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126 Chapter4 Inverse manipulator kinematics
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FIGURE 4.12: Example workstation.

Base frame

In many systems, the tool frame definition (;'!’T} is constant (for example, it is
defined with its origin at the center of the fingertips). Also, the station frame
might be fixed or might easily be taught by the user with the robot itself. In
such systems, the user need not be aware of the five standard frames—he or
she simply thinks in terms of moving the tool to locations (goals) with respect
to the work area specified by station frame.

4. The robot system calculates a series of joint angles to move the joints through
in order that the tool frame will move from its initial location in a smooth
manner until {T} = {G} at the end of motion.

4.9 SOLVE-ING A MANIPULATOR

The SOLVE function implements Cartesian transformations and calls the inverse
kinematics function. Thus, the inverse kinematics are generalized so that arbi-
trary tool-frame and station-frame definitions may be used with our basic inverse
kinematics, which solves for the wrist frame relative to the base frame.

Given the goal-frame specification, ST, SOLVE uses the tool and station

definitions to calculate the location of {W} relative to {B}, ﬁ,T:

B _ By S W1
H A S (4.108)

Then, the inverse kinematics take f;,T as an input and calculate 6, through 6,.
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4,10 REPEATABILITY AND ACCURACY

Many industrial robots today move to goal points that have been taught. A taught
point is one that the manipulator is moved to physically, and then the joint position
sensors are read and the joint angles stored. When the robot is commanded to
return to that point in space, cach joint is moved to the stored value. In simple
“teach and playback™ manipulators such as these, the inverse kinematic problem
never arises, because goal points are never specified in Cartesian coordinates. When
a manufacturer specifies how precisely a manipulator can return to a taught point,
he is specifying the repeatability of the manipulator.

Any time a goal position and orientation are specified in Cartesian terms,
the inverse kinematics of the device must be computed in order to solve for the
required joint angles. Systems that allow goals to be described in Cartesian terms
are capable of moving the manipulator to points that were never taught— points in
its workspace to which it has perhaps never gone before. We will call such points
computed points. Such a capability is necessary for many manipulation tasks. For
example, if a computer vision system is used to locate a part that the robot must
grasp, the robot must be able to move to the Cartesian coordinates supplied by the
vision sensor. The precision with which a computed point can be attained is called
the accuracy of the manipulator.

The accuracy of a manipulator is bounded by the repeatability. Clearly,
accuracy is affected by the precision of parameters appearing in the kinematic
equations of the robot. Errors in knowledge of the Denavit-Hartenberg parameters
will cause the inverse kinematic equations to calculate joint angle values that are
in error. Hence, although the repeatability of most industrial manipulators is quite
good, the accuracy is usually much worse and varies quite a bit from manipulator
to manipulator. Calibration techniques can be devised that allow the accuracy of
a manipulator to be improved through estimation of that particular manipulator’s
kinematic parameters [10].

411 COMPUTATIONAL CONSIDERATIONS

In many path-control schemes, which we will consider in Chapter 7. it 1s necessary
to calculate the inverse kinematics of a manipulator at fairly high rates, for exam-
ple, 30 Hz or faster. Therefore, computational efficiency is an issue. These specd
requirements rule out the use of numerical-solution techniques that are iterative in
nature; for this reason, we have not considered them.

Most of the general comments of Section 3.10, made for forward kinematics,
also hold for the problem of inverse kinematics. For the inverse-kinematic case, a
table-lookup Atan2 routine is often used to attain higher speeds.

Structure of the computation of multiple solutions is also important. It is
generally fairly efficient to generate all of them in parallel, rather than pursuing one
after another serially. Of course, in some applications, when all solutions are not
required, substantial time is saved by computing only one.

When a geometric approach is used to develop an inverse-kinematic solution,
it is sometimes possible to calculate multiple solutions by simple operations on the
various angles solved for in obtaining the first solution. That is, the first solution
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is moderately expensive computationally, but the other solutions are found very
quickly by summing and differencing angles, subtracting m, and so on.
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EXERCISES

4.1 (15) Sketch the fingertip workspace of the three-link manipulator of Chapter 3,
Exercise 3.3 for the case /; = 15.0,/, = 10.0, and /3 = 3.0.

4.2 [26] Derive the inverse kinematics of the three-link manipulator of Chapter 3,
Exercise 3.3.

4.3 [12] Sketch the fingertip workspace of the 3-DOF manipulator of Chapter 3,
Example 3.4,
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4.4 [24] Derive the inverse kinematics of the 3-DOF manipulator of Chapter 3,
Example 3.4.

4.5 [38] Write a Pascal (or C) subroutine that computes all possible solutions for the
PUMA 560 manipulator that lie within the following joint limits:

~170.0 < 8, < 1700,
2250 <6, <450,
-250.0 = 6; < 75.0.
—135.0 < 6, < 135.0,
—-100.0 < 65 < 100.0,
-180.0 < 65 < 180.0.

Use the equations derived in Section 4.7 with these numerical values (in inches):

a; = 17.0,
a3 =08,
dy =438,
=110

4.6 [15] Describe a simple algorithm for choosing the nearest solution from a set of
possible solutions.

4.7 [10] Make a list of factors that might affect the repeatability of a manipulator.
Make a second list of additional factors that affect the accuracy of a manipulator.

4.8 [12] Given a desired position and orientation of the hand of a three-link planar
rotary-jointed manipulator, there are two possible solutions. If we add one more
rotational joint (in such a way that the arm is still planar), how many solutions
are there?

4.9 [26] Figure 4.13 shows a two-link planar arm with rotary joints. For this arm, the
second link is half as long as the first—that is, /; = 2[,. The joint range limits in

FIGURE 4.13: Two-link planar manipulator.
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degrees are
0= 31 = 180

—90 < 6, < 180.

» Sketch the approximate reachable workspace (an area) of the tip of link 2.

4.10 [23] Give an expression for the subspace of the manipulator of Chapter 3.
Example 3.4.

4.11 [24] A 2-DOF positioning table is used to orient parts for arc-welding. The
forward kinematics that locate the bed of the table (link 2) with respect to the
base (link 0) are

£1C3 —Cy52 5 3251‘ +11
[]T - 3 Ca
2 —516; 518 €4 hey +hy
0 0 o

Given any unit direction fixed in the frame of the bed (link 2), 2V, give the
inverse-kinematic solution for 8, 6, such that this vector is aligned with °Z (i.e.,
upward). Are there multiple solutions? Is there a singular condition for which a
unique solution cannot be obtained?

4.12 (22] In Fig. 4.14, two 3R mechanisms are pictured, In both cases, the three axes

intersect at a point (and, over all configurations, this point remains fixed in space).
The mechanism in Fig. 4.14(a) has link twists (o;) of magnitude 90 degrees. The
mechanism in Fig. 4.14(b) has one twist of ¢ in magnitude and the other of 180 —¢
in magnitude.
The mechanism in Fig. 4.14(a) can be seen to be in correspondence with Z-Y-Z
Euler angles, and therefore we know that it suffices to orient link 3 (with arrow
in figure) arbitrarily with respect to the fixed link 0. Because ¢ is not equal to 90
degrees, it turns out that the other mechanism cannot orient link 3 arbitrarily.

i ity

g ————
————p——— =
¢

L

AN

(a) (b)

FIGURE 4.14: Two 3R mechanisms (Exercise 4.12). :
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FIGURE 4.15: A 4R manipulator shown in the position & = [0, 90°, ~90°, 0]" (Exer-
cise 4.16).

Describe the set of orientations that are unattainable with the second mechanism.
Note that we assume that all joints can turn 360 degrees (i.e. no limits) and we
assume that the links may pass through each other if need be (i.e., workspace not
limited by self-collisions).

4,13 [13] Name two reasons for which closed-form analytic kinematic solutions are
preferred over iterative solutions.

4.14 [14] There exist 6-DOF robots for which the kinematics are NOT closed-form
solvable. Does there exist any 3-DOF robot for which the (position) kinematics
are NOT closed-form solvable?

4.15 [38) Write a subroutine that solves quartic equations in closed form. (See [8.9].)

4.16 [25] A 4R manipulator is shown schematically in Fig. 4.15. The nonzero link
parameters are a; = 1, ay = 45°, dy = V2, and ay = v/2, and the mechanism is
pictured in the configuration corresponding to © = [0, 90°, —90°, 0)7. Each joint
has +180° as limits. Find all values of ¢, such that

B e = 1., L8, L7

4.17 [25] A 4R manipulator is shown schematically in Fig. 4.16. The nonzero link
parameters are o) = —90°, d; = 1, @y = 45°, d3 = |, and @y = 1, and the
mechanism is pictured in the configuration corresponding to © = [0.0.90%. 0)7.
Each joint has +£180° as limits. Find all values of #; such that

0P orc = [0.0,1.0,1.414].

4.18 [15) Consider the RRP manipulator shown in Fig. 3.37. How many solutions do
the (position) kinematic equations possess?

4.19 [15] Consider the RRR manipulator shown in Fig. 3.38. How many solutions do
the (position) kinematic equations possess?

4.20 [15) Consider the R P P manipulator shown in Fig. 3.39. How many solutions do
the (position) kinematic equations possess?
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Manipulator dynamics

To include gravity forces, we will use

01}0 —_ EYD

The rotation between successive link frames is given by

R

H—lR
;

[ Ciy1 —Sip1 007
=| %41 Cs 00
L 0.0 00 1.0 ]
[ Cis1 Sipp 0.07
= —Sig1 CSiml 0.0 .
0.0 00 1.0

We now apply equations (6.46) through (6.53).
The outward iterations for link 1 are as follows:

-0
-Hl -
-0 -
lin=612,=| 0
| 6
€y 5 0 0 BN
li.tl =| =51 ¢, 0 g |=| ge
0 01 0 0
[ q —flélz £5, —flélz-l‘gjl
i 0 0 0 0
"-m]f]éf—l-mlg.s'l
L 0
0
INy=1]0 (6.54)
_L‘r
The outward iterations for link 2 are as follows:
-0 -
zd.iz = U ¥
L& +6,
- 0 A
26;.!2 - U i
| 8, +6 |
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- |- cz 32 0 _Irlgf + 8'.5'1 i flgld‘z — IIHIICE + gsu
= —§ ¢y 0 7] = 7] i2
i Clz & ‘ Ilﬂla-gcl 116y¢, +F]gl.r2+gclz
. A ~1,(6) + 6,)? T
U, = I8, + 8) | + 0
L W 0 |
'!rlé;lfz = ‘rléffz + 8512
T | 4,6,c; + a'lﬁ'izsz +gcpy |- (6.55)
0
I mz-’léifz = m_-!.*léfez +Mmags; — mzfzfﬂ', + 6,)?
F, = maylybyey + .'Hz.r'lﬁfsg +mygery + myly (6 +6,)
9 0
[0
2N2 = G
| 0
The inward iterations for link 2 are as follows:
" 0
s = 0 . (656]

mzfi fz(','zgl <+ lnzlllfl.ﬁ'zé!z -+ ?ﬂglrzgclz + mzfgiﬁl -+ 92)

The inward iterations for link 1 are as follows:

; ¢ =55 07| mylys,8) - malyc267 + magsiy — myly (8 + 6,)2
fl = _'j‘ﬂz %2 ]ﬂ' ’”2"1‘:2'91 +m2."13219r2+r!123c]2+m2."2(§1 +32)
0

—mlflﬁ."lz +mygs;
my 6, +m ge,

0
0

mlf[fzﬂzel - P?I'zfil‘g.i'zﬂljz +mzfzg¢12 - fnznlzz{lé.l +€2)

+

L

0
0

| my 6y + mylge,

0
0

mszé.f - mZ‘II;ESZ(éI + éz}z + mzflgszslz : fﬁ.ﬂ-f}

+malylyey 8y + 65) + mylygeyey,
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190 Chapter 6 Manipulator dynamics

to select the size of Ar is an issue that is often discussed. It should be sufficiently
small that breaking continuous time into these small increments is a reasonable
approximation. It should be sufficiently large that an excessive amount of computer
time is not required to compute a simulation,

6.13 COMPUTAT!ONAL CONSIDERATIONS

Because the dynamic equations of motion for typical manipulators are so complex, it
isimportant to consider computational issues. In this section. we restrict our atlention
to joint-space dynamics. Some issues of computational efficiency of Cartesian

dynamics are discussed in [7. 8].

A historical note concerning efficiency

Counting the number of multiplications and additions for the equations (6.46)-(6.53)
when taking into consideration the simple first outward computation and simple last

inward computation, we get
126n ~ 99 multiplications,

106n — 92 additions.

where n is the number of links (here. at least two). Although still somewhat complex,
the formulation is tremendously efficient in comparison with some previously
suggested formulations of manipulator dynamics, The first formulation of the
dynamics for a manipulator [12, 13] was done via a fairly straightforward Lagrangian
approach whose required computations came out to be approximately [14]

32" + 86n° + 171n° + 53n -~ 128 multiplications.
251 + 66n° + 12907 + 420 — 96 additions.

For a typical case. n = 6. the iterative Newton—Euler scheme is about 100
times more efficient! The two approaches must of course vield equivalent equations,
and numeric calculations would vyield exactly the same results. but the structure
of the equations is quite different. This is not to say that a Lagrangian approach
cannot be made to produce efficient equations. Rather. this comparison indicates
that, in formulating a computational scheme for this problem. care must be taken
as regards efficiency. The relative efficiency of the method we have presented stems
from posing the computations as iterations from link to link and in the particulars
of how the various quantities are represented [15].

Renaud [16] and Liegois et al. [17] made early contributions concerning
the formulation of the mass-distribution descriptions of the links. While studying
the modeling of human limbs, Stepanenko and Vukobratovic [18] began investi-
gating a “Newton-Euler” approach to dynamics instead of the somewhat more
traditional Lagrangian approach. This work was revised for efficiency by Orin et
al. [19] in an application to the legs of walking robots. Orin’s group improved
the efficiency somewhat by writing the forces and moments in the local link-
reference frames instead of in the inertial frame. They also noticed the sequential
nature of calculations from one link to the next and speculated that an efficient
recursive formulation might exist. Armstrong [20] and Luh, Walker. and Paul
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tions of the links in the local link frames Hollerb i

_ . 3 ach [14] and Silver [15 furth
?xplo‘redlvarlo@ computational algorithms, Hollerbach and Sahar [21] s!!mu]md tl':e:?’lr
Or certain specialized geometries, the complexity of the algorithm would rcdum.:

Efficiency of closed form vs. that of iterative form

The iterative scheme introduced in this chapter is quite efficient as a general means

link .pIanar manipulator of Section 6.7 Plugging n = 2 into the formulas given
Section ﬁ.l3._m}re find that our iterative scheme would require 153 multi !?r:af’n »
and_]Z{] addttlups 10 compute the dynamics of a general two-link, Huwgver t::z:
Ef;t:::;?;dlwo-!m'k arm.lmppens_ to be qui.le simple: It is planar, and the malsses
e as pmnt. masses. So, if we consider the closed-form equations (hat we
rked out in Section 6.7, we see that computation of the dynamics in this form
rlfqmreslabout 30 multiplications and 13 additions. This is an extreme case because
(I:l € pj_rrucuiar marflpulator |:s very simple, but it illustrates the point that ;:vnlbufic
osed-form equations are likely to be the most efficient formulation of d 'namir:s
S::;Zralj a::Jth(;rs have published articles showing that, for any given man?}mlatnr‘
gener?:] i;ﬁ;z::e{ifgr;adynamms are more efficient than even the best of the
Hence, if manipulators are designed to be simple in the kinematic and dynamic
sense, they will hsz: dynamic equations that are simple. We might define a kiin;na::

tensor is diagonal in frame (C.).

- mr‘ihc ?rflwback of formulating F:lnsed-furm equations is simply that it currently

thl'?t “ ; ad fu_r amount o?’ human effort, _Hnwcvcr. symbolic manipulation prugram;'
@ erive the closed-form Cquations of motion of a device and automatj-

t

Efficient dynamics for simulation

;ﬂ:::]n ;J‘}.*nanl}ws are 1o lfw computed _I'ur the purpose of performing a numerical
Jnulation ol a manipulator, we are interested in solving for the joint accelera-
Lions, given the manipulator's current position and velocity and the in ut‘lur{ :'
ffm efficient cump_utatimml scheme must therefore address both thﬂ com 1]:::;-
lllon' of the d:vrmmlc equations studied in this chapter and efficient schenw]s lor
solving equations (for Joint dccelerations) and performing numerical integration.

Several efficient methods [ ic si i
Dr 3 ¥ 1 " =
i [31), dynamic simulation of manipulators are reported
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CHAPTER 8

Manipulator-mechanism design

8.1 INTRODUCTION
8.2 BASING THE DESIGN ON TASK REQUIREMENTS

8.3 KINEMATIC CONFIGURATION
84 QUANTITATIVE MEASURES OF WORKSPACE ATTRIBUTES

8.5 REDUNDANT AND CLOSED-CHAIN STRUCTURES
8.6 ACTUATION SCHEMES

8.7 STIFFNESS AND DEFLECTIONS

8.8 POSITION SENSING

8.9 FORCE S5ENSING

INTRODUCTION -
In previous chapters, we have seen that the particular structuni ,Gf a n:gmpu ;1;]
i i i i alysis. For example, some kinematic configu-
influences kinematic and dynamic analy : g
i ' ; ill have no closed-form kinematic s :
ns will be easy to solve: others will 1 _ i
Ezzwise the complexity of the dynamic equations can :ar:f gmatlr}r w::t]i-latpl::r]:fc
i , i distribution of the hinks. In coming ‘
matic configuration and the mass In .
will see that manipulator control depends not only on the rigid-body dynamics, but
icti ibili i tems.
the friction and flexibility of the drive sys , .
e u%z: tasks that a manipulator can perform will also vary greallf?' with the
particular design. Although we have generally dealt with the robot miI‘uI}ulT(;g ::
ity, i is ultimately limited by such pragmatic facto
an abstract entity, its performance is u d1 : i
i i tability. For certain applications,
capacity, speed, size of workspace, and repea ) i lica
:iiccl:wefa]l n:;ra nIinuiator size, weight, power consumption, and cost will be significant
Or5s. _ | ‘ 1
. This chapter discusses some of the issues involved in th:e deslgnﬁolf 1-?1;
manipulator. In general, methods of design and even the evaluation of a fElSSic
design are partially subjective topics, It is difficult to narrow the spectrum of design

hoices with many hard and fast rules. . -
== The elements of a robot system fall roughly into four categories:

1. The manipulator, including its internal or proprioceptive sensors;

2. the end-effector, or end-of-arm tooling; -
3. external sensors and effectors, such as vision systems and part feeders; an

4. the controller.

230
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The breadth of engineering disciplines encompassed forces us 1o restrict our
attention only to the design of the manipulator itself.

