
HULU EXHIBIT 1055
Page 1 of 130

DATABASE MANAGEMENT
SYSTEMS

HULU EXHIBIT 1055
Page 2 of 130

I !

DATABASE MANAGEMENT
SYSTEMS

Third Edition

Raghu Ramakrishnan
University of Wisconsin

Madison, Wisconsin, USA

•
Johannes Gehrke

Cornell University

Ithaca, New York, USA

Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis
Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City
Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

HULU EXHIBIT 1055
Page 3 of 130

McGraw-Hill Higher Education
~·

A Division of TheMcGraw·HiU Companies

DAT ABASE MANAGEMENT SYSTEMS, THIRD EDITION

Published by McGraw-Hill;a business unit of The McGraw-Hill Companies, Inc., 1221
Avenue of the Americas, New York, NY 10020. Copyright© 2003, 2000, 1998 by The
McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any
network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

This book is printed on acid-free paper.

International 15 16 17 18 19 20 DOC/DOC 0 9 8 7 6 5
Domestic 8 9 0 DOC/DOC 0 9 8

ISBN-13: 978-0-07-246563-1
ISBN-10: 0-07-246563-8

ISBN-13: 978-0-07-115110-8 (ISE)
ISBN-10: 0-07-115110-9 (ISE)

Publisher: Elizabeth A. Jones
Senior developmental editor: Emily J. Lupash
Executive marketing manager: John Wannemacher
Senior project manager: Gloria G. Schiesl
Production supervisor: Sherry L. Kane
Media project manager: Jodi K. Banowetz
Senior media technology producer: Phillip Meek
Coordinator of freelance design: Michelle D. Whitaker
Cover illustration: Mick Wiggins
Compositor: Interactive Composition Corporation
Typeface: 11113 Times Roman CMR JO
Printer: R. R. Donnelley/Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Ramakrishnan, Raghu.
Database management systems I Raghu Ramakrishnan, Johannes Gehrke. - 3rd ed.

p. cm.
Includes index.
ISBN 0-07-246563-8 - ISBN 0-07-115110-9 (ISE)
1. Database management. I. Gehrke, Johannes. II. Title.

QA76.9.D3 R237 2003
005.74-dc21

INTERNATIONAL EDITION ISBN 0--07-115110-9

2002075205
CIP

Copyright© 2003. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture and
export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill.
The International Edition is not available in North America.

www.mhhe.com

HULU EXHIBIT 1055
Page 4 of 130

To Apu, Ketan, and Vivek with love

To Keiko and Elisa

HULU EXHIBIT 1055
Page 5 of 130

CONTENTS

PREFACE

Part I FOUNDATIONS

1

2

OVERVIEW OF DATABASE SYSTEMS
1.1 Managing Data

1.2 A Historical Perspective

1.3 File Systems versus a DBMS

1.4 Advantages of a DBMS
1.5 Describing and Storing Data in a DBMS

1.5.l The Relational Model

1.5.2 Levels of Abstraction in a DBMS

1.5.3 Data Independence

1.6 Queries in a DBMS

1. 7 Transaction Management
1.7.1 Concurrent Execution of Transactions

1.7.2 Incomplete Transactions and System Crashes

,_ 1.7.3 Points to Note

1.8 Structure of a DBMS
1.9 People Who Work with Databases

1.10 Review Questions

INTRODUCTION TO DATABASE DESIGN
2.1 Database Design and ER Diagrams

2.1.1 Beyond ER Design

2.2 Entities, Attributes, and Entity Sets

2.3 Relationships and Relationship Sets

2.4 Additional Features of the ER Model

2.4.1 Key Constraints

2.4.2 Participation Constraints

2.4.3 Weak Entities

2.4.4 Class Hierarchies

2.4.5 Aggregation

vii

xxiv

1

3
4

6

8

9

10
11_

12

15

16
17

17

18

19
19
21

22

25
26

27

28
29

32

32

34

35

37

39

HULU EXHIBIT 1055
Page 6 of 130

viii DATABASE MANAGEMENT SYSTEMS I
1'

2.5 Conceptual Design With the ER Model 40 -~
2.5.l Entity versus Attribute 41 I

2.5.2 Entity versus Relationship 42 ~
2.5.3 Binary versus Ternary Relationships 43

2.5.4 Aggregation versus Ternary Relationships 45

2.6 Conceptual Design for Large Enterprises 46

2.7 The Unified Modeling Language 47

2.8 Case Study: The Internet Shop 49

2.8.1 Requirements Analysis 49

2.8.2 Conceptual Design 50

2.9 Review Questions 51

3 THE RELATIONAL MODEL 57

3.1 Introduction to the Relational Model 59

3.1.1 Creating and Modifying Relations Using SQL 62

3.2 Integrity Constraints over Relations 63

3.2.1 Key Constraints 64

3.2.2 Foreign Key Constraints 66

3.2.3 General Constraints 68

3.3 Enforcing Integrity Constraints 69

3.3.1 Transactions and Constraints 72

3.4 Querying Relational Data 73

3.5 Logical Database Design: ER to Relational 74

3.5.1 Entity Sets to Tables 75

3.5.2 Relationship Sets (without Constraints) to Tables 76

3.5.3 Translating Relationship Sets with Key Constraints 78

3.5.4 Translating Relationship Sets with Participation Constraints 79

3.5.5 Translating Weak Entity Sets 82

3.5.6 Translating Class Hierarchies 83

3.5.7 Translating ER Diagrams with Aggregation 84

3.5.8 ER to Relational: Additional Examples 85

3.6 Introduction to Views 86

3.6.1 Views, Data Independence, Security 87

3.6.2 Updates on Views 88

3.7 Destroying/ Altering Tables and Views 91
'~

3.8 Case Study: The Internet Store 92

3.9 Review Questions 94

4 RELATIONAL ALGEBRA AND CALCULUS 100

4.1 Preliminaries 101

4.2 Relational Algebra 102

4.2.1 Selection and Projection 103

4.2.2 Set Operations 104

HULU EXHIBIT 1055
Page 7 of 130

Contents ix

4.2.3 Renaming 106

4.2.4 Joins 107

4.2.5 Division 109

4.2.6 More Examples of Algebra Queries 110

4.3 Relational Calculus 116

4.3.1 Tuple Relational Calculus 117

4.3.2 Domain Relational Calculus 122

'· 4.4 Expressive Power of Algebra and Calculus 124

4.5 Review Questions 126

5 SQL: QUERIES, CONSTRAINTS, TRIGGERS 130
5.1 Overview 131

5.1.l Chapter Organization 132

5.2 The Form of a Basic SQL Query 133

5.2.1 Examples of Basic SQL Queries 138

5.2.2 Expressions and Strings in the SELECT Command 139

5.3 UNION, INTERSECT, and EXCEPT 141

5.4 Nested Queries 144

5.4.1 Introduction to Nested Queries 145

5.4.2 Correlated Nested Queries 147

5.4.3 Set-Comparison Operators 148

5.4.4 More Examples of Nested Queries 149

5.5 Aggregate Operators 151

5.5.1 The GROUP BY and HAVING Clauses 154
• .

5.5.2 More Examples of Aggregate Queries 158

5.6 Null Values 162

5.6.1 Comparisons Using Null Values 163

5.6.2 Logical Connectives AND, OR, and NOT 163
L

' 5.6.3 Impact on SQL Constructs 163

5.6.4 Outer Joins 164

5.6.5 Disallowing Null Values 165

5.7 Complex Integrity Constraints in SQL 165

5.7.1 Constraints over a Single Table 165

5.7.2 Domain Constraints and Distinct Types 166

5.7.3 Assertions: ICs over Several Tables 167

5.8 Triggers and Active Databases 168

5.8.1 Examples of Triggers in SQL 169

5.9 Designing Active Databases 171

5.9.1 Why Triggers Can Be Hard to Understand 171

5.9.2 Constraints versus Triggers 172

5.9.3 Other Uses of Triggers 172

5.10 Review Questions 173

HULU EXHIBIT 1055
Page 8 of 130

'r--
t

x
DATABASE MANAGEMENT SYSTEMS

Part II APPLICATION DEVELOPMENT 183

6 DATABASE APPLICATION DEVELOPMENT 185

6.1 Accessing Databases from Applications
187

6.1.l Embedded SQL
187

6.1.2 Cursors
189

6.1.3 Dynamic SQL
194

6.2 An Introduction to JDBC
194

6.2.1 Architecture
196

6.3 JDBC Classes and Interfaces
197

6.3.1 JDBC Driver Management
197

6.3.2 Connections
198

6.3.3 Executing SQL Statements
200

6.3.4 ResultSets
201

6.3.5 Exceptions and Warnings
203

6.3.6 Examining Database Metadata
204
206

6.4 SQLJ
6.4.1 Writing SQLJ Code

207

6.5 Stored Procedures
209

6.5.1 Creating a Simple Stor~d Procedure 209

6.5.2 Calling Stored Procedures 210

6.5.3 SQL/PSM
212

6.6 Case Study: The Internet Book Shop
214

6.7 Review Questions
216

7 INTERNET APPLICATIONS 220
220

7.1 Introduction

7.2 Internet Concepts
221

7.2.1 Uniform Resource Identifiers
221

7.2.2 The Hypertext Transfer Protocol (HTTP) 223

7.3 HTML Documents
226

7.4 XML Documents
227

7.4.1 Introduction to XML
228

7.4.2 XML DTDs
231

7.4.3 Domain-Specific DTDs
234

7.5 The Three-Tier Application Architecture
236

I j

7.5.1 Single-Tier and Client-Server Architectures 236

7.5.2 Three-Tier Architectures 239

7.5.3 Advantages of the Three-Tier Architecture 241

7.6 The Presentation Layer
242

7.6.1 HTML Forms
242

7.6.2 JavaScript
245

7.6.3 Style Sheets
247

-~~--------------------------'· HULU EXHIBIT 1055
Page 9 of 130

Contents xi

7.7 The Middle Tief 251

7.7.1 CGI: The Common Gateway Interface 251

7.7.2 Application Servers 252

7.7.3 Servlets 254

7.7.4 J avaServer Pages 256

7.7.5 Maintaining State 258

7.8 Case Study: The Internet Book Shop 261

7.9 Review Questions 264

Part III STORAGE AND INDEXING 271

8 OVERVIEW OF STORAGE AND INDEXING 273
8.1 Data on External Storage 274

8.2 File Organizations and Indexing 275

8.2.1 Clustered Indexes 277

8.2.2 Primary and Secondary Indexes 277

8.3 Index Data Structures 278

8.3.1 Hash-Based Indexing 279

8.3.2 Tree-Based Indexing 280

8.4 Comparison of File Organizations 282

8.4.1 Cost Model 283

8.4.2 Heap Files 284

8.4.3 Sorted Files 285

8.4.4 Clustered Files 287

8.4.5 Heap File with Unclustered Tree Index 288

8.4.6 Heap File With Unclustered Hash Index 289

8.4.7 Comparison of 1/0 Costs 290

8.5)ndexes and Performance Tuning 291

8.5.1 Impact of the Workload 292

8.5.2 Clustered Index Organization 292

8.5.3 Composite Search Keys 295

8.5.4 Index Specification in SQL:1999 299

8.6 Review Questions 299

9 STORING DATA: DISKS AND FILES 304
9.1 The Memory Hierarchy 305

9.1.1 Magnetic Disks 306

9.1.2 Performance Implications of Disk Structure 308

9.2 Redundant Arrays of Independent Disks 309

9.2.1 Data Striping 310

9.2.2 Redundancy 311

9.2.3 Levels of Redundancy 312

9.2.4 Choice of RAID Levels 316

HULU EXHIBIT 1055
Page 10 of 130

xii DATABASE MANAGEMENT SYSTEMS

9.3 Disk Space Management 316

9.3.1 Keeping Track of Free Blocks 317

9.3.2 Using OS File Systems to Manage Disk Space 317

9.4 Buffer Manager 318

9.4.l Buffer Replacement Policies 320

9.4.2 Buffer Management in DBMS versus OS 322

9.5 Files of Records 324

9.5.1 Implementing Heap Files 324

9.6 Page Formats 326

9.6.1 Fixed-Length Records 327

9.6.2 Variable-Length Records 328

9.7 Record Formats 330

9.7.l Fixed-Length Records 331

9.7.2 Variable-Length Records 331

9.8 Review Questions .. 333

10 TREE-STRUCTURED INDEXING 338

10.l Intuition For Tree Indexes 339

10.2 Indexed Sequential Access Method (ISAM) 341

10.2.1 Overflow Pages, Locking Considerations 344

'I 10.3 B+ Trees: A Dynamic Index Structure 344

10.3.l Format of a Node 346

10.4 Search 347

10.5 Insert 348

10.6 Delete 352

10.7 Duplicates 356

10.8 B+ Trees in Practice 358

10.8.l Key Compression 358

10.8.2 Bulk-Loading a B+ Tree 360

10.8.3 The Order Concept 363

10.8.4 The Effect of Inserts and Deletes on Rids 364

Ii
10.9 Review Questions 364

,,,
11 HASH-BASED INDEXING 370

11.1 Static Hashing 371
·~

11.1.l Notation and Conventions 373

11.2 Extendible Hashing 373

11.3 Linear Hashing 379

11.4 Extendible vs. Linear Hashing 384

11.5 Review Questions 385

Part IV QUERY EVALUATION 391

HULU EXHIBIT 1055
Page 11 of 130

Contents Xlll

12 OVERVIEW OF QUERY EVALUATION 393
12.1 The System Catalog 394

12.1.1 Information in the Catalog 395

12.2 Introduction to Operator Evaluation 397

12.2.1 Three Common Techniques 398

12.2.2 Access Paths 398

12.3 Algorithms for Relational Operations 400

12.3.1 Selection 401

12.3.2 Projection 401

12.3.3 Join 402

12.3.4 Other Operations 404

12.4 Introduction to Query Optimization 404

12.4.1 Query Evaluation Plans 405

12.4.2 Multi-operator Queries: Pipelined Evaluation 407

12.4.3 The Iterator Interface 408

12.5 Alternative Plans: A Motivating Example 409

12.5.1 Pushing Selections 409

12.5.2 Using Indexes 411

12.6 What a Typical Optimizer Does 414

12.6.1 Alternative Plans Considered 414

12.6.2 Estimating the Cost of a Plan 416

12.7 Review Questions 417

13 EXTERNAL SORTING 421
13.1 When Does a DBMS Sort Data? 422

13.2 A Simple Two-Way Merge Sor~ 423

13.3 External Merge Sort 424

... 13.3.1 Minimizing the Number of Runs 428

13.4. Minimizing 1/0 Cost versus Number of I/Os 430

13.4.1 Blocked 1/0 430

13.4.2 Double Buffering 432

13.5 Using B+ Trees for Sorting 433

13.5.1 Clustered Index 433

13.5.2 Unclustered Index 434

13.6 Review Questions 436

14 EVALUATING RELATIONAL OPERATORS 439
14.1 The Selection Operation 441

14.1.1 No Index, Unsorted Data 441

14.1.2 No Index, Sorted Data 442

14.1.3 B+ Tree Index 442

14.1.4 Hash Index, Equality Selection 444

14.2 General Selection Conditions 444

HULU EXHIBIT 1055
Page 12 of 130

XIV DATABASE MANAGEMENT SYSTEMS

14.2.1 CNF and Index Matching 445

14.2.2 Evaluating Selections without Disjunction 445

14.2.3 Selections with Disjunction 446

14.3 The Projection Operation 447

14.3.1 Projection Based on Sorting 448

14.3.2 Projection Based on Hashing 449

14.3.3 Sorting Versus Hashing for Projections 451

14.3.4 Use of Indexes for Projections 452

14.4 The Join Operation 452

14.4.1 Nested Loops Join 454
I

14.4.2 Sort-Merge Join 458 I
· 1

14.4.3 Hash Join 463

14.4.4 General Join Conditions 467

14.5 The Set Operations 468

14.5.1 Sorting for Union and Difference 469 .,.
14.5.2 Hashing for Union and Difference 469

14.6 Aggregate Operations 469

14.6.1 Implementing Aggregation by Using an Index 471

14.7 The Impact of Buffering 471

14.8 Review Questions 472

15 A TYPICAL RELATIONAL QUERY OPTIMIZER 478
15.1 Translating SQL Queries into Algebra 479

15.1.1 Decomposition of a Query into Blocks 479

15.1.2 A Query Block as a Relational Algebra Expression 481

'I 15.2 Estimating the Cost of a Plan 482
I

15.2.1 Estimating Result Sizes 483

: ! 15.3 Relational Algebra Equivalences 488

15.3.1 Selections 488

15.3.2 Projections 488

15.3.3 Cross-Products and Joins 489

15.3.4 Selects, Projects, and Joins 490

15.3.5 Other Equivalences 491

15.4 Enumeration of Alternative Plans 492

15.4.1 Single-Relation Queries 492
I

15.4.2 Multiple-Relation Queries 496 I

15.5 Nested Subqueries 504

15.6 The System R Optimizer 506

15.7 Other Approaches to Query Optimization 507

15.8 Review Questions 507

PartV TRANSACTION MANAGEMENT 517

HULU EXHIBIT 1055
Page 13 of 130

Contents xv

16 OVERVIEW OF TRANSACTION MANAGEMENT 519
16.1 The ACID Properties

16.1.1 Consistency and Isolation

16.1.2 Atomicity and Durability

16.2 Transactions and Schedules

16.3 Concurrent Execution of Transactions

16.3.1 Motivation for Concurrent Execution

16.3.2 Serializability

16.3.3 Anomalies Due to Interleaved Execution

16.3.4 Schedules Involving Aborted Transactions

16.4 Lock-Based Concurrency Control

16.4.1 Strict Two-Phase Locking (Strict 2PL)

16.4.2 Deadlocks

16.5 Performance of Locking

16.6 Transaction Support in SQL

16.6.1 Creating and Terminating Transactions

16.6.2 What Should We Lock?

16.6.3 Transaction Characteristics in SQL

16.7 Introduction to Crash Recovery

16.7.1 Stealing Frames and Forcing Pages
16.7.2 Recovery-Related Steps during Normal Execution

16.7.3 Overview of ARIES

16.7.4 Atomicity: Implementing Rollback

16.8 Review Questions

17 CONCURRENCY CONTROL
17.1 2PL, Serializability, and Recoverability

., 17.1.1 View Serializability

17.2 ' Introduction to Lock Management

17.2.1 Implementing Lock and Unlock Requests

17.3 Lock Conversions

17.4 Dealing With Deadlocks

17.4.1 Deadlock Prevention

17.5 Specialized Locking Techniques
17.5.1 Dynamic Databases and the Phantom Problem

17.5.2 Concurrency Control in B+ Trees

17.5.3 Multiple-Granularity Locking

17.6 Concurrency Control without Locking

17.6.1 Optimistic Concurrency Control

17.6.2 Timestamp-Based Concurrency Control

17.6:3 Multiversion Concurrency Control

17.7 Review Questions

520

521

522

523

524

524

525

526

529

530

531

533

533

535

535

537

538

540

541

542

543

543

544

549
550

553

553

554

555

556

558

559

560

561

564

566

566

569

572

573

HULU EXHIBIT 1055
Page 14 of 130

XVl DATABASE MANAGEMENT SYSTEMS

18 CRASH RECOVERY 579

'11
18.1 Introduction to ARIES 580

18.2 The Log ~- 582

18.3 Other Recovery-Related Structures 585

18.4 The Write-Ahead Log Protocol 586

18.5 Checkpointing 587

18.6 Recovering from a System Crash 587

18.6.1 Analysis Phase 588

18.6.2 Redo Phase 590

18.6.3 Undo Phase 592

18.7 Media Recovery 595

18.8 Other Approaches and Interaction with Concurrency Control 596

18.9 Review Questions 597

Part VI DATABASE DESIGN AND TUNING 603
7

19 SCHEMA REFINEMENT AND NORMAL FORMS 605

19.l Introduction to Schema Refinement 606

I
19.1.1 Problems Caused by Redundancy 606

t 19.1.2 Decompositions 608

19.1.3 Problems Related to Decomposition 609

19.2 Functional Dependencies 611

19.3 Reasoning about FDs 612

19.3.1 Closure of a Set of FDs 612

19.3.2 Attribute Closure 614

19.4 Normal Forms 615

19.4.1 Boyce-Codd Normal Form 615

19.4.2 Third Normal Form 617

19.5 Properties of Decompositions 619

19.5.1 Lossless-Join Decomposition 619

19.5.2 Dependency-Preserving Decomposition 621

19.6 Normalization 622

19.6.1 Decomposition into BCNF 622

19.6.2 Decomposition into 3NF 625

19.7 Schema Refinement in Database Design 629

19.7.1 Constraints on an Entity Set 630
I j

19.7.2 Constraints on a Relationship Set 630

19.7.3 Identifying Attributes of Entities 631
i

;r
19.7.4 Identifying Entity Sets 633

19.8 Other Kinds of Dependencies 633

1 I:

19.8.1 Multivalued Dependencies 634

19.8.2 Fourth Normal Form 636

19.8.3 Join Dependencies 638

HULU EXHIBIT 1055
Page 15 of 130

Contents

19.8.4 Fifth Normal Form

19.8.5 Inclusion Dependencies

19.9 Case Study: The Internet Shop

19.10 Review Questions

xvn

638

639

640

642

20 PHYSICAL DATABASE DESIGN AND TUNING 649
20.1 Introduction to Physical Database Design

20.1.1 Database Workloads

20.1.2 Physical Design and Tuning Decisions

20.1.3 Need for Database Tuning

20.2 Guidelines for Index Selection

20.3 Basic Examples of Index Selection

20.4 Clustering and Indexing

20.4.l Co-clustering Two Relations

20.5 Indexes that Enable Index-Only Plans

20.6 Tools to Assist in Index Selection

20.6.1 Automatic Index Selection

20.6.2 How Do Index Tuning Wizards Work?

20. 7 Overview of Database Tuning

20.7.1 Tuning Indexes

20.7.2 Tuning the Conceptual Schema

20.7.3 Tuning Queries and Views

20.8 Choices in Tuning the Conceptual Schema

20.8.1 Settling for a Weaker Normal Form

20.8.2 Denormalization

L

20.8.3 Choice of Decomposition

20.8.4 Vertical Partitioning of BCNF Relations

20.8.5 Horizontal Decomposition

20.9 - Choices in Tuning Queries and Views

20.10 Impact of Concurrency

20.10.1 Reducing Lock Durations

20.10.2 Reducing Hot Spots

20.11 Case Study: The Internet Shop

20.11.1 Tuning the Database

20.12 DBMS Benchmarking

20.12.1 Well-Known DBMS Benchmarks

20.12.2 Using a Benchmark

20.13 Review Questions

21 SECURITY AND AUTHORIZATION
21.1 Introduction to Database Security

21.2 Access Control

21.3 Discretionary Access Control

650

651

652

653

653

656

658

660

662

663

663

664

667

667

669

670

671

671

672

672

674

674

675

678

678

679

680

682

682

683

684

685

692
693

694

695

HULU EXHIBIT 1055
Page 16 of 130

xviii DATABASE MANAGEMENT SYSTEMS

21.3.1 Grant and Revoke on Views and Integrity Gonstraints 704

21.4 Mandatory Access Control 705

21.4.1 Multilevel Relations and Polyinstatltiation 707

21.4.2 Covert Channels, DoD Security Levels 708

21.5 Security for Internet Applications 709

21.5.1 Encryption 709

I 21.5.2 Certifying Servers: The SSL Protocol 712 ..
21.5.3 Digital Signatures 713

21.6 Additional Issues Related to Security 714

21.6.1 Role of the Database Administrator 714

I 21.6.2 Security in Statistical Databases 715

ii
21.7 Design Case Study: The Internet Store 716

21.8 Review Questions 718

i' Part VII ADDITIONAL TOPICS 723
'
'
I

22 PARALLEL AND DISTRIBUTED DATABASES 725 I
I

22.1 Introduction 726 I

22.2 Architectures for Parallel Databases 727

22.3 Parallel Query Evaluation 728

22.3.1 Data Partitioning 730
22.3.2 Parallelizing Sequential Operator Evaluation Code 730

22.4 Parallelizing Individual Operatrons 731
Ii/ 22.4.1 Bulk Loading and Scanning 731

I 22.4.2 Sorting 732

22.4.3 Joins 732

22.5 Parallel Query Optimization 735
I

22.6 Introduction to Distributed Databases 736

II
22.6.1 Types of Distributed Databases 737

JI 22.7 Distributed DBMS Architectures 737

t 22.7.1 Client-Server Systems 738

22.7.2 Collaborating Server Systems 738

Ir.

