
. . . . l k v A._ . . "k . I ' - t • o i~.__~

1 LYFT 1034

C
o m p u t m g systems consist
o f a mul t i tude o f ha rdware
and software componen t s
that are b o u n d to fail even-
tually. In many systems,
such c o m p o n e n t fai lures

can lead to unant ic ipated, potenti-
ally disrupt ive fai lure behavior and
to service unavailability. Some sys-
tems are des igned to be f au l t - to l e r -

ant : they e i ther exhibi t a well-
de f ined fai lure behavior when
componen t s fail o r mask compo-
nen t failures to u s e r s I t h a t is, con-
t inue to provide thei r specified
s tandard service despite the occur-
rence o f c o m p o n e n t failures. To
many users t empora ry e r ran t sys-
tem fai lure behav ior or service un-
availability is acceptable. T h e r e is,
however , a g rowing n u m b e r o f user
communi t i e s for w h o m the cost o f
unpredic table , potential ly hazard-
ous failures or system service un-
availability can be very significant.
Examples include the on-l ine trans-
action processing, process control ,
and compute r -based communica -
tions user communi t ies . To mini-
mize losses due to unpred ic tab le
fai lure behavior o r service unavail-
ability, these users rely on fault-
to lerant systems. With the ever-
increasing d e p e n d e n c e placed on
c o m p u t i n g services, the n u m b e r o f
users who will d e m a n d fault-toler-
ance is likely to increase.

T h e task o f des ign ing and un-
de r s t and ing faul t - tolerant distrib-
u ted system archi tectures is notori-
ously difficult: one has to stay in
control o f not only the s tandard
system activities when all compo-
nents are well, but also o f the com-
plex situations which can occur
when some componen t s fail. T h e
difficulty o f this task can be exacer-
bated by the lack o f clear s t ructur-
ing concepts and the use o f a con-
fus ing terminology. Presently, it is
quite c o m m o n to see d i f f e ren t peo-
ple use d i f fe ren t names for the
same concept o r use the same te rm
for d i f fe ren t concepts. For exam-
ple, what one person calls a failure,
a second person calls a fault, and a
third person migh t call an er ror .
Even the te rm "faul t - to lerant" itself

is used ambiguous ly to designate
such distinct system proper t ies as
" the system has a wel l -def ined fail-
u re behavior" and "the system
masks c o m p o n e n t failures."

This article a t tempts to in t roduce
some discipline and o r d e r in un-
de r s t and ing faul t - to lerance issues
in d is t r ibuted system archi tectures .
In the fol lowing section, "Basic
Archi tec tura l Concepts ," a small
n u m b e r o f basic archi tectura l con-
cepts are p roposed . In the sections
ent i t led " H a r d w a r e Archi tec tura l
Issues" and "Software Archi tec tura l
Issues" these concepts are used to
fo rmula te a list o f key ha rdware
and software issues that arise when
des ign ing or examin ing the archi-
tec ture o f faul t - to lerant d is t r ibuted
systems. Since the search for satis-
factory answers to most o f these is-
sues is a mat te r o f cu r r en t research
and exper imen ta t ion , this article
examines various proposals , dis-
cusses thei r relat ive merits, and il-
lustrates thei r use in exist ing com-
mercial faul t - tolerant systems.
Besides be ing useful as a design
guide, this article's list o f issues also
provides a basis for classifying ex-
isting and fu ture faul t - to lerant sys-
tem archi tectures . T h e final section
o f this article commen t s on the ade-
quacy of the p roposed concepts.

Basic Architectural Concepts
To achieve fault tolerance, a dis-
t r ibuted system archi tec ture incor-
porates r e d u n d a n t process ing com-
ponents . Thus , be fore the issues
which under l ie f a u l t - t o l e r a n c e - - o r
r edundancy m a n a g e m e n t - - i n such
systems are discussed, it is necessary
to in t roduce their basic architec-
tural bui ld ing blocks and classify
the failures that these basic blocks
can exper ience .

services, Servers, and the
"Depends" Relation
T h e concepts o f service, server, and
the " d e p e n d s upon" relat ion
a m o n g servers are the three notions
that the au tho r believes p rov ide the
best means to explain c o m p u t i n g
systems archi tectures .