In developing a manipulator design, we will start by examining the factors
likely 1o have the greatest overall effect on the design and then consider more
detailed questions. Ultimately, however, designing a manipulator is an iterative
process. More often than not, problems that arise in the solving of a design detail
will force rethinking of previous higher level design decisions,

8.2 BASING THE DESIGN ON TASK REQUIREMENTS

Although robots are nominally “universally programmable” machines capable of
performing a wide variety of tasks, economics and practicalities dictate that different
manipulators be designed for particular types of tasks. For example, large robots
capable of handling payloads of hundreds of pounds do not generally have the
capability to insert electronic components into circuit boards. As we shall see. not
only the size, but the number of joints, the arrangement of the joints, and the types

of actuation, sensing, and control will all vary greatly with the sort of task to be
performed.

Number of degrees of freedom

The number of degrees of freedom in a manipulator should match the number
required by the task. Not all tasks require a full six degrees of freedom.

The most common such circumstance occurs when the end-effector has an
axis of symmetry. Figure 8.1 shows a manipulator positioning a grinding tool in two
different ways. In this case, the orientation of the tool with respect to the axis of the
tool, Z, is immaterial, because the grinding wheel is spinning at several hundred
RPM. To say that we can position this 6-DOF robot in an infinity of ways for this
task (rotation about Z, is a free variable), we say that the robot is redundant for
this task. Arc welding, spot welding, deburring, glueing, and polishing provide other
examples of tasks that often employ end-effectors with at least one axis of symmetry,

FIGURE8.1: A 6-DOF manipulator with a symmetric tool contains a redundant
degree of freedom.
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236 Chapter 8 Manipulator-mechanism design

1 |

d,

L |

Side view Top view

FIGURE 8.5: A SCARA manipulator.

One SCARA manipulator can move at up to 30 feet per second, about 10 times
faster than most articulated indusirial robots [1]. This configuration is best suited to

planar tasks.

Spherical

The spherical configuration in Fig. 8.6 has many similarities to the articulated
manipulator, but with the elbow joint replaced by a prismatic joint. This design is
better suited to some applications than is the elbow design. The link that moves
prismatically might telescope—or even “stick out the back™ when retracted.

Cylindrical

Cylindrical manipulators (Fig, 8.7) consist of a prismatic joint for translating the arm
vertically, a revolute joint with a vertical axis, another prismatic joint orthogonal to
the revolute joint axis, and, finally, a wrist of some sort.

Side view TDP view

FIGURE 8.6: A spherical manipulator.
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Side view Top view

FIGURE 8.7: A cylindrical manipulator,

Wrists

The most common wrist configurations consist of either two or three revolute joints

with orthogonal intersecting axes. The fi s
: . toft <.
of the manipulator., . rst of the wrist joints usually forms joint 4

In practice, it is difficult t i
; 0 build a three-orthogonal-ax; i i
rather severe Joint-angle limit 5 el 5

FIGURE 8.8: Ap orthogonal-axis wri i
# i rist driven b .
concentric shafts, ¥ Temotely located actuators via three
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manufactured by Cincinatti Milacron (Fig. 1.4) employs a wrist that has three
intersecting but nonorthogonal axes. In this design (called the ““three roll wrist™), all
three joints of the wrist can rotate continuously without limits. The nonorthogonality
of the axes creates, however, a set of orientations that are impossible to reach with
this wrist. This set of unattainable orientations is described by a cone within which
the third axis of the wrist cannot lie, (See Exercise 8.11.) However, the wrist can be
mounted to link 3 of the manipulator in such a way that the link structure occupies
this cone and so would be block access anyway. Figure 8.9 shows two drawings of

such a wrist [24],

Some industrial robots have wrists that do not have intersecting axes. This
implies that a closed-form kinematic solution might not exist. If, however, the wrist is
mounted on an articulated manipulator in such a way that the joint-4 axis is parallel
to the joint-2 and -3 axes, as in Fig. 8.10, there will be a closed-form kinematic
solution. Likewise, a nonintersecting-axis wrist mounted on a Cartesian robot yields

a closed-form-solvable manipulator,

Typically, 5-DOF welding robots use two-axis wrists oriented as shown in
Fig. 8.11. Note that, if the robot has a symmetric tool, this “fictitious joint" must
follow the rules of wrist design. That is, in order to reach all orientations, the tool
must be mounted with its axis of symmeltry orthogonal to the joint-5 axis. In the
worst case, when the axis of symmetry is parallel to the joint-5 axis, the fictitious

sixth axis is in a permanently singular configuration.

[

FIGURE 8.9: Two views of a nonorthogonal-axis wrist [24). From International Ency-
clopedia of Roboties, by R. Dorf and S. Nof (editors). From “Wrists™ by M. Rosheim.

John C. Wiley and Sons, Inc., New York, NY @]988. Reprinted by permission.
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FIGURE 8.10: A manipulator with a wrist whose axes do not intersect.
robot does possess a closed-form kinematic solution.

However, this

FIGURE 8.11: Typical wrist design of a 5-DOF welding robot.

Manipulator designers have p
various workspace attribues,

8.4 QUANTITATIVE MEASURES OF WORKSPACE ATTRIBUTES

roposed several interesting quantitative measures of
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where 4, and é, are output and input speeds, respectively, and t, and 7; are output
and input torques, respectively.

The second broad class of reduction elements includes flexible bands, cables,
and belts. Because all of these elements must be flexible enough to bend around
pulleys, they also tend to be flexible in the longitudinal direction. The flexibility of
these elements is proportional to their length. Because these systems are flexible, Nut E Race
there must be some mechanism for preloading the loop to ensure that the belt
or cable stays engaged on the pulley. Large preloads can add undue strain to the

flexible element and introduce excessive friction.
Cables or flexible bands can be used either in a closed loop or as single-

ended elements that are always kept in tension by some sort of preload. In a joint (a) )
that is spring loaded in one direction, a single-ended cable could be used to pull
against it. Alternately, two active single-ended systems can oppose each other. FIGURE 8.16: Lead screws (a) and ball-bearing scr : .
This arrangement eliminates the problem of excessive preloads but adds more and transformation from rotary to linear mnﬁon'ews (b) combine a large r;:ductmn
actuators.

Roller chains are similar to flexible bands but can bend around relatively small 8.7 STIFFNESS AND DEFLECTIONS

pulleys while retaining a high stiffness. As a result of wear and high loads on the

pins connecting the links, toothed-belt systems are more compact than roller chains An important goal for

the design of most i is i
structure and fhe ‘driv 14 manipulators is overall stiffness of the

€ system. SGIf systems provide two main benefits. First

for certain applications. because typical i
Band, cable, belt, and chain drives have the ability to combine transmission iseation d'?. P'c:'; rpa‘nlpulamrs do not have sensors to measure the tool frame
with reduction. As is shown in Fig. 8,15, when the input pulley has radius r; and the i pOSi[IiLenCs F};{;l i1s calculated by using the forward kinematics based on sensed
; e it ; - For an accurate calculati i :
output pulley has radius r,. the “gear™ ratio of the transmission system is other loads. In other ion, the links cannot sag under gravity or

words, we wish our Denavit—H ipti
) ‘ 1 ~Hartenberg description of th
. linkages to remain fixed under various loading conditions. Second, ﬁfxibililies irt:

2
n=-=, (8.12) the structure or drive train wj
” C ill lead to resonances, which ha i
5 . on manipulator performance. Tn, the, ¢ ve an undesirable effect

. : ection, we consider issues of stiffness

Lead screws or ball-bearing screws provide another popular method of getting the resulting deflections under loads. We postpone further discussion of . i

g . 5 ' until Chapter 9. Tesonances
a large reduction in a compact package (Fig. 8.16). Lead screws are very stiff and can .
support very large loads, and have the property that they transform rotary motion
into lincar motion. Ball-bearing screws are similar to lead screws, but instead of
having the nut threads riding directly on the screw threads, a recirculating circuit of
ball bearings rolls between the sets of threads. Ball-bearings screws have very low

friction and are usually backdrivable.

Flexible elements in parallel and in series

As can be easily shown (see Exe
of stiffness k; and k, “connecte

rcjse 8.21), the combination of two flexible members
d in parallel” produces the net stiffness

) | , kpara!]el =kt ‘:"_2; (8.13)
connected in series,” the combination produces the net stiffness
1 1 2 1
'ksuries - kl E {8-14)

: In considering transmission systems, we often h
o rcdgctlmn Or transmission in series with a follow
transmission; hence, (8.14) becomes useful.

Shafts

ave the case of one stage
Ing stage of reduction or

Input Qutput

A common method for transmit; i
. ling rotary motion is through shaft '
stiffness of a round shaft can be calculated [19] as ¥ pE——

FIGURE 8.15: Band, cable, belt, and chain drives have the ability to combine trans-

mission with reduction. . Grd?

T3 )
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where d is the shaft diameter, / is the shaft length, and G is the shear modulus of
elasticity (about 7.5 x 10'® Nt/m? for steel, and about a third as much for aluminum).

Gears

Gears, although typically quite stiff, introduce compliance into the drive system. An
approximate formula to estimate the stiffness of the output gear (assuming the input
gear is fixed) is given in [20] as

sl b (8.16)

where b is the face width of the gears, r is the radius of the output gear, and

C, =134 x 100 Nt/m? for steel. .
Gearing also has the effect of changing the effective stiffness of the drive

system by a factor of n?. If the stiffness of the transmission system prior to the
reduction (i.e., on the input side) is k;, so that

T, = k;86;, (8.17)
and the stiffness of the output side of the reduction is k,,, so that
7, = k,36,. (8.18)

then we can compute the relationship between k; and k, (under the assumption of a
perfectly rigid gear pair) as

ky = =2 = —-L = n’k;. (8.19)

Hence, a gear reduction has the effect of increasing the stiffness by the square of the
gear ratio.

EXAMPLE 8.3

A shaft with torsional stiffness equal to 500.0 Nt-m/radian is connected to the
input side of a gear set with » = 10, whose output gear (when the input gear 15
fixed) exhibits a stiffness of 5000.0 Nt m/radian. What is the output stiffness of the
combined drive system?

Using (8.14) and (8.19), we have

1 1 i
. : 8.20
Kseries  2000.0 ¥ 102(500.00 ( )
" 0000
kset'ies = ST = 45454 Nt mfradian, {8.21}

When a relatively large speed reduction is the last element of a multielement
transmission system, the stiffnesses of the preceding elements can generally be

ignored.
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B M 5, T T

]FIGLJRE 8.17: Simple cantilever beam used to model the stiffness of a link to an end
oad.

Belts

In such a belt drive as that of Fig. 8.15, stiffness is given by

_AE

k :
!

(8.22)
where A is the cross-sectional area of the belt, E is the modulus of elasticity of the

belt, and / is the length of the free belt between pulleys plus one-third of the length
of the belt in contact with the pulleys [19].

Links

Asa rf::ugh approximation of the stiffness of a link, we might model a single link as
a cantilever beam and calculate the stiffness at the end point, as in Fig. 8.17. For a
round hollow beam, this stiffness is given by [19]

3nEd} - dh
k=== (8.23)

where d; and d, are the inner and outer diameters of the tubular beam, | is the
length, and E is the modulus of elasticity (about 2 x 10! Nt/m? for steel, and about

a th.ird as much for aluminum). For a square-cross-section hollow beam, this stiffness
1s given by

s E(w) —w)
"

‘_where w; s;nd w, are the outer and inner widths of the beam (i.c., the wall thickness
isw, —w,).

(8.24)

EXAMPLE 8.4

A Square-cross-section link of dimensions 5 x 5 x 50 cm with a wall thickness of
1 em is driven by a set of rigid gears with = 10, and the input of the gears is driven

by a shaft having diameter 0.5 cm and length 30 cm. What deflection is caused by a
force of 100 Nt at the end of the link?



250 Chapter 8 Manipulator-mechanism design

Using (8.24), we calculate the stiffness of the link as

b = 2210700054 - 0,044 =B 1 E o (8.25)
link = 4(0.5)

Hence, for a load of 100 Nt, there is a deflection in the link itself of

5x = 100 >227x10%m, (8.26)

0.027 cm. o _ -
" Additionally, 100 Nt at the end of a 50-cm link is placing a torque of 50 Nt-m

on the output gear. The gears are rigid, but the flexibility of the input shaft is

=34
b (15 x10)3.14)(5 x 102 = 15.3 Nt m/radian, (8.27)
shaft = (32)(0.3)

which, viewed from the output gear, is

kpar = (15.3)(10%) = 1530.0 Nt-m/radian. (8.28)
shaft

Loading with 50 Nt-m causes an angular deflection of

60 . 8.29)
= ———— = (0.0326 radian. (
- 1530.0
so the total linear deflection at the tip of the link is
dx = 0.027 + (0.0326)(50) = 0.027 + 1.630 = 1.657 cm. (8.30)

In our solution, we have assumed that the shaft and link are made of stcel,- The
stiffness of both members is linear in £, the modulus of elasticity, so, for aluminum
elements, we can multiply our result by about 3.

In this section, we have examined some simple Ecrmulas‘for csuman‘r:jg tté:
stiffness of gears, shafts, belts, and links. Th‘ey are meant to give some gl:-{l;{::at
in sizing structural members and transmission elcqlents. Howe:;r.l “:ij:e‘n "
applications, many sources of flexibility are very difficult to mf el. i ul;amr
drive train introduces significantly more ﬂexlhj!lty than the link of a man p":l radl
Furthermore, many sources of flexibility in the drive system‘have not been conls]: can
here (bearing flexibility, fexibility of the actuator mounting, etc.)aﬁsncrabe};ausg
attempt to predict stiffness analytically results in an overly high prediction,

ot considered.
many;‘ic::;::isiea::e[:n techniques can be used to predict the stiffnes:s fand otS:
properties) of more realistic structural elcmen'{ts more accurately. This is an en
field in itself [21] and is beyond the scope of this book.

Actuators

Among various actuators, hydraulic cylinders or val_le actuators were orign::lé;
the most popular for use in manipulators. In a relatively compact package,
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can produce enough force 1o drive joints without o reduction svstem. The speed of
operation depends upon the pump and accumulator system. usually locared remotely
from the manipulator, The position control of hvdraulic svstems is well understood
and relatively straightforward, All of the carly industrial robots and many modern
large industrial robots use hvdraulic actuators,

Unfortunately, hvdraulics require a great deal of cquipment, such as pumps,
accumulators, hoses. and servo valves. Hvdraulic svstems also tend 10 he inherently
messy. making them unsuitable for some applications. With the advent of more
advanced robot-control strategies. in which actuator forees must be applied accu-
rately. hvdraulics proved disadvantageous, because of the friction contributed by
their seals.

Pneumatic cylinders possess all the favorable atiributes of hvdraulics, and
they are cleaner than hydraulics— iy Seeps out instead of hvdraulic Nuid. However,
pPneumatic actuators have proven difficult 1o contro) accurately, because of the
compressibility of air and the high friction of the seals,

Electric motors are (he most popular actuator for Manipulators. Although
they don't have the power-to-weight ratio of hydraulies or Pncumatics. their con-
trollability and ease of interface makes them attractive for small-to-medium-sized
manipulators.

Direct current (DC) brush motors (Fig. 8.18) are the moslt straightforward
lo interface and control, The current is conducted to the windings of the rotor
via brushes. which make contact with the revolving commutator. Brush wear and
[riction can be problems. New Mmagnetic materials have made high peak torques
possible. The limiting factor on the torque output of these motors Is the overheating

-

=~ Stator magnet

-—— Rotor windin 25

Stator magnet
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of the windings. For short duty cycles, high torques can be achieved, but only much
lower torques can be sustained over long periods of time.

Brushless motors solve brush wear and friction problems. Here, the windings
remain stationary and the magnetic field piece rotates. A sensor on the rotor detects
the shaft angle and is then used by external electronics to perform the commutation.
Another advantage of brushless motors is that the winding is on the outside, attached
to the motor case. affording it much better cooling. Sustained torque ratings tend to
be somewhat higher than for similar-sized brush motors.

Alternating current (AC) motors and stepper motors have been used infre-
quently in industrial robotics. Difficulty of control of the former and low torque
ability of the latter have limited their use.

8.8 POSITION SENSING

Virtually all manipulators are servo-controlled mechanisms—that is, the force or
torque command to an actuator is based on the error between the sensed position
of the joint and the desired position. This requires that each joint have some sort of
position-sensing device.

The most common approach is to locate a position sensor directly on the shaft
of the actuator. If the drive train is stiff and has no backlash, the true joint angles can
be calculated from the actuator shaft positions. Such ce-located sensor and actuator
pairs are easiest to control.

The most popular position-feedback device is the rotary optical encoder.
As the encoder shaft turns, a disk containing a pattern of fine lines interrupts
a light beam. A photodetector turns these light pulses into a binary waveform.
Typically, there are two such channels, with wave pulse trains 90 degrees out
of phase. The shaft angle is determined by counting the number of pulses, and
the direction of rotation is determined by the relative phasc of the two square
waves. Additionally, encoders generally emit an index pulse at one location, which
can be used to set a home position in order to compute an absolute angular
position.

Resolvers are devices that output two analog signals—one the sine of the shaft
angle, the other the cosine. The shaft angle is computed from the relative magnitude
of the two signals. The resolution is a function of the quality of the resolver and the
amount of noise picked up in the electronics and cabling. Resolvers are often more
reliable than optical encoders, but their resolution is lower. Typically, resolvers
cannot be placed directly at the joint without additional gearing to improve the
resolution.

Potentiometers provide the most straightforward form of position sensing.
Connected in a bridge configuration, they produce a voltage proportional to the
shaft position. Difficulties with resolution, linearity, and noise susceptibility limit
their use.

Tachometers are sometimes used to provide an analog signal proportional to
the shaft velocity. In the absence of such velocity sensors, the velocity feedback
is derived by taking differences of sensed position over time. This numerical
differentiation can introduce both noise and a time lag. Despite these potential
problems, most manipulators are without direct velocity sensing.
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8.9 FORCE SENSING

A va1ricty of devices have been designed to measure forces of contact between a
manipulator’s end-effector and the environment that it touches. Most such sensors
make use of sgnsin g elements called strain gauges. of either the semiconductor or the
metal-foil variety. These strain gauges are bonded to a metal structure and produce
4n output proportional to the strain in the metal. In this type of force-sensor desi

the issues the designer must address include the following: -

1. How many sensors are needed to resolve the desired information?

2. How are the sensors mounted relative to each other on the structure?

3. What structure allows good sensitivity while maintaining stiffness?

4. How can protection against mechanical overload be built into the device?

There are three places where such sensors are usually placed on a manipulator:

1. At the joint actuators. These sensors measure the torque or force output of
the actuator/reduction itself. These are useful for some control schemes, but
usually do not provide good sensing of contact between the cnd-efl‘ector‘ and
the environment.

2. Between the end-effector and last joint of the manipulator. These sensors
are usually referred to as wrist sensors. They are mechanical structures
instrumented with strain gauges. which can measure the forces and torques
acting on the end-effector. Typically. these sensors are capable of measuring

from three to six components of the force/torque vector acting on the end-
effector.

3. At the “fingertips™ of the end-effector, Usually. these force-sensing fingers

hm_-e built-in strain gauges to measure from one to four components of force
acting at each fingertip.

