
(12) United States Patent

US007299291B1

(10) Patent No.: US 7,299,291 B1
Shaw (45) Date of Patent: Nov. 20, 2007

(54) CLIENT-SIDE METHOD FOR IDENTIFYING 6,351,775 B1* 2/2002 Yu TO9,238
AN OPTIMUM SERVER 6,377,996 B1 * 4/2002 Lumelsky et al. TO9,231

6.421,726 B1 7/2002 Kenner et al.
(75) Inventor: David M. Shaw, Newton, MA (US) 6,546.421 B1 * 4/2003 Wynblatt et al. 709,225

s s 6,665,726 B1 12/2003 Leighton et al.

(73) Assignee: Akamai Technologies, Inc., Cambridge, OTHER PUBLICATIONS
MA (US

(US) Challenger, et al. “A scalable and highly available system for
- r ing dynamic data at frequently accessed web sites.” 1998. (*) Notice: Subject to any disclaimer, the term of this Serving ck

patent is extended or adjusted under 35 ACM/IEEE Conference on Supercomputing. Published by IEEE.
U.S.C. 154(b) by 482 days. (Continued)

Primary Examiner Jason Cardone 21) A1. No.: 09/859,708 y (21) Appl. No 9 Assistant Examiner Nicholas R Taylor
(22) Filed: May 17, 2001 (74) Attorney, Agent, or Firm—David H. Judson

Related U.S. Application Data (57) ABSTRACT

(60) Provisional application No. 60/205,636, filed on May A client player performs a query to a nameserver against a
18, 2000. network map of Internet traffic conditions. The query is

made asking for a particular service (e.g., RTSP) via a
(51) Int. Cl. particular protocol (TCP) in a particular domain. In

G06F 5/16 (2006.01) response, the nameserver returns a set of one or more tokens,
(52) U.S. Cl. 709/231: 709/203; 709/219; with each token defining a machine or, in the preferred

709/222; 709/225; 709/227; 709/234 embodiment, a group of machines, from which the player
(58) Field of Classification Search 709/223, should seek to obtain the stream. The player may then

709/225, 231 optionally perform one or more tests to determine which of
See application file for complete search history. a set of servers provides a best quality of service for the

stream. That server is then used to retrieve the stream.
(56) References Cited Periodically, the client player code repeats the query during

6,003,030
6,078,953
6,108,703
6,112,239
6,134,588
6,141,759
6,154,744
6, 195,680
6,292,834

U.S. PATENT DOCUMENTS

A 12, 1999
A * 6, 2000
A 8, 2000
A 8, 2000
A * 10, 2000
A * 10, 2000
A 11, 2000
B1* 2, 2001
B1* 9, 2001

Kenner et al.
Vaid et al. 709,223
Leighton et al.
Kenner et al.

stream playback to determine whether there is a better
source for the stream. If a better source exists, the player
performs a switch to the better stream source “on the fly if
appropriate to maintain and/or enhance the quality of Ser
vice. Preferably, the client player publishes data identifying
why it selected a particular server, and Such data may be

Siber et al. 223 used to augment the network map used for Subsequent
Kenn cal." request routing determinations.
Goldszmidt et al. TO9,203
Ravi et al. TO9,233 14 Claims, 2 Drawing Sheets

400
Query NameServer

402
Server R Nerums -1

04
-'
a8

Retrieve Steam

Player
Receiving
Strean

Yes

Repeat Query

GetStream

Publish Data
Back to CONSP

403

412
Service

Acceptable

No 414

46

48

Netflix, Inc. - Ex. 1005, Page 000001
IPR2021-00303 (Netflix, Inc. v. Avago Technologies International Sales PTE. Limited)

US 7,299,291 B1
Page 2

OTHER PUBLICATIONS Gulbrandsen, et al. “RFC 2782: A DNS RR for specifying the
location of services (DNS SRV).” Feb. 2000. Network Working

Min, et al. “A load balancing algorithm for a distributed multimedia Group, Request for Comments #2782.*
game server architecture.” Jun. 1999. IEEE International Confer- -
ence on Multimedia Computing and Systems of 1999.* A. Gulbrandsen et al., RFC 2052 “A DNS RR for specifying the
Crowcroft, Jon. “The Real Time Stream Protocol RTSP, Nov. location of services (DNSSRV)” (Oct. 1996).
1998. http://www.cs.ucl.ac.uk/staffon/mmbook/book/node,314.
html. * cited by examiner

Netflix, Inc. - Ex. 1005, Page 000002

U.S. Patent Nov. 20, 2007 Sheet 1 of 2 US 7,299,291 B1

Orgin 115
S erWer 106

114

Entry Point

Netflix, Inc. - Ex. 1005, Page 000003

U.S. Patent Nov. 20, 2007 Sheet 2 of 2 US 7,299,291 B1

CDNSP
NameServer

305
304 306

Looku p Testing 312
3O8 310

Decision Stream

Player
Receiving
Stream

2

Yes

Repeat Query

Service
Acceptable

414

416 FIG. 4
418

NO

Publish Data
Back to CDNSP

Netflix, Inc. - Ex. 1005, Page 000004

US 7,299,291 B1
1.

CLIENTSIDE METHOD FOR DENTIFYING
AN OPTIMUM SERVER

RELATED APPLICATION

This application is based on and claims priority from
provisional application Ser. No. 60/205,636, filed May 18,
2000, and assigned to the assignee of this application.

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates generally to high-perfor

mance, fault-tolerant content delivery in a content delivery
network (CDN).

