair: a private key x and a public key y that are mathematically related 
to each other. The private key  be used for only a fixed period of time (i.e., the private key 
cryptoperiod) in which digital signatures may be generated; the public key may continue to be 
used as long as digital signatures that were generated using the associated private key need to be 
verified (i.e., the public key may continue to be used beyond the cryptoperiod of the associated 
private key). See SP 800-57 for further guidance. 

A digital signature key pair x and y is generated for a set of domain parameters (p, q, g {, 
domain_parameter_seed, counter}). Methods for the generation of x and y are provided in 
Appendix B.1. 
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Guidance on the protection of key pairs is provided in SP 800-57. The secure use of digital 
signatures depends on the management of an entity�s digital signature key pair as follows:  

1. The validity of the domain parameters  be assured prior to the generation of the key 
pair, or the verification and validation of a digital signature (see Section 3). 

2. Each key pair  be associated with the domain parameters under which the key pair 
was generated. 

3. A key pair  only be used to generate and verify signatures using the domain 
parameters associated with that key pair. 

4. The private key  be used only for signature generation as specified in this Standard 
and  be kept secret; the public key  be used only for signature verification and 
may be made public. 

5. An intended signatory  have assurance of possession of the private key prior to or 
concurrently with using it to generate a digital signature (see Section 3.1). 

6. A private key  be protected from unauthorized access, disclosure and modification. 

7. A public key  be protected from unauthorized modification (including substitution). 
For example, public key certificates that are signed by a CA may provide such protection. 

8. A verifier  be assured of a binding between the public key, its associated domain 
parameters and the key pair owner (see Section 3). 

9. A verifier  obtain public keys in a trusted manner (e.g., from a certificate signed by a 
CA that the entity trusts, or directly from the intended or claimed signatory, provided that 
the entity is trusted by the verifier and can be authenticated as the source of the signed 
information that is to be verified).  

10. Verifiers  be assured that the claimed signatory is the key pair owner, and that the 
owner possessed the private key that was used to generate the digital signature at the time 
that the signature was generated (i.e., the private key that is associated with the public 
key that will be used to verify the digital signature) (see Section 3.3). 

11. A signatory and a verifier  have assurance of the validity of the public key (see 
Sections 3.1 and 3.3). 

A new secret random number k  be generated prior to the generation of each digital 
signature for use during the signature generation process. This secret number  be protected 
from unauthorized disclosure and modification. 

k 1 k 1 is the multiplicative inverse of k with respect to multiplication modulo q; i.e., 0 < < q 
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k 1and 1 = ( k) mod q. This inverse is required for the signature generation process (see Section 
k 14.6). A technique is provided in Appendix C.1 for deriving from k. 

k 1k and  may be pre-computed, since knowledge of the message to be signed is not required for 
k 1the computations. When k and  are pre-computed, their confidentiality and integrity  be 

protected. 

Methods for the generation of the per-message secret number are provided in Appendix B.2. 

The intended signatory  have assurances as specified in Section 3.1. 

Let N be the bit length of q. Let (N, outlen) denote the minimum of the positive integers N
and outlen, where outlen is the bit length of the hash function output block. 

The signature of a message M consists of the pair of numbers r and s that is computed according 
to the following equations: 

r = (gk mod p) mod q. 

z = the leftmost (N, outlen) bits of (M). 

k 1s = ( (z + xr)) mod q. 

When computing s, the string z obtained from (M)  be converted to an integer. The 
conversion rule is provided in Appendix C.2. 

Note that r may be computed whenever k, p, q and g are available, e.g., whenever the domain 
parameters p, q and g are known, and k has been pre-computed (see Section 4.5), r may also be 
pre-computed, since knowledge of the message to be signed is not required for the computation 
of r. Pre-computed k, k-1 and r values  be protected in the same manner as the the private 
key x until s has been computed (see SP 800-57). 

The values of r and s  be checked to determine if r = 0 or s = 0. If either r = 0 or s = 0, a 
new value of k  be generated, and the signature  be recalculated. It is extremely 
unlikely that r = 0 or s = 0 if signatures are generated properly. 

The signature (r, s) may be transmitted along with the message to the verifier. 

Signature verification may be performed by any party (i.e., the signatory, the intended recipient 
or any other party) using the signatory�s public key. A signatory may wish to verify that the 
computed signature is correct, perhaps before sending the signed message to the intended 
recipient. The intended recipient (or any other party) verifies the signature to determine its 
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authenticity. 

Prior to verifying the signature of a signed message, the domain parameters, and the claimed 
signatory�s public key and identity  be made available to the verifier in an authenticated 
manner. The public key may, for example, be obtained in the form of a certificate signed by a 
trusted entity (e.g., a CA) or in a face-to-face meeting with the public key owner.  

Let M , r , and s  be the received versions of M, r, and s, respectively; let y be the public key of 
the claimed signatory; and let N be the bit length of q. Also, let (N, outlen) denote the 
minimum of the positive integers N and outlen, where outlen is the bit length of the hash 
function output block. 

The signature verification process is as follows: 

1. The verifier  check that 0 < r  < q and 0 < s  < q; if either condition is violated, the 
signature  be rejected as invalid. 

2. If the two conditions in step 1 are satisfied, the verifier computes the following: 

w  = (s )�1 mod q. 

z = the leftmost (N, outlen) bits of (M ). 

u1 = (zw) mod q. 

u2 = ((r )w) mod q. 

v = (((g)u1 (y)u2) mod p) mod q. 

A technique is provided in Appendix C.1 for deriving (s )�1 (i.e., the multiplicative 
inverse of s  mod q). 

The string z obtained from (M )  be converted to an integer. The conversion 
rule is provided in Appendix C.2. 

3. If v = r , then the signature is verified. For a proof that v = r when M = M, r = r, and s
= s, see Appendix E. 

4. If v does not equal r , then the message or the signature may have been modified, there 
may have been an error in the signatory�s generation process, or an imposter (who did not 
know the private key associated with the public key of the claimed signatory) may have 
attempted to forge the signature.  The signature  be considered invalid. No inference 
can be made as to whether the data is valid, only that when using the public key to verify 
the signature, the signature is incorrect for that data. 

5. Prior to accepting the signature as valid, the verifier  have assurances as specified in 
Section 3.3. 

An organization�s policy may govern the action to be taken for invalid digital signatures. Such 
policy is outside the scope of this Standard. Guidance about determining the timeliness of 
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digitally signed messages is addressed in SP 800-102, Recommendation for Digital Signature 
Timeliness.  
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The use of the RSA algorithm for digital signature generation and verification is specified in 
American National Standard (ANS) X9.31 and Public Key Cryptography Standard (PKCS) #1. 
While each of these standards uses the RSA algorithm, the format of the ANS X9.31 and PKCS 
#1 data on which the digital signature is generated differs in details that make the algorithms 
non-interchangeable. 

An RSA digital signature key pair consists of an RSA private key, which is used to compute a 
digital signature, and an RSA public key, which is used to verify a digital signature. An RSA key 
pair used for digital signatures only be used for one digital signature scheme (e.g., ANS 
X9.31, RSASSA-PKCS1 v1.5 or RSASSA-PSS; see Sections 5.4 and 5.5). In addition, an RSA 
digital signature key pair  be used for other purposes (e.g., key establishment). 

An RSA public key consists of a modulus n, which is the product of two positive prime integers 
p and q (i.e., n = pq), and a public key exponent e. Thus, the RSA public key is the pair of values 
(n, e) and is used to verify digital signatures. The size of an RSA key pair is commonly 
considered to be the length of the modulus n in bits (nlen). 

The corresponding RSA private key consists of the same modulus n and a private key exponent d 
that depends on n and the public key exponent e. Thus, the RSA private key is the pair of values 
(n, d) and is used to generate digital signatures. Note that an alternative method for representing 
(n, d) using the Chinese Remainder Theorem (CRT) is allowed. 

In order to provide security for the digital signature process, the two integers p and q, and the 
private key exponent d  be kept secret. The modulus n and the public key exponent e may 
be made known to anyone. Guidance on the protection of these values is provided in SP 800-57. 

This Standard specifies three choices for the length of the modulus (i.e., nlen): 1024, 2048 and 
3072 bits. Federal Government entities  generate digital signatures using one or more of 
these choices. 

An approved hash function, as specified in FIPS 180-3,  be used during the generation of 
key pairs and digital signatures. When used during the generation of an RSA key pair (as 
specified in this Standard), the length in bits of the hash function output block  meet or 
exceed the security strength associated with the bit length of the modulus n (see SP 800-57). 

The security strength associated with the RSA digital signature process is no greater than the 
minimum of the security strength associated with the bit length of the modulus and the security 
strength of the hash function that is employed. The security strength for each modulus length and 
hash function used during the digital signature process is provided in SP 800-57. Both the 
security strength of the hash function used and the security strength associated with the bit length 
of the modulus n  meet or exceed the security strength required for the digital signature 

22

34

MOBILEIRON, INC. - EXHIBIT 1036 
Page 034



process. 

It is recommended that the security strength of the modulus and the security strength of the hash 
function be the same unless an agreement has been made between participating entities to use a 
stronger hash function. A hash function that provides a lower security strength than the security 
strength associated with the bit length of the modulus ordinarily  be used, since this 
would reduce the security strength of the digital signature process to a level no greater than that 
provided by the hash function. 

Federal Government entities other than CAs  use only the first two choices (i.e., nlen = 
1024 or 2048) during the timeframes indicated in SP 800-57. A CA  use a modulus whose 
length nlen is equal to or greater than the moduli used by its subscribers. For example, if the 
subscribers are using nlen = 2048, then the CA  use nlen  2048. SP 800-57 provides 
further information about the selection of the bit length of n. Possible exceptions to this rule 
include cross certification between CAs, certifying keys for purposes other than digital 
signatures and transitioning from one key size or algorithm to another. 

Criteria for the generation of RSA key pairs are provided in Appendix B.3.1. 

When RSA parameters are randomly generated (i.e., the primes p and q, and optionally, the 
public key exponent e), they  be generated using an approved random or pseudorandom 
number generator (see SP 800-90). The resulting (pseudo) random numbers  be used as 
seeds for generating RSA parameters (e.g., the (pseudo) random number is used as a prime 
number generation seed).  Prime number generation seeds  be kept secret or destroyed when 
the modulus n is computed. If the prime number generation seeds are retained, they  only be 
used as evidence that the generated values (i.e., p and q) were determined in an arbitrary manner, 
and the seeds be protected in a manner that is (at least) equivalent to the protection required 
for the private key. 

The secure use of digital signatures depends on the management of an entity�s digital signature 
key pair. Key pair management requirements for RSA are provided in Section 4.4.2, 
requirements 4 � 11. Note that the first three requirements in Section 4.4.2, which address the 
relationship between domain parameters and key pairs, are not applicable to RSA. 

The intended signatory have assurances as specified in Section 3.1. Prior to accepting a digital 
signature as valid, the verifier  have assurances as specified in Section 3.3. 