IAs an example, Fig. 8.19 is a drawing of the internal structure of a popular style
uf wrtsl-i‘o‘rce sensor designed by Scheinman [22]. Bonded to the cross-bar structure
of the dex’*lgc are eight pairs of semiconductor strain gauges. Each pair is wired in a
uollagq~@:v;der arrangement. Each time the wrist is queried, eight analog voltages
are dlgll‘lzcd and read into the computer. Calibration schemes have been designed
wuth_ which to arrive at a constant 6 x 8 calibration matrix that maps these eight
strain measurements into the force—torque vector, . acting on the end-effector.

The scnse;! force ~torque vector can be transformed to a reference frame of interest
as we saw in Example 5.8, ,

Force-sensor design issues

Use of strain gauges to measure force relies on measuring the deflection of a stressed
flexure. _"I'_htkareforct one of the primary design trade-offs is between the stiffness and
the sensitivity of the sensor. A stiffer sensor is inherently less sensitive.

: The stiffness of the sensor also affects the construction of everload protection
Slrz!m gauges can be damaged by impact loading and therefore must be prntectcci
against such overloads. Transducer damage can be prevented by having limit stops
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Instrumented
with strain

=/ gauges

FIGURE 8.19: The internal structure of a typical force-sensing wrist.

which prevent the flexures from deflecting past a c;r:‘ainfpniz};.c Eﬂz::;;tﬂg.n:
i ' few ten-thousandths of an inch.
very stiff sensor might deflect only a : _ S R 4
imi i difficult. Consequently, for many typ
limit stops with such small clearances is very quentl :
of lransgfmrs. a certain amount of flexibility must be built-in in order 10 make
ible effective limit stops. S
g Eliminating hysteresis is one of the most cumbersome restrictions in the selns.lt‘)r
design. Most metals used as flexures, if not overstrained. have }fcry{;{ljmle Eys:em:::.
+ - d joints near the flexure introduce hysteresis.
owever, bolted, press-fit, or welde ! ; :
Elcally the flexure and the material near it are made from a sl_ng]—:: piece of lfn-:ﬂ;atl_.t
It'is also important to use dilferential measurements Lo increase the incari vf
and disturbance rejection of torque sensors. Different p{l}ysmal ilnnffg::;“r?;?ze‘:
imi i due to temperature effects and ofi- .
transducers can eliminate influences oy i
i ' t they produce a very small re _
Foil gauges are relatively durable, bu . _ st
change at fgu]i strain. Eliminating noise in the strain-gauge cabling and amplification
electronics is of crucial importance for a good dynamic range. ; S—
Semiconductor strain gauges are much more susceptible to damage .
overload. In their favor, they produce a resistance change al:!out sevcm:,-i limes dh
of foil gauges for a given strain. This makes the task of signal processing muc

simpler for a given dynamic range.
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EXERCISES

8.1 [15] A robot is to be used for positioning a laser cutting device. The laser produces
a pinpoint, nondivergent beam. For general cutting tasks, how many degrees of
freedom does the positioning robot need? Justify your answer.

8.2 [15| Sketch a possible joint configuration for the laser-positioning robot of
Exercise 8.1, assuming that it will be used primarily for cutting at odd angles
through 1-inch-thick, 8 x 8-foot plates.

8.3 [17] For a spherical robot like that of Fig. 8.6, if joints 1 and 2 have no limits and
joint 3 has lower limit [ and upper limit u, find the structural length index, Q, , for
the wrist point of this robot.

8.4 [25] A steel shaft of length 30 cm and diameter 0.2 cm drives the input gear of a
reduction having n = 8. The output gear drives a steel shaft having length 30 em
and diameter 0.3 em. If the gears introduce no compliance of their own, what is
the overall stiffness of the transmission system?

8.5 [20] In Fig. 8.20, a link is driven through a shaft after a gear reduction. Model
the link as rigid with mass of 10 Kg located at a point 30 cm from the shaft axis.

Assume that the gears are rigid and that the reduction, n, is large. The shaft is
steel and must be 30 cm long. If the design specifications call for the center of link
mass to undergo accelerations of 2.0 g, what should the shaft diameter be to limit

dynamic deflections to 0.1 radian at the joint angle?

FIGURE 8.20: A link actuated through a shaft after a gear reduction.
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Electric motor

#1 Coupling

Connecting rod
#2 Coupling

#2 Gear #1 Gear

FIGURE 8.21: Simplified version of the drive train of joi

. of joint 4 of the PUMA
manipulator (i_'rom [23]). From International Encyclopedia of Robotics, by R. Dsc:i{f]
and S. Nof, editors. From “Testing,” by K. Law, N. Dagalakis, and D. Myers,

8.6 (15] If the output gear exhibits a stiffness - i ith i
Ir{r:ked and the shaft has stiffness of 300 ﬁt-lnqj?iztazf:::;ﬁsmtﬁ Tg:':lbﬁﬂa;
o fg}’n;s.s of ic al:lrive system in Fig. 8.207 1e
leper’s criteria for serial-link manipulators state tha i i
be _sq]vable if three consecutive axes intlzrsect at a single lr::::? {?rn:::I:I;'ra;r;:l
This is ba;gd on the idga that inverse kinematics can be decoupled by lookin :
?: the position of ti?c wrist point independently from the orientation of the wriss;
ame. Prupu%e a similar result for the Stewart mechanism in Fig. 8.14, 1o allow
the forward kinematic solution to be similarly decoupled. G
8.8 [20] In the Stewart mechanism of Fig. 8.14, if the 2-DOF universal joints at the
base were replaced with 3-DOF ball-and-socket joints, what would the total
number of degrees of freedom of the mechanism be? Use Griibler's formula s
8.9 [22] Figure 8.21 shows a simplified schematic of the drive system of joint 4 of th
PUMA 560 [23]. The torsional stiffness of the couplings is 100 Nt-m/radian eache
that of the shaft is 400 Nt-m/radian, and each of the reduction pairs has been
measured to have output stiffness of 2000 Nt-m/radian with its input gears fixed
E:th the first and secpr}d reductions have n = 6.2 Assuming the structure and.
) o :frll?sg]z;i Eg;gectly rigid, what is the stifiness of the joint (i.e., when the motor's
10 [25) What is the error if one a roximates th i i
ering just the stiffness of the ﬁ:?sl speed-reducﬁiiﬁs;:rrilsg.gxemsc S
8.11 [20] Figure 4. 1_4 shows an orthogonal-axis wrist and a nonorthogonal wrist, The
orth?gona!-ax:s wrist has link twists of magnitude 90°: the nononhugnnal.wrist
has link twists of ¢ and 180° — ¢ in magnitude. Describe the set of orientations that
tag:ﬂuﬁ::ﬁr:}!:amzbi; w:lthkthf: nonorthogonal mechanism. Assume that all axes can
and that links ca i i
o o v self~col|isil:u If;ss through one another if need be (i.e., workspace

2 7 - .
None of the numerical values in this exercise is meant to be realistic!
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FIGURE 8.22: Stewart mechanism of Exercise 8.12.

8.12 [18] Write down a general inverse-kinemalic solution for the Stewarl mechanism
shown in Fig. 8.22. Given the location of |T'} relative to the base frame { B}, solve
for the joint-position variables «; through d;. The #p, are 3 x 1 vectors which
locate the base connections of the linear actuators relative 1o frame {£}. The
Ty, are 3 x 1 vectors which locate the upper connections of the linear actuators
relative to the [rame [T}

8.13 [20] The planar two-link of example 5.3 has the determinant of its Jacobian given
by

det(J(0)) = I1113-. (8.31)

If the sum of the two link lengths. /|, + /5. is constrained Lo be equal Lo a constant.
what should the relative lengths be in order to maximize the manipulator’s
manipulability as defined by (8.6)?

8.14 |28] For a SCARA robot, given that the sum of the link lengths of link 1 and link
2 must be constant, what is the optimal choice of relative length in terms of the
manipulability index given in (8.6)?7 Solving Exercise 8.13 first could be helpful.

8.15 [35] Show that the manipulability measure defined in (8.6) is also equal to the
product of the eigenvalues of J(8).

8.16 [15] What is the torsional stiffness of a 40-cm aluminum rod with radius 0.1 em?

8.17 (5] What is the effective ““gear™ reduction, », of a bell system having an input
pulley of radius 2.0 cm and an output pulley of radius 12.0 cm?

8.18 [10] How many degrees of freedom are required in a manipulator used to
place cylindrical-shaped parts on a flat plane? The cylindrical parts are perfectly
symmetrical about their main axes.

8.19 [25] Figure 8.23 shows a three-fingered hand grasping an object. Each finger has
three single-degree-of-freedom joints. The contact points between fingertips and
the object are modeled as “point contact™—that is, the position is fixed, but the
relative orientation is free in all three degrees of freedom. Hence, these point
contacts can be replaced by 3-DOF ball-and-socket joints for the purposes of
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analysis. Apply Griibler's formula to compute how m
: an
overall system possesses, i BN R
8.20 [23] Figure 8.24 shows an object connected to the ground with three rods. Each
gogggu;récilled ::Iﬂ the object with a 2-DOF universal joint and 1o the ground with
s all-and-socket joint. How many degrees of freedom does the system

FIGURE 8.23: A three-fingered hand in which each finger ha
. : sthree d
grasps an object with “point contact.” " "irpeesotieadon

L.
S

FIGURE 8.24: Closed loop mechanism of Exercise 8.20.

8.21 [18] Verily t_haL if two transmission systems are connected serially, then the
equivalent sut'fnc%s of the overall system is given by (8.14). It is perhaps simplest
to think of the serial connection of two linear springs having stiffness coefficients
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k, and k, and of the resulting equations:
[ =kiéxg,
F = kabxs, (8.32)
T = kgyml8x; +8x3).

8.22 (20] Derive a formula for the stiffness of a belt-drive system in terms of the pulley
radii (r, and r,) and the center-to-center distance between the pulleys, 4,. Start

from (8.22).

PROGRAMMING EXERCISE (PART 8)

1. Write a program to compute the determinant of a 3 x 3 matrix.

2. Write a program to move the simulated three-link robot in 20 steps in a straight
line and constant orientation from

[0.25 ]

°r=| 00

| 0.0

Lo = -
0.95

0r =1 0.0
| 0.0

in increments of 0,05 meter. At each location, compute the manipulability measure
for the robot at that configuration (i.e., the determinant of the Jacobian). List, or,
better yet, make a plot of the values as a function of the position along the X axis.

Generate the preceding data for two cases:

(a) !, =!, = 0.5 meter, and
(b) [} = 0.625 meter, /; = 0.375 meter.

Which manipulator design do you think is better? Explain your answer.

MATLAB EXERCISE 8

Section 8.5 introduced the concept of kinematically redundant robots. This exercise
deals with the resolved-rate control simulation for a kinematically redundant robot. We
will focus on the planar 4-DOF 4R robot with one degree of kinematic redundancy (four
joints to provide three Cartesian motions: two translations and one rotation}. This robot
is obtained by adding a fourth R-joint and a fourth moving link L to the planar 3-DOF,
3R robot (of Figures 3.6 and 3.7; the DH parameters can be extended by adding one row
to Figure 3.8).

For the planar 4R robot, derive analytical expressions for the 3 x 4 Jacobian
matrix; then, perform resolved-rate control simulation in MATLAB (as in MATLAB
Exercise 5). The form of the velocity equation is again kX =¥ J©; however, this equation
cannot be inverted by means of the normal matrix inverse, because the Jacobian matrix
is nonsquare (three equations, four unknowns, infinite solutions to ). Therefore, let us
use the Moore-Penrose pseudoinverse J* of the Jacobian matrix: J* = J7(JJT)~1. For
the resulting commanded relative joint rates for the resolved-rate algorithm, © = o
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iu:;sel 1thna- minimum-norm solution from the infinite possibilities (i.e., this specific © is
?I“ hgs possible to satisfy the commanded Cartesian velocities ).

- is rioll:atmn represents the particular solution only—that is, there exists a homo-
gr i) solution to optimize pe_rfpnnance: (such as avoiding manipulator singularities
=3 ing joint ann_s} in addition to satisfying the commanded Cartesian motion

erformance optimization is beyond the scope of this exercise .

Gwe_n:_."rl =10m Ly =10m,Ly=02m, L;=02m
The initial angles are: .

6, 5
g=iBl | W
o 30
by 40°

The (constant) commanded Cartesjan velocity is

: 0

0% _0) % oo

X="1y = {-02} (ms, radss).
w. 0.2

S

cuntrosileam resolved-rate mntinp. for the particular solution only, for 3 sec, with a
ime step of 0.1 sec. Also, in the same loop, animate the robot to the screen

during each time step, so th
f at vou 1 L} . g
ronas. i P you can watch the simulated motion to verify that it is

a) Present four plots (each set on a separate graph, please):

L. the four joint angles (degrees) © = {6, 8, 63 6,7 vs. time;
2. the four joint rates (rad/s) © = {6y 6, 65 6,)7 vs. time;
3. the joint-rate Euclidean norm ||| (vector magnitude) vs. time:

4. the three Cartesian com 0
| ponents of U T, X = {x y )T i
that it will fit) vs. time. ¥ e s L

Carefully label (by hand i 1
it aid unilg. y hand is fine!) each component on each plot. Also, label the axis

b) Check your Jacobian matrix results for the init; i
e initial and final joint-angl
_rp;ans c;ggm Cork}a MAT[:AB Roboties Toolbox. Try functiunjjncobﬂrgj .El'.‘:‘::"tsi‘cnnl:l?*r
€ toolbox Jacobian functions are for motion of {4) with respect to (0}, not for {Hi

with respect to {0} as in the problem assi i i
1 _ | gnment, The preceding funct i
Jacobian result in {0} coordinates; jacobn() would give results ii {4} Ct;{:):l'c%i!::tsetshe
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CHAPTER 9 9.2 FEEDBACK AND CLOSED-LOOP CONTROL

. We will_model & manipulator as a mechanism that s instrumented with sensors

. t ol of man|pU|atO rS at cach joint to measure tlhe joint angle ;lng that |1_ns an actuator at each joint to
Ll near Con I' apply a torque on the neighboring (next higher) link.', Although other physical
arrangements of sensors are sometimes used. the vast majority of robots have a
position sensor at each joint. Sometimes velocity sensors (tachometers) are also

present at the joints. Various actuation and transmission schemes are prevalent in
9.1 INTRODUCTION industrial robots. but many of these can be modeled by supposing that there is a
9.2 FEEDBACK AND CLOSED-LOOP CONTROL single actuator at each joint, o
9.3 SECOND-ORDER LINEAR SYSTEMS We wish to cause the manipulator joints to follow prescribed position trajec-
9.4 CONTROL OF SECOND-ORDER SYSTEMS tories. but the actuators are commanded in terms of torque, so we must use some
9.5 CONTROL-LAW PARTITIONING kind of control system to compute appropriate actuator commands that will realize
9.6 TRAJECTORY-FOLLOWING CONTROL this desired motion, Almost always. these torques are determined by using feedback
9.7 DISTURBANCE REJECTION . from the joint sensors to compute the torque required.
9.8 CONTINUOUS VS. DISCRETE TIME CONTROL ; , Figure 9.1 shows the relationship between the trajectory generator and the
9.9 MODELING AND CoNT:?!;'UC;;::_N:;:;?;‘;MTROLI.ER physical robot. The robot daccepts a vector of joint torques. r. from the control
9.10 ARCHITECTURE OF AN - -

system. The manipulator's sensors allow the controller to read the vectors of joint
positions. ©. and joint velocities, ©). All signal lines in Fig, 9,1 carry N x 1 veclors
(where N is the number of joints in the manipulator).

Let's consider what algorithm might be implemented in the block labeled
“econtrol system™ in Fig, 9.1. One possibility is to use the dynamic equation of the
| robot (as studied in Chapter 6) to calculate the lorques required for a particular

trajectory. We are given @y. O, and @, by the trajectory generator, so we could
INTRODUCTION '

9.1 use (6.59) to compute

; joint-

Armed with the previous material, we now have the means to cillculstteh guugh

osition time histories that correspond to desired end-effecmf n’;mutmrrnalmm"!’r 2
sppé-‘-ce In this chapter, we begin to discuss how to cause the manipulato

perform these desired motions.

T = M{Bﬂl}(‘:}d "1' V[@ﬂl- E‘:}If:l -+ G{Eh)d}' {g.l}

This computes the torques that our model dictates would be required to realize

ill discuss fall into the class called linear-control the Ldeiircd lrajeczlury. If our dynamic mode] were complete and accurate anc! no

The earmurol methads that we wit i | techniques is valid only when “noise " or other disturbances \Were present. continuous use of (9.1) along the desired
systems. Strictly speaking. the use of ““ﬂar'mnt;lu tically by flinear differential ! trajectory would realize the desired trajectory. Unfortunately. imperfection in the
the system being studied can be modeled mathema dynamic model and the inevitable presence of disturbances make such a scheme

' ntiall
equations. For the case of manipulator control, such ]mca_r mj:thods rglfl.: e;senamii
bg viewed as approximate methods, for, as we have seen in Lhal?ter A e-l. }'uaﬁon
of a manipulator are more properly represented by a nonlinear dlfl:remm eq aﬁons.

it i 2 ke such approxim !
! t it is often reasonable to ma .
Nonetheless, we will see tha i
and it also is the case that these linear methods are the ones most often us

impractical for use in real applications. Such a control technique is termed an open-
loop scheme. because there is no use made of the feedback from the joint sensors

0 ———

0u(n) Control T
{;}d{,} system

—

Trajectory
generator

=g s

" Robot
rent industrial practice. . ‘ .
o Finally, consideration of the linear approach will Eirve aslg l;istllf i-:;l IWE
‘ [ i apter 10. 0
linear control systems in Chap
more complex treatment of non . . =
approach ]]:;nr_-ar control as an approximate method for mampu}atgrh ccintrr?ﬂ 4
: i er 10.

justification for using linear controllers is not only empirical. blln a:::m] i
Jwill prove that a certain linear controller leads to a reasonable mn'cs e
even without resorting to a linear approximation of manipulator dynamics.

i ' ki irs sections of the
familiar with linear-control systems might wish to skip the first four section

current chapter.

b |

FIGURE 9.1: High-level block diagram of a roboi-control system.

'Remember. all remarks made concerning rotational joints hold analogously for linear joints, and vice
VETSa

262
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(i.e., (9.1) is a function only of the desired trajectory, &, and its derivatives, and not
a function of ®, the actual trajectory).

Generally, the only way to build a high-performance control system is to make
use of feedback from joint sensors, as indicated in Fig. 9.1. Typically, this feedback
is used to compute any servo error by finding the difference between the desired
and the actual position and that between the desired and the actual velocity:

E — E){f e @.
E=6,-0. (9.2)

The control system can then compute how much torque to require of the actuators
as some function of the servo error. Obviously, the basic idea is to compute actuator
torques that would tend to reduce servo errors. A control system that makes use of
feedback is called a closed-loop system. The “loop” closed by such a control sysiem
around the manipulator is apparent in Fig. 9.1,

The central problem in designing a control system is to ensure that the resulting
closed-loop system meets certain performance specifications. The most basic such
criterion is that the system remain stable. For our purposes, we will define a system
to be stable if the errors remain “small”” when executing various desired trajectories
even in the presence of some “moderate’” disturbances. It should be noted that an
improperly designed control system can sometimes result in unstable performance,
in which servo errors are enlarged instead of reduced. Hence, the first task of a
control engineer is to prove that his or her design yiclds a stable system; the second
is to prove that the closed-loop performance of the system is satisfactory. In practice,
such “proofs” range from mathematical proofs based on certain assumptions and
models to more empirical results, such as those obtained through simulation or
experimentation.

