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Computer
Networks and
the Infernet

_..P 4 What Is the Internet?

In this book we use the public Internet, a specific computer network (and one which
probably most readers have used), as our principle vehicle for discussing computer
networking protocols. But what is the Internet? We would like to be able to give you
a one-sentence definition of the Internet, a definition that you can take home and
share with your family and friends. Alas, the Internet is very complex, both in terms
of its hardware and software components, as well as in the services it provides.

1.1.1 A Nuts and Bolts Description

Instead of giving a one-sentence definition, let’s try a more descriptive approach.
There are a couple of ways to do this. One way is to describe the nuts and bolts of
the Internet, that is, the basic hardware and software components that make up the
Internet. Another way is to describe the Internet in terms of a networking infrastruc-
ture that provides services to distributed applications. Let’s begin with the nuts-and-
bolts description, using Figure 1.1 to illustrate our discussion.

The public Internet is a world-wide computer network, that is, a network that
interconnects millions of computing devices throughout the world. Most of these
computing devices are traditional desktop PCs, Unix-based workstations, and so

HULU EXHIBIT 1026

Page 9 of 21



490

CHAPTER 6 = Multimedia Networking

universities offer entire courses on audio and video compression, and often oqu a
separate course on audio compression and a separate course on video compression.
We therefore provide here a brief and high-level introduction to the subject.

Audio Compression in the Internet

A continuously varying analog audio signal (which could emanate from speech or
music) is normally converted to a digital signal as follows:

1. The analog audio signal is first sampled at some mxoﬁ._ rate, mo.n example, at
8,000 samples per second. The value of each sample is an arbitrary real
number. . )

2. Each of the samples is then “rounded” to one of a finite :Es._uon of values. This
operation is referred to as “quantization.” The number of finite <m_=omW8.=8
quantization values—is typically a power of 2, for example, 256 quantization
values. .

3. Each of the quantization values is represented by a fixed number of bits. For
example, if there are 256 quantization values, then omor. value—and _._o.som wmc__
sample—is represented by 1 byte. Each of the samples is converted to its bit
representation. The bit representations of all the mva_@m are concatenated
together to form the digital representation of the signal.

As an example, if an analog audio signal is mva_oQ. at 8,000 mmEEnm.vQ sec
ond and each sample is quantized and represented by 8 .c:mN Eo: ﬁ.:w resulting digi
tal signal will have a rate of 64,000 bits per second. This digital signal can then bc
converted back-—that is, decoded—to an analog signal for E.mwcwnx. .:9~.<0<nﬁ the
decoded analog signal is typically different from Ew o&m_sm_ audio signal. By
increasing the sampling rate and the number of n__m::Nm:o:.é_:om, the aomoac._
signal can approximate (and even be exactly equal to) the o:m:._m_ analog signal
Thus, there is a clear tradeoff between the quality of the decoded signal and the stor
age and bandwidth requirements of the digital &m:m_.. .

The basic encoding technique that we just described is called 1=_mm code mod-
ulation (PCM). Speech encoding often uses PCM, with a sampling rate o.m 8,000
samples per second and 8 bits per sample, giving a rate of 64 Kbps. The audio oo_:_
pact disk (CD) also uses PCM, with a sampling rate of 44,100 samples per seconc
with 16 bits per sample; this gives a rate of 705.6 Kbps for mono and 1.411 Mbps
for stereo.

A bit rate of 1.411 Mbps for stereo music exceeds most access rates, and even
64 Kbps for speech exceeds the access rate for a dial-up Goama user. For thes¢
reasons, PCM-encoded speech and music are rarely used in the Internet. Instead
compression techniques are used to reduce the bit rates of the stream. Popular Q.::
pression techniques for speech include GSM (13 Kbps), O.ﬂu.e 8 chwv., and
G.723.3 (both 6.4 and 5.3 Kbps), and also a large number of proprietary techniques,

6.2 m Streaming Stored Audio and Video

including those used by RealNetworks. A popular compression technique for near
CD-quality stereo music is MPEG layer 3, more commonly known as MP3. MP3
compresses the bit rate for music to 128 or 112 Kbps, and produces very little sound
degradation. When an MP3 file is broken up into pieces, each piece is still playable.
This headerless file format allows MP3 music files to be streamed across the Inter-
net (assuming the playback bit rate and speed of the Internet connection are compat-
ible). The MP3 compression standard is complex, using psychoacoustic masking,
redundancy reduction, and bit reservoir buffering.

Video Compression in the Internet

A video is a sequence of images, with images typically being displayed at a constant
rate, for example at 24 or 30 images per second. An uncompressed, digitally en-
coded image consists of an array of pixels, with each pixel encoded into a number
of bits to represent luminance and color. There are two types of redundancy in video,
both of which can be exploited for compression. Spatial redundancy is the redun-
dancy within a given image. For example, an image that consists of mostly white
space can be efficiently compressed. Temporal redundancy reflects repetition from
image to subsequent image. If, for example, an image and the subsequent image are
exactly the same, there is no reason to re-encode the subsequent image; it is more
efficient to simply indicate during encoding that the subsequent image is exactly the
same.

The MPEG compression standards are among the most popular compression
techniques. These include MPEG 1 for CD-ROM quality video (1.5 Mbps), MPEG
2 for high-quality DVD video (3-6 Mbps), and MPEG 4 for object-oriented video
compression. The MPEG standard draws heavily from the JPEG standard for image
compression. The H.261 video compression standards are also very popular in the
Internet. There are also numerous proprietary standards.

Readers interested in learning more about audio and video encoding are encour-

aged to see [Rao 1996] and [Solari 1997]. A good book on multimedia networking
in general is [Crowcroft 1999].