22.7.3 Middleware Systems 739

22.8 Storing Data in a Distributed DBMS 739

ir 22.8.1 Fragmentation 739
I 22.8.2 Replication 741

, ,
I• 22.9 Distributed Catalog Management 741 '

22.9.1 Naming Objects 741

I 22.9.2 Catalog Structure 742

22.9.3 Distributed Data Independence 743

22.10 Distributed Query Processing 743

22.10.1 Nonjoin Queries in a Distributed DBMS 744

22.10.2 Joins in a Distributed DBMS 745
q

HULU EXHIBIT 1055
Page 17 of 130

Contents XIX

22.10.3 Cost-Based Query Optimization 749

22.11 Updating Distributed Data 750

22.11.1 Synchronous Replication 750

22.11.2 Asynchronous Replication 751

22.12 Distributed Transactions 755

22.13 Distributed Concurrency Control 755

22.13.1 Distributed Deadlock 756

22.14 Distributed Recovery 758

22.14.1 Normal Execution and Commit Protocols 758

22.14.2 Restart after a Failure 760

22.14.3 Two-Phase Commit Revisited 761

22.14.4 Three-Phase Commit 762

22.15 Review Questions 763

23 OBJECT-DATABASE SYSTEMS 772
23.1 Motivating Example 774

23.1.1 New Data Types 775

23.1.2 Manipulating the New Data 777

23.2 Structured Data Types 779

23.2.1 Collection Types 780

23.3 Operations on Structured Data 781

23.3.1 Operations on Rows 781

23.3.2 Operations on Arrays 781

23.3.3 Operations on Other Collection Types 782

23.3.4 Queries Over Nested Collections 783

23.4 Encapsulation and ADTs 784

23.4.1 Defining Methods 785

23.5 Inheritance 787
L

' 23.5.1 Defining Types with Inheritance 787

23.5.2 Binding Methods 788

23.5.3 Collection Hierarchies 789

23.6 Objects, OIDs, and Reference Types 789

23.6.1 Notions of Equality 790

23.6.2 Dereferencing Reference Types 791

23.6.3 URLs and OIDs in SQL:1999 791

23.7 Database Design for an ORDBMS 792

23.7.1 Collection Types and ADTs 792

23.7.2 Object Identity 795

23.7.3 Extending the ER Model 796

23.7.4 Using Nested Collections 798

23.8 ORDBMS Implementation Challenges 799

23.8.1 Storage and Access Methods 799

23.8.2 Query Processing 801

HULU EXHIBIT 1055
Page 18 of 130

xx DATABASE MANAGEMENT SYSTEMS

23.8.3 Query Optimization 803

23.9 OODBMS 805

23.9.1 The ODMG Data Model and ODL 805

23.9.2 OQL 807

23.10 Comparing RDBMS, OODBMS, and ORDBMS 809

23.10.1 RDBMS versus ORDBMS 809

23.10.2 OODBMS versus ORDBMS: Similarities , 809

23.10.3 OODBMS versus ORDBMS: Differences 810

111! 23.11 Review Questions 811

24 DEDUCTIVE DATABASES 817

24.1 Introduction to Recursive Queries 818

24.1.1 Datalog 819

24.2 Theoretical Foundations 822

24.2.1 Least Model Semantics 823

24.2.2 The Fixpoint Operator 824

24.2.3 Safe Datalog Programs 825

24.2.4 Least Model = Least Fixpoint 826

24.3 Recursive Queries with Negation 827

24.3.1 Stratification 828

24.4 From Datalog to SQL 831

24.5 Evaluating Recursive Queries 834

24.5.1 Fixpoint Evaluation without Repeated Inferences 835

24.5.2 Pushing Selections to A void Irrelevant Inferences 837

24.5.3 The Magic Sets Algorithm 838

24.6 Review Questions 841

25 DATA WAREHOUSING AND DECISION SUPPORT 846

25.1 Introduction to Decision Support 848

25.2 OLAP: Multidimensional Data Model 849

25.2.1 Multidimensional Database Design 853

25.3 Multidimensional Aggregation Queries 854

25.3.1 ROLLUP and CUBE in SQL:1999 856

25.4 Window Queries in SQL:1999 859

25.4.1 Framing a Window 861

25.4.2 New Aggregate Functions 862

25.5 Finding Answers Quickly 862

25.5.1 Top N Queries 863

25.5.2 Online Aggregation 864

25.6 Implementation Techniques for OLAP 865

25.6.1 Bitmap Indexes 866

25.6.2 Join Indexes 868

25.6.3 File Organizations 869

HULU EXHIBIT 1055
Page 19 of 130

Contents

25. 7 Data Warehousing

25.7.1 Creating and Maintaining a Warehouse

25.8 Views and Decision Support

25.8.1 Views, OLAP, and Warehousing

25.8.2 Queries over Views

25.9 View Materialization

25.9.1 Issues in View Materialization

25.10 Maintaining Materialized Views

25.10.1 Incremental View Maintenance

25.10.2 Maintaining Warehouse Views

25.10.3 When Should We Synchronize Views?

25.11 Review Questions

26 DATA MINING
26.1 Introduction to Data Mining

26.1.1 The Knowledge Discovery Process

26.2 Counting Co-occurrences

26.2.1 Frequent Itemsets

26.2.2 Iceberg Queries

26.3 Mining for Rules

26.3.1 Association Rules

26.3.2 An Algorithm for Finding Association Rules

26.3.3 Association Rules and ISA Hierarchies

26.3.4 Generalized Association Rules

26.3.5 Sequential Patterns

26.3.6 The Use of Association Rules for Prediction

26.3.7 Bayesian Networks

,, 26.3.8 Classification and Regression Rules

26.4 - Tree-Structured Rules

26.4.1 Decision Trees

26.4.2 An Algorithm to Build Decision Trees

26.5 Clustering

26.5.1 A Clustering Algorithm

26.6 Similarity Search over Sequences

26.6.1 An Algorithm to Find Similar Sequences

26. 7 Incremental Mining and Data Streams

26.7.1 Incremental Maintenance of Frequent Itemsets

26.8 Additional Data Mining Tasks

26.9 Review Questions

xxi

870

871

872

872

873

873

874

876

876

879

881

882

889
890

891

892

892

895

897

897

898

899

900

901

902

903

904

906

907

908

911

912

913

915

916

918

920

920

27 INFORMATION RETRIEVAL AND XML DATA 926
27.1 Colliding Worlds: Databases, IR, and XML

27.1.1 DBMS versus I~ Systems

927

928

HULU EXHIBIT 1055
Page 20 of 130

II

II
,II.

'II
1
'

xx ii DATABASE MANAGEMENT SYSTEMS

27.2 Introduction to Information Retrieval

27.2.1 Vector Space Model

27.2.2 TF /IDF Weighting of Terms

27.2.3 Ranking Document Similarity

27.2.4 Measuring Success: Precision and Recall

27.3 Indexing for Text Search

27.3.1 Inverted Indexes

27.3.2 Signature Files

27.4 Web Search Engines

27.4.1 Search Engine Architecture

27.4.2 Using Link Information

27.5 Managing Text in a DBMS
27.5.1 Loosely Coupled Inverted Index

27.6 A Data Model for XML
27.6.1 Motivation for Loose Structure

27.6.2 A Graph Model

27.7 XQuery: Querying XML Data

27.7.1 Path Expressions

27.7.2 FLWR Expressions

27.7.3 Ordering of Elements
27.7.4 Grouping and Generation of Collection Values

27.8 Efficient Evaluation of XML Queries

27.8.1 Storing XML in RDBMS

27.8.2 Indexing XML Repositories

27.9 Review Questions

28 SPATIAL DATA MANAGEMENT
28.1 Types of Spatial Data and Queries

28.2 Applications Involving Spatial Data

28.3 Introduction to Spatial Indexes

28.3.1 Overview of Proposed Index Structures

28.4 Indexing Based on Space-Filling Curves
28.4.1 Region Quad Trees and Z-Ordering: Region Data

28.4.2 Spatial Queries Using Z-Ordering

28.5 Grid Files

28.5.1 Adapting Grid Files to Handle Regions

28.6 R Trees: Point and Region Data

28.6.1 Queries
28.6.2 Insert and Delete Operations

28.6.3 Concurrency Control

28.6.4 Generalized Search Trees

28.7 Issues in High-Dimensional Indexing

28.8 Review Questions

929

930

931

932

934

934

935

937

939

939

940

944

945

945

945

946

948

948

949

951

951

952

952

956

959

968
969

971

973

974

975

976

978

978

981

982

983

984

986

987

988

988

HULU EXHIBIT 1055
Page 21 of 130

Contents xxiii

29 FURTHER READING 992
29.1 Advanced Transaction Processing 993

29.1.1 Transaction Processing Monitors 993

29.1.2 New Transaction Models 994

29.1.3 Real-Time DBMSs 994

29.2 Data Integration 995

29.3 Mobile Databases 995

I 29.4 Main Memory Databases 996

29.5 Multimedia Databases 997

29.6 Geographic Information Systems 998

29.7 Temporal Databases 999

29.8 Biological Databases 999

29.9 Information Visualization 1000

29.10 Summary 1000

30 THE MINIBASE SOFTWARE 1002
30.1 What Is Available 1002

30.2 Overview of Minibase Assignments 1003

30.3 Acknowledgments 1004

REFERENCES 1005

AUTHOR INDEX 1045

SUBJECT INDEX 1054

HULU EXHIBIT 1055
Page 22 of 130

I I

I

I

!I' I:

" oil

;~.
I,

b

PREFACE

The advantage of doing one's praising for oneself is that one can lay it on so thick
and exactly in the right places.

-Samuel Butler

Database management systems are now an indispensable tool for :rp.anaging
information, and a course on the principles and practice of databas~ systems
is now an integral part of computer science curricula. This book covers the
fundamentals of modern database management systems, in particular relational
database systems.

We have attempted to present the material in a clear, simple style. A quantita
tive approach is used throughout with many detailed examples. An extensive
set of exercises (for which solutions are available online to instructors) accom
panies each chapter and reinforces students' ability to apply the concepts to
real problems.

The book can be used with the accompanying software and programming as
signments in two distinct kinds of introductory courses:

l. Applications Emphasis: A course that covers the principles of database
systems, and emphasizes how they are used in developing data-intensive ap
plications. Two new chapters on application development (one on database
backed applications, and one on Java and Internet application architec
tures) have been added to the third edition, and the entire book has been
extensively revised and reorganized to support such a course. A running

2.

case-study and extensive online materials (e.g., code for SQL queries and
Java applications, online databases and solutions) make it easy to teach a
hands-on application-centric course.

Systems Emphasis: A course that has a strong systems emphasis and
assumes that students have good programming skills in C and C++. In
this case the accompanying Minibase software can be used as the basis
for projects in which students are asked to implement various parts of a
relational DBMS. Several central modules in the project software (e.g.,
heap files, buffer manager, B+ trees, hash indexes, various join methods)

xxiv

l
I

.J

HULU EXHIBIT 1055
Page 23 of 130

Preface xxv

are described in sufficient detail in the text to enable students to implement
them, given the (c++) class interfaces.

Many instructors will no doubt teach a course that falls between these two
extremes. The restructuring in the third edition offers a very modular orga
nization that facilitates such hybrid courses. The also book contains enough
material to support advanced courses in a two-course sequence.

Organization of the Third Edition

The book is organized into six main parts plus a collection of advanced topics, as
shown in Figure 0.1. The Foundations chapters introduce database systems, the

(1) Foundations Both
(2) Application Development Applications emphasis
(3) Storage and Indexing Systems emphasis
(4) Query Evaluation Systems emphasis
(5) Transaction Management Systems emphasis
(6) Database Design and Tuning Applications emphasis
(7) Additional Topics Both

Figure 0.1 Organization of Parts in the Third Edition

ER model and the relational model. They explain how databases are created
and used, and cover the basics of database design and querying, including an
in-depth treatment of SQL queries. While an instructor can omit some of this
material l}t their discretion (e.g., relational calculus, some sections on the ER
model or-SQL queries), this material is relevant to every student of database
systems, and we recommend that it be covered in as much detail as possible.

Each of the remaining five main parts has either an application or a systems
emphasis. Each of the three Systems parts has an overview chapter, designed to
provide a self-contained treatment, e.g., Chapter 8 is an overview of storage and
indexing. The overview chapters can be used to provide stand-~lone coverage
of the topic, or as the first chapter in a more detailed treatment. Thus, in an
application-oriented course, Chapter 8 might be the only material covered on
file organizations and indexing, whereas in a systems-oriented course it would be
supplemented by a selection from Chapters 9 through 11. The Database Design
and Tuning part contains a discussion of performance tuning and designing for
secure access. These application topics are best covered after giving students
a good grasp of database system architecture, and are therefore placed later in
the chapter sequence.

HULU EXHIBIT 1055
Page 24 of 130

t

!I
·,11

xx vi DATABASE MANAGEMENT SYSTEMS

Suggested Course Outlines

The book can be used in two kinds of introductory database courses, one with
an applications emphasis and one with a systems emphasis.

The introductory applications-oriented course could cover the Foundations chap
ters, then the Application Development chapters, followed by the overview sys
tems chapters, and conclude with the Database Design and Tuning material.
Chapter dependencies have been kept to a minimum, enabling instructors to
easily fine tune what material to include. The Foundations material, Part I,
should be covered first, and within Parts III, IV, and V, the overview chapters
should be covered first. The only remaining dependencies between chapters
in Parts I to VI are shown as arrows in Figure 0.2. The chapters in Part I
should be covered in sequence. However, the coverage of algebra and calculus
can be skipped in order to get to SQL queries sooner (although we b~lieve this
material is important and recommend that it should be covered before SQL).

The introductory systems-oriented course would cover the Foundations chap
ters and a seiection of Applications and Systems chapters. An important point
for systems-oriented coi'irses is that the timing of programming projects (e.g.,
using Mini base) makes it desirable to cover some systems topics early. Chap
ter dependencies have been carefully limited to allow the Systems chapters to
be covered as soon as Chapters 1 and 3 have been covered. The remaining
Foundations chapters and Applications chapters can be covered subsequently.

The book also has ample material to support a multi-course sequence. Obvi
ously, choosing an applications or systems emphasis in the introductory course
results in dropping certain material from the course; the material in the book·
supports a comprehensive two-course sequence that covers both applications
and systems aspects. The Additional Topics range over a broad set of issues,
and can be used as the core material for an advanced course, supplemented
with further readings.

Supplementary Material

This book comes with extensive online supplements:

• Online Chapter: To make space for new material such as application
development, information retrieval, and 4Mt-, we've moved th~ coverage
of QBE to an online chapter. Students can freely download the chapter
from the book's web site, and solutions to exercises from this ch11pter are
included in solutions manual.

HULU EXHIBIT 1055
Page 25 of 130

Preface xx vii

II

Ill

IV

v

VI

VII

1 2
Introduction, ER Model

Conceptual Design

3
Relational Model

SQLDDL

6 7
Database Application ------ Database-Backed

Development Internet Applications

8 9

J
10

Overview of I\ Storage and Indexin_g Data Storage Tree Indexes

\

12 13 14

4
Relational Algebra

and Calculus

l 11

Hash Indexes l
15

5
SQLDML

Overview of Evaluation of - A Typical

\ External Sorting
, Query Evaluation Relational Operators Relational Optimizer

\

1,6 ' 17 18
Overview of Concurrency ------ Crash

\ Transaction Manageljlent Control

19
Schema Refinement,
FDs, Normalization

22
Parallel and

L

Distributed DB s

26
Data

Mining

\ \ \

\ 20
Physical DB

Design, Tuning

23
Object-Database

Systems

27
Information Retrieval

and XML Data

Recovery

21
Security and

Authorization

24
Deductive

Databases

28
Spatial

Databases

25
Data Warehousing

and Decision Support

29
Further

Reading

Figure 0.2 Chapter Organization and Dependencies

• Lecture Slides: Lecture slides are freely available for all chapters in
Postscript, and PDF formats. Course instructors can also obtain these
slides in Microsoft Powerpoint format, and can adapt them to their teach
ing needs. Instructors also have access to all figures used in the book (in
xfig format), and can use them to modify the slides.

HULU EXHIBIT 1055
Page 26 of 130

I
~

11
II

I

Iii.

xxviii DATABASE MANAGEMENT SYSTEMS

• Solutions to Chapter Exercises: The book has an unusually extensive
set of in-depth exercises. Students can obtain solutions to odd-numbered
chapter exercises and a set of lecture slides for each chapter through the
Web in Postscript and Adobe PDF formats. Course instructors can obtain
solutions to all exercises.

• Software: The book comes with two kinds of software. First, we have
Minibase, a small relational DBMS intended for use in systems-oriented
courses. l'{Iinibase comes with sample assignments and solutions, as de
scribed in Appendix 30. Access is restricted to course instructors. Second,
we offer code for all SQL and Java application development exercises in
the book, together with scripts to create sample databases, and scripts for
setting up several commercial DBMSs. Students can only access solution
code for odd-numbered exercises, whereas instructors have access to all
solutions.

• Instructor's Manual: The book comes with an online manual that of
fers instructors comments on the material in each chapter. It provides a
summary of each chapter and identifies choices for material to emphasize
or omit. The manual also discusses the on-line supporting material for
that chapter and offers numerous suggestions for hands-on exercises and
projects. Finally, it includes samples of examination papers from courses
taught by the authors using the book. It is restricted to course instructors.

For More Information

The home page for this book is at URL:

http://www.cs.wisc.edu/-dbbook

It contains a list of the changes between the 2nd and 3rd editions, and a fre
quently updated link to all known errors in the book and its accompanying
supplements. Instructors should visit this site periodically or register at this
site to be notified of important changes by email.

Acknowledgments

This book grew out of lecture notes for CS564, the introduc.tory (senior/ graduate
level) database course at UW-Madison. David DeWitt developed this course
and the Minirel project, in which students wrote several well-chosen parts of
a relational DBMS. My thinking about this material was shaped by teaching
CS564, and Minirel was the inspiration for Minibase, which is more compre
hensive (e.g., it has a query optimizer and includes visualization software) but

HULU EXHIBIT 1055
Page 27 of 130

Preface xxix

tries to retain the spirit of Minirel. Mike Carey and I jointly designed much of
Minibase. My lecture notes (and in turn this book) were influenced by Mike's
lecture notes and by Yannis Ioannidis's lecture slides.

Joe Hellerstein used the beta edition of the book at Berkeley and provided
invaluable feedback, assistance on slides, and hilarious quotes. Writing the
chapter on object-database systems with Joe was a lot of fun.

C. Mohan provided invaluable assistance, patiently answering a number of ques
tions about implementation techniques used in various commercial systems, in
particular indexing, concurrency control, and recovery algorithms. Moshe Zloof
answered numerous questions about QBE semantics and commercial systems
based on QBE. Ron Fagin, Krishna Kulkarni, Len Shapiro, Jim Melton, Dennis
Shasha, and Dirk Van Gucht reviewed the book and provided detailed feedback,
greatly improving the content and presentation. Michael Goldweber at Beloit
College, Matthew Haines at Wyoming, Michael Kifer at SUNY StonyBrook,
Jeff Naughton at Wisconsin, Praveen Seshadri at Cornell, and Stan Zdonik at
Brown also used the beta edition in their database courses and offered feedback
and bug reports. In particular, Michael Kifer pointed out an error in the (old)
algorithm for computing a minimal cover and suggested covering some SQL
features in Chapter 2 to improve modularity. Gio Wiederhold's bibliography,
converted to Latex format by S. Sudarshan, and Michael Ley's online bibliogra
phy on databases and logic programming were a great help while compiling the
chapter bibliographies. Shaun Flisakowski and Uri Shaft helped me frequently
in my never-ending battles with Latex.

I owe a special thanks to the many, many students who have contributed to
the Minibase software. Emmanuel Ackaouy, Jim Pruyne, Lee Schumacher, and
Michael Lee worked with me when I developed the first version of Minibase
(much of which was subsequently discarded, but which influenced the next
version). Emmanuel Ackaouy and Bryan So were my TAs when I taught CS564
using this version and went well beyond the limits of a TAship in their efforts
to refine the project. Paul Aoki struggled with a version of Minibase and
offered lots of useful comments as a TA at Berkeley. An entire class of CS764
students (our graduate database course) developed much of the current version
of Minibase in a large class project that was led and coordinated by Mike Carey
and me. Amit Shukla and Michael Lee were my TAs when I first taught CS564
using this version of Minibase and developed the software further.

Several students worked with me on independent projects, over a long period
of time, to develop Minibase components. These include visualization packages
for the buffer manager and B+ trees (Huseyin Bektas, Harry Stavropoulos, and
Weiqing Huang); a query optimizer and visualizer (Stephen Harris, Michael Lee,
and Donko Donjerkovic); an ER diagram tool based on the Opossum schema

HULU EXHIBIT 1055
Page 28 of 130

'"I

xxx DATABASE MANAGEMENT SYSTEMS

editor (Eben Haber); and a GUI-based tool for normalization (Andrew Prock
and Andy Therber). In addition, Bill Kimmel worked to integrate and fix a
large body of code (storage manager, buffer manager, files and access methods,
relational operators, and the query plan executor) produced by the CS764 class
project. Ranjani Ramamurty considerably extended Bill's work on cleaning up
and integrating the various modules. Luke Blanshard, Uri Shaft, and Shaun
Flisakowski worked on putting together the release version of the code and
developed test suites and exercises based on the Minibase software. Krishna
Kunchithapadam tested the optimizer and developed part of the Minibase GUI.

Clearly, the Minibase software would not exist without the contributions of a
great many talented people. With this software available freely in the public
domain, I hope that more instructors will be able to teach a systems-oriented
database course with a blend of implementation and experimentation to com
plement the lecture material.

7

I'd like to thank the many students who helped in developing and checking
the solutions to the exercises and provided useful feedback on draft versions of
the book. In alphabetical order: X. Bao, S. Biao, M. Chakrabarti, C. Chan,
W. Chen, N. Cheung, D. Colwell, C. Fritz, V. Ganti, J. Gehrke, G. Glass, V.
Gopalakrishnan, M. Higgins, T. Jasmin, M. Krishnaprasad, Y. Lin, C. Liu, M.
Lusignan, H. Modi, S. Narayanan, D. Randolph, A. Ranganathan, J. Reminga,
A. Therber, M. Thomas, Q. Wang, R. Wang, Z. Wang, and J. Yuan. Arcady
Grenader, James Harrington, and Martin Reames at Wisconsin and Nina Tarig
at Berkeley provided especially detailed feedback.

Charlie Fischer, Avi Silberschatz, and Jeff Ullman gave me invaluable advice
on working with a publisher. My editors at McGraw-Hill, Betsy Jones and Eric
Munson, obtained extensive reviews and guided this book in its early stages.
Emily Gray and Brad Kosirog were there whenever problems cropped up. At
Wisconsin, Ginny Werner really helped me to stay on top of things.

Finally, this book was a thief of time, and in many ways it was harder on my
family than on me. My sons expressed themselves forthrightly. From my (then)
five-year-old, Ketan: "Dad, stop working on that silly book. You don't have
any time for me." Two-year-old Vivek: "You working boook? No no no come
play basketball me!" All the seasons of their discontent were visited upon my
wife, and Apu nonetheless cheerfully kept the family going in its usual chaotic,
happy way all the many evenings and weekends I was wrapped up in this book.
(Not to mention the days when I was wrapped up in being a faculty member!)
As in all things, I can trace my parents' hand in much of this; my father,
with his love of learning, and my mother, with her love of us, shaped me. My
brother Kartik's contributions to this book consisted chiefly of phone calls in
which he kept me from working, but if I don't acknowledge him, he's liable to

HULU EXHIBIT 1055
Page 29 of 130

Preface :xxxi

be annoyed. I'd like to thank my family for being there and giving meaning to
everything I do. (There! I knew I'd find a legitimate reason to thank Kartik.)

Acknowledgments for the Second Edition

Emily Gray and Betsy Jones at McGraw-Hill obtained extensive reviews and
provided guidance and support as we prepared the second edition. Jonathan
Goldstein h~lped with the bibliography for spatial databases. The following
reviewers provided valuable feedback on content and organization: Liming Cai
at Ohio University, Costas Tsatsoulis at University of Kansas, Kwok-Bun Yue
at University of Houston, Clear L,ake, William Grosky at Wayne State Univer
sity, Sang H. Son at University of Virginia, James M. Slack at Minnesota State
Un°iversity, Mankato, Herma~ B~lsters at University of Twente, Netherlands,
Karen C. Davis at University of Cincinnati, Joachim Hammer at University of
Florida, Fred Petry at Tulane University, Gregory Speegle at Baylor Univer
sity, Salih Yurttas at Texas A&M University, and David Chao at San Francisco
State University.

A number of people reported bugs in the first edition. In particular, we wish
to thank the following: Joseph Albert at Portland State University, Han-yin
Chen at University of Wisconsin, Lois Delcarribre at Oregon Graduate Institute,
Maggie Eich at Southern Methodist University, Raj Gopalan at Curtin Univer
sity of Technology, Davood Rafiei at University of Toronto, Michael Schrefl at
University of South Australia, Alex Thomasian at University of Connecticut,
and Scott Vandenberg at Siena College.

A special thanks to the many people who answered a detailed survey about how
commercial systems support various features: At IBM, Mike Carey, Bruce Lind
say, C. M'"ohan, and James Teng; at Inforinix, M. Muralikrishna and Michael
Ubell; at Microsoft, David Campbell, Goetz Graefe, and Peter Spiro; at Oracle,
Hakan Jacobsson, Jonathan D. Klein, Muralidhar Krishnaprasad, and M. Zi
auddin; and at Sybase, Marc Chanliau, Lucien Dimino, Sangeeta Doraiswamy,
Hanuma Kodavalla, Roger MacNicol, and Tirumanjanam Rengarajan.

After reading about himself in the acknowledgment to the first edition, Ketan
(now 8) had a simple question: "How come you didn't dedicate the book to us?
Why mom?" Ketan, I took care of this inexplicable oversight. Vivek (now 5)
was more concerned about the extent of his fame: "Daddy, is my name in evvy
copy of your book? Do they have it in evvy compooter science department in
the world?" Vivek, I hope so. Finally, this revision would not have made it
without Apu's and Keiko's support.

HULU EXHIBIT 1055
Page 30 of 130

I,

' '
I'

1.:1

I
i

~
,1

I

XXX:ll DATABASE MANAGEMENT SYSTEMS

Acknowledgments for the Third Edition

We thank Raghav Kaushik for his contribution to the discussion of XML, and
Alex Thomasian for his contribution to the coverage of concurrency control. A
special thanks to Jim Melton for giving us a pre-publication copy of his book
on object-oriented extensions in the SQL:1999 standard, and catching several
bugs in a draft of this edition. Marti Hearst at Berkeley generously permitted
us to adapt some of her slides on Information., Retrieval, and Alon Levy and
Dan Suciu were kind enough to let us adapt some of their lectures on XML.
Mike Carey offered input on Web services.

Emily Lupash at McGraw-Hill has been a source of constant support and en
couragement. She coordinated extensive reviews from Ming Wang at Embry
Riddle Aeronautical University, Cheng Hsu at RPI, Paul Bergstein at Univ. of
Massachusetts, Archana Sathaye at SJSU, Bharat Bhargava at Purdue, John
Fendrich at Bradley, Ahmet Ugur at Central Michigan, Richard Osborne at
Univ. of Colorado, Akira Kawaguchi at CCNY, Mark Last at Ben Gurion,
Vassilis Tsotras at Univ. of California, and Ronald Eaglin at Univ. of Central
Florida. It is a pleasure to acknowledge the thoughtful input we received from
the reviewers, which greatly improved the design and content of this edition.
Gloria Schiesl and Jade Moran dealt cheerf~lly and efficiently with last-minute
snafus, and, with Sherry Kane, made a very tight schedule possible. Michelle
Whitaker iterated many times on the cover and end-sheet design.

On a personal note for Raghu, Ketan, following th,e canny example of the
camel that shared a tent, observed that "it is only fair" that Raghu dedicate
this edition solely to him and Vivek, since "mommy already had it dedicated
only to her." Despite this blatant attempt to hog the limelight, enthusiastically
supported by Vivek and viewed with the indulgent affection of a doting father,
this book is also dedicated to Apu, for being there through it all.

For Johannes, this revision would not have made it without Keiko's support
and 'inspiration and the motivation from looking at Elisa's peacefully sleeping
face.

.J

HULU EXHIBIT 1055
Page 31 of 130

SNOILVGNflOA

IlHVd

I , . . .

I
I ; .,

HULU EXHIBIT 1055
Page 32 of 130

1
OVERVIEW OF

DATABASE SYSTEMS

.- What is a DBMS, in particular, a relational DBMS?

.- Why should we consider a DBMS to manage data?

.- How is application data represented in a DBMS?

.- How is data in a DBMS retrieved and manipulated?

.- How does a DBMS support concurrent access and protect data during
system failures?

.- What are the main components of a DBMS?

.- Who is involved with databases in real life?

• Key concepts: database management, data independence, database
design, data model; relational databases and queries;, sch~mas, levels
of abstraction; transactions, concurrency and locking, recovery and
logging; DBMS architecture; database administrator, application pro
grammer, end user

Has everyone noticed that all the letters of the word database are typed with
the left hand? Now the layout of the QWERTY typewriter keyboard was designed,
among other things, to facilitate the even use of both hands. It follows, therefore,
that writing about databases is not only unnatural, but a lot harder than it appears.

-Anonymous

The amount of information available to us is literally exploding, and the value
of data as an organizational asset is widely recognized. To get the most out of
their large and complex datasets, users require tools that simplify the tasks of

3

HULU EXHIBIT 1055
Page 33 of 130

I ~

4 CHAPTER 1

The area of database management systems is a microcosm of computer sci
ence in general. The issues addressed and the techniques used span a wide
spectrum, including languages, object-orientation and other programming
paradigms, compilation, operating systems, concurrent programming, data
structures, algorithms, theory, parallel and distributed systems, user inter
faces, expert systems and artificial intelligence, statistical techniques, and
dynamic programming. We cannot go into all these aspects of database
management in one book, but we hope to give the reader a sense of the
excitement in this rich and vibrant discipline.

managing the data and extracting usefu\ information in a timely fashion. Oth
erwise, data can become a liability, with the cost of acquiring it and managing
it far exceeding the value derived from it.

