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he availability of low-cost microprocessors and advances in communica-
ion technologies has spurred considerable interest in locally distributed
ystems. The primary advantages of these systems are high performance,
availability, and extensibility at low cost. To realize these benefits, however,
system designers must overcome the problem of allocating the considerable
processing capacity available in a locally distributed system so that it is used to its

fullest advantage.
This article focuses on the problem of judiciously and transparently redistribut-
_ ing the load of the system among its nodes so that overall performance is maxi-
mized. We discuss several key issues in load distributing for general-purpose
. . . systems, including the motivations and design trade-offs for load-distributing
Load-dlstrlbutlng algorithms. In addition, we describe several load-distributing algorithms and
. . compare their performance. We also survey load-distributing policies used in
algorlthms can improve existing system[s) and draw conclusions abo)ut which algorithm might help in

a distributed system’s realizing the most benefits of load distributing.
performance by
judiciously

I‘edistributing the We first discuss several load-distributing issues central to understanding its
. intricacies. In this article, we use the terms computer, processor, machine, work-
workload among its

station, and node interchangeably.
nodes. This article

Issues in load distributing

Motivation. A locally distributed system consists of a collection of autonomous
describes load- computers connected by a local area communication network. Users submit tasks

distributi 1 ith at their host computers for processing. As Figure 1 shows, the random arrival of
1stributing a gOI‘lt IMS 55k in such an environment can cause some computers to be heavily loaded while

and compares their other computers are idle or only lightly loaded. Load distributing improves
performance by transferring tasks from heavily loaded computers, where service

performance. is poor, to lightly loaded computers, where the tasks can take advantage of
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computing capacity that would other-
wise go unused.

If workloads at some computers are
typically heavier than at others, or if
some processors execute tasks more
slowly than others, the situation shown
in Figure 1 is likely to occur often. The
usefulness of load distributing is not so
obvious in systems in which all proces-
sors are equally powerful and have equal-
ly heavy workloads over the long term.
However, Livny and Melman' have
shown that eveninsuch a homogeneous
distributed system, at least one comput-
er is likely to be idle while other com-
puters are heavily loaded because of
statistical fluctuations in the arrival of
tasks tocomputers and task-service-time
requirements. Therefore, even in a ho-
mogeneous distributed system, system
performance can potentially be im-
proved by appropriate transfers of work-
load from heavily loaded computers
(senders) to idle or lightly loaded com-
puters (receivers).

What do we mean by performance?
A widely used performance metric is
the average response time of tasks. The
response time of a task is the time elapsed
between its initiation and its comple-
tion. Minimizing the average response
time is often the goal of load distrib-
uting.

Dynamic, static, and adaptive algo-
rithms. Load-distributing algorithms
can be broadly characterized as dy-
namic, static, or adaptive. Dynamicload-
distributing algorithms use system-state
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information (the loads at nodes), atleast
in part, to make load-distributing deci-
sions, while szatic algorithms make no
use of such information.

Decisions are hardwired instaticload-
distributing algorithms using a priori
knowledge of the system. For example,
under a simple “cyclic splitting” algo-
rithm, each node assigns the ith task it
initiates to node i mod N, where Nis the
number of nodes in the system. Alter-
natively, a probabilistic algorithm as-
signs a task to node i with probability p,,
where the probabilities are determined
statically according to factors such as
the average task-initiation rate and ex-
ecution rate for each node. Each of
these algorithms can potentially make
poor assignment decisions. Because they
do not consider node states when mak-
ing such decisions, they can transfer a
task initiated at an otherwise idle node
to a node having a serious backlog of
tasks.

Dynamic algorithms have the poten-
tial to outperform static algorithms by
using system-state information to im-
prove the quality of their decisions. For
example, a simple dynamic algorithm
might be identical to a static algorithm,
except that it would not transfer an
arriving task if the node where it arrived
was idle. A more sophisticated dynamic
algorithm might also take the state of
the receiving node into account, possi-
bly transferring a task to a node only if
the receiving node wasidle. A still more
sophisticated dynamic algorithm might
transfer an executing task if it was shar-

ing a node with another task and some
other node became idle. Essentially,
dynamic algorithms improve perfor-
mance by exploiting short-term fluctua-
tions in the system state. Because they
must collect, store, and analyze state
information, dynamic algorithms incur
more overhead than their static coun-
terparts, but this overhead is often well
spent. Most recent load-distributing re-
search has concentrated on dynamic al-
gorithms, and they will be our focus for
the remainder of this article.

Adaptiveload-distributing algorithms
are aspecial class of dynamic algorithms.
They adapt their activities by dynami-
cally changing their parameters, or even
their policies, to suit the changing sys-
tem state. For example, if some load-
distributing policy performs better than
others under certain conditions, while
another policy performs better under
other conditions, a simple adaptive al-
gorithm might choose between these
policies based on observations of the
system state. Even when the system is
uniformly so heavily loaded that no per-
formance advantage can be gained by
transferring tasks, a nonadaptive dy-
namic algorithm might continue oper-
ating (and incurring overhead). To avoid
overloading such a system, an adaptive
algorithm might instead curtail its load-
distributing activity when it observes
this condition.

Load. A key issue in the design of
dynamic load-distributing algorithms is
identifying a suitable load index. Aload
index predicts the performance of a task
if itis executed at some particular node.
To be effective, load index readings tak-
en when tasks initiate should correlate
well with task-response times. Load in-
dexes that have been studied and used
include the length of the CPU queue,
the average CPU queue length over
some period, the amount of available
memory, the context-switch rate, the
system call rate, and CPU utilization.
Researchers have consistently found
significant differences in the effective-
ness of such load indexes — and that
simple load indexes are particularly ef-
fective. For example, Kunz? found that
the choice of a load index has consider-
able effect on performance, and that
the most effective of the indexes we
have mentioned is the CPU queue length.
Furthermore, Kunz found no perfor-
mance improvement over this simple
measure when combinations of these
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load indexes were used. It is crucial that
the mechanism used to measure load be
efficient and impose minimal overhead.