A c o m p u t i n g service specifies a

collection o f opera t ions whose exe-
cut ion can be t r iggered by inputs
f rom service users o r the passage o f
time. Ope ra t i on execut ions may
result in ou tputs to users and in ser-
vice state changes. For example , an
IBM4381 raw processor service
consists o f all the opera t ions de-
f ined in a 4381 processor manual ,
and a DB2 database service consists
o f all the relat ional query and up-
date opera t ions that clients can
make on a database.

T h e opera t ions de f ined by a ser-
lice specification can be p e r f o r m e d

only by a se rver for that service. A
server implemen t s a service wi thout
expos ing to users the in ternal ser-
vice state represen ta t ion and opera-
tion imp lemen ta t ion details. Such
details are h idden f rom users, who
need know only the external ly spec-
ified service behavior . Servers can
be ha rdware o r sof tware imple-
mented . For example , a 4381 raw
processor service is typically imple-
m e n t e d by a ha rdware server; how-
ever, somet imes one can see this
service " emula t ed" by software. A
DB2 service is typically imple-
m e n t e d by software, a l though it is
conceivable to i m p l e m e n t this ser-
vice by a ha rdware database ma-
chine.

Servers i m p l e m e n t their service
by using o the r services which are
i m p l e m e n t e d by o the r servers. A
server u depends on a server r if the
correctness o f u's behav ior depends
on the correctness o f r's behavior .
T h e server u is called a user (or cli-
ent) o f r, while r is called a resource

of u. Resources in tu rn migh t de-
pend on o the r resources to p rov ide
their service, and so on, down to the
atomic resources o f a system, which
one does not wish to analyze any
fur ther . Thus , the user/cl ient and
resource /server names are relative
to the "depends" relat ion: what is a
resource o r server at a certain level
o f abstract ion can be a client o r a
user at ano the r level o f abstraction.
This relat ion is of ten r ep re sen ted
as an acyclic g r aph in which nodes
deno te servers and arrows repre -
sent the "depends" relation. Since it
is cus tomary to r ep re sen t graphi -

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 S 7

2

cally a user u of a resource r above r,
u is said to be at a level of abstrac-
tion "higher" than r [25, 51, 54].

For example, a file server f,
which uses the services provided by
a disk space allocation server s and a
disk I/O' server d to provide file cre-
ation, access, update, and deletion
service, depends on s and d (see Fig-
ure 1). To implement the file ser-
vice, the designer o f f assumes that
the allocation and I/O services pro-
vided by s and d have certain prop-
erties. If the specifications of s and
d imply these properties and f, s and
d are correctly implemented, t h e n f
will behave correctly. All of the
above servers depend on processor
service provided to them by some
underlying operating system when
they execute (or are interpreted). If
they were written in a high-level
language, they also depend on
compilers and link-editors to be
translated correctly in machine lan-
guage. When all software servers
under discussion depend on such
translation and processor services,
it is customary to omit representing
this fact in the "depends" graph.

Note that the static "depends"
relation defined above relates to the
correctness of a service implemen-
tation and differs from the dynamic
"call" (or flow control) and "inter-
prets" (or executes) relations which
can exist at runt ime between serv-
ers situated at different abstraction
levels. For example, the file se rver f
will typically use synchronous,
blocking, "down-calls" to ask the
allocation server s for free storage
and will use asynchronous, non-
blocking, down-calls to ask the I/O
server d to initiate disk I/O in paral-
lel. When the I/O is completed, the
I/O server will typically notify the
file server f by using an "up-call"
[15] which might interrupt f. If a
processor p interprets the programs
of f, s, ;and d these "depend" on p
(although p "executes" them).

A distributed system consists of
software servers which depend on
processor and communication ser-
vices. Processor service is typically
provided concurrently to several
software servers by a multiuser

operating system such as Unix or
MVS. These operating systems in
turn depend on the raw processor
service provided by physical proc-
essors, which in turn depend on
lower-level hardware resources
such as CPUs, memories, I/O con-
trollers, disks, displays, keyboards,
and so on. The communication ser-
vices are implemented by distrib-
uted communication servers which
implement communication proto-
cols such as TCP/IP and SNA by
depending on lower-level hardware
networking services. It is customary

f

: I G U R E 1
An Il lustration Depicting Relations
between File Server f, Disk Space
AlloCation Server $, and Disk I /O
Server d.

to designate the union of processor
and communication service opera-
tions provided to application serv-
ers as a distributed operating system
service.

