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PREFACE 

The advantage of doing one's praising for oneself is that one can lay it on so thick 
and exactly in the right places. 

-Samuel Butler 

Database management systems are now an indispensable tool for :rp.anaging 
information, and a course on the principles and practice of databas~ systems 
is now an integral part of computer science curricula. This book covers the 
fundamentals of modern database management systems, in particular relational 
database systems. 

We have attempted to present the material in a clear, simple style. A quantita
tive approach is used throughout with many detailed examples. An extensive 
set of exercises (for which solutions are available online to instructors) accom
panies each chapter and reinforces students' ability to apply the concepts to 
real problems. 

The book can be used with the accompanying software and programming as
signments in two distinct kinds of introductory courses: 

l. Applications Emphasis: A course that covers the principles of database 
systems, and emphasizes how they are used in developing data-intensive ap
plications. Two new chapters on application development (one on database
backed applications, and one on Java and Internet application architec
tures) have been added to the third edition, and the entire book has been 
extensively revised and reorganized to support such a course. A running 

2. 

case-study and extensive online materials (e.g., code for SQL queries and 
Java applications, online databases and solutions) make it easy to teach a 
hands-on application-centric course. 

Systems Emphasis: A course that has a strong systems emphasis and 
assumes that students have good programming skills in C and C++. In 
this case the accompanying Minibase software can be used as the basis 
for projects in which students are asked to implement various parts of a 
relational DBMS. Several central modules in the project software (e.g., 
heap files, buffer manager, B+ trees, hash indexes, various join methods) 

xxiv 
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are described in sufficient detail in the text to enable students to implement 
them, given the ( c++) class interfaces. 

Many instructors will no doubt teach a course that falls between these two 
extremes. The restructuring in the third edition offers a very modular orga
nization that facilitates such hybrid courses. The also book contains enough 
material to support advanced courses in a two-course sequence. 

Organization of the Third Edition 

The book is organized into six main parts plus a collection of advanced topics, as 
shown in Figure 0.1. The Foundations chapters introduce database systems, the 

(1) Foundations Both 
(2) Application Development Applications emphasis 
(3) Storage and Indexing Systems emphasis 
( 4) Query Evaluation Systems emphasis 
(5) Transaction Management Systems emphasis 
(6) Database Design and Tuning Applications emphasis 
(7) Additional Topics Both 

Figure 0.1 Organization of Parts in the Third Edition 

ER model and the relational model. They explain how databases are created 
and used, and cover the basics of database design and querying, including an 
in-depth treatment of SQL queries. While an instructor can omit some of this 
material l}t their discretion (e.g., relational calculus, some sections on the ER 
model or-SQL queries), this material is relevant to every student of database 
systems, and we recommend that it be covered in as much detail as possible. 

Each of the remaining five main parts has either an application or a systems 
emphasis. Each of the three Systems parts has an overview chapter, designed to 
provide a self-contained treatment, e.g., Chapter 8 is an overview of storage and 
indexing. The overview chapters can be used to provide stand-~lone coverage 
of the topic, or as the first chapter in a more detailed treatment. Thus, in an 
application-oriented course, Chapter 8 might be the only material covered on 
file organizations and indexing, whereas in a systems-oriented course it would be 
supplemented by a selection from Chapters 9 through 11. The Database Design 
and Tuning part contains a discussion of performance tuning and designing for 
secure access. These application topics are best covered after giving students 
a good grasp of database system architecture, and are therefore placed later in 
the chapter sequence. 
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Suggested Course Outlines 

The book can be used in two kinds of introductory database courses, one with 
an applications emphasis and one with a systems emphasis. 

The introductory applications-oriented course could cover the Foundations chap
ters, then the Application Development chapters, followed by the overview sys
tems chapters, and conclude with the Database Design and Tuning material. 
Chapter dependencies have been kept to a minimum, enabling instructors to 
easily fine tune what material to include. The Foundations material, Part I, 
should be covered first, and within Parts III, IV, and V, the overview chapters 
should be covered first. The only remaining dependencies between chapters 
in Parts I to VI are shown as arrows in Figure 0.2. The chapters in Part I 
should be covered in sequence. However, the coverage of algebra and calculus 
can be skipped in order to get to SQL queries sooner (although we b~lieve this 
material is important and recommend that it should be covered before SQL). 

The introductory systems-oriented course would cover the Foundations chap
ters and a seiection of Applications and Systems chapters. An important point 
for systems-oriented coi'irses is that the timing of programming projects (e.g., 
using Mini base) makes it desirable to cover some systems topics early. Chap
ter dependencies have been carefully limited to allow the Systems chapters to 
be covered as soon as Chapters 1 and 3 have been covered. The remaining 
Foundations chapters and Applications chapters can be covered subsequently. 

The book also has ample material to support a multi-course sequence. Obvi
ously, choosing an applications or systems emphasis in the introductory course 
results in dropping certain material from the course; the material in the book· 
supports a comprehensive two-course sequence that covers both applications 
and systems aspects. The Additional Topics range over a broad set of issues, 
and can be used as the core material for an advanced course, supplemented 
with further readings. 

Supplementary Material 

This book comes with extensive online supplements: 

• Online Chapter: To make space for new material such as application 
development, information retrieval, and 4Mt-, we've moved th~ coverage 
of QBE to an online chapter. Students can freely download the chapter 
from the book's web site, and solutions to exercises from this ch11pter are 
included in solutions manual. 
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Introduction, ER Model 
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SQLDDL 
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Development Internet Applications 

8 9 

J 
10 

Overview of I\ Storage and Indexin_g Data Storage Tree Indexes 

\ 

12 13 14 

4 
Relational Algebra 
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l 11 

Hash Indexes l 
15 
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, Query Evaluation Relational Operators Relational Optimizer 
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Design, Tuning 
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Authorization 

24 
Deductive 

Databases 
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25 
Data Warehousing 

and Decision Support 

29 
Further 

Reading 

Figure 0.2 Chapter Organization and Dependencies 

• Lecture Slides: Lecture slides are freely available for all chapters in 
Postscript, and PDF formats. Course instructors can also obtain these 
slides in Microsoft Powerpoint format, and can adapt them to their teach
ing needs. Instructors also have access to all figures used in the book (in 
xfig format), and can use them to modify the slides. 
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• Solutions to Chapter Exercises: The book has an unusually extensive 
set of in-depth exercises. Students can obtain solutions to odd-numbered 
chapter exercises and a set of lecture slides for each chapter through the 
Web in Postscript and Adobe PDF formats. Course instructors can obtain 
solutions to all exercises. 

• Software: The book comes with two kinds of software. First, we have 
Minibase, a small relational DBMS intended for use in systems-oriented 
courses. l'{Iinibase comes with sample assignments and solutions, as de
scribed in Appendix 30. Access is restricted to course instructors. Second, 
we offer code for all SQL and Java application development exercises in 
the book, together with scripts to create sample databases, and scripts for 
setting up several commercial DBMSs. Students can only access solution 
code for odd-numbered exercises, whereas instructors have access to all 
solutions. 

• Instructor's Manual: The book comes with an online manual that of
fers instructors comments on the material in each chapter. It provides a 
summary of each chapter and identifies choices for material to emphasize 
or omit. The manual also discusses the on-line supporting material for 
that chapter and offers numerous suggestions for hands-on exercises and 
projects. Finally, it includes samples of examination papers from courses 
taught by the authors using the book. It is restricted to course instructors. 

For More Information 

The home page for this book is at URL: 

http://www.cs.wisc.edu/-dbbook 

It contains a list of the changes between the 2nd and 3rd editions, and a fre
quently updated link to all known errors in the book and its accompanying 
supplements. Instructors should visit this site periodically or register at this 
site to be notified of important changes by email. 
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1 
OVERVIEW OF 

DATABASE SYSTEMS 

.- What is a DBMS, in particular, a relational DBMS? 

.- Why should we consider a DBMS to manage data? 

.- How is application data represented in a DBMS? 

.- How is data in a DBMS retrieved and manipulated? 

.- How does a DBMS support concurrent access and protect data during 
system failures? 

.- What are the main components of a DBMS? 

.- Who is involved with databases in real life? 

• Key concepts: database management, data independence, database 
design, data model; relational databases and queries;, sch~mas, levels 
of abstraction; transactions, concurrency and locking, recovery and 
logging; DBMS architecture; database administrator, application pro
grammer, end user 

Has everyone noticed that all the letters of the word database are typed with 
the left hand? Now the layout of the QWERTY typewriter keyboard was designed, 
among other things, to facilitate the even use of both hands. It follows, therefore, 
that writing about databases is not only unnatural, but a lot harder than it appears. 

-Anonymous 

The amount of information available to us is literally exploding, and the value 
of data as an organizational asset is widely recognized. To get the most out of 
their large and complex datasets, users require tools that simplify the tasks of 

3 
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The area of database management systems is a microcosm of computer sci
ence in general. The issues addressed and the techniques used span a wide 
spectrum, including languages, object-orientation and other programming 
paradigms, compilation, operating systems, concurrent programming, data 
structures, algorithms, theory, parallel and distributed systems, user inter
faces, expert systems and artificial intelligence, statistical techniques, and 
dynamic programming. We cannot go into all these aspects of database 
management in one book, but we hope to give the reader a sense of the 
excitement in this rich and vibrant discipline. 

managing the data and extracting usefu\ information in a timely fashion. Oth
erwise, data can become a liability, with the cost of acquiring it and managing 
it far exceeding the value derived from it. 

A database is a collection of data, typically describing the activities of one or 
more related organizations. For example, a university database might contain 
information about the following: 

• Entities such as students, faculty, courses, and classrooms. 

• Relationships between entities, such as students' enrollment in courses, 
' faculty teaching courses, and the use of rooms for courses. 

A database management system, or DBMS, is software designed to assist 
in maintaining and utilizing large collections of data. The need for such systems, 
as well as their use, is growing rapidly. The alternative to using a DBMS is 
to store the data in files and write application-specific ~ode to manage it. The 
use of a DBMS has several important advantages, as we will see in Section 1.4. 

1.1 MANAGING DATA 

The goal of this book is to present an in-depth introduction to database man
agement systems, with an emphasis ,0n how to design a database and use a 
DBMS effectively. Not surprisingly, many decisions about how to use a DBMS 
for a given application depend on what capabilities the DBMS supports effi
ciently. Therefore, to use a DBMS well, it is necessary to also understand how 
a DBMS works. 

Many kinds of database management systems are in use, but this book concen
trates on relational database systems (RDBMSs), which are by far the 
dominant type of DBMS today. The following questions are addressed in the 
core chapters of this book: 
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1. Database Design and Application Development: How can a user 
describe a rEtal-world enterprise (e.g., a university) in terms of the data 
stored in a DBMS? What factors must be considered in deciding how to 
organize the stored data? How can we develop applications that rely upon 
a DBMS? (Chapters 2, 3, 6, 7, 19, 20, and 21.) 

2. Data Analysis: How can a user answer questions about the enterprise by 
posing queries over the data in the DBMS? (Chapters 4 and 5.)1 

3. Concurrency an~Robustness: How does a DBMS allow many users to 
access data concurrently, and how does it protect the data in the event of 
system failures? (Chapters 16, 17, and 18.) 

4. Efficiency and Scalability: How does a DBMS store large datasets and 
answer questions against this data efficiently? (Chapters 8, 9, 10, 11, 12, 
13, 14, and 15.) 

Later chapters cover important and rapidly evolving topics, such as parallel and 
distributed database management, data warehousing and complex queries for 
decision support, data mining, databases and information retrieval, XML repos
itories, object databases, spatial data management, and rule-oriented DBMS 
extensions. 

In the rest of this chapter, we introduce these issues. In Section 1.2, we be
gin with a brief history of the field and a discussion of the role of database 
management in modern information systems. We then identify the benefits of 
storing data in a DBMS instead of a file system in Section 1.3, and discuss 
the advantages of using a DBMS to manage data in Section 1.4. In Section 
1.5, we consider how information about an enterprise should be organized and 
stored in & DBMS. A "user probably thinks about this information in high-level 
terms that correspond to th~ entities in the organization and their relation
ships, whereas the DBMS ultimately stores data in the form of (many, many) 
bit~. The gap between how users think of their data and how the data is ul
timately stored is bridged through 13everal levels of abstraction supported by 
the DBMS. Intuitively, a user can begin by describing the data in fairly high
level terms, then refine this description by considering additional storage and 
representation details as needed. 

In Section 1.6, we consider how 11sers can retrieve data stored in a DBMS and 
the need for techniques to efficiently compute answers to questions involving 
"such data. In Section 1. 7, we provide an overview of how a DBMS supports 
concurrent access to data by several users and how it protects the data in the 
event of system failures. 

1 An online chapter on Query-by-Example (QBE) is also available. 

HULU EXHIBIT 1055 
Page 35 of 130



1:1 -1: 

II 
"Ill 
II 

'11111 

6 CHAPTER 1 

We then briefly describe the internal structure of a DBMS in Section 1.8, and 
mention various groups of people associated with the development and use of 
a DBMS in Section 1.9. 

1.2 A HISTORICAL PERSPECTIVE 

From the earliest days of computers, storing and manipulating data have bee:b. a 
major application focus. The first general-purpose DBMS, designed by Charles' 
Bachman at General Electric in the early 1960s, was called the Integrated Data 
Store. It formed the basis for the network data model, which was standardized 
by the Conference on Data Systems Languages (CODASYL) and strongly in
fluenced database systems through the 1960s. Bachman was the firs,t recipient 
of ACM's Turing Award (the computer science equivalent of a Nobel Prize) for 
work in the database area; he received the award in 1973. 

In the late 1960s, IBM developed the Information Management System (IMS) 
DBMS, used even today in many major installations. IMS formed the basis for 
an alternative data representation framework called th~ hierarchical data model. 
The SABRE system for making airline reservations was jointly developed by 
American Airlines and IBM around the same time, and it allowed several people 
to access the same data through a computer network. Interestingly, today the 
same SABRE system is used to power popular Web-based travel services such 
as Travelocity. 

In 1970, Edgar Codd, at IBM's San Jose ·Research Laboratory, proposed a new 
data representation framework called the relational data model. This proved to 
be a watershed in the development of database systems: It sparked the rapid 
development of several DBMSs based on the relational model, along with a, rich 

I 

body of theoretical results that placed the field on a firm foundation. Codd 
won the 1981 Turing Award for his seminal work. Database systems matured 
as an academic discipline, and the popularity of relational DBMSs changed the 
commercial landscape. Their benefits were widely recognized, and the use of 
DBMSs for managing corporate data became standard practice. 

In the 1980s, the relational model consolidated its position as the dominant 
DBMS paradigm, and database systems continued to gain widespread use. The 
SQL query language for relational databases, develope~ as part of IBM's Sys
tem R project, is now the standard query language. SQL was standardized 
in the late 1~80s, and the current standard, SQL:l999, was adopted by the 
American Natipp.al Standards Institute (ANSI) and International Organization 
for Standardization (ISO). Arguably, the most widely used form of concurrent 
programming is the concurrent execution of database programs (called trans
actions). Users write programs as if they are -to be run by themselves, and 
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the responsibility for running them concurre:p.tly is given to the DBMS. James 
Gray won the 1999 Turing award for his contributions to database transaction 
management. 

In the late 1980s and the 1990s, advances were made in many areas of database 
systems. Considerable research was carried out into more powerful query lan
guages and richer data models, with emphasis placed on supporting complex 
analysis of data froI]l all parts of an enterprise. Several vendors (e.g., IBM's 
DB2, Oracle 8, Informix2 UDS) extended their systems with the ability to store 
new data types such as images and text, and to ask more complex queries. Spe
cialized systems have been developed by numerous vendors for creating data 
warehouses, consolidating data from several databases, and for carrying out 
specialized analysis. 

An interesting phenomenon is the emergence of several enterprise resource 
planning (ERP) and m.anagement resource planning (MRP) packages, 
which add a substantial layer of application-oriented features on top of a DBMS. 
Widely used packages include systems from Baan, Oracle, PeopleSoft, SAP, 
and Siebel. These packages identify a set of common tasks (e.g., inventory 
management, human resources planning, financial analysis) encountered by a 
large number of organizations and provide a general application layer to carry 
out these tasks. The data is stored in a r'elational DBMS and the application 
layer can be customized to different companies, leading to lower overall costs 
for the companies, compared to the cost of building the application layer from 
~cratch. 

Most significant, perhaps, DBMSs have entered the Internet Age. While the 
first generation of websites stored their data exclusively in operating systems 
files, the i'.ise of a DBMS to store data accessed through a Web browser is 
becoming widespread. Queries are generated through Web-accessible forms 
and answers are formatted using a markup language such as HTML to be 
easily displayed in a browser. All the database vendors are adding features to 
their DBMS aimed at making it more suitable for deployment over the Internet. 

Database management continues to gain importance as more and more data is 
brought online and made ever more accessible through computer networking. 
Today the field is being driven by exciting visions such as multimedia databases, 
interactive video, streaming data, digital libraries, a hos~ of scientific projects 
such as the human genome mapping effort and NASA's Earth Observation Sys
tem project, and the desire of companies to consolidate their decision-making 
processes and mine 'their data repositories for useful information about their 
businesses. Commercially, database management systems represent one of the 

2 Informix was recently acquired by iBM. 
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8 CHAPT-ER 1 

largest and most vigorous market segments. Thus the study of database sys
tems could prove to be richly rewarding in more ways than one! 

1.3 FILE SYSTEMS VERSUS A DBMS 

To understand the need for a DBMS, let us consider a motivating scenario: A 
company has a large collection (say, 500 GB3 ) of data on employees, depart
ments, products, sales, and so on. This data is accessed concurrently by several 
employees. Questions about the data must be answered quickly, changes made 
to the data by different users must be applied consistently, and access to certain 
parts of the data (e.g., salaries) must be restricted. 

We can try to manage the data by storing it in operating system files. This ' 
approach has many drawbacks, including the following: 

• 

• 

'7 

We probably do not have 500 GB of main memory to hold all the data . 
We must therefore store data in a storage device such as a disk or tape and 
bring relevant parts into main memory for processing as needed. 

Even if we have 500 GB of main memory, on computer systems with 32-bit 
addressing, we cannot refer directly to more than about 4 GB of data. We 
have to program some method of identifying all data items. 

• We have to write special programs to answer each question a user may want 
to ask about the. data. These programs are likely to be complex because 
of the large volume of data to be searched. 

• We must protect the data from inconsistent changes made by different users 
accessing the data concurrently. If applications must address the details of 
such concurrent access, this adds greatly to their complexity. 

• We must ensure that data is restored to a consistent state if the system 
crashes while changes are being made. 

• Operating systems provide only a passw.ord mechanism for security. This is 
not sufficiently flexible to enforce security policies in which different users 
have permission to access different subsets of the data. 

A DBMS is a piece of software designed to make the preceding tasks easier. By 
storing data in a DB;MS rather than as a collection of operating system files, 
we can use the DBMS's features to manage the data in a robust and efficient 
manner. As the volume of data and the number of users grow-hundreds of 
gigabytes of data and ,thousands of users are common in current corporate 
databases-DBMS support becomes indispensable. 

3 A kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a 
terabyte (TB) is 1024 GBs, and a petabyte (PB) is 1024 terabytes. 
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1.4 ADVANTAGES OF A DBMS 

Using a DBMS to manage data has many advantages: 

• Data Independence: Application programs should not, ideally, be ex
posed to details of data representation and storage. The DBMS provides 
an abstract view of the data that hides such details. 

• Efficient Data Access: A DBMS utilizes a variety of sophisticated tech
niques to store and retrieve data efficiently. This feature is especially im
portant if the data is stored on external storage devices. 

( 

• Data Integrity and Security: If data is always accessed through the 
DBMS, the DBMS can enforce integrity constraints. For example, before 
inserting salary information for an employee, the DBMS can check that 
the department budget is not exceeded. Also, it can enforce access controls 
that govern what data is visible to different classes of users. 

• Data Administration: When several users share the data, centralizing 
the administration of data can offer significant improvements. Experienced 
professionals who understand the nature of the data being managed, and 
how different groups of users use it, can be responsible for organizing the 
data representation to minimize redundancy and for fine-tuning the storage 
of the data to make retrieval efficient. 

• Concurrent Access and Crash Recovery: A DBMS schedules concur
rent accesses to the data in such a manner that users can think of the data 
as being accessed by only one user at a time. Further, the DBMS protects 
users from the effects of system failures. 

• Redu~ed Application Development Time: Clearly, the DBMS sup
ports important functions that are common to many applications accessing 
data in the DBMS. This, in conjunction with the high-level interface to the 
data, facilitates quick application development. DBMS applications are 
also likely to be more robust than similar stand-alone applications because 
many important tasks are handled by the DBMS (and do not have to be 
debugged and tested in the application). 

Given all these advantages, is there ever a reason not to use a DBMS? Some
times, yes. A DBMS is a complex piece of software, optimized for certain kinds 
of workloads (e.g., answering complex queries or handling many concurrent 
requests), and its performance may not be adequate for certain specialized ap
plications. Examples include applications with tight real-time constraints or 
just a few well-defined critical operations for which efficient custom code must 
be written. Another reason for not using a DBMS is that an application may 
need to manipulate the data in ways not supported by the query language. In 
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such a situation, the abstract view of the data presented by iJie DBMS does 
not match the application's needs and actually gets in the way. As an exam
ple, relational databases do not support flexible analysis of text data (although 
vendors are now extending their products in this direction). 

If specialized performance or data manipuJation requirements are central to an 
application, the applic,ation may choose not to use a DBMS, especially if the 
added benefits of a DBMS (e.g., flexible querying, security, concurrent access, 
and crash recovery) are not required. In most situations calling for large-scale 
data management, however, DBMSs have become an indispensable tool. 

1.5 DESCRIBING AND STORING DATA IN A DBMS 

The user of a DBMS is ultimately concerned with some real-world ep.terprise, 
and the data to be stored describes various aspects of this enterprise. For 
example, there are students, faculty, and courses in a university, and the data 
in a university database describes these entities and their relationships. 

A data model is a collection of high-level data description constructs that hide 
many low-level storage details. A DBMS allows a user to define the data to be 
stored in terms of a data m~del. Most database management systems today 
are based on the relational data model, which we focus on in this book. 