Preemptive versus nonpreemptive
transfers. Preemptive task transfers in-
volve transferring a partially executed
task. This operation is generally expen-
sive,since collecting a task’s state (which
can be quite large or complex) is often
difficult. Typically, a task state consists
of a virtual memory image, a process
control block, unread [/O buffers and
messages, file pointers, timers that have
been set, and so on. Nonpreemprive task
transfers, on the other hand, involve
only tasks that have not begun execu-
tion and hence do not require transfer-
ring the task’s state. In both types of
transfers, information about the envi-
ronment in which the task will execute
must be transferred to the remote node.
This information may include the user’s
current working directory and the priv-
ileges inherited by the task. Nonpre-
emptive task transfers are also called
task placements. Artsy and Finkel® and
Douglis and Ousterhout* contain de-
tailed discussions of issues in preemp-
tive task transfer.

Centralization. Dynamicload-distrib-
uting algorithms differ in their degree
of centralization. Algorithms can be
centralized, hierarchical, fully decen-

tralized, or some combination of these.
Algorithms with some centralized com-
ponents are potentially less reliable than
fully decentralized algorithms, since the
failure of a central component may cause
the entire system to fail. A solution to
this problem is to maintain redundant
components, which can become active
when the previously active component
fails. A second weakness of centralized
algorithms is not so easily remedied: A
central component is potentially a bot-
tleneck, limiting load distribution. While
hierarchical algorithms can alleviate
both problems, the complete solution
lies in fully decentralized algorithms.

Components of a load-distributing
algorithm. Typically, a dynamic load-
distributing algorithm has four compo-
nents: a transfer policy, a selection poli-
cy,alocation policy, and an information
policy.

Transfer policy. A transfer policy de-
termines whether a node is in a suitable
state to participate in a task transfer,
either as a sender or a receiver. Many
proposed transfer policies are threshold
policies.!*7 Thresholds are expressed in
units of load. When a new task origi-
nates at a node, the transfer policy de-
cides that the node is a sender if the load
at that node exceeds a threshold 7. On
the other hand, if the load at a node falls

Load sharing versus load balancing

Dynarmc load~dzsmbutmg algonshms can be further clas-
,‘ ified as being load-sharing or load-balancing algerithms.
- The goal of a load-sharing anaﬂ#un is to maximize the rate

task's state and because of
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\ some other computer.
yus, unshared sta;tes

i umcahon delays, trans-
- fers are not iﬂstammaous. The lengthy unshared states

; sult from these delays can be par- B
transfers,’ which are
/loaded computers, un-
y loaded computers are likely
al performance gain of 2.
be weighed against the

References

below T,, the transfer policy decides
that the node can be a receiver for a
remote task. Depending on the algo-
rithm, 7, and 7, may or may not have
the same value.

Alternatives to threshold transfer
policies include relative transfer poli-
cies. Relative policies consider the load
of a node in relation to loads at other
system nodes. For example, a relative
policy might consider a node to be a
suitable receiver if its load is lower than
that of some other node by atleast some
fixed 8. Alternatively, a node might be
considered areceiverifitsload isamong
the lowest in the system.

Selection policy. Once the transfer
policy decides that a node is a sender, a
selection policy selects a task for trans-
fer. Should the selection policy fail to
find a suitable task to transfer, the node
is no longer considered a sender.

The simplest approach is to select
one of the newly originated tasks that
caused the node to become a sender.
Such a task is relatively cheap to trans-
fer, since the transfer is nonpreemptive.

A selection policy considers several
factors in selecting a task:

(1) The overhead incurred by the
transfer should be minimal. For
example, a small task carries less
overhead.

Load-balancing algorithms also strive to avoid unshared
states, but go a step beyond load sharing by attempting to
equalize the loads at all computers. Krueger and Livny?
have shown that load balancing can potentially reduce the
mean and standard deviation of task response times, rela-
tive to load-sharing algorithms. Because load balancing
reguires a higher transfer rate than load sharing, however,
the higher overhead incurred may outweigh this potenual
pefformanma improvement.

1. M. Livny and M. Mel
‘Distributed Sy

“Load ing int

" Proc. ACM Gompuler Network

Performance Symp., 1982 pp. 47-55. Proceedings printed as a
special issue of ACM Performance Evaluation Rev., Vol. 11, No.
1, 1982, pp 47-85.

P. Kruegsr and M. Livny, “The Diverse Objectwes of Distributed
Scheduling Policies,” Proc. Seventh Int'| Conf, Distributed Com-
\puting Systems, IEEE CS Press, Los Alamitos, Calif., Order No.
801 (microfiche only), 1987, pp. 242-249.

35

Authorized licensed use limited to: David Williams. Downloaded on October 03,2020 at 15:33:50 UTC from IEEE Xplore. Restrictions apply.



(2) The selected task should be long
lived so that it is worthwhile to
incur the transfer overhead.

(3) The number of location-depen-
dent system calls made by the se-
lected task should be minimal.
Location-dependent calls are sys-
tem calls that must be executed
on the node where the task origi-
nated, because they use resources
such as windows, the clock, or the
mouse thatare only at that node . *#

Location policy. The location poli-
cy’s responsibility is to find a suitable
“transfer partner” (sender or receiver)
for a node, once the transfer policy has
decided that the node is a sender or
receiver.

A widely used decentralized policy
finds a suitable node through polling: A
node polls another node to find out
whether it is suitable for load sharing.
Nodes can be polled either serially or in
parallel (for example, multicast). A node
can be selected for polling on a random
basis,*® on the basis of the information
collected during the previous polls,'” or
on anearest neighbor basis. An alterna-
tive to polling is to broadcast a query
seeking any node available for load
sharing.

In a centralized policy, a node con-
tacts one specified node called a coordi-
nator to locate a suitable node for load
sharing. The coordinator collects infor-
mation about the system (which is the
responsibility of the information poli-
cy), and the transfer policy uses this
information at the coordinator to select
receivers.