2. Description of the Related Art
Streaming media is a type of Internet content that has the

important characteristic of being able to be played while still
in the process of being downloaded. A client can play the
first packet of the stream, and decompress the second, while
receiving the third. Thus, an end user can start enjoying the
multimedia without waiting to the end of transmission.
Streaming is very useful for delivering media because media
files tend to be large particularly as the duration of the
programming increases. Indeed, for live events, the file size
is, in effect, infinite. To view a media file that is not
streamed, users must first download the file to a local hard
disk which may take minutes or even hours—and then
open the file with player software that is compatible with the
file format. To view streaming media, the user's browser
opens player software, which buffers the file for a few
seconds and then plays the file while simultaneously down
loading it. Unlike software downloads, most streaming
media files are not stored locally on a user's hard disk. Once
the bits representing content are used, the player typically
discards them.

Streaming media quality varies widely according to the
type of media being delivered, the speed of the user's
Internet connection, network conditions, the bit rate at which
the content is encoded, and the format used. In general,
streaming audio can be FM quality, but, given typical
bandwidth constraints, streaming video is poor by TV stan
dards, with smaller screens, lower resolution, and fewer
frames per second. The Source for streaming media can be
just about any form of media, including VHS or Beta format
tapes, audio cassettes, DAT, MPEG video, MP3 audio, AVI,
and the like. Prior to streaming, the content must first be
encoded, a process which accomplishes four things: conver
sion of the content from analog to digital form, if necessary;
creation of a file in the format recognized by the streaming
media server and player; compression of the file to maxi
mize the richness of the content that can be delivered in
real-time given limited bandwidth; and, establishing the bit
rate at which the media is to be delivered. Content owners
typically choose to encode media at multiple rates so that
users with fast connections get as good an experience as
possible but users with slow connections can also access the
COntent.

Non-streaming content is standards-based in the sense
that the server and client software developed by different
vendors, such as Apache server, Microsoft Internet Explorer,
Netscape Communicator, and the like, generally work well
together. Streaming media, however, usually relies on pro
prietary server and client software. The server, client, pro
duction and encoding tools developed by a streaming soft
ware vendor are collectively referred to as a format.
Streaming media encoded in a particular format must be

10

15

25

30

35

40

45

50

55

60

65

2
served by that formats media server and replayed by that
format's client. Streaming media clients are often called
players, and typically they exist as plug-ins to Web brows
ers. Streaming media clients are also often capable of
playing standards-based non-streaming media files, such as
WAV or AVI.
The three major streaming media formats in use today are:

RealNetworks RealSystem G2, Microsoft Windows Media
Technologies (“WMT), and Apple QuickTime. RealSystem
G2 handles all media types including audio, video, anima
tion, and still images and text. RealSystem G2 and Quick
Time support SMIL, an XML-based language that allows
the content provider to time and position media within the
player window. To deliver the media in real time Real and
QuickTime use RTSP, the Real Time Streaming Protocol.
RTSP is an application-level protocol designed to work with
lower-level protocols like RTP (Realtime Transport Proto
col) and RSVP (Resource Reservation Protocol) to provide
a complete streaming service over the Internet. To stream in
WMT's Advanced Streaming Format, content providers
typically must have Microsoft NT 4 Server installed. WMT
does not support SMIL or RTSP but has its own protocol that
it calls HTML+Time. Apple QuickTime recently has added
the capability to serve streaming media. QuickTime can
support a number of formats including VR, 3D, Flash, and
MP3.
From a network perspective, traditional approaches to

streaming Internet content involve transmitting a streaming
signal from a source to a device known as a splitter (or
repeater, reflector or mirror), which, in turn, replicates the
Source signal into multiple signals. Each of the multiple
signals is the same, and each is sent on to a different
destination. By cascading splitters in a tree-like fashion, a
single source stream can be replicated into thousands or
more identical copies. In this manner, a large number of
viewers on the Internet can receive the same streaming
signal simultaneously

It is also known in the art to deliver streaming media (and
HTTP-based Web content) using a content delivery network
(CDN). A CDN is a network of geographically distributed
content delivery nodes that are arranged for efficient deliv
ery of digital content (e.g., Web content, streaming media
and applications) on behalf of third party content providers.
A request from a requesting end user for given content is
directed to a “best” replica, where “best usually means that
the item is served to the client quickly compared to the time
it would take to fetch it from the content provider origin
SeVe.

Typically, a CDN is implemented as a combination of a
content delivery infrastructure, a request-routing mecha
nism, and a distribution infrastructure. The content delivery
infrastructure usually comprises a set of “surrogate' origin
servers that are located at Strategic locations (e.g., Internet
network access points, Internet Points of Presence, and the
like) for delivering copies of content to requesting end users.
The request-routing mechanism allocates servers in the
content delivery infrastructure to requesting clients in a way
that, for web content delivery, minimizes a given clients
response time and, for streaming media delivery, provides
for the highest quality. The distribution infrastructure con
sists of on-demand or push-based mechanisms that move
content from the origin server to the Surrogates. An effective
CDN serves frequently-accessed content from a Surrogate
that is optimal for a given requesting client. In a typical
CDN, a single service provider operates the request-routers,
the Surrogates, and the content distributors. In addition, that
service provider establishes business relationships with con