While the data model of the DBMS hides many details, it is nonetheless closer 
to how the DBMS stores data than to how a user thinks about the underlying 
enterprise. A semantic data model is a more abstract, high-level data model 
that makes it easier for a user to come up with a good initial description of 
the data in an enterprise. These models contain a wide variety of constructs 
that help describe a real application scenario. A DBMS is not intended to 
support all these constructs directly; it is typically built around a data model 
with just a few basic constructs, such as the relational model. A database 
design in terms of a semantic model serves as a useful starting point and is 
subsequently translated into a database design in terms of the data model the 
DBMS actually supports. 

A widely used semantic data model called the entity-relationship (ER) model 
allows us to pictorially denote entities and the relationships among them. We 
cover the ER model in Chapter 2. 
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An Example of Poor Design: The relapional schema for Students il
lustrates a poor design choice; you should never create a field such as age, 
whose value is constantly changing: A better choice would be DOB"(for 
date of birth); age can be computed from this. We continue to use age in 
our examples, however, be~ause it makes them easier to read. 

1.5.1 The Relational Model 

In this section we provide a brief introduction to the relational model. The 
central data description construct in this model is a relation, which can be 
thought of as a set of records. 

A description of data in terms of a data model is called a schema. In the 
relational model, the schema for a relation specifies its name, the name of each 
field (or attribute or column), and the type of each field. As an example, 
student information in a university database may be stored in a relation with 
the following schema: 

Students( sid: string, name: string, login: string, 
age: integer, gpa: real) 

The preceding schema says that each record in the Students relation has five 
fields, with field names and types as indicated. An example instance of the 
Students relation appears in Figure 1.1. 

I sid I name j login I age I gpa I 
53666 Jones jones@cs 18 3.4 
53688 Smith smith@ee 18 3.2 
53650 Smith smith@math 19 3.8 
53831 Madayan madayan@music 11 1.8 
53832 Guldu guldu@music 12 2.0 

Figure 1.1 An Instance of the Students Relation 

Each row in the Students relation is a record that describes a student. The 
description is not complete-for example, the student's height is not included
but 'is presumably adequate for the intended applications in the university 
database. Every row follows the schema of the Students relation. The schema 
can therefore be regarded as a template for describi:qg a student. 

We can make the description of a collection of students more precise by specify
ing integrity constraints, which are conditions that the records in a relation 

HULU EXHIBIT 1055 
Page 41 of 130



l;.· 
. ~I 

I' 
i 

1, 

Ii 

12 • CHAPTER 1 

must satisfy. For example, we could specify that every student has a unique 
sid value. Observe that we cannot capture this information by simply adding 
another field to the Students schema. Thus, the ability to specify uniqueness 
of the values in a field increases the accuracy with which we can describe our 
data. The expressiveness of the constructs available for specifying integrity 
constraints is an important aspect of a data model. 

Other Data Models 

In addition to the relational data model (which is used in numerous systems, 
including IBM's DB2, Informix, Oracle, Sybase, Microsoft's Access, FoxBase, 
Paradox, Tandem, and Teradata), other important data models include the 
hierarchical model (e.g., used in IBM's IMS DBMS), the network model (e.g., 
used in IDS and IDMS), the object-oriented model (e.g., used in O~jectstore 
and Versant), and the object-relational model (e.g., used in DBMS' products 
from IBM, Informix, ObjectStore, Oracle, Versant, and others). While many 
databases use the hierarchical and network models and systems based on the 
object-oriented and object-relational models are gaining acceptance in the mar
ketplace, the dominant model today is the relational model. 

In this book, we focus on the relational model because of its wide use and im
portance. Indeed, the object-relational model, which is gaining in popularity, is 
an effort to combine the best features of the relational and object-oriented mod
els, and a good grasp of the relational model is necessary to understand object
relational concepts. (We discuss the object-oriented and object-relational mod
els in Chapter 23.) 

1.5.2 Levels of Abstraction in a DBMS 

The data in a DBMS is described at three levels of abstraction, as illustrated 
in Figure 1.2. The database description consists of a schema at each of these 
three levels of abstraction: the conceptual, physical, and external. 

A data definition language (DDL) is used to define the external and concep
tual schemas. We discuss the DDL facilities of the most widely used database 
language, SQL, in Chapter 3. All DBMS vendors also support SQL commands 
to describe aspects of the physical schema, but these commands are not part of 
the SQL language standard. Information about the conceptual, external, and 
physical schemas is stored. in the system catalogs (Section 12.1). We discuss 
the three levels of abstraction in the rest of this section. 
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External Schema 1 I I External Schema 2 I I External Schema 3 

---------- ~ I 
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t 
Physical Schema 

Figure 1.2 Levels of Abstraction in a DBMS 

Conceptual Schema 

The conceptual schema (sometimes called the logical schema) describes the 
stored data in terms of the data model of the DBMS. In a relational DBMS, 
the conceptual schema describes all relations that are stored in the database. 
In our sample university database, these relations contain information about 
entities, such as students and faculty, and about relationships, such as students' 
enrollment in courses. All student entities can be described using records in 
a Students relation, as we saw earlier. In fact, each collection of entities and 
each collection of relationships can be described as a relation, leading to the 
following conceptual schema: 

Students( sid: string, name: string, login: string, 
• age: integer, gpa: real) 

Faculty(fid: string, fname: string, sal: real) 
Courses( cid: string, cname: string, credits: integer) 
Rooms( mo: integer, address: string, capacity: integer) 
Enrolled( sid: string, cid: string, grade: string) 
Teaches(fid: string, cid: string) 
Meets_In( cid: string, mo: integer, time: string) 

The choice of relations, and the choice of fields for each relation, is not always 
obvious, and the process of arriving at a good conceptual schema is called 
conceptual database design. We discuss conceptual database design in 
Chapters 2 and 19. 
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Physical Schema 

The physical schema specifies additional storage details. Essentially, the 
physical schema summarizes how the relations described in the conceptual 
schema are actually stored on secondary storage devices such as disks and 
tapes. 

We must decide what file organizations to use to store the relations and create 
auxiliary data structures, called indexes, to speed up data retrieval operations. 
A sample physical schema for the university database follows: 

• Store all relations as unsorted files of records. (A file in a DBMS is either 
a collection of records or a collection of pages, rather than a string of 
characters as in an operating system.) 

• Create indexes on the first column of the Students, Faculty, and Courses 
relations, the sal column of Faculty, and the capacity column of Rooms. 

Decisions about the physical schema are based on an understanding of how the 
data is typically accessed. The process of arriving at a good physical schema 
is called physical database design. We discuss physical database design in 
Chapter 20. 

External Schema 

External schemas, which usually are also in terms of the data model of 
the DBMS, allow data access to be customized (and authorized) at the level 
of individual users or groups of users. Any given database has exactly one 
conceptual schema and one physical schepla because it has just one set of 
stored relations, but it may have ~everal external schemas, each tailored to a 
particular group of users. Each external schema consists of a collection of one or 
more views and relations from the conceptual s~hema. A view is conceptually 
a relation, but the records in a view are not stored in the DBMS. Rather, they 
are computed using a definition for the view, in terms of relations stored in the 
DBMS. We discuss views in more detail in 9hapters 3 and 25. 

The external schema design is guided by end user requirements. For ~xample, 
we might want to allow students to find out the names of faculty members 
teaching courses as well as course enrollments. This can 9e done by defining 
the following view: 

Courseinfo( cid: string, fname: string, enrollment: integer) 

A user can treat a view just like a relation and ask questions about the records 
in the view. Even though the records in the view are not stored explicitly, 

·~ l 
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they are computed as needed. We did not include Courseinfo in the conceptual 
schema, because we can compute Courseinfo from the relations in the conceptual 
schema, and to store it in addition would be redundant. Such redundancy, in 
addition to the wasted space, could lead to inconsistencies. For example, a 
tuple may be inserted into the Enrolled relation, indicating that a particular 
student has enrolled in some course, without incrementing the value in the 
enro/lment field of the corresponding record of Courseinfo (if the latter also is 
part of the conceptual schema and its tuples are stored in the DBMS). 

' 

1.5.3 Data Independence 

A very important advantage of using a DBMS is that it offers data indepen
dence. That is, application programs are insulated from changes in the way 
the data is structured and stored. Data independence is achieved through use 
of the three levels of data abstraction; in particular, the conceptual schema and 
the external schema provide distinct benefits in this area. 

Relations in the external schema (view relations) are in principle generated 
on demand from the relations corresponding to the conceptual schema. 4 If 

·the underlying data is reorganized, that is, the conceptual schema is changed, 
the definition of a view relation can be modified so that the same relation is 
computed as before. For example, suppose that the Faculty relation in our 
university database is replaced by the following two relations: 

Faculty _public(fid: string, fname: string, office: integer) 
Faculty _private(fid: string, sal: req.l) 

Intuitivel:}t, some confidential inform~tion about faculty has been placed in a 
separate relatioI]. and information about offices has been added. The Courseinfo 
view relation c;an be redefined in terms of faculty _public and Faculty _private, 
which together contain all the information in Faculty, so that a user who queries 
Coursein'fo will get the same answers as before. 

Thus, tisers can be shielded from changes in the logical structure of the data, or 
changes in the choice of relations to be stored. This property is called logical 
data independence. 

·~ 

In turn, the conceptual schema insulates users from changes in physical storage 
details. This property is referred to as physical data iI_ldependence. The 
conceptual schema hides details such as how the data is actually laid out on 
disk, the file structure, arid ~he choice of indexes. As long as the conceptual 

4In practice, they could be precomputed and stored to speed up queries on view relations, but the 
computed view relations must be updated whenever the underlying relations are updated. 
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schema remains the same, we can change these storage details without altering 
applications. (Of course, performance might be affected by such changes.) 

1.6 QUERIES IN A DBMS 

The ease with which information can be obtained from a database often de
termines its value to a user. In contrast to older database systems, relational 
database systems allow a rich class of questions to be posed easily; this feature 
has contributed greatly to their popularity. Consider the sample university 
database in Section 1.5.2. Here are some questions a user might ask: 

1. What is the name of the student with student ID 123456? 

2. What is the average salary of professors who teach course CS564? 

3. How many students are enrolled in CS564? 

4. What fraction of students in CS564 received a grade better than B? 

5. Is any student with a GPA less than 3.0 enrolled in CS564? 

Such questions involving the data stored in a DBMS are called queries. A · 
DBMS provides a specialized language, called the query language, in which 
queries can be posed. A very attractive ftlature of the relational model is 
that it supports powerful query languages. Relational calculus is a formal 
query language ba~ed on mathematical logic, and queries in this language have 
an intuitive, precise meaning. Relational algebra is another formal query 
language, based on a, collection of operators for manipulating relations, which 
is equivalent in power to the calculus. 

A DBMS takes great care to evaluate queries as efficiently as possible. We 
discuss query optimization and evaluation in Chapters 12, 14, and 15. Of 
course, the efficiency of query evaluation is determined to a large extent by 
how the data is stored physically. Indexes can be used to speed up many 
queries-in fact, a good choice of indexes for the underlying relations can speed 
up each query in the preceding list. We discuss data storage and ,indexing in 
Chapters 8, 9, 10, and 11. 

A DBMS enables users to create, modify, and query data through a data 
manipulation language (DML). Thus, the query language is only one part 
of the DML, which also provides constructs to insert, delete, and modify data. 
We will discuss the DML features of SQL in Chapter 5. The DML and DDL 
are collectively referred to as the data sublanguage when embedded within 
a host language (e.g., C or COBOL). 
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1.7 TRANSACTION MANAGEMENT 

Consider a database that holds information about airline reservations. At any 
given instant, it is possible (and likely) that several travel agents are look
ing up information about available seats on various flights and making new 
seat reservations. When several users access (and possibly modify) a database 
concurrently, the DBMS must order their requests carefully to avoid conflicts. 
For example, when one travel agent looks up Flight 100 on some given day 
and finds an empty seat, another travel agent may simultaneously be making 
a reservation for that seat, thereby making the information seen by the first 
agent obsolete. 

Another example of concurrent use is a bank's database. While one user's 
application program is computing the total deposits, another application may 
transfer money from an account that the first application has just 'seen' to an 
account that has not yet been seen, thereby causing the total to appear larger 
than it should be. Clearly, such anomalies should not be allowed to occur. 
However, disallowing concurrent access can degrade performance. 

Further, the DBMS must protect users from the effects of system failures by 
ensuring that all data (and the status of active applications) is restored to a 
consistent state when the system is restarted after a crash. For example, if a 
travel agent asks for a reservation to be made, and the DBMS responds saying 
that the reservation has been made, the reservation should not be lost if the 
system crashes. On the other hand, if the DBMS has not yet responded to 
the request, but is making the necessary changes to the data when the crash 
occurs, the partial changes should be undone when the system comes back up. 

A transa~tion is any one execution of a user program in a DBMS. (Executing 
the same program several times will generate several transactions.) This is the 
basic unit of change as seen by the DBMS: Partial transactions are not allowed, 
and the effect of a group of transactions is equiv!=tlent to some serial execution 
of all transactions. We briefly outline how these properties are guaranteed, 
deferring a detailed discussion to later chapters. 

1. 7 .1 Concurrent Execution of Transactions 

An important task of a DBMS is to schedule concurrent accesses to data so 
that each user can safely ignore the fact that others are accessing the data 
concurrently. The importance of this task cannot be underestimated because 
a database is typically shared by a large number of users, who submit their 
requests to the DBMS independently and simply cannot be expected to deal 
with arbitrary changes being made concurrently by other users. A DBMS 
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allows users to think of their programs as if they were executing in isolation, 
one after the other in some order chosen by the DBMS. For example, if a 
program that deposits cash into an account is submitted to the DBMS at the 
same time as another program that debits money from the same account, either 
of these programs could be run first by the DBMS, but their steps will not be 
interleaved in such a way that they interfere with each other. 

A locking protocol is a set of rules to be followed by each transaction (and en
forced by the DBMS) to ensure that, even though actions of several transactions 
might be interleaved, the net effect<is identical to executing all transactions in 
some serial order. A lock is a mechanism used to control access to database 
objects. Two kinds of locks are commonly supported by a DBMS: shared 
locks on an object can be held by two different transactions at the same time, 
but an exclusive lock on an object ensures that no other transactions hold 
any lock on this object. 

Suppose that the following locking protocol is followed: Every transaction be
gins by obtaining a shared lock on each data object that it needs to read and an 
exclusive lock on each data object that it needs to modify, then releases all its 
locks after completing all actions. Consider two transactions Tl and T2 such 
that Tl wants to modify a data object and T2 wants to read the same object. 
Intuitively, if Tl's request for an exclusive lock on the object is granted first, 
T2 cannot proceed until Tl releases this lock, because T2's request for a shared 
lock will not be 'granted by the DBMS until then. Thus, all of Tl's actions will 
be completed before any of T2's actions are initiated. We consider lo<;king in 
more detail in Chapters 16 and 17. 

1. 7 .2 Incomplete Transactions and System Crashes 

Transactions can be interrupted before running to completion for a variety of 
reasons, e.g., a system crash. A DBMS must ensure that the changes made by 
such incomplete transactions are removed from the data.base. For example, if 
the DBMS is in the middle of transferring money from account A to account 
B and has debited the first account but not yet credited the second when the 
crash occurs, the money debited from account A must be restored when the 
sy~tem comes back up after the crash. 

To do so, the DBMS maintains a log of all writes to the database. A crucial 
property of the log is that each write action must be recorded in the log (on disk) 
before the corresponding change is reflected in the database itself--otherwise, if 
the system crashes just after making the change in the database but before the 
change is recorded in the log, the DBMS would be unable to detect and undo 
this change. This property is called Write-Ahead Log, or WAL. To ensure 
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this property, the DBMS must oe able to selectively force a page in memory to 
disk. 

The log is also used to ensure that the changes made by a successfully com
pleted transaction are not lost due to a system crash, as explained in Chapter 
18. Bringing the database to a consistent state after a system crash can be 
a slow process, since the DBMS must ensure that the effects of all transac
tions that completed prior to the crash are restored, and that the effects of 
incomplete transactions are undone. The tink required to recover from a crash 
can be reduced by periodically forcing some information to disk; this periodic 
operation is called a checkpoint. 

1. 7 .3 Points to Note 

In summary, there are three points to remember with respect to DBMS support 
for concurrency control and recovery: 

1. Every object that is read or written by a transaction is first locked in shared 
or exGlusive mode, respectively. Placing a lock on an object restricts its 
availability to other transactions and thereby affects performance. 

2. For efficient log maintenance, the DBMS must be able to selectively force 
a collection .of pages in main memory to disk. Operating system support 
for this operation is not always satisfactory. 

3. Periodic checkpointing can reduce the time needed to recover from a crash. 
Of course, this must be balanced against the fact that checkpointing too 
often slows down normal execution . .. 

1.8 STRUCTURE OF A DBMS 

Figure 1.3 shows the structure (with some simplification) of a typical DBMS 
based on the relational data model. 

The DBMS accepts SQL commands generated from a variety of user interfaces, 
produces query evaluation plans, executes these plans against the database, and 
returns the answers. (This is a simplification: SQL commands can be embedded 
in host-language application programs, e.g., Java or COBOL programs. We 
ignore these issues to concentrate on the core DBMS functionality.) 

When a user issues a query, the parsed query is presented to a query opti
mizer, which uses information about how the data is stored to produce an 
efficient execution plan for evaluating the query. An execution plan is a 
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blueprint for evaluating a query, usually represented as a tree of relational op
erators (with annotations that contain additional detailed information about 
which access methods to use, etc.). We discuss query optimization in Chapters 
12 and 15. Relational operators serve as the building blocks for evaluating 
queries posed against the data. The implementation of these operators is dis
cussed in Chapters 12 and 14. 

The code that implements relational operators sits on top of the file and access 
methbds layer. This layer supports the concept of a file, which, in a DBMS, is a 
collection of pages or a collection of records. Heap files, or files of .unordered 
pages, as well as indexes are supported. In addition to keeping track of the 
pages in a file, this layer organizes the information within a page. File and 
page level storage issues are considered in Chapter 9. File organizations and 
indexes are considered in Chapter 8. 

The files and access methods layer code sits on top of the buffer manager, 
which brings pages in from disk to main memory as needed in response to read 
requests. Buffer management is discussed in Chapter 9. 
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The lowest layer of the DBMS software deals with management of space on 
disk, where the data is stored. Higher layers allocate, deallocate, read, and 
write pages through (routines provided by) this layer, called the disk space 
manager. This layer is discussed in Chapter 9. 

The DBMS supports concurrency and crash recovery by carefully scheduling 
user requests and maintaining a log of all changes to the database. DBMS com
ponents associated with concurrency control and recovery include the trans
action manager, which ensures that transactions request and release locks 
according to a suitable locking protocol and schedules the execution transac
tions; the lock manager, which keeps track of requests for locks and grants 
locks on database objects when they become available; and the recovery man
ager, which is responsible for maintaining a log and restoring the system to a 
consistent state after a crash. The disk space manager, buffer manager, and 
file and access method layers must interact with these components. We discuss 
concurrency control and recovery in detail in Chapter 16. 

1.9 PEOPLE WHO WORK WITH DATABASES 

Quite a variety _of people are associated with the creation and use of databases. 
Obviously, there are database implementors, who build DBMS software, 
and end users who wish to store and use data in a DBMS. Database imple
mentors work for vendors such as IBM or Oracle. End users come from a diverse 
and increasing number of fields. As data grows in complexity and volume, and 
is increasingly recognized as a major asset, the importance of maintaining it 

)' 

prqfessionally in a DBMS is being widely accepted. Many end users simply use 
applications written by database application programmers (see below) and so 
require litile technical knowledge about DBMS software. Of course, sophisti
cated users who make more extensive use of a DBMS, such as writing their own 
queries, require a deeper ,understanding of its features. 

In addition to end users and implementors, two other classes of people are 
associated with a DBMS: application programmers and database administrators. 

Database application programmers develop packages that facilitate data 
access for end users, who are usually not computer professionals, using the 
host or data languages and software tools that DBMS vendors provide. (Such 
tools include report writers, spreadsheets, statistical packages, and the like.) 
Application programs should ideally access data through the external schema. 
It is possible to write applications that access data at a lower level, but such 
applications would compromise data independence. 
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A personal database is typically maintained by the individual who owns it and 
uses it. However, corporate or enterprise-wide databases are typically impor
tant enough and complex enough that the task of designing and maintaining the 
database is entrusted to a professional, called the database administrator 
(DBA). The DBA is responsible for many critical tasks: 

• Design of the Conceptual and Physical Schemas: The DBA is re
sponsible for interacting with the users of the system to understand what 
data is to be stored in the DBMS and how it is likely to be used. Based on 
this knowledge, the DBA must design the conceptual schema (decide what 
relations to store) and the physical schema (decide how to store them). 
The DBA may also design widely used portions of the external schema, al
though users probably augment this schema by creating additional views. 

• Security and Authorization: The DBA is responsible for ensuring that 
unauthorized data access is not permitted. In general, not everyone should 
be able to access all the data. In a relational DBMS, users can be granted 
permission to access only certain views and relations. For example, al
though you might allow students to find out course enrollments and who 
teaches a given course, you would not want students to see faculty salaries 
or each other's grade information. The DBA can enforce this policy by 
giving students permission to read only·the Courseinfo view. 

• Data Availability and Recovery from Failures: The DBA must take 
steps to ensure ~hat if the system fails, users can continue to access as much 
of the uncorrupted data as possible. The DBA must also work to restore 
the data to a consistent state. The DBMS provides software support for 
these functions, but the DBA is responsible for implementing procedures 
to back up the data periodically and maintain logs of system activity (to 
facilitate recovery from a crash). 

• Database Tuning: Users' needs are likely to evolve with time. The DBA 
is responsible for modifying the database, in particular the conceptual and 
physical schemas, to ensure adequate performance as requiremen~s change. 

1.10 REVIEW QUESTIONS 

Answers to the review questions can be found in the listed sections. 