A database is a collection of data, typically describing the activities of one or
more related organizations. For example, a university database might contain
information about the following:

• Entities such as students, faculty, courses, and classrooms.

• Relationships between entities, such as students' enrollment in courses,
' faculty teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist
in maintaining and utilizing large collections of data. The need for such systems,
as well as their use, is growing rapidly. The alternative to using a DBMS is
to store the data in files and write application-specific ~ode to manage it. The
use of a DBMS has several important advantages, as we will see in Section 1.4.

1.1 MANAGING DATA

The goal of this book is to present an in-depth introduction to database man
agement systems, with an emphasis ,0n how to design a database and use a
DBMS effectively. Not surprisingly, many decisions about how to use a DBMS
for a given application depend on what capabilities the DBMS supports effi
ciently. Therefore, to use a DBMS well, it is necessary to also understand how
a DBMS works.

Many kinds of database management systems are in use, but this book concen
trates on relational database systems (RDBMSs), which are by far the
dominant type of DBMS today. The following questions are addressed in the
core chapters of this book:

HULU EXHIBIT 1055
Page 34 of 130

Overview of Database Systems 5

1. Database Design and Application Development: How can a user
describe a rEtal-world enterprise (e.g., a university) in terms of the data
stored in a DBMS? What factors must be considered in deciding how to
organize the stored data? How can we develop applications that rely upon
a DBMS? (Chapters 2, 3, 6, 7, 19, 20, and 21.)

2. Data Analysis: How can a user answer questions about the enterprise by
posing queries over the data in the DBMS? (Chapters 4 and 5.)1

3. Concurrency an~Robustness: How does a DBMS allow many users to
access data concurrently, and how does it protect the data in the event of
system failures? (Chapters 16, 17, and 18.)

4. Efficiency and Scalability: How does a DBMS store large datasets and
answer questions against this data efficiently? (Chapters 8, 9, 10, 11, 12,
13, 14, and 15.)

Later chapters cover important and rapidly evolving topics, such as parallel and
distributed database management, data warehousing and complex queries for
decision support, data mining, databases and information retrieval, XML repos
itories, object databases, spatial data management, and rule-oriented DBMS
extensions.

In the rest of this chapter, we introduce these issues. In Section 1.2, we be
gin with a brief history of the field and a discussion of the role of database
management in modern information systems. We then identify the benefits of
storing data in a DBMS instead of a file system in Section 1.3, and discuss
the advantages of using a DBMS to manage data in Section 1.4. In Section
1.5, we consider how information about an enterprise should be organized and
stored in & DBMS. A "user probably thinks about this information in high-level
terms that correspond to th~ entities in the organization and their relation
ships, whereas the DBMS ultimately stores data in the form of (many, many)
bit~. The gap between how users think of their data and how the data is ul
timately stored is bridged through 13everal levels of abstraction supported by
the DBMS. Intuitively, a user can begin by describing the data in fairly high
level terms, then refine this description by considering additional storage and
representation details as needed.

In Section 1.6, we consider how 11sers can retrieve data stored in a DBMS and
the need for techniques to efficiently compute answers to questions involving
"such data. In Section 1. 7, we provide an overview of how a DBMS supports
concurrent access to data by several users and how it protects the data in the
event of system failures.

1 An online chapter on Query-by-Example (QBE) is also available.

HULU EXHIBIT 1055
Page 35 of 130

1:1 -1:

II
"Ill
II

'11111

6 CHAPTER 1

We then briefly describe the internal structure of a DBMS in Section 1.8, and
mention various groups of people associated with the development and use of
a DBMS in Section 1.9.

1.2 A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have bee:b. a
major application focus. The first general-purpose DBMS, designed by Charles'
Bachman at General Electric in the early 1960s, was called the Integrated Data
Store. It formed the basis for the network data model, which was standardized
by the Conference on Data Systems Languages (CODASYL) and strongly in
fluenced database systems through the 1960s. Bachman was the firs,t recipient
of ACM's Turing Award (the computer science equivalent of a Nobel Prize) for
work in the database area; he received the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS)
DBMS, used even today in many major installations. IMS formed the basis for
an alternative data representation framework called th~ hierarchical data model.
The SABRE system for making airline reservations was jointly developed by
American Airlines and IBM around the same time, and it allowed several people
to access the same data through a computer network. Interestingly, today the
same SABRE system is used to power popular Web-based travel services such
as Travelocity.

In 1970, Edgar Codd, at IBM's San Jose ·Research Laboratory, proposed a new
data representation framework called the relational data model. This proved to
be a watershed in the development of database systems: It sparked the rapid
development of several DBMSs based on the relational model, along with a, rich

I

body of theoretical results that placed the field on a firm foundation. Codd
won the 1981 Turing Award for his seminal work. Database systems matured
as an academic discipline, and the popularity of relational DBMSs changed the
commercial landscape. Their benefits were widely recognized, and the use of
DBMSs for managing corporate data became standard practice.

In the 1980s, the relational model consolidated its position as the dominant
DBMS paradigm, and database systems continued to gain widespread use. The
SQL query language for relational databases, develope~ as part of IBM's Sys
tem R project, is now the standard query language. SQL was standardized
in the late 1~80s, and the current standard, SQL:l999, was adopted by the
American Natipp.al Standards Institute (ANSI) and International Organization
for Standardization (ISO). Arguably, the most widely used form of concurrent
programming is the concurrent execution of database programs (called trans
actions). Users write programs as if they are -to be run by themselves, and

HULU EXHIBIT 1055
Page 36 of 130

Overview of Database Systems 7

the responsibility for running them concurre:p.tly is given to the DBMS. James
Gray won the 1999 Turing award for his contributions to database transaction
management.

In the late 1980s and the 1990s, advances were made in many areas of database
systems. Considerable research was carried out into more powerful query lan
guages and richer data models, with emphasis placed on supporting complex
analysis of data froI]l all parts of an enterprise. Several vendors (e.g., IBM's
DB2, Oracle 8, Informix2 UDS) extended their systems with the ability to store
new data types such as images and text, and to ask more complex queries. Spe
cialized systems have been developed by numerous vendors for creating data
warehouses, consolidating data from several databases, and for carrying out
specialized analysis.

An interesting phenomenon is the emergence of several enterprise resource
planning (ERP) and m.anagement resource planning (MRP) packages,
which add a substantial layer of application-oriented features on top of a DBMS.
Widely used packages include systems from Baan, Oracle, PeopleSoft, SAP,
and Siebel. These packages identify a set of common tasks (e.g., inventory
management, human resources planning, financial analysis) encountered by a
large number of organizations and provide a general application layer to carry
out these tasks. The data is stored in a r'elational DBMS and the application
layer can be customized to different companies, leading to lower overall costs
for the companies, compared to the cost of building the application layer from
~cratch.

Most significant, perhaps, DBMSs have entered the Internet Age. While the
first generation of websites stored their data exclusively in operating systems
files, the i'.ise of a DBMS to store data accessed through a Web browser is
becoming widespread. Queries are generated through Web-accessible forms
and answers are formatted using a markup language such as HTML to be
easily displayed in a browser. All the database vendors are adding features to
their DBMS aimed at making it more suitable for deployment over the Internet.

Database management continues to gain importance as more and more data is
brought online and made ever more accessible through computer networking.
Today the field is being driven by exciting visions such as multimedia databases,
interactive video, streaming data, digital libraries, a hos~ of scientific projects
such as the human genome mapping effort and NASA's Earth Observation Sys
tem project, and the desire of companies to consolidate their decision-making
processes and mine 'their data repositories for useful information about their
businesses. Commercially, database management systems represent one of the

2 Informix was recently acquired by iBM.

HULU EXHIBIT 1055
Page 37 of 130

'!

,, I
"' ,,,; I
,,,.

:,

'111

i

I

I
I.'

111 l

~!!!1·
~~. !

~ i

Ii

1
''1

" ,,
"

I,

I.I
i

Ii

l I
!

8 CHAPT-ER 1

largest and most vigorous market segments. Thus the study of database sys
tems could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMS VERSUS A DBMS

To understand the need for a DBMS, let us consider a motivating scenario: A
company has a large collection (say, 500 GB3) of data on employees, depart
ments, products, sales, and so on. This data is accessed concurrently by several
employees. Questions about the data must be answered quickly, changes made
to the data by different users must be applied consistently, and access to certain
parts of the data (e.g., salaries) must be restricted.

We can try to manage the data by storing it in operating system files. This '
approach has many drawbacks, including the following:

•

•

'7

We probably do not have 500 GB of main memory to hold all the data .
We must therefore store data in a storage device such as a disk or tape and
bring relevant parts into main memory for processing as needed.

Even if we have 500 GB of main memory, on computer systems with 32-bit
addressing, we cannot refer directly to more than about 4 GB of data. We
have to program some method of identifying all data items.

• We have to write special programs to answer each question a user may want
to ask about the. data. These programs are likely to be complex because
of the large volume of data to be searched.

• We must protect the data from inconsistent changes made by different users
accessing the data concurrently. If applications must address the details of
such concurrent access, this adds greatly to their complexity.

• We must ensure that data is restored to a consistent state if the system
crashes while changes are being made.

• Operating systems provide only a passw.ord mechanism for security. This is
not sufficiently flexible to enforce security policies in which different users
have permission to access different subsets of the data.

A DBMS is a piece of software designed to make the preceding tasks easier. By
storing data in a DB;MS rather than as a collection of operating system files,
we can use the DBMS's features to manage the data in a robust and efficient
manner. As the volume of data and the number of users grow-hundreds of
gigabytes of data and ,thousands of users are common in current corporate
databases-DBMS support becomes indispensable.

3 A kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte (TB) is 1024 GBs, and a petabyte (PB) is 1024 terabytes.

HULU EXHIBIT 1055
Page 38 of 130

Overview of Database Systems 9

1.4 ADVANTAGES OF A DBMS

Using a DBMS to manage data has many advantages:

• Data Independence: Application programs should not, ideally, be ex
posed to details of data representation and storage. The DBMS provides
an abstract view of the data that hides such details.

• Efficient Data Access: A DBMS utilizes a variety of sophisticated tech
niques to store and retrieve data efficiently. This feature is especially im
portant if the data is stored on external storage devices.

(

• Data Integrity and Security: If data is always accessed through the
DBMS, the DBMS can enforce integrity constraints. For example, before
inserting salary information for an employee, the DBMS can check that
the department budget is not exceeded. Also, it can enforce access controls
that govern what data is visible to different classes of users.

• Data Administration: When several users share the data, centralizing
the administration of data can offer significant improvements. Experienced
professionals who understand the nature of the data being managed, and
how different groups of users use it, can be responsible for organizing the
data representation to minimize redundancy and for fine-tuning the storage
of the data to make retrieval efficient.

• Concurrent Access and Crash Recovery: A DBMS schedules concur
rent accesses to the data in such a manner that users can think of the data
as being accessed by only one user at a time. Further, the DBMS protects
users from the effects of system failures.

• Redu~ed Application Development Time: Clearly, the DBMS sup
ports important functions that are common to many applications accessing
data in the DBMS. This, in conjunction with the high-level interface to the
data, facilitates quick application development. DBMS applications are
also likely to be more robust than similar stand-alone applications because
many important tasks are handled by the DBMS (and do not have to be
debugged and tested in the application).

Given all these advantages, is there ever a reason not to use a DBMS? Some
times, yes. A DBMS is a complex piece of software, optimized for certain kinds
of workloads (e.g., answering complex queries or handling many concurrent
requests), and its performance may not be adequate for certain specialized ap
plications. Examples include applications with tight real-time constraints or
just a few well-defined critical operations for which efficient custom code must
be written. Another reason for not using a DBMS is that an application may
need to manipulate the data in ways not supported by the query language. In

HULU EXHIBIT 1055
Page 39 of 130

r
i

!

11'1

10 CHAPTER 1

such a situation, the abstract view of the data presented by iJie DBMS does
not match the application's needs and actually gets in the way. As an exam
ple, relational databases do not support flexible analysis of text data (although
vendors are now extending their products in this direction).

If specialized performance or data manipuJation requirements are central to an
application, the applic,ation may choose not to use a DBMS, especially if the
added benefits of a DBMS (e.g., flexible querying, security, concurrent access,
and crash recovery) are not required. In most situations calling for large-scale
data management, however, DBMSs have become an indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world ep.terprise,
and the data to be stored describes various aspects of this enterprise. For
example, there are students, faculty, and courses in a university, and the data
in a university database describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide
many low-level storage details. A DBMS allows a user to define the data to be
stored in terms of a data m~del. Most database management systems today
are based on the relational data model, which we focus on in this book.

While the data model of the DBMS hides many details, it is nonetheless closer
to how the DBMS stores data than to how a user thinks about the underlying
enterprise. A semantic data model is a more abstract, high-level data model
that makes it easier for a user to come up with a good initial description of
the data in an enterprise. These models contain a wide variety of constructs
that help describe a real application scenario. A DBMS is not intended to
support all these constructs directly; it is typically built around a data model
with just a few basic constructs, such as the relational model. A database
design in terms of a semantic model serves as a useful starting point and is
subsequently translated into a database design in terms of the data model the
DBMS actually supports.

A widely used semantic data model called the entity-relationship (ER) model
allows us to pictorially denote entities and the relationships among them. We
cover the ER model in Chapter 2.

HULU EXHIBIT 1055
Page 40 of 130

Overview of Database Systems 11

An Example of Poor Design: The relapional schema for Students il
lustrates a poor design choice; you should never create a field such as age,
whose value is constantly changing: A better choice would be DOB"(for
date of birth); age can be computed from this. We continue to use age in
our examples, however, be~ause it makes them easier to read.

1.5.1 The Relational Model

In this section we provide a brief introduction to the relational model. The
central data description construct in this model is a relation, which can be
thought of as a set of records.

A description of data in terms of a data model is called a schema. In the
relational model, the schema for a relation specifies its name, the name of each
field (or attribute or column), and the type of each field. As an example,
student information in a university database may be stored in a relation with
the following schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

The preceding schema says that each record in the Students relation has five
fields, with field names and types as indicated. An example instance of the
Students relation appears in Figure 1.1.

I sid I name j login I age I gpa I
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 1.1 An Instance of the Students Relation

Each row in the Students relation is a record that describes a student. The
description is not complete-for example, the student's height is not included
but 'is presumably adequate for the intended applications in the university
database. Every row follows the schema of the Students relation. The schema
can therefore be regarded as a template for describi:qg a student.

We can make the description of a collection of students more precise by specify
ing integrity constraints, which are conditions that the records in a relation

HULU EXHIBIT 1055
Page 41 of 130

l;.·
. ~I

I'
i

1,

Ii

12 • CHAPTER 1

must satisfy. For example, we could specify that every student has a unique
sid value. Observe that we cannot capture this information by simply adding
another field to the Students schema. Thus, the ability to specify uniqueness
of the values in a field increases the accuracy with which we can describe our
data. The expressiveness of the constructs available for specifying integrity
constraints is an important aspect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems,
including IBM's DB2, Informix, Oracle, Sybase, Microsoft's Access, FoxBase,
Paradox, Tandem, and Teradata), other important data models include the
hierarchical model (e.g., used in IBM's IMS DBMS), the network model (e.g.,
used in IDS and IDMS), the object-oriented model (e.g., used in O~jectstore
and Versant), and the object-relational model (e.g., used in DBMS' products
from IBM, Informix, ObjectStore, Oracle, Versant, and others). While many
databases use the hierarchical and network models and systems based on the
object-oriented and object-relational models are gaining acceptance in the mar
ketplace, the dominant model today is the relational model.

In this book, we focus on the relational model because of its wide use and im
portance. Indeed, the object-relational model, which is gaining in popularity, is
an effort to combine the best features of the relational and object-oriented mod
els, and a good grasp of the relational model is necessary to understand object
relational concepts. (We discuss the object-oriented and object-relational mod
els in Chapter 23.)

1.5.2 Levels of Abstraction in a DBMS

The data in a DBMS is described at three levels of abstraction, as illustrated
in Figure 1.2. The database description consists of a schema at each of these
three levels of abstraction: the conceptual, physical, and external.

A data definition language (DDL) is used to define the external and concep
tual schemas. We discuss the DDL facilities of the most widely used database
language, SQL, in Chapter 3. All DBMS vendors also support SQL commands
to describe aspects of the physical schema, but these commands are not part of
the SQL language standard. Information about the conceptual, external, and
physical schemas is stored. in the system catalogs (Section 12.1). We discuss
the three levels of abstraction in the rest of this section.

HULU EXHIBIT 1055
Page 42 of 130

!

I
I

. I

Overview of Database Systems 13

External Schema 1 I I External Schema 2 I I External Schema 3

---------- ~ I
1
~n~e~tmil Sc~mi I

t
Physical Schema

Figure 1.2 Levels of Abstraction in a DBMS

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the
stored data in terms of the data model of the DBMS. In a relational DBMS,
the conceptual schema describes all relations that are stored in the database.
In our sample university database, these relations contain information about
entities, such as students and faculty, and about relationships, such as students'
enrollment in courses. All student entities can be described using records in
a Students relation, as we saw earlier. In fact, each collection of entities and
each collection of relationships can be described as a relation, leading to the
following conceptual schema:

Students(sid: string, name: string, login: string,
• age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)
Courses(cid: string, cname: string, credits: integer)
Rooms(mo: integer, address: string, capacity: integer)
Enrolled(sid: string, cid: string, grade: string)
Teaches(fid: string, cid: string)
Meets_In(cid: string, mo: integer, time: string)

The choice of relations, and the choice of fields for each relation, is not always
obvious, and the process of arriving at a good conceptual schema is called
conceptual database design. We discuss conceptual database design in
Chapters 2 and 19.

HULU EXHIBIT 1055
Page 43 of 130

I
I

,, ,.
,,,

~!
I'

: I
I I

11

,, 'I
'I' : I.

I

14 CHAPTER 1

Physical Schema

The physical schema specifies additional storage details. Essentially, the
physical schema summarizes how the relations described in the conceptual
schema are actually stored on secondary storage devices such as disks and
tapes.

We must decide what file organizations to use to store the relations and create
auxiliary data structures, called indexes, to speed up data retrieval operations.
A sample physical schema for the university database follows:

• Store all relations as unsorted files of records. (A file in a DBMS is either
a collection of records or a collection of pages, rather than a string of
characters as in an operating system.)

• Create indexes on the first column of the Students, Faculty, and Courses
relations, the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the
data is typically accessed. The process of arriving at a good physical schema
is called physical database design. We discuss physical database design in
Chapter 20.

External Schema

External schemas, which usually are also in terms of the data model of
the DBMS, allow data access to be customized (and authorized) at the level
of individual users or groups of users. Any given database has exactly one
conceptual schema and one physical schepla because it has just one set of
stored relations, but it may have ~everal external schemas, each tailored to a
particular group of users. Each external schema consists of a collection of one or
more views and relations from the conceptual s~hema. A view is conceptually
a relation, but the records in a view are not stored in the DBMS. Rather, they
are computed using a definition for the view, in terms of relations stored in the
DBMS. We discuss views in more detail in 9hapters 3 and 25.

The external schema design is guided by end user requirements. For ~xample,
we might want to allow students to find out the names of faculty members
teaching courses as well as course enrollments. This can 9e done by defining
the following view:

Courseinfo(cid: string, fname: string, enrollment: integer)

A user can treat a view just like a relation and ask questions about the records
in the view. Even though the records in the view are not stored explicitly,

·~ l

HULU EXHIBIT 1055
Page 44 of 130

Overview ·of Database Systems 15

they are computed as needed. We did not include Courseinfo in the conceptual
schema, because we can compute Courseinfo from the relations in the conceptual
schema, and to store it in addition would be redundant. Such redundancy, in
addition to the wasted space, could lead to inconsistencies. For example, a
tuple may be inserted into the Enrolled relation, indicating that a particular
student has enrolled in some course, without incrementing the value in the
enro/lment field of the corresponding record of Courseinfo (if the latter also is
part of the conceptual schema and its tuples are stored in the DBMS).

'

1.5.3 Data Independence

A very important advantage of using a DBMS is that it offers data indepen
dence. That is, application programs are insulated from changes in the way
the data is structured and stored. Data independence is achieved through use
of the three levels of data abstraction; in particular, the conceptual schema and
the external schema provide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated
on demand from the relations corresponding to the conceptual schema. 4 If

·the underlying data is reorganized, that is, the conceptual schema is changed,
the definition of a view relation can be modified so that the same relation is
computed as before. For example, suppose that the Faculty relation in our
university database is replaced by the following two relations:

Faculty _public(fid: string, fname: string, office: integer)
Faculty _private(fid: string, sal: req.l)

Intuitivel:}t, some confidential inform~tion about faculty has been placed in a
separate relatioI]. and information about offices has been added. The Courseinfo
view relation c;an be redefined in terms of faculty _public and Faculty _private,
which together contain all the information in Faculty, so that a user who queries
Coursein'fo will get the same answers as before.

Thus, tisers can be shielded from changes in the logical structure of the data, or
changes in the choice of relations to be stored. This property is called logical
data independence.

·~

In turn, the conceptual schema insulates users from changes in physical storage
details. This property is referred to as physical data iI_ldependence. The
conceptual schema hides details such as how the data is actually laid out on
disk, the file structure, arid ~he choice of indexes. As long as the conceptual

4In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.

HULU EXHIBIT 1055
Page 45 of 130

II

I
·'

ii
i

I

16 CHAPTER 1

schema remains the same, we can change these storage details without altering
applications. (Of course, performance might be affected by such changes.)

1.6 QUERIES IN A DBMS

The ease with which information can be obtained from a database often de
termines its value to a user. In contrast to older database systems, relational
database systems allow a rich class of questions to be posed easily; this feature
has contributed greatly to their popularity. Consider the sample university
database in Section 1.5.2. Here are some questions a user might ask:

1. What is the name of the student with student ID 123456?

2. What is the average salary of professors who teach course CS564?

3. How many students are enrolled in CS564?

4. What fraction of students in CS564 received a grade better than B?

5. Is any student with a GPA less than 3.0 enrolled in CS564?

Such questions involving the data stored in a DBMS are called queries. A ·
DBMS provides a specialized language, called the query language, in which
queries can be posed. A very attractive ftlature of the relational model is
that it supports powerful query languages. Relational calculus is a formal
query language ba~ed on mathematical logic, and queries in this language have
an intuitive, precise meaning. Relational algebra is another formal query
language, based on a, collection of operators for manipulating relations, which
is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. We
discuss query optimization and evaluation in Chapters 12, 14, and 15. Of
course, the efficiency of query evaluation is determined to a large extent by
how the data is stored physically. Indexes can be used to speed up many
queries-in fact, a good choice of indexes for the underlying relations can speed
up each query in the preceding list. We discuss data storage and ,indexing in
Chapters 8, 9, 10, and 11.

A DBMS enables users to create, modify, and query data through a data
manipulation language (DML). Thus, the query language is only one part
of the DML, which also provides constructs to insert, delete, and modify data.
We will discuss the DML features of SQL in Chapter 5. The DML and DDL
are collectively referred to as the data sublanguage when embedded within
a host language (e.g., C or COBOL).

HULU EXHIBIT 1055
Page 46 of 130

Overview of Database Systems 17

1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any
given instant, it is possible (and likely) that several travel agents are look
ing up information about available seats on various flights and making new
seat reservations. When several users access (and possibly modify) a database
concurrently, the DBMS must order their requests carefully to avoid conflicts.
For example, when one travel agent looks up Flight 100 on some given day
and finds an empty seat, another travel agent may simultaneously be making
a reservation for that seat, thereby making the information seen by the first
agent obsolete.

Another example of concurrent use is a bank's database. While one user's
application program is computing the total deposits, another application may
transfer money from an account that the first application has just 'seen' to an
account that has not yet been seen, thereby causing the total to appear larger
than it should be. Clearly, such anomalies should not be allowed to occur.
However, disallowing concurrent access can degrade performance.

Further, the DBMS must protect users from the effects of system failures by
ensuring that all data (and the status of active applications) is restored to a
consistent state when the system is restarted after a crash. For example, if a
travel agent asks for a reservation to be made, and the DBMS responds saying
that the reservation has been made, the reservation should not be lost if the
system crashes. On the other hand, if the DBMS has not yet responded to
the request, but is making the necessary changes to the data when the crash
occurs, the partial changes should be undone when the system comes back up.

A transa~tion is any one execution of a user program in a DBMS. (Executing
the same program several times will generate several transactions.) This is the
basic unit of change as seen by the DBMS: Partial transactions are not allowed,
and the effect of a group of transactions is equiv!=tlent to some serial execution
of all transactions. We briefly outline how these properties are guaranteed,
deferring a detailed discussion to later chapters.

1. 7 .1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so
that each user can safely ignore the fact that others are accessing the data
concurrently. The importance of this task cannot be underestimated because
a database is typically shared by a large number of users, who submit their
requests to the DBMS independently and simply cannot be expected to deal
with arbitrary changes being made concurrently by other users. A DBMS

HULU EXHIBIT 1055
Page 47 of 130

F ,

! I

1J

L
'I I

18 CHAPTER 1

allows users to think of their programs as if they were executing in isolation,
one after the other in some order chosen by the DBMS. For example, if a
program that deposits cash into an account is submitted to the DBMS at the
same time as another program that debits money from the same account, either
of these programs could be run first by the DBMS, but their steps will not be
interleaved in such a way that they interfere with each other.

A locking protocol is a set of rules to be followed by each transaction (and en
forced by the DBMS) to ensure that, even though actions of several transactions
might be interleaved, the net effect<is identical to executing all transactions in
some serial order. A lock is a mechanism used to control access to database
objects. Two kinds of locks are commonly supported by a DBMS: shared
locks on an object can be held by two different transactions at the same time,
but an exclusive lock on an object ensures that no other transactions hold
any lock on this object.

Suppose that the following locking protocol is followed: Every transaction be
gins by obtaining a shared lock on each data object that it needs to read and an
exclusive lock on each data object that it needs to modify, then releases all its
locks after completing all actions. Consider two transactions Tl and T2 such
that Tl wants to modify a data object and T2 wants to read the same object.
Intuitively, if Tl's request for an exclusive lock on the object is granted first,
T2 cannot proceed until Tl releases this lock, because T2's request for a shared
lock will not be 'granted by the DBMS until then. Thus, all of Tl's actions will
be completed before any of T2's actions are initiated. We consider lo<;king in
more detail in Chapters 16 and 17.

1. 7 .2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a variety of
reasons, e.g., a system crash. A DBMS must ensure that the changes made by
such incomplete transactions are removed from the data.base. For example, if
the DBMS is in the middle of transferring money from account A to account
B and has debited the first account but not yet credited the second when the
crash occurs, the money debited from account A must be restored when the
sy~tem comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial
property of the log is that each write action must be recorded in the log (on disk)
before the corresponding change is reflected in the database itself--otherwise, if
the system crashes just after making the change in the database but before the
change is recorded in the log, the DBMS would be unable to detect and undo
this change. This property is called Write-Ahead Log, or WAL. To ensure

HULU EXHIBIT 1055
Page 48 of 130

Overview of Database Systems 19

this property, the DBMS must oe able to selectively force a page in memory to
disk.