Information policy. The information
policy decides when information about
the states of other nodes in the system is
to be collected, from where it is to be
collected, and what information is col-
lected. There are three types of infor-
mation policies:

(1) Demand-driven policies. Under
these decentralized policies, anode col-
lects the state of other nodes only when
it becomes either a sender or areceiver,
making it a suitable candidate to ini-
tiate load sharing. A demand-driven
information policy is inherently a dy-
namic policy, as its actions depend on
the system state. Demand-driven poli-
cies may be sender, receiver, or sym-
metrically initiated. In sender-initiated
policies, senders look for receivers to
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Using detailed state
information does not
always significantly aid
system performance.

which they can transfer their load. In
receiver-initiated policies, receivers so-
licit loads from senders. A symmetrical-
ly initiated policy is a combination of
both: Load-sharing actions are triggered
by the demand for extra processing pow-
er or extra work.

(2) Periodic policies. These policies,
which may be either centralized or de-
centralized, collect information period-
ically. Depending on the information
collected, the transfer policy may de-
cide to transfer tasks. Periodic informa-
tion policies generally donot adapt their
rate of activity to the system state. For
example, the benefits resulting fromload
distributing are minimal at high system
loads because most nodes in the system
are busy. Nevertheless, overheads due
to periodic information collection con-
tinue to increase the system load and
thus worsen the situation.

(3) State-change-driven policies. Un-
der state-change-driven policies, nodes
disseminate information about their
states whenever their states change by a
certain degree. A state-change-driven
policy differs from a demand-driven
policy in that it disseminates informa-
tion about the state of a node, rather
than collecting information about other
nodes. Under centralized state-change-
driven policies, nodes send state infor-
mation to a centralized collection point.
Under decentralized state-change-
driven policies, nodes send information
to peers.

Stability: We first informally describe
two views of stability: the queuing the-
oretic perspective and the algorithmic
perspective. According to the queuing
theoretic perspective,when the long-term
arrival rate of work to a system is great-
er than the rate at which the system can
perform work, the CPU queues grow
without bound. Such a system is termed
unstable. For example, consider a load-
distributing algorithm performing ex-
cessive message exchanges to collect
state information. The sum of the load

due to the external work arriving and
the load due to the overhead imposed
by the algorithm can become higher
than the service capacity of the system,
causing system instability.

On the other hand, an algorithm can
be stable but still cause a system to
perform worse than the same system
without the algorithm. Hence, we need
a more restrictive criterion for evaluat-
ing algorithms — the effectiveness of an
algorithm. A load-distributing algorithm
is effective under a given set of condi-
tions if it improves performance rela-
tive to a system not using load distribut-
ing. An effective algorithm cannot be
unstable, but a stable algorithm can be
incffective.

According to the algorithmic perspec-
tive, if an algorithm can perform fruit-
less actions indefinitely with nonzero
probability, the algorithm is unstable.
For example, consider processor thrash-
ing: The transfer of a task to a receiver
may increase the receiver’s queue length
to the point of overloading it, necessi-
tating the transfer of that task to yet
another node. This process may repeat
indefinitely. In this case, a task moves
from one node to another in search of a
lightly loaded node without ever receiv-
ing any service. Casavant and Kuhl® dis-
cuss algorithmic instability in detail.

Example algorithms

During the past decade, many load-
distributing algorithms have been pro-
posed. In the following sections, we de-
scribe several representative algorithms
that have appearedin the literature. They
illustrate how the components of load-
distributing algorithms fit together and
show how the choice of components af-
fects system stability. We discuss the
performance of these algorithms in the
“Performance comparison” section.

Sender-initiated
algorithms

Under sender-initiated algorithms,
load-distributing activity is initiated by
an overloaded node (sender) trying to
send a task to an underloaded node
(receiver). Eager, Lazowska, and Zahor-
jan® studied three simple, yet effective,
fully distributed sender-initiated algo-
rithms.
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Transfer policy. Each of the algo-
rithms uses the same transfer policy, a
threshold policy based on the CPU queue
length. A node is identified as a sender
if a new task originating at the node
makes the queue length exceed a thresh-
old 7. A node identifies itself as a suit-
able receiver for a task transfer if ac-
cepting the task will not cause the node’s
queue length to exceed 7.

Selection policy. All three algorithms
have the same selection policy, con-
sidering only newly arrived tasks for
transfer.

Location policy. The algorithms dif-
fer only in their location policies, which
we review in the following subsections.

Random. One algorithm has a simple
dynamic location policy called random,
which uses no remote state informa-
tion. A task is simply transferred to a
node selected at random, with no infor-
mation exchange between the nodes to
aid in making the decision. Useless task
transfers can occur when a task is trans-
ferred to a node that is already heavily
loaded (its queue length exceeds T).

An issue is how a node should treat a
transferred task. If a transferred task is
treated as a new arrival, then it can
again be transferred to another node,
providing the local queue length ex-
ceeds T. If such is the case, then irre-
spective of the average load of the sys-
tem, the system will eventually enter a
state in which the nodes are spending all
their time transferring tasks, with no
time spent executing them. A simple
solution is to limit the number of times
a task can be transferred. Despite its
simplicity, this random location policy
provides substantial performance im-
provements over systems not using load
distributing.® The “Performance com-
parison” section contains examples of
this ability to improve performance.

Threshold. Alocation policy can avoid
useless task transfers by polling a node
(selected at random) to determine
whether transferring a task would make
its queue length exceed T (see Figure
2). If not, the task is transferred to the
selected node, which must execute the
task regardless of its state when the task
actually arrives. Otherwise, another
node isselected at random and is polled.
To keep the overhead low, the number
of polls is limited by a parameter called
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the poll limit. If no suitable receiver
node is found within the poll limit polls,
then the node at which the task originat-
ed must execute the task. By avoiding
useless task transfers, the threshold pol-
icy provides a substantial performance
improvement over the random location
policy.® Again, we will examine this im-
provement in the “Performance com-
parison” section.

Shortest. The two previous approach-
es make no effort to choose the best
destination node for a task. Under the
shortest location policy, a number of
nodes (poll limit) are selected at ran-
domand polied to determine their queue
length. The node with the shortest queue
is selected as the destination for task
transfer, unlessits queue length is great-
er than or equal to T. The destination
node will execute the task regardless of
its queue length when the transferred
task arrives. The performance improve-
ment obtained by using the shortest lo-
cation policy over the threshold policy
was found to be marginal, indicating
that using more detailed state informa-
tion does not necessarily improve sys-
tem performance significantly.®

Information policy. When either the
shortest or the threshold location policy
is used, polling starts when the transfer
policy identifies a node as the sender of
a task. Hence, the information policy is
demand driven.