Figure 9.1,in which all signals lines represent NV x 1 vectors, summarizes the fact
that the manipulator-control problemis a multi-input, multi-output (MIMO) control
problem. In this chapter, we take a simple approach to constructing a control system
by treating each joint as a separate system to be controlled. Hence, for an N -jointed
manipulator, we will design N independent single-input, single-output (SISO)
control systems. This is the design approach presently adopted by most industrial-
robot suppliers. This independent joint control approach is an approximate method
in that the equations of motion (developed in Chapter 6) are not independent, but
rather are highly coupled. Later, this chapter will present justification for the linear

approach, at least for the case of highly geared manipulators.

SECOND-ORDER LINEAR SYSTEMS

Before considering the manipulator control problem, let’s step back and start by
considering a simple mechanical system. Figure 9.2 shows a block of mass m attached
to a spring of stiffness k and subject to friction of coefficient b. Figure 9.2 also indicates
the zero position and positive sense of x, the block’s position. Assuming a frictional
force proportional to the block’s velocity, a free-body diagram of the forces acting
on the block leads directly to the equation of motion,

mi + bi +kx = 0. (9.3)
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XXEX b
LT i 77777 (i r’/é

NS SN

FIGURE 9.2: Spring—mass system with friction.

H : p
bya:zz,cg!:domg-lu?p dynamics of this one-degree-of-freedom system are described
iy i -order lmear’constant_-coefﬁcient differential equation [1]. The solution
e kre_:;_::;l S%:]]uta_tmn {ﬁ.i} Is a time function, x(¢), that specifies the motion
' ution will depe e e P .
initial position and slomisn pend on the block’s initial conditions—ihat is, its
We will use this simple mechani
. cal system as an example with whi i
cht
f;?;e?:s; Eﬂ?ﬂ s;islem CDT‘:EPIS- Unfortunately, it is impossible to do :lsrt?:iﬁ
eory with only a brief introducti M di
cont . ion here. We will dis
diffﬁ:z;g;?t:;uma.t;ss:mﬁng no more ]llhan that the student is familiar withcziﬁ;z
- Hence, we will not use many of the popula
F : i 1
f:cl:;?é*j;‘g;t?xéng trade, For example, Laplace t'&n!fnrmspanpd Oth;DLSﬂ;fmt;l:
I are a prerequisit i
the field is [4]. prerequisite nor are introduced here. A good reference for
charai?t::{st;ﬁ:nmsug-ge“s that the system of Fig. 9.2 might exhibit several different
it ;ﬁflﬁps. F_or example. in the case of a very weak spring (i.e., & small)
it 1n=|,'t:1l.1h:i:!'r rmta vy friction (i.e., b large) one imagines that, if the block were P.érturbed
o g ( urfn to _us resting position in a very slow, sluggish manner. Huweuer‘
i mr;i;u { spring and very low friction, the block might oscillate several timc;
b pervisans 983 odreSL These different possibilities arise because the character of the
Fro {ﬂi ) dapends upon the values of the parameters m, b, and k.
m the study of differential equations [1], we know that the form of i

solution to an equation of the f
Somiion, q e form of (9.3) depends on the roots of its characteristic

ms® + bs + k = 0. (9.4)
This equation has the roots |
2m 2m
oo b VB —dmk
b ameas e B

The location of s i
| 1 and s, (sometimes called the pol i
g ] : poles of the s
::ZII ;an;aﬁ:na?fh plane dl'EtaLE the nature of the motions of the systeﬁt?fms) ::lt; l:c
s cnm! [ein( the tii-e:haw:u_- of tl}c system is sluggish and nonoscillatory. If sl and .rz
piex (1.e., have an imaginary component) then the behavior of the s;fstcm i§
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oscillatory. If we include the special limiting case between these two behaviors, we
have three classes of response to study:

1. Real and Unequal Roots. This is the case when b? > 4 mk; that is, friction
dominates, and sluggish behavior results. This response is called overdamped.

2. Complex Roots. This is the casec when b* < 4 mk: that is, stiffness dominates,
and oscillatory behavior results. This response is called underdamped.

3. Real and Equal Roots. This is the special case when b* = 4mk; that is,
friction and stiffness are “balanced,” yielding the fastest possible nonoscillatory
response. This response is called critically damped.

The third case (critical damping) is generally a desirable situation: the system
nulls out nonzero initial conditions and returns to its nominal position as rapidly as
possible. yet without oscillatory behavior.

Real and unequal roots

It can easily be shown (by direct substitution into (9.3)) that the solution, x(f). giving
the motion of the block in the case of real, unequal roots has the form

x(t) = ' + e, (9.6)

where s, and s, are given by (9.5). The coefficients ¢; and ¢, are constants that can
be computed for any given set of initial conditions (i.e., initial position and velocity
of the block).

Figure 9.3 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are real and unequal, the system exhibits sluggish or overdamped motion.

In cases where one of the poles has a much greater magnitude than the other,
the pole of larger magnitude can be neglected, because the term corresponding
to it will decay to zero rapidly in comparison to the other, dominant pole. This
same notion of dominance extends to higher order systems—for example, often a

Im [5] 4 x(1) 4
L
LW . e
L4 hy -
5 53 Rels) /

FIGURE 9.3: Root location and response to initial conditions for an overdamped
system.
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third-order system can be studied i -
Aot godes 1ed as a second-order system by considering only two

EXAMPLE 9.1

z:;irmige tl:jc Eﬂ.o::;m of the system in Fig. 9.2 if parameter values are m = 1.b = 5
= 6 and the block (initially at rest) is released fr o R
The characteristic equation is om the position x = 1.

s2 455 +6=0, (9.7)
which has the roots s; = —2 and 5, = —3. Hence, the response has the form
5 ) = e5a " 4 oy, (9.8)
o To sty hese sondions a = . e s v~ 10 TP
¢ty =-—1
and
—2¢y — 3¢y =0, (9.9)

which are satisfied b 3 " A
givex by Y €1 3 and ¢, = 2. So, the motion of the system for¢ > 0 is

_ _a . =X e
*() = -3¢ +27, (9.10)

Complex roots
For the case where the characteristic equation has complex roots of the form
§p = A+ i,
N Sy = A — i, (9.11)
it 1s still the case that the solution has the form
x(t) = c1e"" + cye™, (9.12)

iowsver, E‘,ql.jﬂ.til:m (9.12) is difficult to use directly, because it involves imaginary
mbers explicitly. It can be shown (see Exercise 9.1) that Euler’s formula

e'* = cosx +isinx, (9.13)
allows the solution (9.12) to be manipulated into the form
x(1) = 1€ cos(ur) + coe™ sin(ut). (9.14)

As i
before, the coefficients ¢, and ¢ are constants that can be computed for any

given set of initial conditions (i.e., initial positi :
. Ly osition and v
write the constants ¢; and ¢, in the form ¥ elocity of the block). If we

€} =rcosé,

Ca=r S]ﬂ E, (915}
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then (9.14) can be written in the form
x(t) = re™ cos(ut — 8), (9.16)

where

N
= r:]+r.“2.

§ = Atan2(c,, ;). (9.17)

In this form, it is easier to see that the resulting motion is an oscillation whose
amplitude is exponentially decreasing toward zero.

Another common way of describing oscillatory second-order systems is in
terms of damping ratio and natural frequency. These terms are defined by the
parameterization of the characteristic equation given by

2+ 2w, + 0l =0, (9.18)

where ¢ is the damping ratio (a dimensionless number between 0 and 1) and
w, is the natural frequency.? Relationships between the pole locations and these

parameters are
A= —lw,

p=wqf1-12, (9.19)

In this terminology, x, the imaginary part of the poles, is sometimes called the

damped natural frequency. For a damped spring—mass system such as the one in
Fig. 9.2, the damping ratio and natural frequency are, respectively,

and

b
‘= 2/km’
w, = k/m. (9.20)

When no damping is present (b = 0 in our example), the damping ratio becomes
zero; for critical damping (b* = 4km), the damping ratio is 1.

Figure 9.4 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order system
are complex, the system exhibits oscillatory or underdamped motion.

EXAMPLE 9.2

Find the motion of the system in Fig. 9.2 if parameter values are m = 1, b = 1, and
k = 1 and the block (initially at rest) is released from the position x = —1.
The characteristic equation is

sZ+s+1=0, (9.21)

2The terms damping ratio and natural frequency can also be applied to overdamped systems,.in which
case [ > 1.0.
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Im |s} x(r) 4

Re/s] YA N7

X 5

FIG ; i initi
URE 9.4: Root location and response to initial conditions for an underdamped

System.
which has the roots 5, = —% £ 4’;:‘ - Hence, the response has the form
- V3 V3
xX(t)=e 2 |¢ —_ 1 -
x(t) =e (L] cos 5t tepsin —E-I) (9.22)

We now use the given initial conditi
€ | nditions, x(0) = —1 and £(0) = 0. t
¢y and ¢,. To satisfy these conditions at 1 — 0, we must have SR

C_'[:""]

and
_1o V3
39~ 5 a=0 (9.23)
which are satisfied = - g 38 : ~
is v by ed by ¢, Land ¢, = . So, the motion of the system for ¢ > 0
5 vi V3 3
_r(r}: e % o S gl SR i £ PO e
( g B r) (9.24)
This result can also be put in the form of (9.16), as
2v3 _, V3
)= —p ¥ —r e
x(r) 3 e cos(zr+12[})_ (9.25)

Real and equal roots

By substitution into (9.3), it can be shown that, in

; the case of real
(i.c., repeated roots), the solution has the form s

X(1) = ¢yt + cpre, (9.26)
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Im [s} ¢ "

L.V
Ci
] I

Re(s)

FIGURE 9.5: Root location and response to initial conditions for a critically damped
system.

where, in this case, 5, = 5, = —{’E. s0 (9.26) can be written
x(f) = (cg + cyf)e™ B (9.27)
In case it is nol clear, a quick application of I'Hopital’s rule [2] shows that, for

; 4 : d' ¥
any ¢y, ¢, and a fim 'I:(.'L i Ezf}e_ar it (928)
—>co

Figure 9.5 shows an example of pole locations and the corresponding time
response to a nonzero initial condition. When the poles of a second-order sys%:
are real and equal, the system exhibits critically damped motion, the fastest possi

nonoscillatory response.

EXAMPLE 9.3

i in Fi [ ter values arem = 1,b = 4,
Work out the motion of the system in Fig. 9.2 if parame @ .
and k = 4 and the block (initially at rest) is released from the position x = —1.

The characteristic equation is
s +4s4+4=0, (9:29)
which has the roots s; = 5, = —2. Hence, the response has the form
x(1) = (e; + ) . (9.30)

We now use the given initial conditions, x(0) = —1 and x(0) = 0, to calculate
¢; and ¢,. To satisfy these conditions at r = 0, we must have

l:'-l = _1
= —2¢c;+c =10, (9.31)
which are satisfied by ¢; = —1 and ¢; = —2. So, the motion of the system for r = 0
ol x(t) = (=1 =20)e~%, (9.32)
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In Examples 9.1 through 9.3, all the systems were stable. For any passive
physical system like that of Fig, 9.2, this will be the case. Such mechanical systems
always have the properties

m = (),

b >0, (9.33)
k>0,
In the next section, we will see that the action of a control system is, in effect, to

change the value of one or more of these coefficients. It will then be necessary to
consider whether the resulting system is stable.

9.4 CONTROL OF SECOND-ORDER SYSTEMS

Suppose that the natural response of our second-order mechanical system is not
what we wish it to be. Perhaps it is underdamped and oscillatory, and we would like
it to be critically damped; or perhaps the spring is missing altogether (k = 0), so the
system never returns to x = 0 if disturbed. Through the use of sensors, an actuator,
and a control system, we can modify the system’s behavior as desired.

Figure 9.6 shows a damped Spring-mass system with the addition of an actuator
with which it is possible (o apply a force f to the block. A free-body diagram leads
to the equation of motion,

mi + bi + kx = f. (9.34)

Let’s also assume that we have sensors capable of detecting the block’s position and
velocity, We now propose a contrel law which computes the force that should be
applied by the actuator as a function of the sensed feedback:

§i= =kt — & X, (9.35)

Figure 9.7 is a block diagram of the closed-loop system, where the portion to the left
of the dashed line is the control system (usually implemented in a computer) and
that to the right of the dashed line is the physical system. Implicit in the figure are
interfaces between the control computer and the output actuator commands and
the input sensor information.

The control system we have proposed is a position-regulation system-—it
simply attempts to maintain the position of the block in one fixed place regardless

%IL,

e — (00—
m

b [/
FILITITI7 7 77, f//f/f;’/e"z‘?z’f/fz"fé

NSRS

FIGURE 9.6: A damped spring - mass system with an actuator.



272 Chapter 9 Linear control of manipulators

Page 74 of 96

- System x

]
I
I
|
|
[
!
I
I
|
I
I
I
[
|
|
]
I
i
|
|
I
[

FIGURE 9.7: A closed-loop control system. The control computer (to the left of the
dashed line) reads sensor input and writes actuator output commands.

of disturbance forces applied to the block. In a later section, we will mns{;ru::t eg
trajectory-following control system, which can cause the block to follow a desin

sition trajectory. _
S IB}! eqluatingthc open-loop dynamics of (9.34) with the control law of (9.35),

we can derive the closed-loop dynamics as

mX 4 bx + kx = —k,x — kX, (9.36)

or
m¥ + (b+k )k + (k+k,)x = 0, (9.37)

or
mi+b'sx+k'x =0, (9.38)

; it | t, by settin
where ¥’ = b + k, and k' = k + k. From (9.37) and (9.38), it is clear tha Earym h-,wE
h trol gains, k, and k ,, we can cause the closed-loop system to app .
e el io i ins would be chosen to obtain

any second system behavior that we wish. Often, gains : _
critical damping (ie., ' = 2vmk’) and some desired closed-loop stiffness given
directly by &'. . |

’ Igmg that k, and &, could be positive or negative, dept:lnd:ng on the parameters
of the original s;rstem. However, if ' or k' became ne‘gatx\r_c. the res_.u]t would Ee
an unstable control system. This instability will be obvious if one writes dow; the
solution of the second-order differential equation |;i11 the i_form of (9.6), (9.1 ).;1 r;:;‘
(9.26)). It also makes intuitive sense that, if b’ or k" is negative, servo errors ten

get magnified rather than reduced.

EXAMPLE 9.4

If the parameters of the system in Fig. 9.6 arem = 1,0 = 1,vand k=1, ﬁ];:d g:il:s

k. and k, for a position-regulation control law that results in the system's g
() 7

.:ﬁit'.icall*g,r damped with a closed-loop stiffness of 16.0.
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If we wish k' to be 16.0, then, for critical damping, we require that b’ =
2+/mk’ = 8.0. Now, k = 1 and b = 1, so we need

k, = 15.0,
k, = 7.0. (9.39)

9.5 CONTROL-LAW PARTITIONING

In preparation for designing control laws for more complicated systems, let us
consider a slightly different controller structure for the sample problem of Fig. 9.6.
In this method, we will partition the controller into a model-based portion and a
servo portion. The result is that the system’s parameters (i.e., m, b, and k, in this ca se)
appear only in the model-based portion and that the servo portion is independent
of these parameters. At the moment, this distinction might not seem important,
but it will become more obviously important as we consider nonlinear systems

in Chapter 10. We will adopt this control-law partitioning approach throughout
the book.

The open-loop equation of motion for the system is
mi + bx + kx = f. (9.40)

We wish to decompose the controller for this system into two parts. In this case, the
model-based portion of the control law will make use of supposed knowledge of m,
b, and k. This portion of the control law is set up such that it reduces the system so
that it appears to be a unit mass. This will become clear when we do Example 9.5.
The second part of the control law makes use of feedback to modify the behavior of
the system. The model-based portion of the control law has the effect of making the
system appear as a unit mass, so the design of the servo portion is very simple—gains
are chosen to control a system composed of a single unit mass (i.e., no friction, no
stiffness).

The model-based portion of the control appears in a control law of the form

f=eaf +8. (9.41)

where o and $ are functions or constants and are chosen so that, if ' is taken as the
new input to the system, the system appears to be a unit mass. With this structure of
the control law, the system equation (the result of combining (9.40) and (9.41)) is

mi + bx +kx = af’' + 8. (9.42)

Clearly, in order to make the system appear as a unit mass from the f' input, for
this particular system we should choose & and g as follows:

¥=m,
B = bk + kx. (9.43)

Making these assignments and plugging them into (9.42). we have the system
equation

F=f (9.44)
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FIGURE 9.8: A closed-loop control system employing the partitioned control method.

This is the equation of motion for a unit mass. We now proceed as if (9.44) were
the open-loop dynamics of a system to be controlled. We design a control law to
compute f’, just as we did before:

fr=—kg—k,nx (9.45)
Combining this control law with (9.44) yields
itkx+kx=0 (9.46)

Under this methodology, the setting of the control gains is simple and is independent
of the system parameters; that is,
k=LK, (9.47)

must hold for critical damping. Figure 9.8 shows a block diagram of the partitioned
controller used to control the system of Fig. 9.6.

EXAMPLE 9.5

If the parameters of the system in Fig. 9.6 arem =1,b = 1,and k = 1 find a, 8. an‘d
the gains k , and k, for a position-regulation control law that results in the system’s
being critically damped with a closed-loop stiffness of 16.0.

We choose

=1,

i (9.48)

so that the system appears as a unit mass from the fictitious f’ inpuli We thcn.sﬂl
gain k, to the desired closed-loop stiffness and set k, = 2 [k, for critical damping.
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This gives

i’P =16.0,

k, =8.0. (9.49)

9.6 TRAJECTORY-FOLLOWING CONTROL

Rather than just maintaining the block at a desired location, let us enhance our
controller so that the block can be made to follow a trajectory. The trajectory is
given by a function of time, X4(1), that specifies the desired position of the block.
We assume that the trajectory is smooth (i.e., the first two derivatives exist) and that
our trajectory generator provides X4, X4, and ¥, at all times 7. We define the servo
error between the desired and actual trajectory as e = x,; — x. A servo-control law
that will cause trajectory following is

fl =Xy + k,é+ kpé’. (9.50)

We see that (9.50) is a good choice if we combine it with the equation of motion of
a unit mass (9.44), which leads to

X=Xy +k,é+ kye, (9.51)
or
€+k,é+kye=0. (9.52)
This is a second-order differential equation for which we can choose the coefficients,
S0 we can design any response we wish. (Often, critical damping is the choice made.)
Such an equation is sometimes said to be written in error space, because it describes
the evolution of errors relative to the desired trajectory. Figure 9.9 shows a block
diagram of our trajectory-following controller.
If our model is perfect (i.e., our knowledge of m, b, and k), and if there is
no noise and no initial error, the block will follow the desired trajectory exactly. If

there is an initial error, it will be suppressed according to (9.52), and thereafter the
system will follow the trajectory exactly.