The log is also used to ensure that the changes made by a successfully com
pleted transaction are not lost due to a system crash, as explained in Chapter
18. Bringing the database to a consistent state after a system crash can be
a slow process, since the DBMS must ensure that the effects of all transac
tions that completed prior to the crash are restored, and that the effects of
incomplete transactions are undone. The tink required to recover from a crash
can be reduced by periodically forcing some information to disk; this periodic
operation is called a checkpoint.

1. 7 .3 Points to Note

In summary, there are three points to remember with respect to DBMS support
for concurrency control and recovery:

1. Every object that is read or written by a transaction is first locked in shared
or exGlusive mode, respectively. Placing a lock on an object restricts its
availability to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force
a collection .of pages in main memory to disk. Operating system support
for this operation is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash.
Of course, this must be balanced against the fact that checkpointing too
often slows down normal execution . ..

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS
based on the relational data model.

The DBMS accepts SQL commands generated from a variety of user interfaces,
produces query evaluation plans, executes these plans against the database, and
returns the answers. (This is a simplification: SQL commands can be embedded
in host-language application programs, e.g., Java or COBOL programs. We
ignore these issues to concentrate on the core DBMS functionality.)

When a user issues a query, the parsed query is presented to a query opti
mizer, which uses information about how the data is stored to produce an
efficient execution plan for evaluating the query. An execution plan is a

HULU EXHIBIT 1055
Page 49 of 130

:1
11

'I

I

:'

20

Unsophisticated users (customers, travel agents, etc.)
Sophisticated users, application
programmers, DB administrators

..___w_eb_F_o_rm_s _ __,)_ Application Front Ends __ [,__s_Q_L_In_te_rf_ac_e~
* .J: - -

SQL COIYIMANDS

1\

I Plan Executor I I Parser

I Operator Evaluator I I . Optimizer

J

~
I

~ I Transaction
Files and Access Methods

Manager i

H ~ Buffer Manager

II Lock Manager J,

'l I Concurrency
Disk Space Manager

Control

Index Files ---........

\ System Catalog

Data Files .-../

shows command flow

I -shows interaction

Query

I Evaluation
Engine

Recovery

Manager

DBMS

-shows references

DATABASE

Figure 1.3 Architecture-Of a DBMS

CHAPTER 1

blueprint for evaluating a query, usually represented as a tree of relational op
erators (with annotations that contain additional detailed information about
which access methods to use, etc.). We discuss query optimization in Chapters
12 and 15. Relational operators serve as the building blocks for evaluating
queries posed against the data. The implementation of these operators is dis
cussed in Chapters 12 and 14.

The code that implements relational operators sits on top of the file and access
methbds layer. This layer supports the concept of a file, which, in a DBMS, is a
collection of pages or a collection of records. Heap files, or files of .unordered
pages, as well as indexes are supported. In addition to keeping track of the
pages in a file, this layer organizes the information within a page. File and
page level storage issues are considered in Chapter 9. File organizations and
indexes are considered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager,
which brings pages in from disk to main memory as needed in response to read
requests. Buffer management is discussed in Chapter 9.

HULU EXHIBIT 1055
Page 50 of 130

Overview of Database Systems 21

The lowest layer of the DBMS software deals with management of space on
disk, where the data is stored. Higher layers allocate, deallocate, read, and
write pages through (routines provided by) this layer, called the disk space
manager. This layer is discussed in Chapter 9.

The DBMS supports concurrency and crash recovery by carefully scheduling
user requests and maintaining a log of all changes to the database. DBMS com
ponents associated with concurrency control and recovery include the trans
action manager, which ensures that transactions request and release locks
according to a suitable locking protocol and schedules the execution transac
tions; the lock manager, which keeps track of requests for locks and grants
locks on database objects when they become available; and the recovery man
ager, which is responsible for maintaining a log and restoring the system to a
consistent state after a crash. The disk space manager, buffer manager, and
file and access method layers must interact with these components. We discuss
concurrency control and recovery in detail in Chapter 16.

1.9 PEOPLE WHO WORK WITH DATABASES

Quite a variety _of people are associated with the creation and use of databases.
Obviously, there are database implementors, who build DBMS software,
and end users who wish to store and use data in a DBMS. Database imple
mentors work for vendors such as IBM or Oracle. End users come from a diverse
and increasing number of fields. As data grows in complexity and volume, and
is increasingly recognized as a major asset, the importance of maintaining it

)'

prqfessionally in a DBMS is being widely accepted. Many end users simply use
applications written by database application programmers (see below) and so
require litile technical knowledge about DBMS software. Of course, sophisti
cated users who make more extensive use of a DBMS, such as writing their own
queries, require a deeper ,understanding of its features.

In addition to end users and implementors, two other classes of people are
associated with a DBMS: application programmers and database administrators.

Database application programmers develop packages that facilitate data
access for end users, who are usually not computer professionals, using the
host or data languages and software tools that DBMS vendors provide. (Such
tools include report writers, spreadsheets, statistical packages, and the like.)
Application programs should ideally access data through the external schema.
It is possible to write applications that access data at a lower level, but such
applications would compromise data independence.

HULU EXHIBIT 1055
Page 51 of 130

I
I I'

, II

'"

:'l,1

i
, I
Ii

i.l

1 1~.'
II

inj•

! I

22 CHAPTER 1

A personal database is typically maintained by the individual who owns it and
uses it. However, corporate or enterprise-wide databases are typically impor
tant enough and complex enough that the task of designing and maintaining the
database is entrusted to a professional, called the database administrator
(DBA). The DBA is responsible for many critical tasks:

• Design of the Conceptual and Physical Schemas: The DBA is re
sponsible for interacting with the users of the system to understand what
data is to be stored in the DBMS and how it is likely to be used. Based on
this knowledge, the DBA must design the conceptual schema (decide what
relations to store) and the physical schema (decide how to store them).
The DBA may also design widely used portions of the external schema, al
though users probably augment this schema by creating additional views.

• Security and Authorization: The DBA is responsible for ensuring that
unauthorized data access is not permitted. In general, not everyone should
be able to access all the data. In a relational DBMS, users can be granted
permission to access only certain views and relations. For example, al
though you might allow students to find out course enrollments and who
teaches a given course, you would not want students to see faculty salaries
or each other's grade information. The DBA can enforce this policy by
giving students permission to read only·the Courseinfo view.

• Data Availability and Recovery from Failures: The DBA must take
steps to ensure ~hat if the system fails, users can continue to access as much
of the uncorrupted data as possible. The DBA must also work to restore
the data to a consistent state. The DBMS provides software support for
these functions, but the DBA is responsible for implementing procedures
to back up the data periodically and maintain logs of system activity (to
facilitate recovery from a crash).

• Database Tuning: Users' needs are likely to evolve with time. The DBA
is responsible for modifying the database, in particular the conceptual and
physical schemas, to ensure adequate performance as requiremen~s change.

1.10 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• What are the main benefits of using a DBMS to manage data in applica
tions involving extensive data access? (Sections 1.1, 1.4)

• When would you store data in a DBMS instead of in operating system files
and vice-versa? (Section 1.3)

HULU EXHIBIT 1055
Page 52 of 130

Overview of Database Systems 23

• What is a data model? What is the relational data model? What is data
independence and how does a DBMS support it? (Section 1.5)

• Explain the advantages of using a query language instead of custom pro
grams to process data. (Section 1.6)

• What is a transaction? What guarantees does a DBMS offer with respect
to transactions? (Section 1. 7)

• What are locks in a DBMS, and why are they used? What is write-ahead
logging, and why is it used? What is checkpointing and why is it used?
(Section 1. 7)

• Identify the main components in a DBMS and briefly explain what they
do. (Section 1.8)

• Explain the different roles of database administrators, application program
mers, and end users of a database. Who needs to know the most about
database systems? (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in
operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?

Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 ~xplain the difference between external, internal, and conceptual schemas.
How are thepe different schema layers related to the concepts of logical and physical data
independen~e?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never
interested in running his or her own queries, does the DBA still need to understand query
optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions
of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the
volume of data compels him to buy a database system. To save money, he wants to buy one
with the fewest possible features, and he plans to run it as a stand-alone application on his
PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of
the following DBMS features Scrooge should pay for; in each case, also indicate why Scrooge
should (or should not) pay for that feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.

HULU EXHIBIT 1055
Page 53 of 130

j,

24 CHAPTER 1

5. A query language.

Exercise 1. 7 Which of the following plays an important role in representing information
about the real world in a database? Explain briefly.

1. The data definition language.

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to
support some new functions on OS files (e.g., the ability to force some sequence of bytes to
disk), which layer(s) of the DBMS 1\'ould you have to rewrite to take advantage of these new
functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions instead af executing
transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?
What should a DBMS guarantee with respect to concurrent execution of several trans
actions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

PROJECT-aASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try
to get a feel for the overall architecture.

BIBLIOGRAPHIC NOTES

The evolution of database management systems is traced in [289]. The use of data models
for ~escribing real-world data is discussed in [423], and [425] contains a taxonomy of data
models. The three levels of abstraction were introduced in [186, 712]. The network data
model is described in [186], and [775] discusses several commercial systems based on this
model. [721] contains a good annotated collection of systems-oriented papers on database
management.

Other texts covering database management systems include [204, 245, 305, 339, 475, 574,
689, 747, 762]. [204] provides a detailed discussion of the relational model from a concep
tual standpoint and is notable for its extensive annotated bibliography. [574] presents a
performance-oriented perspective, with references to several commercial systems. [245] and
[689] offer broad coverage of database system concepts, including a discussion of the hierar
chical and network data models. [339] emphasizes the connection between database query
languages and logic programming. [762] emphasizes data models. Of these texts, [747] pro
vides the most detailed discussion of theoretical issues. Texts devoted to theoretical aspects
include [3, 45, 501]. Handbook [744] includes a section on databases that contains introductory
survey articles on a number of topics.

HULU EXHIBIT 1055
Page 54 of 130

2
INTRODUCTION TO
DATABASE DESIGN

,.. What are the steps in designing a database?

,.. Why is the ER model used,to create an initial design?

,.. What are the main concepts in the ER model?

,.. What are guidelines for using the ER model effectively?

,.. How does database design fit within the overall design framework for
complex software within large enterprises?

,.. What is UML and how is it related to the ER model?

.. Key concepts: database design, conceptual, logical, and physical
design; entity-relationship (ER) model, entity set, relationship set,
attribute, instance, key; integrity constraints, one-to-many and many
to-many relationships, participation constraints; weak entities, class
hierarchies, aggregation; UML, class diagrams, database diagrams,
component diagrams.

The great successful men of the world have used their imaginations. They
think ahead and create their mental picture, and then go to work materializing that
picture in all its details, filling in here, adding a little there, altering this bit and
that bit, but steadily building, steadily building.

-Robert Collier

The entity-relationship (ER) data model allows us to describe the data involved
in a real-world enterprise in terms of objects and their relationships and is
widely used to develop an initial database design. It provides useful concepts
that allow us to move from an informal description of what users want from

25

HULU EXHIBIT 1055
Page 55 of 130

: i
' '

I ~!

tt,

,,

26 CHAPTER 2

their database to a more detailed, precise description that can be implemented
in a DBMS. In this chapter, we introduce the ER model and discuss how its
features allow us to model a wide range of data faithfully.

We begin with an overview of database design in Section 2.1 in order to motivate
our discussion of the ER model. Within the larger context of the overall design
process, the ER model is used in. a phase called conceptual database design.
We then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5,
we discuss database design issues involving the ER model. We briefly discuss
conceptual database ,desigp. for large enterprises in Section 2.6. In Section 2. 7,
we present an overview of UML, a design and modeling approach that is more
general in its scope than the ER model.

In Section 2.8, we introduce a case study that is used as a running example
throughout the book. The case study is an end-to-end database design for an
Internet shop .. We illustrate the first two steps in database design (requirements
analysis and conceptual design) in Section 2.8. In later chapters, we extend this
case study to cover the remaining steps in the design process.

We note that many variations of ER diagrams are in use and no widely accepted
standards prevail. The presentation in this chapter is representative of the
family of ER models and includes a selection of the most popular features.

2.1 DATABASE DESIGN AND ER DIAGRAMS

We begin our discussion of database design by observing that this is typically
just one part, although a central part in data-intensive applications, of a larger
software system design. Our primary focus is the· design of the database, how
e"er, and we will not discuss other aspects of software design in any detail. We
revisit this point in Section 2.7.

The database design process can be divided into six steps. The ER model is
most relevant to the first three steps.

1. Requirements Analysis: The very first step in designing a database
application is to understand what data is to be stored in the database,
what applications must be built on top of it, and what operations are
most frequent and subject to performance requirements. In other words,
we must find out what the users want from the database. This is usually
an informal process that invol\;eS discussions with user groups, a study
of the current operating environment and how it is expected to change,
analysis of any available documentation on existing applications that are
expected to be replaced or complemented by the database, and so on.

HULU EXHIBIT 1055
Page 56 of 130

Introduction to Database Design 27

Database Design Tools: Design tools are available from RDBMS ven
dors as well as third-party vendors. For example, see the following link for
details on design and analysis tools from Sybase:
http:4/www.sybase.com/products/application_tools
The following proyides de~ails on Oracle's tools:
http://www.oracle.com/tools

Several methodologies have been proposed for organizing and presenting
the information gathered in this step, and some automated tools have been
developed to support this process.

2. Conc,eptual Database Design: The information gathered in the require
ments analysis step is used to develop a high-level description of the data
to be stored in the database, along with the constraints known to hold over
this data. This step is often carried out using the ER model and is dis
cussed in the rest of this chapter. The ER model is one of several high-level,
or semantic, data models used in database design. The goal is to create
a simple description of the data that closely matches how users and devel
opers think of the data (and the people and processes to be represented in
the data). This facilitates discussion among all the people involved in the
design process, even those who have no technical background. At the same
time, the initial design must be sufficiently precise to enable a straightfor
ward translation into a data model supported by a commercial database
system (which, in practice, means the relational model).

3. Logical Database Design: We must choose a DBMS to implement
our database design, and convert the conceptual database design into a
databa.Se schema in the data model of the chosen DBMS. We will consider
only relational DBMSs, and therefore, the task in the logical design step
is to convert an ER schema into a relational database schema. We dis
cuss this step in detail in Chapter 3; the result is a conceptual schema,
sometimes called the logical schema, in the relational data model.

2.1.1 Beyond ER Design

The ER diagram is just an approximate description of the data, constructed
through a subjective evaluation of the information collected during require
ments analysis. A more careful analysis can often refine the logical schema
obtained at the end of Step 3. Once we have a good logical schema, we must
consider performance criteJ:ia and design the physical schema. Finally, we must
address security issu~s q,nd ensure that users are able to access the data they
need, but not dat~ that we wish to hide from them. The remaining three steps
of database design are briefly describe&next:

HULU EXHIBIT 1055
Page 57 of 130

28 CHAPTER 2

4. Schema Refinement: The fourth step in database design is to analyze
the collection of relations in our relational database schema to identify po
tential problems, and to refine it. In contrast to the requirements analysis
and conceptual design steps, which are essentially subjective, schema re
finement can be guided by some elegant and powerful theory. We discuss
the theory of normalizing relations-restructuring them to ensure some
desirable properties-in Chapter 19.

5. Physical Database Design: In this step, we consider typical expected
workloads that our database must support and further refine the database
design to ensure that it meets desired performance criteria. This step may
simply involve building indexes on some tables and clustering some tables,
or it may involve a substantial redesign of parts of the database schema
obtained from the t:!arlier design steps. We discuss physical design and
database tuning in Chapter 20.

6. Application and Security Design: Any softwar~ project that involves
a DBMS must consider aspects of the application that .go beyond the
database itself. Design methodologies like UML (Section 2.7) try to ad
dress the complete software design and development cycle. Briefly, we must
identify the entities (e.g., users, user groups, departments) and processes
involved in the application. We must describe the role of each entity in ev
ery process that is reflected in some application task, as part of a complete
workfiow for that task. For each role, we must identify the parts of the
database that must be accessible and the parts of the database that must
not be accessible, and we must take steps to ensure that these access rules
are enforced. A DBMS provides several mechanisms to assist in this step,
and we discuss this in Chapter 21.

In the implementation phase, we must code each task in an application lan
guage (e.g., Java), using the DBMS to access data. We discuss application
development in Chapters 6 and 7.

In general, our division of the design process into steps should be seen as a
classification of the kinds of steps involved in design. Realistically, although
we might begin with the six step process outlined here, a complete database
design will probably require a subsequent tuning phase in which all six kinds
of design steps are interleaved and repeated until the design is satisfactory.

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS

An entity is an object in the real world that is distinguishable from other
objects. Examples include the following: the Green Dragonzord toy, the toy
department, the manager of the toy department, the horn~ address of the man-

HULU EXHIBIT 1055
Page 58 of 130

' . I
' I

Introduction to Database Design 29

ager of the toy department. It is often useful to identify a collection of similar
entities. Such a collection is called an entity set. Note that entity sets need
not be disjoint; the collection of toy department employees and the collection
of appliance department employees may both contain employee John Doe (who
happens to work in both departments). We could also define an entity set called
Employees that contains both the toy and appliance department employee sets.

An entity is described using a set of attributes. All entities in a given entity
set have the same attributes; this is what we mean by similar. (This statement
is an oversimplification, as we will see when we discuss inheritance hierarchies
in Section 2.4.4, but it suffices for now and highlights the main idea.) Our
choice of attributes reflects the level of detail at which we wish to represent
information about entities. For example, the Employees entity set could use
name, social security number (ssn), and parking lot (lot) as attributes. In this
case we will store the name, social security number, and lot number for each
employee. However, we will not store, say, an employee's address (or gender or
age).

For each attribute associated with an entity set, we must identify a domain of
possible values. For example, the domain associated with the attribute name
of Employees might be the set of 20-character strings.1 As another example, if
the company rates employees on a scale of 1 to 10 and stores ratings in a field
called rating, the associated domain consists of integers 1 through 10. Further,
for each entity set, we choose a key. A key is a minimal set of attributes whose
values uniquely identify an entity in the set. There could be more than one
candidat~ key; if so, we designate one of them as the primary key. For now we
assume that each entity set contains at least one set of attributes that uniquely
identifies an entity in the entity set; that is, the set of attributes contains a key.
We revisit .this point in Section 2.4.3.

The Employees entity set with attributes ssn, name, and lot is shown in Figure
2.1. An entity set is represented by a rectangle, and an attribute is represented
by an oval. Each attribute in the primary key is underlined. The domain
information could be listed along with the attribute name, but we omit this to
keep the figures compact. The key is ssn.

2.3 RELATIONSHIPS AND RELATIONSHIP SETS

A relationship is an association among two or more entities. For example, we
may have the relationship that Attishoo works in the pharmacy department.

1To avoid confusion, we assume that attribute names do not repeat across entity sets. This is not
a real limitation because we can always use the entity set name to resolve ambiguities if the same
attribute name is used .in more than one entity set.

HULU EXHIBIT 1055
Page 59 of 130

I

It,

30 CHAPTER 2

ssn lot

Figure 2.1 The Employees Entity Set

As with entities, we may wish to collect a set of similar relationships into a
relationship set. A relationship set can be thought of as a set of n-tuples:

{ (ei, ... , en) I ei E E1, ... , en E En}

Each n-tuple denotes a relationship involving n entities ei through_ en, where
entity ei is in entity set Ei. In Figure 2.2 we show the relationship set' Works_In,
in which each relationship indicates a department in which an employee works.
Note that several relationship sets might involve the same entity sets. For
example, we could also have a Manages relationship set involving Employees
and Departments.

lot

Employees Departments

Figure 2.2 The WorksJn Relationship Set

A relationship can also have descriptive attributes. Descriptive attributes
are used to record information about the relationship, rather than about any
one of the participating entities; for example, we may wish to record that At
tishoo works in the pharmacy department as of January 1991. This information
is captured in Figure 2.2 by adding an attribute, since, to Works_In. A relation
ship must be uniquely identified by the participating entities, without reference
to the descriptive attributes. In the Works_In relationship set, for example, each
Works_In relationship must be uniquely identified by the coml;>ination of em
ployee ssn and department did. Thus, for a given employee-department pair,
we cannot have more than one associated since value.

An instance of a relationship set is a set of relationships. Intuitively, an
instance can be thought_ of as a 'snapshot' of the relationship set at some instant

HULU EXHIBIT 1055
Page 60 of 130

Introduction to Database Design 31

in time. An instance of the Works_In relationship set is shown in Figure 2.3.
Each Employees entity is denoted by its ssn, and each Departments entity
is denoted by its did, for simplicity. The since value is shown beside each
relationship. (The 'many-to-many' and 'total participation' comments in the
figure are discussed later, when we discuss integrity constraints.)

I 123-22-36661

1231-31-53681

1131-24-36501

I 223-32-63161

EMPLOYEES

Total participation

WORKS_IN

Many to Many

'G]

~

~

DEPARTMENTS

Total participation

Figure 2.3 An Instance of the Works_In Relationship Set

As another example of an ER diagram, suppose that each department has offices
in several locations and we want to record the locations at which each employee
works. This relationship is ternary because we must record an association
between an employee, a department, and a location. The ER diagram for this
variant of Works_In, which we call Works_In2, is shown in Figure 2.4.

did budget

address Locations capacity

Figure 2.4 A Ternary Relationship Set

The entity sets that participate ill a relationship set need not be distinct; some
times a relationship might involve two entities in the same entity set. For ex
ample, consider the Reports_To relationship set shown in Figure 2.5. Since

HULU EXHIBIT 1055
Page 61 of 130

'"

, I

J
1·'

32 CHAPTER-2

employees report to other employees, every relationship in Reports_To is of
the<lorm (emp1, emp2), where both emp1 and emp2 are entities in Employees.
However., they play different roles: emp1 reports to the managing employee
emp2, which is reflected in the role indicators supervisor and subordinate in
Figure 2.5. If an entity set plays more than one role, the role indicator concate
nated with an attribute name from the entity set gives us a unique name for
each attribute, in the relationship set. For example, the Reports_ To relation
ship set has attributes corresponding to the ssn of the supervisor and the ssn
of the subordinate, and the names of these attributes are supervisor_ssn and
subordinate_ssn.

~ er lot

Employees

Figure 2.5 The Reports_Tct Relationship Set

2.4 ADDITIONAL FEATURES OF THE ER MODEL

We now look at some of the constructs in the ER model that allow us to describe
some subtle properties of the data. The ex]>ressiveness of the ER model is a
big reason for i'ts widespread use.

2.4.1 Key Constraints

Consider the Works_ln relationship shown in Figure 2.2. An employee can
work in several departments, and a department can have several employees, as
illustrated in the·Works_In instance shown in Figure 2.3. Employee 231-31-5368
has worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92.
Department 51 has two employees.

Now consider another relationship set called Manages between the Employ
ees and Departments entity sets such that each department has at most one
manager, although· a single employee is allowed to manage more than one de
partment. The restriction that each department has at most one manager is

I

1 ,.
l
j

l

HULU EXHIBIT 1055
Page 62 of 130

Introduction to Database Design 33

an example of a key constraint, and it implies that each Departments entity
appears in at most one Manages relationship in any allowable instance of Man
ages. This restriction is indicated in the ER diagram of Figure 2.6 by using an
arrow from Departments to Manages. Intuitively, the arrow states that given
a Departments entity, w.e can uniquely determine the Manages relationship in
which it appears.

Tdname

budget

----~

did

Figure 2.6 Key Constraint on Manages

An instance of the Manages relationship set is shown in Figure 2.7. While this
is also a potential instance for the Works__ln relationship set, the instance of
Works_In shown in Figure 2.3 violates the key constraint on Manages.

I 231-31-53681

I 131-24-36501 e

I 223-32-63161 /'-------_ _ __.L---

EMPLOYEES

Partial participation

MANAGES

One to Many

DEPARTMENTS

Total participation

Figure 2.7 An Instance of the Manages Relationship Set

A relationship set like Manages is sometimes said to be one-to-many, to
indicate that one employee can be associated with many departments (in the
capacity of a manager), whereas each department can be associated with at
most one employee as its manager. In contrast, the Works_In relationship set, in
which an employee is allowed to work in several departments and a department
is allowed to have several employees, is said to be many-to-many.

HULU EXHIBIT 1055
Page 63 of 130

~··
I

,11,

: j:
.,

I

34 CHAPTER 2

If we add the restriction that each employee can manage at most one depart
ment to the Manages relationship set, which would be indicated by adding
an arrow from Employees to Manages in Figure 2.6, we have a one-to-one
relationship set.

Key Constraints for Ternary Relationships

We can extend this convention-and the underlying key constraint concept-to
relationship sets involving three or more entity sets: If an entity set E has a
key constraint in a relationship set R, each entity in an instance of E appears
in at most one relationship in (a corresponding instance of) R. To indicate a
key constraint on entity set E in relationship set R, we draw an arrow from E
to R.

In Figure 2.8, we show a ternary relationship with key constraints .• -Each em
ployee works in at most one department and at a single location. An instance
of the Works_ln3 relationship set is shown in Figure 2.9. Note that each depart
ment can be associated with several employees and locations and each location
can be associated with several departments and employees; however, each em
ployee is associated with a single department and location.

G<cp?cpG)~ budget

I Employees I Departments

address Locations

Figure 2.8 A Ternary Relationship Set with Key Constraints

2.4.2 Participation Constraints

The key constraint on Manages tells us that a department has at most Oll}3

manager. A natural question to ask is whether every department has a man
ager. Let us say that every department is required to have a manager. This
requirement is an example of a participation constraint; the partici(>ation of
the entity set Departments in the relationship set Manages is said to be total.
A participation that is not total is said to be partial. As an example, the

HULU EXHIBIT 1055
Page 64 of 130

Introduction to Database Design

I 231-31-53681 ~1--+--

l 131-24-36501

I 223-32-63161

EMPLOYEES

Key constraint

WORKS_IN3

LOCATIONS

Figure 2.9 An Instance of Works_ln3

35

e I Paris I

participation of the entity set Employees in Manages is partial, since not every
employee gets to manage a department.

Revisiting the WorksJn relationship set, it is natural to expect that each em
ployee works in at least one department and that each department has at least
one employee. This means that the participation of both Employees and De
partments in Works_In is total. The ER diagram in Figure 2.10 shows both
the Manages and Works_In relationship sets and all the given constraints. If
the participation of an entity set in a relationship set is total, the two are con
nected by a thick line; independently, the presence of an arrow indicates a key
constraint. The instances of Works_In and Manages shown in Figures 2.3 and
2.7 satisfy all the constraints in Figure 2.10.

2.4.3 Weak Entities

Thus far, we have assumed that the attributes as~ociated with an entity set
include a key. This assumption does not always hold. For example, suppose
that employees can purchase insurance policies to cover their dependents. We
wish to record information about policies, including who is covered by each
policy, but this information is really our only interest in the dependents of an
employee. Jf an employee quits, any policy owned by the employee is terminated
and we want to delete all the relevant policy and dependent information from
the database.