ANS X9.31, Digital Signatures Using Reversible Public Key Cryptography for the Financial 
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Services Industry (rDSA), was developed for the American National Standards Institute by the 
Accredited Standards Committee on Financial Services, X9. See http://www.x9.org for 
information about obtaining copies of ANS X9.31 and any associated errata. The following 
discussions are based on the version of ANS X9.31 that was approved in 1998. 

Methods for the generation of the private prime factors p and q are provided in Appendix B.3. 

In ANS X9.31, the length of the modulus n is allowed in increments of 256 bits beyond a 
minimum of 1024 bits. Implementations claiming conformance to FIPS 186-3  include one 
or more of the modulus sizes specified in Section 5.1. 

Two methods for the generation of digital signatures are included in ANS X9.31. When the 
public signature verification exponent e is odd, the digital signature algorithm is commonly 
known as RSA; when the public signature verification exponent e is even, the digital signature 
algorithm is commonly known as Rabin-Williams. This Standard (i.e., FIPS 186-3) adopts the 
use of RSA, but does not adopt the use of Rabin-Williams. 

During signature verification, the extraction of the hash value H(M)  from the data structure IR
 be accomplished by either: 

Selecting the hashlen bytes of the data structure IR  that immediately precedes the two 
bytes of trailer information, where hashlen is the length in bytes of the hash function 
used, regardless of the length of the padding, or 

If the hash value H(M)  is selected by its location with respect to the last byte of padding 
(i.e., 0xBA), including a check that the hash value is followed by only two bytes 
containing the expected trailer value. 

ANS X9.31 contains an annex on random number generation. However, implementations of 
ANS X9.31  use the approved random number generation methods specified in SP 800-90.  

Annexes in ANS X9.31 provide informative discussions of security and implementation 
considerations. 

Public-Key Cryptography Standard (PKCS) #1, RSA Cryptography Standard, defines 
mechanisms for encrypting and signing data using the RSA algorithm. PKCS #1 v2.1 specifies 
two digital signature processes and corresponding formats: RSASSA-PKCS1-v1.5 and 
RSASSA-PSS. Both signature schemes are approved for use, but additional constraints are 
imposed beyond those specified in PKCS #1 v2.1. 

(a) Implementations that generate RSA key pairs  use the criteria and methods in 
Appendix B.3 to generate those key pairs, 

(b) Only approved hash functions  be used. 

(c) Only two prime factors p and q  be used to form the modulus n. 
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(d) Random numbers  be generated in accordance with SP 800-90. 

(e) For RSASSA-PSS, the length of the salt (sLen)  be: 0 sLen hlen, where hlen is 
the length of the hash function output block. 

(f) For RSASSA-PKCS-v1.5, when the hash value is recovered from the encoded message 
EM during the verification of the digital signature1, the extraction of the hash value 
be accomplished by either: 

Selecting the rightmost (least significant) bits of EM, based on the size of the hash 
function used, regardless of the length of the padding, or 

If the hash value is selected by its location with respect to the last byte of padding, 
including a check that the hash value is located in the rightmost (least significant) 
bytes of EM (i.e., no other information follows the hash value in the encoded 
message). 

Note: PKCS #1 was initially developed by RSA Laboratories in 1991 and has been revised as 
multiple versions. At the time of the approval of FIPS 186-3, three versions of PKSC #1 were 
available: version 1.5, version 2.0 and version 2.1. This Standard references only version 2.1. 

1 PKCS #1, v2.1 provides two methods for comparing the hash values:  by comparing the encoded messages EM and 
EM , and by extracting the hash value from the decoding of the encoded message (see the Note in PKCS #1, v2.1). 
Step (f) above applies to the latter case. 
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ANS X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve 
Digital Signature Standard (ECDSA), was developed for the American National Standards 
Institute by the Accredited Standards Committee on Financial Services, X9. Information about 
obtaining copies of ANS X9.62 is available at http://www.x9.org. The following discussions are 
based on the version of ANS X9.62 that was approved in 2005. This version of ANS X9.62 
be used, subject to the transition period referenced in the implementation schedule of this 
Standard. 

ANS X9.62 defines methods for digital signature generation and verification using the Elliptic 
Curve Digital Signature Algorithm (ECDSA). Specifications for the generation of the domain 
parameters used during the generation and verification of digital signatures are also included in 
ANS X9.62. ECDSA is the elliptic curve analog of DSA. ECDSA keys  be used for any 
other purpose (e.g., key establishment). 

ECDSA requires that the private/public key pairs used for digital signature generation and 
verification be generated with respect to a particular set of domain parameters. These domain 
parameters may be common to a group of users and may be public. Domain parameters may 
remain fixed for an extended time period. 

Domain parameters for ECDSA are of the form (q, FR, a, b {, domain_parameter_seed}, G, n, 
h), where q is the field size; FR is an indication of the basis used; a and b are two field elements 
that define the equation of the curve; domain_parameter_seed is the domain parameter seed and 
is an optional bit string that is present if the elliptic curve was randomly generated in a verifiable 
fashion, G is a base point of prime order on the curve (i.e., G = (xG, yG)), n is the order of the 
point G, and h is the cofactor (which is equal to the order of the curve divided by n). 

This Standard specifies five ranges for n (see Table 1). For each range, a maximum cofactor size 
is also specified. Note that the specification of a cofactor h in a set of domain parameters is 
optional in ANS X9.62, whereas implementations conforming to this Standard (i.e., FIPS 186-3) 

 specify the cofactor h in the set of domain parameters. Table 1 provides the maximum sizes 
for the cofactor h. 
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2 

160 - 223 210 

224 - 255 214 

256 - 383 216 

384 - 511 224 

 512 232 

ECDSA is defined for two arithmetic fields: the finite field GFp  and the finite field GF . Form2 

the field GFp , p is required to be an odd prime.  

NIST Recommended curves are provided in Appendix D of this Standard (i.e., FIPS 186-3). 
Three types of curves are provided: 

1. Curves over prime fields, which are identified as P-xxx, 

2. Curves over Binary fields, which are identified as B-xxx, and 

3. Koblitz curves, which are identified as K-xxx, 

where xxx indicates the bit length of the field size. 

Alternatively, ECDSA domain parameters may be generated as specified in ANS X9.62; when 
ECDSA domain parameters are generated (i.e., the NIST Recommended curves are not used), 
the value of G  be generated canonically (verifiably random). An approved hash function, 
as specified in FIPS 180-3,  be used during the generation of ECDSA domain parameters. 
When generating these domain parameters, the security strength of a hash function used 
meet or exceed the security strength associated with the bit length of n (see footnote 2 below). 

An approved hash function, as specified in FIPS 180-3, is required during the generation of 
domain parameters. The security strength of the hash function used  meet or exceed the 
security strength associated with the bit length of n. The security strengths for the ranges of n 
and the hash functions are provided in SP 800-57. It is recommended that the security strength 
associated with the bit length of n and the security strength of the hash function be the same 

2 The NIST Recommended curves were generated prior to the formulation of this guidance and using SHA-1, which 
was the only approved hash function available at that time. Since SHA-1 was considered secure at the time of 
generation, the curves were made public, and SHA-1 will only be used to validate those curves, the NIST 
Recommended curves are still considered secure and appropriate for Federal government use. 
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unless an agreement has been made between participating entities to use a stronger hash 
function; a hash function that provides a lower security strength than is associated with the bit 
length of n  be used. If the length of the output of the hash function is greater than the 
bit length of n, then the leftmost n bits of the hash function output block  be used in any 
calculation using the hash function output during the generation or verification of a digital 
signature. 

Normally, a CA  use a bit length of n whose assessed security strength is equal to or 
greater than the assessed security strength associated with the bit length of n used by its 
subscribers. For example, if subscribers are using a bit length of n with an assessed security 
strength of 112 bits, then CAs  use a bit length of n whose assessed security strength is 
equal to or greater than 112 bits. SP 800-57 provides further information about the selection of a 
bit length of n. Possible exceptions to this rule include cross certification between CAs, 
certifying keys for purposes other than digital signatures and transitioning from one key size or 
algorithm to another. However, these exceptions require further analysis. 

Each ECDSA key pair  be correctly associated with one specific set of domain parameters 
(e.g., by a public key certificate that identifies the domain parameters associated with the public 
key). The domain parameters  be protected from unauthorized modification until the set is 
deactivated (if and when the set is no longer needed). The same domain parameters may be used 
for more than one purpose (e.g., the same domain parameters may be used for both digital 
signatures and key establishment). However, using different domain parameters reduces the risk 
that key pairs generated for one purpose could be accidentally used (successfully) for another 
purpose. 

An ECDSA key pair consists of a private key d and a public key Q that is associated with a 
specific set of ECDSA domain parameters; d, Q and the domain parameters are mathematically 
related to each other. The private key is normally used for a period of time (i.e., the 
cryptoperiod); the public key may continue to be used as long as digital signatures that have been 
generated using the associated private key need to be verified (i.e., the public key may continue 
to be used beyond the cryptoperiod of the associated private key). See SP 800-57 for further 
guidance. 

ECDSA keys only be used for the generation and verification of ECDSA digital signatures. 

A digital signature key pair d and Q is generated for a set of domain parameters (q, FR, a, b {, 
domain_parameter_seed}, G, n, h). Methods for the generation of d and Q are provided in 
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Appendix B.4. 

The secure use of digital signatures depends on the management of an entity�s digital signature 
key pair as specified in Section 4.4.2. 

A new secret random number k  be generated prior to the generation of each digital 
signature for use during the signature generation process. This secret number  be protected 
from unauthorized disclosure and modification. Methods for the generation of the per-message 
secret number are provided in Appendix B.5. 

k 1 k 1 is the multiplicative inverse of k with respect to multiplication modulo n; i.e., 0 < < n 
k 1and 1 = ( k) mod n. This inverse is required for the signature generation process. A technique 

k 1is provided in Appendix C.1 for deriving from k. 

k 1k and  may be pre-computed, since knowledge of the message to be signed is not required for 
k 1the computations. When k and  are pre-computed, their confidentiality and integrity  be 

protected. 

An ECDSA digital signature (r, s)  be generated as specified in ANS X9.62, using: 

1. Domain parameters that are generated in accordance with Section 6.1.1,  

2. A private key that is generated as specified in Section 6.2.1, 

3. A per-message secret number that is generated as specified in Section 6.3, 

4. An approved hash function as discussed below, and 

5. An approved random number generator as specified in SP 800-90. 

An ECDSA digital signature  be verified as specified in ANS X9.62, using the same domain 
parameters and hash function that were used during signature generation. 