Netflix, Inc. - Ex. 1005, Page 000005

US 7,299,291 B1
3

tent publishers and acts on behalf of their origin server sites
to provide a distributed delivery system. A well-known
commercial CDN service that provides web content and
media streaming is provided by Akamai Technologies, Inc.
of Cambridge, Mass.
CDNS may use content modification to tag content pro

vider content for delivery. Content modification enables a
content provider to take direct control over request-routing
without the need for specific switching devices or directory
services between the requesting clients and the origin server.
Typically, content objects are made up of a basic structure
that includes references to additional, embedded content
objects. Most web pages, for example, consist of an HTML
document that contains plain text together with some
embedded objects, such as .gif or jpg images. The embed
ded objects are referenced using embedded HTML direc
tives. A similar scheme is used for some types of streaming
content which, for example, may be embedded within an
SMIL document. Embedded HTML or SMIL directives tell
the client to fetch embedded objects from the origin server.
Using a CDN content modification scheme, a content pro
vider can modify references to embedded objects so that the
client is told to fetch an embedded object from the best
Surrogate (instead of from the origin server).

In operation, when a client makes a request for an object
that is being served from the CDN, an optimal or “best
edge-based content server is identified. The client browser
then makes a request for the content from that server. When
the requested object is not available from the identified
server, the object may be retrieved from another CDN
content server or, failing that, from the origin server.
A “best” content server for a particular client may not

remain that way for a given time period. In the context of
streaming content delivery, for example, the notion of “best”
can change very quickly given the relatively large size of
most streams (and the near-infinite size of all live streams).
Thus, in many cases, the “best” server for a given client
player receiving a given stream is likely to change before the
stream is finished.

It would be desirable to enable a client player to identify
a best server dynamically and, when appropriate, to enable
the player to selectively switch from one server to another
during the process of downloading and outputting a given
stream or other large file.

BRIEF SUMMARY OF THE INVENTION

A client machine includes a media player provisioned to
perform a query to a CDNSP nameserver having a network
map of Internet traffic conditions. In a preferred embodi
ment, the query is a DNS SRV lookup and includes an
identification of the client player. The query is made asking
for a particular service (e.g., RTSP) via a particular protocol
(TCP) in a particular CDNSP domain. In response, the
nameserver returns a set of one or more tokens, with each
token defining a machine or, in the preferred embodiment, a
group of machines, from which the player should seek to
obtain given content (e.g., a stream). The player may then
optionally perform one or more tests to determine which one
of a set of returned servers provides a best quality of service
for the content delivery. That server is then used to retrieve
the content. Periodically, the client player code repeats the
DNS SRV query during playback to determine whether there
is a better source for the stream. If so, the player is controlled
to switch to the better stream source “on the fly if appro
priate to maintain and/or enhance the quality of service.
Preferably, the client player publishes data back to the

5

10

15

25

30

35

40

45

50

55

60

65

4
CDNSP identifying the results that were obtained during the
testing process. This data provides the CDNSP with feed
back regarding why the client player selected a particular
server. Such data may then be used to augment the network
map that is used by the CDNSP for subsequent request
routing determinations.
The foregoing has outlined some of the more pertinent

features of the present invention. These features should be
construed to be merely illustrative. Many other beneficial
results can be attained by applying the disclosed invention in
a different manner or by modifying the invention as will be
described. Accordingly, other features and a fuller under
standing of the invention may be had by referring to the
following Detailed Description of the Preferred Embodi
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a known content delivery
network in which the present invention may be imple
mented;

FIG. 2 is a simplified diagram illustrating how live
streaming can be further enhanced by having the CDN send
multiple copies of the same stream over different routes from
a CDN entry point to the optimal streaming server at the
edge of the Internet;

FIG. 3 illustrates a representative client browser having a
streaming media client player that is enhanced to include the
functionality of the present invention; and

FIG. 4 is a simplified flowchart illustrating the operation
of the client player in a representative embodiment.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 is a diagram showing an illustrative content
delivery service in which the present invention may be
implemented. The invention may likewise be implemented
with other known or later-designed or built content delivery
services or systems. In the illustrative embodiment, the
content delivery service comprises a preferably global con
tent delivery network (CDN) 100 of content delivery server
regions 102a-n, a domain name service (DNS) system 104,
and a content modification or “initiator” tool 106 that allows
content to be tagged for inclusion on the network. DNS
system 104 receives network mapping data from a map
maker 107, which receives inputs from monitoring agents
109 distributed throughout the Internet. Agents typically
perform various tests and monitor traffic conditions to
identify Internet congestion problems. The map maker 107
takes the data generated from the agents and generates one
or more maps detailing Internet traffic conditions. Generally,
the content delivery service allows the network of content
delivery server regions 102a-n to serve a large number of
clients efficiently. Each region may include one or more
content servers, with multiple content servers typically shar
ing a local area network (LAN) backbone. Although not
meant to be limiting, a typical server is an Intel Pentium
based caching appliance running the Linux operating system
with a large amount of RAM and disk storage. As also seen
in FIG. 1, the content delivery service may include a
network operations control center (NOCC) 112 for moni
toring the network to ensure that key processes are running,
systems have not exceeded capacity, and that Subsets of
content servers (the so-called CDN regions 102) are inter
acting properly. A content provider operates an origin server
(or server farm) 115 from which requesting end users 119

Netflix, Inc. - Ex. 1005, Page 000006

US 7,299,291 B1
5

would normally access the content provider's Web site via
the Internet. Use of the CDN avoids transit over the Internet
for selected content as described below. The content pro
vider may also have access to a monitoring Suite 114 that
includes tools for both real-time and historic analysis of
customer data. One tool is a traffic analyzer that provides
multiple monitoring views that enable quick access to net
work and customer-specific traffic information. A reporter
allows for viewing of historical data. A billing tool may be
used to generate appropriate billing information for the
content provider, who typically pays for the service as a
function of the amount of content delivered by the CDN.