HULU EXHIBIT 1055
Page 65 of 130

r--

ill,,

I
I
I:

i~

'111 l
,,

·11
1.
1:

J
I

I !I
Ii

. I
j'

36 CHAPTER 2

budget

since

Figure 2.10 Manages and Works_In

We might choose to identify a dependent by name alone in this situation, since
it is reasonable to expect that the dependents of a given employee have different
names. Thus the attributes of the Dependents entity set might be pname and
age. The attribute pname does not identify a dependent uniquely. Recall
that the key for Employees is ssn; thus we might have two employees called
Smethurst and each might have a son called Joe.

Dependents is an example of a weak entity set. A weak entity can be iden
tified uniquely only by considering some of its attributes in cdnjunction with
the primary key of another entity, which is called the identifying owner.

The following restrictions must hold:

• The owner entity set and the weak entity set must participate in a one
to-many relationship set (one owner entity is associated with one or more
weak entities, but each weak entity has a single owner). This relationship
set is called the identifying relationship set of the weak entity set.

• The weak entity set must have total participation in the identifying rela
tionship set.

For example, a Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of tlie Dependents entity.
The set of attributes of a weak entity set that uniquely identify a weak entity
for a given owner entity is called a partial key of the weak entity set. In our
example, pname is a partial key for Dependents.

HULU EXHIBIT 1055
Page 66 of 130

Introduction to Database Design 37

The Dependents weak entity set and its relationship to Employees is shown in
Figure 2.11. The total participation of Dependents in Policy is indicated by
linking them with a dark line. The arrow from Dependents to Policy indicates
that each Dependents entity appears in at most one (indeed, exactly one, be
cause of the participation constraint) Policy relationship. To underscore the
fact that Dependents is a weak entity and Policy is its identifying relationship,
we draw both with dark lines. To indicate that pname is a partial key for
Dependents, we underline it usin,g a broken line. This means that there may
well be two dependents with the same pname value.

cost age

Employees Dependents

Figure 2.11 A Weak Entity Set

2.4.4 Class Hierarchies

Sometimes it is natural to classify the entities in an entity set into subclasses.
For example, we might want to talk about an Hourly _Emps entity set and a
ContracLEmps entity set to distinguish the basis on which they are paid. We
might have attributes hours_worked and hourly_wage defined for Hourly_Emps
and an attribute contractid defined for Contract_Emps.

We want tfie semantics that every entity in one of these sets is also an Em
ployees entity and, as such, must have all the attributes of Employees defined.
Therefore, the attributes defined for an Hourly _Emps entity are the attributes
for Employees plus Hourly _Emps. We say that the attributes for the entity set
Employees are inherited by the entity set Hourly _Emps and that Hourly _Emps
ISA (read is a) Employees. In addition-and in contrast to class hierarchies
in programming languages such as C++-there is a constraint on queries over
instances of these entity sets: A query that asks for all Employees entities
must consider all Hourly _Emps and Contract_Emps entities as well. Figure
2.12 illustrates the class hierarchy.

The entity set Employees may also be classified using a different criterion. For
example, we might identify a subset of employees as Senior _Emps. We can
modify Figure 2.12 to reflect this change by adding a second ISA node as a
child of Employees and making Senior_Emps a child of this node. Each of these
entity sets might be classified further, creating a multilevel ISA hierarchy.

HULU EXHIBIT 1055
Page 67 of 130

'111 11

1:

U!I'.

1111

::1

,
I"

,11
.I' ..

ti

38 CHAPTER 2

Employee

contractid

hourly_ wages

Contract_Emps

Figure 2.12 Class Hierarchy

A class hierarchy can be viewed in one of two ways:

• Employees is specialized into subcla8ses. Specialization is the process
of identifying subsets of an entity set (the superclass)' that share some
distinguishing characteristic. Typically, the superclass is defined first, the
subclasses are defined next, and subclass-specific attribut~s and relation
ship sets are then added.

• Hourly _Emps and ContracLEmps are generalized by Employees. As an
other example, two entity sets Motorboats and Cars may be generalized
into an entity set Motor_Vehicles. Generalization consists of identifying
some common characteristics of a collection of entity sets and creating a
new entity set that contains entities possessing these common character
istics. Typically, the subclasses are defined first, the superclass is defined
next, and any relationship sets that involve the superclass are then defined.

We can specffy two kinds of constraints with respect to ISA hierarchies, namely,
overlap and covering constraints. Overlap constraints determine whether
two subclasses are allowed to contain the same entity. For example, can At
tishoo be both an Hourly _Emps entity and a ContracLEmps entity? Intuitively,
no. Can he be both a ContracLEmps entity and a Senior_Emps entity? Intu
itively, yes. We denote this by writing 'ContracLEmps OVERLAPS Senior_Emps.'
In the absence of such a st~tement, we assume by default that entity sets are
constrained to have no overlap.

Covering constraints determine whether th~.entities in the subclasses collec
tively include all entities in the superclass. For example, does every Employees

l
l

·1

HULU EXHIBIT 1055
Page 68 of 130

Introduction to Database Design 39

entity have to belong to one of its subclasses? Intuitively, no. Does every
Motor_ Vehicles entity have to be either a Motorboats entity or a Cars entity?
Intuitively, yes; a characteristic property of generalization hierarchies is that
every instance of a superclass is an instance of a subclass. We denote this by
writing 'Motorboats AND Cars COVER Motor_ Vehicles.' In the absence of such a
statement, we assume by default that there is no covering constraint; we can
have motor vehicles that are not motorboats or cars.

There are two basic reasons for identifying subclasses (by specialization or
generalization):

l. We might want to add descriptive attributes that make sense only for the
entities in a subclass. For example, hourly_wages does not make sense for a
Contract_Emps entity, whose pay is determined by an individual contract.

2. We might want to identify the set of entities that participate in some rela
tionship. For example, we might wish to define the Manages relationship
so that the participating entity sets are Senior.Emps and Departments,
to ensure that only senior employees can be managers. As another exam
ple, Motorboats and Cars may have different descriptive attributes (say,
tonnage and number of doors), but as Motor_Vehicles entities, they must
be licensed. The licensing information can be captured by a Licensed_ To
relationship between Motor_ Vehicles and an entity set called Owners.

2.4.5 Aggregation

As defined thus far, a relationship set Js an association between entity sets.
Sometim~s, we have to model a relationship between a collection of entities
and relationships. Suppose that we have an entity set called Projects and that
each Projects entity is sponsored by one or 'more departments. The Spon
sors relationship set captures this information. A department that sponsors a
project might assign employees to monitor the sponsorship. Intuitively, Moni
tors should be a relationship .set that associates a Sponsors relationship (rather
than a Projects or Departments entity) with an Employees entity. However,
we have defined relationships to associate two or more entities.

To define a relationship set such as Monitors, we introduce a new feature of
the ER model, called aggregation. Aggregation allows us to indicate that
a relationship set (identified through a dashed box) participates in another
relationship set. This is illustrated in Figure 2.13, with a dashed box around
Sponsors (and its participating entity sets) used to denote aggregation. This
effectively allows us to treat Sponsors as an 'entity set for purposes of defining
the Monitors relationship set.

HULU EXHIBIT 1055
Page 69 of 130

' '!I

40 CHAPTER 2

ssn lot

pbudget budget

' ' ---'

Figure 2.13 Aggregation

When should we use aggregation? Intuitively, we use it when we need to ex
press a relationship among relationships. But can we not express relationships
involving other relationships without using aggregation? In our example, why
not make Sponsors a ternary relationship? The answer is that there are really
two distinct relationships, Sponsors and Monitors, each possibly with attributes
of its own. For instance, the Monitors relationship has an attribute until that
records the date until when the employee is appointed as the sponsorship mon
itor. Compare this attribute with the attribute since of Sponsors, which is the
date when the sponsorship took effect. The use of aggregation versus a ternary
relationship may also be guided by certain integrity constraints, as explained
in Section 2.5.4.

2.5 CONCEPTUAL DESIGN WITH THE ER MODEL

Developing an ER diagram presents several choices, including the following:

• Should a concept be modeled as an entity or an attribute?

• Should a concept be modeled as an entity or a relationship?

• What are the relationship sets and their participating entity sets? Should
we use binary or ternary relationships?

• Should we use aggregation?

HULU EXHIBIT 1055
Page 70 of 130

Introduction to Database Design 41

We now discuss the issues involved in making these choices.

2.5.1 Entity versus Attribute

While identifying the attributes of an entity set, it is sometimes not clear
whether a property should be modeled as an attribute or as an entity set (and
related to the first entity set using a relationship set). For example, consider
adding address information to the Employees entity set. One option is to use
an attribute address. This option is appropriate if we need to record only
one address per employee, and it suffices to think of an address as a string. An
alternative is to create an entity set called Addresses and to record associations
between employees and addresses using a relationship (say, Has_Address). This
more complex alternative is necessary in two situations:

• We have to record more than one address for an employee.

• We want to capture the structure of an address in our ER diagram. For
example, we might break down an address into city, state, country, and
Zip code, in addition to a string for street information. By representing an
address as an entity with these attributes, we can support queries such as
"Find all employees with an address in Madison, WI."

For another example of when to model a concept as an entity set rather than
an attribute, consider the relationship set (called WorksJ:n4) shown in Figure
2.14.

ssn budget

Departments

Figure 2.14 The Works_ln4 Relationship Set

It differs from the Works_In relationship set of Figure 2.2 only in that it has
attributes from and to, instead of since. Intuitively, it records the interval
during which an employee works for a department. Now suppose that it is
possible for an employee to work in a given department over more than one
period.

This possibility is ruled out by the ER diagram's semantics, because a rela
tionship is uniquely identified by the participating entities (recall from Section

HULU EXHIBIT 1055
Page 71 of 130

:l:

,,

I

I
1
1

,,,1:

'~ ;
I
I
Ii

I

11

II

42 CHAPTER 2

2.3). The problem is that we want to record several values for the descriptive
attributes for each instance of the Works_In2 relationship. ('J;'his situation is
analogous to wanting to record several addresses for each employee.) We can
address this problem by introducing an entity set called, say, Duration, with
attributes from and to, as shown in Figure 2.15.

ssn ET? did x budget

Employees Departments

from Duration to

Figure 2.15 The Works_In4 Relationship Set

In some versions of the ER model, attributes are allowed to take on sets as
values. Given this feature, we could make Duration an attribute of Works_In,
rather than an entity set; associated with each Works_In relationship, we would
have a set of intervals. This approach is perhaps more intuitive than model
ing Duration as an entity set. Nonetheless, when such set-valued attributes
are translated into the relational model, which does not support set-valued
attributes, the resulting relational schema is very similar to what we get by
regarding Duration as an entity set.

2.5.2 Entity versus Relationship

Consider the relationship set called Manages in Figure 2.6. Suppose that each
department manager is given a discretionary budget (dbudget), as shown in
Figure 2.16, in which we have also renamed the relationship set to Manages2.

name
dbudget CT3name

G=5 budget

~
Employees Departments

Figure 2.16 Entity versus Relationship

HULU EXHIBIT 1055
Page 72 of 130

Introduction to Database Design 43

Given a department, we know the manager, as well as the manager's starting
date and budget for that department. This approach is natural if we assume
that a manager receives a separate discretionary budget for each department
that he or she manages.

But what if the discretionary budget is a sum that covers all departments
managed by that employee? In this case, each Manages2 relationship that

11 involves a given employee will have the same value in the dbudget field, leading
to redundant storage of the same information. Another problem with this
design is that it is misleading; it suggests that the budget is associated with
the relationship, when it is actually associated with the manager.

We can address these problems by introducing a new entity set called Managers
(which can be placed below Employees in an ISA hierarchy, to show that every
manager is also an employee). The attributes since and dbudget now describe
a manager entity, as intended. As a variation, wpile every manager has a
budget, each manager may have a different starting date (as manager) for each
department. In this case dbudget is an attribute of Managers, but since is an
attribute of the relationship set between managers and departments.

The imprecise nature of ER modeling c~n thus make it difficult to recognize
underlying entities, and we might associate attributes with relationships rather
than the appropriate entities. In general, such mistakes lead to redundant
storage of the same information and can cause many problems. We discuss
redundancy and its attendant problems in Chapter 19, and present a technique
called normalization to eliminate redundancies from tables.

2.5.3 llinary versus Ternary Relationships

Consider the ER diagram shown in Figure 2.17. It models a situation in which
an employee can own several policies, each policy can be owned by several
employees, and each dependent can be covered by several policies.

Suppose that we have the following additional requirements:

• A policy cannot be owned jointly by two· or more employees.

• Every policy must be owned by some employee.

• Dependents is a weak entity set, and each dependent entity is uniquely
identified by taking pname in conjunction with the policyid of a policy
entity (which, intuitively, covers the given dependent).

The first requirement suggests that we impose a key constraint on Policies with
respect to Covers, but this constraint has the unintended side effect that a

HULU EXHIBIT 1055
Page 73 of 130

I

I

i
I

44 CHAPTER 2

q~ lot pn_ai:'.11'._ p
Employees Dependents

Policies

Figure 2.17 Policies as an Entity Set

policy can cover only one dependent. The second requirement suggests that we
impose a total participation constraint on Policies. This solution is acceptable
if each policy covers at least one dependent. The third requirement forces us
to introduce an identifying relationship that is binary (in our version of ER
diagrams, although there are versions in which this is not the case).

Even ignoring the third requirement, the best way to model this situation is to
use two binary relationships, as shown in Figure 2.18.

_s_sn ~ EP; ~lot ___
age

Employees Dependents

Figure 2.18 Policy Revisited

HULU EXHIBIT 1055
Page 74 of 130

Introduction to Database Design 45

This example really has two relationships involving Policies, and our attempt
to use a single ternary relationship (Figure 2.17) is inappropriate. There are
situations, however, where a relationship inherently associates more than two
entities. We have seen such an example in Figures 2.4 and 2.15.

As a typical example of a ternary relationship, consider entity sets Parts, Sup
pliers, and Departments, and a relationship set Contracts (with descriptive
attribute qty) that involves all of them. A contract specifies that a supplier will
supply (some quantity of) a part to a department. This relationship cannot
be adequately captured by a collection of binary relationships (without the use
of aggregation). With binary relationships, we can denote that a supplier 'can
supply' certain parts, that a department 'needs' some parts, or that a depart
ment 'deals with' a certain supplier. No combination of these relationships
expresses the meaning of a contract adequately, for at least two reasons:

• The facts that supplier S can supply part P, that department D needs part
P, and that D will buy from S do not necessarily imply that department D
indeed buys part P from supplier S!

• We cannot represent the qty attribute of a contract cleanly.

2.5.4 Aggregation versus Ternary Relationships

As we noted in Section 2.4.5, the choice between using aggregation or a ternary
relationship is mainly determined by the existence of a relationship that relates
a relationship set to an entity set (or second relationship set). The choice may
also be guided by certain integrity constraints that we want to express. For
example, ~nsider the ER diagram spown in Figure 2.13. According to this dia
gram, a project can be sponsored by any number of departments, a department
can sponsor one or more projects, and each sponsorship is monitored by one
or more employees. If we don't need to record the until attribute of Monitors,
then we might reasonably use a ternary relationship, say, Sponsors2, as shown
in Figure 2.19.

Consider the constraint that each sponsorship (of a project by a department)
be monitored by at most one employee. We cannot express this constraint
in terms of the Sponsors2 relationship set. On the other hand, we can easily
express the constraint by drawing an i;inow from the aggregated relationship
Sponsors to the relationship Monitors in Figure 2.13. Thus, the presence of
such a constraint serves as another reason for using aggregation rather than a
ternary relationship set.

HULU EXHIBIT 1055
Page 75 of 130

46 ~HAPTER 2

name

Employees

started_on dname

budget G:(~ G:(
.--~~~-----,

Projects Departm.!)nts

Figure 2.19 Using a Ternary Relationship instead of Aggregation

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES

We have thus far concentrated on the constructs available in the ER model
for describing various application concepts and relationships. The process of
conceptual design consists of more than just describing small fragments of the
application in terms of ER diagrams. For a large enterprise, the design may re
quire the efforts of more than one designer and span data and application code
used by a number of user groups. Using a high-level, semantic data model,
such as ER diagrams, for conceptual design in such an environment offers the
additional advantage that the high-level design can be diagrammatically rep
resented and easily understood by the many people who must provide input to
the design process.

An important aspect of the design process is the methodology used to structure
the development of the overall design and ensure that the design takes into
account all user requirements and is consistent. The usual approach is that the
requirements of various user groups are considered, any conflicting requirements
are somehow resolved, and a single set of global requirements is generated at
the end of the requirements analysis phase. Generating a single set of global
requirements is a difficult task, but it allows the conceptual design phase to
proceed with the development of a logical schema that spans all the data and
applications throughout the enterprise.

An alternative approach is to develop separate conceptual schemas for different
user groups and then integrate these conceptual schemas. To integrate multi7

HULU EXHIBIT 1055
Page 76 of 130

Introduction to Database Design 47

ple conceptual schemas, we must establish correspondences between entities,
relationships, and attributes, and we must resolve numerous kinds of conflicts
(e.g., naming conflicts, domain mismatches, differences in measurement units).
This task is difficult in its own right. In some situations, schema integration
cannot be avoided; for example, when one organization merges with another,
existing databases may have to be integrated. Schema integration is also in
creasing in importance as users demand access to heterogeneous data sources,
often maintained by different organizations.

2.7 THE UNIFIED MODELING LANGUAGE
..

There are many approaches to end-to-end software system design, covering all
the steps from identifying the business requirements to the fin51l specifications
for a complete application, including workflow, user interfaces, and many as
pects of software systems that go well beyond databases and the data stored in
them. In this section, we briefly discuss an approach that i~ becoming popular,
called the unified modeling language (UML) approach.

UML, like the ER model, has the attractive feature that its constructs can be
drawn as diagrams. It encompasses a broader spectrum of the software design
process than the ER model:

• Business Modeling: In this phase, the goal is to describe the business
procesE!eS involved in the software application being developed.

• System Modeling: The understanding of business processes is used to
identify the requirements for the software application. One part of the
requirepients is the database requirements.

• Conceptual Database Modeling: This step corresponds to the creation
of the ER design for the database. For this purpose, UML provides many
constructs that parallel th~ ER constructs.

• Physical Database Modeling: UML also provides pictorial represen
tations for physical database design choices, such as the creation of table
spaces and indexes. (We discuss physical database design in later chapters,
but not the corresponding UML constructs.)

• Hardware System Modeling: UML diagrams can be used to describe
the hardware con:f;iguration used for the application.

There are many kinds of diagrams in UML. Use case diagrams describe the
actions performed by the system in response to user requests, and the people
involved in these actions. These diagrams specify the external functionality
that the system is expected to support.

HULU EXHIBIT 1055
Page 77 of 130

48 CHAPTER 2

Activity diagrams show the fl.ow of actions in a business process. Statechart
diagrams describe dynamic interactions between system objects. These dia
grams, used in business and system modeling, describe how the external func
tionality is to be implemented, consistent with the business rules and processes
of the enterprise.

Class diagrams are similar to ER diagrams, although they are more general
in that they are intended to model application entities (intuitively, important
program components) and their logical relationships in addition to data entities
and their relationships.

Both entity sets and relationship sets can be represented as classes in UML,
together with key constraints, weak entities, and class hierarchies. The term
relationship is used slightly differently in UML, and UML's relationships are
binary. This sometimes leads to confusion over whether relationsl'lip sets in
an ER diagram involving three or more entity sets can be directly represented
in UML. The confusion disappears once we understand that all relationship
sets (in the ER sense) are represented as classes in UML; the binary UML
'relationships' are essentially just the links shown in ER diagrams between
entity sets and relationship sets.

Relationship sets with key constraints are usually omitted from UML diagrams,
and the relationship is indicated by directly linking the entity sets involved.
For example, consider Figure 2.6. A UML representation of this ER diagram
would have a class for Employees, a class for Departments, and the relatio;nship
Manages is shown by linking these two classes. The link can be labeled with
a name and cardinality information to show that a department can have only
one manager.

As we will see in Chapter 3, ER diagrams are translated into the relational
model by mapping each entity set into a table and each relationship set into
a table. Further, as we will see in Section 3.5.3, the table corresponding to a
one-to-many relationship set is typically omitted by including some additional
information about the relationship in the table for one of the entity sets in
volved. Thus, UML class diagrams correspond closely to the tables created by
mapping an ER diagram.

Indeed, every class in a UML class diagram is mapped into a table in the cor
responding UML database diagram. UML's database diagrams show how
classes are represented in the database and contain additional details about
the structure of the database such as integrity constraints and indexes. Links
(UML's 'relationships') between UML classes lead to various integrity con
straints between the corresponding tables. Many details specific to the re
lational model (e.g., views, foreign keys, null-allowed fields) and that reflect

l
l

<,

HULU EXHIBIT 1055
Page 78 of 130

. ~

Introduction to Database Design 49

physical design choices (e.g., indexed fields) can be modeled in UML database
diagrams.

UML's component diagrams describe storage aspects of the database, such
as tablespaces and database partitions), as well as interfaces to applications
that access the database. Finally, deployment diagrams show the hardware
aspects of the system.

Our objective in this book is to concentrate on the data stored in a database
and the related design issues. To this end, we deliberately take a simplified
view of the other steps involved in software design and development. Beyond
the specific discussion of UML, the material in this section is intended to place
the design issues that we cover within the context of the larger software design
process. We hope that this will assist readers interested in a more comprehen
sive discussion of software design to complement our discussion by referring to
other material on their preferred approach to overall system design.

2.8 CASE STUDY: THE INTERNET SHOP

We now introduce an illustrative, 'cradle-to-grave' design case study that we
use as a running example throughout this book. DBDudes Inc., a well-known
database consulting firm, has been called in to help Barns and Nobble (B&N)
with its database design and implementation. B&N is a large bookstore special
izing in books on horse racing, and it has decided to go online. DBDudes first
verifies that B&N is willing and able to pay its steep fees and then schedules a
lunch meeting-billed to B&N, naturally-to do requirements analysis.

2.8.1 Requirements Analysis

The owner of B&N, unlike many people who need a database, has thought
extensively about what he wants and offers a concise summary:

"I would like my customers to be able to browse my catalog of books and
place orders over the Internet. Currently, I take orders over the phone. I have
mostly corporate customers who call me and give me the ISBN number of a
book and a quantity; they often pay by credit card. I then prepare a shipment
that contains the books they ordered. If I don't have enough copies in stock,
I order additional copies and delay the shipment until the new copies arrive;
I want to ship a customer's entire order together. My catalog includes all the
books I sell. For each book, the' catalog contains its ISBN number, title, author,
purchase price, sales price, and the year the book was published. Most of my
customers are regulars, and I have records with their names and addresses.

HULU EXHIBIT 1055
Page 79 of 130

50 CHAPTER 2

Figure 2.20 ER Diagram of the Initial Design

New customers have to call me first and establish an account before"~they can
use my website.

On my new website, customers should first identify themselves by their unique
customer identification number. Then they should be able to browse my catalog
and to plac.e orders online."

DBDudes's consultants are a little surprised by how quickly the requiqlments
phase is completed-it usually takes weeks of discussions (and many lunches
and dinners) to get this done--but return to their offices to analyze this infor
mation.

2.8.2 Conceptual Design

In the conceptual design step, DBDudes develops a high level description of
t)le data in terms of the ER model. The initial design is shown in Figure
2.20. Books and customers are modele,d as entities and related through orders
that customers place. Orders is a relationship set connecting the Books and
Custoffi;ers entity sets. For each order, the following attributes are stored:
quantity, order date, and ship date. As soon as an order is shipped, the ship
date is set; until then the ship date is set to null, indicating that this order has
not been shipped yet.

DBDudes has an internal design review at this point, and several questions are
raised. To protect their identities, we will refer to the design team leader as
Dude 1 and the design reviewer as Dude 2.

Dude 2: What if a customer places two orders for the same book in one day?
Dude 1: The first order is handled by creating a new Orders relationship and

HULU EXHIBIT 1055
Page 80 of 130

Introduction to Database Design 51

the second order is handled by updating the value of the quantity attribute in
this relationship.
Dude 2: What if a customer places two orders for different books in one day?
Dude. 1: No problem. Eacli instance of the Orders relationship set relates the
customer to a different book.
Dude 2: Ah, but what if a customer places two orders for the same book on
different days?

,1, Dude 1: We can use the attribute order date of the orders relationship to
distinguish· the two orders.
Dude 2: Oh no you can't. The attributes of Customers and Books must jointly
contain a key for Orders. So this design does not allow a customer to place
orders for the same book on different days.
Dude 1: Yikes, you're right. Oh well, B&N probably won't care; we'll see.

DBDudes decides to proceed with the next phase, logical database design; we
rejoin them in Section 3.8.

2.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• Name the main steps in database design. What is the goal of each step?
In which step is the ER model mainly used? (Section 2.1)

• Define these terms: entity, entity set, attribute, key. (Section 2.2)

• Define these terms: relationship, relationship set, descriptive attributes.
(Sect~on 2.3)

• Define the following kinds of constraints, and give an example of each: key
constraint, participation constraint. What is a weak entity? What are class
hierarchies? What is aggregation? Give an example scenario motivating
the use of each of these ER model design constructs. (Section 2.4)

• What guidelines would you use for each of these choices when doing ER
design: Whether to use an attribute or an entity set, an entity or a relation
ship set, a binary or ternary relationship, or aggregation. (Section 2.5)

• Why is designing a database for a large enterprise especially hard? (Sec
tion 2.6)

• What is UML? How does database design fit into the overall design of
a data-intensive software system? How is UML related to ER diagrams?
(Section 2. 7)

HULU EXHIBIT 1055
Page 81 of 130

52 CHAPTER 2

EXERCISES

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship,
entity set, relationship set, one-to-many relationship, many-to-many relationship, participa
tion constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role
indicator.

Exercise 2.2 A university database contains information about professors (identified by so
cial security number, or SSN) and courses (identified by courseid). Professors teach courses;
each of the following situations concerns the Teaches relationship set. For each situation,
draw an ER diagram that describes it (assuming no further constraints hold).

1. Professors can teach the same course in several semesters, and each offering must be
recorded.

2. Professors can teach the same course in several semesters, and only the most recent
such offering needs to be recorded. (Assume this condition applies in all subsequent
questions.)

3. Every professor must teach some course.

4. Every professor teaches exactly one course (no more, no less).

5. Every professor teaches exactly one course (no more, no less), and every course must be
taught by some professor.

6. Now suppose that certain courses can be taught by a team of professors jointly, but it
is possible that no one professor in a team can teach the course. Model this situation,
introducing additional entity sets and relationship sets if necessary.

Exercise 2.3 Consider the following information about a university database:

• Professors have an SSN, a name, an age, a rank, and a research specialty.

• Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending
date, and a budget.

• Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or
Ph.D.).

• Each project is managed by one professor (known as the project's principal investigator).

• Each project is worked on by one or more professors (known as the project's co-investigators).

• Professors can manage and/or work on multiple projects.

• Each project is worked on by one or more graduate students (known as the project's
research assistants).

• When graduate students work on a project, a professor n;mst supervise their work on the
project. Graduate students can work on multiple projects, in which case they will have
a (potentially different) supervisor for each one.