6.2 + Streaming Stored Audio and Video

491

In recent years, audio/video streaming has become a popular application and a major
consumer of network bandwidth. This trend is likely to continue for several reasons.
First, the cost of disk storage is decreasing rapidly, even faster than processing and
bandwidth costs. Cheap storage will lead to a significant increase in the amount of
stored/audio video in the Internet. For example, shared MP3 audio files of rock mu-
sic via [Napster 2000] has become incredibly popular among college and high school
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CHAPTER 6 = Multimedio Networking

students. Second, improvements in Internet infrastructure, such as high-speed resi-
dential access (that is, cable modems and ADSL, as discussed in Chapter 1), network
caching of video (see Section 2.2), and new QoS-oriented Internet protocols (see Sec-
tions 6.5-6.9) will greatly facilitate the distribution of stored audio and video. And
third, there is an enormous pent-up demand for high-quality video streaming, an ap-
plication that combines two existing killer communication technologies—television
and the on-demand Web.

In audio/video streaming, clients request compressed audio/video files that are
resident on servers. As we’ll discuss in this section, these servers can be “ordinary”
Web servers, or can be special streaming servers tailored for the audio/video stream-
ing application. Upon client request, the server directs an audio/video file to the
client by sending the file into a socket. Both TCP and UDP socket connections are
used in practice. Before sending the audio/video file into the network, the file is seg-
mented, and the segments are typically encapsulated with special headers appropri-
ate for audio/video traffic. The Real-time protocol (RTP), discussed in Section 6.4,
is a public-domain standard for encapsulating such segments. Once the client begins
to receive the requested audio/video file, the client begins to render the file (typi-
cally) within a few seconds. Most existing products also provide for user interactiv-
ity, for example, pause/resume and temporal jumps within the audio/video file. This
user interactivity also requires a protocol for client/server interaction. Real-time
streaming protocol (RTSP), discussed at the end of this section, is a public-domain
protocol for providing user interactivity.

Audio/video streaming is often requested by users through a Web client (that is,
browser). But because audio/video playout is not integrated directly in today’s Web
clients, a separate helper application is required for playing out the audio/video.
The helper application is often called a media player, the most popular of which are
currently RealNetworks’ Real Player and the Microsoft Windows Media Player. The
media player performs several functions, including:

<+ Decompression. Audio/video is almost always compressed to save disk storage
and network bandwidth. A media player must decompress the audio/video on the
fly during playout.

+ Jitter removal. Packet jitter is the variability of source-to-destination delays of
packets within the same packet stream. Since audio and video must be played out
with the same timing with which it was recorded, a receiver will buffer received
packets for a short period of time to remove this jitter. We’ll examine this topic
in detail in Section 6.3.

4+ Error correction. Due to unpredictable congestion in the Internet, a fraction of
packets in the packet stream can be lost. If this fraction becomes too large, user-
perceived audio/video quality becomes unacceptable. To this end, many stream-
ing systems attempt to recover from losses by either (1) reconstructing lost
packets through the transmission of redundant packets, (2) by having the client

6.2 m Streaming Stored Audio and Video

explicitly request retransmissions of lost packets, (3) masking loss by interpolat-
ing the missing data from the received data.

*+ Graphical user interface with control knobs. This is the actual interface that the
user interacts with. It typically includes volume controls, pause/resume buttons,
sliders for making temporal jumps in the audio/video stream, and so on.

Plug-ins may be used to embed the user interface of the media player within the
window of the Web browser. For such embeddings, the browser reserves screen
space on the current Web page, and it is up to the media player to manage the screen
space. But either appearing in a separate window or within the browser window (as

a plug-in), the media player is a program that is being executed separately from the
browser.

6.2.1 Accessing Audio and Video from a Web Server

Stored audio/video can reside either on a Web server that delivers the audio/video
to the client over HTTP, or on an audio/video streaming server that delivers the au-
dio/video over non-HTTP protocols (protocols that can be either proprietary or open
standards). In this subsection, we examine delivery of audio/video from a Web
server; in the next subsection, we examine delivery from a streaming server.

Consider first the case of audio streaming. When an audio file resides on a Web
server, the audio file is an ordinary object in the server’s file system, just as are
HTML and JPEG files. When a user wants to hear the audio file, the user’s host es-
tablishes a TCP connection with the Web server and sends an HTTP request for the
object (see Section 2.2). Upon receiving a request, the Web server bundles the audio
file in an HTTP response message and sends the response message back into the
TCP connection. The case of video can be a little more tricky, because the audio and
video parts of the “video” may be stored in two different files, that is, they may be
two different objects in the Web server’s file system. In this case, two separate
HTTP requests are sent to the server (over two separate TCP connections for
HTTP/1.0), and the audio and video files arrive at the client in parallel. It is up to
the client to manage the synchronization of the two streams. It is also possible that
the audio and video are interleaved in the same file, so that only one object need be
sent to the client. To keep our discussion simple, for the case of “video” we assume
that the audio and video are contained in one file.

A naive architecture for audio/video streaming is shown in Figure 6.1. In this
architecture:

1. The browser process establishes a TCP connection with the Web server and
requests the audio/video file with an HTTP request message.

2. The Web server sends to the browser the audio/video file in an HTTP response
message.
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Web server
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browser audio files
Media
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Clien Server

Figure 6.1 + A naive implementation for audio streaming

3. The content-type header line in the HTTP response message indicates a spe-
cific audio/video encoding. The client browser examines the content-type of
the response message, launches the associated media player, and passes the file
to the media player.

4. The media player then renders the audio/video file.

Although this approach is very simple, it has a major drawback: The media
player (that is, the helper application) must interact with the server through the in-
termediary of a Web browser. This can lead to many problems. In particular, when
the browser is an intermediary, the entire object must be downloaded before the
browser passes the object to a helper application. The resulting delay before playout
can begin is typically unacceptable for audio/video clips of moderate length. For this
reason, audio/video streaming implementations typically have the server send the
audio/video file directly to the media player process. In other words, a direct socket
connection is made between the server process and the media player process. As
shown in Figure 6.2, this is typically done by making use of a meta file, a file that
provides information (for example, URL, type of encoding) about the audio/video
file that is to be streamed.