• What are the main benefits of using a DBMS to manage data in applica
tions involving extensive data access? (Sections 1.1, 1.4) 

• When would you store data in a DBMS instead of in operating system files 
and vice-versa? (Section 1.3) 
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• What is a data model? What is the relational data model? What is data 
independence and how does a DBMS support it? (Section 1.5) 

• Explain the advantages of using a query language instead of custom pro
grams to process data. (Section 1.6) 

• What is a transaction? What guarantees does a DBMS offer with respect 
to transactions? (Section 1. 7) 

• What are locks in a DBMS, and why are they used? What is write-ahead 
logging, and why is it used? What is checkpointing and why is it used? 
(Section 1. 7) 

• Identify the main components in a DBMS and briefly explain what they 
do. (Section 1.8) 

• Explain the different roles of database administrators, application program
mers, and end users of a database. Who needs to know the most about 
database systems? (Section 1.9) 

EXERCISES 

Exercise 1.1 Why would you choose a database system instead of simply storing data in 
operating system files? When would it make sense not to use a database system? 

Exercise 1.2 What is logical data independence and why is it important? 

Exercise 1.3 Explain the difference between logical and physical data independence. 

Exercise 1.4 ~xplain the difference between external, internal, and conceptual schemas. 
How are thepe different schema layers related to the concepts of logical and physical data 
independen~e? 

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never 
interested in running his or her own queries, does the DBA still need to understand query 
optimization? Why? 

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions 
of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the 
volume of data compels him to buy a database system. To save money, he wants to buy one 
with the fewest possible features, and he plans to run it as a stand-alone application on his 
PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of 
the following DBMS features Scrooge should pay for; in each case, also indicate why Scrooge 
should (or should not) pay for that feature in the system he buys. 

1. A security facility. 

2. Concurrency control. 

3. Crash recovery. 

4. A view mechanism. 
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5. A query language. 

Exercise 1. 7 Which of the following plays an important role in representing information 
about the real world in a database? Explain briefly. 

1. The data definition language. 

2. The data manipulation language. 

3. The buffer manager. 

4. The data model. 

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to 
support some new functions on OS files (e.g., the ability to force some sequence of bytes to 
disk), which layer(s) of the DBMS 1\'ould you have to rewrite to take advantage of these new 
functions? 

Exercise 1.9 Answer the following questions: 

1. What is a transaction? 

2. Why does a DBMS interleave the actions of different transactions instead af executing 
transactions one after the other? 

3. What must a user guarantee with respect to a transaction and database consistency? 
What should a DBMS guarantee with respect to concurrent execution of several trans
actions and database consistency? 

4. Explain the strict two-phase locking protocol. 

5. What is the WAL property, and why is it important? 

PROJECT-aASED EXERCISES 

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try 
to get a feel for the overall architecture. 

BIBLIOGRAPHIC NOTES 

The evolution of database management systems is traced in [289]. The use of data models 
for ~escribing real-world data is discussed in [423], and [425] contains a taxonomy of data 
models. The three levels of abstraction were introduced in [186, 712]. The network data 
model is described in [186], and [775] discusses several commercial systems based on this 
model. [721] contains a good annotated collection of systems-oriented papers on database 
management. 

Other texts covering database management systems include [204, 245, 305, 339, 475, 574, 
689, 747, 762]. [204] provides a detailed discussion of the relational model from a concep
tual standpoint and is notable for its extensive annotated bibliography. [574] presents a 
performance-oriented perspective, with references to several commercial systems. [245] and 
[689] offer broad coverage of database system concepts, including a discussion of the hierar
chical and network data models. [339] emphasizes the connection between database query 
languages and logic programming. [762] emphasizes data models. Of these texts, [747] pro
vides the most detailed discussion of theoretical issues. Texts devoted to theoretical aspects 
include [3, 45, 501]. Handbook [744] includes a section on databases that contains introductory 
survey articles on a number of topics. 
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INTRODUCTION TO 
DATABASE DESIGN 

,.. What are the steps in designing a database? 

,.. Why is the ER model used,to create an initial design? 

,.. What are the main concepts in the ER model? 

,.. What are guidelines for using the ER model effectively? 

,.. How does database design fit within the overall design framework for 
complex software within large enterprises? 

,.. What is UML and how is it related to the ER model? 

.. Key concepts: database design, conceptual, logical, and physical 
design; entity-relationship (ER) model, entity set, relationship set, 
attribute, instance, key; integrity constraints, one-to-many and many
to-many relationships, participation constraints; weak entities, class 
hierarchies, aggregation; UML, class diagrams, database diagrams, 
component diagrams. 

The great successful men of the world have used their imaginations. They 
think ahead and create their mental picture, and then go to work materializing that 
picture in all its details, filling in here, adding a little there, altering this bit and 
that bit, but steadily building, steadily building. 

-Robert Collier 

The entity-relationship (ER) data model allows us to describe the data involved 
in a real-world enterprise in terms of objects and their relationships and is 
widely used to develop an initial database design. It provides useful concepts 
that allow us to move from an informal description of what users want from 
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their database to a more detailed, precise description that can be implemented 
in a DBMS. In this chapter, we introduce the ER model and discuss how its 
features allow us to model a wide range of data faithfully. 

We begin with an overview of database design in Section 2.1 in order to motivate 
our discussion of the ER model. Within the larger context of the overall design 
process, the ER model is used in. a phase called conceptual database design. 
We then introduce the ER model in Sections 2.2, 2.3, and 2.4. In Section 2.5, 
we discuss database design issues involving the ER model. We briefly discuss 
conceptual database ,desigp. for large enterprises in Section 2.6. In Section 2. 7, 
we present an overview of UML, a design and modeling approach that is more 
general in its scope than the ER model. 

In Section 2.8, we introduce a case study that is used as a running example 
throughout the book. The case study is an end-to-end database design for an 
Internet shop .. We illustrate the first two steps in database design (requirements 
analysis and conceptual design) in Section 2.8. In later chapters, we extend this 
case study to cover the remaining steps in the design process. 

We note that many variations of ER diagrams are in use and no widely accepted 
standards prevail. The presentation in this chapter is representative of the 
family of ER models and includes a selection of the most popular features. 

2.1 DATABASE DESIGN AND ER DIAGRAMS 

We begin our discussion of database design by observing that this is typically 
just one part, although a central part in data-intensive applications, of a larger 
software system design. Our primary focus is the· design of the database, how
e"er, and we will not discuss other aspects of software design in any detail. We 
revisit this point in Section 2.7. 

The database design process can be divided into six steps. The ER model is 
most relevant to the first three steps. 

1. Requirements Analysis: The very first step in designing a database 
application is to understand what data is to be stored in the database, 
what applications must be built on top of it, and what operations are 
most frequent and subject to performance requirements. In other words, 
we must find out what the users want from the database. This is usually 
an informal process that invol\;eS discussions with user groups, a study 
of the current operating environment and how it is expected to change, 
analysis of any available documentation on existing applications that are 
expected to be replaced or complemented by the database, and so on. 
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Database Design Tools: Design tools are available from RDBMS ven
dors as well as third-party vendors. For example, see the following link for 
details on design and analysis tools from Sybase: 
http:4/www.sybase.com/products/application_tools 
The following proyides de~ails on Oracle's tools: 
http://www.oracle.com/tools 

Several methodologies have been proposed for organizing and presenting 
the information gathered in this step, and some automated tools have been 
developed to support this process. 

2. Conc,eptual Database Design: The information gathered in the require
ments analysis step is used to develop a high-level description of the data 
to be stored in the database, along with the constraints known to hold over 
this data. This step is often carried out using the ER model and is dis
cussed in the rest of this chapter. The ER model is one of several high-level, 
or semantic, data models used in database design. The goal is to create 
a simple description of the data that closely matches how users and devel
opers think of the data (and the people and processes to be represented in 
the data). This facilitates discussion among all the people involved in the 
design process, even those who have no technical background. At the same 
time, the initial design must be sufficiently precise to enable a straightfor
ward translation into a data model supported by a commercial database 
system (which, in practice, means the relational model). 

3. Logical Database Design: We must choose a DBMS to implement 
our database design, and convert the conceptual database design into a 
databa.Se schema in the data model of the chosen DBMS. We will consider 
only relational DBMSs, and therefore, the task in the logical design step 
is to convert an ER schema into a relational database schema. We dis
cuss this step in detail in Chapter 3; the result is a conceptual schema, 
sometimes called the logical schema, in the relational data model. 

2.1.1 Beyond ER Design 

The ER diagram is just an approximate description of the data, constructed 
through a subjective evaluation of the information collected during require
ments analysis. A more careful analysis can often refine the logical schema 
obtained at the end of Step 3. Once we have a good logical schema, we must 
consider performance criteJ:ia and design the physical schema. Finally, we must 
address security issu~s q,nd ensure that users are able to access the data they 
need, but not dat~ that we wish to hide from them. The remaining three steps 
of database design are briefly describe&next: 
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4. Schema Refinement: The fourth step in database design is to analyze 
the collection of relations in our relational database schema to identify po
tential problems, and to refine it. In contrast to the requirements analysis 
and conceptual design steps, which are essentially subjective, schema re
finement can be guided by some elegant and powerful theory. We discuss 
the theory of normalizing relations-restructuring them to ensure some 
desirable properties-in Chapter 19. 

5. Physical Database Design: In this step, we consider typical expected 
workloads that our database must support and further refine the database 
design to ensure that it meets desired performance criteria. This step may 
simply involve building indexes on some tables and clustering some tables, 
or it may involve a substantial redesign of parts of the database schema 
obtained from the t:!arlier design steps. We discuss physical design and 
database tuning in Chapter 20. 

6. Application and Security Design: Any softwar~ project that involves 
a DBMS must consider aspects of the application that .go beyond the 
database itself. Design methodologies like UML (Section 2.7) try to ad
dress the complete software design and development cycle. Briefly, we must 
identify the entities (e.g., users, user groups, departments) and processes 
involved in the application. We must describe the role of each entity in ev
ery process that is reflected in some application task, as part of a complete 
workfiow for that task. For each role, we must identify the parts of the 
database that must be accessible and the parts of the database that must 
not be accessible, and we must take steps to ensure that these access rules 
are enforced. A DBMS provides several mechanisms to assist in this step, 
and we discuss this in Chapter 21. 

In the implementation phase, we must code each task in an application lan
guage (e.g., Java), using the DBMS to access data. We discuss application 
development in Chapters 6 and 7. 

In general, our division of the design process into steps should be seen as a 
classification of the kinds of steps involved in design. Realistically, although 
we might begin with the six step process outlined here, a complete database 
design will probably require a subsequent tuning phase in which all six kinds 
of design steps are interleaved and repeated until the design is satisfactory. 

2.2 ENTITIES, ATTRIBUTES, AND ENTITY SETS 

An entity is an object in the real world that is distinguishable from other 
objects. Examples include the following: the Green Dragonzord toy, the toy 
department, the manager of the toy department, the horn~ address of the man-
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ager of the toy department. It is often useful to identify a collection of similar 
entities. Such a collection is called an entity set. Note that entity sets need 
not be disjoint; the collection of toy department employees and the collection 
of appliance department employees may both contain employee John Doe (who 
happens to work in both departments). We could also define an entity set called 
Employees that contains both the toy and appliance department employee sets. 

An entity is described using a set of attributes. All entities in a given entity 
set have the same attributes; this is what we mean by similar. (This statement 
is an oversimplification, as we will see when we discuss inheritance hierarchies 
in Section 2.4.4, but it suffices for now and highlights the main idea.) Our 
choice of attributes reflects the level of detail at which we wish to represent 
information about entities. For example, the Employees entity set could use 
name, social security number (ssn), and parking lot (lot) as attributes. In this 
case we will store the name, social security number, and lot number for each 
employee. However, we will not store, say, an employee's address (or gender or 
age). 

For each attribute associated with an entity set, we must identify a domain of 
possible values. For example, the domain associated with the attribute name 
of Employees might be the set of 20-character strings.1 As another example, if 
the company rates employees on a scale of 1 to 10 and stores ratings in a field 
called rating, the associated domain consists of integers 1 through 10. Further, 
for each entity set, we choose a key. A key is a minimal set of attributes whose 
values uniquely identify an entity in the set. There could be more than one 
candidat~ key; if so, we designate one of them as the primary key. For now we 
assume that each entity set contains at least one set of attributes that uniquely 
identifies an entity in the entity set; that is, the set of attributes contains a key. 
We revisit .this point in Section 2.4.3. 

The Employees entity set with attributes ssn, name, and lot is shown in Figure 
2.1. An entity set is represented by a rectangle, and an attribute is represented 
by an oval. Each attribute in the primary key is underlined. The domain 
information could be listed along with the attribute name, but we omit this to 
keep the figures compact. The key is ssn. 

2.3 RELATIONSHIPS AND RELATIONSHIP SETS 

A relationship is an association among two or more entities. For example, we 
may have the relationship that Attishoo works in the pharmacy department. 

1To avoid confusion, we assume that attribute names do not repeat across entity sets. This is not 
a real limitation because we can always use the entity set name to resolve ambiguities if the same 
attribute name is used .in more than one entity set. 
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ssn lot 

Figure 2.1 The Employees Entity Set 

As with entities, we may wish to collect a set of similar relationships into a 
relationship set. A relationship set can be thought of as a set of n-tuples: 

{ ( ei, ... , en) I ei E E1, ... , en E En} 

Each n-tuple denotes a relationship involving n entities ei through_ en, where 
entity ei is in entity set Ei. In Figure 2.2 we show the relationship set' Works_In, 
in which each relationship indicates a department in which an employee works. 
Note that several relationship sets might involve the same entity sets. For 
example, we could also have a Manages relationship set involving Employees 
and Departments. 

lot 

Employees Departments 

Figure 2.2 The WorksJn Relationship Set 

A relationship can also have descriptive attributes. Descriptive attributes 
are used to record information about the relationship, rather than about any 
one of the participating entities; for example, we may wish to record that At
tishoo works in the pharmacy department as of January 1991. This information 
is captured in Figure 2.2 by adding an attribute, since, to Works_In. A relation
ship must be uniquely identified by the participating entities, without reference 
to the descriptive attributes. In the Works_In relationship set, for example, each 
Works_In relationship must be uniquely identified by the coml;>ination of em
ployee ssn and department did. Thus, for a given employee-department pair, 
we cannot have more than one associated since value. 

An instance of a relationship set is a set of relationships. Intuitively, an 
instance can be thought_ of as a 'snapshot' of the relationship set at some instant 
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in time. An instance of the Works_In relationship set is shown in Figure 2.3. 
Each Employees entity is denoted by its ssn, and each Departments entity 
is denoted by its did, for simplicity. The since value is shown beside each 
relationship. (The 'many-to-many' and 'total participation' comments in the 
figure are discussed later, when we discuss integrity constraints.) 

I 123-22-36661 

1231-31-53681 

1131-24-36501 

I 223-32-63161 

EMPLOYEES 

Total participation 

WORKS_IN 

Many to Many 

'G] 

~ 

~ 

DEPARTMENTS 

Total participation 

Figure 2.3 An Instance of the Works_In Relationship Set 

As another example of an ER diagram, suppose that each department has offices 
in several locations and we want to record the locations at which each employee 
works. This relationship is ternary because we must record an association 
between an employee, a department, and a location. The ER diagram for this 
variant of Works_In, which we call Works_In2, is shown in Figure 2.4. 

did budget 

address Locations capacity 

Figure 2.4 A Ternary Relationship Set 

The entity sets that participate ill a relationship set need not be distinct; some
times a relationship might involve two entities in the same entity set. For ex
ample, consider the Reports_To relationship set shown in Figure 2.5. Since 
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employees report to other employees, every relationship in Reports_To is of 
the<lorm (emp1, emp2), where both emp1 and emp2 are entities in Employees. 
However., they play different roles: emp1 reports to the managing employee 
emp2, which is reflected in the role indicators supervisor and subordinate in 
Figure 2.5. If an entity set plays more than one role, the role indicator concate
nated with an attribute name from the entity set gives us a unique name for 
each attribute, in the relationship set. For example, the Reports_ To relation
ship set has attributes corresponding to the ssn of the supervisor and the ssn 
of the subordinate, and the names of these attributes are supervisor_ssn and 
subordinate_ssn. 

~ er lot 

Employees 

Figure 2.5 The Reports_Tct Relationship Set 

2.4 ADDITIONAL FEATURES OF THE ER MODEL 

We now look at some of the constructs in the ER model that allow us to describe 
some subtle properties of the data. The ex]>ressiveness of the ER model is a 
big reason for i'ts widespread use. 

2.4.1 Key Constraints 

Consider the Works_ln relationship shown in Figure 2.2. An employee can 
work in several departments, and a department can have several employees, as 
illustrated in the·Works_In instance shown in Figure 2.3. Employee 231-31-5368 
has worked in Department 51 since 3/3/93 and in Department 56 since 2/2/92. 
Department 51 has two employees. 

Now consider another relationship set called Manages between the Employ
ees and Departments entity sets such that each department has at most one 
manager, although· a single employee is allowed to manage more than one de
partment. The restriction that each department has at most one manager is 

I 
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j 
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an example of a key constraint, and it implies that each Departments entity 
appears in at most one Manages relationship in any allowable instance of Man
ages. This restriction is indicated in the ER diagram of Figure 2.6 by using an 
arrow from Departments to Manages. Intuitively, the arrow states that given 
a Departments entity, w.e can uniquely determine the Manages relationship in 
which it appears. 

Tdname 

budget 

----~ 

did 

Figure 2.6 Key Constraint on Manages 

An instance of the Manages relationship set is shown in Figure 2.7. While this 
is also a potential instance for the Works__ln relationship set, the instance of 
Works_In shown in Figure 2.3 violates the key constraint on Manages. 

I 231-31-53681 

I 131-24-36501 e 

I 223-32-63161 /'-------\_ _ __.L---

EMPLOYEES 

Partial participation 

MANAGES 

One to Many 

DEPARTMENTS 

Total participation 

Figure 2.7 An Instance of the Manages Relationship Set 

A relationship set like Manages is sometimes said to be one-to-many, to 
indicate that one employee can be associated with many departments (in the 
capacity of a manager), whereas each department can be associated with at 
most one employee as its manager. In contrast, the Works_In relationship set, in 
which an employee is allowed to work in several departments and a department 
is allowed to have several employees, is said to be many-to-many. 
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If we add the restriction that each employee can manage at most one depart
ment to the Manages relationship set, which would be indicated by adding 
an arrow from Employees to Manages in Figure 2.6, we have a one-to-one 
relationship set. 

Key Constraints for Ternary Relationships 

We can extend this convention-and the underlying key constraint concept-to 
relationship sets involving three or more entity sets: If an entity set E has a 
key constraint in a relationship set R, each entity in an instance of E appears 
in at most one relationship in (a corresponding instance of) R. To indicate a 
key constraint on entity set E in relationship set R, we draw an arrow from E 
to R. 

In Figure 2.8, we show a ternary relationship with key constraints .• -Each em
ployee works in at most one department and at a single location. An instance 
of the Works_ln3 relationship set is shown in Figure 2.9. Note that each depart
ment can be associated with several employees and locations and each location 
can be associated with several departments and employees; however, each em
ployee is associated with a single department and location. 

G<cp?cpG)~ budget 

I Employees I Departments 

address Locations 

Figure 2.8 A Ternary Relationship Set with Key Constraints 

2.4.2 Participation Constraints 

The key constraint on Manages tells us that a department has at most Oll}3 

manager. A natural question to ask is whether every department has a man
ager. Let us say that every department is required to have a manager. This 
requirement is an example of a participation constraint; the partici(>ation of 
the entity set Departments in the relationship set Manages is said to be total. 
A participation that is not total is said to be partial. As an example, the 
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WORKS_IN3 

LOCATIONS 

Figure 2.9 An Instance of Works_ln3 
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participation of the entity set Employees in Manages is partial, since not every 
employee gets to manage a department. 

Revisiting the WorksJn relationship set, it is natural to expect that each em
ployee works in at least one department and that each department has at least 
one employee. This means that the participation of both Employees and De
partments in Works_In is total. The ER diagram in Figure 2.10 shows both 
the Manages and Works_In relationship sets and all the given constraints. If 
the participation of an entity set in a relationship set is total, the two are con
nected by a thick line; independently, the presence of an arrow indicates a key 
constraint. The instances of Works_In and Manages shown in Figures 2.3 and 
2.7 satisfy all the constraints in Figure 2.10. 

2.4.3 Weak Entities 

Thus far, we have assumed that the attributes as~ociated with an entity set 
include a key. This assumption does not always hold. For example, suppose 
that employees can purchase insurance policies to cover their dependents. We 
wish to record information about policies, including who is covered by each 
policy, but this information is really our only interest in the dependents of an 
employee. Jf an employee quits, any policy owned by the employee is terminated 
and we want to delete all the relevant policy and dependent information from 
the database. 
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budget 

since 

Figure 2.10 Manages and Works_In 

We might choose to identify a dependent by name alone in this situation, since 
it is reasonable to expect that the dependents of a given employee have different 
names. Thus the attributes of the Dependents entity set might be pname and 
age. The attribute pname does not identify a dependent uniquely. Recall 
that the key for Employees is ssn; thus we might have two employees called 
Smethurst and each might have a son called Joe. 

Dependents is an example of a weak entity set. A weak entity can be iden
tified uniquely only by considering some of its attributes in cdnjunction with 
the primary key of another entity, which is called the identifying owner. 

The following restrictions must hold: 

• The owner entity set and the weak entity set must participate in a one
to-many relationship set (one owner entity is associated with one or more 
weak entities, but each weak entity has a single owner). This relationship 
set is called the identifying relationship set of the weak entity set. 

• The weak entity set must have total participation in the identifying rela
tionship set. 

For example, a Dependents entity can be identified uniquely only if we take the 
key of the owning Employees entity and the pname of tlie Dependents entity. 
The set of attributes of a weak entity set that uniquely identify a weak entity 
for a given owner entity is called a partial key of the weak entity set. In our 
example, pname is a partial key for Dependents. 
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The Dependents weak entity set and its relationship to Employees is shown in 
Figure 2.11. The total participation of Dependents in Policy is indicated by 
linking them with a dark line. The arrow from Dependents to Policy indicates 
that each Dependents entity appears in at most one (indeed, exactly one, be
cause of the participation constraint) Policy relationship. To underscore the 
fact that Dependents is a weak entity and Policy is its identifying relationship, 
we draw both with dark lines. To indicate that pname is a partial key for 
Dependents, we underline it usin,g a broken line. This means that there may 
well be two dependents with the same pname value. 

cost age 

Employees Dependents 

Figure 2.11 A Weak Entity Set 

2.4.4 Class Hierarchies 

Sometimes it is natural to classify the entities in an entity set into subclasses. 
For example, we might want to talk about an Hourly _Emps entity set and a 
ContracLEmps entity set to distinguish the basis on which they are paid. We 
might have attributes hours_worked and hourly_wage defined for Hourly_Emps 
and an attribute contractid defined for Contract_Emps. 