• Departments have a department number, a department name, and a main office.

• Departments have a,professor (known as the chairman) who runs the department.

• Professors work in one or more departments, and for each department that they work
in, a time percentage is associated with their job.

• Graduate students have one major department in which they are working on their degree.

1

~
I
I

• l

'.

HULU EXHIBIT 1055
Page 82 of 130

Introduction to Database Design 53

• Each graduate student has another, more senior graduate student (known as a student
advisor) who advises him or her on what courses to take.

Design and draw an ER diagram that captures the information about the university. Use only
the basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate
any key and participation constraints.

Exercise 2.4 A company database needs to store information about employees (identified
by ssn, with salary and phone as attributes), departments (identified by dno, with dname and
budget as attributes), and chilqren of employees (with name and age as attributes). Employees
work in departments; each department is managed by an employee; a child must be identified
uniquely by name when the parent (who is an employee; assume that only one parent works
for the company) is known. We are not interested in information about a child once the
parent leaves the company.

Draw an ER diagram that captures this information.

Exercise 2.5 Notown Records has decided to store information about musicians who perform
on its albums (as well as other company data) in a database. The company has wisely chosen
to hire you as a database designer (at your usual consulting fee of $2500/day).

• Each musician that records at Notown has an SSN, a name, an address, and a phone
number. Poorly paid musicians often share the same address, and no address has more
than one phone.

• Each instrument used in songs recorded at Notown has a name (e.g., guitar, synthesizer,
flute) and a musical key (e.g., C, B-flat, E-flat).

• Each album recorded on the Notown label has a title, a copyright date, a format (e.g.,
CD or MC), and an album identifier.

• Each song recorded at Notown has a title and an author.

• Each musician may play several instruments, and a given instrument may be played by
several musicians.

• Each album has a number of songs on it, but no song may appear on more than one
album.~

• Each song is performed by one or more musicians, and a musician may perform a number
of songs.

• Each album has exactly one musician who acts as its producer. A musician may produce
several albums, of course.

Design a conceptual schema for N otown and draw an ER diagram for your schema. The
preceding information describes the situation that the Notown database must model. Be sure
to indicate all key and cardinality constraints and any assumptions you make. Identify any
constraints you are unable to capture in the ER diagram and briefly explain why you could
not express them.

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane
County Airport officials about the poor organization at the airport. As a result, the officials
decided that all information related to the airport should be organized using a DBMS, and
you have been hired to design the database. Your first task is to organize the information
about all the airplanes stationed and maintained at the airport. The relevant information is
as follows:

HULU EXHIBIT 1055
Page 83 of 130

'[:I

I!

' 1111

. · ~

J

54 CHAPTER 2

• Every airplane has a registration number, and each airplane is of a specific model.

• The airport accommodates a number of airplane models, and each model is identified by
a model number (e.g., DC-10) and has a capacity and a weight.

• A number of technicians work at the airport. You need to store the name, SSN, address,
phone number, and salary of each technician.

• Each technician is an expert on one or more plane model(s), and his or her expertise may
overlap with that of other technicians. This information about technicians must also be
recorded.

• Traffic controllers must have an annual medical examination. For each traffic controller,
you must store the date of the most recent exam.

• All airport employees (including technicians) belong to a union. You must store the
union membership number of each employee. You can assume that each employee is
uniquely identified by a social security number.

• The airport has a number of tests that are used periodically to ensure that airplanes are
still airworthy. Each test has a Federal Aviation Administration (FAA) tf'l§t number, a
name, and a maximum possible score.

• The FAA requires the airport to keep track of each time a given airplane is tested by a
given technician using a given test. For each testing event, the information needed is the
date, the number of hours the technician spent doing the test, and the score the airplane
received on the test.

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes
of each entity and relationship set; also specify the key and participation constraints for
each relationship set. Specify any necessary overlap and covering constraints as well (in
English).

2. The FAA passes a regulation that tests on a plane must be conducted by a technician
who is an expert on that model. How would you express this constraint in the ER
diagram? If you cannot express it, explain briefly.

Exercise 2. 7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life
time supply of medicine if you design its database. Given the rising cost of health care, you
agree. Here's the information that you gather:

• Patients are identified by an SSN, and their names, addresses, and ages must be recorded.

•

•
•

Doctors are identified by an SSN. For each doctor, the name, specialty, and years of
experience must be recorded .

Each pharmaceutical company is identified by name and has a phone number.

For each drug, the trade name and formula must be recorded. Each drug is sold by
a given pharmaceutical company, and the tr_i'Lde name identifies a drug uniquely from
among the products of that company. If a pharmaceutical company is deleted, you need
not keep track of its products any longer.

• Each pharmacy has a name, address, and phone number.

• Every patient has a primary physician. Every doctor has at least one patient.

• Each pharmacy sells several drugs and has a price for each. A drug could be sold at
several pharmacies, and the price could vary from one pharmacy to another.

HULU EXHIBIT 1055
Page 84 of 130

Introduction to Database Design 55

• Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for
several patients, and a patient could obtain prescriptions from several doctors. Each
prescription has a date and a quantity associated with it. You can assume that, if a
doctor prescribes the same drug for the same patient more than once, only the last such
prescription needs to be stored.

• Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical
company can contract with several pharmacies, and a pharmacy can contract with several
pharmaceutical companies. For each contract, you have to store a start date, an end date,
and the text of the contract.

• Pharmacies appoint a supervisor for each contract. There must always be a supervisor
for each contract, but the contract supervisor can change over the lifetime of the contract.

1. Draw an ER diagram that captures the preceding information. Identify any constraints
not captured by the ER diagram.

2. How would your design change if each drug must be sold at a fixed price by all pharma
cies?

3. How would your design change if the design requirements change as follows: If a doctor
prescribes the same drug for the same patient more than once, several such prescriptions
may have to be stored.

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on
databases because you love to cook data and you somehow confused database with data baste.
Your old love is still there, however, so you set up a database company, ArtBase, that builds a
product for art galleries. The core of this product is a database with a schema that captures
all the information that galleries need to maintain. Galleries keep information about artists,
their names (which are unique), birthplaces, age, and style of art. For each piece of artwork,
the artist, the year it was made, its unique title, its type of art (e.g., painting, lithqgraph,
sculpture, photograph), and its price must be stored. Pieces of artwork are also classified into
groups of various kinds, for example, portraits, still lifes, works by Picasso, or works of the
19th century; a given piece may belong to more than one group. Each group is identified by
a name (like those just given) that describes the group. Finally, galleries keep information
about customers. For each customer, galleries keep that person's unique-name, address, total
amount of do1lars spent in the gallery (very important!), and the artists and groups of art
that the customer tends to like.

Draw the ER diagram for the database.

Exercise 2.9 Answer the following questions.

• Explain the following terms briefly: UML, use case diagrams, statechart diagrams, class
diagrams, database diagrams, component diagrams, and deployment diagrams.

• Explain the relationship between ER diagrams and UML.

BIBLIOGRAPHIC NOTES

Several books provide a gGod treatment of conceptual design; these include [63] (which also
contains a survey of commercial database design tools) and [730].

The ER model was proposed by Chen [172], and extensions have been proposed in a number
of subsequent papers. Generalization and aggregation were introduced in [693]. [390, 589]

HULU EXHIBIT 1055
Page 85 of 130

''
II
II

II "
Ill

II·

I~ 1' Iii

''I •'

''

56 CHAPTER 2

contain good surveys of semantic data models. Dynamic and temporal aspects of semantic
data models are discussed in [749].

[731] discusses a design methodology based on developing an ER diagram and then translating
it to the relational model. Markowitz considers referential integrity in the context of ER to
relational ~apping and discusses the support provided in some commercial systems (as of
that date) in [513, 514].

The entity-relationship conference proceedings contain numerous papers on conceptual design,
with an emphasis on the ER model; for example, [698].

The OMG home page (www. omg. org) contains the specification for UML and related modeling
standards. Numerous good books discuss UML; for example [105, 278, 640] and there is a
yearly conference dedicated to the advancement of UML, the International Conference on the
Unified Modeling Language.

View integration is discussed in sev~ral papers, including [97, 139, 184, 244, 5~5, 551, 550,
685, 697, 748]. [64] is a survey of several integration approaches.

HULU EXHIBIT 1055
Page 86 of 130

3
THE RELATIONAL MODEL

rr How is data represented in the relational model?

rr What integrity constrainfs can be expressed?

,.. How can data be created and modified?

rr How can data be manipulated and queried?

,.. How can we create, modify, and 9uery tables using SQL?

,.. How do we obtain a relational database design from an ER diagram?

rr What are views and why are they used?

.. Key concepts: relation, schema, instance, tuple, field, domain,
degree, cardinality; SQL DDL, CREATE TABLE, INSERT, DELETE,
UPDATE; integrity constraints, domain constraints, key constraints,
PRIMARY KEY, UNIQUE, foreign key constraints, FOREIGN KEY; refer
ential integrity maintenance, deferred and immediate constraints; re
lational queries; logical database design, translating ER diagrams to
relations, expressing ER constraints using SQL; views, views and log
ical independence, security; creating views in SQL, updating views,
querying views, dropping views

TABLE: An arrangement of words, numbers, or signs, or combinations of them,
as in parallel columns, to exhibit a set of facts or relations in a definite, compact,
and comprehensive form; a synopsis or scheme.

-Webster's Dictionary of the English Language

Codd proposed the relational data model in 1970. At that time, most database
systems were based on one of two older data models (the hierarchical model

57

HULU EXHIBIT 1055
Page 87 of 130

ililf

!ii!~
11111

11

II:·
11.1

II~

'i "' i'
Iii:

11:1

I Iii

Iii

!!11

1;1111

I I

58 CHAPTER 3

SQL. Originally developed as the query.i language of the pioneering
System-R relational DBMS at IBM, structured query language (SQL)
has become the most widely used language for creating, manipulating,
and querying relational DBMSs. Since many vendors offer SQL products,
there is a need for a standard that defines 'official SQL.' The existence of
a standard allows users to measure a giverl vendor's version of SQL for
completeness. It also allows users to distinguish SQL features specific to
one product fr9m those that are standard; an application that rel~es on
nonstandard features is less portable.

The first SQL standard was developed in 1986 by the American National
Standards Institute (ANSI) and was called SQL-86. There was a minor
revision in 1989 called SQL-89 and a major revision in 1992 called SQL-
92. The International Standards Organization (ISO) collaborated with
ANSI to develop SQL-92. Most commercial DBMSs currently support (the
core subset of) SQL-92 and are working to support the recently adopted
SQL:19'99 version of the standard, a major extension of SQL-92. Our
coverage of SQL is based on SQL:1999, but is applicable to SQL-92 as
well; features unique to SQL:1999 are explicitly noted.

and the network model); the relational model revolutionized the database field
and largely supplanted these earlier models. Prototype relational database
management systems were developed in pioneering research projects at IBM
and UC-Berkeley by the mid-1970s, and several vendors were offering relational
database products shortly thereafter. To.day, the relational model is by far
the dominant data model and the foundation for the leading DBMS products,
including IBM's DB2 family, Informix, Oracle, Sybase, Microsoft's Access and
SQLServer, FoxBase, and Paradox. Relational database systems are ubiquitous
in the marketplace and represent a multibillion dollar industry.

The relational model is very simple and elegant: a database is a collection of
one or more relations, where each relation is a table with rows and columns.
This simple tabular representation enables even novice users to understand the
contents of a database, and it permits the use of simple, high-level languages 'J
to query the data. The major advantages of the relational model over the older
data models are its simple data representation and the ease with which even
complex 'queries can be expressed.

While we concentrate on the underlying concepts, we also introduce the Data
Definition Language (DDL) features of SQL, the standard language for
creating, manipulating, and querying data in a relational DBMS. This allows
us to ground the discussion firmly in terms of real database sy.stems.

I

HULU EXHIBIT 1055
Page 88 of 130

The Relational Model 59

We discuss the concept of a relation in· Section 3.1 and..show how to create
relations using the SQL language. An important component of a data model is
the set-of constructs it provides for specifying conditions that must be satisfied
by the data. Such conditions, called integrity constraints (ICs), enable the
DBMS to reject operations that might corrupt the data. We present integrity
constraints in the relational model in Section 3.2, along with a discussion of
SQL support for ICs. We discuss how a DBMS enforces integrity constraints

t
1

in Section 3.3.

• !

In Section 3.4, we turn to the m~chanism for accessing and retrieving data
from the database, query languages, and introduce the querying features of
SQL, which we examine in greater detail in a later chapter.

We then discuss converting an ER diagram into a relational database schema
in Section 3.5. We introduce views, or tables defined vsing queries, in Section
3.6. Views can be used to define the external schema for a database and thus
provide the support for logical data independence in the relational model. In
Section 3.7, we describe SQL commands to destroy and alter tables and views.

Finally, in Section 3.8 we extend our design ca:Se study, the Internet shop in
troduced in Section 2.8, by showing how the ER diagram for its conceptual
schema can be mapped to the relational model, and how the use of ·views can
help in this design.

! 3.1 INTRODUCTION TO THE RELATIONAL MODEL
I

The main construct for representing data in the relational model is a relation.
A relation <:onsists of a relation schema and a relation instance. The
relation instance is a table, and the relation schema de,?cribes the column heads
for the table. We first describe the relation schema and then the relation
instance. The schema specifies the relation's name, the name of each field (or
column, or attribute), and the domain of each field. A domain is referred to
in a relation schema by the domain name and has a set of associated values.

We use the example of student information in a university database from Chap
ter 1 to illustrate the parts of a relation schema:

Students(sid: string, name: string, login: string,
age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string.
The set of valu,f3s associated with domain string is the set of all character
strings.

HULU EXHIBIT 1055
Page 89 of 130

T

• 11·1

I"
I
i

60 CHAPTER 3

We now turn to the instances of a relation. An instance of a relation is a set
of tuples, also called records, in which each tuple has the same number of
fields as the relation schema. A relation instance can be thought of as a table
in which each tuple is a row, and all rows have the same number of fields. (The
term relation instance is often abbreviated to just relation, when there is no
confusion with other aspects of a relation such as its schema.)

An instance of the Students relation appears in Figure 3.1. The instance Sl

Field names FIELDS (ATIRIBUTES, COLUMNS)

I ~id name login / age / gpa I
-1 50000 Dave dave@cs 19 3.3

7 53666 Jones jones@cs 18 '3.4

TUPLES >- 5~88 Smith smith@ee 18 3.2

(RECORDS,
..:,._ 53650 Smith smith@math 19 3.8

ROWS) ~ 53831 Maday an µiadayan@music 11 1.8
~ 53832 Guldu guldu@music 12 2.0

Figure 3.1 An Instance Sl of the Students Relation

contains six tuples and has, as we ~xpect from the schema, five fields. Note that
no two rows are identical. This is a requirement of the relational model-each
relation is defined to be a set of unique tuples or rows.

In practice, commercial systems allow tables to have duplicate rows, but we
assume that a relation is indeed a set of tuples unless otherwise noted. The
order in which the rows are listed is not important. Figure 3.2 shows the same
relation instance. If the fields are named, as in our schema definitions and

I sid I name I login I age l gpa I
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music ' 12 2.0
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8
53666 Jones jones@cs 18 3.4
50000 Dave dave@cs 19 3.3

Figure 3.2 An Alternative Representation of Instance Sl of Students

figures depicting relation instances, the order of fields does not matter either.
However, an alternative convention is to list fields in a specific order and refer

HULU EXHIBIT 1055
Page 90 of 130

The Relational Model 61

to a field by its position. 'J;'hus, sid is field 1 of ,Students, login is field 3,
and so on. If this convention is used, the order of fields is significant. Most
database systems use a combination of these conventions. For example, in SQL,
the named fields convention is used in statements that retrieve tuples and the
ordered field~ convention is commonly used when inserting tuples.

A relation schema specifies the domain of each field or column in the relation
instance. These domain constraints in the schema specify an important
condition that we want each instance of the relation to satisfy: The values
that appear in a column must be drawn from the domain associated with that
column. Thus, the domain of a neld is essentially the type of that field, in
programming language terms, and restricts the values that can appear in the
field.

More formally, let R(fi:D1, ... , f n:Dn) be a relation schema, and for each Ji,
1 ~ i ~ n, let Dami be the set of values associated with the domain named Di.
An instance of R that satisfies the domain constraints in the schema is a set of
tuples with n fields:

{(Ji: di, ... ,Jn: dn) I di E Domi, ... ,dn E Damn}

The angular brackets (...) identify the fields of a tuple. Using this notation,
the first Students tuple shown in Figure 3.1 is written as (sid: 50000, name:
Dave, login: dave@cs, age: 19, gpa: 3.3}. The curly brackets{ ... } denote a set
(of tuples, in this definition}. The vertical bar I should be read 'such that,' the
symbol E should be read 'in,' and the expression to the right of the vertical
bar is a condition that must J:>e satisfied by the field values of each tuple in the
set. Therefore, an instance of R is defined as a set of tuples. The fields of each
tuple must correspond to the fields in the relation schema.

Domain constraints are so fundamental in the relational model that we hence
forth consider only relation instances that satisfy them; therefore, relation
instance means relation instance that satisfies the domain constraints in the
relation schema.

The degree, also called arity, of a relation is the number of fields. The car
dinality of a relation instance is the number of tuples in it. In Figure 3.1, the
degree of the relation (the number of columns) is five, and the cardinality of
this instance is six.

A relational database is a collection of relations with distinct relation names.
The relational database schema is the collection of schemas for the relations
in the database. For example, in Chapter 1, we discussed a university database
with relations called Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In. An instance of a relational database is a collection of relation

HULU EXHIBIT 1055
Page 91 of 130

,II

!
. I

62 CHAPTER 3

instances, one per relation schema in the database schema; of course, each
relation instance must satisfy the domain constraints in its schema.

3.1.1 Creating and Modifying Relations Using SQL

The SQL language standard uses the word tab~e to denote relation, and we often
follow this conventioi;i when discussing SQL. The subset of SQL that' supports
the creation, deletion, and modification of tables is called the Data Definition
Language (DDL). Further, while there is a command that lets users define new
domains, analogous to type definition coµim,ands in a programming language,
we postpone a discussion of domain definition until -Section 5.7. For now, we
only consider domains that are built-in types, such as integer.

The CREATE TABLE statement is used to define a new table. 1 To create the
Students relation, we can use the following statement:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL)

Tuples are inserted using the INSERT command. We can insert a single tuple
into the Students table as follows:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, 'Smith', 'smith@ee', 18, 3.2)

We can optionally omit the list of column names in the INTO clause and list
the values in the appropriate order, but it is good style to be explicit about
column names.

We can delete tuples using the DELETE command. We can delete all Students
tuples with name equal to Smith using the command:

DELETE
FROM Students S
WHERE S:name = 'Smith'

1SQL also provides statements to destroy tables and to change the columns associated with a table;
we discuss these in Section 3.7.

.
I~

I

HULU EXHIBIT 1055
Page 92 of 130

The Relational Model 63

We can modify the column values in an existing row using the UPDATE com
mand. For example, we can increment the age and decrement the gpa of the
student with sid 53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa - 1
WHERE S.sid = 53688

1t These examples illustrate some important 'points. The WHERE clause is applied
first and determines which rows are to be modified. The SET clause then
determines how these rows are to be modified. If the column being modified is
also used to determine the new value, the value used in, the expression on the
right side of equals (=) is the old value, that is, before the modification. To
illustrate these points further, consider the following variation of the previous
query:

UPDATE Students S
SET S.gpa = S.gpa - 0.1
WHERE S.gpa >= 3.3

If this query is applied on the instance SI of Students shown in Figure 3.1, we
obtain the instance shown in Figure 3.3.

I sid I name I login I age I gpa l
50000 Dave dave@cs 19 3.2
53666 Jones jones@cs 18 3.3
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.7
53831 Madayan niadayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.3 Students Instance Sl after Update

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS

A database is only as good as the information stored in it, and a DBMS must
therefore help prevent the entry of incorrect information. An integdty con
straint (IC) is a condition specified on a database schema and restricts the
data that can be stored in an instance of the database. If a database instance
satisfies' all the integrity constraints specified on the database schema, it is a
legal instance. A DBMS enforces integrity constraints, in that it permit& only
legal instances to be stored in the database.

Integrity constraints are specified and enforced at different times:

HULU EXHIBIT 1055
Page 93 of 130

II

: I

,, 1f

I
.. ii

64 CHAPTER 3

1. When the DBA or end user defines a dataqase schema, he or she specifies
the ICs that must hold cm any instance of this qatf}.base.

2. When a database application is run, the DEM'S' checks for violations and
disallows changes to the data that violate the specified ICs. (In some
situations, rather than disallow the change, the DBMS might make some
compensating changes to the data to ensure that the database instance
satisfies all ICs. In any case, changes to the database are not allowed to
create an instance that violates any IC.) It is important to specify exactly
when integrity constraints are checked relative to the statement that causes
the change in the data and the transaction that it is part of. We discuss
this aspect in Chapter 16, after presenting the transaction concept, which
we introduced in Chapter 1, in more detail.

Many kinds of integrity constraints can be specified in the relational model.
We have already seen one example of an integrity constraint in tlie domain
constraints associated with a relation schema (Section 3.1). In general, other
kinds of constraints can be specified as well; for example, no two students
have the same sid value. In this section we discuss the integrity constraints,
other than domain constraints, that a DBA or user can specify in the relational
model.

3.2.1 Key Constraints

Consider the Students 'relation and the constraint that no two students have the
same student id. This IC is an example of a key constr'aint. A key constraint
is a statement that a certain minimal subset of the fields of a relation is a
unique identifier for a tuple. A set of fields that uniquely identifies a tuple
according to a key constraint is called a candidate key 'for the relation; we
often abbreviate this to just key. In the case of the Students relation, the (set
of fields containing just the) sid field is a candidate key.

Let us take a closer look at the above definition of a (candidate) key. There
are two parts to the definition:2

1. Two distinct tuples in a legal instance (an instance that satisfies all ICs,
including the key constraint) cannot have identical values in all the fields
of a key.

2. No subset of the set of fields in a key is a unique identifier for a tuple.

2 The term key is rather overworked. In the context of access methods,_ yve speak of search keys,
which are quite different.

HULU EXHIBIT 1055
Page 94 of 130

The Relational Model 65

The first part of the definition means that, in any legal instance, the values in
the key fields uniquely identify a tuple in the instance. When specifying a key
constraint, the DBA or user must be sure that this constraint will not prevent
them from storing a 'correct' set of tuples. (A similar comment applies to the
specification of other kinds of I Cs as well.) The notion of 'correctness' here
depends on the nature of the data being stored. For example, several students
may have the same name, although each student has a unique student id. If
the name field is declared to be a key, the DBMS will not allow the Students
relation to contain two tuples describing different students with the same name!

The second part of the definition means, for example, that the set of fields
{ sid, name} is not a key for Students, because this set properly contains the
key {sid}. The set {sid, name} is an example of a superkey, which is a set of
fields that contains a key.

Look again at the instance of the Students relation in Figure 3.1. Observe that
two different rows always have different sid values; sid is a key and uniquely
identifies a tuple. However, this does not hold for nonkey fields. For example,
the relation contains two rows with Smith in the name field.

Note that every relation is guaranteed to have a key. Since a relation is a set of
tuples, the set of all fields is always a superkey. If other constraints hold, some
subset of the fields may form a key, but if not, the set of all fields is a key.

A relation may have several candidate keys. For example, the login and age
fields of the Students relation may, taken together, also identify students uniquely.
That is, {login, age} is also a key. It may seem that login is a key, since no
two rows in the example instance have the same login value. However, the key
must identify tuples uniquely in all possible legal instances of the relation. By
stating that {login, age} is a key, the user is declaring that two students may
have the same login or age, but not both.

Out of all the available candidate keys, a database designer can identify a
primary key. Intuitively, a tuple can be referred to from elsewhere in the
database by storing the values of its primary key fields. For example, we can
refer to a Students tuple by storing its sid value. As a consequence of referring
to student tuples in this manner, tuples are frequently accessed by specifying
their sid value. In principle, we can use any key, not just the primary key,
to refer to a tuple. However, using the primary key is preferable because it
is what the DBMS expects-this is the significance of designating a particular
candidate key as a primary key-and optimizes for. For example, the DBMS
may create an index with the prim~ry key fields as the search key, to make the
retrieval of a tuple given its primary key value efficient. The idea of referring
to a tuple is developed further in the next section.

HULU EXHIBIT 1055
Page 95 of 130

66 CHAPTER 3

Specifying Key Constraints in SQL

In SQL, we can declare that a subset of the coiumns of a table constitute a key
by using the UNIQUE constraint. At mpst one of these candidate keys can be
declared to be a primary key, using the PRIMARY K£Y constraint. (SQL does
not require that such constraints be declared for a table.)

Let us revisit our example table definition and specify key information:

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
gpa REAL,
UNIQUE (name, age),
CONSTRAINT StudentsKey PRIMARY' KEY (sid))

This definitiOn says that sid is the primary key and the combination of name
and age is also a key. The definition of the primary key also illustrates how
we can name a constraint by preceding it with CONSTRAINT constraint-name.
If the constraint is violated, the constraint name is returned and can be used
to identify the error.

3.2.2 Foreign Key Constraints

Sometimes the information stored in a relation is linked to the information
stored in another relation. If one of the relations is modified, the other must be
checked, and perhaps modified, to keep the data consistent. An IC involving
both relations must be specified if a DBMS is to make such checks. The most
common IC involving two relations is a foreign key constraint.

Suppose that, in addition to Students, we have a second relation:

Enrolled(studid: string, cid: string, grade: string)

To ensure that only bona fide students can enroll in courses, any value that
appears in the studid field of an instance of the Enrolled relation should also
appear in the sid field of some tuple in the Students relation. The studid field
of Enrolled is called a foreign key and refers to Students. The foreign key in
the referencing relation (Enrolled, in our example) must match the primary key
of the referenced relation .(Students); that is, it must have the same number
of columns and compatible data types, although the column names can be
different.

HULU EXHIBIT 1055
Page 96 of 130

The Relational Model 67

This constraint is illustrated in Figure 3.4. As the figure shows, there may well
be some Students tuples that are not referenced from Enrolled (e.g., the student
with sid=50000). However, every studid value that appears in the instance of
the Enrolled table appears in the primary key column of a row in the Students
table.

Foreign key Primary key
,---------.,

cid I grade I studid / I>'." sid I name login age / gpa I
CarnaticlOl c 53831 50000 Dave dave@cs 19 3.3

Reggae203 B 53832 53666 Jones jones@cs 18 3.4

Topology 112 A 53650 53688 Smith smith@ee 18 3.2

History105 B 53666 53650 Smith smith@math 19 3.8

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

Enrolled (Referencing relation) Students (Referenced relation)

Figure 3.4 Referential Integrity

If we try to insert the tuple (55555, Art104, A) into El, the IC is violated be
cause there is no tuple in Sl with sid 55555; the database system should reject
such an insertion. Similarly, if we qelete the tuple (53666, Jones, jones@cs, 18,
3.4) from Sl, we violate the foreign key constraint because the tuple (53666,
Historyl 05, B) in El contains studid value 53666, the sid of the deleted Stu
dents tuple. The DBMS should disallow the deletion or, perhaps, also delete
the Enrolled tuple that refers to the deleted Students tuple. We discuss foreign
key const~aints and their impact on updates in Section 3.3.