A direct TCP connection between the server and the media player is obtained
as follows:

1. The user clicks on a hyperlink for an audio/video file.

2. The hyperlink does not point directly to the audio/video file, but instead to a
meta file. The meta file contains the URL of the actual audio/video file. The
HTTP response message that encapsulates the meta file includes a content-type
header line that indicates the specific audio/video application.

6.2 m Streaming Stored Audio and Video

{1} HTTP request/response

Web for meta file

browser |9
. Web server
(2) metafile ﬂ— with
Media AT\\\I\\Y_@ audio files
player {3) Audio/video file requested
and sent using HTTP

Client Server

Figure 6.2 + Web server sends audio/video directly to the media player

3. The client browser examines the content-type header line of the response mes-
sage, launches the associated media player, and passes the entire body of the
response message (that is, the meta file) to the media player.

4. The media player sets up a TCP connection directly with the HTTP server. The

media player sends an HTTP request message for the audio/video file into the

TCP connection.

The audio/video file is sent within an HTTP response message to the media

player. The media player streams out the audio/video file.

bt

The importance of the intermediate step of acquiring the meta file is clear.
When the browser sees the content-type for the file, it can launch the appropriate
media player, and thereby have the media player directly contact the server.

We have just learned how a meta file can allow a media player to dialogue di-
rectly with a Web server housing an audio/video. Yet many companies that sell prod-
ucts for audio/video streaming do not recommend the architecture we just described.
This is because the architecture has the media player communicate with the server
over HTTP and hence also over TCP. HTTP is often considered insufficiently rich to
allow for satisfactory user interaction with the server; in particular, HTTP does not
easily allow a user (through the media server) to send pause/resume, fast-forward,
and temporal jump commands to the server.

6.2.2 Sending Multimedia from a Streaming Server to a Helper Application

In order to get around HTTP and/or TCP, audio/video can be stored on and sent from
a streaming server to the media player. This streaming server could be a proprietary
streaming server, such as those marketed by RealNetworks and Microsoft, or could
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be a public-domain streaming server. With a streaming server, audio/video can be
sent over UDP (rather than TCP) using application-layer protocols that may be bet-
ter tailored than HTTP to audio/video streaming.

This architecture requires two servers, as shown in Figure 6.3. One server, the
HTTP server, serves Web pages (including meta files). The second server, the
streaming server, serves the audio/video files. The two servers can run on the same
end system or on two distinct end systems. The steps for this architecture are similar
to those described in the previous architecture. However, now the media player re-
quests the file from a streaming server rather than from a Web server, and now the
media player and streaming server can interact using their own protocols. These pro-
tocols can allow for rich user interaction with the audio/video stream.

In the architecture of Figure 6.3, there are many options for delivering the audio/
video from the streaming server to the media player. A partial list of the options is
given below:

1. The audio/video is sent over UDP at a constant rate equal to the drain rate at
the receiver (which is the encoded rate of the audio/video). For example, if the
audio is compressed using GSM at a rate of 13 Kbps, then the server clocks
out the compressed audio file at 13 Kbps. As soon as the client receives
compressed audio/video from the network, it decompresses the audio/video
and plays it back.

2. This is the same as option 1, but the media player delays playout for 2-5 sec-
onds in order to eliminate network-induced jitter. The client accomplishes this
task by placing the compressed media that it receives from the network into a
client buffer, as shown in Figure 6.4. Once the client has “prefetched” a few
seconds of the media, it begins to drain the buffer. For this, and the previous
option, the fill rate x(¢) is equal to the drain rate d, except when there is packet
loss, in which case x(¢) is momentarily less than d.

(1) HTTP request/response
for presentation
description file

b LS ﬂ_ Web server
rowser L
4 |
rmm .

{2} Presentation
description file

Media
player

Streaming server

{3) Audio/video file
requested and sent

Client Servers

Figure 6.3 + Streaming from a streaming server fo a media player
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Client

buffer
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Fill rate

= x{t)

Drain rate

From

To decompression
network

and playout

Prefetched
<“«— video —
data

Figure 6.4 + Client buffer being filled at rate x(1) and drained at rate d

3. The media is sent over TCP. The server pushes the media file into the TCP
socket as quickly as it can; the client (i.e., media player) reads from the TCP
socket as quickly as it can, and places the compressed video into the media
player buffer. After an initial 2-5 second delay, the media player reads from its
buffer at a rate d and forwards the compressed media to decompression and
playback. Because TCP retransmits lost packets, it has the potential to provide
better sound quality than UDP. On the other hand, the fill rate x() now fluctu-
ates with time due to TCP congestion control and window flow control. In fact,
after packet loss, TCP congestion control may reduce the instantaneous rate to
less than d for long periods of time. This can empty the client buffer and intro-
duce undesirable pauses into the output of the audio/video stream at the client.

For the third option, the behavior of x(#) will very much depend on the size
of the client buffer (which is not to be confused with the TCP receive buffer). If
this buffer is large enough to hold all of the media file (possibly within disk stor-
age), then TCP will make use of all the instantaneous bandwidth available to the
connection, so that x(f) can become much larger than d. If x(r) becomes much
larger than d for long periods of time, then a large portion of media is prefetched
into the client, and subsequent client starvation is unlikely. If, on the other hand,
the client buffer is small, then x(r) will fluctuate around the drain rate d. Risk of
client starvation is much larger in this case.

6.2.3 Real-Time Streaming Protocol (RTSP)

Many Internet multimedia users (particularly those who grew up with a remote TV con-
trol in hand) will want to control the playback of continuous media by pausing play-
back, repositioning playback to a future or past point of time, visual fast-forwarding
playback, visual rewinding playback, and so on. This functionality is similar to what a
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user has with a VCR when watching a video cassette or with a CD player when listen-
ing to a music CD. To allow a user to control playback, the media player and server
need a protocol for exchanging playback control information. RTSP, defined in RFC
2326, is such a protocol.