Failure Classification
A server designed to provide a cer-
tain service is correct if, in response
to inputs, it behaves in a manner
consistent with the service specifica-
tion. This article assumes the speci-
fication prescribes both the server's
response for any initial server state
and input and the real-time interval
within which the response should
occur. By a server's response we
mean any outputs that it has to de-
liver to users as well as any state
transition that it must undergo.

A server failure occurs when the
server does not behave in the man-
ner specified. An omission failure
occurs when a server omits to re-
spond to an input. A timing failure

occurs when the server's response is
functionally correct but un t ime ly - -
the response occurs outside the
real-time interval specified. Timing
failures thus can be either early tim-
ing failures or late t iming failures
(performance failures). A response
failure occurs when the server re-
sponds incorrectly: either the value
of its output is incorrect (value fail-
ure) or the state transition that
takes place is incorrect (state transi-
tion failure). If, after a first omis-
sion to produce output, a server
omits to produce output to subse-
quent inputs until its restart, the
server is said to suffer a crash fail-
ure. Depending on the server state
at restart, one can distinguish be-
tween several kinds of crash failure
behaviors. An amnesia-crash occurs
when the server restarts in a prede-
fined initial state that does not de-
pend on the inputs seen before the
crash. A partial-amnesia-crash oc-
curs when, at restart, some part of
the state is the same as before the
crash while the rest of the state is
reset to a predefined initial state. A
pause-crash occurs when a server
restarts in the state it had before the
crash. A halting-crash occurs when
a crashed server never restarts.
Note that while crashes of stateless
servers, pause-crashes and halting
crash behaviors are subsets of omis-
sion failure behaviors; in general,
partial and total amnesia crash be-
haviors are not a subset of omission
failure behaviors. In what follows
we follow accepted practice and use
the term crash ambiguously to des-
ignate one or more of the above
kinds of crash failure behaviors; the
particular meaning intended
should be clear from the way the
state and the restart operation of
the server(s) under consideration
are defined.

The following are examples of
crash failures: an operating system
crash followed by reboot in a pre-
defined initial system state and a
database server crash followed by
recovery of a database state that
reflects all transactions committed
before the crash. A communication
service that occasionally loses but

58 February 1991]Vo1134, No.2/COMMUNICATIONS OF T H E A C M

3

, , ' • . . . - . " . • - . , •

does not delay messages is an exam-
ple o f a service that suffers omis-
sion failures. An excessive message
transmission or message-process ing
delay due to an over load affect ing a
set o f communica t ion servers is an
example o f a communica t ion per-
f o rmance failure. W h e n some
action is taken by a processor too
soon, pe rhaps because a t imer runs
too fast, it is cons idered an early
t iming failure. A search p r o c e d u r e
that "f inds" a key not inser ted in a
table, and an al terat ion o f a mes-
sage by a communica t ion link sub-
jec t to r a n d o m noise are examples
o f server response failures.

Failure Semantics
W h e n p r o g r a m m i n g recovery ac-
tions for a server failure, it is im-
por t an t to know what fai lure be-
haviors the server is likely to
exhibit . T h e fol lowing example il-
lustrates this point. Cons ider a cli-
en t u which sends a service reques t
sr t h r o u g h a commun ica t i on link l
to a server r. Let d be the m a x i m u m
t ime needed by l to t ranspor t sr and
p be the m a x i m u m t ime needed by r
to receive, process, and reply to sr.

I f the des igner o f u knows that
communica t ion with r via 1 is af-
fected only by o m i s s i o n - - n o t per-
f o r m a n c e - - f a i l u r e s , then if no
reply to s r is received by u within
2(d + p) t ime units, u will never re-
ceive a reply to sr. To handle this, u
migh t resend a new service reques t
sr ' to r, but u will not have to main-
tain any local data that would allow
it to dist inguish be tween answers to
"cur ren t " service requests, such as
s r ' , and answers to "old" service
requests, such as sr. If, on the o the r
hand, the des igner o f u knows that l
and r can suffer p e r f o r m a n c e fail-
ures, i f no reply to sr is received by
u within 2(d + p) t ime units, u will
have to mainta in some local data,
for example a sequence number ,
that will allow it to discard any
"late" answer to sr.