An approved hash function, as specified in FIPS 180-3,  be used during the generation of 
digital signatures. The security strength associated with the ECDSA digital signature process is 
no greater than the minimum of the security strength associated with the bit length of n and the 
security strength of the hash function that is employed. Both the security strength of the hash 
function used and the security strength associated with the bit length of n  meet or exceed 
the security strength required for the digital signature process. The security strengths for the 
ranges of the bit lengths of n and for each hash function is provided in SP 800-57. 
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It is recommended that the security strength associated with the bit length of n and the security 
strength of the hash function be the same unless an agreement has been made between 
participating entities to use a stronger hash function. When the length of the output of the hash 
function is greater than the bit length of n, then the leftmost n bits of the hash function output 
block  be used in any calculation using the hash function output during the generation or 
verification of a digital signature. A hash function that provides a lower security strength than 
the security strength associated with the bit length of n ordinarily  be used, since this 
would reduce the security strength of the digital signature process to a level no greater than that 
provided by the hash function. 

The intended signatory have assurances as specified in Section 3.1. Prior to accepting a 
signature as valid, the verifier  have assurances as specified in Section 3.3. 
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Finite field cryptography (FFC) is a method of implementing discrete logarithm cryptography 
using finite field mathematics. DSA, as specified in this Standard, is an example of FFC. The 
Diffie-Hellman and MQV key establishment algorithms specified in SP 800-56A can also be 
implemented as FFC.  

The domain parameters for FFC consist of the set of values (p, q, g {, domain_parameter_seed, 
counter}). This appendix specifies techniques for the generation of the FFC domain parameters 
p, q and g and performing an explicit domain parameter validation. During the generation 
process, the values for domain_parameter_seed and counter are obtained. 

This section provides methods for generating the primes p and q that fulfill the criteria specified 
in Sections 4.1 and 4.2. One of these methods be used when generating these primes. A 
method is provided in Appendix A.1.1 to generate random candidate integers and then test them 
for primality using a probabilistic algorithm. A second method is provided in Appendix A.1.2 
that constructs integers from smaller integers so that the constructed integer is guaranteed to be 
prime.  

During the generation, validation and testing processes, conversions between bit strings and 
integers are required. Appendix C.2 provides methods for these conversions. 

Previous versions of this Standard contained a method for the generation of the domain 
parameters p and q using SHA-1 and probabilistic methods. This method is no longer approved 
for domain parameter generation; however, the validation process for this method is provided in 
Appendix A.1.1.1 to validate previously generated domain parameters. 

A method for the generation and validation of the primes p and q using probabilistic methods is 
provided in Appendix A.1.1.2 and is based on the use of an approved hash function; this method 

 be used for generating probable primes. The validation process for this method is provided 
in Appendix A.1.1.3. 

The probabilistic methods use a hash function and an arbitrary seed (domain_parameter_seed). 
Arbitrary seeds could be anything, e.g., a user�s favorite number or a random or pseudorandom 
number output by a random number generator (see SP 800-90). The domain_parameter_seed 
determines a sequence of candidates for p and q in the required intervals that are then tested for 
primality using a probabilistic primality test (see Appendix C.3). The test determines that the 
candidate is either not a prime (i.e., it is a composite integer) or is �probably a prime� (i.e., there 
is a very small probability that a composite integer will be declared to be a prime). p and q 
be the first candidate set that passes the primality tests. Note that the domain_parameter_seed 
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 be unique for every unique set of domain parameters that are generated using the same 
method. 

p q

This prime validation algorithm is used to validate that the primes p and q that were generated by 
the prime generation algorithm specified in previous versions of this Standard. The algorithm 
requires the values of p, q, domain_parameter_seed and counter, which were output from the 
prime generation algorithm. 

Let  be the SHA-1 hash function specified in FIPS 180-3. The following process or its 
equivalent  be used to validate p and q for this method.  

1. p, q The generated primes p and q. 

2. domain_parameter_seed A seed that was used to generate p and q. 

3. counter A count value that was determined during generation. 

1. status The status returned from the validation procedure, where 
status is either  or . 

1. If (  (p)  1024) or (  (q)  160), then return . 

2. If (counter > 4095), then return . 

3. seedlen =  (domain_parameter_seed). 

4. If (seedlen < 160), then return

5. computed_q = (domain_parameter_seed) ((domain_parameter_seed + 
1) mod 2seedlen). 

6. Set the first and last bits of computed_q equal to 1 (i.e., the 159th and 0th bits). 

7. Test whether or not computed_q is prime as specified in Appendix C.3. If 
(computed_q q) or (computed_q is not prime), then return

8. offset = 2. 

9. For i = 0 to counter do 

9.1 For j = 0 to 6 do 

Vj = ((domain_parameter_seed + offset + j) mod 2seedlen). 

9.2 W = V0 + (V1  2160) + (V2 2320) + (V3 2480) + (V4 2640) + (V5 2800) + 
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((V6 mod 263) 2960). 

9.3 X = W + 21023. Comment: 0 W < 2L�1. 

9.4 c = X mod 2q. 

9.5 computed_p = X � (c � 1). Comment: computed_p  1 (mod 2q). 

9.6 If (computed_p < 21023), then go to step 9.8. 

9.7 Test whether or not computed_p is prime as specified in Appendix C.3. If 
computed_p is determined to be prime, then go to step 10. 

9.8 offset = offset + 7. 

10. If ((i counter) or (computed_p p) or (computed_p is not prime)), then return 

11. Return . 

p q
This method uses an approved hash function and may be used for the generation of the primes p 
and q for any application (e.g., digital signatures or key establishment). The security strength of 
the hash function  be equal to or greater than the security strength associated with the (L, N) 
pair. 

An arbitrary domain_parameter_seed of seedlen bits is also used, where seedlen  be equal 
to or greater than N. 

The generation process returns a set of integers p and q that have a very high probability of being 
prime. For another entity to validate that the primes were generated correctly using the validation 
process in Appendix A.1.1.3, the value of the domain_parameter_seed and the counter used to 
generate the primes must also be returned and made available to the validating entity; the 
domain_parameter_seed and counter need not be kept secret. Let  be the selected hash 
function, and let outlen be the bit length of the output block, where outlen  be equal to or 
greater than N. 

The following process or its equivalent  be used to generate p and q for this method.  

1. L The desired length of the prime p (in bits). 

2. N The desired length of the prime q (in bits). 

3. seedlen The desired length of the domain parameter seed; seedlen  be 
equal to or greater than N. 

1. status The status returned from the generation procedure, where status is 

33

45

MOBILEIRON, INC. - EXHIBIT 1036 
Page 045



either  or . If  is returned as the status, 
either no values for the other output parameters  be returned, or 
invalid values be returned (e.g., zeros or Null strings). 

2. p, q The generated primes p and q. 

3. domain_parameter_seed 

(Optional) A seed that was used to generate p and q. 

4. counter (Optional) A count value that was determined during generation. 

1. Check that the (L, N) pair is in the list of acceptable (L, N pairs) (see Section 4.2). If 
the pair is not in the list, then return

2. If (seedlen < N), then return

3. n = L outlen  � 1. 

4. b = L � 1 � (n outlen). 

5. Get an arbitrary sequence of seedlen bits as the domain_parameter_seed. 

6. U = (domain_parameter_seed) mod 2N�1. 

7. q = 2N�1 + U + 1 � ( U mod 2). 

8. Test whether or not q is prime as specified in Appendix C.3. 

9. If q is not a prime, then go to step 5. 

10. offset = 1. 

11. For counter = 0 to (4L � 1) do 

11.1 For j = 0 to n do 

Vj = (domain_parameter_seed + offset + j) mod 2seedlen). 

11.2 W = V0 + (V1  2outlen) +  + (Vn�1 2(n�1) outlen) + ((Vn mod 2b) 2n outlen). 

11.3 X = W + 2L�1. Comment: 0 W < 2L�1; hence, 2L�1 X < 2L . 

11.4 c = X mod 2q. 

11.5 p = X � (c � 1). Comment: p  1 (mod 2q). 

11.6 If (p < 2L�1), then go to step 11.9. 

11.7 Test whether or not p is prime as specified in Appendix C.3. 

11.8 If p is determined to be prime, then return and the values of p, q and 
(optionally) the values of domain_parameter_seed and counter. 
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11.9 offset = offset + n + 1. Comment: Increment offset; then, as part of 
the loop in step 11, increment counter; if 
counter < 4L, repeat steps 11.1 through 11.8. 

12. Go to step 5. 

p q

This prime validation algorithm is used to validate that the integers p and q were generated by 
the prime generation algorithm given in Appendix A.1.1.2. The validation algorithm requires the 
values of p, q, domain_parameter_seed and counter, which were output from the prime 
generation algorithm. Let  be the hash function used to generate p and q, and let outlen 
be its output block length. 

The following process or its equivalent  be used to validate p and q for this method.  

1. p, q The generated primes p and q. 

3. domain_parameter_seed The domain parameter seed that was used to generate p and 
q. 

4. counter A count value that was determined during generation. 

1. status The status returned from the validation procedure, where 
status is either  or . 

1. L =  (p). 

2. N =  (q). 

3. Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If the 
pair is not in the list, return . 

4. If (counter > (4L � 1)), then return . 

5. seedlen =  (domain_parameter_seed). 

6. If (seedlen < N), then return 

7. U = (domain_parameter_seed) mod 2N�1. 

8. computed_q = 2N�1 + U + 1 � ( U mod 2). 

9. Test whether or not computed_q is prime as specified in Appendix C.3. If (computed_q 
q) or (computed_q is not prime), then return 
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10. n = L outlen  � 1. 

11. b = L � 1 � (n outlen). 

12. offset = 1. 

13. For i = 0 to counter do 

13.1 For j = 0 to n do 

Vj = ((domain_parameter_seed + offset + j) mod 2seedlen). 

13.2 W = V0 + (V1  2outlen) +  + (Vn�1  2(n�1) outlen) + ((Vn mod 2b)  2n  outlen). 

13.3 X = W + 2L�1. 

13.4 c = X mod 2q. 

13.5 computed_p = X � (c � 1). 

13.6 If (computed_p < 2L�1), then go to step 13.9 

13.7 Test whether or not computed_p is prime as specified in Appendix C.3. 

13.8 If computed_p is determined to be a prime, then go to step 14. 

13.9 offset = offset + n + 1. 

14. If ((i counter) or (computed_p p) or (computed_p is not a prime)), then return 

15. Return 

Primes can be generated so that they are guaranteed to be prime. The following algorithm for 
generating p and q uses an approved hash function and an arbitrary seed (firstseed) to construct p 
and q in the required intervals. The security strength of the hash function  be equal to or 
greater than the security strength associated with the (L, N) pair. 

Arbitrary seeds can be anything, e.g., a user�s favorite number or a random or pseudorandom 
number that is output from a random number generator. Note that the firstseed must be unique to 
produce a unique set of domain parameters. Candidate primes are tested for primality using a 
deterministic primality test that proves whether or not the candidate is prime. The resulting p and 
q are guaranteed to be primes. 

p q
For each set of domain parameters generated, an arbitrary initial seed (firstseed) of at least 
seedlen bits  be determined, where seedlen  be N. 