But before getting into the details of RTSP, let us first indicate what RTSP does
not do:

4 RTSP does not define compression schemes for audio and video.

4 RTSP does not define how audio and video is encapsulated in packets for trans-
mission over a network; encapsulation for streaming media can be provided by
RTP or by a proprietary protocol. (RTP is discussed in Section 6.4.) For exam-
ple, RealMedia’s G2 server and player use RTSP to send control information to
each other. But the media stream itself can be encapsulated in RTP packets or in
some proprietary data format.

4 RTSP does not restrict how streamed media is transported; it can be transported
over UDP or TCP.

4+ RTSP does not restrict how the media player buffers the audio/video. The au-
dio/video can be played out as soon as it begins to arrive at the client, it can be
played out after a delay of a few seconds, or it can be downloaded in its entirety
before playout.

So if RTSP doesn’t do any of the above, what does RTSP do? RTSP is a proto-
col that allows a media player to control the transmission of a media stream. As
mentioned above, control actions include pause/resume, repositioning of playback,
fast forward and rewind. RTSP is a so-called out-of-band protocol. In particular,
the RTSP messages are sent out-of-band, whereas the media stream, whose packet
structure is not defined by RTSP, is considered “in-band.” RTSP messages use a dif-
ferent port number, 544, than the media stream. The RTSP specification [RFC 2326]
permits RTSP messages to be sent over either TCP or UDP.

Recall from Section 2.3, that file transfer protocol (FTP) also uses the out-of-
band notion. In particular, FTP uses two client/server pairs of sockets, each pair with
its own port number: one client/server socket pair supports a TCP connection that
transports control information; the other client/server socket pair supports a TCP
connection that actually transports the file. The RTSP channel is in many ways sim-
ilar to FTP’s control channel.

Let us now walk through a simple RTSP example, which is illustrated in Figure
6.5. The Web browser first requests a presentation description file from a Web
server. The presentation description file can have references to several continuous-
media files as well as directives for synchronization of the continuous-media files.
Each reference to a continuous-media file begins with the URL method, rtsp://.
Below we provide a sample presentation file that has been adapted from
[Schulzrinne 1997]. In this presentation, an audio and video stream are played
in parallel and in lip sync (as part of the same “group”). For the audio stream, the

6.2 m Streaming Stored Audio and Video
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Figure 6.5 + Inferaction between client and server using RTSP

Bn&u.v_wv&n can choose (“switch”) between two audio recordings, a low-fidelity
recording and a high-fidelity recording.

<title>Twister/title>
<session>
<group language=en lipsync>
<switch>
<track type=audio
e="PCMU/8000/1"

src = “rtsp://audio.example.com/twister/audio.en/lofi”>
<track type=audio

e="DV14/16000/2” pt="90 DVI4/8000/1”

src="rtsp://audio.example.com/twister/audio.en/hifi”>
</switch>

<track type="video/jpeg”

src="rtsp://video.example.com/twister/video”>
</group>

</session>
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The Web server encapsulates the presentation description file in an HTTP re-
sponse message and sends the message to the browser. When the browser receives
the HTTP response message, the browser invokes a media player (that is, the helper
application) based on the content-type field of the message. The presentation de-
scription file includes references to media streams, using the URL method
rtsp://, asshown in the above sample. As shown in Figure 6.5, the player and
the server then send each other a series of RTSP messages. The player sends an
RTSP SETUP request, and the server sends an RTSP SETUP response. The player
sends an RTSP PLAY request, say, for low-fidelity audio, and the server sends an
RTSP PLAY response. At this point, the streaming server pumps the low-fidelity
audio into its own in-band channel. Later, the media player sends an RTSP PAUSE
request, and the server responds with an RTSP PAUSE response. When the user
is finished, the media player sends an RTSP TEARDOWN request, and the server
responds with an RTSP TEARDOWN response.

Each RTSP session has a session identifier, which is chosen by the server. The
client initiates the session with the SETUP request, and the server responds to the
request with an identifier. The client repeats the session identifier for each request,
until the client closes the session with the TEARDOWN request. The following is a
simplified example of an RTSP session between a client (C:) and a sender (S:).

C: SETUP rtsp://audio.example.com/twister/audio RTSP/1.0
Transport: rtp/udp; compression; port=3056; mode=PLAY
S: RTSP/1.0 200 1 OK
Session 4231
C: PLAY rtsp://audio.example.com/twister/audio.en/lofi
RTSP/1.0
Session: 4231
Range: npt=0-
C: PAUSE rtsp://audio.example.com/twister/audio.en/
lofi RTSP/1.0
Session: 4231
Range: npt=37
C: TEARDOWN rtsp://audio.example.com/twister/audio.en/
lofi RTSP/1.0 Session: 4231
S: 200 3 OK

Notice that in this example, the player chose not to play back the complete pres-
entation, but instead only the low-fidelity portion of the presentation. The RTSP pro-
tocol is actually capable of doing much more than described in this brief
introduction. In particular, RTSP has facilities that allow clients to stream toward
the server (for example, for recording). RTSP has been adopted by RealNetworks,
currently the industry leader in audio/video streaming. Henning Schulzrinne makes
available a Web page on RTSP [Schulzrinne 1999].

6.3 m Making the Best of the Best-Effort Service: An Internet Phone Example

6.3 + Making the Best of the Best-Effort Service: An Internet Phone Example

The Internet’s network-layer protocol, IP, provides a best-effort service. That is to
say that the Internet makes its best effort to move each datagram from source to des-
tination as quickly as possible. However, best-effort service does not make any
promises whatsoever on the extent of the end-to-end delay for an individual packet,
or on the extent of packet jitter and packet loss within the packet stream.