Finally, we note that a,foreign key could refer to the same relation. For example,
we could extend the Students relation with a column called partner and declare
this column to be a foreign key referring to Students. Intuitively, every student
could then have a partner, and the partner field contains the partner's sid. The
observant reader will no doubt ask, "What if a student does not (yet) have
a partner?" This situation is handled in SQL by using a special value called
null. The use of null in a field of a tuple means.that value in that field is either
unknown or not applicable (e.g., we do not know the partner yet or there is
no partner). The appearance of null in a foreign key field does not violate the
foreign key constraint. However, null values are not allowed to appear in a
primary key field (because the primary key fields are used to identify a tuple
uniquely). yYe discuss null values further in Chapter 5.

HULU EXHIBIT 1055
Page 97 of 130

1!
ii

•'
:1

68 CHAPTER 3

Specifying Foreign Key Constraints in SQL

Let us define Enrolled(studid: string, cid: string, grade: string):

CREATE TABLE Enrolled (studid CHAR(20),
cid CHAR(20),
grade CHAR (10) ,

PRIMARY KEY (studid, cid),
FOREIGN KEY (studid) REFERENCES Students)

The foreign key constraint states that every studid value in Enrolled must also
appear in Students, that is, studid in Enrolled is a foreign key referencing Stu-·
dents. Specifically, every studid value in Enrolled must appear as the value in
the primary key field, sid, of Students. Incidentally, the primary key constraint
for Enrolled states that a student has exactly one grade for each course he or
she is enrolled in. If we want to record more than one grade per student per
course, we should change the primary key constraint.

3.2.3 General Constraints

Domain, primary key, and foreign key constraints are considered to be a fun
damental part of the relational data model and are given special attention in
most commercial systems. Sometimes, however, it is necessary to specify more
general constraints.

For example, we may require that student ages be within a certain range of
values; given such an IC specification, the DBMS rejects inserts and updates
that violate the constraint. This is very useful in preventing data entry errors.
If we specify that all students must be at least 16 years old, the instance of
Students shown in Figure 3.1 is illegal because two students are underage. If
we disallow the insertion of these two tuples, we have a legal instance, as shown
in Figure 3.5.

sid
•ri I agejgpal

53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53650 Smith smith@math 19 3.8

Figure 3.5 An Instance 82 of the Students Relation

The IC that students must be older than 16 can be thought of as an extended
domain constraint, since we are essentially defining the set of permissible age

1

HULU EXHIBIT 1055
Page 98 of 130

The Relational Model 69

values more stringently than is possible by simply using a standard domain
such as integer. In general, however, constraints that go well beyond domain,
key, or foreign key constraints can be specified. For example, we could require
that every student whose age is greater than 18 must have a gpa greater than
3.

Current relational database systems support such general constraints in the
I, form of table constraints and assertions. Table constraints are associated with a

single table and checked whenever that table is modified. In contrast, assertions
involve several tables and are checked whenever any of these tables is modified.
Both table constraints and assertions can use the full power of SQL queries to
specify the desired restriction. We discuss- SQL support for table constraints
and assertions in Section 5.7 because a full appreciation of their power requires
a good grasp of SQL's query capabilities.

3.3 ENFORCING INTEGRITY CONSTRAINTS

As we observed earlier, ICs are specified when a relation is created and enforced
when a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE
constraints is straightforward: If an insert, delete, or update command causes
a violation, it is rejected. Every potential IC violation is generally checked at
the end of each SQL statement execution, although it can be deferred until the
end of the transaction executing the statement, as we will see in Section 3.3.1.

Consider the instance Sl of Students shown in Figure 3.1. The following inser
tion violates the primary key constraint because there is already a tuple with
the sid 53688, and it will be rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, 'Mike', 'mike@ee', 17, 3.4)

The following insertion violates the constraint that the primary key cannot
contain null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, 'Mike', 'mike@ee', 17, 3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a
value in a field that is not in the domain associated with that field, that is,
whenever we violate a domain constraint. Deletion does not cause a violation
of domain, primary key or unique constraints. However, an update can cause
violations, similar to an insertion:

HULU EXHIBIT 1055
Page 99 of 130

·1

! '

lilt

i ·! . I;
'

70

UPDATE Students S
SET S.sid = 50000
WHERE S .sid = 53688

CHAPTER 3

This update violates the primary key constraint because there is already a tuple
with sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes
tries to rectify a foreign key constraint violation instead of simply rejecting the
change. We discuss the referential integrity enforcement steps taken by
the DBMS in terms of our Enrolled and Students tables, with the foreign key
constraint that Enrolled.sid is a reference to (the primary key of) Students.

In addition to the instance SI of Students, consider the instance of Enrolled
shown in Figure 3.4. Deletions of Enrolled tuples do not violate~referential
integrity, but insertions of Enrolled tuples could. The following insertion is
illegal because there is no Students tuple with sid 51111:

INSERT
INTO Enrolled (cid, grade, studid)
VALUES ('HindilOl', 'B', 51111)

On the other hand, insertions of Students tuples do not violate referential
integrity, and deletions of Students tuples could cause violations. Further,
updates on either Enrolled or Students that change the studid (respectively,
sid) value could potentially violate referential integrity.

SQL provides several alternative ways to handle foreign key violations. We
must consider three basic questions:

1. What should we do if an Enrolled row is inserted, with a studid column
value that does not appear in any row of the Students table?

In this case, the INSERT command is simply rejected.

2. What should we do if a Students row is deleted?

The options are:

• Delete all Enrolled rows that refer to the deleted Students row.

• Disallow the deletion of the Students row if an Enrolled row refers to
it.

• Set the studid column to the sid of some (existing) 'default' student,
for every Enrolled row that refers to the deleted Students row.

HULU EXHIBIT 1055
Page 100 of 130

The Relational Model 71

• For every Enrolled row that refers to it, set the studid column to null.
In our example, this option conflicts with the fact that studid is part
of the primary key of Enrolled and therefore cannot be set to null.
Therefore, we are limited to the first three options in our example,
although this fourth option (setting the foreign key to nul0 is available
in general.

3. What should we do if the primary k~y value of a Students row is updated?

The options here are similar to the previous case.

SQL allows us to choose any of the four options on DELETE and UPDATE. For
example, we can specify that when a Students row is deleted, all Enrolled rows
that refer to it are to be deleted as well, but that when the sid column of a
Students row is modified, this update is to be rejected if an Enrolled row refers
to the modified Students row:

CREATE TABLE Enrolled (studid CHAR(20),
cid CHAR(20),

grade CHAR(10),

PRIMARY KEY (studid, cid),
FOREIGN KEY (stvdid) REFERENCES Students

ON DELETE CASCADE

ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default
option is NO ACTION, which means that the action (DELETE or UPDATE) is to be
rejected. Thus, the ON UPDATE clause in our example could be omitted, with
the same ejfect. The CASCADE keyword says that, if a Students row is deleted,
all Enrolled rows that refer to it are to be deleted as well. If the UPDATE clause
specified CASCADE, and the sid column of a Students row is updated, this update
is also carried out in each Enrolled row that refers to the updated Students row.

If a Students row is deleted, we can switch the enrollment to a 'default' student
by using ON DELETE SET DEFAULT. The default student is specified as part of
the definition of the sid field in Enrolled; for example, sid CHAR(20) DEFAULT

'53666'. Although the specification of a default value is appropriate in some
situations (e.g., a default parts supplier if a particular supplier goes out of
business), it is really not appropriate to switch enrollments to a default student.
The correct solution in this example is to also delete all enrollment tuples for
the deleted stuaent (that is, CASCADE) or to reject the update.

SQL also allows the use of null as the default value by specifying ON DELETE

SET NULL.

HULU EXHIBIT 1055
Page 101 of 130

'm
72 CHAPTER 3

3.3.1 Transactions and Constraints

As we saw in Chapter 1, a program that runs against a database is called a
transaction, and it can contain several statements (queries, inserts, updates,
etc.) that access the database. If (the execution of) a statement in a transac
tion violates an integrity constraint, should the DBMS detect this right away
or should all constraints be checked together just before the transaction com
pletes?

By default, a constraint is checked at the end of every SQL statement that
could lead to a violation, and if there is a violation, the statement is rejected.
Sometimes this approach is too inflexible. Qonsider the following variants of
the Students and Courses relations; every student is required to have an honors
course, and every course is required to have a grader, who is some student.

CREATE TABLE Students (sid CHAR(20),
name CHAR(30),
login CHAR(20),
age INTEGER,
honorsCHAR(10) NOT NULL,
gpa REAL)
PRIMARY KEY (sid),
FOREIGN KEY (honors) REFERENCES Courses (cid))

CREATE TABLE Courses (cid CHAR (10) ,
cname CHAR(10),
credits INTEGER,
graderCHAR(20) NOT NULL,
PRIMARY KEY (cid)
FOREIGN KEY (grader) REFERENCES Students (sid))

Whenever a Students tuple is inserted, a check is made to see if the honors
course is in the Courses relation, and whenever a Courses tuple is inserted,
a check is made to see that the grader is in the Students relation. How are
we to insert the very first course or student tuple? One cannot be inserted
without the other. The only way to accomplish this insertion is to defer the
constraint checking that would normally be carried out at the end of an INSERT
statement.

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode.

SET CONSTRAINT ConstraintFoo DEFERRED

HULU EXHIBIT 1055
Page 102 of 130

The Relational Model 73

A constraint in deferred mode is checked at commit time. In our example,
the foreign key constraints on Boats and Sailors can both be declared to be in
deferred mode. We can then insert a boat with a nonexistent sailor as the cap
tain (temporarily making the database inconsistent), insert the sailor (restoring
consistency), then commit and check that both constraints are satisfied.

'• 3.4 QUERYING RELATIONAL DATA

A relational database query (query, for short) is a question about the data,
and the answer consists of a new relation containing the result. For example,
we might want to find all students younger than 18 or all students enrolled in
Reggae203. A query language is a specialized language for writing queries.

SQL is the most popular commercial query language for a relational DBMS.
We now present some SQL examples that illustrate how easily relations can be
queried. Consider the instance of the Students relation shown in Figure 3.1.
We can retrieve rows corresponding to students who are younger than 18 with
the following SQL query:

SELECT *
FROM Students S
WHERE S.age < 18

The symbol '*' means that we retain all fields of selected tuples in the result.
Think of S as a variable that takes on the value of each tuple in Students, one
tuple after the other. The condition S.age < 18 in the WHERE clause specifies
that we want to select only tuples in which the age field has a value less than
18. This qlJBry evaluates to the relation shown in Figure 3.6.

sid name login ~,,age / gpa /
53831 Madayan madayan@music 11 1.8
53832 Guldu guldu@music 12 2.0

Figure 3.6 Students with age < 18 on Instance Sl

This example illustrates that the domain of a field restricts the operations
that are permitted on field values, in addition to restricting the values that can
appear in the field. The condition S. age < 18 involves an arithmetic comparison
of an age value with an integer and is permissible because the domain of age
is the set of integers. On the other hand, a condition such as S.age = S.sid
does not make sense because it compares an integer value with a string value,
and this comparison is defined to fail in SQL; a query containing this condition
produces no answer tuples.

HULU EXHIBIT 1055
Page 103 of 130

I'

74 CHAPTER 3

In addition to selecting a subset of tuples, a query can extract a subset of the
fields of each sel~cted tuple. We can compute the names and logins of students
who are younger than 18 with the following query:

SELECT S.name, S.login
FROM Students S
WHERE S.age < 18

Figure 3. 7 shows the answer to this query; it is obtained by applying the se
lection to the instance Sl of Students (to get the relation shown in Figure
3.6), follqwed by removing unwanted fields. Note that the order in which we
perform these operations does matter-if we remove unwanted fields first, we
cannot check the condition S.age < 18, which involves one of those fields.

l name l login 'I
Madayan madayan@music
Guldu guldu@music

Figure 3.7 Names and Logins of Students under 18

We can also combine information in the Students and Enrolled relations. If we
want to obtain the names of all students who obtained an A and the id of the
course in which they got an A, we could write the following query:

SELECT
FROM
WHERE

S.name, E.cid
Students S, Enrolled E
S.sid = E.studid AND E.grade = 'A'

This query can be understood as follows: "If there is a Students tuple S and
an Enrolled tuple E such that S.sid = E.studid (so that S describes the student
who is enrolled in E) and E.grade = 'A', then print the student's name and
the course id." When evaluated on the instances of Students and Enrolled in
Figure 3.4, this query returns a single tuple, (Smith, Topology112).

We cover relational queries and SQL in more detail in subsequent chapters.

3.5 LOGICAL DATABASE DESIGN: ER TO
RELATIONAL

The ER model is convenient for representing an initial, high-level database
design. Given an ER diagram describing a database, a standard approach is
taken to generating a relational database schema that closely approximates

.,
i
l

HULU EXHIBIT 1055
Page 104 of 130

The Relational Model 75

the ER design. (The translation is approximate to the extent that we cannot
capture all the constraints implicit in the ER design using SQL, unless we use
certain SQL constraints that are costly to check.) We now describe how to
translate an ER diagram into a collection of tables with associated constraints,
that is, a relational database schema.

3.5.1 Entity Sets to Tables

An entity set is mapped to a relation in a straightforward way: Each attribute
of the entity set becomes an attribute of the table. Note that we know both
the domain of each attribute and the (primary) key of an entity set.

Consider the Employees entity set with attributes ssn, name, and lot shown in
Figure 3.8. A possible instance of the Employees entity set, containing three

ssn lot

Figure 3.8 The Employees Entity Set

Employees entities, is shown in Figure 3.9 in a tabular format.

I ssn I name ! lot I
123-22-3666 Attishoo 48
231-31-5368 Smiley 22
131-24-3650 Smethurst 35

Figure 3.9 An Instance of the Employees Entity Set

The following SQL statement captures the preceding information, including the
domain constraints and key information:

CREATE TABLE Employees (ssn CHAR(11),
name CHAR(30),
lot INTEGER,
PRIMARY KEY (ssn))

HULU EXHIBIT 1055
Page 105 of 130

76 CHAPTER 3

3.5.2 Relationship Sets (without Constraints) to Tables

A relationship set, like an entity set, is mapped to a relation in the relational
model. We begin by considering relationship sets without key and participa
tion constraints, and we discuss how to handle such constraints in subsequent
sections. To represent a relationship, we must be able to identify each partic
ipating entity and give values to the descriptive attributes of the relationship.
Thus, the attributes of the relation include:

• The primary key attributes of each participating entity set, as foreign key
fields.

• The descriptive attributes of the relationship set.

The set of nondescriptive ~ttributes is a superkey for the relation. I£ there are
no key constraints (see Section 2.4.1), this set of attributes is a candidate key.

Consider the Works_In2 relationship set shown in Figure 3.10. Each department
has offices in several locations and we want to record the locations at which
each employee works.

budget

address Locations

Figure 3.10 A Ternary Relationship Set

All the available information about the Works_ln2 table is captured by the
following SQL definition:

CREATE TABLE Works_In2 (ssn CHAR(11),
did INTEGER,
address CHAR(20),

since DATE,
PRIMARY KEY (ssn, did, address),
FOREIGN KEY (ssn) REFERENCES Employees,

HULU EXHIBIT 1055
Page 106 of 130

The Relational Model 77

FOREIGN KEY (address) REFERENCES Locations,
FOREIGN KEY (did) REFERENCES Departments)

Note that the address, did, and ssn fields cannot take on null values. Because
these fields are part of the primary key for Works_ln2, a NOT NULL constraint
is implicit for each of these fields. This constraint ensures that these fields
uniquely identify a department, an employee, and a location in each tuple

.,t of Works.Jn. We, can also specify that a particular action is desired when a
referenced Employees, Departments, or Locations tuple is deleted, as explained
in the discussion of integrity constraints in Section 3.2. In this chapter, we
assume that the default action is appropriate except for situations in which the
semantics of the ER diagram require some other action.

Finally, consider the Reports_To relationship set shown in Figure 3.11. The

Figure 3.11 The Reports_To Relationship Set

role indicators supervisor and subordinate are used to create meaningful field
names in the CREATE statement for the Reports_ To table:

CREATE TABLE Reports_ To (
supervisor...ssn CHAR(11),

subordinate...ssn CHAR (11) ,

PRIMARY KEY (supervisor...ssn, subordinate...ssn),
FOREIGN KEY (supervisor...ssn) REFERENCES Employees(ssn),
FOREIGN KEY (subordinate...ssn) REfERENCES Employees(ssn))

Observe that we need to explicitly name the referenced field of Employees
because the field name differs from the name(s) of the referring field(s).

HULU EXHIBIT 1055
Page 107 of 130

78 CHAPTER 3

3.5.3 Translating Relationship Sets with Key Constraints

If a relationship set involves n entity sets and some m of them are linked via
arrows in the ER diagram, the key for any one of these m entity sets constitutes
a key for the relation to which the relationship set is mapped. Hence we have
m candidate keys, and one of these should be designated as the primary key.
The translation discussed in Section 2.3 from relationship sets to a relation can
be used in the presence of key constraints, taking into account this point about
keys.

Consider the relationship set Manages shown in Figure 3.12. The table cor-

ssn lot y did ~- budget

Departments

Figure 3.12 Key Constraint on Manages·

responding to Manages has the attributes ssn, did, since. However, because
each department has at most one manager, no two tuples can have the same
did value but differ on the ssn value. A consequence of this observation is that
did is itself a key for Manages; indeed, the set did, ssn is not a key (because it
is not minimal). The Manages relation can be defined using the following SQL
statement:

CREATE TABLE Manages (ssn CHAR (11) ,

did INTEGER,

since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

A second approach to translating a relationship set with key constraints is
often superior because it avoids creating a distinct table for the relationship
set. The idea is to include the information about the relationship set in the
table corresponding to the entity set with the key, taking advantage of the
key constraint. In the Manages example, because a department has at most
one manager, we can add the key fields of the Employees tuple denoting the
manager and the since attribute to the Departments tuple.

HULU EXHIBIT 1055
Page 108 of 130

The Relational Model 79

This approach eliminates the need for a separate Manages relation, and queries
asking for a department's manager can be answered without combining infor
mation from two relations. The only drawback to this approach is that space
could be wasted if several departments have no managers. In this case the
added fields would have to be filled with null values. The first translation (us
ing a separate table for Manages) avoids this inefficiency, but some important
queries require us to combine information from two relations, which can be a

t't slow operation.

The following SQL statement, defining a Dept_Mgr relation that captures the
information in both Departments and Manages, illustrates the second approach
to translating relationship sets with key constraints:

CREATE TABLE Dept_Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Note that ssn can take on null values.

This idea can be extended to deal with relationship sets involving more than
two entity sets. In general, if a relationship set involves n entity sets and some
m of them are linked via arrows in the ER diagram, the relation corresponding
to any one of the m sets can be augmented to capture the relationship.

We discuss the relative merits of the two translation approaches further. a(ter
considering how to translate relationship sets with participation constrai.nts
into tables.

3.5.4 Translating Relationship Sets with Participation
Constraints

Consider the ER diagram in Figure 3.13, which shows two relationship sets,
Manages and Works_In.

Every department is required to have a manager, due to the participation
co~straint, and at most one manager, due to the key constraint. The following
SQL statement reflects the second translation approach discussed in Section
3.5.3, an,d uses the key constraint:

HULU EXHIBIT 1055
Page 109 of 130

80 CHAPTER 3

ssn Tdname

budget

----~

did

Employees Departments

since

Figure 3.13 Manages and Works-1n

CREATE TABLE Dept_Mgr (did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,

since DATE,

PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE NO ACTION)

It also captures the participation constraint that every department must have
a manager: Because ssn cannot take on null values, each tuple of DepLMgr
identifies a tuple in Employees (who is the manager). The NO ACTION specifi
cation, which is the default and need not be explicitly specified, ensures that
an Employees tuple cannot be deleted while it is pointed to by a Dept..Mgr
tuple. If we wish to delete such an Employees tuple, we must· first change the
DepLMgr tuple to have a new employee as manager. (We could have specified
CASCADE instead of NO ACTION, but deleting all information about a department ~
just because its manager has been fired seems a bit extreme!)

The constraint that every department must have a manager cannot be cap
tured using the first translation approach discussed in Section 3.5.3. (Look
at the definition of Manages and think about what effect it' would have if we
added NOT NULL constraints to the ssn and did fields. Hint: The constraint
would prevent the firing of a manager, but does not ensure that a manager is
initially appointed for each department!) This situation is a strong argument

HULU EXHIBIT 1055
Page 110 of 130

The Relational Model 81

in favor of using the second approach for one-to-many relationships such as
Manages, especially when the entity set with the key constraint also has a total
participation constraint.

Unfortunately, there are many participation constraints that we cannot capture
using SQL, short of using table constraints or assertions. Table constraints and
assertions can be specified using the full powe:r: of the SQL query language

I~ (as discussed in Section 5.7) and are very expressive but also very expensive to
check and enforce. For example, we cannot enforce the participation constraints
on the Works_In relation without using these general constraints. To see why,
consider the WorksJn relation obtained by translating the ER diagram into
relations. It contains fields ssn and did, which are foreign keys referring to
Employees and Departments. To ensure total participation of Departments in
Works_In, we have to guarantee that every did value in Departments appears
in a tuple of Works_In. We could try to guarantee this condition by declaring
that did in Departments is a foreign key referring to WorksJ:n, but this is not
a valid foreign key constraint because did is not a candidate key for Works_In.

To ensure total participation of Departments in Works_In using SQL, we need
an assertion. We have to guarantee that every did value in Departments appears
in a tuple of Works_In; further, this tuple of Works_In must also have non-null
values in the fields that are foreign keys referencing other entity sets involved in
the relationship (in this example, the ssn field). We can ensure the second part
of this constraint by imposing the stronger requirement that ssn in WorksJ:n
cannot contain null values. (Ensuring that the participati9n of Employees in
WorksJ:n is total is symmetric.)

Another copstraint that requires assertions to express in SQL is the requirement
that each "Employees entity (in the context of the Manages relationship set)
must manage at least one department.

In fact, the Manages relationship set exemplifies most of the participation con
straints that we can capture using key and foreign key constraints. Manages is
a binary relationship set in which exactly one o'f the entity sets (Departments)
has a key constraint, and the total participation constraint is expressed on that
entity set.

We can also capture participation constraints 'using key and foreign key con
straints in one other special situation: a relationship set in which all participat
ing entity sets have key constraints and total participation. The best translation
approach in this case is to map all the entities as well as the relationship into
a single table; the details are straightforward.

HULU EXHIBIT 1055
Page 111 of 130

82 CHAPTER 3

3.5.S Translating Weak Entity Sets

A weak entity set always participates in a one-to-many binary relationship and
has ·a key constraint and total participation. The second translation approach
discussed in Section 3.5.3 is ideal in this case, but we must take into account
that the weak entity has only a partial key. Also, when an owner entity is
deleted, we want all 9wned weak entities to be deleted.

Consider the Dependents weak entity set shown in Figure 3.14, with partial
key pname. A Dependents entity can be identified uniquely only if we take the
key of the owning Employees entity and the pname of the Dependents entity,
and the Dependents entity must be deleted if the owning Employees entity is
deleted.

ssn lot
cost age

Dependents

Figure 3.14 The Dependents Weak Entity Set

We can capture the desired semantics with the following definition of the
Dep_Policy relation:

ql.EATE TABLE Dep_Policy (pname CHAR(20),
age :i:NTEGER,
cost REAL,
ssn CHAR(11),
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE)

Observe that the primary key is (pname, ssn), since Dependents is a weak
entity. This constraint is a change with respect to the translation discussed in
Section ·3.5.3. We have to ensure that every Dependents entity is asso~iated
with an Employees entity (the owner), as per the total participation constraint
on Dependents. That is, ssn cannot be null. This is ensured because ssn is
part of the primary. key. The CASCADE option ensures that info. rmation about . '

an employee's policy and dependents is deleted if the corresponding Employees
tuple is deleted.

HULU EXHIBIT 1055
Page 112 of 130

,.&,

The Relational Model 83

3.5.6 Translating Class Hierarchies

We present the two basic approaches to handling ISA hierarchies by applying
them to the ER diagram shown in Figure 3.15:

hourly_wages

Figure 3.15 Class Hierarchy

1. We can map each of the entity sets Employees, Hourly _Emps, and Con
tract_Emps to a distinct relation. The Employees relation is created as
in Section 2.2. We discuss Hourly_Emps here; ContracLEmps is han
dled similarly. The relation for Hourly_Emps includes the hourly_wages
and hours_worked attributes of Hourly_Emps. It also contains the key at
tributes of the superclass (ssn, in this example), which serve as the primary
key foi;. Hourly _Emps, as well as a foreign key referencing the superclass
(Empfoyees). For each Hourly_Emps entity, the value of the name and
lot attributes are stored in the corresponding row of the superclass (Em
ployees). Note that if the superclass tuple is deleted, the delete must be
cascaded to Hourly_Emps.

2. Alternatively, we can create just two relations, corresponding to Hourly _Emps
and ContracLEmps. The relation for Hourly _Emps includes all the at
tributes of Hourly_Emps as well as all the attributes of Employees (i.e.,
ssn, name, lot, hourly_wages, hours_worked).

The first approach is general and always applicable. Queries in which we want
to examine all employees and do not care about the attributes specific to the
subclasses are handled easily using the Employees relation. However, queries
in which we want to examine, say, hourly employees, may require us to com
bine Hourly _Emps (or Contract_Emps, as the case may be) with Employees to
retrieve name and lot.

HULU EXHIBIT 1055
Page 113 of 130

84 CHAPTER 3

The second approach is not applicable if we have employees who are neither
hourly employees nor contract employees, since there is no way to store such
employees. Also, if an employee is both an Hourly _Emps and a Contract_Emps
entity, then the name and lot values are stored twice. This duplication can lead
to some of the anomalies that we discuss in Chapt~r 19. A query that needs to
examine all employees must now examine two relations. On the other hand, a
query that needs to examine only hourly employees can now do so by examining
just one relation. The choice between these approaches clearly depends on the
semantics of the data and the frequency of common operations.

In general, overlap and covering constraints can be expressed in SQL only by
using assertions.

3.5. 7 Translating ER Diagrams with Aggregation

Consider the ER diagram shown in Figure 3.16. The Employees, Projects,

ssn

budget

--'

Figure 3.16 Aggregation

and Departments entity sets and the Sponsors relationship set are mapped as
described in previous sections. For the Monitbrs relationship set, we create a
relation with the following attributes: the key attributes of Employees (ssn), the
key attributes of Sponsors (did, pid), and the descriptive attributes of Monitors
(untiQ. This translation is essentially the standard mapping for a relationship
set, as described in Section 3.5.2.

I
1

j
i

l
I

HULU EXHIBIT 1055
Page 114 of 130

•' i

. i

The Relational Model 85

There is a special case in which this translation can be refined by dropping the
Sponsors relation. Consider the Sponsors relation. It has attributes pid, did,
and since; and in general we need it (in addition to Monitors) for two reasons:

l. We have to record the descriptive attributes (in our example, since) of the
Sponsors relationship.

2. Not every sponsorship has a monitor, and thus some (pid, did:) pairs in the
Sponsors relation may not appear in the Monitors relation.