We want tfie semantics that every entity in one of these sets is also an Em
ployees entity and, as such, must have all the attributes of Employees defined. 
Therefore, the attributes defined for an Hourly _Emps entity are the attributes 
for Employees plus Hourly _Emps. We say that the attributes for the entity set 
Employees are inherited by the entity set Hourly _Emps and that Hourly _Emps 
ISA (read is a) Employees. In addition-and in contrast to class hierarchies 
in programming languages such as C++-there is a constraint on queries over 
instances of these entity sets: A query that asks for all Employees entities 
must consider all Hourly _Emps and Contract_Emps entities as well. Figure 
2.12 illustrates the class hierarchy. 

The entity set Employees may also be classified using a different criterion. For 
example, we might identify a subset of employees as Senior _Emps. We can 
modify Figure 2.12 to reflect this change by adding a second ISA node as a 
child of Employees and making Senior_Emps a child of this node. Each of these 
entity sets might be classified further, creating a multilevel ISA hierarchy. 
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Employee 

contractid 

hourly_ wages 

Contract_Emps 

Figure 2.12 Class Hierarchy 

A class hierarchy can be viewed in one of two ways: 

• Employees is specialized into subcla8ses. Specialization is the process 
of identifying subsets of an entity set (the superclass)' that share some 
distinguishing characteristic. Typically, the superclass is defined first, the 
subclasses are defined next, and subclass-specific attribut~s and relation
ship sets are then added. 

• Hourly _Emps and ContracLEmps are generalized by Employees. As an
other example, two entity sets Motorboats and Cars may be generalized 
into an entity set Motor_Vehicles. Generalization consists of identifying 
some common characteristics of a collection of entity sets and creating a 
new entity set that contains entities possessing these common character
istics. Typically, the subclasses are defined first, the superclass is defined 
next, and any relationship sets that involve the superclass are then defined. 

We can specffy two kinds of constraints with respect to ISA hierarchies, namely, 
overlap and covering constraints. Overlap constraints determine whether 
two subclasses are allowed to contain the same entity. For example, can At
tishoo be both an Hourly _Emps entity and a ContracLEmps entity? Intuitively, 
no. Can he be both a ContracLEmps entity and a Senior_Emps entity? Intu
itively, yes. We denote this by writing 'ContracLEmps OVERLAPS Senior_Emps.' 
In the absence of such a st~tement, we assume by default that entity sets are 
constrained to have no overlap. 

Covering constraints determine whether th~.entities in the subclasses collec
tively include all entities in the superclass. For example, does every Employees 
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entity have to belong to one of its subclasses? Intuitively, no. Does every 
Motor_ Vehicles entity have to be either a Motorboats entity or a Cars entity? 
Intuitively, yes; a characteristic property of generalization hierarchies is that 
every instance of a superclass is an instance of a subclass. We denote this by 
writing 'Motorboats AND Cars COVER Motor_ Vehicles.' In the absence of such a 
statement, we assume by default that there is no covering constraint; we can 
have motor vehicles that are not motorboats or cars. 

There are two basic reasons for identifying subclasses (by specialization or 
generalization): 

l. We might want to add descriptive attributes that make sense only for the 
entities in a subclass. For example, hourly_wages does not make sense for a 
Contract_Emps entity, whose pay is determined by an individual contract. 

2. We might want to identify the set of entities that participate in some rela
tionship. For example, we might wish to define the Manages relationship 
so that the participating entity sets are Senior.Emps and Departments, 
to ensure that only senior employees can be managers. As another exam
ple, Motorboats and Cars may have different descriptive attributes (say, 
tonnage and number of doors), but as Motor_Vehicles entities, they must 
be licensed. The licensing information can be captured by a Licensed_ To 
relationship between Motor_ Vehicles and an entity set called Owners. 

2.4.5 Aggregation 

As defined thus far, a relationship set Js an association between entity sets. 
Sometim~s, we have to model a relationship between a collection of entities 
and relationships. Suppose that we have an entity set called Projects and that 
each Projects entity is sponsored by one or 'more departments. The Spon
sors relationship set captures this information. A department that sponsors a 
project might assign employees to monitor the sponsorship. Intuitively, Moni
tors should be a relationship .set that associates a Sponsors relationship (rather 
than a Projects or Departments entity) with an Employees entity. However, 
we have defined relationships to associate two or more entities. 

To define a relationship set such as Monitors, we introduce a new feature of 
the ER model, called aggregation. Aggregation allows us to indicate that 
a relationship set (identified through a dashed box) participates in another 
relationship set. This is illustrated in Figure 2.13, with a dashed box around 
Sponsors (and its participating entity sets) used to denote aggregation. This 
effectively allows us to treat Sponsors as an 'entity set for purposes of defining 
the Monitors relationship set. 
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Figure 2.13 Aggregation 

When should we use aggregation? Intuitively, we use it when we need to ex
press a relationship among relationships. But can we not express relationships 
involving other relationships without using aggregation? In our example, why 
not make Sponsors a ternary relationship? The answer is that there are really 
two distinct relationships, Sponsors and Monitors, each possibly with attributes 
of its own. For instance, the Monitors relationship has an attribute until that 
records the date until when the employee is appointed as the sponsorship mon
itor. Compare this attribute with the attribute since of Sponsors, which is the 
date when the sponsorship took effect. The use of aggregation versus a ternary 
relationship may also be guided by certain integrity constraints, as explained 
in Section 2.5.4. 

2.5 CONCEPTUAL DESIGN WITH THE ER MODEL 

Developing an ER diagram presents several choices, including the following: 

• Should a concept be modeled as an entity or an attribute? 

• Should a concept be modeled as an entity or a relationship? 

• What are the relationship sets and their participating entity sets? Should 
we use binary or ternary relationships? 

• Should we use aggregation? 
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We now discuss the issues involved in making these choices. 

2.5.1 Entity versus Attribute 

While identifying the attributes of an entity set, it is sometimes not clear 
whether a property should be modeled as an attribute or as an entity set (and 
related to the first entity set using a relationship set). For example, consider 
adding address information to the Employees entity set. One option is to use 
an attribute address. This option is appropriate if we need to record only 
one address per employee, and it suffices to think of an address as a string. An 
alternative is to create an entity set called Addresses and to record associations 
between employees and addresses using a relationship (say, Has_Address). This 
more complex alternative is necessary in two situations: 

• We have to record more than one address for an employee. 

• We want to capture the structure of an address in our ER diagram. For 
example, we might break down an address into city, state, country, and 
Zip code, in addition to a string for street information. By representing an 
address as an entity with these attributes, we can support queries such as 
"Find all employees with an address in Madison, WI." 

For another example of when to model a concept as an entity set rather than 
an attribute, consider the relationship set (called WorksJ:n4) shown in Figure 
2.14. 

ssn budget 

Departments 

Figure 2.14 The Works_ln4 Relationship Set 

It differs from the Works_In relationship set of Figure 2.2 only in that it has 
attributes from and to, instead of since. Intuitively, it records the interval 
during which an employee works for a department. Now suppose that it is 
possible for an employee to work in a given department over more than one 
period. 

This possibility is ruled out by the ER diagram's semantics, because a rela
tionship is uniquely identified by the participating entities (recall from Section 
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2.3). The problem is that we want to record several values for the descriptive 
attributes for each instance of the Works_In2 relationship. ('J;'his situation is 
analogous to wanting to record several addresses for each employee.) We can 
address this problem by introducing an entity set called, say, Duration, with 
attributes from and to, as shown in Figure 2.15. 

ssn ET? did x budget 

Employees Departments 

from Duration to 

Figure 2.15 The Works_In4 Relationship Set 

In some versions of the ER model, attributes are allowed to take on sets as 
values. Given this feature, we could make Duration an attribute of Works_In, 
rather than an entity set; associated with each Works_In relationship, we would 
have a set of intervals. This approach is perhaps more intuitive than model
ing Duration as an entity set. Nonetheless, when such set-valued attributes 
are translated into the relational model, which does not support set-valued 
attributes, the resulting relational schema is very similar to what we get by 
regarding Duration as an entity set. 

2.5.2 Entity versus Relationship 

Consider the relationship set called Manages in Figure 2.6. Suppose that each 
department manager is given a discretionary budget ( dbudget), as shown in 
Figure 2.16, in which we have also renamed the relationship set to Manages2. 

name 
dbudget CT3name 

G=5 budget 

~ 
Employees Departments 

Figure 2.16 Entity versus Relationship 
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Given a department, we know the manager, as well as the manager's starting 
date and budget for that department. This approach is natural if we assume 
that a manager receives a separate discretionary budget for each department 
that he or she manages. 

But what if the discretionary budget is a sum that covers all departments 
managed by that employee? In this case, each Manages2 relationship that 

11 involves a given employee will have the same value in the dbudget field, leading 
to redundant storage of the same information. Another problem with this 
design is that it is misleading; it suggests that the budget is associated with 
the relationship, when it is actually associated with the manager. 

We can address these problems by introducing a new entity set called Managers 
(which can be placed below Employees in an ISA hierarchy, to show that every 
manager is also an employee). The attributes since and dbudget now describe 
a manager entity, as intended. As a variation, wpile every manager has a 
budget, each manager may have a different starting date (as manager) for each 
department. In this case dbudget is an attribute of Managers, but since is an 
attribute of the relationship set between managers and departments. 

The imprecise nature of ER modeling c~n thus make it difficult to recognize 
underlying entities, and we might associate attributes with relationships rather 
than the appropriate entities. In general, such mistakes lead to redundant 
storage of the same information and can cause many problems. We discuss 
redundancy and its attendant problems in Chapter 19, and present a technique 
called normalization to eliminate redundancies from tables. 

2.5.3 llinary versus Ternary Relationships 

Consider the ER diagram shown in Figure 2.17. It models a situation in which 
an employee can own several policies, each policy can be owned by several 
employees, and each dependent can be covered by several policies. 

Suppose that we have the following additional requirements: 

• A policy cannot be owned jointly by two· or more employees. 

• Every policy must be owned by some employee. 

• Dependents is a weak entity set, and each dependent entity is uniquely 
identified by taking pname in conjunction with the policyid of a policy 
entity (which, intuitively, covers the given dependent). 

The first requirement suggests that we impose a key constraint on Policies with 
respect to Covers, but this constraint has the unintended side effect that a 
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q~ lot pn_ai:'.11'._ p 
Employees Dependents 

Policies 

Figure 2.17 Policies as an Entity Set 

policy can cover only one dependent. The second requirement suggests that we 
impose a total participation constraint on Policies. This solution is acceptable 
if each policy covers at least one dependent. The third requirement forces us 
to introduce an identifying relationship that is binary (in our version of ER 
diagrams, although there are versions in which this is not the case). 

Even ignoring the third requirement, the best way to model this situation is to 
use two binary relationships, as shown in Figure 2.18. 

_s_sn ~ EP; ~lot ___ 
age 

Employees Dependents 

Figure 2.18 Policy Revisited 

HULU EXHIBIT 1055 
Page 74 of 130



Introduction to Database Design 45 

This example really has two relationships involving Policies, and our attempt 
to use a single ternary relationship (Figure 2.17) is inappropriate. There are 
situations, however, where a relationship inherently associates more than two 
entities. We have seen such an example in Figures 2.4 and 2.15. 

As a typical example of a ternary relationship, consider entity sets Parts, Sup
pliers, and Departments, and a relationship set Contracts (with descriptive 
attribute qty) that involves all of them. A contract specifies that a supplier will 
supply (some quantity of) a part to a department. This relationship cannot 
be adequately captured by a collection of binary relationships (without the use 
of aggregation). With binary relationships, we can denote that a supplier 'can 
supply' certain parts, that a department 'needs' some parts, or that a depart
ment 'deals with' a certain supplier. No combination of these relationships 
expresses the meaning of a contract adequately, for at least two reasons: 

• The facts that supplier S can supply part P, that department D needs part 
P, and that D will buy from S do not necessarily imply that department D 
indeed buys part P from supplier S! 

• We cannot represent the qty attribute of a contract cleanly. 

2.5.4 Aggregation versus Ternary Relationships 

As we noted in Section 2.4.5, the choice between using aggregation or a ternary 
relationship is mainly determined by the existence of a relationship that relates 
a relationship set to an entity set (or second relationship set). The choice may 
also be guided by certain integrity constraints that we want to express. For 
example, ~nsider the ER diagram spown in Figure 2.13. According to this dia
gram, a project can be sponsored by any number of departments, a department 
can sponsor one or more projects, and each sponsorship is monitored by one 
or more employees. If we don't need to record the until attribute of Monitors, 
then we might reasonably use a ternary relationship, say, Sponsors2, as shown 
in Figure 2.19. 

Consider the constraint that each sponsorship (of a project by a department) 
be monitored by at most one employee. We cannot express this constraint 
in terms of the Sponsors2 relationship set. On the other hand, we can easily 
express the constraint by drawing an i;inow from the aggregated relationship 
Sponsors to the relationship Monitors in Figure 2.13. Thus, the presence of 
such a constraint serves as another reason for using aggregation rather than a 
ternary relationship set. 
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Figure 2.19 Using a Ternary Relationship instead of Aggregation 

2.6 CONCEPTUAL DESIGN FOR LARGE ENTERPRISES 

We have thus far concentrated on the constructs available in the ER model 
for describing various application concepts and relationships. The process of 
conceptual design consists of more than just describing small fragments of the 
application in terms of ER diagrams. For a large enterprise, the design may re
quire the efforts of more than one designer and span data and application code 
used by a number of user groups. Using a high-level, semantic data model, 
such as ER diagrams, for conceptual design in such an environment offers the 
additional advantage that the high-level design can be diagrammatically rep
resented and easily understood by the many people who must provide input to 
the design process. 

An important aspect of the design process is the methodology used to structure 
the development of the overall design and ensure that the design takes into 
account all user requirements and is consistent. The usual approach is that the 
requirements of various user groups are considered, any conflicting requirements 
are somehow resolved, and a single set of global requirements is generated at 
the end of the requirements analysis phase. Generating a single set of global 
requirements is a difficult task, but it allows the conceptual design phase to 
proceed with the development of a logical schema that spans all the data and 
applications throughout the enterprise. 

An alternative approach is to develop separate conceptual schemas for different 
user groups and then integrate these conceptual schemas. To integrate multi7 
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ple conceptual schemas, we must establish correspondences between entities, 
relationships, and attributes, and we must resolve numerous kinds of conflicts 
(e.g., naming conflicts, domain mismatches, differences in measurement units). 
This task is difficult in its own right. In some situations, schema integration 
cannot be avoided; for example, when one organization merges with another, 
existing databases may have to be integrated. Schema integration is also in
creasing in importance as users demand access to heterogeneous data sources, 
often maintained by different organizations. 

2.7 THE UNIFIED MODELING LANGUAGE 
.. 

There are many approaches to end-to-end software system design, covering all 
the steps from identifying the business requirements to the fin51l specifications 
for a complete application, including workflow, user interfaces, and many as
pects of software systems that go well beyond databases and the data stored in 
them. In this section, we briefly discuss an approach that i~ becoming popular, 
called the unified modeling language (UML) approach. 

UML, like the ER model, has the attractive feature that its constructs can be 
drawn as diagrams. It encompasses a broader spectrum of the software design 
process than the ER model: 

• Business Modeling: In this phase, the goal is to describe the business 
procesE!eS involved in the software application being developed. 

• System Modeling: The understanding of business processes is used to 
identify the requirements for the software application. One part of the 
requirepients is the database requirements. 

• Conceptual Database Modeling: This step corresponds to the creation 
of the ER design for the database. For this purpose, UML provides many 
constructs that parallel th~ ER constructs. 

• Physical Database Modeling: UML also provides pictorial represen
tations for physical database design choices, such as the creation of table 
spaces and indexes. (We discuss physical database design in later chapters, 
but not the corresponding UML constructs.) 

• Hardware System Modeling: UML diagrams can be used to describe 
the hardware con:f;iguration used for the application. 

There are many kinds of diagrams in UML. Use case diagrams describe the 
actions performed by the system in response to user requests, and the people 
involved in these actions. These diagrams specify the external functionality 
that the system is expected to support. 
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Activity diagrams show the fl.ow of actions in a business process. Statechart 
diagrams describe dynamic interactions between system objects. These dia
grams, used in business and system modeling, describe how the external func
tionality is to be implemented, consistent with the business rules and processes 
of the enterprise. 

Class diagrams are similar to ER diagrams, although they are more general 
in that they are intended to model application entities (intuitively, important 
program components) and their logical relationships in addition to data entities 
and their relationships. 

Both entity sets and relationship sets can be represented as classes in UML, 
together with key constraints, weak entities, and class hierarchies. The term 
relationship is used slightly differently in UML, and UML's relationships are 
binary. This sometimes leads to confusion over whether relationsl'lip sets in 
an ER diagram involving three or more entity sets can be directly represented 
in UML. The confusion disappears once we understand that all relationship 
sets (in the ER sense) are represented as classes in UML; the binary UML 
'relationships' are essentially just the links shown in ER diagrams between 
entity sets and relationship sets. 

Relationship sets with key constraints are usually omitted from UML diagrams, 
and the relationship is indicated by directly linking the entity sets involved. 
For example, consider Figure 2.6. A UML representation of this ER diagram 
would have a class for Employees, a class for Departments, and the relatio;nship 
Manages is shown by linking these two classes. The link can be labeled with 
a name and cardinality information to show that a department can have only 
one manager. 

As we will see in Chapter 3, ER diagrams are translated into the relational 
model by mapping each entity set into a table and each relationship set into 
a table. Further, as we will see in Section 3.5.3, the table corresponding to a 
one-to-many relationship set is typically omitted by including some additional 
information about the relationship in the table for one of the entity sets in
volved. Thus, UML class diagrams correspond closely to the tables created by 
mapping an ER diagram. 

Indeed, every class in a UML class diagram is mapped into a table in the cor
responding UML database diagram. UML's database diagrams show how 
classes are represented in the database and contain additional details about 
the structure of the database such as integrity constraints and indexes. Links 
(UML's 'relationships') between UML classes lead to various integrity con
straints between the corresponding tables. Many details specific to the re
lational model (e.g., views, foreign keys, null-allowed fields) and that reflect 
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physical design choices (e.g., indexed fields) can be modeled in UML database 
diagrams. 

UML's component diagrams describe storage aspects of the database, such 
as tablespaces and database partitions), as well as interfaces to applications 
that access the database. Finally, deployment diagrams show the hardware 
aspects of the system. 

Our objective in this book is to concentrate on the data stored in a database 
and the related design issues. To this end, we deliberately take a simplified 
view of the other steps involved in software design and development. Beyond 
the specific discussion of UML, the material in this section is intended to place 
the design issues that we cover within the context of the larger software design 
process. We hope that this will assist readers interested in a more comprehen
sive discussion of software design to complement our discussion by referring to 
other material on their preferred approach to overall system design. 

2.8 CASE STUDY: THE INTERNET SHOP 

We now introduce an illustrative, 'cradle-to-grave' design case study that we 
use as a running example throughout this book. DBDudes Inc., a well-known 
database consulting firm, has been called in to help Barns and Nobble (B&N) 
with its database design and implementation. B&N is a large bookstore special
izing in books on horse racing, and it has decided to go online. DBDudes first 
verifies that B&N is willing and able to pay its steep fees and then schedules a 
lunch meeting-billed to B&N, naturally-to do requirements analysis. 

2.8.1 Requirements Analysis 

The owner of B&N, unlike many people who need a database, has thought 
extensively about what he wants and offers a concise summary: 

"I would like my customers to be able to browse my catalog of books and 
place orders over the Internet. Currently, I take orders over the phone. I have 
mostly corporate customers who call me and give me the ISBN number of a 
book and a quantity; they often pay by credit card. I then prepare a shipment 
that contains the books they ordered. If I don't have enough copies in stock, 
I order additional copies and delay the shipment until the new copies arrive; 
I want to ship a customer's entire order together. My catalog includes all the 
books I sell. For each book, the' catalog contains its ISBN number, title, author, 
purchase price, sales price, and the year the book was published. Most of my 
customers are regulars, and I have records with their names and addresses. 
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Figure 2.20 ER Diagram of the Initial Design 

New customers have to call me first and establish an account before"~they can 
use my website. 

On my new website, customers should first identify themselves by their unique 
customer identification number. Then they should be able to browse my catalog 
and to plac.e orders online." 

DBDudes's consultants are a little surprised by how quickly the requiqlments 
phase is completed-it usually takes weeks of discussions (and many lunches 
and dinners) to get this done--but return to their offices to analyze this infor
mation. 

2.8.2 Conceptual Design 

In the conceptual design step, DBDudes develops a high level description of 
t)le data in terms of the ER model. The initial design is shown in Figure 
2.20. Books and customers are modele,d as entities and related through orders 
that customers place. Orders is a relationship set connecting the Books and 
Custoffi;ers entity sets. For each order, the following attributes are stored: 
quantity, order date, and ship date. As soon as an order is shipped, the ship 
date is set; until then the ship date is set to null, indicating that this order has 
not been shipped yet. 

DBDudes has an internal design review at this point, and several questions are 
raised. To protect their identities, we will refer to the design team leader as 
Dude 1 and the design reviewer as Dude 2. 

Dude 2: What if a customer places two orders for the same book in one day? 
Dude 1: The first order is handled by creating a new Orders relationship and 
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the second order is handled by updating the value of the quantity attribute in 
this relationship. 
Dude 2: What if a customer places two orders for different books in one day? 
Dude. 1: No problem. Eacli instance of the Orders relationship set relates the 
customer to a different book. 
Dude 2: Ah, but what if a customer places two orders for the same book on 
different days? 

,1, Dude 1: We can use the attribute order date of the orders relationship to 
distinguish· the two orders. 
Dude 2: Oh no you can't. The attributes of Customers and Books must jointly 
contain a key for Orders. So this design does not allow a customer to place 
orders for the same book on different days. 
Dude 1: Yikes, you're right. Oh well, B&N probably won't care; we'll see. 