High-performance content delivery is provided by direct
ing requests for web objects (e.g., graphics, images, stream
ing media, HTML and the like) to the content delivery
service network. In one known technique, known as Akamai
FreeFlow Streaming content delivery, content is first tagged
for delivery by the tool 106, which, for example, may be
executed by a content provider at the content provider's web
site 115. For streaming content, the initiator tool 106 con
verts URLs that refer to streaming content to modified
resource locators, called ARLS for convenience, so that
requests for such media are served preferentially from the
CDN instead of the origin server. For example, the tool
prepends each streaming URL with a string containing a
CDN domain and, optionally, additional control informa
tion. For the URL rtsp://www.foo.com/movie.mov, for
example, the corresponding ARLS may look like as follows:

Live or Broadcast:
WMT: mms://a9.m.akastream.net ... (control info)/reflector:35001
Real: rtsp://a9.rakareal.net/live? ... (control info)/reflector:35001
QT: rtsp://ap.g.kamai.net ... (control info)/www.mysite.com

movietsdp

Of course, the above formats are merely illustrative.
When an Internet user visits a CDN customer's site (e.g.,
origin server 115) and selects on a link to view or hear
streaming media, the user's system resolves the domain in
the ARL to an IP address. In particular, because the content
has been tagged for delivery by the CDN, the URL modi
fication, transparent to the user, cues the Internet's standard
Domain Name Service (DNS) to query a CDN name server
(or hierarchy of name servers) 104 to identify the appropri
ate media server from which to obtain the stream. The CDN
typically implements a request-routing mechanism (e.g.,
under the control of maps generated from the monitoring
agents 109 and map maker 107) to identify an optimal server
for each user at a given moment in time. Because each user
is served from the optimal streaming server, preferably
based on real-time Internet conditions, streaming media
content is served reliably and with the least possible packet
loss and, thus, the best possible quality. Further details of a
DNS-based request-routing mechanism are described in
U.S. Pat. No. 6,108,703, which is incorporated herein by
reference.

As described in U.S. Pat. No. 6,665,726, which is also
incorporated herein by reference, live streaming can be
further enhanced by having the CDN send multiple copies of
the same stream over different routes from a CDN entry
point to the optimal streaming server at the edge of the
Internet. These copies are then combined to form one
complete, original-quality stream, which is sent from the
streaming server to the end users. FIG. 2 illustrates this
process in more detail. A broadcast stream 200 is sent to a

5

10

15

25

30

35

40

45

50

55

60

65

6
CDN entry point 202. An entry point, for example, com
prises two servers (for redundancy), and each server can
handle many streams from multiple content providers. Once
the entry point receives the stream, it rebroadcasts copies of
the stream to set reflectors 204a-n. The streams are multi
plexed and delivered to the set reflectors preferably via UDP
(e.g., WMT encapsulated in RTSP encapsulated in UDP over
IP). These set reflectors are preferably diverse from a
network and geographic standpoint (e.g., at diverse Internet
backbone data centers) to ensure fault tolerance. Each set
reflector, in turn, rebroadcasts its copy of the stream to each
Subscribing region, e.g., region 206d. of a set of regions
206a-n. A subscribing region 206d is a CDN region that
contains one or more streaming edge nodes 208a-n to which
user(s) have been routed by the CDN request-routing
mechanism. In other words, set reflectors send their streams
to every edge region where they are needed. A CDN region,
in this example, includes a set of edge nodes connected by
a common backbone 209, e.g., a local area network (LAN).
Typically, an edge node, e.g., node 208d, comprises a
streaming server 212 and it may include a cache 210. A
representative server runs an Intel processor, the Linux
operating system and a Real Media or QuickTime Server.
For Windows-based platforms, a representative server runs
an Intel processor, Windows NT or 2000, and a Windows
Media Server. As will be described, the edge node also runs
control programs 214 to facilitate the inventive subscription
mechanism.

Each Subscribing region, then, simultaneously receives
multiple copies of the streamed content. These copies have
been sent via separate routes over the Internet, so congestion
resulting in dropped packets is unlikely to impact each copy
of the stream equally. As described in U.S. Pat. No. 6,665,
726, each region preferably has a mechanism to recreate in
real time an original version of the stream as sent to the entry
point. In this way, the technique compensates for the inher
ently faulty Internet and inherently lossy UDP transport
protocol. The reassembly mechanism within each region
makes the original, Verbatim stream available to every
streaming media server within that region. When a user
clicks on a CDN-tagged stream, the stream is delivered from
the optimal edge node (and, in particular, that node's stream
ing media server) identified by the CDN's request-routing
mechanism. If the CDN maps a user to a node in a region
which has not subscribed to that broadcast stream (which,
for example, is true for the first connection served from that
region), the region automatically notifies the set reflectors
and Subscribes to that stream.

A “best content server for a particular client may not
remain that way for a given time period. In particular, the
notion of "best can change very quickly given the relatively
large size of most streams (and the near-infinite size of all
live streams). Thus, in many cases, the “best server for a
given client player receiving a given stream is likely to
change before the stream is finished. The present invention
provides a method for enabling a client player to identify a
best server dynamically and, in addition, to selectively
switch to that server to receive the stream or portions
thereof. In one embodiment, the present invention is imple
mented a streaming media client or player, which may be a
plug-in to a web browser. The streaming media client is
receiving a media stream from a given server, as generally
described above. The invention enables the browser and, in
particular, the media client, to identify an optimum stream
ing server for the stream in the first instance and, if appro

Netflix, Inc. - Ex. 1005, Page 000007

US 7,299,291 B1
7

priate, to selectively switch from a first server to an optimum
streaming server "on the fly” so that it continues to receive
the best possible service.