Real-time interactive multimedia applications, such as Internet phone and real-
time video conferencing, are acutely sensitive to packet delay, jitter, and loss. Fortu-
nately, designers of these applications can introduce several useful mechanisms that
can preserve good audio and video quality as long as delay, jitter, and loss are not
excessive. In this section, we examine some of these mechanisms. To keep the dis-
cussion concrete, we discuss these mechanisms in the context of an Internet phone
application, described below. The situation is similar for real-time video conferenc-
ing applications [Bolot 1994].

The speaker in our Internet phone application generates an audio signal consist-
ing of alternating talk spurts and silent periods. In order to conserve bandwidth, our
Internet phone application only generates packets during talk spurts. During a talk
spurt the sender generates bytes at a rate of 8 Kbytes per second, and every 20 mil-
liseconds the sender gathers bytes into chunks. Thus, the number of bytes in a chunk
is (20 msecs) - (8 Kbytes/sec) = 160 bytes. A special header is attached to each
chunk, the contents of which is discussed below. The chunk, along with its header,
are encapsulated in a UDP segment, and then the UDP datagram is sent into the
socket interface. Thus, during a talk spurt, a UDP segment is sent every 20 msec.

If each packet makes it to the receiver and has a small constant end-to-end de-
lay, then packets arrive at the receiver periodically every 20 msec during a talk spurt.
In these ideal conditions, the receiver can simply play back each chunk as soon as it
arrives. But, unfortunately, some packets can be lost and most packets will not have
the same end-to-end delay, even in a lightly congested Internet. For this reason, the
receiver must take more care in (1) determining when to play back a chunk, and (2)
determining what to do with a missing chunk.

6.3.1 The Limitations of a Best-Effort Service

We mentioned that the best-effort service can lead to packet loss, excessive end-to-
end delay, and delay jitter. Let’s examine these issues in more detail.

Packet Loss

Consider one of the UDP segments generated by our Internet phone application. The
UDP segment is encapsulated in an IP datagram. As the datagram wanders through
the network, it passes through buffers (that is, queues) in the routers in order to
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signaling protocol of choice. RFC 2210 describes the use of the RSVP resource
reservation protocol with the Intserv architecture.

3. Per-element call admission. Once a router receives the Tspec and Rspec for a
session requesting a QoS guarantee, it can determine whether or not it can ad-
mit the call. This call admission decision will depend on the traffic specifica-
tion, the requested type of service, and the existing resource commitments
already made by the router to ongoing sessions. Per-element call admission is
shown in Figure 6.32.

The Intserv architecture defines two major classes of service: guaranteed ser-
vice and controlled-load service. We will see shortly that each provides a very dif-
ferent form of a quality of service guarantee.

6.7.1 Guaranteed Quality of Service

The guaranteed service specification, defined in RFC 2212, provides firm (mathe-
matically provable) bounds on the queuing delays that a packet will experience in a
router. While the details behind guaranteed service are rather complicated, the basic
idea is really quite simple. To a first approximation, a source’s traffic characteriza-
tion is given by a leaky bucket (see Section 6.6) with parameters (r,b) and the re-
quested service is characterized by a transmission rate, R, at which packets will be
transmitted. In essence, a session requesting guaranteed service is requiring that the

QoS call
signaling setup

T

(1) Request: Specify
traffic (Tspec),

(3] Reply: Whether
guarantee (Rspec)

or not request
- can be safisfied

{2) Element considers
required resources,
unreserved resources

Figure 6.32 + Per-element call behavior

bits in its packet be guaranteed a forwarding rate of R bits/sec. Given that traffic is
specified using a leaky bucket characterization, and a guaranteed rate of R is being
requested, it is also possible to bound the maximum queuing delay at the router. Re-
call that with a leaky bucket traffic characterization, the amount of traffic (in bits)
generated over any interval of length ¢ is bounded by rf + b. Recall also from Sec-
tion 6.6, that when a leaky bucket source is fed into a queue that guarantees that
queued traffic will be serviced at least at a rate of R bits per second, the maximum
queuing delay experienced by any packet will be bounded by b/R, as long as R is
greater than r. The actual delay bound guaranteed under the guaranteed service defi-
nition is slightly more complicated, due to packetization effects (the simple b/R
bound assumes that data is in the form of a fluid-like flow rather than discrete pack-
ets), the fact that the traffic arrival process is subject to the peak rate limitation of
the input link (the simple 5/R bound assumes that a burst of b bits can arrive in zero
time), and possible additional variations in a packet’s transmission time.

6.7.2 Controlled-Load Network Service

A session receiving controlled-load service will receive “a quality of service closely
approximating the QoS that same flow would receive from an unloaded network ele-
ment” [RFC 2211]. In other words, the session may assume that a “very high per-
centage” of its packets will successfully pass through the router without being
dropped and will experience a queuing delay in the router that is close to zero. Inter-
estingly, controlled load service makes no quantitative guarantees about perfor-
mance—it does not specify what constitutes a “very high percentage” of packets nor
what quality of service closely approximates that of an unloaded network element.

The controlled-load service targets real-time multimedia applications that have
been developed for today’s Internet. As we have seen, these applications perform
quite well when the network is unloaded, but rapidly degrade in performance as the
network becomes more loaded.

6.8 + RSVP

6.8 = RSVP

539

We learned in Section 6.7 that in order for a network to provide QoS guarantees,
there must be a signaling protocol that allows applications running in hosts to re-
serve resources in the Internet. RSVP [RFC 2205; Zhang 1993], is such a signaling
protocol for the Internet.

When people talk about resources in the Internet context, they usually mean
link bandwidth and router buffers. To keep the discussion concrete and focused,
however, we shall assume that the word resource is synonymous with bandwidth.
For our pedagogic purposes, RSVP stands for bandwidth reservation protocol.
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6.8.1 The Essence of RSVP

The RSVP protocol allows applications to reserve bandwidth for their %8. flows. It is
used by a host, on the behalf of an application data flow, to request a specific amount
of bandwidth from the network. RSVP is also used by the routers to forward c»:m-
width reservation requests. To implement RSVP, RSVP software must be present in
the receivers, senders, and routers. The two principal characteristics of RSVP are:

1. It provides reservations for bandwidth in multicast trees (unicast is handled
as a degenerate case of multicast). .

2. It is receiver-oriented, that is, the receiver of a data flow initiates and main-
tains the resource reservation used for that flow.