Stability. Sender-initiated algorithms
using any of the three location policies

cause system instability at high system
loads. Atsuch loads, no node is likely to
be lightly loaded, so a sender is unlikely
to find asuitable destination node. How-
ever, the polling activity in sender-initi-
ated algorithms increases as the task
arrival rate increases, eventually reach-
ing a point where the cost of load shar-
ing is greater than its benefit. At a more
extreme point, the workload that can-
not be offloaded from a node, together
with the overhead incurred by polling,
exceeds the node’s CPU capacity and
instability results. Thus, the actions of
sender-initiated algorithms are not ef-
fective at high system loads and cause
system instability, because the algo-
rithms fail to adapt to the system state.

Receiver-initiated
algorithms

Inreceiver-initiated algorithms, load-
distributing activity is initiated from an
underloaded node (receiver), which tries
to get a task from an overloaded node
(sender). In this section, we describe an
algorithm studied by Livny and Mel-
man,' and Eager, Lazowska, and Zahor-
jan® (see Figure 3).

Transfer policy. The algorithm’s
threshold transfer policy bases its deci-
sion on the CPU queue length. The
policy is triggered when a task departs.
If the local queue length falls below the
threshold T, then the node is identified
as a receiver for obtaining a task from a

Task arrives

Select node
i randomly

Poll
node /

task to /

A

Queue the

task locally

Figure 2. Sender-initiated load sharing

using a threshold location policy.
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w| Select node
-~ 1 irandomly

Transfer
task to j

node (sender) to be determined by the
location policy. A node is identified to
be a sender if its queue length exceeds
the threshold 7.

Selection policy. The algorithm con-
siders all tasks for load distributing, and
can use any of the approaches discussed
under “Selection policy” in the “Issues
in load distributing” section.

Location policy. The location policy
selects a node at random and polls it to
determine whether transferring a task
would place its queue length below the
threshold level. If not, then the polled
node transfers a task. Otherwise, an-
other node is selected at random, and
the procedure is repeated until either a
node that can transfer a task (a sender)
is found or a static poll limit number of
tries has failed to find a sender.

A problem with the location policy is
that if all polls fail to find a sender, then
the processing power available at a re-
ceiver is completely lost by the system
until another task originates locally at
the receiver (which may not happen for
a long time). The problem severely af-
fects performance in systems where only
afew nodes generate most of the system
workload and random polling by re-
ceivers can easily miss them. The reme-
dy is simple: If all the polls fail to find a
sender, then the node waits until anoth-
er task departs or for a predetermined
period before reinitiating the load-
distributing activity, provided the node
is still a receiver.”

Information policy. The information
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Figure 3. Receiver-initiated load sharing.

policy is demand driven, since polling
starts only after a node becomes a re-
ceiver.

Stability. Receiver-initiated algo-
rithms do not cause system instability
because, at high system loads, a receiv-
er is likely to find a suitable sender
within a few polls. Consequently, polls
are increasingly effective with increas-
ing system load, and little waste of CPU
capacity results.

A drawback. Under the most widely
used CPU scheduling disciplines (such
as round-robin and its variants), a new-
ly arrived task is quickly provided a
quantum of service. In receiver-initiat-
ed algorithms, the polling starts when a
node becomes areceiver, However, these
polls seldom arrive at senders just after
new tasks have arrived at the senders
but before these tasks have begun exe-
cuting. Consequently, most transfers are
preemptive and therefore expensive.
Sender-initiated algorithms, on the oth-
er hand, make greater use of nonpre-
emptive transfers, since they can ini-
tiate load-distributing activity as soon
as a new task arrives.

An alternative to this receiver-initi-
ated algorithm is the reservation algo-
rithm proposed by Eager, Lazowska,
and Zahorjan.® Rather than negotiate
an immediate transfer, a receiver re-
quests that the next task to arrive be
nonpreemptively transferred. Upon ar-
rival, the “reserved” task is transferred
to the receiver if the receiver is still a
receiver at that time. While this algo-
rithm does not require preemptive task

transfers, it was found to perform
significantly worse than the sender-
initiated algorithms.

Symmetrically initiated
algorithms

Under symmetrically initiated algo-
rithms,'” both senders and receivers ini-
tiate load-distributing activities for task
transfers. These algorithms have the
advantages of both sender- and receiv-
er-initiated algorithms. At low system
loads, the sender-initiated component
is more successful at finding underload-
ed nodes. At high system loads, the
receiver-initiated component is more
successful at finding overloaded nodes.
However, these algorithms may also
have the disadvantages of both sender-
and receiver-initiated algorithms. As
with sender-initiated algorithms, poll-
ing at high system loads may result in
system instability. As with receiver-
initiated algorithms, a preemptive task
transfer facility is necessary.

A simple symmetrically initiated al-
gorithm can be constructed by combin-
ing the transfer and location policies
described for sender-initiated and re-
ceiver-initiated algorithms.

Adaptive algorithms

A stable symmetrically initiated adap-
tive algorithm. The main cause of sys-
tem instability due toload sharingin the
previously reviewed algorithms is indis-
criminate polling by the sender’s nego-
tiation component. The stable symmet-
rically initiated algorithm’ uses the
information gathered during polling (in-
stead of discarding it, as the previous
algorithms do) to classify the nodes in
the system as sender/overloaded, receiv-
erlunderloaded, or OK (nodes having
manageable load). The knowledge about
the state of nodes is maintained at each
node by a data structure composed of a
senders list, a receivers list, and an OK
list. These lists are maintained using an
efficient scheme: List-manipulative ac-
tions, such as moving a node from one
list to another or determining to which
list a node belongs, impose a small and
constant overhead, irrespective of the
number of nodes in the system. Conse-
quently, this algorithm scales well to
large distributed systems.
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Initially, each node assumes that ev-
ery other node is a receiver. This state is
represented at each node by a receivers
list containing all nodes (except the node
itself), and an empty senders list and
OK list.