The generation process returns a set of integers p and q that are guaranteed to be prime. For 
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another entity to validate that the primes were generated correctly (using the validation process 
in Appendix A.1.2.2), the value of the firstseed, the two computed seeds (pseed and qseed) and 
the counters used to generate the primes (pgen_counter and qgen_counter) must be made 
available to the validating entity; the seeds and the counters need not be kept secret. The domain 
parameters for DSA are identified in Section 4.3 as (p, q, g {, domain_parameter_seed, 
counter}). When using the Shawe-Taylor algorithm for generating p and q, the 
domain_parameter_seed consists of three seed values (firstseed, pseed, and qseed), and the 
counter consists of the pair of counter values (pgen_counter and qgen_counter). 

Let  be the selected hash function (see Appendix A.1.2), and let outlen be the bit length 
of the output block of that hash function. 

The following process or its equivalent be used to generate firstseed for this constructive 
method. 

1. N The length of q in bits. 

2. seedlen The length of firstseed, where seedlen N. 

1. status The status returned from the generation procedure, where status is 
either or If  is returned, then 
either no firstseed value  be provided or an invalid value 
be returned. 

2. firstseed The first seed generated. 

1. firstseed = 0. 

2. Check that N is in the list of acceptable (L, N) pairs (see Section 4.2). If not, then 
return . 

3. If (seedlen < N), then return . 

4. While firstseed < 2N�1. 

Get an arbitrary sequence of seedlen bits as firstseed.

5. Return  and the value of firstseed. 

Note: This routine could be incorporated into the beginning of the constructive prime generation 
procedure in Appendix A.1.2.1.2. However, this was not done in this specification so that the 
validation process in Appendix A.1.2.2 could also call the constructive prime generation 
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procedure and provide the value of firstseed as input. 

The following process or its equivalent  be used to generate p and q for this constructive 
method.  

1. L The requested length for p (in bits). 
2. N The requested length for q (in bits). 

3. firstseed The first seed to be used. This was obtained as specified in 
Appendix A.1.2.1.1. 

1. status The status returned from the generation procedure, where status is 
either or If  is returned, then 
either no other values  be returned, or invalid values  be 
returned. 

2. p, q The requested primes. 

3. pseed, qseed (Optional) Computed seed values that were used to generate p and 
q. The entire seed for the generation of p and q consists of 
firstseed, pseed and qseed. 

4. pgen_counter, qgen_counter 

(Optional) The count values that were determined during generation. 

1. Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If 
the pair is not in the list, return . 

Comment: Use the Shawe-Taylor random 
prime routine in Appendix C.6 to generate 
random primes. 

2. Using N as the length and firstseed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain q, qseed and qgen_counter. If 

 is returned, then return . 

3. Using L / 2 + 1  as the length and qseed as the input_seed, use the random prime 
routine in Appendix C.6 to obtain p0 , pseed, and pgen_counter. If  is 
returned, then return . 

4. iterations = L / outlen  �1. 
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5. old_counter = pgen_counter. 

Comment: Generate a (pseudo) random x in 
the interval [2L 1, 2L]. 

6. x = 0. 

7. For i = 0 to iterations do 

x = x + ( (pseed + i)  2 i * outlen). 

8. pseed = pseed + iterations + 1. 

9. x = 2L 1 + (x mod 2L�1). 

Comment: Generate p, a candidate for the 
prime, in the interval [2L 1, 2L]. 

10. t = x / (2qp0) . 

11. If (2tqp0 + 1) > 2L, then t = 2L 1 / (2qp0) . 

12. p = 2tqp0 + 1. 

13. pgen_counter = pgen_counter + 1. 

Comment: Test p for primality; choose an 
integer a in the interval [2, p�2]. 

14. a = 0 

15. For i = 0 to iterations do 

a = a + ( (pseed + i)  2 i * outlen). 

16. pseed = pseed + iterations + 1. 

17. a = 2 + (a mod (p�3)). 

18. z = a2tq mod p. 

19. If ((1 = (z�1, p) ) and ( 1 = z p0 mod p )), then return  and the values 
of p, q and (optionally) pseed, qseed, pgen_counter, and qgen_counter. 

20. If (pgen_counter > (4L + old_counter)), then 

21. t = t + 1. 

22. Go to step 11. 

Validation of the DSA Primes p q

The validation of the primes p and q that were generated by the method described in Appendix 
A.1.2.1.2 may be performed if the values of firstseed, pseed, qseed, pgen_counter and 
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qgen_counter were saved and are provided for use in the following algorithm. 

The following process or its equivalent  be used to validate p and q for this constructive 
method. 

1. p, q The primes to be validated. 

2. firstseed, pseed, qseed Seed values that were used to generate p and q. 

3. pgen_counter, qgen_counter 
The count values that were determined during generation. 

1. status The status returned from the validation procedure, where 
status is either or 

1. L =  (p). 

2. N =  (q). 

3 Check that the (L, N) pair is in the list of acceptable (L, N) pairs (see Section 4.2). If 
the pair is not in the list, then return

4. If (firstseed < 2N�1), then return . 

5. If (2N q), then return ). 

6. If (2L p), then return . 

7. If ((p � 1) mod q  0), then return . 

8. Using L, N and firstseed, perform the constructive prime generation procedure in 
Appendix A.1.2.1.2 to obtain p_val, q_val, pseed_val, qseed_val, pgen_counter_val, 
and qgen_counter_val. If  is returned, or if (q_val q) or (qseed_val 
qseed) or (qgen_counter_val qgen_counter) or (p_val p) or (pseed_val pseed) 
or (pgen_counter_val pgen_counter), then return

9. Return 
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The generator g depends on the values of p and q. Two methods for determining the generator g 
are provided; one of these methods be used. The first method, discussed in Appendix 
A.2.1, may be used when complete validation of the generator g is not required; it is 
recommended that this method be used only when the party generating g is trusted to not 
deliberately generate a g that has a potentially exploitable relationship to another generator g . 
For example, it must be hard to determine an exponential relationship between the generators 
such that g = (g )x mod p for a known value of x. (Note: Read (g )x as g prime to the x.) 

Appendix A.2.2 provides a method for partial validation when the method of generation in 
Appendix A.2.1 is used. The second method for generating g, discussed in Appendix A.2.3, 
be used when validation of the generator g is required; the method for the validation of a 
generator determined using the method in Appendix A.2.3 is provided in Appendix A.2.4. 

This method is used to determine a value for g, based on the values of p and q. It may be used 
when validation of the generator g is not required. The correct generation of g cannot be 
completely validated (see Appendix A.2.2). Note that this generation method for g was also 
specified in previous versions of this Standard. 

The following process or its equivalent  be used to generate the generator g for this method. 

1. p, q The generated primes. 

1. g The requested value of g. 

1. e = (p � 1)/q. 

2. Set h = any integer satisfying 1 < h < ( p � 1), such that h differs from any value 
previously tried. Note that h could be obtained from a random number generator or 
from a counter that changes after each use.  

3. g = he mod p. 

4. If (g = 1), then go to step 2. 

5. Return g. 

The order of the generator g that was generated using Appendix A.2.1 can be partially validated 
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by checking the range and order, thereby performing a partial validation of g. 

The following process or its equivalent  be used when partial validation of the generator g is 
required: 

1. p, q, g The domain parameters.  

1. status The status returned from the generation routine, where status is either 
or 

1. Verify that 2 g  (p�1). If not true, return

2. If (gq = 1 mod p), then return

3. Return

The non-existence of a potentially exploitable relationship of g to another generator g  (that is 
known to the entity that generated g, but may not be known by other entities) cannot be checked. 
In this sense, the correct generation of g cannot be completely validated. 

The generation of g is based on the values of p, q and domain_parameter_seed (which are 
outputs of the generation processes in Appendix A.1). When p and q were generated using the 
method in Appendix A.1.1.2, the domain_parameter_seed value must have been returned from 
the generation routine. When p and q were generated using the method in Appendix A.1.2.1, the 
firstseed, pseed, and qseed values must have been returned from the generation routine; in this 
case, domain_parameter_seed = firstseed || pseed || qseed  be used in the following process. 

This method of generating a generator g can be validated (see Appendix A.2.4). 

This generation method supports the generation of multiple values of g for specific values of p 
and q. The use of different values of g for the same p and q may be used to support key 
separation; for example, using the g that is generated with index = 1 for digital signatures and 
with index = 2 for key establishment.  

Let  be the hash function used to generate p and q (see Appendix A.1). The following 
process or its equivalent be used to generate the generator g. 

1. p, q The primes. 

2. domain_parameter_seed The seed used during the generation of p and q. 
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3. index The index to be used for generating g. index is a bit string 
of length 8 that represents an unsigned integer. 

1. status The status returned from the generation routine, where status is either 
or 

2. g The value of g that was generated.

Note count is an unsigned 16-bit integer. 

Comment: Check that a valid value of the index has 
been provided (see above). 

1. If (index is incorrect), then return

2. N = (q). 

3. e = (p � 1)/q. 

4. count = 0. 

5. count = count + 1. 

Comment: Check that count does not wrap around 
to 0. 

6. If (count = 0), then return . 

Comment: the length of the 
domain_parameter_seed has already been checked. 
�ggen� is the bit string 0x6767656E. 

7. U = domain_parameter_seed || �ggen� || index || count. 

8. W = (U). 

9. g = We mod p. 

10. If (g < 2), then go to step 5. Comment: If a generator has not been found. 

11. Return  and the value of g. 

This algorithm  be used to validate the value of g that was generated using the process in 
Appendix A.2.3, based on the values of p, q, domain_parameter_seed, and the appropriate value 
of index. It is assumed that the values of p and q have been previously validated according to 
Appendix A.1. Note that the method specified in Appendix A.2.3 for the generation of g was not 
included in previous versions of this Standard; therefore, this validation method is not 
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appropriate for that case. 

The domain_parameter_seed is an output from the generation of p and q. When p and q were 
generated using the method in Appendix A.1.1.2, the domain_parameter_seed must have been 
returned from the generation routine and made available to the validating party. When p and q 
were generated using the method in Appendix A.1.2.1, the firstseed, pseed, and qseed values 
must have been returned from the generation routine and made available; firstseed, pseed, and 
qseed  be concatenated to form the domain_parameter_seed used in the following process. 
Let  be the hash function used to generate g (i.e., the hash function also used to generate 
p and q). 

The input index is the index number for the generator g. See Appendix A.2.3 for more details. 

The following process or its equivalent be used to validate the generator g for this method. 

1. p, q The primes. 

2. domain_parameter_seed The seed used to generate p and q. 

3. index The index used in Appendix A.2.3 to generate x. index is 
a bit string of length 8 that represents an unsigned 
integer. 

4. g The value of g to be validated. 

1. status The status returned from the generation routine, where 
status is either or 

Note count is an unsigned 16-bit integer. 

Comment: Check that a valid value of the index has been 
provided (see above). 

1. If (index is incorrect), then return

2. Verify that 2 g  (p�1). If not true, return . 

3. If (gq  1 mod p), then return . 

4. N = (q). 

5. e = (p � 1)/q. 

6. count = 0. 

7. count = count + 1. 

Comment: Check that count does not wrap around 
to 0. 
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8. If (count = 0), then return . 