These two characteristics are illustrated in Figure 6.33. The diagram shows a multi-
cast tree with data flowing from the top of the tree to hosts at the bottom of the tree.
Although data originates from the sender, the reservation messages originate from
the receivers. When a router forwards a reservation message upstream toward the
sender, the router may merge the reservation message with other reservation mes-
sages arriving from downstream. .
Before discussing RSVP in greater detail, we need to consider the notion of a
session. As with RTP, a session can consist of multiple multicast data flows. Each
sender in a session is the source of one or more data flows; for example, a mnn.aon
might be the source of a video data flow and an audio data ﬁoi. Each data flow in a
session has the same multicast address. To keep the discussion concrete, we assume
that routers and hosts identify the session to which a packet belongs by the wmownm.m
multicast address. This assumption is somewhat restrictive; the actual RSVP speci-

?Oo.o flow

Merged

Merged .
reservations

reservations

Reservation
message

fication allows for more general methods to identify a session. Within a session, the
data flow to which a packet belongs also needs to be identified. This could be done,
for example, with the flow identifier field in IPv6.

What RSVP Is Not

We emphasize that the RSVP standard [RFC 2205] does not specify how the network
provides the reserved bandwidth to the data flows. It is merely a protocol that allows
the applications to reserve the necessary link bandwidth. Once the reservations are in
place, it is up to the routers in the Internet to actually provide the reserved bandwidth
to the data flows. This provisioning would likely be done with the scheduling mecha-
nisms (priority scheduling, weighted fair queuing, etc.) discussed in Section 6.6.

It is also important to understand that RSVP is not a routing protocol—it does
not determine the links in which the reservations are to be made. Instead it depends
on an underlying routing protocol (unicast or multicast) to determine the routes for
the flows. Once the routes are in place, RSVP can reserve bandwidth in the links
along these routes. (We shall see shortly that when a route changes, RSVP re-re-
serves resources.) Once the reservations are in place, the routers’ packet schedulers
must actually provide the reserved bandwidth to the data flows. Thus, RSVP is only
one piece—albeit an important piece—in the QoS guarantee puzzle.

RSVP is sometimes referred to as a signaling protocol. By this it is meant that
RSVP is a protocol that allows hosts to establish and tear down reservations for data
flows. The term “signaling protocol” comes from the jargon of the circuit-switched
telephony community.

Heterogeneous Receivers

Some receivers can receive a flow at 28.8 Kbps, others at 128 Kbps, and yet others
at 10 Mbps or higher. This heterogeneity of the receivers poses an interesting ques-
tion. If a sender is multicasting a video to a group of heterogeneous receivers, should
the sender encode the video for low quality at 28.8 Kbps, for medium quality at 128
Kbps, or for high quality at 10 Mbps? If the video is encoded at 10 Mbps, then only
the users with 10 Mbps access will be able to watch the video. On the other hand, if
the video is encoded at 28.8 Kbps, then the 10 Mbps users will have to see a low-
quality image when they know they can see something much better.

To resolve this dilemma it is often suggested that video and audio be encoded
in layers. For example, a video might be encoded into two layers: a base layer and
an enhancement layer. The base layer could have a rate of 20 Kbps whereas the en-
hancement layer could have a rate of 100 Kbps; in this manner receivers with 28.8
Kbps access could receive the low-quality base-layer image, and receivers with 128
Kbps could receive both layers to construct a high-quality image.

We note that the sender does not need to know the receiving rates of all the re-
ceivers. It only needs to know the maximum rate of all its receivers. The sender en-
codes the video or audio into multiple layers and sends all the layers up to the
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maximum rate into multicast tree. The receivers pick out the layers that are appro-
priate for their receiving rates. In order to not excessively waste bandwidth in the
network’s links, the heterogeneous receivers must communicate to H.rn :ogonw the
rates they can handle. We shall see that RSVP gives foremost attention to the issue
of reserving resources for heterogeneous receivers.

6.8.2 A Few Simple Examples

Let us first describe RSVP in the context of a concrete one-to-many multicast exam-
ple. Suppose there is a source that is transmitting the video of a major sporting event
into the Internet. This session has been assigned a multicast address, and the source
stamps all of its outgoing packets with this multicast address. >._mo suppose that an
underlying multicast routing protocol has established a multicast R.an from the
sender to four receivers as shown below; the numbers next to the receivers are 9.@
rates at which the receivers want to receive data. Let us also assume that the video is
layered and encoded to accommodate this heterogeneity of receiver rates. .
Crudely speaking, RSVP operates as follows for this example. muos.nnnnznn
sends a reservation message upstream into the multicast tree. This reservation mes-
sage specifies the rate at which the receiver would like to receive n_o. am:_. from the
source. When the reservation message reaches a router, the router adjusts its packet
scheduler to accommodate the reservation. It then sends a reservation upstream. The
amount of bandwidth reserved upstream from the router depends on the bandwidths

reserved downstream. In the example in Figure 6.34, receivers R1, R2, R3, and R4 re-
serve 20 Kbps, 100 Kbps, 3 Mbps, and 3 Mbps, respectively. Thus router D’s down-
stream receivers request a maximum of 3 Mbps. For this one-to-many transmission,
Router D sends a reservation message to Router B requesting that Router B reserve 3
Mbps on the link between the two routers. Note that only 3 Mbps are reserved and not
3+3=6 Mbps; this is because receivers R3 and R4 are watching the same sporting
event, so their reservations may be merged. Similarly, Router C requests that Router B
reserve 100 Kbps on the link between routers B and C; the layered encoding ensures
that receiver R1’s 20 Kbps stream is included in the 100 Kbps stream. Once Router B
receives the reservation message from its downstream routers and passes the reserva-
tions to its schedulers, it sends a new reservation message to its upstream router,
Router A. This message reserves 3 Mbps of bandwidth on the link from Router A to
Router B, which is again the maximum of the downstream reservations.