FIGURE 9.9: A trajectory-following controller for the system in Fig. 9.6.
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9.7 DISTURBANCE REJECTION

One of the purposes of a control system is to provide djisﬂtrl:mrncei ;e'];:::;:::c;hg;

i intai i.e., minimize errors) even in the

is, to maintain good performance (i.e., _ il e
’ i ise. In Fig. 9.10, we show the trajectory

some external disturbances or noise ; -

controller with an additional input: a disturbance force fgg. An analysis of our

closed-loop system leads to the error equation

€+ kllé Jn ka = fdisl‘ (953]
Equation (9.53) is that of a differential equation driven b}f a forc;‘lngh function.
If it is known that fj;, is bounded —that is, that a constant a exists such that

mrﬂx fdiSI{"} < da, (954]

then the solution of the differential equation, (), 1s als:d b?unieg;]ﬂ;sel;;:ssl‘:;i -;h.;
1 bounded-input, -
operty of stable linear systems known as .
t];)laﬂglrst[;bﬂ?ty [3, 4] This very basic result ensures that, for a large class of possible
disturbances, we can at least be assured that the system remains stable.

Steady-state error

Let’s consider the simplest kind of disturbance —namely, that fyq is a -::n'.‘.':'lstatnlE:i .I:n
this case, we can perform a steady-state analysis by a_nalyzmg th_e system at 1:&5(9 53)
the derivatives of all system variables are zero). Setting derivatives to zero in (3.

yields the steady-state equation

9.55
kpe = faise (9.55)

" e = fualky. (9.56)

The value of e given by (9.56) represents a steady-state error. Thus, it is clear that
the higher the position gain k ,, the smaller will be the steady-state error.

.f:!:\!

ALl I b S ] System

"

bx + kx

FIGURE 9.10: A trajectory-following control system with a disturbance acting,
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Addition of an integral term

In order to eliminate steady-state error, a modified control law is sometimes used.
The modification involves the addition of an integral term to the control law. The
control law becomes

fr:-i:d+kué:+kpﬂ+k;ffdr. (95?}

which results in the error equation

E-f—kt:é-i-kpe —F—R!-ffl:ff:_fdiﬂ. [9,58)

The term is added so that the system will have no steady-state error in the presence
of constant disturbances. If e(r) = 0 for r < 0, we can write (9.58) for r = 0 as

E+ké+kyé+he= fy,, (9.59)
which, in the steady state (for a constant disturbance), becomes

kf-f ] Gr (976{])
S0
=0 (9.61)

With this control law, the system becomes a third-order system, and one can
solve the corresponding third-order differential equation to work out the response
of the system to initial conditions, Often, k; 18 kept quite small so that the third-order
system is “close™ to the second-order system without this term (i.e., a dominant-
pole analysis can be performed). The form of control law (9.57) is called a PID
control law, or “proportional, integral, derivative” control law [4]. For simplicity,

the displayed equations generally do not show an integral term in the control laws
that we develop in this book.

9.8 CONTINUOUS VS. DISCRETE TIME CONTROL

In the control systems we have discussed, we implicitly assumed that the control
computer performs the computation of the control law in zero time (i.e., infinitely
fast), so that the value of the actuator force f is a continuous function of time. Of
course, in reality, the computation requires some time, and the resulting commanded
force is therefore a discrete “staircase” function. We shall employ this approximation
of a very fast control computer throughout the book. This approximation is good
if the rate at which new values of f are computed is much faster than the natural
frequency of the system being controlled. In the field of discrete time control or
digital control, one does not make this approximation but rather takes the servo
rate of the control system into account when analyzing the system [3].

We will generally assume that the computations can be performed quickly
enough that our continuous time assumption is valid. This raises a question: How
quick is quick enough? There are several points that need to be considered in
choosing a sufficiently fast servo (or sample) rate:
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Tracking reference inputs: The frequency content of the desired or reference input
places an absolute lower bound on the sample rate. The sample rate must be
at least twice the bandwidth of reference inputs. This is usually not the limiting

factor.

Disturbance rejection: In disturbance rejection, an upper bound on performance
is given by a continuous-time system. If the sample period is Jonger than the
correlation time of the disturbance effects (assuming a statistical model for
random disturbances), then these disturbances will not be suppressed. Perhaps
a good rule of thumb is that the sample period should be 10 times shorter than

the correlation time of the noise [3].

Antialiasing: Any time an analog sensor is used in a digital control scheme, there
will be a problem with aliasing unless the sensor’s output 1s strictly band
limited. In most cases, sensors do not have a band limited output, and so
sample rate should be chosen such that the amount of energy that appears in

the aliased signal is small.

Structural resonances: We have not included bending modes in our characterization
of a manipulator’s dynamics. All real mechanisms have finite stiffness and so
will be subject to various kinds of vibrations. If it is important to suppress these
vibrations (and it often is), we must choose a sample rate at least twice the
natural frequency of these resonances. We will return to the topic of resonance

later in this chapter.

9.9 MODELING AND CONTROL OF A SINGLE JOINT

In this section, we will develop a simplified model of a single rotary joint of a
manipulator. A few assumptions will be made that will allow us to model the
resulting system as a second-order linear system. For a more complete model of an
actuated joint, see [5].

A common actuator found in many industrial robots is the direct current (DC)
torque motor (as in Fig. 8.18). The nonturning part of the motor (the stator) consists
of a housing, bearings, and either permanent magnets or electromagnets. These
stator magnets establish a magnetic field across the turning part of the motor (the
rotor). The rotor consists of a shaft and windings through which current moves to
power the motor. The current is conducted to the windings via brushes, which make
contact with the commutator. The commutator is wired to the various windings (also
called the armature) in such a way that torque is always produced in the desired
direction. The underlying physical phenomenon [6] that causes a motor to generate
a torque when current passes through the windings can be expressed as

F=gqV x B, (9.62)

where charge ¢, moving with velocity V through a magnetic field B, experiences a
force F. The charges are those of electrons moving through the windings, and the
magnetic field is that set up by the stator magnets. Generally, the torque-producing
ability of a motor is stated by means of a single motor torque constant, which relates

armature current to the output torque as
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Wh i ing, i

Hmzx:u;:em:or Is rotating, it acts as a generator, and a vol tage develops across the
- ; sccqnd motor constant, the back emf constant.® describes the voltage

generated for a given rotational velocity: .

= krgm d (9.64]

3&:;;!% ;r:?e fact l:lhat the commutator is switching the current through various sets
auses the torque produced to contain some ri
sometimes important, this effect can usuall i P Py e
nt, y be ignored. (In any case, it is qui
to model—and quite hard to compensate for, even if it is modzled.) g ama

Motor-armature inductance

f;?::rc 9.11 shows the glectric circuit of the armature. The major components are a
age source, v, the inductance of the armature windings, /,, the resistance of the

armature windings, r,, and the generated b ircuit i i
i diffemntia? bred s g ack emf, v. The circuit is described by a

l’ﬂjﬂ + Fa iu e i krém' (965)
tllt] ;svgiinc‘rtal;y de;ira:ble to control the torque generated by the motor (rather than
elocity) with electronic motor driver circuit ive circui
ry. These drive circuits se h
current through the armature and contin ] a2
! uously adjust the voltage
a desired current i, flows through S
: 1 the armature. Such a circuit is call
amplifier motor driver [7]. In these cu i e
‘ rrent-drive systems, the rate at which
s th
?n:lf;u;e current can t.": commanded to change is limited by the motor inductanc:
;ffect : fhan u?pcr limit on the voltage capability of the voltage source v . The net
gu ;1 0 aflnw_-p?ss filter beufveen the requested current and ou tpu‘f torque
— &- Tl:t simplifying assumption is that the inductance of the motor can be
~ rfp mg:l n._ﬂl ;: s”: a re_ason‘ahlf assumption when the natural frequency of the closed-
em 1s quite low compared to the cut-off f implici
low-pass filter in the current-drive circui N, Ty o
. -dnive circuitry due to the inductance. This assumpti
: ! + ! tion,
:ﬁﬂ;‘ih the assumption that_turquc ripple is a negligible effect, means that ulrl can
y command torque directly. Although there might be a scale factor (such

as k,, ) to contend with, we wi
e » we will assume that the actuat
oracts a
that we can command directly. e

Ir|.'i i’,1

Vi .kl.&

is e

FIGURE 9.11: The armature circuit of a DC torque motor,

kP .
emf™ stands for eleciromotive force.
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FIGURE 9.12: Mechanical model of a DC torque motor connected through gearing to
an inertial load.

Effective inertia »
Figure 9.12 shows the mechanical model of the rotor ofa DC t(]:-‘rqén:. HEIED;.;:?;IIHI -

; 1 inertial load. The torque applied to > T
through a gear reduction to an inertia . Tqu : o
givengh}r [5.53) as a function of the current i, flowing in the arma?re ‘:éf,l;[ion ®
gear ratio (n) causes an increase in the torque seen at the load and ar

the speed of the load, given by
T = 0T,

6 = 1/, (9.66)

where 5 > 1. Writing a torque balance for this system in terms of torque at the rotor

T = I,

where I_ and / are the inertias of the motor rotor and of the load,lrespec;w:(lji;aelll:

b_and b are viscous friction coefficients for the rotor and load bearings, resp ;
L}

Using the relations (9.66), we can write (9.67) in terms of motor variables as

2 . I
(Y L (R S (968
or in terms of load variables as
v = (I + 0?18 + (b + n°by,)8. (9.69)

The term I 4771, is sometimes called the eﬁechz've inertia seielnd z:}t1 ;h: ;:ctg:rl:
(link side) of the gearing. Likewise, the term b + n°b,, Cﬂnhbs‘ caﬂ?a s
damping. Note that, in a highly geared joint (e, 1 > 1)\3 t n:lmeI,t e
rotor can be a significant portion of the combined ?Hcgtw&_mf:rna. Ly
allows us to make the assumption that the effective inertia 1s a constant.
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from Chapter 6 that the inertia, 1. of a joint of the mechanism actually varies with
configuration and load. However, in highly geared robots, the variations represent
a smaller percentage than they would in a direct-drive manipulator (i.e., n = 1). To
ensure that the motion of the robot link is never underdamped., the value used for /
should be the maximum of the range of values that / takes on; we'll call this value
Iinax- This choice results in a System that is critically damped or overdamped in all
situations. In Chapter 10, we will deal with varying inertia directly and will not have
to make this assumption.

EXAMPLE 9.6

If the apparent link inertia. {, varies between 2 and 6 Kg-m?, the rotor inertia is
pp 8

I,, = 0.01, and the gear ratio is n = 30, what are the minimum and maximum of the
effective inertia?

The minimum effective inertia is

Tin + 171, = 2.0+ (900)(0.01) = 11.0: (9.70)

the maximum is
Imax + n°1,, = 6.0+ (900)(0.01) = 15.0. (9.71)

Hence, we see that, as a percentage of the total effective inertia, the variation of
inertia is reduced by the gearing,

Unmodeled flexibility

The other major assumption we have made in our model is that the gearing, the
shafts, the bearings, and the driven link are not flexible. In reality, all of these
elements have finite stiffness, and their flexibility, if modeled, would increase the
order of the system. The argument for ignoring flexibility effects is that, if the system
is sufficiently stiff, the natural frequencies of these unmodeled resonances are very
high and can be neglected compared to the influence of the dominant second-order
poles that we have modeled.* The term “unmodeled” refers to the fact that, for
purposes of control-system analysis and design, we neglect these effects and use a
simpler dynamic model, such as (9.69).

Because we have chosen not to mode] structural flexibilities in the system,
We must be careful not to excite these resonances. A rule of thumb [8] is that, if
the lowest structural resonance is @res. then we must limit our closed-loop natural
frequency according to

W, = Ewrer (9.72)

This provides some guidance on how to choose gains in our controller. We have seen
that increasing gains leads to faster response and lower steady-state error, but we
now see that unmodeled structural resonances limit the magnitude of gains. Typical
industrial manipulators have structural resonances in the range from 5 Hz to 25 Hz
[8]. Recent designs using direct-drive arrangements that do not contain flexibility

YThis is basically the same argument we used to neglect the pole due to the motor inductance.
Including it would also have raised the order of the overall system.
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introduced by reduction and transmission systems have their lowest structural
resonances as high as 70 Hz [9).

EXAMPLE 9.7

i i i luesm=1,b=1,and k = 1.
Consider the system of Fig. 9.7 with the parameter va ;
Additionally, i{ is known that the lowest unmodeled resonance ol the system 1s at

' i ition- law so the
8 radians/second. Find a. B, and gains £, and k, for a position con:lrnI:;Lsaas vhm
system is critically damped, doesn’t excite unmodeled dynamics, an

closed-loop stiffness as possible.
We choose
=1,

B=1x+x, (9.73)

so that the system appears as a unit mass from the fictitious f’ input. Usiag
our rule of thumb (9.72), we choose the closed-loop naturgl frequency to
w, = 4 radians/second. From (9.18) and (9.46), we have k, = w, s0

k, =16.0,
k =8.0. (9.74)

Estimating resonant frequency

The same sources of structural flexibility dingssed in Cpaptt;rﬁ give rise t?;irnfz?;
nances. In each case where a structural ﬂf:xib]!lt}’ can be 1d1:n!1ficd, an ;pp:;ge siaim
analysis of the resulting vibration is possible if we can describe the a_tet:l o
or inertia of the flexible member. This is dqnc by approximating the si ll-lfm : 1-]::;

simple spring—mass system, which, as given in (9.20), exhibits the natural freq y

w, = Jk/m, (9.75)

where k is the stiffness of the flexible member and m is the equivalent mass displaced
in vibrations.

EXAMPLE 9.8

A shaft (assumed massless) with a stiffness of 400 Nt-nﬂrgdian dnve; a H;ota;;o;]a;
inertia of 1 Kg-m”. If the shaft stiffness was neglected in :he modeling
dynamics, what is the frequency of this unmodeled resonance:

Using (9.75), we have

@, = +/400/1 = 20 rad/second = 20/(27)Hz = 3.2 Hz. (9.76)

For the purposes of a rough estimate of the lowest resonant fre.que?a:); ;;E
beams and shafts, [10] suggests using a lumped model of the mass. We alre
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_I —> 0.23 m
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FIGURE 9.13: Lumped models of beams for estimation of lowest lateral and torsional
Irésonance.

have formulas for estimating stiffness at the ends of beams and shafts; these lumped
models provide the effective mass or inertia needed for our estimation of resonant
frequency. Figure 9.13 shows the results of an energy analysis [10] which suggests
that a beam of mass m be replaced by a point mass at the end of 0.23 m and, likewise,
that a distributed inertia of I be replaced by a lumped 0.33 J at the end of the shaft.

EXAMPLE 9.9

A link of mass 4.347 Kg has an end-point lateral stiffness of 3600 Nt/m. Assuming
the drive system is completely rigid, the resonance due to the flexibility of the link
will limit control gains, What is [

The 4.347 Kg mass is distributed along the link. Using the method of Fig. 9.13,
the effective mass is (0.23)(4.347) = 1.0 Kg. Hence, the vibration frequency is

Wees = v/ 3600/1.0 = 60 radians/second = 60/(27)Hz = 9.6 Hz. (9.77)

The inclusion of structural flexibilities in the model of the system used for
control-law synthesis is required if we wish to achieve closed-loop bandwidths higher
than that given by (9.75). The resulting system models are of high order, and the
control techniques applicable to this situation become quite sophisticated. Such
control schemes are currently beyond the state of the art of industrial practice but
are an active area of research [11, 12].

Control of a single joint

In summary, we make the following three major assumptions:

L. The motor inductance /, can be neglected.

2. Taking into account high gearing, we model the effective inertia as a constant
equal to I, + nI, .

3. Structural fiexibilities are neglected, except that the lowest structural resonance
@res 15 Used in setting the servo gains.
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With these assumptions, a single joint of a manipulator can be controlled with
the partitioned controller given by

2
o= '{max + n Im"

B = (b+n’b,)8, (9.78)
v =60, +ké+kge. (9.79)
The resulting system closed-loop dynamics are
E+k,é+kpe =14, (9.80)
where the gains are chosen as
3L
kP == Emres'
by =2,fk, = 0. (9.81)

9.10 ARCHITECTURE OF AN INDUSTRIAL-ROBOT CONTROLLER

In this section, we briefly look at the architeclur,a of' the control sydstem c;i .:;I'E
Unimation PUMA 560 industrial robot. As shown in Fig. 9.14, the hardware g
tecture is that of a two-level hierarchy, with a DEC LSI-11 con:lplater ks.e:lrl 55{]3
the top-level “master” control computer passing commands 1o ;!x.d 1:::] _\;im s
microprocessors.” Each of these micmpmccssm:s cogtmls an in éw . .m:]m i
a PID control law not unlike that presented in tl:ns chapter. ;1:1: j L N
PUMA 560 is instrumented with an incr&ﬂlﬁl’ltflll optical encoder. ; fnc b
interfaced to an up/down counter, which the MICrOprocessor ca; r;gn. ?a?hf:]‘ e
current joint position. There are no tachometers in the PUM t: o D} J‘qim
positions are differenced on subsequent servo cycles to obtain an es u'r;- o ésmr
velocity. In order to command torques to the DC torque motors, the microp

6503

- - 6503

(st1 VARE ':_I_.. 6503
b

6503 -

i - ol
FIGURE 9.14: Hierarchical computer architecture of the PUMA 560 robot-contr
system.

i ; rabol
5These simple 8bit computers are already old technology. It is common these days for
controllers to be based on 32-bit microprocessors.
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FIGURE 9.15: Functional blocks of the joint-control system of the PUMA 560).

1s interfaced to a digital-m-ana[og converter (DAC) so that motor currents can be
commanded to the current-driver circuits. The current flowing through the motor is
controlled in analog circuitry by adjusting the voltage across the armature as needed
to maintain the desired armature current, A block diagram is shown in Fig. 9.15.

Each 28 milliseconds, the LSI-11 computer sends a new position command
(set-point) to the joint microprocessors. The joint MICroprocessors are running on a
0.875 millisecond cycle. In this time. they interpolate the desired position set-point,
compute the servo error, compute the PID control law. and command a new value
of torque to the motors,

The LS1-11 computer carries out all the “high-level” operations of the overall
control system. First of all, it takes care of interpreting the VAL (Unimation’s
robot programming language) program commands one by one. When a motion
command is interpreted, the LSI-11 must perform any needed inverse kinematic
computations, plan a desired trajectory, and begin generating trajectory via points
every 28 milliseconds for the joint controllers.