Comment: �ggen� is the bit string 0x6767656E. 

9. U = domain_parameter_seed || �ggen� || index || count. 

10. W = (U). 

11. computed_g = We mod p. 

12. If (computed_g < 2), then go to step 7. Comment: If a generator has not been found. 

13. If (computed_g = g), then return , else return . 
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Discrete logarithm cryptography (DLC) is divided into finite field cryptography (FFC) and 
elliptic curve cryptography (ECC); the difference between the two is the type of math that is 
used. DSA is an example of FFC; ECDSA is an example of ECC. Other examples of DLC are 
the Diffie-Hellman and MQV key agreement algorithms, which have both FFC and ECC forms. 

The most common example of integer factorization cryptography (IFC) is RSA. 

This appendix specifies methods for the generation of FFC and ECC key pairs and secret 
numbers, and the generation of IFC key pairs. All generation methods require the use of an 
approved, properly instantiated random bit generator (RBG) as specified in SP 800-90; the RBG 

 have a security strength equal to or greater than the security strength associated with the 
key pairs and secret numbers to be generated. See SP 800-57 for guidance on security strengths 
and key sizes. 

This appendix does not indicate the required conversions between bit strings and integers. When 
required by a process in this appendix, the conversion  be accomplished as specified in 
Appendix C.2. 

An FFC key pair (x, y) is generated for a set of domain parameters (p, q, g {, 
domain_parameter_seed, counter}). Two methods are provided for the generation of the FFC 
private key x and public key y; one of these two methods  be used. Prior to generating DSA 
key pairs, assurance of the validity of the domain parameters (p, q and g)  have been 
obtained as specified in Section 3.1. 

For DSA, the valid values of L and N are provided in Section 4.2. 

In this method, 64 more bits are requested from the RBG than are needed for x so that bias 
produced by the mod function in step 6 is negligible.  

The following process or its equivalent may be used to generate an FFC key pair. 

(p, q, g) The subset of the domain parameters that are used for this process. p, q 
and g  either be provided as integers during input, or  be 
converted to integers prior to use. 
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1. status The status returned from the key pair generation process. The status will 
indicate  or an . 

2. (x, y) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for x and y  be returned, as 
represented by Invalid_x and Invalid_y in the following specification. x 
and y are returned as integers. The generated private key x is in the range 
[1, q�1], and the public key is in the range [1, p�1]. 

1. N = (q); L = (p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2. 

2. If the (L, N) pair is invalid, then return an  indicator, Invalid_x, and 
Invalid_y. 

3. requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. Obtain a string of N+64 returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_x, and Invalid_y. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. x = (c mod (q�1)) + 1. Comment: 0 c mod (q�1) q�2 and implies that   
1 x q�1. 

7. y = gx mod p. 

8. Return , x, and y. 

In this method, a random number is obtained and tested to determine that it will produce a value 
of x in the correct range. If x is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of x is obtained. 

The following process or its equivalent may be used to generate an FFC key pair. 

(p, q, g) The subset of the domain parameters that are used for this process. p, q 
and g  either be provided as integers during input, or  be 
converted to integers prior to use. 
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1. status The status returned from the key pair generation process. The status will 
indicate  or an . 

2. (x, y) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for x and y  be returned, as 
represented by Invalid_x and Invalid_y in the following specification. x 
and y are returned as integers. The generated private key x is in the range 
[1, q�1], and the public key is in the range [1, p�1]. 

1. N = (q); L = (p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2. 

2. If the (L, N) pair is invalid, then return an  indication, Invalid_x, and 
Invalid_y. 

3. requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. Obtain a string of N returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_x, and Invalid_y. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. If (c > q�2), then go to step 4. 

7. x = c + 1. 

8. y = gx mod p. 

9. Return , x, and y. 

DSA requires the generation of a new random number k for each message to be signed. Two 
methods are provided for the generation of k; one of these two methods  be used. 

The valid values of N are provided in Section 4.2. Let (k, q) be a function that computes 
the inverse of a (non-negative) integer k with respect to multiplication modulo the prime number 
q. A technique for computing the inverse is provided in Appendix C.1. 

In this method, 64 more bits are requested from the RBG than are needed for k so that bias 
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produced by the mod function in step 6 is not readily apparent. 

The following process or its equivalent may be used to generate a per-message secret number.  

(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1. 

1. status The status returned from the secret number generation process. The status 
will indicate  or an . 

k 1 k 12. (k, ) The per-message secret number k and its mod q inverse, . If an error is 
k 1encountered during the generation process, invalid values for k and 

 be returned, as represented by Invalid_k and Invalid_k_inverse in 
k 1the following specification. k and are in the range [1, q�1]. 

1. N = (q); L = (p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2. 

2. If the (L, N) pair is invalid, then return an  indication, Invalid_k, and 
Invalid_k_inverse. 

3. requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. Obtain a string of N+64 returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. k = (c mod (q�1)) + 1. 

7. (status, k�1) =  (k, q). 

k 18. Return status, k, and . 

In this method, a random number is obtained and tested to determine that it will produce a value 
of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of k is obtained. 

The following process or its equivalent may be used to generate a per-message secret number.  
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(p, q, g) DSA domain parameters that are generated as specified in Section 4.3.1. 

1. status The status returned from the secret number generation process. The status 
will indicate  or an . 

k 1 k 12. (k, ) The per-message secret number k and its inverse, . If an error is 
encountered during the generation process, invalid values for k and 
k 1  be returned, as represented by Invalid_k and Invalid_k_inverse 

k 1in the following specification. k and are in the range [1, q�1]. 

1. N = (q); L = (p). 

Comment: Check that the (L, N) pair is specified in 
Section 4.2). 

2. If the (L, N) pair is invalid, then return an  indication, Invalid_k, and 
Invalid_k_inverse. 

3. requested_security_strength = the security strength associated with the (L, N) pair; 
see SP 800-57. 

4. Obtain a string of N returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. If (c > q�2), then go to step 4. 

7. k = c + 1. 

k 18. (status, ) = (k, q). 

k 19. Return status, k, and . 

Key pairs for IFC consist of a public key (n, e), and a private key (n, d), where n is the modulus 
and is the product of two prime numbers p and q. The security of IFC depends on the quality and 
secrecy of these primes and the private exponent d. The primes p and q  be generated using 
one of the following methods: 
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A. Both p and q are randomly generated prime numbers (Random Primes), where p and q 
 both be either : 

1. Provable primes (see Appendix B.3.2), or 

2.  Probable primes (see Appendix B.3.3).  

Using these methods, primes of 2048 or 3072 bits may be generated; primes of 1024 bits 
 be generated using these methods. Primes of 1024 bits  be generated using 

conditions based on auxiliary primes (see Appendices B.3.4, B.3.5, or B.3.6). 

B. Both p and q are randomly generated prime numbers that satisfy the following additional 
conditions (Primes with Conditions): 

 (p�1) has a prime factor p1 

(p+1) has a prime factor p2 

(q�1) has a prime factor q1 

(q+1) has a prime factor q2

where p1, p2, q1 and q2 are called auxiliary primes of p and q. 

Using this method, one of the following cases  apply: 

1. The primes p1, p2, q1, q2, p and q  all be provable primes (see Appendix 
B.3.4), 

2. The primes p1, p2, q1 and q2  be provable primes, and the primes p and q 
 be probable primes (see Appendix B.3.5), or 

3 The primes p1, p2, q1, q2, p and q  all be probable primes (see Appendix 
B.3.6). 

The minimum lengths for each of the auxiliary primes p1, p2, q1 and q2 are dependent on 
nlen, where nlen is the length of the modulus n in bits. Note that nlen is also called the 
key size. The lengths of the auxiliary primes may be fixed or randomly chosen, subject to 
the restrictions in Table B.1. The maximum length is determined by nlen (the sum of the 
length of each auxiliary prime pair) and whether the primes p and q are probable primes 
or provable primes (e.g., for the auxiliary prime pair p1 and p2, (p1) + (p2)  be 
less than a value determined by nlen, whether p1 and p2 are generated to be probable or 
provable primes)3. 

3 For the probable primes p and q: (p1) + (p2) < (p) � log2( (p)) � 6; similarly for (q1) + (q2) and 
(q). For the provable primes p and q: (p1) + (p2) < (p)/2 � log2( (p)) � 7; similarly for (q1) + (q2) 

and (q). In each case, (p) = (q) = nlen/2. 
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p1, p2, q1 q2 

p1 p2
q1 q2

p1, p2, q1 q2 p, q p, q
1024 > 100 bits < 496 bits < 239 bits 

2048 > 140 bits < 1007 bits < 494 bits 

3072 > 170 bits < 1518 bits < 750 bits 

For different values of nlen  (i.e., different key sizes), the methods allowed for the generation of 
p and q are specified in Table B.2. 

Random Primes 
1024 No Yes 

2048 Yes Yes 

3072 Yes Yes 

In addition, all IFC keys  meet the following criteria in order to conform to FIPS 186-3: 

1. The public exponent e  be selected with the following constraints: 

(a) The public verification exponent e  be selected prior to generating the primes 
p and q, and the private signature exponent d. 

(b) The exponent e  be an odd positive integer such that: 

216 < e < 2256. 

Note that the value of e may be any value that meets constraint 1(b), i.e., e may be 
either a fixed value or a random value. 

2. The primes p and q  be selected with the following constraints: 

(a) (p�1) and (q�1)  be relatively prime to the public exponent e. 

(b) The private prime factor p  be selected randomly and  satisfy 
( 2 )(2(nlen / 2) � 1) p  (2nlen / 2� 1), where nlen is the appropriate length for the 
desired security_strength. 

(c) The private prime factor q  be selected randomly and  satisfy 
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( 2 )(2(nlen / 2) � 1) q  (2nlen / 2� 1), where nlen is the appropriate length for the 
desired security_strength. 

(d) |p � q| > 2(nlen / 2) � 100. 

3. The private signature exponent d  be selected with the following constraints after the 
generation of p and q: 

(a) The exponent d  be a positive integer value such that 
2nlen/ 2 < d < LCM(p�1, q�1), and 

(b) d = e�1 mod (LCM(p�1, q�1)). 

That is, the inequality in (a) holds, and 1  (ed) (mod LCM(p�1, q�1)). 

In the extremely rare event that d  2nlen / 2, then new values for p, q and d  be 
determined. A different value of e may be used, although this is not required. 

Any hash function used during the generation of the key pair  be approved (i.e., specified in 
FIPS 180-3). 

An approved method that satisfies the constraints of Appendix B.3.1  be used for the 
generation of IFC random primes p and q that are provably prime (see case A.1). One such 
method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random seed is initially 
required (see Appendix B.3.2.1); the length of the seed is equal to twice the security strength 
associated with the modulus n. After the seed is obtained, the primes can be generated (see 
Appendix B.3.2.2). 

The following process or its equivalent  be used to generate the seed for this method. 

nlen The intended bit length of the modulus n. 

status The status to be returned, where status is either  or . 

seed The seed. If status = , a value of zero is returned as the seed. 