We see from this first example that RSVP is receiver-oriented, that is, the re-
ceiver of a data flow initiates and maintains the resource reservation used for that flow.
Note that each router receives a reservation message from each of its downstream links
in the multicast tree and sends only one reservation message into its upstream link.

As another example, suppose that four persons are participating in a video con-
ference, as shown in Figure 6.35. Each person has three windows open on her com-
puter to look at the other three persons. Suppose that the underlying routing protocol
has established the multicast tree among the four hosts as shown in the diagram
below. Finally, suppose each person wants to see each of the videos at 3 Mbps. Then

Sender/receiver

Sender/receiver

Sender/receiver

Figure 6.35 + An RSVP video conference example
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on each of the links in this multicast tree, RSVP would reserve 9 Mbps in one direc-
tion and 3 Mbps in the other direction. Note that RSVP does not merge reservations
in this example, as each person wants to receive three distinct streams.

Now consider an audio conference among the same four persons over the same
multicast tree. Suppose b bps are needed for an isolated audio stream. Because in an
audio conference it is rare that more than two persons speak at the same time, it is
not necessary to reserve 3 - b bps into each receiver; 2 - b should suffice. Thus, in
this last application we can conserve bandwidth by merging reservations.

Call Admission

Just as the manager of a restaurant should not accept reservations for more tables
than the restaurant has, the amount of bandwidth on a link that a router reserves
should not exceed the link’s capacity. Thus whenever a router receives a new reser-
vation message, it must first determine if its downstream links on the multicast tree
can accommodate the reservation. This admission test is performed whenever a
router receives a reservation message. If the admission test fails, the router rejects
the reservation and returns an error message to the appropriate receiver(s).

RSVP does not define the admission test, but it assumes that the routers perform
such a test and that RSVP can interact with the test.

6.8.3 Path Messages

So far we have only discussed the RSVP reservation messages. These messages
originate at the receivers and flow upstream toward the senders. Path messages are
another important RSVP message type; they originate at the senders and flow down-
stream toward the receivers.

The principal purpose of the path messages is to let the routers know the links
on which they should forward the reservation messages. Specifically, a path mes-
sage sent within the multicast tree from a Router A to a Router B contains Router
A’s unicast IP address. Router B puts this address in a path-state table, and when it
receives a reservation message from a downstream node it accesses the table and
learns that it should send a reservation message up the multicast tree to Router A. In
the future some routing protocols may supply reverse path forwarding information
directly, replacing the reverse-routing function of the path state.

Along with some other information, the path messages also contain a sender
Tspec, which defines the traffic characteristics of the data stream that the wo.:amq will
generate (see Section 6.7). This Tspec can be used to prevent over-reservation.

6.8.4 Reservation Styles

Through its reservation style, a reservation message specifies whether merging of
reservations from the same session is permissible. A reservation style also specifies

the session senders from which a receiver desires to receive data. Recall that a router
can identify the sender of a datagram from the datagram’s source IP address.

There are currently three reservation styles defined: wildcard-filter style, fixed-
filter style, and shared-explicit style.

+ Wildcard-filter style. When a receiver uses the wildcard-filter style in its reserva-
tion message, it is telling the network that it wants to receive all flows from all

upstream senders in the session and that its bandwidth reservation is to be shared
among the senders.

4+ Fixed-filter style. When a receiver uses the fixed-filter style in its reservation
message, it specifies a list of senders from which it wants to receive a data flow
along with a bandwidth reservation for each of these senders. These reservations
are distinct, that is, they are not to be shared.

¥ Shared-explicit style. When a receiver uses the shared-explicit style in its reser-
vation message, it specifies a list of senders from which it wants to receive a data

flow along with a single bandwidth reservation. This reservation is to be shared
among all the senders in the list.

Shared reservations, created by the wildcard filter and the shared-explicit styles,
are appropriate for a multicast session whose sources are unlikely to transmit simul-
taneously. Packetized audio is an example of an application suitable for shared
reservations; because a limited number of people talk at once, each receiver might
issue a wildcard-filter or a shared-explicit reservation request for twice the band-
width required for one sender (to allow for overspeaking). On the other hand, the
fixed-filter reservation, which creates distinct reservations for the flows from differ-
ent senders, is appropriate for video teleconferencing.

Examples of Reservation Styles

Following the RSVP Internet RFC, let’s next consider a few examples of the three
reservation styles. In Figure 6.36, a router has two incoming interfaces, labeled A
and B, and two outgoing interfaces, labeled C and D. The many-to-many multicast
session has three senders—S1, S2, and S3—and three receivers—R1, R2, and R3.
Figure 6.36 also shows that interface D is connected to a LAN.

Suppose first that all of the receivers use the wildcard-filter reservation, As
shown in the Figure 6.37, receivers R1, R2, and R3 want to reserve 4b, 3b, and 2b,
respectively, where b is a given bit rate. In this case, the router reserves 4b on inter-
face C and 34 on interface D. Because of the wildcard-filter reservation, the two
reservations from R2 and R3 are merged for interface D. The larger of the two reser-
vations is used rather than the sum of reservations. The router then sends a reserva-
tion message upstream to interface A and another to interface B; each of these
reservation message requests is 45, which is the larger of 3b and 4b.
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S1 > R
52,83

R2

R3

Figure 6.36 + Sample scenario for RSVP reservation styles
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Figure 6.37 + Wildcard filter reservations

Now suppose that all of the receivers use the fixed-filter reservation. As shown
in Figure 6.38, receiver R1 wants to reserve 4b for source S1 and 5b for source S2;
also shown in the figure are the reservation requests from R2 and R3. Because of the
fixed-filter style, the router reserves two disjoint chunks of bandwidth on interface
C: one chunk of 4b for S1 and another chunk of 5b for S2. Similarly, the router re-
serves two disjoint chunks of bandwidth on interface D: one chunk of 3b for S1 (the
maximum of b and 3b) and one chunk of b for S3. On interface A, the router sends a
message with a reservation for S1 of 4b (the maximum of 3b and 4b). On interface
B, the router sends a message with a reservation of 5b for S2 and b for S3.