FIG. 3 illustrates a representative client browser 300
having a streaming media client player (e.g., Real Player,
Apple QuickTime Player, Windows Media Player, or the
like) 302 that is enhanced according to the present invention.
In particular, the streaming media client player includes or
has associated therewith given code (a series of computer
program instructions) for use in providing the inventive
functionality. In a representative embodiment, this code
comprises several processes, namely, a DNS lookup process
304, a server testing process 306, a decision process 308,
and a stream switch process 310. These processes are shown
as being discrete for illustrative purposes only, as the func
tionality described below for each of the processes can be
integrated into one or more programs, processes, execution
threads, applets, or the like. In one embodiment, the func
tions are built into the browser software directly, in another
embodiment one or more of these functions are built into a
plug-in to the browser Software, in yet another embodiment
one or more of these functions are provided in standalone
code executable in the browser or elsewhere on the client.
The particular implementation used is not critical to the
operation of the invention.

With reference to the illustrative FIG. 3 embodiment, the
DNS lookup process 304 is operative prior to and/or during
receipt of a given stream for performing a given DNS lookup
at a a nameserver 305 against a map 312 of current Internet
traffic conditions maintained at that nameserver, for
example, by a CDN service provider. In one particular
embodiment, the lookup process performs a DNS SRV
lookup. The query preferably comprises given information,
e.g., the IP address of the client player, the IP address of the
player's local nameserver, and the media type requested.
DNS SRV is a known protocol defined in RFC 2052 or RFC
2782, and this protocol enables administrators to designate
Some hosts as primary servers for a service and others as
backups. In this embodiment, a DNS SRV query is made
asking for a particular service (in this case, RTSP) via a
particular protocol (TCP) in a particular domain. The
nameserver responds to the query with a set of tokens
315a-n. Each token 315 provides a distinct answer to the
query and defines a machine or, in the preferred embodi
ment, a group of machines, from which the client should
seek to obtain the stream (identified by the URL). The
nameserver response preferably also includes priority infor
mation (e.g., a ranking) and, optionally, weighting informa
tion for each token. The nameserver also associates and
stores the requesting player's IP address and the response
data generated as a result of the query.
As will be illustrated in more detail below, preferably

each token is a construct that can be used by the requesting
client browser to find a preferred machine within a given
CDN region. To give an example, the first token may be of
the form “y5q.kamai.net” where the “kamai.net” domain
identifies the CDNSP domain and the “y{x}q” portion is, in
effect, an instruction to an CDNSP nameserver to identify a
set of lower level nameservers in the specified CDN region
number 5. The lower level nameservers would then be
queried to identify a particular “best server. Of course, the
token itself may point directly to the lower level nameserv
ers or to a particular server within a given region. Thus, as
can be seen the client player initiates a query to a first or top
level nameserver (the DNS SRV name server) and receives,
in response, one or more tokens. A given token can then be
passed back by the client player to a second or lower level

10

15

25

30

35

40

45

50

55

60

65

8
nameserver to obtain a list of servers within a given CDN
region from which the desired stream may be obtained. By
passing the client player IP address in the initial request, the
top level nameserver can provide more accurate mapping of
the request to a CDN region best able to service the request.

Returning to FIG. 3, the server testing process 306
responds to the returned token information or to information
obtained from further processing of the token (as in the
“y5q example described above), and may perform one or
more tests to help identify a best server. Server testing is not
required, however, although it is desirable provided the
additional bandwidth required by the testing is not prohibi
tive. In an illustrative embodiment, the server testing process
has been provided with a list of servers to test. It then
contacts each one, e.g., by using the SRV protocol, which
specifies a well-defined ordering scheme, although the
player can use any scheme or simply try all servers at level
n before trying n+1. Upon contacting a server, the process
issues a status request to get information about the capa
bilities of the server. One convenient technique is to use an
RTSP “OPTIONS' command. The response from each
server will be a static text string. The request-response is
timed by the server testing process, which then determines
the “best server (e.g., usually the one providing the fastest
response). In this way, the server testing may be used to “fine
tune' the server chosen by the CDN DNS request routing
system with an additional piece of information, namely, the
actual pipe the client is using for the connection.
Once the fastest responding server is selected, the client

connects to it and sends a usual command, e.g., the RTSP
DESCRIBE command. According to the invention, the
server testing process preferably also builds and sends an
extra header that contains the IP address of the machine(s)
tested, the timings of the OPTIONS experiment(s), and other
data. The following is a representative data structure:

Construction of the X-CDNSP-Times: header
X-CDNSP-Times: version} {{ip} {region time}}...