1. If nlen is not valid (see Section 5.1), then Return ( , 0). 

2. Let security_strength be the security strength associated with nlen, as specified in SP 
800-57, Part 1. 

3. Obtain a string seed of (2 * security_strength) bits from an  that supports the 
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security_strength. 

4. Return ( , seed). 

p q 
The following process or its equivalent be used to construct the random primes p and q (to 
be used as factors of the RSA modulus n) that are provably prime: 

nlen The intended bit length of the modulus n. 

e The public verification exponent. 

seed The seed obtained using the method in Appendix B.3.2.1. 

status The status of the generation process, where status is either  or 
. When  is returned, zero values be returned as the 

other parameters. 

p and q The private prime factors of n. 

1. If nlen is neither 2048 nor 3072, then return ( , 0, 0). 

2. If ((e  216) OR (e  2256) OR (e is not odd)), then return ( , 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as specified in SP 
800-57, Part 1. 

4. If ( (seed)  2 * security_strength), then return ( , 0, 0). 

5. working_seed = seed. 

6. Generate p: 

6.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable 
prime construction method in Appendix C.10 to obtain p and pseed. If 
is returned, then return ( , 0, 0). 

6.2 working_seed = pseed. 

7. Generate q: 

7.1 Using L = nlen/2, N1 = 1, N2 = 1, first_seed = working_seed and e, use the provable 
prime construction method in Appendix C.10 to obtain q and qseed. If 
is returned, then return ( , 0, 0). 

7.2 working_seed = qseed. 
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8. If ( |p � q|  2nlen/2 � 100), then go to step 7. 

9. Zeroize the internally generated seeds: 

9.1 pseed = 0; 

9.2 qseed = 0; 

9.3 working_seed = 0. 

10. Return ( , p, q). 

An approved method that satisfies the constraints of Appendix B.3.1  be used for the 
generation of IFC random primes p and q that are probably prime (see case A.2).  

The following process or its equivalent be used to construct the random probable primes p 
and q (to be used as factors of the RSA modulus n): 

nlen The intended bit length of the modulus n. 

e The public verification exponent. 

status The status of the generation process, where status is either  or 
. 

p and q The private prime factors of n. When  is returned, zero values be 
returned as p and q. 

1. If nlen is neither 2048 nor 3072, return ( , 0, 0). 

2. If ((e  216) OR (e  2256) OR (e is not odd)), then return ( , 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as specified in SP 
800-57, Part 1. 

4. Generate p: 

4.1 i = 0. 

4.2 Obtain a string p of (nlen/2) bits from an  that supports the security_strength. 

4.3 If (p is not odd), then p = p + 1. 

4.4 If ((p < ( 2 )(2(nlen / 2) � 1)), then go to step 4.2. 

4.5 If ( (p 1, e) = 1), then 
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4.5.1 Test p for primality as specified in Appendix C.3, using an appropriate 
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.  

4.5.2 If p is , then go to step 5. 

4.6 i= i + 1. 

4.7 If (i  5(nlen/2)), then return ( , 0, 0) 

Else go to step 4.2. 

5. Generate q: 

5.1 i = 0. 

5.2 Obtain a string q of (nlen/2) bits from an  that supports the security_strength 

5.3 If (q is not odd), then q = q + 1. 

5.4 If (|p � q|  2nlen/2 � 100), then go to step 5.2. 

5.5 If ((q < ( 2 )(2(nlen / 2) � 1)), then go to step 5.2. 

5.6 If ( (q 1, e) = 1) then 

5.6.1 Test q for primality as specified in Appendix C.3, using an appropriate 
value from Table C-2 or C-3 in Appendix C.3 as the number of iterations.  

5.6.2 If q is , then return ( , p, q). 

5.7 i = i + 1. 

5.8 If (i  5(nlen/2)), then return ( , 0, 0) 

Else go to step 5.2. 

This section specifies an approved method for the generation of the IFC primes p and q with the 
additional conditions specified in Appendix B.3.1, case B.1, where p, p1, p2, q, q1 and q2 are all 
provable primes. For this method, a random seed is initially required (see Appendix B.3.2.1); the 
length of the seed is equal to twice the security strength associated with the modulus n. After the 
first seed is obtained, the primes can be generated. 

Let bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, respectively, in 
accordance with Table B.1. The following process or its equivalent  be used to generate the 
provable primes: 

nlen The intended bit length of the modulus n. 
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e The public verification exponent. 

seed The seed obtained using the method in Appendix B.3.2.1. 

status The status of the generation process, where status is either  or 
. If is returned then zeros be returned as the values 

for p and q. 

p and q The private prime factors of n. 

1. If nlen is neither 1024, 2048, nor 3072, then return ( , 0, 0). 

2. If ((e  216) OR (e  2256) OR (e is not odd)), then return ( , 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as specified in SP 
800-57, Part 1. 

4. If ( (seed)  2 * security_strength), then return ( , 0, 0). 

5. working_seed = seed. 

6. Generate p: 

6.1 Using L = nlen/2, N1 = bitlen1, N2 = bitlen2, firstseed = working_seed and e, use the 
provable prime construction method in Appendix C.10 to obtain p, p1, p2 and pseed. 
If  is returned, return ( , 0, 0). 

6.2 working_seed = pseed. 

7. Generate q: 

7.1 Using L = nlen/2, N1 = bitlen3, N2 = bitlen4 and firstseed = working_seed and e, use 
the provable prime construction method in Appendix C.10 to obtain q, q1, q2 and 
qseed. If  is returned, return ( , 0, 0). 

7.2 working_seed = qseed. 

8. If ( |p � q|  2nlen/2 � 100), then go to step 7. 

9. Zeroize the internally generated seeds: 

9.1 pseed = 0. 

9.2 qseed = 0. 

9.3 working_seed = 0. 

10. Return ( , p, q). 
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This section specifies an approved method for the generation of the IFC primes p and q with the 
additional conditions specified in Appendix B.3.1, case B.2, where p1, p2, q1 and q2 are provably 
prime, and p and q are probably prime. For this method, a random seed is initially required (see 
Appendix B.3.2.1); the length of the seed is equal to twice the security strength associated with 
the modulus n. After the first seed is obtained, the primes can be generated. 

Let bitlen1, bitlen2, bitlen3, and bitlen4  be the bit lengths for p1, p2, q1 and q2, respectively in 
accordance with Table B.1. The following process or its equivalent be used to construct p 
and q. 

nlen The intended bit length of the modulus n. 

e The public verification exponent. 

seed The seed obtained using the method in Appendix B.3.2.1. 

status The status of the generation process, where status is either  or 
. If is returned then zeros  be returned as the 

values for p and q. 

p and q The private prime factors of n. 

1. If nlen is neither 1024, 2048, nor 3072, then return ( , 0, 0). 

2. If ((e  216) OR (e  2256) OR (e is not odd)), then return ( , 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as specified in 
SP 800-57, Part 1. 

4. If ( (seed)  2 * security_strength), then return ( , 0, 0). 

Comment: Generate four primes p1, p2, q1 and q2 
that are provably prime. 

5. Generate p: 

5.1 Using bitlen1 as the length, and seed as the input_seed, use the random prime 
generation routine in Appendix C.6 to obtain p1 and prime_seed. If 
is returned, the return ( , 0, 0). 

5.2 Using bitlen2 as the length, and prime_seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain p2 and a new value for 
prime_seed. If  is returned, the return ( , 0, 0). 
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5.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen, 
e and security_strength, also obtaining Xp. If  is returned, return 
( , 0, 0). 

6. Generate q: 

6.1. Using bitlen3 as the length, and prime_seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain q1 and a new value for 
prime_seed. If  is returned, the return ( , 0, 0). 

6.2 Using bitlen4 as the length, and prime_seed as the input_seed, use the random 
prime generation routine in Appendix C.6 to obtain q2 and a new value for 
prime_seed. If  is returned, the return ( , 0, 0). 

6.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen, 
e and security_strength, also obtaining Xq. If  is returned, return 
( , 0, 0). 

7. If ((|p � q|  2nlen/2 �100) OR (|Xp � Xq|  2nlen/2 � 100)), then go to step 6. 

8. Zeroize the internally generated that are not returned: 

8.1 Xp = 0. 

8.2 Xq = 0. 

8.3 prime_seed = 0. 

8.4 p1 = 0. 

8.5 p2 = 0. 

8.6 q1 = 0. 

8.7 q2 = 0. 

9. Return ( , p, q). 

An approved method that satisfies the constraints of Appendix B.3.1  be used for the 
generation of IFC primes p and q that are probably prime and meet the additional constraints of 
Appendix B.3.1 (see case B.3). For this case, the prime factors p1, p2, q1 and q2 are also probably 
prime. 

Four random numbers Xp1, Xp2, Xq1 and Xq2 are generated, from which the prime factors p1, p2, q1 
and q2 are determined. p1 and p2, and an additional random number Xp are then used to determine 
p, and q1 and q2 and a random number Xq are used to obtain q. Let bitlen1, bitlen2, bitlen3, and 
bitlen4 be the bit lengths for p1, p2, q1 and q2, respectively chosen in accordance with Table B.1. 
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The following process or its equivalent be used to generate p and q: 

nlen The intended bit length of the modulus n. 

e The public verification exponent. 

status The status of the generation process, where status is either  or 
. If is returned then zeros  be returned as the 

values for p and q. 

p and q The private prime factors of n. 

1. If nlen is neither 1024, 2048, nor 3072, then return ( , 0, 0). 

2. If ((e  216) OR (e  2256) OR (e is not odd)), then return ( , 0, 0). 

3. Set the value of security_strength in accordance with the value of nlen, as specified in 
SP 800-57, Part 1. 

4. Generate p: 

4.1 Generate an odd integer Xp1 of length bitlen1 bits, and a second odd integer Xp2 
of length bitlen2 bits, using an approved random number generator that supports 
the security_strength. 

4.2 Sequentially search successive odd integers, starting at Xp1 until the first 
probable prime p1 is found. Candidate integers  be tested for primality as 
specified in Appendix C.3. Repeat the process to find p2, starting at Xp2. The 
probable primes p1 and p2  be the first integers that pass the primality test. 

4.3 Generate a prime p using the routine in Appendix C.9 with inputs of p1, p2, nlen, 
e and security_ strength, also obtaining Xp. If  is returned, return 
( , 0, 0). 

5. Generate q: 

5.1 Generate an odd integer Xq1 of length bitlen3 bits, and a second odd integer Xq2 
of length bitlen4 bits, using an approved random number generator that supports 
the security_strength. 

5.2 Sequentially search successive odd integers, starting at Xq1 until the first 
probable prime q1 is found. Candidate integers  be tested for primality as 
specified in Appendix C.3. Repeat the process to find q2, starting at Xq2. The 
probable primes q1 and q2  be the first integers that pass the primality test. 

5.3 Generate a prime q using the routine in Appendix C.9 with inputs of q1, q2, nlen, 
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e and security_ strength, also obtaining Xq. If  is returned, return 
( , 0, 0). 