However, if Sponsors has no descriptive attributes and has total participation
in Monitors, every possible instance of the Sponsors relation can be obtained
from the (pid, did:) columns of Monitors; Sponsors can be dropped.

3.5.8 ER to Relational: Additional Examples

Consider the ER diagram shown in Figure 3.17. We can use the key constraints

age

Dependents

Figure 3.17 Policy Revisited

to combine Purchaser information with Policies and Beneficiary information
with Dependents, and translate it into the relational model as follows:

CREATE TABLE Policies (policyid INTEGER,

cost REAL,
ssn CHAR(11) NOT NULL,

PRIMARY KEY (policyid),
FOREIGN KEY (ssn) REFERENCES Employees

ON DELETE CASCADE)

HULU EXHIBIT 1055
Page 115 of 130

86 CHAPTER 3

CREATE TABLE Dependents (pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid),
FOREIGN KEY (policyid) REFERENCES Policies

ON DELETE CASCADE)

Notice how the deletion of an employee leads to the deletion of all policies
owned by the employee and all dependents who are beneficiaries of those poli
cies. Further, each dependent is required to have a covering policy-because
policyid is pq,rt of the primary key of Dependents, there is an implicit NOT NULL
constraint. This model accurately reflects the participation constraints in the
ER diagram and the intended actions when an employee entity is deleted.

In general, there could be a chain of identifying relationships for weak entity
sets. For example, we assumed that policyid uniquely identifies a policy. Sup
pose that policyid distinguishes only the policies owned by a given employee;
that is, policyid is only a partial key and Policies should be modeled as a weak
entity set. This new assumption about policyid does not cause much to change
in the preceding discussion. In fact, the only changes are that the primary
key of Policies becomes (policyid, ssn), and as a consequence, the definition of
Dependents changes-a field called ssn is added and becomes part of both the
primary key of Dependents and the foreign key referencing Policies:

CREATE TABLE Dependents (pname CHAR (20) ,
ssn CHAR(11),
age INTEGER,
policyid INTEGER NOT NULL,
PRIMARY KEY (pname, policyid, ssn),
FOREIGN KEY (policyid, ssn) REFERENCES Policies

ON DELETE CASCADE)

3.6 INTRODUCTION TO VIEWS

A view is a table whose rows are not explicitly stored in the database but
are computed as needed from a view definition. Consider the Students and
Enrolled relations. Suppose we are often interested in finding the names and
student identifiers of students who got a grade of B in some course, together
with the course identifier. We can define a view for this purpose. Using SQL
notation:

CREATE VIEW B-Students (name, sid, course)
AS SELECT S.sname, S.sid, E.cid

HULU EXHIBIT 1055
Page 116 of 130

The Relational Model 87

FROM Students S, Enrolled E
WHERE S.sid = E.studid AND E.grade = 'B'

The view B-Students has three fields called name, sid, and course with the
same domains as the fields sname and sid in Students and cid in Enrolled.
(If the optional arguments name, sid, and course are omitted from the CREATE
VIEW statement, the column names sname, sid, and cid are inherited.)

This view can be used just like a base table, or explicitly stored table, in
defining new queries or views. Given the instances of Enrolled and Students
shown in Figure 3.4, B-Students contains the tuples shown in Figure 3.18.
Conceptually, whenever B-Students is used in a query, the view definition is
first evaluated to obtain the correspondi~g instance of B-Students, then the rest
of the query is evaluated treating B-Students like any other relation referred
to in the query. (We discuss how queries on views are evaluated in practice in
Chapter 25.)

name sid course

Jones 53666 History105
Guldu 53832 Reggae203

Figure 3.18 An Instance of the B-Students View

3.6.1 Views, Data Independence, Security

Consider the levels of abstraction we discussed in Section 1.5.2. The physical
schema for a relational database describes how the relations in the conceptual
schema are~ stored, in terms of the file organizations and indexes used. The
conceptual schema is the collection of schemas of the relations stored in the
database. While some relations in the conceptual sche:µia c(l,n also be exposed to
applications, that is, be part of the external schema of the database, additional
relations in the external schema can be defined using the view mechanism.
The view mechanism thus provides the support for logical data independence
in the relational model. That is, it can 'be used to define relations in the
external schema that mask changes in the conceptual schema pf the database
from applications. For example, if the schema of a stored relation is changed,
we can define a view with the old schema and applications that expect to see
the old schema can now use this view.

Views are also valuable in the context of security: We can define views that
give a group of users access to just the information they are allowed to see. For
example, we can define a view that allows students to see the other students'

HULU EXHIBIT 1055
Page 117 of 130

88 CHAPTER 3

name and age but not their gpa, and allows all students to access this view but
not the underlying Students table (see Chapter 21).

3.6.2 Updates on Views

The motivation behind the view mechanism is to tailor how users see the data.
Users should not have to worry about the view versus base table distinction.
This goal is indeed achieved in the case of queries on views; a view can be used
just like.any other relation in defining a query. However, it is natural to want to
specify updates on views as well. Here, unfortunately, the distinction between
a view and a base table must be kept in mind.

The SQL-92 standard allows updates to be specified only on views that are
defined on a single base table using just selection and projection, with no use of
aggregate operations. 3 Such views are called up datable views. This definition
is oversimplified, but it captures the spirit of the restrictions. An update on
such a restricted view can always be implemented by updating the underlying
base table in an unambiguous way. Consider the following view:

CREATE VIEW GoodStudents (sid, gpa)
AS SELECT S.sid, S.gpa

FROM Students S
WHERE S.gpa > 3.0

We can implement a command to modify the gpa of a GoodStudents row by
modifying the corresponding row in Students. We can delete a GoodStudents
row by deleting the corresponding row from Students. (In general, if the view
did not include a key for the underlying table, several rows in the table could
'correspond' to a single row in the view. This would be the case, for example,
if we used S.sname instead of S.sid in the definition of GoodStudents. A com
mand that affects a row in the view then affects all corresponding rows in the
underlying table.)

We can insert a GoodStudents row by inserting a row into Students, using
null values in columns of Students that do not appear in GoodStudents (e.g.,
sname, login). Note that primary key columns are not allowed to contain null
values. Therefore, if we attempt to insert rows through a view that does not
contain the primary key of the underlying table, the insertions will be rejected.
For example, if GoodStudents contained sname but not sid, we could not insert
rows into Students through insertions to GoodStudents.

3There is also the restriction that the DISTINCT operator cannot be used in updatable view defi
nitions. By default, SQL does not eliminate duplicate copies of rows from the result of a query; the
DISTINCT operator requires duplicate elimination. We discuss this point further in Chapter 5.

HULU EXHIBIT 1055
Page 118 of 130

The Relational Model 89

Updatable ¥iews in SQL:1999 The new SQL standard has expanded
the class of view definitions that are updatable, taking primary key
constraints into account. In contrast to SQL-92, a view d~finition that
contains more than one table in the FROM clause may be updatable under
the new definition. Intuitively, we can update a field of a vi~w if it is
obtained from exactly one of the underlying tables, and the primary key
of that table is included in the fields of the view.

SQL:1999 distinguishes between ;views whose rows can be modified (updat
able views) and views into whjch new rows can be inserted (insertable
into views): Views defined using the SQL constructs lJNION, INTERSECT,

and EXCEPT (which WEl dis,cuss in Chapter 5) cannot be inserted into, even
if they are updatable. Intuitively, updaFability ensures that an updated
tuple in the view ca11 .. be traced to ~xactly one tuple i11, one of the tables
used to define the view. The updatab'Hity property, however, may still not
enable us to decide into which table to ,insert .,a new tuple.

An important observation is that an INSERT or UPDATE may change the un
derlying base table so that the resulting (i.e., inserted or modified) row is not
in the view! For example, if we try to insert a row (51234, 2.8) into the view,
this row can be (padded with null values in the other fields of Students and
then) added to the underlying Students table, but it will not appear in the
GoodStudents view because it does not satisfy the view condition gpa > 3.0.
The SQL default action is to allow this insertion, but we can disallow it by
adding the clause WITH CHECK OPTION to the definition of the view. In this
case, only rows that will actually appear in the view are permissible insertions.

We caution the reader, that when a view is defined in terms of another view,
the interaction between these view definitions with respect to updates and the
CHECK OPTION clause can be complex; we not go into the details.

Need to Restrict View Updates

While the SQL rules on updatable views are more stringent than necessary,
there are some fundamental problems with updates specified on views and good
reason to limit the class of views that can be updated. Consider the Students
relation and a new relation called Clubs:

Clubs(cname: string, jyear: date, mname: string)

HULU EXHIBIT 1055
Page 119 of 130

90 CHAPTER 3

sid name logiri I age I gpa I
cname j jyear I mname j

'
50000 Dave dave@cs 19 3.3

Sailing 1996 Dave 53666 Jones jones@cs 18 3.4
Hiking 1997 Smith 53688 Smith smith@ee 18 3.2
Rowing 1998 Smith 53650 Smith smith@math 19 3.8

Figure 3.19 An Instance C of Clubs Figure 3.20 An Instance S3 of Students

I name· I login • J club J since J

Dave dave@cs Sailing 1996
Smith smith@ee Hiking 1997
Smith smith@ee Rowing 1998
Smith smith@math Hiking 1997
Smith smith@math Rowing 1998

Figure 3.21 Instance of ActiveStudents

A tuple in Clubs denotes that the student called mname has been a member of
the club cname since the date jyear.4 Suppose that we are often interested in
finding the names and logins of students with a gpa greater than 3 who belong
to at least one club, along with the club name and the date they joined the
club. We can define a view for this purpose:

CREATE VIEW ActiveStudents (name, login, club, since)
AS SELECT S.sname, S.logiri, C.cname, C.jyear

FROM Students S, Clubs C
WHERE S.sname = C.mname AND S.gpa > 3

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20.
When evaluated using the instances C and 83, ActiveStudents contains the
rows shown in Figure 3.21.

Now suppose that we want to delete the row (Smith, smith@ee, Hiking, 1991';
from ActiveStudents. How are we to do this? ActiveStudents rows are not ~
stored explicitly but computed as needed from the Students and Clubs tables
using the view definition. So we must change either Students or Clubs (or
both) in such a way that evaluating the view definition on the modified instance
does not produce the row (Smith, smith@ee, Hiking, 1997.) This task can be
accomplished in one of two ways: by either deleting the row (53688, Smith,
smith@ee, 18, 3.2) from Students or deleting the row (Hiking, 1997, Smith)

4 We remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view
updates), since it identifies students by name, which is not a candidate key for Students.

,
I
I

HULU EXHIBIT 1055
Page 120 of 130

The Relational Model 91

from Clubs. But neither solution is satisfactory. Removing the Students row
has the effect of also deleting the row (Smith, smith@ee, Rowing, 1998) from the
view ActiveStudents. Removing the Clubs row has the effect of also deleting the
row (Smith, smith@math, Hiking, 1991) from the view ActiveStudents. Neither
side effect is desirable. In fact, the only reasonable solution is to disallow such
updates on views.

Views involving more than one base table can, in principle, be safely updated.
The B-Students view we introduced at the beginning of this section is an ex
ample of such a view. Consider the instance of B-Students shown in Figure
3.18 (with, of course, the corresponding instances of Students and Enrolled as
in Figure 3.4). To insert a tuple, say (Dave, 50000, Reggae203) B-Students, we
can simply insert a tuple (Reggae203, B, 50000) into Enrolled since there is al
ready a tuple for sid 50000 in Students. To insert (John, 55000, Reggae203), on
the other hand, we have to insert (Reggae203, B, 55000) into Enrolled and also
insert (55000, John, null, null, null) into Students. Observe how null values
are used in fields of the inserted tuple whose value is not available. Fortunately,
the view schema contains the primary key fields of both underlying base tables;
otherwise, we would not be able to support insertions into this view. To delete
a tuple from the view B-Students, we can simply delete the corresponding tuple
from Enrolled.

Although this example illustrates that the SQL rules on updatable views are
unnecessarily restrictive, it also brings out the complexity of handling view
updates in the general case. For practical reasons, the SQL standard has chosen
to allow only updates on a very restricted class of views.

3.7 DESTROYING/ALTERING TABLES AND VIEWS

If we decide that we no longer need a base table and want to destroy it (i.e.,
delete all the rows and remove the table definition information), we can use
the DROP TABLE command. For example, DROP TABLE Students RESTRICT de
stroys the Students table unless some view or integrity constraint refers to
Students; if so, the command fails. If the keyword RESTRICT is replaced by
CASCADE, Students is dropped and any referencing views or integrity constraints
are (recursively) dropped as well; one of these two keywords must always be
specified. A view can be dropped using the DROP VIEW command, which is just
like DROP TABLE.

ALTER TABLE modifies the structure of an existing table. To add a column
called maiden-name to Students, for example, we would use the following com
mand:

HULU EXHIBIT 1055
Page 121 of 130

92 CHAPTER 3

ALTER TABLE Students
ADD COLUMN maiden-name CHAR(10)

The definition of Students is modified to add this column, and all existing rows
are padded with null values in this column. ALTER TABLE can also be used
to delete columns and add or drop integrity constraints on a table; we do not
discuss these aspects of the command beyond remarking that dropping columns
is treated very similarly to dropping tables or views.

3.8 CASE STUDY: THE INTERNET STORE

The next design step in our running example, continued from Section 2.8, is
logical database design. Using the standard approach d~scussed in Chapter 3,
DBDudes maps the ER diagram shown in Figure 2.20 to the relational model,
generating the following tables: •

CREATE TABLE Books (isbn CHAR(10),
title CHAR(80),
author CHAR(80),
qty _in_stock INTEGER,
price REAL,
year_published INTEGER,
PRIMARY KEY (isbn))

CREATE TABLE Orders (isbn CHAR(10),
cid INTEGER,
cardnum CHAR(16),
qty INTEGER,
order _date DATE,
ship_date DATE,
PRIMARY KEY (isbn,cid),
FOREIGN KEY (isbn) REFERENCES Books,
FOREIGN KEY (cid) REFERENCES Customers)

CREATE TABLE Customers (cid
cname
address
PRIMARY

INTEGER,
CHAR(80),
CHAR(200),

KEY (cid)

The design team leader, who is still brooding over the fact that the review
exposed a flaw in the design, now has an inspiration. The Orders table contains
the field order_date and the key for the table contains only the fields isbn and
cid. Because of this, a customer cannot order the same book on different days,

l

I
~

HULU EXHIBIT 1055
Page 122 of 130

The Relational Model 93

a restriction that was not intended. Why not add the order_date attribute to
the key for the Orders table? This would eliminate the unwanted restriction:

CREATE TABLE Orders (isbn CHAR(10),

PRIMARY KEY (isbn,cid,ship_date),
...)

The reviewer, Dude 2, is not entirely happy with this solution, which he calls
a 'hack'. He points out that no natural ER diagram reflects this design and
stresses the importance of the ER diagram as a design document. Dude 1
argues that, while Dude 2 has a point, it is important to present B&N with
a preliminary design and get feedback; everyone agrees with this, and they go
back to B&N.

The owner of B&N now brings up some additional requirements he did not
mention during the initial discussions: "Customers should be able to purchase
several different books in a single order. For example, if a customer wants to
purchase three copies of 'The English Teacher' and two copies of 'The Character
of Physical Law,' the customer should be able to place a single order for both
books."

The design team leader, Dude 1, asks how this affects the shippping policy.
Does B&N still want to ship all books in an order together? The owner of
B&N explains their shipping policy: "As soon as we have have enough copies
of an ordered book we ship it, even if an order contains several books. So it
could happen that the three copies of 'The English Teacher' are shipped today
because we have five copies in stock, but that 'The Character of Physical Law'
is shipped "bomorrow, because we currently have only one copy in stock and
another copy arrives tomorrow. In addition, my customers could place more
than one order per day, and they want to be able to identify the orders they
placed."

The DBDudes team thinks this over and identifies two new requirements: First,
it must be possible to order several different books in a single order and sec
ond, a customer must be able to distinguish between several orders placed the
same day. To accomodate these requirements, they introduce a new attribute
into the Orders table called ordernum, which uniquely identifies an order and
therefore the customer placing the order. However, since several books could be
purchased in a single order, ordernum and isbn are both needed to determine
qty and ship_date in the Orders table.

Orders are assigned order numbers sequentially and orders that are placed later
have higher order numbers. If several orders are placed by the same customer

HULU EXHIBIT 1055
Page 123 of 130

94 CHAPTER 3

on a single day, these orders have different order numbers and can thus be
distinguished. The SQL DDL statement to create the modified Orders table
follows:

CREATE TABLE Orders (ordernum INTEGER,
isbn CHAR(10),
cid INTEGER,
cardnum CHAR(16),
qty INTEGER,
order_date DATE,
ship_date DATE,
PRIMARY KEY (ordernum, isbn),
FOREIGN KEY (isbn) REFERENCES Books
FOREIGN KEY (cid) REFERENCES Customers)

~

The owner of B&N is quite happy with this design for Orders, but has realized
something else. (DBDudes is not surprised; customers almost always come up
with several new requirements as the design progresses.) While he wants all
his employees to be able to look at the details of an order, so that they can
respond to customer enquiries, he wants customers' credit card information to
be secure. To address this concern, DBDudes creates the following view:

CREATE VIEW Orderlnfo (isbn, cid, qty, order_date, ship_date)
AS SELECT ·0.cid, 0.qty, 0.order_date, 0.ship_date

FROM Orders 0

The plan is to allow employees to see this table, but not Orders; the latter is
restricted to B&N's Accounting division. We'll see how this is accomplished in
Section 21. 7.

3.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

• What is a relation? Differentiate between a relation schema and a relation
instance. Define the terms arity and degree of a relation. What are domain
constraints? (Section 3.1)

• What SQL construct ,enables the definition of a relation'? What constructs
allow modification of relation instances? (Section 3.1.1)

• What are integrity constraints? Define the terms primary key constraint
and foreign key constraint. How are these constraints expressed in SQL?
What other kinds of constraints can we express in SQL? (Section 3.2)

HULU EXHIBIT 1055
Page 124 of 130

The Relational Model 95

• What does the DBMS do when constraints are violated? What is referen
tial integr;ity? What options does SQL give application programmers for
dealing with violations of referential integrity? (Section 3.3)

• When are integrity constraints enforced by a DBMS? How can an appli
cation programmer control the time- that constraint violations are checked
during transaction execution? (Section 3.3.1)

• What is a relational database query? (Section 3.4)

• How can we translate an ER diagram into SQL statements to create ta
bles? How are entity sets mapped into relations? How are relationship
sets mapped? How are constraints iri the ER model, weak entity sets, class
hierarchies, and aggregation handled? (Section 3.5)

• What is a view? How do views support logical data independence? How
are views used for security? How are queries on views evaluated? Why
does SQL restrict the class of views that can be updated? (Section 3.6)

• What are the SQL constructs to modify the structure of tables and de
stroy tables and views? Discuss what happens when we destroy a view.
(Section 3. 7)

EXERCISES

Exercise 3.1 Define the following terms: relation schema, relational database schema, do
main, relation instance, relation cardinality, and relation degree.

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22?

L

Exercise 3;S Does the relational model, as seen by an SQL query writer, provide physical
and logical data independence? Explain.

Exercise 3.4 What is the difference between a candidate key and the primary key for a given
relation? What is a superkey?

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1.

1. Give an exampie of an attribute (or set of attributes) that you can deduce is not a
candidate key, based on this instance being legal.

2. Is there any example of an attribute (or set of attributes) that you can deduce is a
candidate key, based on this instance being legal?

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What
is referential integrity?

Exercise 3. 7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_ln defined in Section 1.5.2.

HULU EXHIBIT 1055
Page 125 of 130

(

96 CHAPTER 3

1. List all the foreign key constraints among these relations.

2. 'Give an example of a (plausible) constraint involving one or more of these relations that
is not a primary key or foreign key constraint.

Exercise 3.8 Answer each of the following questions briefly. The questions are based on the
following relational schema:

Emp(eid: integer, ename: string, age: integer, salary: real)
Works(eid: integer, did: integer, pcLtime: integer)
Dept(did: integer, dname: string, budget: real, managerid: integer)

1. Give an example of a foreign key constraint that involves the Dept relation. What are
the options for enforcing this constraint when a user attempts to delete a Dept tuple?

2. Write the SQL statements required to create the preceding relations, including appro
priate versions of all primary and foreign key integrity constraints.

3. Define the Dept relation in SQL so that every department is guarante~a to have a
manager.

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32 and
salary = 15, 000.

5. Write an SQL statement to give every employee a 10 percent raise.

6. Write an SQL statement to delete the Toy department. Given the referential integrity
constraints you chose for this schema, explain what happens when this statement is
executed.

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6.

1. Modify this query so that only the lo~in column is inclu?ed in the answer.

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples
in the answer?

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of
the Manages relation (in Section 3.5.3) would not enforce the constraint that each department
must have a manager. What, if anything, is achieved by requirin&>that the ssn field of Manages
be non-null?

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B,
and C such that A· has a key constraint and total participation and B has a key constraint;
these are the only constraints. A has attributes al and a2, with al being the key; B and
C are similar. R has no descriptive attributes. Write SQL statements that create tables
corresponding to this information so as to capture as many of tl;ie constraints as possible. If
you cannot capture some constraint, explain why.

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER diagram
for a university database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints, explain
why.

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER diagram you
designed. Write SQL statements to create the corresponding relations and capture as many
of the constraints as possible. If you cannot capture some constraints, explain why.

HULU EXHIBIT 1055
Page 126 of 130

•" f

The Relational Model 97

Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER diagram
for a company database. Write SQL statements to create the corresponding relations and
capture as many of the constraints as possible. If you cannot capture some constraints,
explain why.

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec
ommend that Notown use a relational database system to store company data. Show the
SQL statements for creating relations corresponding to the entity sets and relationship sets
in your design. Identify any constraints in the ER diagram that you are unable to capture in
the SQL statements and briefly explain why you could not express them.

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema, and
show the SQL statements needed to create the relations, using only key and null constraints.
If your translation cannot capture any constraints in the ER diagram, explain why.

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a
plane must be conducted by a technician who is an expert on that model. Can you modify
the SQL statements defining the relations obtained by mapping the ER diagram to check this
constraint?

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain· of
pharmacies in Exercise 2. 7. Define relations corresponding to the entity sets and relationship
sets in your design using SQL.

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia
gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the
ER diagram, explain why.

Exercise 3.19 Briefly answer the following questions based on this schema:

Emp(eid: integer, ename: string, age: ~nteger, salary: real)
Works(eid: integer, did: integer, pcLtime: integer)
Dept (did: integer, budget: real, managerid: in;teger)

L

1. Suppose you have a view SeniorEmp defined as follows:

CREATE VIEW SeniorEmp (sname, sage, salary)
AS SELECT E.ename, E.age, E.salary

FROM Emp E
WHERE E.age > 50

Explain what the system will do to process the following query:

SELECT S.sname
FROM SeniorEmp S
WHERE S.salary > 100,000

2. Give an example of a view on Emp that could be automatically updated by updating
Emp.

3. Give an example of a view on Emp that would be impossible to update (automatically)
and explain why your example presents the update problem that it does.

Exercise 3.20 Consider the following schema:

HULU EXHIBIT 1055
Page 127 of 130

'"I

98

Suppliers(sid: integer, sname: string, address: string)
Parts(pid: integer, pname: string, color: string)
Catalog(sid: integer, pid: integer, cost: real)

CHAPTER 3

The Catalog relation lists the prices charged for parts by Suppliers. Answer the following
questions:

• Give an example of an updatable view involving one relation.

• Give an example of an updatable view involving two relations.

• Give an example of an insertable-into view that is updatable.

• Give an example of an insertable-into view that is not updatable.

PROJECT-BASED EXERCISES

Exercise 3.21 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches,
and Meets_In in Minibase. .,~

Exercise 3.22 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and
Enrolled. Create reasonable instances of the other relations.

Exercise 3.23 What integrity constraints are enforced by Minibase?

Exercise 3.24 Run the SQL queries presented in this chapter.

BIBLIOGRAPHIC NOTES

The relational model was proposed in a seminal paper ,by Codd [187]. Childs [176] and Kuhns
[454] foreshadowed some of these developments. Gallaire and Minket's book [296] contains
several papers on the use of logic in the context of relational databases. A system based on a
variation of the relational model in which the entire database is regarded abstractly as a single
relation, called the universal relation, is described in [746]. Extensions of the relational model
to incorporate null values, which indicate an unknown or missing field value, are discussed by
several authors; for example, [329, 396, 622, 754, 790].

Pioneering projects include System R [40, 150] at IBM San Jose Research Laboratory (now
IBM Almaden Research Center), Ingres [717] at the University of California at Berkeley,
PRTV [737] at the IBM UK Scientific Center in Peterlee, and QBE [801] at IBM T. J.
Watson Research Center.

A rich theory underpins the field of relational databases. Texts devoted to theoretical aspects
include those by Atzeni and DeAntonellis [45]; Maier [501]; and Abiteboul, Hull, and Vianu
[3]. [415] is an excellent survey article.

Integrity constraints in relational databases have been discussed at length. [190] addresses
semantic extensions to the relational model, and integrity, in particular referential integrity.
[360] discusses semantic integrity constraints. [203] contains papers that address various
aspects of integrity constraints, including' in particular a detailed discussion of referential
integrity. A vast literature deals with enforcing integrity constraints. [51] compares the cost

HULU EXHIBIT 1055
Page 128 of 130

I
I

J

The Relational Model 99

of enforcing integrity constraints via compile-time, run-time, and post-execution checks. [145]
presents an SQL-based language for specifying integrity constraints and identifies conditions
under which integrity rules specified in this language can be violated. [713] discusses the
technique of integrity constraint checking by query modification. [180] discusses real-time
integrity constraints. Other papers on checking integrity constraints in databases include
[82, 122, 138, 517]. (681] considers the approach of verifying the correctness of programs that
access the database instead of run-time checks. Note that this list of references is far from
complete; in fact, it does not include any of the many papers on checking recursively specified
integrity constraints. Some early papers in this widely studied area can be found in [296] and
[295].

For references on SQL, see the bibliographic notes for Chapter 5. This book does not discuss
specific products based on the relational model, but many fine books discuss each of the major
commercial systems; for example, Chamberlin's book on DB2 [149], Date and McGoveran's
book on Sybase [206], and Koch and Laney's book on Oracle (443].

Several papers consider the problem of translating updates specified on. views into updates
on the underlying table [59, 208, 422, 468, 778]. [292] is a good survey on this topic. See
the bibliographic notes for Chapter 25 for references to work querying views and maintaining
materialized views.

(731] discusses a design methodology based on developing an ER diagram and then translating
to the relational model. Markowitz considers referential integrity in the context of ER to
relational mapping and discusses the support provided in some commercial systems (as of
that date) in (513, 514].

L

HULU EXHIBIT 1055
Page 129 of 130

I IC'!.0 .. 1 .. ,.. _ ,... ... ,.. ,.. ... _ ·-- -- •

McGraw-Hill Higher Education ~ Ill lllllllllllJ!!IU~1 tlttllllllllllllll
A Division of The McGraw-Hill Companies

Database Management Systems, 3rd Edition
Used, Like New

HULU EXHIBIT 1055
Page 130 of 130