Transfer policy. The threshold trans-
fer policy makes decisions based on the
CPU queue length. The transfer policy
is triggered when a new task originates
or when a task departs. The policy uses
two threshold values — a lower thresh-
old and an upper threshold — to classify
the nodes. A node is a sender if its
queue length is greater than its upper
threshold, a receiver if its queue length
is less than its lower threshold, and OK
otherwise.

Location policy. The location policy
has two components: the sender-initiat-
ed component and the receiver-initiated
component. The sender-initiated com-
ponent is triggered at a node when it
becomes a sender. The sender polls the
node at the head of the receivers list to
determine whether it is still a receiver.
The polled node removes the sender
node ID from the list it is presently in,
putsit at the head of its senders list, and
informs the sender whether it is cur-
rently a receiver, sender, or OK. On
receipt of this reply, the sender trans-
fers the new task if the polled node has
indicated that it is a receiver. Other-
wise, the polled node’s ID is removed
from the receivers list and is put at the
head of the OK list or the senders list
based on its reply.

Polling stops if a suitable receiver is
found for the newly arrived task, if the
number of polls reaches a poll limit (a
parameter of the algorithm), or if the
receivers list at the sender node be-
comes empty. If polling fails to find a
receiver, the task is processed locally,
though it may later be preemptively
transferred as a result of receiver-
initiated load sharing.

The goal of the receiver-initiated com-
ponent is to obtain tasks from a sender
node. The nodes polled are selected in
the following order:

(1) Head to tail in the senders list. The
most up-to-date information is
used first.

(2) Tail to head in the OK list. The
most out-of-date information is
used first in the hope that the
node has become a sender.
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(3) Tail to head in the receivers list.
Again, the most out-of-date in-
formation is used first.

The receiver-initiated component is
triggered at a node when the node be-
comes a receiver. The receiver polls the
selected node to determine whetheritis
asender. On receipt of the message, the
polled node, if it is a sender, transfers a
task to the polling node and informs it
of its state after the task transfer. If the
polled node is not a sender, it removes
the receiver node ID from the list it is
presently in, puts it at the head of the
receivers list, and informs the receiver
whether the polled node is a receiver or
OK. On receipt of this reply, the receiv-
er node removes the polled node ID
from whatever list it is presently in and
puts it at the head of its receivers list or
OK list, based on its reply.

Polling stops if a sender is found, if
the receiver is no longer a receiver, or if
the number of polls reaches a static poll
limit.

Selection policy. The sender-initiated
component considers only newly arrived
tasks for transfer. The receiver-initiat-
ed component can use any of the ap-
proaches discussed under “Selection
policy” in the “Issues in load distribut-
ing” section.

Information policy. The information
policy is demand driven, as polling starts
when a node becomes either a sender or
a receiver.

Discussion. At high system loads, the
probability of a node’s being under-
loaded is negligible, resulting in unsuc-
cessful polls by the sender-initiated com-
ponent. Unsuccessful polls result in the
removal of polled node IDs from re-
ceivers lists. Unless receiver-initiated
polls to these nodes fail to find senders,
which is unlikely at high system loads,
the receivers lists remain empty. This
scheme prevents future sender-initiat-
ed polls at high system loads (which are
most likely to fail). Hence, the sender-
initiated component is deactivated at
high system loads, leaving only receiv-
er-initiated load sharing (which s effec-
tive at such loads).

At low system loads, receiver-initiat-
ed polls are frequent and generally fail.
These failures do not adversely affect
performance, since extra processing ca-
pacity is available at low system loads.

In addition, these polls have the posi-
tive effect of updating the receiversllists.
With the receivers lists accurately re-
flecting the system’s state, future send-
er-initiated load sharing will generally
succeed within a few polls. Thus, by
using sender-initiated load sharing at
low system loads, receiver-initiated load
sharing at high loads, and symmetrical-
ly initiated load sharing at moderate
loads, the stable symmetrically initiat-
ed algorithm achieves improved perfor-
mance over a wide range of system loads
and preserves system stability.

A stable sender-initiated adaptive
algorithm. This algorithm’ uses the send-
er-initiated load-sharing component of
the previous approach but has a modi-
fied receiver-initiated component to
attract future nonpreemptive task trans-
fers from sender nodes. An important
feature is that the algorithm performs
load sharing only with nonpreemptive
transfers, which are cheaper than pre-
emptive transfers. The stable sender-
initiated algorithm is very similar to the
stable symmetricallyinitiated algorithm.
In the following, we point out only the
differences.

In the stable sender-initiated algo-
rithm, the data structure (at each node)
of the stable symmetrically initiated al-
gorithmis augmented by an array called
the state vector. Each node uses the
state vector to keep track of which list
(senders, receivers, or OK) it belongs to
at all the other nodes in the system. For
example, statevector|nodeid] says to
which list node i belongs at the node
indicated by nodeid. As in the stable
symmetrically initiated algorithm, the
overhead for maintaining this data struc-
ture is small and constant, irrespective
of the number of nodes in the system.

The sender-initiated load sharing is
augmented with the following step:
When a sender polls a selected node,
the sender’s state vector is updated to
show that the sender now belongs to the
senders list at the selected node. Like-
wise, the polled node updates its state
vector based on the reply it sent to the
sender node to reflect which list it will
belong to at the sender.

The receiver-initiated component is
replaced by the following protocol:
When a node becomes a receiver, it
informs only those nodes that are misin-
formed about its current state. The mis-
informed nodes are those nodes whose
receivers lists do not contain the receiv-

39

Authorized licensed use limited to: David Williams. Downloaded on October 03,2020 at 15:33:50 UTC from IEEE Xplore. Restrictions apply.



er’s ID. This information is available in
the state vector at the receiver. The
state vector at the receiver is then up-
dated to reflect that it now belongs to
the receivers list at all those nodes that
were misinformed about its current state.

There are no preemptive transfers of

partly executed tasks here. The sender-
initiated load-sharing component will
do any task transfers, if possible, on the
arrival of a new task. The reasons for
this algorithm’s stability are the same as
for the stable symmetrically initiated
algorithm.

Performance
comparison

In this section, we discuss the general
performance trends of some of the ex-
ample algorithms described in the pre-

Example systems

Here we review several working load-distributing algo-
rithms.