6. If ((|Xp � Xq|  2nlen/2 �100) OR (|p � q|  2nlen/2 � 100))), then go to step 5. 

7. Zeroize the internally generated values that are not returned: 

7.1 Xp = 0. 

7.2 Xq = 0. 

7.3 Xp1 = 0. 

7.4 Xp2 = 0. 

7.5 Xq1 = 0. 

7.6 Xq2 = 0. 

7.7 p1 = 0. 

7.8 p2 = 0. 

7.9 q1 = 0. 

7.10 q2 = 0. 

8. Return ( , p, q). 

An ECC key pair d and Q is generated for a set of domain parameters (q, FR, a, b {, 
domain_parameter_seed}, G, n, h). Two methods are provided for the generation of the ECC 
private key d and public key Q; one of these two methods  be used to generate d and Q. 
Prior to generating ECDSA key pairs, assurance of the validity of the domain parameters (q, FR, 
a, b {, domain_parameter_seed}, G, n, h)  have been obtained as specified in Section 3.1. 

For ECDSA, the valid bit-lengths of n are provided in Section 6.1.1. See ANS X9.62 for 
definitions of the elliptic curve math and the conversion routines. 

In this method, 64 more bits are requested from the RBG than are needed for d so that bias 
produced by the mod function in step 6 is negligible.  

The following process or its equivalent may be used to generate an ECC key pair. 

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime number, 
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and G is a point on the elliptic curve. 

1. status The status returned from the key pair generation procedure. The status will 
indicate  or an . 

2. (d, Q) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for d and Q  be returned, as 
represented by Invalid_d and Invalid_Q in the following specification. d is 
an integer, and Q is an elliptic curve point. The generated private key d is 
in the range [1, n�1]. 

1. N = (n). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an  indication, Invalid_d, and Invalid_Q. 

3. requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. Obtain a string of N+64 returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_d, and Invalid_Q. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. d = (c mod (n�1)) + 1. 

7. Q = dG. 

8. Return , d, and Q. 

In this method, a random number is obtained and tested to determine that it will produce a value 
of d in the correct range. If d is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of d is obtained. 

The following process or its equivalent may be used to generate an ECC key pair. 

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime number, 
and G is a point on the elliptic curve. 
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1. status The status returned from the key pair generation procedure. The status will 
indicate  or an . 

2. (d, Q) The generated private and public keys. If an error is encountered during 
the generation process, invalid values for d and Q  be returned, as 
represented by Invalid_d and Invalid_Q in the following specification. d is 
an integer, and Q is an elliptic curve point. The generated private key d is 
in the range [1, n�1]. 

1. N = (n). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an  indication, Invalid_d, and Invalid_Q. 

3. requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. Obtain a string of N returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_d, and Invalid_Q. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. If (c > n�2), then go to step 4. 

7. d = c + 1. 

8. Q = dG. 

9. Return , d, and Q. 

ECDSA requires the generation of a new random number k for each message to be signed. Two 
methods are provided for the generation of k; one of these two methods  be used. 

The valid values of n are provided in Section 6.1.1. See ANS X9.62 for definitions of the elliptic 
curve math and the conversion routines. 

Let (k, n) be a function that computes the inverse of a (non-negative) integer k with 
respect to multiplication modulo the prime number n. A technique for computing the inverse is 
provided in Appendix C.1. 

63

75

MOBILEIRON, INC. - EXHIBIT 1036 
Page 075



In this method, 64 more bits are requested from the RBG than are needed for k so that bias 
produced by the mod function in step 6 is not readily apparent. 

The following process or its equivalent may be used to generate a per-message secret number.  

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime 
number, and G is a point on the elliptic curve. 

1. status The status returned from the key pair generation procedure. The status will 
indicate  or an . 

2. (k, k 1 ) The generated secret number k and its inverse k�1. If an error is 
encountered during the generation process, invalid values for k and 
k 1  be returned, as represented by Invalid_k and Invalid_k_inverse 

k 1in the following specification. k and are integers in the range [1, n�1]. 

1. N = (q). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an  indication, Invalid_k, and Invalid_k_inverse. 

3. requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. Obtain a string of N+64 returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the non-negative integer c (see Appendix C.2.1). 

6. k = (c mod (n�1)) + 1. 

k 17. (status, ) = (k, n). 

k 18. Return status, k, and . 

In this method, a random number is obtained and tested to determine that it will produce a value 
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of k in the correct range. If k is out-of-range, another random number is obtained (i.e., the 
process is iterated until an acceptable value of k is obtained. 

The following process or its equivalent may b used to generate a per-message secret number.  

1. (q, FR, a, b {, domain_parameter_seed}, G, n, h) 

The domain parameters that are used for this process. n is a prime number, 
and G is a point on the elliptic curve. 

1. status The status returned from the key pair generation procedure. The status will 
indicate  or an . 

2. (k, k 1 ) The generated secret number k and its inverse k�1. If an error is 
k 1encountered during the generation process, invalid values for k and 

 be returned, as represented by Invalid_k and Invalid_k_inverse in 
k 1the following specification. k and are integers in the range [1, n�1]. 

1. N = (q). 

Comment: Check that N is included in Table 1 of 
Section 6.1.1. 

2. If N is invalid, then return an  indication, Invalid_k, and Invalid_k_inverse. 

3. requested_security_strength = the security strength associated with N; see SP 800-57, 
Part 1. 

4. Obtain a string of N returned_bits from an  with a security strength of 
requested_security_strength or more. If an  indication is returned, then 
return an  indication, Invalid_k, and Invalid_k_inverse. 

5. Convert returned_bits to the (non-negative) integer c (see Appendix C.2.1). 

6. If (c > n�2), then go to step 4. 

7. k = c + 1. 

8. (status, k�1) = (k, n). 

k 19. Return status, k, and . 
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This appendix contains routines for supplementary processes required for the implementation of 
this Standard. Appendix C.1 is needed to produce the inverse of the per-message secret k (see 
Section 4.5, and Appendices B.2.1, B.2.2, B.5.1 and B.5.2) and the inverse of the signature 
portion s that is used during signature verification (see Section 4.7). The routines in Appendix 
C.2 are required to convert between bit strings and integers where required in implementing this 
Standard. Appendix C.3 contains probabilistic primality tests to be used during the generation of 
DSA domain parameters and RSA key pairs. Appendices C.4 and C.5 contain algorithms 
required during the Lucas probabilistic primality test of Appendix C.3.3 to check for a perfect 
square and to compute the Jacobi symbol. Appendix C.6 contains the Shawe-Taylor algorithm 
for the construction of primes. Appendix C.7 provides a process to perform trial division, as 
required by the random prime generation routine in Appendix C.6.  The sieve procedure in 
Appendix C.8 is needed by the trial division routine in Appendix C.7. The trial division process 
in Appendix C.7 and the sieve procedure in Appendix C.8 have been extracted from ANS X9.80, 
Prime Number Generation, Primality Testing, and Primality Certificates. Appendix C.9 is 
required during the generation of RSA key pairs. Appendix C.10 provides a method for 
constructing provable primes for RSA (see Appendix B.3.2.2 and B.3.4). 

This algorithm or an algorithm that produces an equivalent result  be used to compute the 
multiplicative inverse z�1 mod a, where 0 < z < a, 0 < z�1 < a, and a is a prime number. In this 
Standard, z is either k or s, and a is either q or n. 

1. z The value to be inverted mod a (i.e., either k or s). 

2. a The domain parameter and (prime) modulus (i.e., either q or n). 

1. status The status returned from this function, where the status is either 
 or . 

2. z�1 The multiplicative inverse of z mod a, if it exists. 

1. Verify that a and z are positive integers such that z < a; if not, return an 
indication. 

2. Set i = a, j = z, y2 = 0, and y1 = 1. 

3. quotient = i/j . 
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4. remainder = i �( j * quotient). 

5. y = y2 �(y1 * quotient). 

6. Set i = j, j = remainder, y2 = y1, and y1 = y. 

7. If (j > 0), then go to step 3. 

8. If (i  1), then return an indication. 

9. Return  and y2 mod a. 

An n-long sequence of bits { x1, , xn } is converted to an integer by the rule 

n�1 n�2
{ x1, , xn }  (x1  2 ) + (x2  2 ) +  + (n1  2) + xn . 

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding 
integer, and the last bit corresponds to the least significant bit. 

1. b1, b2, , bn The bit string to be converted. 

1. C The requested integer representation of the bit string. 

1. Let (b1, b2, , bn) be the bits of b from leftmost to rightmost. 
n

n i)2. C 2( bi 
i 1 

3. Return C. 

In this Standard, the binary length of an integer C is defined as the smallest integer n satisfying C 
< 2n . 

An integer x in the range 0 x < 2n may be converted to an n-long sequence of bits by using its 
binary expansion as shown below: 

67

79

MOBILEIRON, INC. - EXHIBIT 1036 
Page 079



x = (x1  2n�1) + (x2  2n�2) +  + (xn�1  2) + xn  {x1,  , xn} 

Note that the first bit of a sequence corresponds to the most significant bit of the corresponding 
integer, and the last bit corresponds to the least significant bit. 

1. C The non-negative integer to be converted. 

1. b1, b2, , bn The bit string representation of the integer C. 

1. Let (b1, b2, , bn) represent the bit string, where bi = 0 or 1, and b1 is the most 
significant bit, while bn is the least significant bit. 

2. For any integer n that satisfies C < 2n, the bits bi  satisfy: 

( n i )C 
n 

2 bi 
i 1 

3. Return b1, b2, , bn. 

In this Standard, the binary length of the integer C is defined as the smallest integer n that 
satisfies C < 2n . 

A probabilistic primality test may be required during the generation and validation of prime 
numbers. An approved robust probabilistic primality test  be selected and used. 

There are several probabilistic algorithms available.  The Miller-Rabin probabilistic primality 
tests described in Appendices C.3.1 and C.3.2 are versions of a procedure due to M.O. Rabin, 
based in part on ideas of Gary L. Miller; one of these versions  be used as the Miller-Rabin 
test discussed below.  For more information, see [4]. For these tests, let be an approved 
random bit generator (see SP 800-90). 

There are several Lucas probabilistic primality tests available; the version provided in [5] is 
specified in Appendix C.3.3. 

This Standard allows two alternatives for testing primality: either using several iterations of only 
the Miller-Rabin test, or using the iterated Miller-Rabin test, followed by a single Lucas test. The 
value of iterations (as used in Appendices C.3.1 and C.3.2) depends on the algorithm being used, 
the security strength, the error probability used, the length (in bits) of the candidate prime and 
the type of tests to be performed. Tables C.1, C.2 and C.3 list the minimum number of iterations 
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of the Miller-Rabin tests that  be performed. 