The LSI-11 is also interfaced to such standard peripherals as the terminal and
a floppy disk drive. In addition, it is interfaced to a teach pendant. A teach pendant
is a handheld button box that allows the operator to move the robot around in a
variety of modes. For example, the PUMA 560 system allows the user to move the
robot incrementally in joint coordinates or in Cartesian coordinates from the teach
pendant. In this mode, teach-pendant buttons cause a trajectory to be computed
“‘on the fly” and passed down to the joint-control microprocessors.
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9.1 [20] For a second-order differential equation with complex roots
51 = A+ pi,
.!'2 = A - PU,

show that the general solution
x(t) = 1" + e,

can be written _
x(t) = c ™ cos(ut) + cpe™ sin(put).

i in Fi i ter values are m = 2,
the motion of the system in Fig. 9.2 if parame =
o Lu—i gc'::'ﬁiu;cﬂz 4 and the block (initially at rest) is released from the position
=t i in Fi i eter values are m = 1,
te the motion of the system in Fig. 9.2 zf. param =
3 Efﬂ goTnIziukez 1 and the block (initially at rest) is released from the position
e in Fi i ter values are m = 1,
te the motion of the system in Fig. 9.2 1{ parame : =
- E}:} Eoﬁl:juke= 5 and the block (initially at rest) is released from the position
o i i if parameter values are m = 1,
ute the motion of the system in Fig. 9.2 if paran : e
. Ei] '?ZIEE k = 10 and the block is released from the position x = 1 with an initial
ity of x = 2. .
9.6 Ff;?cl!;sy:the (1, 1) element of (6.60) to compute the vangnon (as a Eer:;:;aiz
of the maximum) of the inertia “seen™ by joint 1 of this robot as it g

configuration. Use the numerical values

I, =1, =05m,
m, = 4.0Kg,
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Consider that the robot is direct drive and that the rotor inertia is negligible.

9.7 [17] Repeat Exercise 9.6 for the case of a geared robot (use n = 20) and a rotor
inertia of 1, = 0.01 Kg m®.

9.8 [18] Consider the system of Fig. 9.6 with the parameter values m = Lb=4,
and k = 5. The system is also known to possess an unmodeled resonance at
Wres = 6.0 radians/second. Determine the gains k, and k, that will critically damp
the system with as high a stiffness as is reasonable.

9.9 [25] In a system like that of Fig. 9.12, the inertial load, /, varies between 4 and
5 Kg-m’. The rotor inertia is /, = 0.01 Kg-m?, and the gear ratio is n = 10,
The system possesses unmodeled resonances at 8.0. 12.0, and 20.0 radians/second.
Design a and $ of the partitioned controller and give the values of k, and &, such
that the system is never underdamped and never excites resonances, but is as stiff
as possible,

9.10 [18] A designer of a direct-drive robot suspects that the resonance due to beam
flexibility of the link itself will be the cause of the lowest unmodeled resonance. If
the link is approximately a square-cross-section beam of dimensions 5 x 5 x 50 ¢m
with a 1-cm wall thickness and a total mass of 5 Kg, estimate ..

9.11 [15] A direct-drive robot link is driventhrough ashaft of stiffness 1000 Nt-m/radian.
The link inertia is 1 Kg-m”. Assuming the shaft is massless, what s ©res?

9.12 [18] A shaft of stiffness 500 Nt-m/radian drives the input of a rigid gear pair with
n = 8. The output of the gears drives a rigid link of inertia 1 Kg-m?. What is the
@y Caused by flexibility of the shaft?

9.13 [25] A shaft of stiffness 500 Nt-m/radian drives the input of a rigid gear pair with
n = 8. The shaft has an inertia of 0.1 Kg-m?, The output of the gears drives a rigid
link of inertia 1 Kg-m*, What is the w,,, caused by flexibility of the shaft?

9.14 [28] In a system like that of Fig. 9.12, the inertial load, 7, varies between 4 and
5 Kg-m?. The rotor inertia is I,y = 0,01 Kg-m?, and the gear ratio is 5 = 10, The
system possesses an unmodeled resonance due to an end-point stiffness of the
link of 2400 Nt-m/radian. Design & and # of the partitioned controller, and give
the values of k, and &, such that the system is never underdamped and never
excites resonances, but is as stiff as possible,

9.15 [25] A steel shaft of length 30 em and diameter 0.2 cm drives the input gear of a
reduction of » = 8. The rigid output gear drives a steel shaft of length 30 cm and
diameter 0.3 cm. What is the range of resonant frequencies observed if the load
inertia varies between | and 4 Kg-m”?

PROGRAMMING EXERCISE (PART 9)

We wish to simulate a simple trajectory-following control system for the three-link planar
arm. This control system will be implemented as an independent-joint PD (proportional
plus derivative) control law. Set the servo gains to achieve closed-loop stiffnesses of
175.0, 110.0, and 20.0 for joints 1 through 3 respectively. Try to achieve approximate
critical damping,

Use the simulation routine UPDATE to simulate a discrete-time servo running
at 100 Hz—that is, calculate the control law at 100 Hz, not at the frequency of the
numerical integration process. Test the control scheme on the following tests:

L. Start the arm at © = (60, —110, 20) and command it 1o stay there until rime = 3.0,
when the set-points should instantly change to @ = (60, —50, 20). That is, give a
step input of 60 degrees to joint 2. Record the error-time history for each joint.

2. Control the arm to follow the cubic-spline trajectory from Programming Exercise
Part 7. Record the error—time history for each joint.
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MATLAB EXERCISE 9

This exercise focuses on linearized independent joint-control simulation for the shoulder
joint (joint 2) of the NASA eight-axis AAI ARMII (Advanced Research Manipulator I1)
manipulator arm—see [14]. Familiarity with linear classical feedback-control systems,
including block diagrams and Laplace transforms, is assumed. We will use Simulink, the
graphical user interface of MATLAB.

Figure 9.16 shows a linearized open-loop system-dynamics model for the ARMII
electromechanical shoulder joint/link, actuated by an armature-controller DC servomo-
tor. The open-loop input is reference voltage V ¢ (boosted to armature voltage via an
amplifier), and the output of interest is the load shaft angle ThetaL. The figure also
shows the feedback-control diagram, where the load-shaft angle is sensed via an optical
encoder and provided as feedback to the PID controller. The table describes all system
parameters and variables.

If we reflect the load shaft inertia and damping to the motor shaft, the effective
polar inertia and damping coefficient are J = Jy + J; (1)/n® and C = Cy + C /n’.
By virtue of the large gear ratio n, these effective values are not much different
from the motor-shaft values. Thus, the gear ratio allows us to ignore variations in the
configuration-dependent load-shaft inertia J; () and just set a reasonable average value.

The ARMII shoulder joint constant parameters are given in the accompanying
table [13]. Note that we can use the English units directly, because their effect cancels out
inside the control diagram. Also, we can directly use deg units for the angle. Develop a
Simulink model to simulate the single-joint control model from the model and feedback-
control diagram shown; use the specific parameters from the table. For the nominal case,
determine the PID gains by trial and error for “‘good” performance (reasonable percent
overshoot, rise time, peak time, and settling time). Simulate the resulting motion for

moving this shoulder joint for a step input of 0 to 60 deg. Plot the simulated load-angle
value over time, plus the load-shaft angular velocity over time. In addition, plot the

Vel Va 5 V-V | Ia “TauM | Omegah T Omegal. 1 Theial
La + R Ja+ C E
Amp Cizar ralio lntcgraior
AL Clrewl JC Maotor Diy nismics
Vb (back eml) _.____,.-'"'h
'h‘hu
Open-Loop Eleciromeshonicul System Diagram
e i1 Cull I:]
Wrel
Commanded PID Contnslles e

Thetal ——
Open-Loop System

Theiu$ (sensed) @:

Encoder

Closed-Loop Feedhack Contrel Dingrom

FIGURE 9.16: Linearized open-loop system-dynamics model for the ARMII elec-
tromechanical shoulder joint/link, actuated by an armature-controller DC servomo-

tor.
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TABLE 9.1: ARMII shoulder joint constant parameters,

V. () armature | Tl :
: " enerated
voltage ﬁmtnr = LR
lorgue
L =0.0006H armature |6, (r) motor shaft |4, (r) load shaft
induc- angle angle
tance
R =1.40Q armature | e, (r) motor shaft | w, (1) load shaft
resis- velocity velocity
tance
i,(t) armature | J,, ~ 0.00844 | lumped Jy (1) =1 | lumped load
current | b -in-s? motor polar |Ib -in-s®> | polarinertia
incrtia
V() back emf | C,, = 0.00013| motor shaft | C, = 0.5 |load shaft
voltage |Ib rrinfdeg/s | viscous Ib ;- viscous
| damping in/deg/s | damping
- | coefficient coefficient
K, =12 amplifier | n = 200 gearratio |g=0 ravit
gain in/s* -
| /s {ignore
| gravity at
| first)
§?d= 51.{][186? back emf | k,, =4.375 |torque con- | K, =1 encoder
egls constant | b -in/A stant transfer
l ‘ function

control effort—that is, the armature voltage

the back emf V)
Now, try some changes—Simulink is so easy and enjoyable to change:

1) The step input is frustrating for
instead: Ramp from 0 to 60 deg i
time greater than 1.5 sec. Redesi

2) lnve:s_ligate whether the inductor L is significant in this system.
tem rises much faster than the mechanical system—this effect

by time constants.)

3) Wedon't have a good estimate for the load in
your best PID gains from before, investigate
the nominal parameters up equally) before t

4) Now, include the effect of gravity as a disturbance
that the moving robot mass is 200 Ib and the mo
feet. Test for the nominal “good”
shoulder load angle 6, zero config

V, over time. (On the same graph, also give

controller design, so try a ramped i
. ped step input
nl.5s sec._lhen hold the 60-deg command for all
gn PID gains and restimulate.

(The electrical sys-
can be represented

ertia and damping (J; and €, ). With
how big these values can grow (scale
hey alfect the system.

to the motor torque T, Assume
’ ving length beyond joint 2 is 6.4
PlDiga:ps you found: redesign if necessary. The
uration is straight up.
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10.1 INTRODUCTION
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10.8 CARTESIAN-BASED CONTROL SYSTEMS

10.9 ADAPTIVE CONTROL

10.1 INTRODUCTION | »
In the previous chapter. we made several approximations to allow a Imc:flr ar;alys:s 05
‘ i ions wa
' . Most important among these approxima
the manipulator-control problem 56 APRCARIAL :
that eachf}uim could be considered independent and that the mlclrtla S'cinodt;}; :zci:ﬂ
jOi i entations of linear controllers as intr
oint actuator was constanlt. In implem : : :
Jtl'uf: previous chapter, this approximation results in nonuniform damplqﬁ_lhtrzghgu;
: 1 uc
irable effects. In this chapter, we will intr
the workspace and other undesira : _ . .
more advfnced control technique for which this assumption will not have to be
ade. . , ‘ _
" In Chapter 9. we modeled the manipulator by » mdependemhbt'.cl;]nd 01‘(';1;:;
differential equations and based our controller on that mc?del. In this Cd'?[[‘}tc;;[ia{
will base our controller design directly on the n x 1=n0n]1_ncar vector differ
equation of motion, derived in Chapter 6 for a general manipulator. .
The field of nonlinear control theory is large: we must theriefun: res o
attention to one or two methods that seem well suited to mechamca! manipu a“md+
Consequently, the major focus of the chapter will be one partlctl:a; ‘UI:E[Q q}:
apparently first proposed in [1] and named the comllmted-mrguej metho ; km.“;m
We will also introduce one method of stability analysis of nonlinear systems,
as Lyapunov’s method [4]. _ ‘ —
FTIL begin our discussion of nonlinear techniques for controlling a m-amTrli];m
we return again to a very simple single-degree-of-freedom mass-spring

S‘_‘,-'SIEHI'I.
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10.2 NONLINEAR AND TIME-VARYING SYSTEMS

In the preceding development, we dealt with a linear constant-coefficient differential
equation. This mathematical form arose because the mass-spring friction system
of Fig. 9.6 was modeled as a linear time-invariant system. For systems whose
parameters vary in time or systems that by nature are nonlinear, solutions are more
difficult.

When nonlinearities are not severe. local linearization can be used to derive
linear models that are approximations of the nonlinear equations in the neighbor-
hood of an operating point, Unfortunately, the manipulator-control problem is not
well suited to this approach, because manipulators constantly move among regions
of their workspaces so widely separated that no linearization valid for all regions
can be found.

Another approach is to move the oOperating point with the manipulator as it
moves. always linearizing about the desired position of the manipulator. The result
of this sort of meving linearization is a linear. but time-varying, system. Although
this quasi-static linearization of the original system is useful in some analysis and
design techniques. we will not make use of it in our control-law synthesis procedure.
Rather, we will deal with the nonlinear equations of motion directly and will not
resort to linearizations in deriving a controller.

If the spring in Fig. 9.6 were not linear but instead contained a nonlinear
element, we could consider the system quasi-statically and, at each instant. figure
out where the poles of the system are located. We would find that the poles “move™
around in the real-imaginary plane as a function of the position of the block. Hence.
we could not select fixed gains that would keep the poles in a desirable location (for
example. ateritical damping). So we may be tempted to consider a more complicated
control law, in which the gains are time-varying (actually, varying as a function of
the block’s position) in such a manner that the system is always critically damped.
Essentially, this would be done by computing k, such that the combination of the
nonlinear effect of the spring would be exactly cancelled by a nonlinear term in
the control law so that the overall stiffness would stay a constant at all times, Such a
control scheme might be called a linearizing control law. because it uses a nonlinear
control term to “cancel™ a nonlinearity in the controlled system, so that the overall
closed loop system is linear.

We will now return to our partitioned control law and see that it can perform
this linearizing function. In our partitioned control-law scheme, the servo law remains
the same as always, but the model-based portion now will contain a model of the
nonlinearity. Thus, the model-based portion of the control performs a linearization
function. This is best shown in an example.

EXAMPLE 10.1

Consider the nonlinear spring characteristic shown in Fig. 10.1. Rather than the
usual linear spring relationship, f = kx. this spring is described by f = gx3. If this
spring is part of the physical system shown in Fig, 9.6, construct a control law to
Keep the system critically damped with a stiffness of kpj .

The open-loop equation is

mi + bi 4 gx® = I (10.1)
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;
i

f=qx

FIGURE 10.1: The force-vs.-distance characteristic of a nonlinear spring.

The model-based portion of the control is f = af” 4+ 8, where now we use

d=m,
B =bi +qx’; (10.2)
the servo portion is, as always
f' =3+ ké+ ke, (10.3)

where the values of the gains are calculated from some desired performance
specification. Figure 10.2 shows a block diagram of this control system. The resulting
closed-loop system maintains poles in fixed locations,

System

F=mi+ bk + gi i

FIGURE 10.2: A nonlinear control system for a system with a nonlinear spring.
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FIGURE 10.3: The force-vs.~velocit}r characteristic of Coulomb friction,

EXAMPLE 10,2

Fig. 9.6, design a contro] system [Iiat i
= i P e Eme&. uses a nonlinear model-based portion 1o damp
€ open-loop equation s
MX +b.5gn(i) + kx — £ (10.4)
The partitioned control law is £ = f'+ 8, where
o =m,
B =b,sgn(x) + kx, (10.5)

f’:-:fd +kué+.{'pe_

Wwhere the vajyes of the gains are calculated from some

specification. desired performance

EXAMPLE 10.3

Fhf: moment of inertig s ml?, There js Coulomb
Jomt, and there js 4 load due to gravity,
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Vi

FIGURE 10.4: An inverted pendulum or a one-link manipulator.

The model of the manipulator is

7 = mi26 + vh + csgn(0) + migcos(d). {10.6)

i 1Zi -bs tion
As always, the control system has two parts, the linearizing model-based porti

the servo-law portion. 1
e The model-based portion of the control is f = af' + 8, where

a =mi,

B = v + esgn(f) + migcos(8): (10.7)
the servo portion is, as always,
p (10.8)

=tk E+ ke
1 mance
where the values of the gains are calculated from some desired perfor

specification.

it } I i inear
We have seen that, in certain simple cases, it 1s not d_1fﬁcu1t to des:gn a 11?[:1:; e
ntroller. The general method used in the foregoing simple examples 1
C0Q . : ;
method we will use for the problem of manipulator control:

i " the nonlinearities
1. Compute a nonlinear model-based control law that “‘cancels

trolled. .
of the system to be con | —
2. Reduce the system to a linear system that can be controlled with the simp

linear servo law developed for the unit mass.

' ' { of the

In some sense, the linearizing mr{tfol llaw implements an ;r:;zgs;inm:}hieinwrse

being controlled. The nonlinearities in the system cance k. it

S}fstem_ hi gt ether with the servo law, results in a linear closed-loop ly:m =

gEdFL :l ls‘m 3% this cancelling, we must know the parameters apd th;:lf;lti;u:l:] i
the‘:zgiigéar system. This is often a problem in practical application o
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10.3  MULTI-INPUT, MULTI-QUTPUT CONTROL SYSTEMS

Unlike the simple examples we have discussed in this chapter so far, the problem
of controlling a manipulator is a multi-input, multi-output (MIMO) problem. That
is, we have a vector of desired joint positions, velocities, and accelerations, and
the control law must compute a vector of joint-actuator signals, Our basic scheme,
partitioning the control law into a model-based portion and a servo portion, is still
applicable, but it now appears in a matrix—vector form. The control law takes the
form

F=aF+§, (10.9)

where. for a system of 5 degrees of freedom, F, F', and B are n x 1 vectors and & is an
it X i matrix, Note that the matrix « is not necessarily diagonal, but rather is chosen
to decouple the »n equations of motion, If & and g are correctly chosen, then, from
the £ input, the system appears to be n independent unit masses. For this reason,
in the multidimensional case, the model-based portion of the control law js called a
linearizing and decoupling control law. The servo law for a multidimensional system
becomes .

Fl=X,+KE+ K.E, (10.10)

where K, and K p aT€ NOW i x n matrices, which are generally chosen to be diagonal

with constant gains on the diagonal. E and E are n x 1 vectors of the errors in
position and velocity, respectively.

10.4 THE CONTROL PROBLEM FOR MANIPULATORS

In the case of manipulator control, we developed a model and the corresponding
equations of motion in Chapter 6. As we saw, these equations are quite complicated.
The rigid-body dynamics have the form

T=M(®)6 + V(8, 0) + G(O). (10.11)

where M(©) is the n x n inertia matrix of the manipulator, V(®, @) is an n x 1
vector of centrifugal and Coriolis terms. and G(©) is an n x 1 vector of gravity
terms. Each element of M(®) and G(©) is a complicated function that depends on
®, the position of all the joints of the manipulator. Each element of V(9. 0) is a
complicated function of both ® and 6.

Additionally, we could incorporate a model of friction (or other non-rigid-
body effects). Assuming that our model of friction is a function of joint positions
and velocities, we add the term F(®, @) to (10.11). to yield the model

T=M(0)O+ V(0. 0) + G(O) + F(O. O). (10.12)

The problem of controlling a complicated system like (10.12) can be handled
by the partitioned controller scheme we have introduced in this chapter, In this case,
we have

T =qa1’ + 8, (10.13)
Where 7 is the n x 1 vector of joint torques. We choose
a=M(O),
B=V(0,0)+G(O) + F(O, ), (10.14)
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FIGURE 10.5: A model-based manipulator-control system.

with the servo law (10.15)

v'=0,+K,E+K,E,

— E=0,-0. (10.16)

: g A 3

ting control system is shown in Fig. 1() ’
e r?JS;Iilnlgn%lD.IZ] thfnug,h (10.15), it is quite easy to show that the closed-loop
system is characterized by the error equation

E g = (10.17)
E+K,E+K,E=0.