DBDudes decides to proceed with the next phase, logical database design; we 
rejoin them in Section 3.8. 

2.9 REVIEW QUESTIONS 

Answers to the review questions can be found in the listed sections. 

• Name the main steps in database design. What is the goal of each step? 
In which step is the ER model mainly used? (Section 2.1) 

• Define these terms: entity, entity set, attribute, key. (Section 2.2) 

• Define these terms: relationship, relationship set, descriptive attributes. 
(Sect~on 2.3) 

• Define the following kinds of constraints, and give an example of each: key 
constraint, participation constraint. What is a weak entity? What are class 
hierarchies? What is aggregation? Give an example scenario motivating 
the use of each of these ER model design constructs. (Section 2.4) 

• What guidelines would you use for each of these choices when doing ER 
design: Whether to use an attribute or an entity set, an entity or a relation
ship set, a binary or ternary relationship, or aggregation. (Section 2.5) 

• Why is designing a database for a large enterprise especially hard? (Sec
tion 2.6) 

• What is UML? How does database design fit into the overall design of 
a data-intensive software system? How is UML related to ER diagrams? 
(Section 2. 7) 
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EXERCISES 

Exercise 2.1 Explain the following terms briefly: attribute, domain, entity, relationship, 
entity set, relationship set, one-to-many relationship, many-to-many relationship, participa
tion constraint, overlap constraint, covering constraint, weak entity set, aggregation, and role 
indicator. 

Exercise 2.2 A university database contains information about professors (identified by so
cial security number, or SSN) and courses (identified by courseid). Professors teach courses; 
each of the following situations concerns the Teaches relationship set. For each situation, 
draw an ER diagram that describes it (assuming no further constraints hold). 

1. Professors can teach the same course in several semesters, and each offering must be 
recorded. 

2. Professors can teach the same course in several semesters, and only the most recent 
such offering needs to be recorded. (Assume this condition applies in all subsequent 
questions.) 

3. Every professor must teach some course. 

4. Every professor teaches exactly one course (no more, no less). 

5. Every professor teaches exactly one course (no more, no less), and every course must be 
taught by some professor. 

6. Now suppose that certain courses can be taught by a team of professors jointly, but it 
is possible that no one professor in a team can teach the course. Model this situation, 
introducing additional entity sets and relationship sets if necessary. 

Exercise 2.3 Consider the following information about a university database: 

• Professors have an SSN, a name, an age, a rank, and a research specialty. 

• Projects have a project number, a sponsor name (e.g., NSF), a starting date, an ending 
date, and a budget. 

• Graduate students have an SSN, a name, an age, and a degree program (e.g., M.S. or 
Ph.D.). 

• Each project is managed by one professor (known as the project's principal investigator). 

• Each project is worked on by one or more professors (known as the project's co-investigators). 

• Professors can manage and/or work on multiple projects. 

• Each project is worked on by one or more graduate students (known as the project's 
research assistants). 

• When graduate students work on a project, a professor n;mst supervise their work on the 
project. Graduate students can work on multiple projects, in which case they will have 
a (potentially different) supervisor for each one. 

• Departments have a department number, a department name, and a main office. 

• Departments have a,professor (known as the chairman) who runs the department. 

• Professors work in one or more departments, and for each department that they work 
in, a time percentage is associated with their job. 

• Graduate students have one major department in which they are working on their degree. 
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• Each graduate student has another, more senior graduate student (known as a student 
advisor) who advises him or her on what courses to take. 

Design and draw an ER diagram that captures the information about the university. Use only 
the basic ER model here; that is, entities, relationships, and attributes. Be sure to indicate 
any key and participation constraints. 

Exercise 2.4 A company database needs to store information about employees (identified 
by ssn, with salary and phone as attributes), departments (identified by dno, with dname and 
budget as attributes), and chilqren of employees (with name and age as attributes). Employees 
work in departments; each department is managed by an employee; a child must be identified 
uniquely by name when the parent (who is an employee; assume that only one parent works 
for the company) is known. We are not interested in information about a child once the 
parent leaves the company. 

Draw an ER diagram that captures this information. 

Exercise 2.5 Notown Records has decided to store information about musicians who perform 
on its albums (as well as other company data) in a database. The company has wisely chosen 
to hire you as a database designer (at your usual consulting fee of $2500/day). 

• Each musician that records at Notown has an SSN, a name, an address, and a phone 
number. Poorly paid musicians often share the same address, and no address has more 
than one phone. 

• Each instrument used in songs recorded at Notown has a name (e.g., guitar, synthesizer, 
flute) and a musical key (e.g., C, B-flat, E-flat). 

• Each album recorded on the Notown label has a title, a copyright date, a format (e.g., 
CD or MC), and an album identifier. 

• Each song recorded at Notown has a title and an author. 

• Each musician may play several instruments, and a given instrument may be played by 
several musicians. 

• Each album has a number of songs on it, but no song may appear on more than one 
album.~ 

• Each song is performed by one or more musicians, and a musician may perform a number 
of songs. 

• Each album has exactly one musician who acts as its producer. A musician may produce 
several albums, of course. 

Design a conceptual schema for N otown and draw an ER diagram for your schema. The 
preceding information describes the situation that the Notown database must model. Be sure 
to indicate all key and cardinality constraints and any assumptions you make. Identify any 
constraints you are unable to capture in the ER diagram and briefly explain why you could 
not express them. 

Exercise 2.6 Computer Sciences Department frequent fliers have been complaining to Dane 
County Airport officials about the poor organization at the airport. As a result, the officials 
decided that all information related to the airport should be organized using a DBMS, and 
you have been hired to design the database. Your first task is to organize the information 
about all the airplanes stationed and maintained at the airport. The relevant information is 
as follows: 
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• Every airplane has a registration number, and each airplane is of a specific model. 

• The airport accommodates a number of airplane models, and each model is identified by 
a model number (e.g., DC-10) and has a capacity and a weight. 

• A number of technicians work at the airport. You need to store the name, SSN, address, 
phone number, and salary of each technician. 

• Each technician is an expert on one or more plane model(s), and his or her expertise may 
overlap with that of other technicians. This information about technicians must also be 
recorded. 

• Traffic controllers must have an annual medical examination. For each traffic controller, 
you must store the date of the most recent exam. 

• All airport employees (including technicians) belong to a union. You must store the 
union membership number of each employee. You can assume that each employee is 
uniquely identified by a social security number. 

• The airport has a number of tests that are used periodically to ensure that airplanes are 
still airworthy. Each test has a Federal Aviation Administration (FAA) tf'l§t number, a 
name, and a maximum possible score. 

• The FAA requires the airport to keep track of each time a given airplane is tested by a 
given technician using a given test. For each testing event, the information needed is the 
date, the number of hours the technician spent doing the test, and the score the airplane 
received on the test. 

1. Draw an ER diagram for the airport database. Be sure to indicate the various attributes 
of each entity and relationship set; also specify the key and participation constraints for 
each relationship set. Specify any necessary overlap and covering constraints as well (in 
English). 

2. The FAA passes a regulation that tests on a plane must be conducted by a technician 
who is an expert on that model. How would you express this constraint in the ER 
diagram? If you cannot express it, explain briefly. 

Exercise 2. 7 The Prescriptions-R-X chain of pharmacies has offered to give you a free life
time supply of medicine if you design its database. Given the rising cost of health care, you 
agree. Here's the information that you gather: 

• Patients are identified by an SSN, and their names, addresses, and ages must be recorded. 

• 

• 
• 

Doctors are identified by an SSN. For each doctor, the name, specialty, and years of 
experience must be recorded . 

Each pharmaceutical company is identified by name and has a phone number. 

For each drug, the trade name and formula must be recorded. Each drug is sold by 
a given pharmaceutical company, and the tr_i'Lde name identifies a drug uniquely from 
among the products of that company. If a pharmaceutical company is deleted, you need 
not keep track of its products any longer. 

• Each pharmacy has a name, address, and phone number. 

• Every patient has a primary physician. Every doctor has at least one patient. 

• Each pharmacy sells several drugs and has a price for each. A drug could be sold at 
several pharmacies, and the price could vary from one pharmacy to another. 
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• Doctors prescribe drugs for patients. A doctor could prescribe one or more drugs for 
several patients, and a patient could obtain prescriptions from several doctors. Each 
prescription has a date and a quantity associated with it. You can assume that, if a 
doctor prescribes the same drug for the same patient more than once, only the last such 
prescription needs to be stored. 

• Pharmaceutical companies have long-term contracts with pharmacies. A pharmaceutical 
company can contract with several pharmacies, and a pharmacy can contract with several 
pharmaceutical companies. For each contract, you have to store a start date, an end date, 
and the text of the contract. 

• Pharmacies appoint a supervisor for each contract. There must always be a supervisor 
for each contract, but the contract supervisor can change over the lifetime of the contract. 

1. Draw an ER diagram that captures the preceding information. Identify any constraints 
not captured by the ER diagram. 

2. How would your design change if each drug must be sold at a fixed price by all pharma
cies? 

3. How would your design change if the design requirements change as follows: If a doctor 
prescribes the same drug for the same patient more than once, several such prescriptions 
may have to be stored. 

Exercise 2.8 Although you always wanted to be an artist, you ended up being an expert on 
databases because you love to cook data and you somehow confused database with data baste. 
Your old love is still there, however, so you set up a database company, ArtBase, that builds a 
product for art galleries. The core of this product is a database with a schema that captures 
all the information that galleries need to maintain. Galleries keep information about artists, 
their names (which are unique), birthplaces, age, and style of art. For each piece of artwork, 
the artist, the year it was made, its unique title, its type of art (e.g., painting, lithqgraph, 
sculpture, photograph), and its price must be stored. Pieces of artwork are also classified into 
groups of various kinds, for example, portraits, still lifes, works by Picasso, or works of the 
19th century; a given piece may belong to more than one group. Each group is identified by 
a name (like those just given) that describes the group. Finally, galleries keep information 
about customers. For each customer, galleries keep that person's unique-name, address, total 
amount of do1lars spent in the gallery (very important!), and the artists and groups of art 
that the customer tends to like. 

Draw the ER diagram for the database. 

Exercise 2.9 Answer the following questions. 

• Explain the following terms briefly: UML, use case diagrams, statechart diagrams, class 
diagrams, database diagrams, component diagrams, and deployment diagrams. 

• Explain the relationship between ER diagrams and UML. 

BIBLIOGRAPHIC NOTES 

Several books provide a gGod treatment of conceptual design; these include [63] (which also 
contains a survey of commercial database design tools) and [730]. 

The ER model was proposed by Chen [172], and extensions have been proposed in a number 
of subsequent papers. Generalization and aggregation were introduced in [693]. [390, 589] 
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contain good surveys of semantic data models. Dynamic and temporal aspects of semantic 
data models are discussed in [749]. 

[731] discusses a design methodology based on developing an ER diagram and then translating 
it to the relational model. Markowitz considers referential integrity in the context of ER to 
relational ~apping and discusses the support provided in some commercial systems (as of 
that date) in [513, 514]. 

The entity-relationship conference proceedings contain numerous papers on conceptual design, 
with an emphasis on the ER model; for example, [698]. 

The OMG home page (www. omg. org) contains the specification for UML and related modeling 
standards. Numerous good books discuss UML; for example [105, 278, 640] and there is a 
yearly conference dedicated to the advancement of UML, the International Conference on the 
Unified Modeling Language. 

View integration is discussed in sev~ral papers, including [97, 139, 184, 244, 5~5, 551, 550, 
685, 697, 748]. [64] is a survey of several integration approaches. 

HULU EXHIBIT 1055 
Page 86 of 130



3 
THE RELATIONAL MODEL 

rr How is data represented in the relational model? 

rr What integrity constrainfs can be expressed? 

,.. How can data be created and modified? 

rr How can data be manipulated and queried? 

,.. How can we create, modify, and 9uery tables using SQL? 

,.. How do we obtain a relational database design from an ER diagram? 

rr What are views and why are they used? 

.. Key concepts: relation, schema, instance, tuple, field, domain, 
degree, cardinality; SQL DDL, CREATE TABLE, INSERT, DELETE, 
UPDATE; integrity constraints, domain constraints, key constraints, 
PRIMARY KEY, UNIQUE, foreign key constraints, FOREIGN KEY; refer
ential integrity maintenance, deferred and immediate constraints; re
lational queries; logical database design, translating ER diagrams to 
relations, expressing ER constraints using SQL; views, views and log
ical independence, security; creating views in SQL, updating views, 
querying views, dropping views 

TABLE: An arrangement of words, numbers, or signs, or combinations of them, 
as in parallel columns, to exhibit a set of facts or relations in a definite, compact, 
and comprehensive form; a synopsis or scheme. 

-Webster's Dictionary of the English Language 

Codd proposed the relational data model in 1970. At that time, most database 
systems were based on one of two older data models (the hierarchical model 

57 
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SQL. Originally developed as the query.i language of the pioneering 
System-R relational DBMS at IBM, structured query language (SQL) 
has become the most widely used language for creating, manipulating, 
and querying relational DBMSs. Since many vendors offer SQL products, 
there is a need for a standard that defines 'official SQL.' The existence of 
a standard allows users to measure a giverl vendor's version of SQL for 
completeness. It also allows users to distinguish SQL features specific to 
one product fr9m those that are standard; an application that rel~es on 
nonstandard features is less portable. 

The first SQL standard was developed in 1986 by the American National 
Standards Institute (ANSI) and was called SQL-86. There was a minor 
revision in 1989 called SQL-89 and a major revision in 1992 called SQL-
92. The International Standards Organization (ISO) collaborated with 
ANSI to develop SQL-92. Most commercial DBMSs currently support (the 
core subset of) SQL-92 and are working to support the recently adopted 
SQL:19'99 version of the standard, a major extension of SQL-92. Our 
coverage of SQL is based on SQL:1999, but is applicable to SQL-92 as 
well; features unique to SQL:1999 are explicitly noted. 

and the network model); the relational model revolutionized the database field 
and largely supplanted these earlier models. Prototype relational database 
management systems were developed in pioneering research projects at IBM 
and UC-Berkeley by the mid-1970s, and several vendors were offering relational 
database products shortly thereafter. To.day, the relational model is by far 
the dominant data model and the foundation for the leading DBMS products, 
including IBM's DB2 family, Informix, Oracle, Sybase, Microsoft's Access and 
SQLServer, FoxBase, and Paradox. Relational database systems are ubiquitous 
in the marketplace and represent a multibillion dollar industry. 

The relational model is very simple and elegant: a database is a collection of 
one or more relations, where each relation is a table with rows and columns. 
This simple tabular representation enables even novice users to understand the 
contents of a database, and it permits the use of simple, high-level languages 'J 
to query the data. The major advantages of the relational model over the older 
data models are its simple data representation and the ease with which even 
complex 'queries can be expressed. 

While we concentrate on the underlying concepts, we also introduce the Data 
Definition Language (DDL) features of SQL, the standard language for 
creating, manipulating, and querying data in a relational DBMS. This allows 
us to ground the discussion firmly in terms of real database sy.stems. 

I 
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We discuss the concept of a relation in· Section 3.1 and..show how to create 
relations using the SQL language. An important component of a data model is 
the set-of constructs it provides for specifying conditions that must be satisfied 
by the data. Such conditions, called integrity constraints (ICs), enable the 
DBMS to reject operations that might corrupt the data. We present integrity 
constraints in the relational model in Section 3.2, along with a discussion of 
SQL support for ICs. We discuss how a DBMS enforces integrity constraints 

t
1 

in Section 3.3. 

• ! 

In Section 3.4, we turn to the m~chanism for accessing and retrieving data 
from the database, query languages, and introduce the querying features of 
SQL, which we examine in greater detail in a later chapter. 

We then discuss converting an ER diagram into a relational database schema 
in Section 3.5. We introduce views, or tables defined vsing queries, in Section 
3.6. Views can be used to define the external schema for a database and thus 
provide the support for logical data independence in the relational model. In 
Section 3.7, we describe SQL commands to destroy and alter tables and views. 

Finally, in Section 3.8 we extend our design ca:Se study, the Internet shop in
troduced in Section 2.8, by showing how the ER diagram for its conceptual 
schema can be mapped to the relational model, and how the use of ·views can 
help in this design. 

! 3.1 INTRODUCTION TO THE RELATIONAL MODEL 
I 

The main construct for representing data in the relational model is a relation. 
A relation <:onsists of a relation schema and a relation instance. The 
relation instance is a table, and the relation schema de,?cribes the column heads 
for the table. We first describe the relation schema and then the relation 
instance. The schema specifies the relation's name, the name of each field (or 
column, or attribute), and the domain of each field. A domain is referred to 
in a relation schema by the domain name and has a set of associated values. 

We use the example of student information in a university database from Chap
ter 1 to illustrate the parts of a relation schema: 

Students( sid: string, name: string, login: string, 
age: integer, gpa: real) 

This says, for instance, that the field named sid has a domain named string. 
The set of valu,f3s associated with domain string is the set of all character 
strings. 

HULU EXHIBIT 1055 
Page 89 of 130



T 

• 11·1 

I" 
I 
i 

60 CHAPTER 3 

We now turn to the instances of a relation. An instance of a relation is a set 
of tuples, also called records, in which each tuple has the same number of 
fields as the relation schema. A relation instance can be thought of as a table 
in which each tuple is a row, and all rows have the same number of fields. (The 
term relation instance is often abbreviated to just relation, when there is no 
confusion with other aspects of a relation such as its schema.) 

An instance of the Students relation appears in Figure 3.1. The instance Sl 

Field names FIELDS (ATIRIBUTES, COLUMNS) 

I ~id name login / age / gpa I 
-1 50000 Dave dave@cs 19 3.3 

7 53666 Jones jones@cs 18 '3.4 

TUPLES >- 5~88 Smith smith@ee 18 3.2 

(RECORDS, 
..:,._ 53650 Smith smith@math 19 3.8 

ROWS) ~ 53831 Maday an µiadayan@music 11 1.8 
~ 53832 Guldu guldu@music 12 2.0 

Figure 3.1 An Instance Sl of the Students Relation 

contains six tuples and has, as we ~xpect from the schema, five fields. Note that 
no two rows are identical. This is a requirement of the relational model-each 
relation is defined to be a set of unique tuples or rows. 

In practice, commercial systems allow tables to have duplicate rows, but we 
assume that a relation is indeed a set of tuples unless otherwise noted. The 
order in which the rows are listed is not important. Figure 3.2 shows the same 
relation instance. If the fields are named, as in our schema definitions and 

I sid I name I login I age l gpa I 
53831 Madayan madayan@music 11 1.8 
53832 Guldu guldu@music ' 12 2.0 
53688 Smith smith@ee 18 3.2 
53650 Smith smith@math 19 3.8 
53666 Jones jones@cs 18 3.4 
50000 Dave dave@cs 19 3.3 

Figure 3.2 An Alternative Representation of Instance Sl of Students 

figures depicting relation instances, the order of fields does not matter either. 
However, an alternative convention is to list fields in a specific order and refer 
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to a field by its position. 'J;'hus, sid is field 1 of ,Students, login is field 3, 
and so on. If this convention is used, the order of fields is significant. Most 
database systems use a combination of these conventions. For example, in SQL, 
the named fields convention is used in statements that retrieve tuples and the 
ordered field~ convention is commonly used when inserting tuples. 

A relation schema specifies the domain of each field or column in the relation 
instance. These domain constraints in the schema specify an important 
condition that we want each instance of the relation to satisfy: The values 
that appear in a column must be drawn from the domain associated with that 
column. Thus, the domain of a neld is essentially the type of that field, in 
programming language terms, and restricts the values that can appear in the 
field. 

More formally, let R(fi:D1, ... , f n:Dn) be a relation schema, and for each Ji, 
1 ~ i ~ n, let Dami be the set of values associated with the domain named Di. 
An instance of R that satisfies the domain constraints in the schema is a set of 
tuples with n fields: 

{(Ji: di, ... ,Jn: dn) I di E Domi, ... ,dn E Damn} 

The angular brackets ( ... ) identify the fields of a tuple. Using this notation, 
the first Students tuple shown in Figure 3.1 is written as ( sid: 50000, name: 
Dave, login: dave@cs, age: 19, gpa: 3.3}. The curly brackets{ ... } denote a set 
(of tuples, in this definition}. The vertical bar I should be read 'such that,' the 
symbol E should be read 'in,' and the expression to the right of the vertical 
bar is a condition that must J:>e satisfied by the field values of each tuple in the 
set. Therefore, an instance of R is defined as a set of tuples. The fields of each 
tuple must correspond to the fields in the relation schema. 

Domain constraints are so fundamental in the relational model that we hence
forth consider only relation instances that satisfy them; therefore, relation 
instance means relation instance that satisfies the domain constraints in the 
relation schema. 

The degree, also called arity, of a relation is the number of fields. The car
dinality of a relation instance is the number of tuples in it. In Figure 3.1, the 
degree of the relation (the number of columns) is five, and the cardinality of 
this instance is six. 

A relational database is a collection of relations with distinct relation names. 
The relational database schema is the collection of schemas for the relations 
in the database. For example, in Chapter 1, we discussed a university database 
with relations called Students, Faculty, Courses, Rooms, Enrolled, Teaches, 
and Meets_In. An instance of a relational database is a collection of relation 
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instances, one per relation schema in the database schema; of course, each 
relation instance must satisfy the domain constraints in its schema. 

3.1.1 Creating and Modifying Relations Using SQL 

The SQL language standard uses the word tab~e to denote relation, and we often 
follow this conventioi;i when discussing SQL. The subset of SQL that' supports 
the creation, deletion, and modification of tables is called the Data Definition 
Language (DDL). Further, while there is a command that lets users define new 
domains, analogous to type definition coµim,ands in a programming language, 
we postpone a discussion of domain definition until -Section 5.7. For now, we 
only consider domains that are built-in types, such as integer. 

The CREATE TABLE statement is used to define a new table. 1 To create the 
Students relation, we can use the following statement: 

CREATE TABLE Students ( sid CHAR(20), 
name CHAR(30), 
login CHAR(20), 
age INTEGER, 
gpa REAL) 

Tuples are inserted using the INSERT command. We can insert a single tuple 
into the Students table as follows: 

INSERT 
INTO Students (sid, name, login, age, gpa) 
VALUES (53688, 'Smith', 'smith@ee', 18, 3.2) 

We can optionally omit the list of column names in the INTO clause and list 
the values in the appropriate order, but it is good style to be explicit about 
column names. 