Finally, suppose that each of the receivers use the shared-explicit reservation. As
shown in Figure 6.39, receiver R1 desires a pipe of 15, which is to be shared between
sources S1 and S2; receiver R2 desires a pipe of 3b to be shared between sources S1

i

Send Reserve

A S1(4b) c me

<« S1(4b),52(5b)

Dls1136) | «—s1(3b),531H)
36| «—s1(p)

B : S2(5b), S3(b)

Figure 6.38 + Fixed filter reservations
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B : ($2,53)(3b) 151,52.53)13b] {S1,53)(3b)
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Figure 6.39 + Shared-explicit reservations

and S3; and receiver R3 wants a pipe of 2b for source S2. Because of the shared-
Q.G:.oz style, the reservations from R2 and R3 are merged for interface D. Only one
pipe is reserved on interface D, although it is reserved at the maximum of the reser-
vation rates. RSVP will reserve on interface B a pipe of 3b to be shared by S2 and
S$3; note that 3b is the maximum of the downstream reservations for S2 and S3.

In each of the above examples the three receivers used the same reservation
style. Because receivers make independent decisions, the receivers participating in a
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session could use different styles. RSVP does not permit, however, reservations of
different styles to be merged.

"M \Q\\.\R\\\@% in Practice

The Principle of Soft State .

The reservations in the routers and hosts are maintained with soft states. By this it

is meant that each reservation for bandwidth stored in a router has an associated
timer. If a reservation’s timer expires, then the reservation is removed. If a receiver
desires to maintain a reservation, it must periodically refresh the reservation by
sending reservation messages. This soft-state principle is also used by other .v_‘quno_m
in computer networking. As we learned in Chapter 5, for the routing tables in frans-
parent bridges, the entries are refreshed by data packets that arrive fo the bridge; en-
tries that are not refreshed are timed-out. On the other hand, if a protocol takes ex-
plicit actions to modify or release state, then the protocol makes use of hard state.
Hard state is employed in virtual circuit networks (VC), in which explicit actions must
be taken to adjust VC tables in switching nodes fo establish and tear down VCs.

6.8.5 Transport of Reservation Messages

RSVP messages are sent hop-by-hop directly over IP. Thus the RSVP message is
placed in the information field of the IP datagram; the protocol number in the [P
datagram is set to 46. Because IP is unreliable, RSVP messages can be lost. If an
RSVP path or reservation message is lost, a replacement refresh message should ar-
rive soon.

An RSVP reservation message that originates in a host will have the host’s IP
address in the source address field of the encapsulating IP datagram. It will have the
IP address of the first router along the reserve path in the multicast tree in the desti-
nation address in the encapsulating IP datagram. When the IP datagram arrives at
the first router, the router strips off the IP fields and passes the reservation message
to the router’s RSVP module. The RSVP module examines the message’s multicast
address (that is, session identifier) and style type, examines its current state, w:@
then acts appropriately; for example, the RSVP module may merge the reservation
with a reservation originating from another interface and then send a new reserva-
tion message to the next router upstream in the multicast tree.

Insufficient Resource

Because a reservation request that fails an admission test may embody a number of
requests merged together, a reservation error must be reported to all the concerned
receivers. These reservation errors are reported within ResvError messages. The

6.9 m Differentiated Services

receivers can then reduce the amount of resource that they request and try reserving
again. The RSVP standard provides mechanisms to allow the backtracking of the
reservations when insufficient resources are available; unfortunately, these mecha-
nisms add significant complexity to the RSVP protocol. Furthermore, RSVP suffers
from the so-called killer-reservation problem, whereby a receiver requests a large
reservation over and over again, each time getting its reservation rejected due to lack
of sufficient resources. Because this large reservation may have been merged with
smaller reservations downstream, the large reservation may be excluding smaller
reservations from being established. To solve this thorny problem, RSVP uses the
ResvError messages to establish additional state in routers, called blockade state.
Blockade state in a router modifies the merging procedure to omit the offending
reservation from the merge, allowing a smaller request to be forwarded and estab-

lished. The blockade state adds yet further complexity to the RSVP protocol and its
implementation.

6.9 + Differentiated Services

549

In the previous section we discussed how RSVP can be used to reserve per-flow re-
sources at routers within the network. The ability to request and reserve per-flow re-
sources, in turn, makes it possible for the Intserv framework to provide
quality-of-service guarantees to individual flows. As work on Intserv and RSVP pro-
ceeded, however, researchers involved with these efforts (for example, [Zhang
1998]) have begun to uncover some of the difficulties associated with the Intserv
model and per-flow reservation of resources:

+ Scalability. Per-flow resource reservation using RSVP implies the need for a
router to process resource reservations and to maintain per-flow state for each
flow passing though the router. With recent measurements [Thompson 1997]
suggesting that even for an OC-3 speed link, approximately 256,000 source-
destination pairs might be seen in one minute in a backbone router, per-flow
reservation processing represents a considerable overhead in large networks.

4 Flexible service models. The Intserv framework provides for a small number of
prespecified service classes. This particular set of service classes does not allow
for more qualitative or relative definitions of service distinctions (for example,
“Service class A will receive preferred treatment over service class B.”). These
more qualitative definitions might better fit our intuitive notion of service dis-
tinction (for example, first class versus coach class in air travel; “platinum” ver-
sus “gold” versus “standard” credit cards).

These considerations have led to the recent so-called “diffserv” (Differentiated
Services) activity [Diffserv 1999] within the Internet Engineering Task Force. The
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