As stated in Appendix F, if the definition of the error probability that led to the values of the 
number of Miller-Rabin tests for p and q in Tables C.1, C.2 and C.3 is not conservative enough, 
the prescribed number of Miller-Rabin tests can be followed by a single Lucas test. Since there 
are no known non-prime values that pass the two test combination (i.e., the indicated number of 
rounds of the Miller-Rabin test with randomly selected bases, followed by one round of the 
Lucas test), the two test combination may provide additional assurance of primality over the use 
of only the Miller-Rabin test. For DSA, the two-test combination may provide better 
performance. However, the Lucas test is not required when testing the p1, p2, q1 and q2 values for 
primality when generating RSA primes. See Appendix F for further information. 

M-R Tests Only 

p: 1024 bits 
q: 160 bits 

Error probability = 2 80 

For p and q: 40 For p: 3 

For q: 19 

p: 2048 bits 
q: 224 bits 

Error probability = 2 112 

For p and q: 56 For p: 3 

For q: 24 

p: 2048 bits 
q: 256 bits 

Error probability = 2 112 

For p and q: 56 For p: 3 

For q: 27 

p: 3072 bits 
q: 256 bits 

Error probability = 2 128 

For p and q: 64 For p: 2 

For q: 27 

M-R Tests Only 

p1 , p2 , q1  and q2  > 100 bits 

p and q: 512 bits 

Error probability = 2 80 

For p1 , p2 , q1  and q2 : 28 

For p and q: 5 
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p1 , p2 , q1  and q2  > 140 bits 

p and q: 1024 bits 

Error probability = 2 112 

For p1 , p2 , q1  and q2 : 38 

For p and q: 5 

p1 , p2 , q1  and q2  > 170 bits 

p and q: 1536 bits 

Error probability = 2 �128 

For p1 , p2 , q1  and, q2 : 41 

For p and q: 4 

RSA Digital Signatures using an error probability of 2–100 

M-R Tests Only 

p1 , p2 , q1  and q2  > 100 bits 

p and q: 512 

For p1 , p2 , q1  and q2 : 38 

For p and q: 7 

p1 , p2 , q1  and q2  > 140 bits 

p and q: 1024 bits 

For p1 , p2 , q1  and q2 : 32 

For p and q: 4 

p1 , p2 , q1 and q2  > 170 bits 

p and q: 1536 bits 

For p1 , p2 , q1  and q2 : 27 

For p and q: 3 

Let be an approved random bit generator (see SP 800-90). 

1. w The odd integer to be tested for primality. This will be either p or 
q, or one of the auxiliary primes p1, p2, q1 or q2. 

2. iterations The number of iterations of the test to be performed; the value 
 be consistent with Table C.1, C.2 or C.3. 

1. status The status returned from the validation procedure, where status is 
either  or . 

1. Let a be the largest integer such that 2a divides w 1. 
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2. m = (w 1) / 2a. 

3. wlen =  (w). 

4. For i = 1 to iterations do 

4.1 Obtain a string b of wlen bits from an RBG.  

Comment: Ensure that 1 < b < w 1. 

4.2 If ((b  1) or (b w 1)), then go to step 4.1. 

4.3 z = bm mod w. 

4.4 If ((z = 1) or (z = w  1)), then go to step 4.7. 

4.5 For j = 1 to a  1 do. 

4.5.1 z = z2 mod w. 

4.5.2 If (z = w 1), then go to step 4.7. 

4.5.3 If (z = 1), then go to step 4.6. 

4.6 Return 

4.7 Continue. Comment: Increment i for the do-loop in 
step 4. 

5. Return 

This method provides additional information when an error is encountered that may be useful 
when generating or validating RSA moduli. Let be an approved random bit generator (see 
SP 800-90). 

1. w The odd integer to be tested for primality. This will be either p or 
q, or one of the auxiliary primes p1, p2, q1 or q2. 

2. iterations The number of iterations of the test to be performed; the value 
 be consistent with Table C.1, C.2 or C.3. 

1. status The status returned from the validation procedure, where status is 
either , 

(returned with the factor), and 
. 
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1. Let a be the largest integer such that 2a divides w�1. 

2. m = (w�1) / 2a. 

3. wlen =  (w). 

4. For i = 1 to iterations do 

4.1 Obtain a string b of wlen bits from an RBG. 

Comment: Ensure that 1 < b < w�1. 

4.2 If ((b  1) or (b w�1)), then go to step 4.1. 

4.3 g = (b, w). 

4.4 If (g > 1), then return and the 
value of g. 

4.5 z = bm mod w. 
4.6 If ((z = 1) or (z = w � 1)), then go to step 4.15. 

4.7 For j = 1 to a � 1 do. 

4.7.1 x = z. Comment: x  1 and x w�1. 

4.7.2 z = x2 mod w. 
4.7.3 If (z = w�1), then go to step 4.15. 

4.7.4 If (z = 1), then go to step 4.12. 

4.8 x = z. Comment: x = b(w�1)/2 mod w and x w�1. 

4.9 z = x2 mod w. 

4.10 If (z = 1), then go to step 4.12. 

4.11 x = z. Comment: x = b(w�1) mod w and x  1. 

4.12 g = (x�1, w). 

4.13 If (g > 1), then return and the 
value of g. 

4.14 Return 

4.15 Continue. Comment: Increment i for the do-loop in 
step 4. 

5. Return 
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The following process or its equivalent  be used as the Lucas test. 

C The candidate odd integer to be tested for primality. 

status Where status is either  or . 

1. Test whether C is a perfect square (see Appendix C.4). If so, return ( ). 

2. Find the first D in the sequence {5, �7, 9, �11, 13, �15, 17, } for which the Jacobi 
Dsymbol  = �1. See Appendix C.5 for an approved method to compute the Jacobi 
C

DSymbol. If = 0 for any D in the sequence, return ( ).
C 

3. K = C+1. 

4. Let Kr Kr � 1 K0 be the binary expansion of K, with Kr = 1. 

5. Set Ur = 1 and Vr = 1. 

6. For i = r�1 to 0, do 

6.1 Utemp = Ui+1 Vi+1 mod C. 

Vi 1
2 DU i 1

2 

6.2 Vtemp = mod C. 
2 

6.3 If (Ki = 1), then Comment: If Ki = 1, then do steps 6.3.1 and 6.3.2; 
otherwise, do steps 6.3.3 and 6.3.4. 

U Vtemp temp6.3.1 Ui =  mod C. 
2 

V DUtemp temp6.3.2 Vi = mod C. 
2

Else 

6.3.3 Ui = Utemp. 

6.3.4 Vi = Vtemp. 

7. If (U0 = 0), then return ( ). Otherwise, return ( ). 

Steps 6.2, 6.3.1 and 6.3.2 contain expressions of the form A/2 mod C, where A is an integer, and 
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C is an odd integer. If A/2 is not an integer (i.e., A is odd), then A/2 mod C may be calculated as 
(A+C)/2 mod C. Alternatively, A/2 mod C = A·(C+1)/2 mod C, for any integer A, without regard 
to A being odd or even. 

The following algorithm may be used to determine whether an n-bit positive integer C is a 
perfect square: 

C The integer to be checked. 

status Where status is either  or . 

1. Set n, such that 2n > C  2(n 1). 

2. m = n/2 . 

3. i = 0. 

4. Select X0, such that 2m > X0  2(m 1). 

5. Repeat 

5.1 i = i + 1. 

5.2 Xi = ((Xi�1)2 + C)/(2Xi�1). 

Until (Xi)2 < 2m + C.

6. If C = Xi 
2, then 

status = . 

Else 

status = . 

7. status. 

1. By starting with X0 > (1/2) (C), X0 (C) is guaranteed to be less than X0 . 
This inequality is maintained in step 5; i.e., Xi (C) < Xi for all i. 

2. For i  1, 0 Xi (C) = (Xi�1 (C))2 / (2 Xi�1) < X0/2i . 

In particular, 0 Xm (C) < 1. If (C) were an integer, then it would 
be equal to the floor of Xm . 
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3. In general, the inequality Xi (C) < 1 will occur for values of i that are much less 
than m. To detect this, the fact that 2(m 1) (C) < Xi for all i  1 can be used, 

Xi (C) = ((Xi)2 C)/( Xi + (C)) 

 ((Xi)2 C)/( 2 (C)) 

 ((Xi)2 C)/(2m) 

Thus, the condition (Xi)2 < 2m + C  implies that Xi (C) < 1. 

a This routine computes the Jacobi symbol . 
n 

a Any integer. For this Standard, the initial value is in the sequence {5, �7, 9, �11, 

13, �15, 17, }, as determined by Appendix C.3.3.  

n Any integer. For this Standard, the initial value is the candidate being tested, as 
determined by Appendix C.3.3. 

result The calculated Jacobi symbol. 

1. a = a mod n. Comment: a will be in the range 0 a < n. 

2. If a = 1, or n = 1, then return (1). 

3. If a = 0, then return (0). 

4. Define e and a1 such that a = 2e a1, where a1 is odd. 

5. If e is even, then s = 1. 

Else if ((n  1 (mod 8)) or (n  7 (mod 8))), then s = 1. 

Else if ((n  3 (mod 8)) or (n  5 (mod 8)), then s = �1. 

6. If ((n  3 (mod 4)) and (a1  3 (mod 4))), then s = �s. 
7. n1 = n mod a1. 

8. Return (s * Jacobi (n1, a1)). Comment: Call this routine recursively. 
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Example: Compute the Jacobi symbol for a = 5 and n = 3439601197: 

1. n is not 1, and a is not 1, so proceed to Step 2. 

2. a is not 0, so proceed to Step 3. 

3. 5 = 20 * 5, so e = 0, and a1 = 5. 

4.  e is even, so s = 1. 

5. a1 is not congruent to 3 mod 4, so do not change s. 
6. n1 = 2 = n mod 5. 

7. Compute and return (1 * Jacobi(2, 5)). This calls Jacobi recursively.  Compute the Jacobi 
symbol for a = 2 and n = 5: 

7.1 n is not 1, and a is not 1, so proceed to Step 7.2. 

7.2 a is not 0, so proceed to Step 7.3. 

7.3 2 = 21 * 1, so e = 1, and a1 = 1. 

7.4 e is odd, and n  5 (mod 8), so set s = �1. 

7.5 n is not 3 mod 4, and a1 is not 3 mod 4, so proceed to step 7.6. 

7.6 n1 = 0 = n mod 1. 

7.7 Return (�1 * Jacobi(0, 1) = �1). This calls Jacobi recursively. Compute the Jacobi 
symbol for a = 0 and n = 1: 

7.7.1 n = 1, so return 1. 

Thus, Jacobi (0,1) = 1, so Jacobi (2,5) = �1*(1) = �1, and Jacobi (5, 3439601197) = 1* (�1) = �1. 

This routine is recursive and may be used to construct a provable prime number using a hash 
function. 

Let  be the selected hash function, and let outlen be the bit length of the hash function 
output block. The following process or its equivalent  be used to generate a prime number 
for this constructive method. 

ST_Random_Prime ( ): 

1. length The length of the prime to be generated. 

2. input_seed The seed to be used for the generation of the requested prime. 
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