We can delete tuples using the DELETE command. We can delete all Students 
tuples with name equal to Smith using the command: 

DELETE 
FROM Students S 
WHERE S:name = 'Smith' 

1SQL also provides statements to destroy tables and to change the columns associated with a table; 
we discuss these in Section 3.7. 

. 
I~ 

I 
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We can modify the column values in an existing row using the UPDATE com
mand. For example, we can increment the age and decrement the gpa of the 
student with sid 53688: 

UPDATE Students S 
SET S.age = S.age + 1, S.gpa = S.gpa - 1 
WHERE S.sid = 53688 

1t These examples illustrate some important 'points. The WHERE clause is applied 
first and determines which rows are to be modified. The SET clause then 
determines how these rows are to be modified. If the column being modified is 
also used to determine the new value, the value used in, the expression on the 
right side of equals ( =) is the old value, that is, before the modification. To 
illustrate these points further, consider the following variation of the previous 
query: 

UPDATE Students S 
SET S.gpa = S.gpa - 0.1 
WHERE S.gpa >= 3.3 

If this query is applied on the instance SI of Students shown in Figure 3.1, we 
obtain the instance shown in Figure 3.3. 

I sid I name I login I age I gpa l 
50000 Dave dave@cs 19 3.2 
53666 Jones jones@cs 18 3.3 
53688 Smith smith@ee 18 3.2 
53650 Smith smith@math 19 3.7 
53831 Madayan niadayan@music 11 1.8 
53832 Guldu guldu@music 12 2.0 

Figure 3.3 Students Instance Sl after Update 

3.2 INTEGRITY CONSTRAINTS OVER RELATIONS 

A database is only as good as the information stored in it, and a DBMS must 
therefore help prevent the entry of incorrect information. An integdty con
straint (IC) is a condition specified on a database schema and restricts the 
data that can be stored in an instance of the database. If a database instance 
satisfies' all the integrity constraints specified on the database schema, it is a 
legal instance. A DBMS enforces integrity constraints, in that it permit& only 
legal instances to be stored in the database. 

Integrity constraints are specified and enforced at different times: 
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1. When the DBA or end user defines a dataqase schema, he or she specifies 
the ICs that must hold cm any instance of this qatf}.base. 

2. When a database application is run, the DEM'S' checks for violations and 
disallows changes to the data that violate the specified ICs. (In some 
situations, rather than disallow the change, the DBMS might make some 
compensating changes to the data to ensure that the database instance 
satisfies all ICs. In any case, changes to the database are not allowed to 
create an instance that violates any IC.) It is important to specify exactly 
when integrity constraints are checked relative to the statement that causes 
the change in the data and the transaction that it is part of. We discuss 
this aspect in Chapter 16, after presenting the transaction concept, which 
we introduced in Chapter 1, in more detail. 

Many kinds of integrity constraints can be specified in the relational model. 
We have already seen one example of an integrity constraint in tlie domain 
constraints associated with a relation schema (Section 3.1). In general, other 
kinds of constraints can be specified as well; for example, no two students 
have the same sid value. In this section we discuss the integrity constraints, 
other than domain constraints, that a DBA or user can specify in the relational 
model. 

3.2.1 Key Constraints 

Consider the Students 'relation and the constraint that no two students have the 
same student id. This IC is an example of a key constr'aint. A key constraint 
is a statement that a certain minimal subset of the fields of a relation is a 
unique identifier for a tuple. A set of fields that uniquely identifies a tuple 
according to a key constraint is called a candidate key 'for the relation; we 
often abbreviate this to just key. In the case of the Students relation, the (set 
of fields containing just the) sid field is a candidate key. 

Let us take a closer look at the above definition of a (candidate) key. There 
are two parts to the definition:2 

1. Two distinct tuples in a legal instance (an instance that satisfies all ICs, 
including the key constraint) cannot have identical values in all the fields 
of a key. 

2. No subset of the set of fields in a key is a unique identifier for a tuple. 

2 The term key is rather overworked. In the context of access methods,_ yve speak of search keys, 
which are quite different. 
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The first part of the definition means that, in any legal instance, the values in 
the key fields uniquely identify a tuple in the instance. When specifying a key 
constraint, the DBA or user must be sure that this constraint will not prevent 
them from storing a 'correct' set of tuples. (A similar comment applies to the 
specification of other kinds of I Cs as well.) The notion of 'correctness' here 
depends on the nature of the data being stored. For example, several students 
may have the same name, although each student has a unique student id. If 
the name field is declared to be a key, the DBMS will not allow the Students 
relation to contain two tuples describing different students with the same name! 

The second part of the definition means, for example, that the set of fields 
{ sid, name} is not a key for Students, because this set properly contains the 
key {sid}. The set {sid, name} is an example of a superkey, which is a set of 
fields that contains a key. 

Look again at the instance of the Students relation in Figure 3.1. Observe that 
two different rows always have different sid values; sid is a key and uniquely 
identifies a tuple. However, this does not hold for nonkey fields. For example, 
the relation contains two rows with Smith in the name field. 

Note that every relation is guaranteed to have a key. Since a relation is a set of 
tuples, the set of all fields is always a superkey. If other constraints hold, some 
subset of the fields may form a key, but if not, the set of all fields is a key. 

A relation may have several candidate keys. For example, the login and age 
fields of the Students relation may, taken together, also identify students uniquely. 
That is, {login, age} is also a key. It may seem that login is a key, since no 
two rows in the example instance have the same login value. However, the key 
must identify tuples uniquely in all possible legal instances of the relation. By 
stating that {login, age} is a key, the user is declaring that two students may 
have the same login or age, but not both. 

Out of all the available candidate keys, a database designer can identify a 
primary key. Intuitively, a tuple can be referred to from elsewhere in the 
database by storing the values of its primary key fields. For example, we can 
refer to a Students tuple by storing its sid value. As a consequence of referring 
to student tuples in this manner, tuples are frequently accessed by specifying 
their sid value. In principle, we can use any key, not just the primary key, 
to refer to a tuple. However, using the primary key is preferable because it 
is what the DBMS expects-this is the significance of designating a particular 
candidate key as a primary key-and optimizes for. For example, the DBMS 
may create an index with the prim~ry key fields as the search key, to make the 
retrieval of a tuple given its primary key value efficient. The idea of referring 
to a tuple is developed further in the next section. 
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Specifying Key Constraints in SQL 

In SQL, we can declare that a subset of the coiumns of a table constitute a key 
by using the UNIQUE constraint. At mpst one of these candidate keys can be 
declared to be a primary key, using the PRIMARY K£Y constraint. (SQL does 
not require that such constraints be declared for a table.) 

Let us revisit our example table definition and specify key information: 

CREATE TABLE Students ( sid CHAR(20), 
name CHAR(30), 
login CHAR(20), 
age INTEGER, 
gpa REAL, 
UNIQUE (name, age), 
CONSTRAINT StudentsKey PRIMARY' KEY (sid) ) 

This definitiOn says that sid is the primary key and the combination of name 
and age is also a key. The definition of the primary key also illustrates how 
we can name a constraint by preceding it with CONSTRAINT constraint-name. 
If the constraint is violated, the constraint name is returned and can be used 
to identify the error. 

3.2.2 Foreign Key Constraints 

Sometimes the information stored in a relation is linked to the information 
stored in another relation. If one of the relations is modified, the other must be 
checked, and perhaps modified, to keep the data consistent. An IC involving 
both relations must be specified if a DBMS is to make such checks. The most 
common IC involving two relations is a foreign key constraint. 

Suppose that, in addition to Students, we have a second relation: 

Enrolled( studid: string, cid: string, grade: string) 

To ensure that only bona fide students can enroll in courses, any value that 
appears in the studid field of an instance of the Enrolled relation should also 
appear in the sid field of some tuple in the Students relation. The studid field 
of Enrolled is called a foreign key and refers to Students. The foreign key in 
the referencing relation (Enrolled, in our example) must match the primary key 
of the referenced relation .(Students); that is, it must have the same number 
of columns and compatible data types, although the column names can be 
different. 
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This constraint is illustrated in Figure 3.4. As the figure shows, there may well 
be some Students tuples that are not referenced from Enrolled (e.g., the student 
with sid=50000). However, every studid value that appears in the instance of 
the Enrolled table appears in the primary key column of a row in the Students 
table. 

Foreign key Primary key 
,---------., 

cid I grade I studid / I>'." sid I name login age / gpa I 
CarnaticlOl c 53831 50000 Dave dave@cs 19 3.3 

Reggae203 B 53832 53666 Jones jones@cs 18 3.4 

Topology 112 A 53650 53688 Smith smith@ee 18 3.2 

History105 B 53666 53650 Smith smith@math 19 3.8 

53831 Madayan madayan@music 11 1.8 

53832 Guldu guldu@music 12 2.0 

Enrolled (Referencing relation) Students (Referenced relation) 

Figure 3.4 Referential Integrity 

If we try to insert the tuple (55555, Art104, A) into El, the IC is violated be
cause there is no tuple in Sl with sid 55555; the database system should reject 
such an insertion. Similarly, if we qelete the tuple ( 53666, Jones, jones@cs, 18, 
3.4) from Sl, we violate the foreign key constraint because the tuple (53666, 
Historyl 05, B) in El contains studid value 53666, the sid of the deleted Stu
dents tuple. The DBMS should disallow the deletion or, perhaps, also delete 
the Enrolled tuple that refers to the deleted Students tuple. We discuss foreign 
key const~aints and their impact on updates in Section 3.3. 

Finally, we note that a,foreign key could refer to the same relation. For example, 
we could extend the Students relation with a column called partner and declare 
this column to be a foreign key referring to Students. Intuitively, every student 
could then have a partner, and the partner field contains the partner's sid. The 
observant reader will no doubt ask, "What if a student does not (yet) have 
a partner?" This situation is handled in SQL by using a special value called 
null. The use of null in a field of a tuple means.that value in that field is either 
unknown or not applicable (e.g., we do not know the partner yet or there is 
no partner). The appearance of null in a foreign key field does not violate the 
foreign key constraint. However, null values are not allowed to appear in a 
primary key field (because the primary key fields are used to identify a tuple 
uniquely). yYe discuss null values further in Chapter 5. 
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Specifying Foreign Key Constraints in SQL 

Let us define Enrolled(studid: string, cid: string, grade: string): 

CREATE TABLE Enrolled ( studid CHAR(20), 
cid CHAR(20), 
grade CHAR (10) , 

PRIMARY KEY (studid, cid), 
FOREIGN KEY (studid) REFERENCES Students) 

The foreign key constraint states that every studid value in Enrolled must also 
appear in Students, that is, studid in Enrolled is a foreign key referencing Stu-· 
dents. Specifically, every studid value in Enrolled must appear as the value in 
the primary key field, sid, of Students. Incidentally, the primary key constraint 
for Enrolled states that a student has exactly one grade for each course he or 
she is enrolled in. If we want to record more than one grade per student per 
course, we should change the primary key constraint. 

3.2.3 General Constraints 

Domain, primary key, and foreign key constraints are considered to be a fun
damental part of the relational data model and are given special attention in 
most commercial systems. Sometimes, however, it is necessary to specify more 
general constraints. 

For example, we may require that student ages be within a certain range of 
values; given such an IC specification, the DBMS rejects inserts and updates 
that violate the constraint. This is very useful in preventing data entry errors. 
If we specify that all students must be at least 16 years old, the instance of 
Students shown in Figure 3.1 is illegal because two students are underage. If 
we disallow the insertion of these two tuples, we have a legal instance, as shown 
in Figure 3.5. 

sid 
•ri I agejgpal 

53666 Jones jones@cs 18 3.4 
53688 Smith smith@ee 18 3.2 
53650 Smith smith@math 19 3.8 

Figure 3.5 An Instance 82 of the Students Relation 

The IC that students must be older than 16 can be thought of as an extended 
domain constraint, since we are essentially defining the set of permissible age 

1 
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values more stringently than is possible by simply using a standard domain 
such as integer. In general, however, constraints that go well beyond domain, 
key, or foreign key constraints can be specified. For example, we could require 
that every student whose age is greater than 18 must have a gpa greater than 
3. 

Current relational database systems support such general constraints in the 
I, form of table constraints and assertions. Table constraints are associated with a 

single table and checked whenever that table is modified. In contrast, assertions 
involve several tables and are checked whenever any of these tables is modified. 
Both table constraints and assertions can use the full power of SQL queries to 
specify the desired restriction. We discuss- SQL support for table constraints 
and assertions in Section 5.7 because a full appreciation of their power requires 
a good grasp of SQL's query capabilities. 

3.3 ENFORCING INTEGRITY CONSTRAINTS 

As we observed earlier, ICs are specified when a relation is created and enforced 
when a relation is modified. The impact of domain, PRIMARY KEY, and UNIQUE 
constraints is straightforward: If an insert, delete, or update command causes 
a violation, it is rejected. Every potential IC violation is generally checked at 
the end of each SQL statement execution, although it can be deferred until the 
end of the transaction executing the statement, as we will see in Section 3.3.1. 

Consider the instance Sl of Students shown in Figure 3.1. The following inser
tion violates the primary key constraint because there is already a tuple with 
the sid 53688, and it will be rejected by the DBMS: 

INSERT 
INTO Students (sid, name, login, age, gpa) 
VALUES (53688, 'Mike', 'mike@ee', 17, 3.4) 

The following insertion violates the constraint that the primary key cannot 
contain null: 

INSERT 
INTO Students (sid, name, login, age, gpa) 
VALUES (null, 'Mike', 'mike@ee', 17, 3.4) 

Of course, a similar problem arises whenever we try to insert a tuple with a 
value in a field that is not in the domain associated with that field, that is, 
whenever we violate a domain constraint. Deletion does not cause a violation 
of domain, primary key or unique constraints. However, an update can cause 
violations, similar to an insertion: 
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UPDATE Students S 
SET S.sid = 50000 
WHERE S .sid = 53688 

CHAPTER 3 

This update violates the primary key constraint because there is already a tuple 
with sid 50000. 

The impact of foreign key constraints is more complex because SQL sometimes 
tries to rectify a foreign key constraint violation instead of simply rejecting the 
change. We discuss the referential integrity enforcement steps taken by 
the DBMS in terms of our Enrolled and Students tables, with the foreign key 
constraint that Enrolled.sid is a reference to (the primary key of) Students. 

In addition to the instance SI of Students, consider the instance of Enrolled 
shown in Figure 3.4. Deletions of Enrolled tuples do not violate~referential 
integrity, but insertions of Enrolled tuples could. The following insertion is 
illegal because there is no Students tuple with sid 51111: 

INSERT 
INTO Enrolled ( cid, grade, studid) 
VALUES ('HindilOl', 'B', 51111) 

On the other hand, insertions of Students tuples do not violate referential 
integrity, and deletions of Students tuples could cause violations. Further, 
updates on either Enrolled or Students that change the studid (respectively, 
sid) value could potentially violate referential integrity. 

SQL provides several alternative ways to handle foreign key violations. We 
must consider three basic questions: 

1. What should we do if an Enrolled row is inserted, with a studid column 
value that does not appear in any row of the Students table? 

In this case, the INSERT command is simply rejected. 

2. What should we do if a Students row is deleted? 

The options are: 

• Delete all Enrolled rows that refer to the deleted Students row. 

• Disallow the deletion of the Students row if an Enrolled row refers to 
it. 

• Set the studid column to the sid of some (existing) 'default' student, 
for every Enrolled row that refers to the deleted Students row. 
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• For every Enrolled row that refers to it, set the studid column to null. 
In our example, this option conflicts with the fact that studid is part 
of the primary key of Enrolled and therefore cannot be set to null. 
Therefore, we are limited to the first three options in our example, 
although this fourth option (setting the foreign key to nul0 is available 
in general. 

3. What should we do if the primary k~y value of a Students row is updated? 

The options here are similar to the previous case. 

SQL allows us to choose any of the four options on DELETE and UPDATE. For 
example, we can specify that when a Students row is deleted, all Enrolled rows 
that refer to it are to be deleted as well, but that when the sid column of a 
Students row is modified, this update is to be rejected if an Enrolled row refers 
to the modified Students row: 

CREATE TABLE Enrolled ( studid CHAR(20), 
cid CHAR(20), 

grade CHAR(10), 

PRIMARY KEY (studid, cid), 
FOREIGN KEY (stvdid) REFERENCES Students 

ON DELETE CASCADE 

ON UPDATE NO ACTION) 

The options are specified as part of the foreign key declaration. The default 
option is NO ACTION, which means that the action (DELETE or UPDATE) is to be 
rejected. Thus, the ON UPDATE clause in our example could be omitted, with 
the same ejfect. The CASCADE keyword says that, if a Students row is deleted, 
all Enrolled rows that refer to it are to be deleted as well. If the UPDATE clause 
specified CASCADE, and the sid column of a Students row is updated, this update 
is also carried out in each Enrolled row that refers to the updated Students row. 

If a Students row is deleted, we can switch the enrollment to a 'default' student 
by using ON DELETE SET DEFAULT. The default student is specified as part of 
the definition of the sid field in Enrolled; for example, sid CHAR(20) DEFAULT 

'53666'. Although the specification of a default value is appropriate in some 
situations (e.g., a default parts supplier if a particular supplier goes out of 
business), it is really not appropriate to switch enrollments to a default student. 
The correct solution in this example is to also delete all enrollment tuples for 
the deleted stuaent (that is, CASCADE) or to reject the update. 

SQL also allows the use of null as the default value by specifying ON DELETE 

SET NULL. 
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3.3.1 Transactions and Constraints 

As we saw in Chapter 1, a program that runs against a database is called a 
transaction, and it can contain several statements (queries, inserts, updates, 
etc.) that access the database. If (the execution of) a statement in a transac
tion violates an integrity constraint, should the DBMS detect this right away 
or should all constraints be checked together just before the transaction com
pletes? 

By default, a constraint is checked at the end of every SQL statement that 
could lead to a violation, and if there is a violation, the statement is rejected. 
Sometimes this approach is too inflexible. Qonsider the following variants of 
the Students and Courses relations; every student is required to have an honors 
course, and every course is required to have a grader, who is some student. 

CREATE TABLE Students ( sid CHAR(20), 
name CHAR(30), 
login CHAR(20), 
age INTEGER, 
honorsCHAR(10) NOT NULL, 
gpa REAL) 
PRIMARY KEY (sid), 
FOREIGN KEY (honors) REFERENCES Courses (cid)) 

CREATE TABLE Courses ( cid CHAR ( 10) , 
cname CHAR(10), 
credits INTEGER, 
graderCHAR(20) NOT NULL, 
PRIMARY KEY (cid) 
FOREIGN KEY (grader) REFERENCES Students (sid)) 

Whenever a Students tuple is inserted, a check is made to see if the honors 
course is in the Courses relation, and whenever a Courses tuple is inserted, 
a check is made to see that the grader is in the Students relation. How are 
we to insert the very first course or student tuple? One cannot be inserted 
without the other. The only way to accomplish this insertion is to defer the 
constraint checking that would normally be carried out at the end of an INSERT 
statement. 

SQL allows a constraint to be in DEFERRED or IMMEDIATE mode. 

SET CONSTRAINT ConstraintFoo DEFERRED 
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A constraint in deferred mode is checked at commit time. In our example, 
the foreign key constraints on Boats and Sailors can both be declared to be in 
deferred mode. We can then insert a boat with a nonexistent sailor as the cap
tain (temporarily making the database inconsistent), insert the sailor (restoring 
consistency), then commit and check that both constraints are satisfied. 

'• 3.4 QUERYING RELATIONAL DATA 

A relational database query (query, for short) is a question about the data, 
and the answer consists of a new relation containing the result. For example, 
we might want to find all students younger than 18 or all students enrolled in 
Reggae203. A query language is a specialized language for writing queries. 

SQL is the most popular commercial query language for a relational DBMS. 
We now present some SQL examples that illustrate how easily relations can be 
queried. Consider the instance of the Students relation shown in Figure 3.1. 
We can retrieve rows corresponding to students who are younger than 18 with 
the following SQL query: 

SELECT * 
FROM Students S 
WHERE S.age < 18 

The symbol '*' means that we retain all fields of selected tuples in the result. 
Think of S as a variable that takes on the value of each tuple in Students, one 
tuple after the other. The condition S.age < 18 in the WHERE clause specifies 
that we want to select only tuples in which the age field has a value less than 
18. This qlJBry evaluates to the relation shown in Figure 3.6. 

sid name login ~,,age / gpa / 
53831 Madayan madayan@music 11 1.8 
53832 Guldu guldu@music 12 2.0 

Figure 3.6 Students with age < 18 on Instance Sl 

This example illustrates that the domain of a field restricts the operations 
that are permitted on field values, in addition to restricting the values that can 
appear in the field. The condition S. age < 18 involves an arithmetic comparison 
of an age value with an integer and is permissible because the domain of age 
is the set of integers. On the other hand, a condition such as S.age = S.sid 
does not make sense because it compares an integer value with a string value, 
and this comparison is defined to fail in SQL; a query containing this condition 
produces no answer tuples. 
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In addition to selecting a subset of tuples, a query can extract a subset of the 
fields of each sel~cted tuple. We can compute the names and logins of students 
who are younger than 18 with the following query: 

SELECT S.name, S.login 
FROM Students S 
WHERE S.age < 18 

Figure 3. 7 shows the answer to this query; it is obtained by applying the se
lection to the instance Sl of Students (to get the relation shown in Figure 
3.6), follqwed by removing unwanted fields. Note that the order in which we 
perform these operations does matter-if we remove unwanted fields first, we 
cannot check the condition S.age < 18, which involves one of those fields. 

l name l login 'I 
Madayan madayan@music 
Guldu guldu@music 

Figure 3.7 Names and Logins of Students under 18 

We can also combine information in the Students and Enrolled relations. If we 
want to obtain the names of all students who obtained an A and the id of the 
course in which they got an A, we could write the following query: 

SELECT 
FROM 
WHERE 

S.name, E.cid 
Students S, Enrolled E 
S.sid = E.studid AND E.grade = 'A' 

This query can be understood as follows: "If there is a Students tuple S and 
an Enrolled tuple E such that S.sid = E.studid (so that S describes the student 
who is enrolled in E) and E.grade = 'A', then print the student's name and 
the course id." When evaluated on the instances of Students and Enrolled in 
Figure 3.4, this query returns a single tuple, (Smith, Topology112). 