X- is to show this is a non standard header X-CDNSP-Times
Colon & space (separator)

{version} The version of this protocol - currently 1
{ip} The IP address of the machine tested
{region} The region the IP address came from (e.g. the number

after they flag)
{time The time in milliseconds for the OPTIONS response

to come back

Preferably, the header is passed out-of-band to an appropri
ate CDNSP process that is used to generate one or more
DNS request routing maps, e.g., nameserver map 312. That
process may also receive the DNS SRV response and the
requesting IP address of the client player that initiated the
query. Such “feedback” provides significant value to users of
the system (both SRV-enabled clients and other clients) by
enhancing the accuracy of Subsequent region or machine
assignments when later requests are resolved against the
modified map 312. In particular, one of ordinary skill in the
art will appreciate that the best analysis of a given routing
decision with respect to a given client is made by that client,
as opposed to Some proxy for that client (e.g., the clients
local name server). The header illustrated above may include
information that describes the specific region/machine that
the given client selected as the “best” and the data under
lying that decision. This information can then be used to bias
the request routing decisions in the map 312 for future

Netflix, Inc. - Ex. 1005, Page 000008

US 7,299,291 B1

requests made by this or other clients. As more clients use
the system and provide Such feedback, the request routing
provided by the map becomes more and more accurate as, in
effect, Subsequent decisions can be based on the additional
intelligence about how well the request routing was per
formed for the earlier requests.
As noted above, typically the fastest responding server to

the OPTIONS test will be the best server to stream the
requested data to the user. This also gives the system a
chance to re-assign the stream, e.g., via a redirect message.
If the fastest responding server is indeed the correct server
to stream from, then the X-CDNSP-Times header can be
ignored by the server. Another function provided by the
present invention is the ability of the client player (namely,
the code running in that player) to identify a “better source
for a stream being received and to switch to that source “on
the fly, i.e., while the stream is being received and rendered
on the client. The decision process 308 is used to determine
whether the player should switch servers mid-stream.
Because it is likely there will be some cost to Switching (e.g.,
perhaps a short interruption in service), a client should only
Switch servers if it is not getting an acceptable stream from
the first server. The decision process 308 makes a decision
regarding whether the stream being received is “acceptable.”
e.g., a stream that is not currently being thinned by the
server, or some other metric. As used herein, “acceptable'
does not necessarily mean acceptable quality. It can also
mean acceptable from a stream management point of view.
For example, the client could be actually told by the server
that the stream is unacceptable, e.g., if the server knows it is
to be taken down soon (for a software update or other
servicing). It could also declare a stream unacceptable if new
advertising or newer content (e.g., a fast breaking news
story) becomes available. These examples, of course, are
merely representative.

If the decision process determines that another server is a
better source than a current Source, control is passed to the
stream switch process 310, which is the process that makes
the actual switch from one server to another. The particular
technique used for Switching from a first server to a second
server typically is media type-dependent and any convenient
technique may be used. Thus, for example, assume a stream
being received has a length of 5:00 minutes and the client
player is processing the stream from a first server at an offset
of 2:35 when a decision is made to change to a second
server. The stream switch process 310 may then cause the
second server to begin sending the stream at an offset of 2:45
and, at the same time, send appropriate instructions to
terminate the stream from the first server. The stream switch
process thus has the capability of picking the server it likes
“least and instructing that server to cease transmission at a
given point. In another alternative, once the stream Switch
process 310 decides to make a switch, it creates an internal
buffer and causes that buffer to be filled with advance
portions of the stream (e.g., by instructing the first server to
deliver packets faster than those packets can be rendered or
by instructing the player to slow down the rendering pro
cess). The switch process 310 then causes the first server to
cease transmission and request that the new server begin the
stream at a given offset. At this point, the pre-cached data in
the buffer is rendered until the given offset is reached and the
new data is received. As appropriate, the stream Switch
process includes the capability to match data packets from
first and second servers to enable a substantially seamless
Switch to the new stream source. Voice streams can be
synched before a Switch by Snipping out and putting in

10

15

25

30

35

40

45

50

55

60

65

10
minute bits of silence between words. Of course, the above
are merely exemplary as any convenient Switching tech
nique may be implemented.

Thus, as summarized in the flowchart of FIG. 4, the client
player provisioned according to the invention performs a
query to a nameserver against a CDNSP network map. This
is step 400. The query is made asking for a particular service
(e.g., RTSP) via a particular protocol (TCP) in a particular
domain. In response, at step 402, the nameserver returns a
set of one or more tokens, with each token defining a
machine or, in the preferred embodiment, a group of
machines, from which the player should seek to obtain the
stream. The player may then optionally perform one or more
tests to determine which of a set of servers provides a best
quality of service for the stream. This is step 404. That server
is then used to retrieve the stream, which is step 406. At step
408, a test is performed to determine whether the client
player is still receiving the stream. If not, the routine ends.
If, however, the client player is still receiving the stream, the
routine continues at step 410 with the client player code
repeating the DNS SRV query during playback to determine
whether there is a better source for the stream. The “period
over which the query is repeated is variable and is dependent
on the bandwidth available between the client and the
network. For a live stream, a query/minute may be a
desirable frequency. A shorter frequency (e.g., every few
seconds) may be desirable for a broadband connection). At
step 412, a test is performed to determine whether the client
player is receiving acceptable service from the existing
source. If so, the routine returns to step 408 and repeats the
process at a given frequency. If the outcome of the test at
step 412 indicates that the stream source is unacceptable, the
routine continues at step 414 to initiate the Switch to the
“better stream source. As noted above, preferably this
switch is carried out “on the fly as appropriate to maintain
and/or enhance the quality of service. Thereafter, at step 416,
the client player continues to obtain the remainder of the
stream from the new source. Of course, the “best” source
may be changed again if the circumstances warrant. In a
preferred embodiment, and as indicated at step 418, the
client player publishes data back to the CDNSP identifying
the tests it ran to determine the best server. Such data may
then be used to augment the network map that is used for
Subsequent request routing determinations.
The following is an illustrative embodiment for an Apple

QuickTime media player.