V-system. The V-system' uses a state-change-driven in-
formation policy. Each node broadcasts (or publishes) its
state whenever its state changes significantly. State informa-
tion consists of expected CPU and memory utilization and
particulars about the machine itself, such as its processor
type and whether it has a floating-point coprocessor. The
broadcast state information is cached by all the nodes. If the
distributed system is large, each machine can cache infor-
mation about only the best N nodes (for example, only those
nodes having unused or underused CPU and memory).

The V-system’s selection policy selects only newly arrived
tasks for transfer. Its relative transfer policy defines a node
as a receiver if it is one of the M most lightly loaded nodes in
the system, and as a sender if it is not. The decentralized lo-
cation policy locates receivers as follows: When a task ar-
rives at a machine, it consults the local cache and constructs
the set containing the M most lightly loaded machines that
can satisfy the task’s requirements. If the local machine is
one of the M machines, then the task is scheduled locally.
Otherwise, a machine is chosen randomly from the set and
is polled to verify the correctness of the cached data. This
random selection reduces the chance that multiple machines
will select the same remote machine for task execution. If
the cached data matches the machine’s state (within a de-
gree of accuracy), the polled machine is selected for execut-
ing the task. Otherwise, the entry for the polled machine is
updated and the selection procedure is repeated. In practice,
the cache entries are quite accurate, and more than three
polls are rarely required.’

The V-system’s load index is the CPU utilization at a node.
To measure CPU utilization, a background process that peri-
odically increments a counter is run at the lowest priority
possible. The counter is then polled to see what proportion
of the CPU has been idle.

Sprite. The Sprite system? is targeted toward a worksta-
tion environment. Sprite uses a centralized state-change-
driven information policy. Each workstation, on becoming a
receiver, notifies a central coordinator process. The location
policy is also centralized: To locate a receiver, a workstation
contacts the central coordinator process.

Sprite’s selection policy is primarily manual. Tasks must be
chosen by users for remote execution, and the workstation
on which these tasks reside is identified as a sender. Since
the Sprite system is targeted for an environment in which
workstations are individually owned, it must guarantee the
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availability of the workstation’s resources to the workstation
owner. To do so, it evicts foreign tasks from a workstation
whenever the owner wishes to use the workstation. During
eviction, the selection policy is automatic, and Sprite selects
only foreign tasks for eviction. The evicted tasks are re-
turned to their home workstations.

In keeping with its selection policy, the transfer policy
used in Sprite is not completely automated:

(1) A workstation is automatically identified as a sender
only when foreign tasks executing at that workstation must
be evicted. For normal transfers, a node is identified as a
sender manually and implicitly when the transfer is request-
ed.

(2) Workstations are identified as receivers only for trans-
fers of tasks chosen by the users. A threshold-based policy
decides that a workstation is a receiver when the worksta-
tion has had no keyboard or mouse input for at least 30 sec-
onds and the number of active tasks is less than the number
of processors at the workstation.

The Sprite system designers used semiautomated selec-
tion and transfer policies because they felt that the benefits
of completely automated policies would not outweigh the im-
plementation difficulties.

To promote fair allocation of computing resources, Sprite
can evict a foreign process from a workstation to allow the
workstation to be allocated to another foreign process under
the following conditions: If the central coordinator cannot
find an idle workstation for a remote execution request and
it finds that a user has been allocated more than his fair
share of workstations, then one of the heavy user’s process-
es is evicted from a workstation. The freed workstation is
then allocated to the process that had received less than its
fair share. The evicted process may be automatically trans-
ferred elsewhere if idle workstations become available.

For a parallelized version of Unix “make,” Sprite’s design-
ers have observed a speedup factor of five for a system
containing 12 workstations.

Condor. Condor?® is concerned with scheduling long-run-
ning CPU-intensive tasks (background tasks) only. Condor
is designed for a workstation environment in which the total
availability of a workstation’s resources is guaranteed to the
user logged in at the workstation console (the owner).

Condor’s selection and transfer policies are similar to
Sprite’s in that most transfers are manually initiated by us-
ers. Unlike Sprite, however, Condor is centralized, with a
workstation designated as the controller. To transfer a task,
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vious sections. In addition, we compare
their performance with that of a system
that performs no load distributing (a
system composed of » independent M/
M/1systems) and that of anideal system
that performs perfect load distributing
(no unshared states) without incurring

any overhead in doing so (an M/M/K
system). The results we present are from
simulations of a distributed system con-
taining 40 nodes, interconnected by a
10-megabit-per-second token ring com-
munication network.

For the simulation we made the fol-

lowing assumptions: Task interarrival
times and service demands are indepen-
dently exponentially distributed, and the
average task CPU service demand is
one time unit. The size of a polling
message is 16 bytes, and the CPU over-
head to either send or receive a polling

a user links it with a special system-call library and places it
in a local queue of background tasks. The controller’s duty
is to find idle workstations for these tasks. To accomplish
this, Condor uses a periodic information policy. The control-
ler polis each workstation at two-minute intervals to find idle
workstations and workstations with background tasks wait-
ing. A workstation is considered idle only when the owner
has not been active for at least 12.5 minutes. The controlier
queues information about background tasks. If it finds an
idle workstation, it transfers a background task to that work-
station.

If a foreign background task is being served at a worksta-
tion, a local scheduler at that workstation checks for local
activity from the owner every 30 seconds. If the owner has
been active since the previous check, the local scheduler
preempts the foreign task and saves its state. If the worksta-
tion owner remains active for five minutes or more, the for-
eign task is preemptively transferred back to the workstation
at which it originated. The task may be transferred later to
an idle workstation if one is located by the controller.

Condor’s scheduling scheme provides fair access to com-
puting resources for both heavy and light users. Fair alloca-
tion is managed by the “up-down” algorithm, under which
the controller maintains an index for each workstation. ini-
tially the indexes are set to zero. They are updated periodi-
cally in the following manner: Whenever a task submitted by
a workstation is assigned to an idle workstation, the index of
the submitting workstation is increased. If, on the other
hand, the task is not assigned to an idle workstation, the in-
dex is decreased. The controller periodically checks to see if
any new foreign task is waiting for an idle workstation. If a
task is waiting, but no idle workstation is available and some
foreign task from the lowest priority (highest index value)
workstation is running, then that foreign task is preempted
and the freed workstation is assigned to the new foreign
task. The preempted foreign task is transferred back to the
workstation at which it originated.