We cover relational queries and SQL in more detail in subsequent chapters. 

3.5 LOGICAL DATABASE DESIGN: ER TO 
RELATIONAL 

The ER model is convenient for representing an initial, high-level database 
design. Given an ER diagram describing a database, a standard approach is 
taken to generating a relational database schema that closely approximates 

., 
i 
l 
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the ER design. (The translation is approximate to the extent that we cannot 
capture all the constraints implicit in the ER design using SQL, unless we use 
certain SQL constraints that are costly to check.) We now describe how to 
translate an ER diagram into a collection of tables with associated constraints, 
that is, a relational database schema. 

3.5.1 Entity Sets to Tables 

An entity set is mapped to a relation in a straightforward way: Each attribute 
of the entity set becomes an attribute of the table. Note that we know both 
the domain of each attribute and the (primary) key of an entity set. 

Consider the Employees entity set with attributes ssn, name, and lot shown in 
Figure 3.8. A possible instance of the Employees entity set, containing three 

ssn lot 

Figure 3.8 The Employees Entity Set 

Employees entities, is shown in Figure 3.9 in a tabular format. 

I ssn I name ! lot I 
123-22-3666 Attishoo 48 
231-31-5368 Smiley 22 
131-24-3650 Smethurst 35 

Figure 3.9 An Instance of the Employees Entity Set 

The following SQL statement captures the preceding information, including the 
domain constraints and key information: 

CREATE TABLE Employees ( ssn CHAR(11), 
name CHAR(30), 
lot INTEGER, 
PRIMARY KEY (ssn) ) 
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3.5.2 Relationship Sets (without Constraints) to Tables 

A relationship set, like an entity set, is mapped to a relation in the relational 
model. We begin by considering relationship sets without key and participa
tion constraints, and we discuss how to handle such constraints in subsequent 
sections. To represent a relationship, we must be able to identify each partic
ipating entity and give values to the descriptive attributes of the relationship. 
Thus, the attributes of the relation include: 

• The primary key attributes of each participating entity set, as foreign key 
fields. 

• The descriptive attributes of the relationship set. 

The set of nondescriptive ~ttributes is a superkey for the relation. I£ there are 
no key constraints (see Section 2.4.1), this set of attributes is a candidate key. 

Consider the Works_In2 relationship set shown in Figure 3.10. Each department 
has offices in several locations and we want to record the locations at which 
each employee works. 

budget 

address Locations 

Figure 3.10 A Ternary Relationship Set 

All the available information about the Works_ln2 table is captured by the 
following SQL definition: 

CREATE TABLE Works_In2 ( ssn CHAR(11), 
did INTEGER, 
address CHAR(20), 

since DATE, 
PRIMARY KEY (ssn, did, address), 
FOREIGN KEY (ssn) REFERENCES Employees, 
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FOREIGN KEY (address) REFERENCES Locations, 
FOREIGN KEY (did) REFERENCES Departments) 

Note that the address, did, and ssn fields cannot take on null values. Because 
these fields are part of the primary key for Works_ln2, a NOT NULL constraint 
is implicit for each of these fields. This constraint ensures that these fields 
uniquely identify a department, an employee, and a location in each tuple 

.,t of Works.Jn. We, can also specify that a particular action is desired when a 
referenced Employees, Departments, or Locations tuple is deleted, as explained 
in the discussion of integrity constraints in Section 3.2. In this chapter, we 
assume that the default action is appropriate except for situations in which the 
semantics of the ER diagram require some other action. 

Finally, consider the Reports_To relationship set shown in Figure 3.11. The 

Figure 3.11 The Reports_To Relationship Set 

role indicators supervisor and subordinate are used to create meaningful field 
names in the CREATE statement for the Reports_ To table: 

CREATE TABLE Reports_ To ( 
supervisor...ssn CHAR(11), 

subordinate...ssn CHAR ( 11) , 

PRIMARY KEY (supervisor...ssn, subordinate...ssn), 
FOREIGN KEY (supervisor...ssn) REFERENCES Employees(ssn), 
FOREIGN KEY (subordinate...ssn) REfERENCES Employees(ssn) ) 

Observe that we need to explicitly name the referenced field of Employees 
because the field name differs from the name(s) of the referring field(s). 
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3.5.3 Translating Relationship Sets with Key Constraints 

If a relationship set involves n entity sets and some m of them are linked via 
arrows in the ER diagram, the key for any one of these m entity sets constitutes 
a key for the relation to which the relationship set is mapped. Hence we have 
m candidate keys, and one of these should be designated as the primary key. 
The translation discussed in Section 2.3 from relationship sets to a relation can 
be used in the presence of key constraints, taking into account this point about 
keys. 

Consider the relationship set Manages shown in Figure 3.12. The table cor-

ssn lot y did ~- budget 

Departments 

Figure 3.12 Key Constraint on Manages· 

responding to Manages has the attributes ssn, did, since. However, because 
each department has at most one manager, no two tuples can have the same 
did value but differ on the ssn value. A consequence of this observation is that 
did is itself a key for Manages; indeed, the set did, ssn is not a key (because it 
is not minimal). The Manages relation can be defined using the following SQL 
statement: 

CREATE TABLE Manages ( ssn CHAR (11) , 

did INTEGER, 

since DATE, 

PRIMARY KEY (did), 
FOREIGN KEY (ssn) REFERENCES Employees, 
FOREIGN KEY (did) REFERENCES Departments) 

A second approach to translating a relationship set with key constraints is 
often superior because it avoids creating a distinct table for the relationship 
set. The idea is to include the information about the relationship set in the 
table corresponding to the entity set with the key, taking advantage of the 
key constraint. In the Manages example, because a department has at most 
one manager, we can add the key fields of the Employees tuple denoting the 
manager and the since attribute to the Departments tuple. 
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This approach eliminates the need for a separate Manages relation, and queries 
asking for a department's manager can be answered without combining infor
mation from two relations. The only drawback to this approach is that space 
could be wasted if several departments have no managers. In this case the 
added fields would have to be filled with null values. The first translation (us
ing a separate table for Manages) avoids this inefficiency, but some important 
queries require us to combine information from two relations, which can be a 

t't slow operation. 

The following SQL statement, defining a Dept_Mgr relation that captures the 
information in both Departments and Manages, illustrates the second approach 
to translating relationship sets with key constraints: 

CREATE TABLE Dept_Mgr ( did INTEGER, 
dname CHAR(20), 
budget REAL, 
ssn CHAR(11), 
since DATE, 
PRIMARY KEY (did), 
FOREIGN KEY (ssn) REFERENCES Employees ) 

Note that ssn can take on null values. 

This idea can be extended to deal with relationship sets involving more than 
two entity sets. In general, if a relationship set involves n entity sets and some 
m of them are linked via arrows in the ER diagram, the relation corresponding 
to any one of the m sets can be augmented to capture the relationship. 

We discuss the relative merits of the two translation approaches further. a(ter 
considering how to translate relationship sets with participation constrai.nts 
into tables. 

3.5.4 Translating Relationship Sets with Participation 
Constraints 

Consider the ER diagram in Figure 3.13, which shows two relationship sets, 
Manages and Works_In. 

Every department is required to have a manager, due to the participation 
co~straint, and at most one manager, due to the key constraint. The following 
SQL statement reflects the second translation approach discussed in Section 
3.5.3, an,d uses the key constraint: 
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ssn Tdname 

budget 

----~ 

did 

Employees Departments 

since 

Figure 3.13 Manages and Works-1n 

CREATE TABLE Dept_Mgr ( did INTEGER, 
dname CHAR(20), 
budget REAL, 
ssn CHAR(11) NOT NULL, 

since DATE, 

PRIMARY KEY (did), 
FOREIGN KEY (ssn) REFERENCES Employees 

ON DELETE NO ACTION ) 

It also captures the participation constraint that every department must have 
a manager: Because ssn cannot take on null values, each tuple of DepLMgr 
identifies a tuple in Employees (who is the manager). The NO ACTION specifi
cation, which is the default and need not be explicitly specified, ensures that 
an Employees tuple cannot be deleted while it is pointed to by a Dept..Mgr 
tuple. If we wish to delete such an Employees tuple, we must· first change the 
DepLMgr tuple to have a new employee as manager. (We could have specified 
CASCADE instead of NO ACTION, but deleting all information about a department ~ 
just because its manager has been fired seems a bit extreme!) 

The constraint that every department must have a manager cannot be cap
tured using the first translation approach discussed in Section 3.5.3. (Look 
at the definition of Manages and think about what effect it' would have if we 
added NOT NULL constraints to the ssn and did fields. Hint: The constraint 
would prevent the firing of a manager, but does not ensure that a manager is 
initially appointed for each department!) This situation is a strong argument 
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in favor of using the second approach for one-to-many relationships such as 
Manages, especially when the entity set with the key constraint also has a total 
participation constraint. 

Unfortunately, there are many participation constraints that we cannot capture 
using SQL, short of using table constraints or assertions. Table constraints and 
assertions can be specified using the full powe:r: of the SQL query language 

I~ (as discussed in Section 5.7) and are very expressive but also very expensive to 
check and enforce. For example, we cannot enforce the participation constraints 
on the Works_In relation without using these general constraints. To see why, 
consider the WorksJn relation obtained by translating the ER diagram into 
relations. It contains fields ssn and did, which are foreign keys referring to 
Employees and Departments. To ensure total participation of Departments in 
Works_In, we have to guarantee that every did value in Departments appears 
in a tuple of Works_In. We could try to guarantee this condition by declaring 
that did in Departments is a foreign key referring to WorksJ:n, but this is not 
a valid foreign key constraint because did is not a candidate key for Works_In. 

To ensure total participation of Departments in Works_In using SQL, we need 
an assertion. We have to guarantee that every did value in Departments appears 
in a tuple of Works_In; further, this tuple of Works_In must also have non-null 
values in the fields that are foreign keys referencing other entity sets involved in 
the relationship (in this example, the ssn field). We can ensure the second part 
of this constraint by imposing the stronger requirement that ssn in WorksJ:n 
cannot contain null values. (Ensuring that the participati9n of Employees in 
WorksJ:n is total is symmetric.) 

Another copstraint that requires assertions to express in SQL is the requirement 
that each "Employees entity (in the context of the Manages relationship set) 
must manage at least one department. 

In fact, the Manages relationship set exemplifies most of the participation con
straints that we can capture using key and foreign key constraints. Manages is 
a binary relationship set in which exactly one o'f the entity sets (Departments) 
has a key constraint, and the total participation constraint is expressed on that 
entity set. 

We can also capture participation constraints 'using key and foreign key con
straints in one other special situation: a relationship set in which all participat
ing entity sets have key constraints and total participation. The best translation 
approach in this case is to map all the entities as well as the relationship into 
a single table; the details are straightforward. 
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3.5.S Translating Weak Entity Sets 

A weak entity set always participates in a one-to-many binary relationship and 
has ·a key constraint and total participation. The second translation approach 
discussed in Section 3.5.3 is ideal in this case, but we must take into account 
that the weak entity has only a partial key. Also, when an owner entity is 
deleted, we want all 9wned weak entities to be deleted. 

Consider the Dependents weak entity set shown in Figure 3.14, with partial 
key pname. A Dependents entity can be identified uniquely only if we take the 
key of the owning Employees entity and the pname of the Dependents entity, 
and the Dependents entity must be deleted if the owning Employees entity is 
deleted. 

ssn lot 
cost age 

Dependents 

Figure 3.14 The Dependents Weak Entity Set 

We can capture the desired semantics with the following definition of the 
Dep_Policy relation: 

ql.EATE TABLE Dep_Policy ( pname CHAR(20), 
age :i:NTEGER, 
cost REAL, 
ssn CHAR(11), 
PRIMARY KEY (pname, ssn), 
FOREIGN KEY (ssn) REFERENCES Employees 

ON DELETE CASCADE ) 

Observe that the primary key is (pname, ssn), since Dependents is a weak 
entity. This constraint is a change with respect to the translation discussed in 
Section ·3.5.3. We have to ensure that every Dependents entity is asso~iated 
with an Employees entity (the owner), as per the total participation constraint 
on Dependents. That is, ssn cannot be null. This is ensured because ssn is 
part of the primary. key. The CASCADE option ensures that info. rmation about . ' 

an employee's policy and dependents is deleted if the corresponding Employees 
tuple is deleted. 
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3.5.6 Translating Class Hierarchies 

We present the two basic approaches to handling ISA hierarchies by applying 
them to the ER diagram shown in Figure 3.15: 

hourly_wages 

Figure 3.15 Class Hierarchy 

1. We can map each of the entity sets Employees, Hourly _Emps, and Con
tract_Emps to a distinct relation. The Employees relation is created as 
in Section 2.2. We discuss Hourly_Emps here; ContracLEmps is han
dled similarly. The relation for Hourly_Emps includes the hourly_wages 
and hours_worked attributes of Hourly_Emps. It also contains the key at
tributes of the superclass (ssn, in this example), which serve as the primary 
key foi;. Hourly _Emps, as well as a foreign key referencing the superclass 
(Empfoyees). For each Hourly_Emps entity, the value of the name and 
lot attributes are stored in the corresponding row of the superclass (Em
ployees). Note that if the superclass tuple is deleted, the delete must be 
cascaded to Hourly_Emps. 

2. Alternatively, we can create just two relations, corresponding to Hourly _Emps 
and ContracLEmps. The relation for Hourly _Emps includes all the at
tributes of Hourly_Emps as well as all the attributes of Employees (i.e., 
ssn, name, lot, hourly_wages, hours_worked). 

The first approach is general and always applicable. Queries in which we want 
to examine all employees and do not care about the attributes specific to the 
subclasses are handled easily using the Employees relation. However, queries 
in which we want to examine, say, hourly employees, may require us to com
bine Hourly _Emps (or Contract_Emps, as the case may be) with Employees to 
retrieve name and lot. 
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The second approach is not applicable if we have employees who are neither 
hourly employees nor contract employees, since there is no way to store such 
employees. Also, if an employee is both an Hourly _Emps and a Contract_Emps 
entity, then the name and lot values are stored twice. This duplication can lead 
to some of the anomalies that we discuss in Chapt~r 19. A query that needs to 
examine all employees must now examine two relations. On the other hand, a 
query that needs to examine only hourly employees can now do so by examining 
just one relation. The choice between these approaches clearly depends on the 
semantics of the data and the frequency of common operations. 

In general, overlap and covering constraints can be expressed in SQL only by 
using assertions. 

3.5. 7 Translating ER Diagrams with Aggregation 

Consider the ER diagram shown in Figure 3.16. The Employees, Projects, 

ssn 

budget 

----------------------------------------------------------------' 

Figure 3.16 Aggregation 

and Departments entity sets and the Sponsors relationship set are mapped as 
described in previous sections. For the Monitbrs relationship set, we create a 
relation with the following attributes: the key attributes of Employees (ssn), the 
key attributes of Sponsors (did, pid), and the descriptive attributes of Monitors 
( untiQ. This translation is essentially the standard mapping for a relationship 
set, as described in Section 3.5.2. 

I 
1 

j 
i 

l 
I 
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There is a special case in which this translation can be refined by dropping the 
Sponsors relation. Consider the Sponsors relation. It has attributes pid, did, 
and since; and in general we need it (in addition to Monitors) for two reasons: 

l. We have to record the descriptive attributes (in our example, since) of the 
Sponsors relationship. 

2. Not every sponsorship has a monitor, and thus some (pid, did:) pairs in the 
Sponsors relation may not appear in the Monitors relation. 

However, if Sponsors has no descriptive attributes and has total participation 
in Monitors, every possible instance of the Sponsors relation can be obtained 
from the (pid, did:) columns of Monitors; Sponsors can be dropped. 

3.5.8 ER to Relational: Additional Examples 

Consider the ER diagram shown in Figure 3.17. We can use the key constraints 

age 

Dependents 

Figure 3.17 Policy Revisited 

to combine Purchaser information with Policies and Beneficiary information 
with Dependents, and translate it into the relational model as follows: 

CREATE TABLE Policies ( policyid INTEGER, 

cost REAL, 
ssn CHAR(11) NOT NULL, 

PRIMARY KEY (policyid), 
FOREIGN KEY (ssn) REFERENCES Employees 

ON DELETE CASCADE ) 
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CREATE TABLE Dependents ( pname CHAR(20), 
age INTEGER, 
policyid INTEGER, 
PRIMARY KEY (pname, policyid), 
FOREIGN KEY (policyid) REFERENCES Policies 

ON DELETE CASCADE ) 

Notice how the deletion of an employee leads to the deletion of all policies 
owned by the employee and all dependents who are beneficiaries of those poli
cies. Further, each dependent is required to have a covering policy-because 
policyid is pq,rt of the primary key of Dependents, there is an implicit NOT NULL 
constraint. This model accurately reflects the participation constraints in the 
ER diagram and the intended actions when an employee entity is deleted. 

In general, there could be a chain of identifying relationships for weak entity 
sets. For example, we assumed that policyid uniquely identifies a policy. Sup
pose that policyid distinguishes only the policies owned by a given employee; 
that is, policyid is only a partial key and Policies should be modeled as a weak 
entity set. This new assumption about policyid does not cause much to change 
in the preceding discussion. In fact, the only changes are that the primary 
key of Policies becomes (policyid, ssn), and as a consequence, the definition of 
Dependents changes-a field called ssn is added and becomes part of both the 
primary key of Dependents and the foreign key referencing Policies: 

CREATE TABLE Dependents ( pname CHAR ( 20) , 
ssn CHAR(11), 
age INTEGER, 
policyid INTEGER NOT NULL, 
PRIMARY KEY (pname, policyid, ssn), 
FOREIGN KEY (policyid, ssn) REFERENCES Policies 

ON DELETE CASCADE ) 

3.6 INTRODUCTION TO VIEWS 

A view is a table whose rows are not explicitly stored in the database but 
are computed as needed from a view definition. Consider the Students and 
Enrolled relations. Suppose we are often interested in finding the names and 
student identifiers of students who got a grade of B in some course, together 
with the course identifier. We can define a view for this purpose. Using SQL 
notation: 

CREATE VIEW B-Students (name, sid, course) 
AS SELECT S.sname, S.sid, E.cid 
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FROM Students S, Enrolled E 
WHERE S.sid = E.studid AND E.grade = 'B' 

The view B-Students has three fields called name, sid, and course with the 
same domains as the fields sname and sid in Students and cid in Enrolled. 
(If the optional arguments name, sid, and course are omitted from the CREATE 
VIEW statement, the column names sname, sid, and cid are inherited.) 

This view can be used just like a base table, or explicitly stored table, in 
defining new queries or views. Given the instances of Enrolled and Students 
shown in Figure 3.4, B-Students contains the tuples shown in Figure 3.18. 
Conceptually, whenever B-Students is used in a query, the view definition is 
first evaluated to obtain the correspondi~g instance of B-Students, then the rest 
of the query is evaluated treating B-Students like any other relation referred 
to in the query. (We discuss how queries on views are evaluated in practice in 
Chapter 25.) 

name sid course 

Jones 53666 History105 
Guldu 53832 Reggae203 

Figure 3.18 An Instance of the B-Students View 

3.6.1 Views, Data Independence, Security 

Consider the levels of abstraction we discussed in Section 1.5.2. The physical 
schema for a relational database describes how the relations in the conceptual 
schema are~ stored, in terms of the file organizations and indexes used. The 
conceptual schema is the collection of schemas of the relations stored in the 
database. While some relations in the conceptual sche:µia c(l,n also be exposed to 
applications, that is, be part of the external schema of the database, additional 
relations in the external schema can be defined using the view mechanism. 
The view mechanism thus provides the support for logical data independence 
in the relational model. That is, it can 'be used to define relations in the 
external schema that mask changes in the conceptual schema pf the database 
from applications. For example, if the schema of a stored relation is changed, 
we can define a view with the old schema and applications that expect to see 
the old schema can now use this view. 

Views are also valuable in the context of security: We can define views that 
give a group of users access to just the information they are allowed to see. For 
example, we can define a view that allows students to see the other students' 
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name and age but not their gpa, and allows all students to access this view but 
not the underlying Students table (see Chapter 21). 

3.6.2 Updates on Views 

The motivation behind the view mechanism is to tailor how users see the data. 
Users should not have to worry about the view versus base table distinction. 
This goal is indeed achieved in the case of queries on views; a view can be used 
just like.any other relation in defining a query. However, it is natural to want to 
specify updates on views as well. Here, unfortunately, the distinction between 
a view and a base table must be kept in mind. 

The SQL-92 standard allows updates to be specified only on views that are 
defined on a single base table using just selection and projection, with no use of 
aggregate operations. 3 Such views are called up datable views. This definition 
is oversimplified, but it captures the spirit of the restrictions. An update on 
such a restricted view can always be implemented by updating the underlying 
base table in an unambiguous way. Consider the following view: 

CREATE VIEW GoodStudents (sid, gpa) 
AS SELECT S.sid, S.gpa 

FROM Students S 
WHERE S.gpa > 3.0 

We can implement a command to modify the gpa of a GoodStudents row by 
modifying the corresponding row in Students. We can delete a GoodStudents 
row by deleting the corresponding row from Students. (In general, if the view 
did not include a key for the underlying table, several rows in the table could 
'correspond' to a single row in the view. This would be the case, for example, 
if we used S.sname instead of S.sid in the definition of GoodStudents. A com
mand that affects a row in the view then affects all corresponding rows in the 
underlying table.) 

We can insert a GoodStudents row by inserting a row into Students, using 
null values in columns of Students that do not appear in GoodStudents (e.g., 
sname, login). Note that primary key columns are not allowed to contain null 
values. Therefore, if we attempt to insert rows through a view that does not 
contain the primary key of the underlying table, the insertions will be rejected. 
For example, if GoodStudents contained sname but not sid, we could not insert 
rows into Students through insertions to GoodStudents. 