Construction of a SRV Query
A preferred SRV construction method is set forth below.

a Serial Number-IP address. tcp.srv.kamai.net.

a Serial
Number

This is the serial number field (including the “a) from a
CDNSP-specific hostname (a hostname pointing to the
CDN) with an underscore prepended. A serial number
identifies a virtual content bucket on a CDN content
server that may host the content
Hyphen (separator)
The IP address of the player written as a four byte
unsigned integer in network byte order
Dot (separator)
Required by REC 2782 - not applicable here
Dot (separator)
Specifies to the CDNSP DNS system to serve this
request from a different set of servers
Dot (separator)
Any CDNSP DNS domain name, with this particular
name being merely representative

{IPAddress

tcp

Sry

Kamai.net

Note the use of the underscore (“ ”) character in the full
SRV name. This is not an improper syntax as underscores

Netflix, Inc. - Ex. 1005, Page 000009

US 7,299,291 B1
11

are only illegal in hostnames, and an SRV query is not
considered a hostname. Although not required, preferably
there are several SRV servers associated with the “srV. ka
mai.net” domain to spread out the load and ensure there is
no single point of failure. The passing of the player's IP
address is optional but desirable, and this operation may be
set as a configuration option in the player. The SRV server
must therefore be able to handle responses with and without
the IP address supplied, although preferably the address is
used. If the IP address is not passed, then the SRV server
should treat the address of querying name server as the IP
address of the client.
The SRV nameserver that receives this query then has

several important pieces of information:
1. The IP address of the player (optional, but desirable);
2. The IP address of the player's nameserver; and
3. The type of media being requested (e.g.
“q=QuickTime).

Based on this information, and in a preferred embodiment,
the SRV server then performs the following steps

1. Calculates a best CDNSP region to direct the player
towards using the three (3) pieces of information given
above, in combination with a network map; and

2. Returns a reply to the client comprising an identifica
tion of this region, as well as several other regions that
are possible contenders if the first region does not work
out well.

As an example, assume that a user at IP address
17.37.117.209 is requesting a stream from the host
a40.q.kamai.net. The SRV query might then be of the
following representative format:

a40-287667665. tcp.srv.kamai.net
Based on the then-current network map, assume that the

best region is region 5, followed by region 3, and then region
2 and region 7 at equal ability. In such case, the SRV name
server will return the following representative data (with the
particular references being merely exemplary):

Ranking Weighting Port to use Hostname

1 O 554 a40.y5q.kamai.net.
2 O 554 a40.y3q.kamai.net.
3 O 554 a40.y2(q.kamai.net.
3 O 554 a40.y7q.kamai.net.

SRV Field Meanings

Ranking Ranking order, with low numbers tried
before high

Weighting NA
Port The port to which the connection should be

mae. For an Apple QuickTime player, for
example, this will always be 554. This
value may be useful at some point if a
different set of servers (on a different port)
are set up

Hostname The fully-qualified domain name of the
server to contact. The y{x}q entry in the
Hostname field is an instruction to a
CDNSP top-level nameserver to return a
set of low-level nameservers in the
specified region. This will result in a the
best server in that specific region being
returned when the name is looked up by the
player.

10

15

25

30

35

40

45

50

55

60

65

12
Behavior of the player after recieving a SRV response
Once the client (and, in particular, the client player)

receives this list of servers, it contacts each one and requests
an “OPTIONS” from each one. The response from each
server is timed, and the “fastest” server may be selected as
the “best server from which to proceed. Once the fastest
responding server is selected, the client connects to it and
sends the usual DESCRIBE command. In addition to this,
the X-CDNSP-Times: header preferably is added containing
the timings of the OPTIONS experiment.

After the Connection is Established

At this point, the client is speaking to the best server. As
noted above, the client player may selectively switch from
one stream to another, either seamlessly or with as minimal
of a break as possible. With that ability, if a client does a
SRV lookup periodically, it can learn which set of servers is
currently best and switch to a server that is better than the
one it is currently receiving the stream from.

In combination with the inventive method, a given server
itself can elect at any time to send the client to a better place
via the RTSP REDIRECT command. This command allows
for a redirect to happen at a particular time count, which
should allow the player to resume the stream where it left off
elsewhere without missing any data.
As noted above, when the client player sends a query to

the nameserver, that server performs a lookup against a map
of current Internet traffic conditions. The CDNSP generates
the map in any convenient manner. The following is a
representative technique, which should not be taken by way
of limitation. To prepare for generating this map, mapping
agents (e.g., one per CDN server region) may collect the
following information: (a) IP blocks (a list of IP address
blocks currently in use in the Internet), (b) load (per-IP block
measurements of the amount of web load currently being
handled by the CDN, (c) communication costs (e.g., a table
listing the measured communication cost for each IP block,
CDN server region pair, and (d) capacity (e.g., an aggregate
server and network capacity of each CDN server region).