Stealth. The Stealth Distributed Scheduler* differs from V-
system, Sprite, and Condor in the degree of cooperation that
occurs between load distributing and local resource alloca-
tion at individual nodes. Like Condor and Sprite, Stealth is
targeted for workstation environments in which the availabili-
ty of a workstation’s resources must be guaranteed to its
owner. While Condor and Sprite rely on preemptive trans-
fers to guarantee availability, Stealth accomplishes this task
through preemptive allocation of local CPU, memory, and
file-system resources.

A number of researchers and practitioners have noted that
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even when workstations are being used by their owners,
they are often only lightly utilized, leaving large portions of
their processing capacities available. The designers of
Stealth® observed that over a network of workstations, this
unused capacity represents a considerable portion of the
total unused capacity in the system — often well over half.

To exploit this capacity, Stealth allows foreign tasks to
execute at workstations even while those workstations are
used by their owners. Owners are insulated from these for-
eign tasks through prioritized local resource aliocation.
Stealth includes a prioritized CPU scheduler, a unique pri-
oritized virtual memory system, and a prioritized file-system
cache. Through these means, owners’ tasks get the re-
sources they need, while foreign tasks get only the leftover
resources (which are generally substantial). In effect,
Stealth replaces an expensive global operation (preemptive
transfer) with a cheap local operation (prioritized alloca-
tion). By doing so, Stealth can simultaneously increase the
accessibility of unused computing capacity (by exploiting
underused workstations, as well as idle workstations) and
reduce the overhead of load distributing.

Under Stealth, task selection is fully automated. It takes
into account the availability of CPU and memory resources,
as well as past successes and failures with transferring
similar tasks under similar resource-availability conditions.
The remainder of Stealth’s load-distributing policy is identi-
cal to the stable sender-initiated adaptive policy discussed
in the “Example algorithms” section of the main text. Be-
cause it does not need preemptive transfers to assure the
availability of workstation resources to their owners, Stealth
can use relatively cheap nonpreemptive transfers almost
exclusively. Preemptive transfers are necessary only to pre-
vent starvation of foreign tasks.
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message is 0.003 time units. A nonpre-
emptive task transfer incurs a CPU over-
head of 0.02 time units, and a preemp-
tive transfer incurs a 0.1 time unit
overhead. Transfer overhead is divided
evenly between the sending and the re-
ceiving nodes. The amount of informa-
tion that must be communicated for a
nonpreemptive transfer is 8 Kbytes,
while a preemptive transfer requires
200 Kbytes.

While the specific performance val-
ues we present are sensitive to these
assumptions, the performance trends
we observe are far less sensitive and
endure across a wide range of distribut-
ed systems. Errors in the results we
present are less than 5 percent at the 90
percent confidence level.

Figure 4 plots the performance of the
following:

*M/M/1, a distributed system that
performs no load distributing;

 a sender-initiated algorithm with a
random location policy, assuming
that a task can be transferred at
maost once;

e a sender-initiated algorithm with a
threshold location policy;

® a symmetrically initiated algorithm
(sender- and receiver-initiated al-
gorithms combined);

e a stable sender-initiated algorithm;

® a receiver-initiated algorithm;

® a stable symmetrically initiated al-
gorithm; and

e M/M/K, a distributed system that
performsidealload distributing with-
out incurring overhead for load dis-
tributing.

A fixed threshold of T = upper thresh-
old = lower threshold = 1 was used for
each algorithm.

For these comparisons, we assumed a
small fixed poll limit (5). A small limit is
sufficient: If P is the probability that a
particular node is below threshold, then
the probability that a node below thresh-
old is first encountered on the ith poll is
P(1 — P)~'.% (This result assumes that
nodes are independent, a valid assump-
tion if the poll limit is small relative to
the number of nodes in the system.) For
large P, this expression decreases rap-
idly with increasing i. The probability of
succeeding on the first few polls is high.
Forsmall P, the quantity decreases more
slowly. However, since most nodes are

above threshold, the improvement in
systemwide response time that will re-
sult from locating a node below thresh-
old is small. Quitting the search after
the first few polls does not carry a sub-
stantial penalty.

Main result. The ability of load dis-
tributing to improve performance is in-
tuitively obvious when work arrives at
some nodes at a greater rate than at
others, or when some nodes have faster
processors than others. Performance
advantages are not so obvious when all
nodes are equally powerful and have
equal workloads over the long term.
Figure 4a plots the average task re-
sponse time versus offered system load
for such a homogeneous system under
each load-distributing algorithm. Com-
paring M/M/1 with the sender-initiated
algorithm (random location policy), we
see that even this simple load-distribut-
ing scheme provides a substantial per-
formance improvement over a system
thatdoes not use load distributing. Con-
siderable further improvement in per-
formance can be gained through simple
sender-initiated (threshold location
policy) and receiver-initiated load-

6...
5 —
) )
£ E a—
@ @
g 2
2’ g
8 g 8-
[~4 =
& &
D @
= =
2—
1 —
0 l l I l ! 0
0.5 0.6 0.7 0.8 0.9 1.0 ]
(a) (b)
e -t M/M/A —4——4&— Sender-initiated with random location policy
e - e NYM/K ~——<— Sender-initiated with threshold policy
-1k Receiver initiated - Symmetrically initiated

~e~ — @ - Stable sender initiated
=0~ ~ - - Stable symmetrically initiated

Figure 4. Average response time versus system load (a) and number of load-generating machines (b).
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sharing schemes. The performance of
the best algorithm — the stable sym-
metrically initiated algorithm — ap-
proaches that of M/M/K, though this
optimistic lower bound can never be
reached, since it assumes no load-distri-
bution overhead.