3There is also the restriction that the DISTINCT operator cannot be used in updatable view defi
nitions. By default, SQL does not eliminate duplicate copies of rows from the result of a query; the 
DISTINCT operator requires duplicate elimination. We discuss this point further in Chapter 5. 
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Updatable ¥iews in SQL:1999 The new SQL standard has expanded 
the class of view definitions that are updatable, taking primary key 
constraints into account. In contrast to SQL-92, a view d~finition that 
contains more than one table in the FROM clause may be updatable under 
the new definition. Intuitively, we can update a field of a vi~w if it is 
obtained from exactly one of the underlying tables, and the primary key 
of that table is included in the fields of the view. 

SQL:1999 distinguishes between ;views whose rows can be modified ( updat
able views) and views into whjch new rows can be inserted (insertable
into views): Views defined using the SQL constructs lJNION, INTERSECT, 

and EXCEPT (which WEl dis,cuss in Chapter 5) cannot be inserted into, even 
if they are updatable. Intuitively, updaFability ensures that an updated 
tuple in the view ca11 .. be traced to ~xactly one tuple i11, one of the tables 
used to define the view. The updatab'Hity property, however, may still not 
enable us to decide into which table to ,insert .,a new tuple. 

An important observation is that an INSERT or UPDATE may change the un
derlying base table so that the resulting (i.e., inserted or modified) row is not 
in the view! For example, if we try to insert a row (51234, 2.8) into the view, 
this row can be (padded with null values in the other fields of Students and 
then) added to the underlying Students table, but it will not appear in the 
GoodStudents view because it does not satisfy the view condition gpa > 3.0. 
The SQL default action is to allow this insertion, but we can disallow it by 
adding the clause WITH CHECK OPTION to the definition of the view. In this 
case, only rows that will actually appear in the view are permissible insertions. 

We caution the reader, that when a view is defined in terms of another view, 
the interaction between these view definitions with respect to updates and the 
CHECK OPTION clause can be complex; we not go into the details. 

Need to Restrict View Updates 

While the SQL rules on updatable views are more stringent than necessary, 
there are some fundamental problems with updates specified on views and good 
reason to limit the class of views that can be updated. Consider the Students 
relation and a new relation called Clubs: 

Clubs( cname: string, jyear: date, mname: string) 
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sid name logiri I age I gpa I 
cname j jyear I mname j 

' 
50000 Dave dave@cs 19 3.3 

Sailing 1996 Dave 53666 Jones jones@cs 18 3.4 
Hiking 1997 Smith 53688 Smith smith@ee 18 3.2 
Rowing 1998 Smith 53650 Smith smith@math 19 3.8 

Figure 3.19 An Instance C of Clubs Figure 3.20 An Instance S3 of Students 

I name· I login • J club J since J 

Dave dave@cs Sailing 1996 
Smith smith@ee Hiking 1997 
Smith smith@ee Rowing 1998 
Smith smith@math Hiking 1997 
Smith smith@math Rowing 1998 

Figure 3.21 Instance of ActiveStudents 

A tuple in Clubs denotes that the student called mname has been a member of 
the club cname since the date jyear.4 Suppose that we are often interested in 
finding the names and logins of students with a gpa greater than 3 who belong 
to at least one club, along with the club name and the date they joined the 
club. We can define a view for this purpose: 

CREATE VIEW ActiveStudents (name, login, club, since) 
AS SELECT S.sname, S.logiri, C.cname, C.jyear 

FROM Students S, Clubs C 
WHERE S.sname = C.mname AND S.gpa > 3 

Consider the instances of Students and Clubs shown in Figures 3.19 and 3.20. 
When evaluated using the instances C and 83, ActiveStudents contains the 
rows shown in Figure 3.21. 

Now suppose that we want to delete the row (Smith, smith@ee, Hiking, 1991'; 
from ActiveStudents. How are we to do this? ActiveStudents rows are not ~ 
stored explicitly but computed as needed from the Students and Clubs tables 
using the view definition. So we must change either Students or Clubs (or 
both) in such a way that evaluating the view definition on the modified instance 
does not produce the row (Smith, smith@ee, Hiking, 1997.) This task can be 
accomplished in one of two ways: by either deleting the row ( 53688, Smith, 
smith@ee, 18, 3.2) from Students or deleting the row (Hiking, 1997, Smith) 

4 We remark that Clubs has a poorly designed schema (chosen for the sake of our discussion of view 
updates), since it identifies students by name, which is not a candidate key for Students. 

, 
I 
I 
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from Clubs. But neither solution is satisfactory. Removing the Students row 
has the effect of also deleting the row (Smith, smith@ee, Rowing, 1998) from the 
view ActiveStudents. Removing the Clubs row has the effect of also deleting the 
row (Smith, smith@math, Hiking, 1991) from the view ActiveStudents. Neither 
side effect is desirable. In fact, the only reasonable solution is to disallow such 
updates on views. 

Views involving more than one base table can, in principle, be safely updated. 
The B-Students view we introduced at the beginning of this section is an ex
ample of such a view. Consider the instance of B-Students shown in Figure 
3.18 (with, of course, the corresponding instances of Students and Enrolled as 
in Figure 3.4). To insert a tuple, say (Dave, 50000, Reggae203) B-Students, we 
can simply insert a tuple (Reggae203, B, 50000) into Enrolled since there is al
ready a tuple for sid 50000 in Students. To insert (John, 55000, Reggae203), on 
the other hand, we have to insert (Reggae203, B, 55000) into Enrolled and also 
insert (55000, John, null, null, null) into Students. Observe how null values 
are used in fields of the inserted tuple whose value is not available. Fortunately, 
the view schema contains the primary key fields of both underlying base tables; 
otherwise, we would not be able to support insertions into this view. To delete 
a tuple from the view B-Students, we can simply delete the corresponding tuple 
from Enrolled. 

Although this example illustrates that the SQL rules on updatable views are 
unnecessarily restrictive, it also brings out the complexity of handling view 
updates in the general case. For practical reasons, the SQL standard has chosen 
to allow only updates on a very restricted class of views. 

3.7 DESTROYING/ALTERING TABLES AND VIEWS 

If we decide that we no longer need a base table and want to destroy it (i.e., 
delete all the rows and remove the table definition information), we can use 
the DROP TABLE command. For example, DROP TABLE Students RESTRICT de
stroys the Students table unless some view or integrity constraint refers to 
Students; if so, the command fails. If the keyword RESTRICT is replaced by 
CASCADE, Students is dropped and any referencing views or integrity constraints 
are (recursively) dropped as well; one of these two keywords must always be 
specified. A view can be dropped using the DROP VIEW command, which is just 
like DROP TABLE. 

ALTER TABLE modifies the structure of an existing table. To add a column 
called maiden-name to Students, for example, we would use the following com
mand: 
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ALTER TABLE Students 
ADD COLUMN maiden-name CHAR(10) 

The definition of Students is modified to add this column, and all existing rows 
are padded with null values in this column. ALTER TABLE can also be used 
to delete columns and add or drop integrity constraints on a table; we do not 
discuss these aspects of the command beyond remarking that dropping columns 
is treated very similarly to dropping tables or views. 

3.8 CASE STUDY: THE INTERNET STORE 

The next design step in our running example, continued from Section 2.8, is 
logical database design. Using the standard approach d~scussed in Chapter 3, 
DBDudes maps the ER diagram shown in Figure 2.20 to the relational model, 
generating the following tables: • 

CREATE TABLE Books ( isbn CHAR(10), 
title CHAR(80), 
author CHAR(80), 
qty _in_stock INTEGER, 
price REAL, 
year_published INTEGER, 
PRIMARY KEY (isbn)) 

CREATE TABLE Orders ( isbn CHAR(10), 
cid INTEGER, 
cardnum CHAR(16), 
qty INTEGER, 
order _date DATE, 
ship_date DATE, 
PRIMARY KEY (isbn,cid), 
FOREIGN KEY (isbn) REFERENCES Books, 
FOREIGN KEY (cid) REFERENCES Customers) 

CREATE TABLE Customers ( cid 
cname 
address 
PRIMARY 

INTEGER, 
CHAR(80), 
CHAR(200), 

KEY (cid) 

The design team leader, who is still brooding over the fact that the review 
exposed a flaw in the design, now has an inspiration. The Orders table contains 
the field order_date and the key for the table contains only the fields isbn and 
cid. Because of this, a customer cannot order the same book on different days, 

l 

I 
~ 
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a restriction that was not intended. Why not add the order_date attribute to 
the key for the Orders table? This would eliminate the unwanted restriction: 

CREATE TABLE Orders ( isbn CHAR(10), 

PRIMARY KEY (isbn,cid,ship_date), 
... ) 

The reviewer, Dude 2, is not entirely happy with this solution, which he calls 
a 'hack'. He points out that no natural ER diagram reflects this design and 
stresses the importance of the ER diagram as a design document. Dude 1 
argues that, while Dude 2 has a point, it is important to present B&N with 
a preliminary design and get feedback; everyone agrees with this, and they go 
back to B&N. 

The owner of B&N now brings up some additional requirements he did not 
mention during the initial discussions: "Customers should be able to purchase 
several different books in a single order. For example, if a customer wants to 
purchase three copies of 'The English Teacher' and two copies of 'The Character 
of Physical Law,' the customer should be able to place a single order for both 
books." 

The design team leader, Dude 1, asks how this affects the shippping policy. 
Does B&N still want to ship all books in an order together? The owner of 
B&N explains their shipping policy: "As soon as we have have enough copies 
of an ordered book we ship it, even if an order contains several books. So it 
could happen that the three copies of 'The English Teacher' are shipped today 
because we have five copies in stock, but that 'The Character of Physical Law' 
is shipped "bomorrow, because we currently have only one copy in stock and 
another copy arrives tomorrow. In addition, my customers could place more 
than one order per day, and they want to be able to identify the orders they 
placed." 

The DBDudes team thinks this over and identifies two new requirements: First, 
it must be possible to order several different books in a single order and sec
ond, a customer must be able to distinguish between several orders placed the 
same day. To accomodate these requirements, they introduce a new attribute 
into the Orders table called ordernum, which uniquely identifies an order and 
therefore the customer placing the order. However, since several books could be 
purchased in a single order, ordernum and isbn are both needed to determine 
qty and ship_date in the Orders table. 

Orders are assigned order numbers sequentially and orders that are placed later 
have higher order numbers. If several orders are placed by the same customer 
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on a single day, these orders have different order numbers and can thus be 
distinguished. The SQL DDL statement to create the modified Orders table 
follows: 

CREATE TABLE Orders ( ordernum INTEGER, 
isbn CHAR(10), 
cid INTEGER, 
cardnum CHAR(16), 
qty INTEGER, 
order_date DATE, 
ship_date DATE, 
PRIMARY KEY (ordernum, isbn), 
FOREIGN KEY (isbn) REFERENCES Books 
FOREIGN KEY (cid) REFERENCES Customers) 

~ 

The owner of B&N is quite happy with this design for Orders, but has realized 
something else. (DBDudes is not surprised; customers almost always come up 
with several new requirements as the design progresses.) While he wants all 
his employees to be able to look at the details of an order, so that they can 
respond to customer enquiries, he wants customers' credit card information to 
be secure. To address this concern, DBDudes creates the following view: 

CREATE VIEW Orderlnfo (isbn, cid, qty, order_date, ship_date) 
AS SELECT ·0.cid, 0.qty, 0.order_date, 0.ship_date 

FROM Orders 0 

The plan is to allow employees to see this table, but not Orders; the latter is 
restricted to B&N's Accounting division. We'll see how this is accomplished in 
Section 21. 7. 

3.9 REVIEW QUESTIONS 

Answers to the review questions can be found in the listed sections. 

• What is a relation? Differentiate between a relation schema and a relation 
instance. Define the terms arity and degree of a relation. What are domain 
constraints? (Section 3.1) 

• What SQL construct ,enables the definition of a relation'? What constructs 
allow modification of relation instances? (Section 3.1.1) 

• What are integrity constraints? Define the terms primary key constraint 
and foreign key constraint. How are these constraints expressed in SQL? 
What other kinds of constraints can we express in SQL? (Section 3.2) 
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• What does the DBMS do when constraints are violated? What is referen
tial integr;ity? What options does SQL give application programmers for 
dealing with violations of referential integrity? (Section 3.3) 

• When are integrity constraints enforced by a DBMS? How can an appli
cation programmer control the time- that constraint violations are checked 
during transaction execution? (Section 3.3.1) 

• What is a relational database query? (Section 3.4) 

• How can we translate an ER diagram into SQL statements to create ta
bles? How are entity sets mapped into relations? How are relationship 
sets mapped? How are constraints iri the ER model, weak entity sets, class 
hierarchies, and aggregation handled? (Section 3.5) 

• What is a view? How do views support logical data independence? How 
are views used for security? How are queries on views evaluated? Why 
does SQL restrict the class of views that can be updated? (Section 3.6) 

• What are the SQL constructs to modify the structure of tables and de
stroy tables and views? Discuss what happens when we destroy a view. 
(Section 3. 7) 

EXERCISES 

Exercise 3.1 Define the following terms: relation schema, relational database schema, do
main, relation instance, relation cardinality, and relation degree. 

Exercise 3.2 How many distinct tuples are in a relation instance with cardinality 22? 

L 

Exercise 3;S Does the relational model, as seen by an SQL query writer, provide physical 
and logical data independence? Explain. 

Exercise 3.4 What is the difference between a candidate key and the primary key for a given 
relation? What is a superkey? 

Exercise 3.5 Consider the instance of the Students relation shown in Figure 3.1. 

1. Give an exampie of an attribute (or set of attributes) that you can deduce is not a 
candidate key, based on this instance being legal. 

2. Is there any example of an attribute (or set of attributes) that you can deduce is a 
candidate key, based on this instance being legal? 

Exercise 3.6 What is a foreign key constraint? Why are such constraints important? What 
is referential integrity? 

Exercise 3. 7 Consider the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches, 
and Meets_ln defined in Section 1.5.2. 
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1. List all the foreign key constraints among these relations. 

2. 'Give an example of a (plausible) constraint involving one or more of these relations that 
is not a primary key or foreign key constraint. 

Exercise 3.8 Answer each of the following questions briefly. The questions are based on the 
following relational schema: 

Emp(eid: integer, ename: string, age: integer, salary: real) 
Works(eid: integer, did: integer, pcLtime: integer) 
Dept(did: integer, dname: string, budget: real, managerid: integer) 

1. Give an example of a foreign key constraint that involves the Dept relation. What are 
the options for enforcing this constraint when a user attempts to delete a Dept tuple? 

2. Write the SQL statements required to create the preceding relations, including appro
priate versions of all primary and foreign key integrity constraints. 

3. Define the Dept relation in SQL so that every department is guarante~a to have a 
manager. 

4. Write an SQL statement to add John Doe as an employee with eid = 101, age = 32 and 
salary = 15, 000. 

5. Write an SQL statement to give every employee a 10 percent raise. 

6. Write an SQL statement to delete the Toy department. Given the referential integrity 
constraints you chose for this schema, explain what happens when this statement is 
executed. 

Exercise 3.9 Consider the SQL query whose answer is shown in Figure 3.6. 

1. Modify this query so that only the lo~in column is inclu?ed in the answer. 

2. If the clause WHERE S.gpa >= 2 is added to the original query, what is the set of tuples 
in the answer? 

Exercise 3.10 Explain why the addition of NOT NULL constraints to the SQL definition of 
the Manages relation (in Section 3.5.3) would not enforce the constraint that each department 
must have a manager. What, if anything, is achieved by requirin&>that the ssn field of Manages 
be non-null? 

Exercise 3.11 Suppose that we have a ternary relationship R between entity sets A, B, 
and C such that A· has a key constraint and total participation and B has a key constraint; 
these are the only constraints. A has attributes al and a2, with al being the key; B and 
C are similar. R has no descriptive attributes. Write SQL statements that create tables 
corresponding to this information so as to capture as many of tl;ie constraints as possible. If 
you cannot capture some constraint, explain why. 

Exercise 3.12 Consider the scenario from Exercise 2.2, where you designed an ER diagram 
for a university database. Write SQL statements to create the corresponding relations and 
capture as many of the constraints as possible. If you cannot capture some constraints, explain 
why. 

Exercise 3.13 Consider the university database from Exercise 2.3 and the ER diagram you 
designed. Write SQL statements to create the corresponding relations and capture as many 
of the constraints as possible. If you cannot capture some constraints, explain why. 
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Exercise 3.14 Consider the scenario from Exercise 2.4, where you designed an ER diagram 
for a company database. Write SQL statements to create the corresponding relations and 
capture as many of the constraints as possible. If you cannot capture some constraints, 
explain why. 

Exercise 3.15 Consider the Notown database from Exercise 2.5. You have decided to rec
ommend that Notown use a relational database system to store company data. Show the 
SQL statements for creating relations corresponding to the entity sets and relationship sets 
in your design. Identify any constraints in the ER diagram that you are unable to capture in 
the SQL statements and briefly explain why you could not express them. 

Exercise 3.16 Translate your ER diagram from Exercise 2.6 into a relational schema, and 
show the SQL statements needed to create the relations, using only key and null constraints. 
If your translation cannot capture any constraints in the ER diagram, explain why. 

In Exercise 2.6, you also modified the ER diagram to include the constraint that tests on a 
plane must be conducted by a technician who is an expert on that model. Can you modify 
the SQL statements defining the relations obtained by mapping the ER diagram to check this 
constraint? 

Exercise 3.17 Consider the ER diagram that you designed for the Prescriptions-R-X chain· of 
pharmacies in Exercise 2. 7. Define relations corresponding to the entity sets and relationship 
sets in your design using SQL. 

Exercise 3.18 Write SQL statements to create the corresponding relations to the ER dia
gram you designed for Exercise 2.8. If your translation cannot capture any constraints in the 
ER diagram, explain why. 

Exercise 3.19 Briefly answer the following questions based on this schema: 

Emp( eid: integer, ename: string, age: ~nteger, salary: real) 
Works( eid: integer, did: integer, pcLtime: integer) 
Dept (did: integer, budget: real, managerid: in;teger) 

L 

1. Suppose you have a view SeniorEmp defined as follows: 

CREATE VIEW SeniorEmp (sname, sage, salary) 
AS SELECT E.ename, E.age, E.salary 

FROM Emp E 
WHERE E.age > 50 

Explain what the system will do to process the following query: 

SELECT S.sname 
FROM SeniorEmp S 
WHERE S.salary > 100,000 

2. Give an example of a view on Emp that could be automatically updated by updating 
Emp. 

3. Give an example of a view on Emp that would be impossible to update (automatically) 
and explain why your example presents the update problem that it does. 

Exercise 3.20 Consider the following schema: 
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Suppliers(sid: integer, sname: string, address: string) 
Parts(pid: integer, pname: string, color: string) 
Catalog(sid: integer, pid: integer, cost: real) 

CHAPTER 3 

The Catalog relation lists the prices charged for parts by Suppliers. Answer the following 
questions: 

• Give an example of an updatable view involving one relation. 

• Give an example of an updatable view involving two relations. 

• Give an example of an insertable-into view that is updatable. 

• Give an example of an insertable-into view that is not updatable. 

PROJECT-BASED EXERCISES 

Exercise 3.21 Create the relations Students, Faculty, Courses, Rooms, Enrolled, Teaches, 
and Meets_In in Minibase. .,~ 

Exercise 3.22 Insert the tuples shown in Figures 3.1 and 3.4 into the relations Students and 
Enrolled. Create reasonable instances of the other relations. 

Exercise 3.23 What integrity constraints are enforced by Minibase? 

Exercise 3.24 Run the SQL queries presented in this chapter. 

BIBLIOGRAPHIC NOTES 

The relational model was proposed in a seminal paper ,by Codd [187]. Childs [176] and Kuhns 
[454] foreshadowed some of these developments. Gallaire and Minket's book [296] contains 
several papers on the use of logic in the context of relational databases. A system based on a 
variation of the relational model in which the entire database is regarded abstractly as a single 
relation, called the universal relation, is described in [746]. Extensions of the relational model 
to incorporate null values, which indicate an unknown or missing field value, are discussed by 
several authors; for example, [329, 396, 622, 754, 790]. 

Pioneering projects include System R [40, 150] at IBM San Jose Research Laboratory (now 
IBM Almaden Research Center), Ingres [717] at the University of California at Berkeley, 
PRTV [737] at the IBM UK Scientific Center in Peterlee, and QBE [801] at IBM T. J. 
Watson Research Center. 

A rich theory underpins the field of relational databases. Texts devoted to theoretical aspects 
include those by Atzeni and DeAntonellis [45]; Maier [501]; and Abiteboul, Hull, and Vianu 
[3]. [415] is an excellent survey article. 

Integrity constraints in relational databases have been discussed at length. [190] addresses 
semantic extensions to the relational model, and integrity, in particular referential integrity. 
[360] discusses semantic integrity constraints. [203] contains papers that address various 
aspects of integrity constraints, including' in particular a detailed discussion of referential 
integrity. A vast literature deals with enforcing integrity constraints. [51] compares the cost 
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of enforcing integrity constraints via compile-time, run-time, and post-execution checks. [145] 
presents an SQL-based language for specifying integrity constraints and identifies conditions 
under which integrity rules specified in this language can be violated. [713] discusses the 
technique of integrity constraint checking by query modification. [180] discusses real-time 
integrity constraints. Other papers on checking integrity constraints in databases include 
[82, 122, 138, 517]. (681] considers the approach of verifying the correctness of programs that 
access the database instead of run-time checks. Note that this list of references is far from 
complete; in fact, it does not include any of the many papers on checking recursively specified 
integrity constraints. Some early papers in this widely studied area can be found in [296] and 
[295]. 

For references on SQL, see the bibliographic notes for Chapter 5. This book does not discuss 
specific products based on the relational model, but many fine books discuss each of the major 
commercial systems; for example, Chamberlin's book on DB2 [149], Date and McGoveran's 
book on Sybase [206], and Koch and Laney's book on Oracle (443]. 

Several papers consider the problem of translating updates specified on. views into updates 
on the underlying table [59, 208, 422, 468, 778]. [292] is a good survey on this topic. See 
the bibliographic notes for Chapter 25 for references to work querying views and maintaining 
materialized views. 

(731] discusses a design methodology based on developing an ER diagram and then translating 
to the relational model. Markowitz considers referential integrity in the context of ER to 
relational mapping and discusses the support provided in some commercial systems (as of 
that date) in (513, 514]. 
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