In particular, a combination of different methods may be
used to put together the list of IP blocks representing all of
the leaf networks (e.g., endpoint LAN's on the global
Internet): BGP peering, harvesting information from net
work registration databases (e.g., RIPE, APNIC and ARIN),
and random traceroutes into very large blocks (e.g.,
UUNET). The load on the CDN generated by each IP block
may be determined by gathering and aggregating measure
ments from the CDN content servers. One or more different
communication costs may be used to determine the cost of
communication between an IP block and a CDN server
region: network health of server region (e.g., a binary metric
indicating that the region is up or down), ASPATH length
between the block and the server region (e.g., as Supplied by
BGP), round trip time (RTT) between the regions mapping
agent and a given point in the IP block, packet loss rate
between the region’s mapping agent and the given point in
the IP block, geographic distance, and perhaps others. These
metrics may be combined into a single cost metric for each
IP block, server region pair, with the priority, or weighting,
of each individual metric set to be proportional to its position
on the list. Two types of capacity measurement are typically
made: total server capacity in each region and physical
network capacity in each region. The server capacity is
determined from the number of servers currently up in a
region. Physical network capacity is determined with packet

Netflix, Inc. - Ex. 1005, Page 000010

US 7,299,291 B1
13

pair measurements. Region capacity may be calculated as a
given function (e.g., the minimum) of these two measure
mentS.

The map associates each IP block to an optimal CDN
server region. One technique for generating the map
involves identifying a number of candidate regions for each
IP block (e.g., based on the IP block, server region}
communication costs), generating a bipartite graph using all
of the measured and collected network information (e.g.,
with one side of the graph representing each of the IP blocks
and the other side representing CDN server regions), and
then running a min-cost flow algorithm on the graph. Each
IP block node is labeled with its measured load, which is
treated as the “flow coming from that node. Running the
algorithm results in an optimal assignment of IP block load
to server regions. This assignment is the map, which is
generated periodically by the CDNSP and then delivered to
the nameservers that respond to the client player queries.
Many of the functions have been described and illustrated

above as discrete programs. One of ordinary skill will
appreciate that any given function, alternatively, may com
prise part of another program. Thus, any reference herein to
a program should be broadly construed to refer to a program,
a process, an execution thread, or other Such programming
construct. Generalizing, each function described above may
be implemented as computer code, namely, as a set of
computer instructions, for performing the functionality
described via execution of that code using conventional
means, e.g., a processor, a computer, a machine, a System, or
other apparatus.

While the present invention has been described in the
context of an RTSP stream-based protocol, one of ordinary
skill in the art will appreciate that the functions and features
described may also be used for other types of content. A
particular example would be HTTP over TCP/IP, wherein
the given content of interest is a large HTTP object. In such
case, the various processes described above may be modi
fied as appropriate to implement the described functionality.
Thus, for example, the stream switch process would be
modified to incorporate appropriate routines for handling the
file switch. As in the stream-based embodiment, the code
may be built into a browser, a plug-in, an applet, or other
codebase.

Having thus described my invention, the following sets
forth what I now claim.

I claim:
1. An apparatus, comprising:
a processor;
a media player,
a program code module comprising code executable by

the processor to carry out the following method steps:
receiving a list of a set of servers, wherein the set of

servers is identified by a content delivery network
(CDN) map generating process;

issuing a request to each of the set of servers and receiving
a response to the request, and using data associated
with the response from each of the set of servers to
identify a given server in the set of servers:

as a media stream is being received from a first server and
rendered by the media player, determining whether the
media stream is acceptable according to a given metric;

10

15

25

30

35

40

45

50

55

60

14
if the media stream is not acceptable, and as the media

stream continues to be received, taking a given action
to initiate delivery of the media stream from the given
server, wherein the given action includes the steps of:
(a) creating a buffer; (b) receiving from the first server
and caching in the buffer advanced portions of the
media stream; (c) issuing a request to the given server
to initiate delivery of the media stream at a given offset;
and (d) rendering the advanced portions of the media
Stream;

receiving the media stream from the given server; and
when the given offset is reached, rendering in the media

player the media stream received from the given server.
2. The apparatus as described in claim 1, wherein the code

is executable by the processor to initiate an instruction to the
first server to cease transmission of the media stream before
rendering the advanced portions of the media stream.

3. The apparatus as described in claim 1, wherein the code
is executable by the processor to match data packets
received from the first server and the given server such that
the media stream rendered in the media player appears
continuous.

4. The apparatus as described in claim 1 wherein the
media stream is not acceptable if it is being thinned by the
first server.

5. The apparatus as described in claim 1 wherein the
media stream is not acceptable if a given indication from the
first server is received.

6. The apparatus as described in claim 5 wherein the given
indication is that the first server will be unavailable.

7. The apparatus as described in claim 1, wherein the code
executable by the processor determines that the given server
has a response time that differs from a response time of at
least one other server in the set of servers.

8. The apparatus as described in claim 1, wherein the code
executable by the processor determines whether the media
stream is acceptable periodically as the media stream is
being delivered.

9. The apparatus as described in claim 1, wherein the code
executable by the processor records given data associated
with receipt of the media stream.

10. The apparatus as described in claim 1, wherein the
advanced portions of the media stream are created by
instructing the first server to increase a delivery rate of the
media stream or by instructing the media player to decrease
a rendering rate of the media stream.

11. The apparatus as described in claim 1 wherein the
request is an RTSP OPTIONS command.

12. The apparatus as described in claim 1 wherein the
request is associated with a DNS SRV protocol.

13. The apparatus as described in claim 1 wherein the
method carried out by the program code constructs a header
that identifies, for each of the set of servers, an IP address for
the server, together with a value indicating a time for the
response to be returned after issuing the request.

14. The apparatus as described in claim 13 wherein the
method carried out by the program code transmits the header
to the CDN map generating process to facilitate building of
a map of Internet traffic conditions.

k k k k k

Netflix, Inc. - Ex. 1005, Page 000011