Receiver- versus sender-initiated load
sharing. Figure 4a shows that the send-
er-initiated algorithm with a threshold
location policy performs marginally
better than the receiver-initiated algo-
rithm at light to moderate system loads,
while the receiver-initiated algorithm
performs substantially better at high
system loads (even though the preemp-
tive transfers it uses are much more
expensive than the nonpreemptive trans-
fers used by the sender-initiated algo-
rithm). Receiver-initiated load sharing
is less effective at low system loads be-
cause load sharing is not initiated at the
time that one of the few nodes becomes
a sender, and thus load sharing often
occurs late.

In robustness, the receiver-initiated
policy has an edge over the sender-
initiated policy. The receiver-initiated
policy performs acceptably over the
entire system load spectrum, whereas
the sender-initiated policy causes sys-
tem instability at high loads. At such
loads, the receiver-initiated policy main-
tains system stability because its polls
generally find busy nodes, while polls
due to the sender-initiated policy are
generally ineffective and waste resources
in efforts to find underloaded nodes.

Symmetrically initiated load sharing.
This policy takes advantage of its send-
er-initiated load-sharing component at
low system loads, its receiver-initiated
component at high system loads, and
both at moderate system loads. Hence,
its performance is better than or match-
es that of the sender-initiated algorithm
with threshold location policy at all lev-
els of system load, and is better than
that of the receiver-initiated policy at
low to moderate system loads. Never-
theless, this policy also causes system
instability at high system loads because
of the ineffective polling by its sender-
initiated component at such loads.

Stable load-sharing algorithms. The
performance of the stable symmetrical-
ly initiated algorithm matches that of
the best of the algorithms at low system
loads and offers substantial improve-
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ments at high loads (greater than 0.85)
over all the nonadaptive algorithms. This
performance improvement results from
its judicious use of the knowledge gained
by polling. Furthermore, this algorithm
does not cause system instability.

The stable sender-initiated algorithm
yields as good or better performance
thanthe sender-initiated algorithm with
threshold location policy, with marked
improvement at loads greater than 0.6,
and yields better performance than the
receiver-initiated policy for system loads
less than 0.85. And it does not cause
system instability. While it is not as
good as the stable symmetrically initiat-
ed algorithm, it does not require expen-
sive preemptive task transfers.

Heterogeneous workload. Heteroge-
neous workloads are common in dis-
tributed systems.® Figure 4b plots mean
response time against the number of
load-generating nodes in the system.
All system workload is assumed to ini-
tiate at this subset of nodes, with none
originating at the remaining nodes. A
smaller subset of load-generating nodes
indicates a higher degree of heteroge-
neity.

We assume a system load of 0.85.
Without load distributing, the system
becomes unstable even at low levels of
heterogeneity under this load. While
we do not plot these results, instability
occurs for M/M/1 when the number of
load-generating nodes is less than or
equal to 33.

Among the load-distributing algo-
rithms, Figure 4b shows that the re-
ceiver-initiated algorithm becomes
unstable at a much lower degree of het-
erogeneity than any other algorithm.
The instability occurs because random
polling is unlikely to find a sender when
only a few nodes are senders. The send-
er-initiated algorithm with a threshold
location policy also becomes unstable
at relatively low levels of heterogene-
ity. As fewer nodes receive all the sys-
tem load, they must quickly transfer
tasks. But the senders become over-
whelmed as random polling results in
many wasted polls.

The symmetrically initiated algorithm
also becomes unstable, though at high-
er levels of heterogeneity, because of
ineffective polling. It outperforms the
receiver- and sender-initiated algorithms
because it can transfer tasks at a higher
rate than either. The stable sender-
initiated algorithm remains stable for

higher levels of heterogeneity than
the sender-initiated algorithm with a
threshold location policy because it is
able to poll more effectively. Its even-
tual instability results from the absence
of preemptive transfers, which prevents
senders from transferring existing tasks
even after they learn about receivers.
Thus senders become overwhelmed.

The sender-initiated algorithm with a
random location policy, the simplest
algorithm of all, performs better than
most algorithms at extreme levels of
heterogeneity. By simply transferring
tasks from the load-generating nodes to
randomly selected nodes without any
regard to their status, it essentially bal-
ances the load across all nodes in the
system, thus avoiding instability.

Only the stable symmetrically initiat-
ed algorithm remains stable for all lev-
els of heterogeneity. Interestingly, it
performs better with increasing hetero-
geneity. As heterogeneity increases,
senders rarely change their states and
will generally be in the senders lists at
the nonload-generating nodes. The non-
load-generating nodes will alternate
between the OK and receiver states and
appear in the OK or receivers lists at the
load-generating nodes. With the lists
accurately representing the systemstate,
nodes are often successful in finding
partners.

ver the past decade, the mode
O of computing has shifted from

mainframes to networks of
computers, which are often engineer-
ing workstations. Such a network
promises higher performance, better
reliability, and improved extensibility
over mainframe systems. The total com-
puting capacity of such a network can
be enormous. However, to realize the
performance potential, a good load-
distributing scheme is essential.

We have seen that even the simplest
load-distributing algorithms have a great
deal of potential to improve perfor-
mance. Simply transferring tasks that
arrive at busy nodes to randomly cho-
sen nodes can improve performance
considerably. Performance is improved
still more if potential receiving nodes
are first polled to determine whether
they are suitable as receivers. Another
significant performance benefit can be
gained, with little additional complexi-
ty, by modifying such an algorithm to
poll only the nodes most likely to be
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suitable receivers. Each of these algo-
rithms can be designed to use nonpre-
emptive transfers exclusively. As a re-
sult, all carry relatively low overhead in
software development time, mainte-
nance time, and execution overhead.
Among these algorithms, an algorithm
such as the stable sender-initiated algo-
rithm plotted in Figure 4 provides good
performance over a wide range of con-
ditions for all but the most “extreme”
systems.

By extreme systems we mean systems
that may experience periods during
which a few nodes generate very heavy
workloads. Under such conditions, a
load-distributing algorithm that uses
preemptive transfers may be necessary.
We recommend an algorithm such as
the stable symmetrically initiated algo-
rithm, which can initiate transfers from
either potential sending or potential
receiving nodes, and targets its polls to
nodes most likely to be suitable part-
ners in a transfer. Such an algorithm
provides larger performance improve-
ments—over aconsiderably wider range
of conditions — than any other algo-
rithm discussed in this article. B
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