Note that this vector equation is decoupled: The: malrice; K 4 anﬂ .K » are diagonal,
so that (10.17) could just as well be written on a joint-by-joint basis as

& + ke + ke =0. (10.18)

The ideal performance represented by (10.17) is unattainable in practice, for many
reasons, the most important two being

1. The discrete nature of a digital-computer implementation, as opposed to the
. ideal continuous-time control law implied by (10.14) and (10.15).
2. Inaccuracy in the manipulator model (needed to compute (10.14)).

In the next section, we will (at least partially) address these two 1ssues.

10.5 PRACTICAL CONSIDERATIONS

gia . —
In developing the decoupling and linearizing control in the last ff:w sections
have implicitly made a few assumptions that rarely are true in practice.

Time required to compute the model _—
i 1
In all our considerations of the partitioned-control-law S:-';:: ﬁ‘dﬁaﬁ: Ergmutﬂ'
: ; ing in continuous ti
sumed that the entire system was running ; : g ount of
?iins in the control law require zero time for their computation. Given anysﬁl‘ici ently
computation, with a large enough computer we can do the computations
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fast that this is a reasonable dpproximation: however. the expense of the computer
could make the scheme economically unfeasible. In the manipulator-control case.
the entire dynamic equation of the manipulator. (10.14), must be computed in the
control law. These computations are quite involved: consequently. as was discussed
in Chapler 6. there has been a great deal of interest in developing fast computational
schemes to compute them in an efficient way. As computer power becomes more and
more alfordable. control laws that require a great deal of computation will become
more practical. Several experimental implementations of nonlinear-model-based
control laws have been reported [3-9]. and partial implementations are beginning
to appear in industrial controllers.

As was discussed in Chapter 9, almost all manipulator-control systems are
now performed in digital circuitry and are run al a certain sampling rate. This
means that the position (and possibly other) sensors are read at discrete points
in time. From the values read. an actuator command is computed and sent 1o
the actuator. Thus. reading sensors and sending actuator commands are not dong
continuously. but rather at a finite sampling rate. To analyze the effect of delay
due to computation and finite sample rate. we must use tools from the field of
discrete-time control. In discrete time, differential equations turn into differcnce
equations, and a complete set of tools has been developed to answer questions
about stability and pole placement for these systems. Discrete-time control theory
is beyond the scope of this book. although. for researchers working in the area of
manipulator control. many of the concepts from discrete-time systems are essential.
(See [10].)

Although important. ideas and methods from discrete-time control theory
are often difficult to apply 1o the case of nonlinear systems. Whereas we have
managed 10 write a complicated differential equation of motion [or the manipulator
dynamic equation. a discrete-time equivalent is impossible to obtain in general
because, for a general manipulator, the only way to solve for the motion of the
manipulator for a given set of initial conditions, an input. and a finite interval is by
numerical integration (as we saw in Chapter 6). Discrete-lime models are possible
if we are willing 1o use series solutions to the differential equations, or if we make
approximations, However, if we need to make approximations to develop a discrete
model. then it is not clear whether we have a better model than we have when just
using the continuous model and making the continuous-time approximation. Suffice
it to say that analysis of the discrete-time manipulator-control problem is difficult.
and usually simulation is resorted to in order to judge the effect that a certain sample
rate will have on performance.

We will generally assume that the computations can be performed quickly
enough and often enough that the continuous-time approximation is valid,

Feedforward nonlinear control

The use of feedforward control has been proposed as a method of using a nonlinear
dynamic model in a control law without the need for complex and lime-consuming
computations to be performed at servo rates [11]. In Fig. 10.5, the model-based
control portion of the control law is “in the servo loop™ in that signals “flow™
through that black box with each tick of the servo clock. If we wish to select a sample
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FIGURE 10.6: Control scheme with the model-based portion “outside™ the servo
loop.

rate of 200 Hz. then the dynamic model of the manipulator must be computed at this
rate. Another possible control system is shown in Fig. 10.6. Here, the n"{udc]-haaed
control is “outside™ the servo loop. Hence. it is possible to have a fast inner servo
loop, consisting simply of multiplying errors by gains. with the model-based torques
added at a slower rate. 1 _
Unfortunately. the feedforward scheme of Fig. 10.6 does not provide mmpi:elc
decoupling. If we write the system equations.! we will find that the error equation
of this system is _
E+M ' OK,E+M Y O)K,E =0. (10.19)

Clearly. as the configuration of the arm changes, t_hr: effective _-:Iose_d-looplgam
changés. and the quasi-static poles move arounq in tl'{e realqm_agllnary panei,
However. equation (10.19) could be used as a starting point for designing almbus
controller—one that finds a good set of constant gains such that, despite the
“motion” of the poles. they are guaranteed to remain 1n.reason.ably faxforable
locations. Alternatively, one might consider schemtzs in which variable gains ar:c
precomputed which change with copﬁguratiun of the robot, so that the system’s
quasi-static poles remain in fixed positions. _ .

Note that. in the system of Fig. 10.6, the dynamic mm:.lcl i con'!puled as a
function of the desired path only, so when the desi_red patl'f is known in advance,
values could be computed “off-line” before motion begins. &t_ Tun time, the
precomputed torque histories would then be read out of memory. leeme:i. if tlmz-
varying gains are computed, they too could be computed l?efurehand and stored.
Hence, such a scheme could be quite inexpensive computationally at run time an
thus achieve a high servo rate.

Dual-rate computed-torque implementation

Figure 10.7 shows the block diagram of a possible practical intlp]emen!fmon ﬂf~ tz;
decoupling and linearizing position-control system. The dynamic model is ex_pr&iba;m
In its configuration space form so that the d;.r'r_iamlc parameters of t_hc mamp: tzll1 -
will appear as functions of manipulator position only. These functions migh

' = ) = : = G(@).
'We have used the simplifying assumptions M(©,;) = M(8), V(8. 8,) = (V(©,8),G(0,) = Gl
and F(®,, gﬂr} = F(8, &).
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FIGURE 10.7: An implementation of the model-based manipulator-control system.

be computed by a background process or by a second control computer [8] or be
looked up in a precomputed table [12]. In this architecture. the dynamic parameters
can be updated at a rate slower than the rate of the closed-loop servo. For example.

the background computation might proceed at 60 Hz while the closed-loop servo
was running at 250 Hz.

Lack of knowledge of parameters

The second potential difficulty encountered in employing the computed-torque
control algorithm is that the manipulator dynamic model ijs often not known
accurately. This is particularly true of certain components of the dynamies, such
as friction effects. In fact. it is usually extremely difficult to know the structure of
the friction model. let alone the parameter values [13]. Finally, if the manipulator
has some portion of s dynamics that is not repeatable —because, for example, it
changes as the robot ages—it is difficult to have good parameter values in the model
at all times.

By nature. most robots will be picking up various parts and tools. When a
robot is holding a tool. the inertia and the weight of the tool change the dynamics
of the manipulator. In an industrial situation. the mass properties of the tools might
be known—in this case. they can be accounted for in the modeled portion of the
control law. When a 1ool is grasped. the inertia matrix, total mass, and center of
mass of the last link of the manipulator can be updated to new values that represent
the combined effect of the Jast link plus t00l. However, in many applications, the
mass properties of objects that the manipulator picks up are not generally known,
S0 maintenance of an accurate dynamic model is difficult,

The simplest possible nonideal situation is one in which we still assume a
perfect model implemented in continuous time, but with external noise acting to
disturb the system. In Fig. 10.8, we indicate a vector of disturbance lorques acting

at the joints, Writing the system error equation with inclusion of these unknown
disturbances, we arrive at

E+KUE+XHE:M_lrﬂ]TJ 10 Ao



300 Chapter 10 Nonlinear control of manipulators

T 0
4
§ (1) - M (8) Arm |
] W+
+
Y
'
! B+ C(0) |
I
| ¢
K, K.,J i | G
L : i #
: N l _—
& ;_"‘:J: : 1 1
r‘::\_.- é s =
. e ©

FIGURE 10.8: The model-based controller with an external disturbance acting,

where 7, is the vector of disturbance torques at the joints. Therleft—hand side of
(10.20) is uncoupled, but, from the right-hand side, we see that a dlsturbancp on any
particular joint will introduce errors at all the other joints, because M (©) is not, in

neral, diagonal. ,
* Some f‘:mple analyses might be performed on the basis of (10.20). For cxample,

it is easy to compute the steady-state servo error due to a constant disturbance as
E= K;lM‘le)}rd. (10.21)

When our model of the manipulator dynamics is not perfect, ar;a]ﬁfsm_nf
the resulting closed-loop system becomes more dllfﬁcurlt. We _df.:ﬁnf: the L{?kﬂw'lng
notation: M(©) is our model of the manipulator inertia matrix, M (©). Likewise,
V@, O), G(O), and F(O, ©) are our models of the velocity terms, grav]ily lerr:;sl.
and friction terms of the actual mechanism. Perfect knowledge of the mode

would mean that
M(©) = M(©),
V(0. 0)=V(®, ), (10.22)
G(©) = G(0).
F(8.0)=F(@®,0).
Therefore, although the manipulator dynamics are given by

r = M(@)0 + V(O, 0) + G(O) + F(B, 0), (10.23)

our control law computes

T =&TF+ﬁ|
o (10.24)

B=V(O 0 +60@ + F(@, 6.
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Decoupling and lincarizing will not, therefore, be perfectly accomplished when

parameters are not known exactly. Writing the closed-loop cquation for the system,
we have

E+K,E+K,E
=M (M- MO+ (v - V)+(G-G)+(F - By, (10.25)

where the arguments of the dynamic functions are not shown for brevity. Note that,
if the model were exact. so that (10.22) were true, then the right-hand side of (10.25)
would be zero and the errors would disappear. When the parameters are not known
exactly, the mismatch between actual and modeled parameters will cause servo
€rrors to be excited (possibly even resulting in an unstable system [21]) according to
the rather complicated equation (10.25).

Discussion of stability analysis of a nonlinear closed-loop system is deferred
until Section 10.7,

10.6 CURRENT INDUSTRIAL-ROBOT CONTROL SYSTEMS

Because of the problems with having good knowledge of parameters. it is not clear
whether it makes sense to go to the trouble of computing a complicated model-based
control law for manipulator control. The expense of the computer power needed to
compute the model of the manipulator at a sufficient rate might not be worthwhile,
especially when lack of knowledge of parameters could nullify the benefits of such an
approach. Manufacturers of industrial robots have decided. probably for economic
reasons, that attempting to use a complete manipulator model in the controller is
not worthwhile. Instead, present-day manipulators are controlled with very simple
control laws that generally are completely error driven and are implemented in
archilectures such as those studied in Section 9.10, An industrial robot with a
high-performance servo system is shown in Fig. 10.9.

Individual-joint PID control

Most industrial robots nowadays have a control scheme that, in our notation, would
be described by

=
B=0. (10.26)

where 7 is the n x n identity matrix. The servo portion is
v =8, + K,E+K,E +K f Edr. (10.27)

Where K, K ,, and K, are constant diagonal matrices. In many cases, ¢, is not
available, and this term is simply set 1o zero, That is. most simple robot controllers
do not use a model-based component at all in their control law. This type of PID
control scheme is simple because ecach joint is controlled as a separate control

system. Often, one microprocessor per joint is used to implement (10.27), as was
discussed in Section 9.10.
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FIGURE 10.9: The Adept One. a direct-drive robot by Adept Technology. Inc.

: is wav i simple to
The performance of a manipulator controlled in this way lsfnﬂ:‘t,ll'[{:p(}lhcr
describe. No decoupling is being done. so the motion ol each joint lah[u: :mr-drivcn
1(1i;1t% Tiwsa interactions cause errors. which are HupiPr?s.scf-lll hﬁ ﬂj tthi: response
JOREES W . at will critically damyj
' is i ssible 1o select fixed gains that wi ) i
trol law. It is impossible he " ol ek sas st
::I:!iqlurbzmceﬂ for all configurations. Therefore, 1‘“’”:';?{" gm“bk':;;:ts: In various
: S . pante the robot’s workspace. i
dmate critical damping in the center of ;
approximate critical damp SETE TR Aardimped: o
cﬂrcnw configurations of the arm. the system l‘!u.n‘lms L-I-E'I-Mu}":h.-_- mhutpthcsc
overdamped. Depending on the details of the mechanical design s e T
" ‘ o] 3 - .
ffects could be fairly small: then control .wu.mld o ‘Hmd‘- ]n-:lf:a!\ 5i-¢turhm1r:es
:'-11Pm:l*|nl 1o keep the gains as high as possible. so that the inevitable dis
i ‘

will be suppressed quickly.

Addition of gravity compensation o o
| tend to cause static positioning errors, so som

The gravity terms wil 1 law (that is, B = G(©)

manufacturers include a gravity model. G(#). in the t;un]:-u
in our notation). The complete control law takes the for

| ; 28
' =0, +K,E+K,E+K, j Edt + G(©). (10.28)
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Such a control law is perhaps the simplest example of a model-based controller.
Because (10.28) can no longer be implemented on a strict joint-by-joint basis, the
controller architecture must allow communication between the joint controllers or
must make use of a central processor rather than individual-joint processors.

Various approximations of decoupling control

There are various ways to simplify the dynamic equations of a particular manipulator
[3.14]. After the simplification, an approximate decoupling and linearizing law can
be derived. A usual simplification might be to disregard components of torque
due to the velocity terms—that is. to model only the inertial and gravily terms.
Often, friction models are not included in the controller, because friction is so hard
to model correctly. Sometimes, the inertia matrix is simplified so that it accounts
for the major coupling between axes but not for minor cross-coupling effects. For
example, [14] presents a simplified version of the PUMA 560’s mass matrix that
requires only about 10% of the calculations needed to compute the complete mass
matrix, yet is accurate to within 1%,

10.7 LYAPUNOV STABILITY ANALYSIS

In Chapter 9, we examined linear control systems analytically to evaluate stability
and also performance of the dynamic response in terms of damping and closed-
loop bandwidth. The same analyses are valid for a nonlinear system that has been
decoupled and linearized by means of a perfect model-based nonlinear controller.
because the overall resulting system is again linear. However. when decoupling and
linearizing are not performed by the controller, or are incomplete or inaccurate,
the overall closed-loop system remains nonlinear. For nonlinear systems, stability
and performance analysis is much more difficult. In this section, we introduce one
method of stability analysis that is applicable to both linear and nonlinear systems,

Consider the simple mass-spring friction system originally introduced in
Chapter 9, whose equation of motion is

mi + b¥ + kx = 0. (10.29)
The total energy of the system is given by
L 3. 1.5 -
U= 5 M + i.{.x A (10.30)

where the first term gives the kinetic energy of the mass and the second term gives
the potential energy stored in the spring. Note that the value. v. of the system energy
iIs always nonnegative (i.c.. it is positive or zero). Let’s find out the rate of change of
the total energy by differentiating (10.30) with respect to time. to obtain

U= mi¥ + kxx. (10.31)
Substituting (10.29) for m in (10.31) yields
O = —bhi?, (10.32)

which we note is always nonpositive (because b > 0). Thus. energy is always leaving
the system, unless i = 0, This implies that, however initially perturbed, the system
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will lose energy until it comes to rest. Investigating possible resting positions by
means of a steady-state analysis of (10.29) yields

Pr— (10.33)

or
x=0. (10.34)

Hence, by means of an energy analysis, we have shown that the system of (10.29)
with any initial conditions (i.e.. any initial energy) will eventually come to rest
at the equilibrium point. This stability proof by means of an energy analysis is a
simple example of a more general technique called Lyapunov stability analysis or
Lyapunov’s second (or direct) method, after a Russian mathematician of the 19th
century [15].

Aninteresting feature of this method of stability analysis is that we can conclude
stability without solving for the solution of the differential equation governing
the system. However, while Lyapunov's method is useful for examining stability,
it generally does not provide any information about the transient response or
performance of the system. Note that our energy analysis yielded no information on
whether the system was overdamped or underdamped or on how long it would take
the system to suppress a disturbance. It is important to distinguish between stability
and performance: A stable system might nonetheless exhibit control performance
unsatisfactory for its intended use.

Lyapunov's method is somewhat more general than our example indicated.
It is one of the few techniques that can be applied direcily to nonlinear systems
to investigate their stability. As a means of quickly getting an idea of Lyapunov’s
method (in sufficient detail for our needs), we will look at an extremely brief
introduction to the theory and then proceed directly 1o several examples. A more
complete treatment of Lyapunov theory can be found in [16, 17].

Lyapunov's method is concerned with determining the stability of a differential
equation ‘

X = f(X). (10.35)

where X is m x | and f(-) could be nonlinear. Note that higher order differential
equations can always be written as a set of first-order equations in the form (10.35).
To prove a system stable by Lyapunov's method. one is required to propose a
generalized energy function v(X) that has the following properties:

1. v(X) has continuous first partial derivatives. and v(X) > 0 for all X except
u(0) = 0.
2. ©(X) < 0. Here, 0(X) means the change in v(X) along all system trajectories.

These properties might hold only in a certain region. or they might be global.
with correspondingly weaker or stronger stability results. The intuitive idea is thal
a positive definite ~energy-like™ function of state is shown to always decrease or
remain constant—hence. the system is stable in the sense that the size of the stale
vector is bounded.

When 0(X) is strictly less than zero. asymplotic convergence of the state 10
the zero vector can be concluded. Lyapunov’s original work was cxtended in an
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LT;?:E? wf'ng.;fb}r LaSalle and Lclfs-:hlelz [4]. who showed thal. in certain situations
e pﬂr;:[)s )= 0 (nc-t; e;quaht;-,r included). asymptotic stability can be shown‘

€s. we can deal with the case 0(X) = 0 by performi .
analysis in order to learn whether the stability | £ g it

: ility is asymplotic 3

study can “get stuck™ somewhere other than X)) = 3[; j SR
; A system descnhe‘d‘hy (16:35} is said to be autonomous because the func-
1on f(-) is not an explicit function of time. Lyapunov's method also extends to

EXAMPLE 10.4
Consider the linear system

X = —AX. (10.36)

where A is m x m and positive definite. Propose the candidate Lyapunov function

-
v = S X7 X, (10.37)

which is continuous and everywhere non negative. Differentiating yields

X)) = X7 X
=X (—-AX) (10.38)
=-XTAX,
which is everywhere nonpositive because A4 is a positive definite matrix. Hence

(10.37) is indeed a Lyapunov function for the system of (10.36). The system is

EI.“\‘“]P‘IUIECH”II Slflhle |!EC’11!S(", U’ [k l] Ce e ; T 5‘“‘
must 1]:1( rcase. }." % I Ll c hc C E]SE, X

EXAMPLE 10.5

Consider a mechanical spring—damper system i ic i
ot al spring—-damper system in which both the spring and damper
N+ b)) + k(o) = 0. (10.39)

The [unctions b(-)} and k() are first- and

third-guadran i i
oy q ant continuous functions

Xb()y =0 Fforx #0.
XRk(x) >0 for x #£0. (10.40)

Once having proposed the Lyapunov function

2 L s y
e, f) = 3% +/{; k(). (10.41)
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we are led to
Ulx. ) = xX + k(x)x.
= —xb(¥) — k(x)8 + k(x)x. (10.42)
= —xb(1).
Hence, ©(.) is nonpositive but is only semidefinite, because it is not a function of x

but only of £. In order to conclude asymptotic stability, we have to ensure that it is
not possible for the system to “get stuck™ with nonzero x. To study all trajectories

for which ¥ = 0. we must consider
¥=—k(x), {10.43)

for which x = 0 is the only solution. Hence. the system will come to rest only if

F=F=r=

EXAMPLE 10.6

Consider a manipulator with dynamics given by
r=M®06+ VO, D) +G(?) (10.44)
and controlled with the control law
t=K,E-K,0+G(O), (10.45)

where K , and K ; are diagonal gain matrices. Note that this controller does not force
the manipulator to follow a trajectory, but moves the manipulator to a goal point
along a path specified by the manipulator dynamics and then regulates the position
there. The resulting closed-loop system obtained by equating (10.44) and (10.45) is

M©@)O + V(0,0) + K0+ K,0 = K,0,: (10.46)

it can be proven globally asymptotically stable by Lyapunov’s method [18. 19].
Consider the candidate Lyapunov function

1. .
v= EH"M{&)}H + EE’ K,E. (10.47)
The function (10.47) is always positive or zero. because the manipulator mass
matrix, M(®), and the position gain matrix. K ,. are positive delinite matrices.
Differentiating (10.47) yields
] ] L ] L (L] .
b= 50T M(©)6 +0"M©)O -~ ETK,0
= %E:"",'.Er{(-n(l} -e'K,0-0"V(B.6) (10.48)

= -06Tk,0.
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which is nonpositive as Jon i iti 1
| S long as K, is positive definite. In taking th i
(10.48). we have made use of the interesting identity I

1

ST MO — &T B
50" M@0 =67V (e,0), (10.49)

which can be shown by investigati
: gation of the structur ; '
motion [18-20]. (See also Exercise 6.17.) R A

Next, we investigate whether the system can get “stuck” with nonzero error

Because © can remain zer i
0 only along trajectories that have € &
see from (10.46) that, in this case. R =T

K,E =0, (10.50)

and because K, is nonsingular, we have

E=0. (10.51)

Hence, control law (10.45 i i

ol (10.45) applied to the system (10.44) achieves global asymptotic

mbm:::z f}!of.f{ IS in:up;rlam inthat it explains, to some extent, why today’s industrial
) OTK. Most industrial robots use a simple error-drive i

with gravity models, and so are quite similar to (10.45). i

mmr;jﬂj‘;\ﬁﬁ:‘}d:cs 1(]1;1 1 through 10.16 for more examples of nonlinear manipulator
» that can be proven stable by Lyapunov's method Rec ,

: _ ' ! - Recently, Lyapu
theory has become increasingly prevalent in robotics research publicatizns J{LEE.E)-S'(.:]W

10.8 CARTESIAN-BASED CONTROL SYSTEMS

T £ 2 . A
1::; I;l::; s,;ctron. we mtroduce the notion of Cartesian-based control. Although such
E: aches are not currently used in industrial iy acl

‘ es are | robots. there i
rescarch institutions on such schemes, T e

Comparison with joint-based schemes

[It?ut[]l:hthfj cqnt;uf schemes for manipulators we have discussed so far. we assumed
¢ desired trajectory was available in terms of ti istori joi
sl ‘ g ime histories of joint positi
velocity, and acceleration. Given 1 ' i ; 4 g
: : ' 1al these desired input '
designed joint-based control sch | ‘ g el e v
emes. that is. schemes in which we devel |
errors by finding the difference betwee i ; B g
el n desired and actual quantiti sed |
Joint space. Very often, we wish the mani s, i oo
X pulator end-effector to follow straj i
or other path shapes described in Cartes; i i Tt o
( : rtesian coordinates. As we saw in Ch i
IS possible to compute the time histor joi : it
ies of the joint-space traject h
to Cartesian straight-line p: ' i i et
( paths. Figure 10.10 shows this appr h i
Irajectory control. A basic feature of N e T
: the approach is the traject
process, which is used to com joi | i o o s
_ pute the joint trajectories. This is the
.15 us 1 n followe
some kind of joint-based servo scheme such as we have been studying "
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FIGURE 10.10: A joint-based control scheme with Cartesian-path input.

The trajectory-conversion process is quite difficult (in terms of computational
expense) if it is to be done analytically. The computations that would be required are

@, = INVKIN(x,).
®, =J1 (),
B, =i '@, + @i,

(10.52)

To the extent that such a computation is done at all in present-day systems. usually
just the solution for ®, is performed, by using the inverse kinematics, and then
the joint velocities and accelerations are computed numerically by first and second
differences. However, such numerical differentiation tends to amplify noise and
introduces a lag unless it can be done with a noncausal filter.” Therefore, we are
interested in either finding a less computationally expensive way of computing
(10.52) or suggesting a control scheme in which this information is not needed.

An alternative approach is shown in Fig. 10.11. Here. the sensed position of
the manipulator is immediately transformed by means of the kinematic equations
into a Cartesian description of position. This Cartesian description is then compared
to the desired Cartesian position in order to form errors in Cartesian space. Control
schemes based on forming errors in Cartesian space are called Cartesian-based
control schemes. For simplicity, velocity feedback is not shown in Fig. 10.11. but it
would be present in any implementation.

The trajectory-conversion process is replaced by some Kind of coordinate
conversion inside the servo loop. Note that Cartesian-based controllers must perform
many computations in the loop: the kinematics and other transformations are now
“inside the loop.” This can be a drawback of the Cartesian-based methods: the
resulting system could run at a lower sampling trequency compared to joint-based

o Coordinate
D o vereio T | ft
.k’ . E fﬂl'l-'lil:l'lgjﬁ-ll n Arm
4
sainsg
A Kin (8) |

FIGURE 10.11: The concepl of a Cartesian-based control scheme.

- 7 a 5 a i ¥ -
“MNumerical differentiation introduces 4 lag unless il can be based on pasi. present, and future values
When the entire path is preplanned. this kind of noncausal numerical differentiation can be donpe.
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Intuitive schemes of Cartesian control

One possi scheme '
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FIGURE 10.12: The inverse-Jacobian Cartesian-control scheme,
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FIGURE 10.13: The transpose-Jacobian Cartesian-control scheme.
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24 Kin () .
s il

X

of such systems (if expressed in a second-order error-space equation, for example)
is very complicated. It turns out that both schemes will work (i.e.. can bc made
stable), but not well {i.e.. performance is not good over the entire workspace). Both
can be made stable by appropriate gain selection. including some form of velocity
feedback (which was not shown in Figs. 10.12 and 10.13). While both will work.
neither is correct. in the sense that we cannot choose fixed gains that will result in
fixed closed-loop poles. The dynamic response of such controllers will vary with arm
configuration.

7@ = Am

7(8)

T e iy e

Cartesian decoupling scheme

For Cartesian-based controllers. like joint-based controllers. good performance
would be characterized by constant error dynamics over all configurations of the
manipulator. Errors are expressed in Cartesian space in Cartesian-based schemes.
so this means that we would like to design a system which. over all possible
configurations, would suppress Cartesian errors in a critically damped fashion.
Just as we achieved good control with a joint-based controller that was based FIGURE 10.14: The Cartesian model-based I

on a linearizing and decoupling model of the arm. we can do the same for the RO saliginG,
Cartesian case. However, we must now write the dynamic equations of motion of
the manipulator in terms of Cartesian variables. This can be done. as was discussed
in Chapter 6. The resulting form of the equations of motion is quite analogous Lo
the joint-space version. The rigid-body dynamics can be written as

i Kin ()
7'(8) Arm b

()

F =M+ VA0.0)+ G (O). (10.53)

- —

where F is a fictitious force—moment vector acting on the end-cffector of the robot
and y is an appropriate Cartesian vector representing position and orientation of
the end-effector [8]. Analogous to the joint-space quantities, M (®) is the mass .
matrix in Cartesian space. V_(©. ) is a vector of velocity terms in Cartesian space.
and G, (@) is a vector of gravity terms in Cartesian space.

Just as we did in the joint-based case, we can use the dynamic equations in
a decoupling and linearizing controller. Because (10.53) computes F. a fictitious

G (8)

o T

B.(8) + C,(6) .._J

Cartesian force vector which should be applied to the hand. we will also need to use i e
the transpose of the Jacobian in order to implement the control—that is. after Fis i - /i:-\
calculated by (10.53), we cannot actually cause a Cartesian force to be applied to N

the end-effector; we instead compute the joint torques needed to effectively balance

eishnss; wonaiea g inCe FIGURE 10.15: An implementation of the Cartesian model-based Isch
- control scheme,
roce is i
fenrn s[:s;j ::hl “i?::i control computer. Th:s. I appropriate, because we desire a fas
gL p; s Ing at 500 Hz or even higher) to maximize disturbance rejection
. neet;l bce ynamic parameters are functions of manipulator position onl
updated at a rate related only to how fast the manipulator ::s

changing configuration,
than 100 Hz [Ef The parameter-update rate probably need not be higher

Figure 10.14 shows a Cartesian arm-control system using complete dynamic
decoupling. Note that the arm is preceded by the Jacobian transpose. Notice that
the controller of Fig. 10.14 allows Cartesian paths to be described directly. with no
need for trajectory conversion.

As in the joint-space case, a practical implementation might best be achieved
through use of a dual-rate control system. Figure 10.15 shows a block diagram
of a Cartesian-based decoupling and linearizing controller in which the dynamic
parameters are written as functions of manipulator position only. These dynamic
parameters are updated at a rate slower than the servo rate by a background

10.9 ADAPT IVE CONTROL

In the discussion of model-base

: d control, it wa
the manipulator are not known y s noted that, often, parameters of

exactly. When the parameters in the model do not
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" : Dynamic | Arm i
a, model [
|8

§— Adaptation |

) ,-h}: | laws L
I

FIGURE 10.16: The concept of an adaptive manipulator controller.

match the parameters of the real device. servo errors will n:,:ﬂgllt. ﬂs'lsnm‘il:[lj'::]::.:p:;i::
in (10.25). These servo errors could be used Lo drive some d‘l alpm'tm 1-2 e
attempts to update the values of the model parameters until the errors disaj ;
Several such adaptive schemes have been proposed.

An ideal adaptive scheme might be like the one in Fig. 10.16. Here. we are

using a model-based control law as developed in this chapter, Therfz is an:j-f\f;lalt :g:
process that. given observations of man_lpulmur state _zm-;l SErvo erflnrs. n.; ]J“ w.m”d
parameters in the nonlinear model until lhc errors dlsap-pcnr. Suuta sys];:‘mm i
learn its own dynamic properties. The design and analysis n‘r adapu‘vc w:; :e -
beyond the scope of this book. A method that possesses xexatt]}f th;gl{}tﬁic uﬁL o
in 'Fig. 10.16 and has been proven globally stable is presented in [20. 21].

technique is that of [22].
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EXERCISES
10.1 [15] Give the nonlinear control equations for an «,p-partitioned controller for

the system :
r = (248 + 1)i + 367 —sin(@).

Choose gains so that this system is always critically damped with k-; = 10.
10.2 [15] Give the nonlinear control equations for an «,B-partitioned controller for

the system . " 3
r =566 + 26 — 136> +5.

Choose gains so that this system is always critically damped with k-, = 10.

10.3 [19] Draw a block diagram showing a joint-space controller for the two-link arm
from Section 6.7, such that the arm is critically damped over its entire workspace.
Show the equations inside the blocks of a block diagram.

10.4 [20] Draw a block diagram showing a Cartesian-space controller for the two-
link arm from Section 6.7, such that the arm is critically damped over its entire
workspace. (See Example 6.6.) Show the equations inside the blocks of a block

diagram.
10.5 [18] Design a trajectory-following control system for the system whose dynamics

are given by
T = ml{]lg] +m1f]!2é1é21

Do you think these equations could represent a real system?

10.6 [17] For the control system designed for the one-link manipulator in Example
10.3, give an expression for the steady-state position error as a function of error
in the mass parameter. Let ,, = m — . The result should be a function of
l,g.0,v, . m, and k . For what position of the manipulator is this at a maximum?

10.7 [26] For the two-degree-of-freedom mechanical system of Fig. 10.17, design a
controller that can cause x; and x, to follow trajectories and suppress disturbances
in a critically damped fashion.

10.8 [30] Consider the dynamic equations of the two-link manipulator from Section 6.7
in configuration-space form. Derive expressions for the sensitivity of the computed

e W

ny

FIGURE 10.17: Mechanical system with two degrees of freedom.
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torque value versus small deviations in ©. Can vou sa i
often tbc dynamics should be recomputed in a mi:rnilcfi?ﬁ? lt::ll I:agf ;::gmi:}l;n;:
a functmq of average joint velocities expected during normal operations"‘ |
10.9 [32! Cons;dnfr the dynamic equations of the two-link manipulator from ﬁxample
6.6in Cartesian configuration-space form. Derive expressions for the sensitivity of
the computed torque value versus small deviations in ©. Can you say somethin
gbeFI..l'l hl%u; 5«:nl'tt:n the d;-,lanamics should be recomputed in a controlier like tha%
oper;gt.inn;? as a function of average joint velocities expected during normal
10.10 [15] Design a control system for the system

J=58xx+2%-12.

10.11 [20] Consider a gosilion-regula[iun system that (without loss of generality)
atiempts 1o maintain @, = (. Prove that the control law

T=~K,0 - M(O)K,0 + G(O)

gields:n as:n}ptu;icaliy stable nonlinear system. You may take K, to be of the
form A, =&,/ where k, is ascalarand I isth i i i nt: Thi
i simi[;:} = éx;mple mg. n 1S tNE 7 x n identity matrix, Hini: This

10.12 [20] Consider a position-re ' i
! -regulation system that (without | i
attempts to maintain ®, = (. Prove that the control law B

T=-K,0-MO)K,O+GO)

i?ic]ds an asymptotically stable nonlinear system. You may take K v to be of the
E{r{g}ﬂ_’ v =k, _f,, where k,, is a scalarand /, is the n x n identity matrix. The matrix

15 a positive definite estimate of the manipulator i int: This 1
e sl p mass matrix. Hint: This is
10.13 [25] Consider 2 position-regulation system that (without loss of generality)
datlempts to maintain ©, = (.. Prove that the control law '

T=-M(O)K,0+ K,0) + G(O)

l:,:;’::h:lslrc:u1 as’j‘m}pta:jically stable nonlinear system. You may take K, to be of the
rmK, = where k, is a scalar and /i i ' i i
gt . aux;mpje 2 and [, is the n x n identity matrix. Hint: This

10.14 [25] Consider a position-re i i
ap gulation system that (without los i
attempts to maintain ©; = 0. Prove that the cnnlml(law M-

T =-M(O)[K,0+ K0+ G(@)

g:elds an asymptotically stal:glc nonlinear system. You may take X u Lo be of the

n::r:n_ K;}{E k!,f“. where &, is a scalar and I, is the n x n identity matrix. The

matrix ) 1s a positive definite estimate of the manipulato atrix. Hine:

3 This is similar to example 10.6, g SR

0.15 (28] Consider a gusilion-regulation system that (without loss of generality)
attempts 10 maintain &, = (), Prove that the control Jaw '

T=-K,0-K,0
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yields a stable nonlinear system. Show that ﬁtabiFiI}'_ is not asymptotic m:]dﬁgwe an
expression for the steady-state error. Hint: This is similar to Example 10.6.

L]
10.16 [30] Prove the global stability of the Jacobian-transpose Cartesian controller Fo rce ContrOI of manlpulators

introduced in Section 10.8. Use an appropriate form of velocity feedback to

stabilize the system. Hint: See [18]. - e
10.17 [lS‘lDeti;lgn a trajectory-following controller for a svstem with dynamics given by

11.1 INTRODUCTION

sl S L Sin(x).
s bl 11.2 APPLICATION OF INDUSTRIAL ROBOTS TO ASSEMBLY TASKS

uch that errors are suppressed in a critically damped fashion over all configura- 11.3 A FRAMEWORK FOR CONTROL IN PARTIALLY CONSTRAINED TASKS
fims 11.4 THE HYBRID POSITION/FORCE CONTROL PROBLEM
10.18 IISI] A system with open-loop dynamics given by 11.5 FORCE CONTROL OF A MASS-SPRING SYSTEM
: o g w 11.6 THE HYBRID POSITION/FORCE CONTROL SCHEME
T =mi + b6~ 4+t 11.7 CURRENT INDUSTRIAL-ROBOT CONTROL SCHEMES

is controlled with the control law |
r=mlf; +k,é+ kel + sin@).

Give the differential equation that characterizes the closed-loop action of the

system. . 111 INTRODUCTION
PROGRAMMING EXERCISE (PART 10) Position control is dppropriate when a manipulator is following a trajectory through
Repeat Programming Exercise Part 9, and use the same tests, but with a ncﬂ:}::;};ltz?;[;l' space, but when any contact is made bemfeen the end-effector am.d the mamguiamr s
that uses a complete dynamic mode] of the 3-link to decouple and linearize SRAIL CHVII‘F}I]!'I]EHI: MEre position control might not suffice. Consider a manipulator
B Pl e i washing a window with g sponge. The compliance of the sponge might make it
mg.g mgg ?}g possible to regulate the force applied to the window by controlling the position of
W . , 0f.

the end-effector relative 1o the glass. If the sponge is very compliant or the position
] ) . of the glass is known very accurately. this technique could work quite well,
Choose a diagonal K|, that guarantees critical damping over all E.nn.hgt”jlt]:;ni;fdﬂ;s | If. however. the stiffness of the end-effector, tool. or environment is high.
arm. Compare the results with those obtained with the simpler contr ‘ -|I it becomes increasingly difficult 1o perform operations in which the manipulator
Programming Exercise Part 9. presses against a surface. Instead of washing with a sponge. imagine that the
manipulator is scraping paint off a glass surface. using a rigid scraping tool, If there
Is any uncertainty in the position of the glass surface or any error in the position
of the manipulator, this task would become impossible. Either the glass would be
broken, or the manipulator would wave the scraping ool over (he glass with no
contact taking place.

In both the washing and seraping tasks. it would be more reasonable not to
specily the position of the plane of the glass. but rather o specify a force that is to be
matntained normal to the stirface.

More so than in previous chapiers. in this chapter we present methods that are
not yet emploved by industrial robots. except in an extremely simplified way. The
major thrust of the chapteris to introduce the hybrid position/force controller. which
is one formalism through which industrial robots might someday be controlled in
order 10 perform tasks requiring foree control. However, regardless of which
method(s) emerge as practical for industrial application. many of the concepts
introduced in this chapter will certainly remain valid.

3 0.0 0.0 100.0
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