Since the recovery actions in-
voked u p o n detect ion o f a server
fai lure d e p e n d on the likely fai lure
behaviors o f the server, in a fault-
to lerant system one has to e x t e n d the

s tandard specification o f servers to
include, in addi t ion to thei r famil iar
fa i lure- f ree semantics (the set o f
fa i lure- f ree behaviors), the i r likely
fai lure behaviors , o r f a i l u r e s e m a n t i c s

[18]. I f the specification o f a server
s prescribes that the fai lure behav-
iors likely to be observed by s users
should be in class F, it is said that "s
has F fai lure semantics" (a discus-
sion o f what we mean by "likely" is
d e f e r r e d to the section ent i t led
"Choos ing a Fai lure Semantics").
T h e t e rm fai lure "semantics" is
used instead o f fa i lure " m o d e " be-
cause semantics is a l ready a widely
accepted t e rm for character iz ing
behaviors in the absence o f failures,
and the re is 'no logical reason why

such dissimilar words as "seman-
tics" and " m o d e " should be used to
label the same notion: allowable
server behaviors .

For example , i f a communica t ion
service is al lowed to lose messages,
but the probabil i ty that it delays o r
cor rupts messages is negligible, we
say that it has omission fai lure se-
mantics (what "negl igible" means is
discussed in the section "Choos ing a
Fai lure Semantics"). W h e n the ser-
vice is al lowed to lose or delay mes-
sages, but it is unlikely that it cor-
rupts messages, we say that it has
omiss ion /pe r fo rmance fai lure se-
mantics. Similarly, if a processor is
likely to suffer only crash failures
or a m e m o r y is likely to suffer only

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No,2 S g

4

omission failures in response to
read requests (because o f parity
errors) , we say that the processor
and the m e m o r y have crash and
read omission fai lure semantics,
respectively. In general , i f the fail-
u re specification o f a server s allows
s to exhibi t behaviors in the un ion
of two fai lure classes F and G, we
say that s has F/G fa i lure semantics.
Since a server that has F/G fai lure
semantics can expe r i ence more fail-
u re behaviors than a server with F
fai lure semantics, we say that F/G is

.a weaker (or less restrictive) fai lure
semantics than F. Equivalent ly, F is
s t ronger (or m o r e restrictive) than
F/G. W h e n any fai lure behavior is
al lowed for a server s, that is, the
fa i lure semantics specif ied for s is
the weakest possible, we say that s
has arbitrary fa i lure semantics.
Thus , the class o f arbi t rary fai lure
behaviors includes all the fa i lure
classes de f ined previously.

It is the responsibil i ty o f a server
des igner to ensure that it p roper ly
implemen t s a specif ied fai lure se-
mantics. For example , to ensure
that a local a rea ne twork service has
omis s ion /pe r fo rmance fai lure se-
mantics, it is s t andard practice to
use e r ro r -de tec t ing codes that de-
tect with high probabil i ty any mes-
sage cor rup t ion . To ensure that a
local area ne twork has omission
fai lure '.semantics, one typically uses
ne twork access mechan isms that
guaranl:ee b o u n d e d access delays
and real- t ime execut ives that guar-
an tee u p p e r bounds on message
t ransmission and process ing delays
[45]. To i m p l e m e n t a raw ha rdware
processor service with crash fai lure
semantics, one can use dupl icat ion
and m a t c h i n g - - t h a t is, use two
physically i n d e p e n d e n t processors
that execute in parallel the same
sequence o f instruct ions and that
c o m p a r e thei r results af ter each
instruct ion execut ion, so that a
crash occurs when a d i s ag reemen t
be tween processor ou tputs is de-
tected [62].

In genera l , the s t ronger a speci-
fied fai lure semantics is, the more
expens ive and complex it is to build
a server that implemen t s it.

T h e fol lowing examples illus-
trate this genera l rule o f fault- toler-
ant comput ing . A processor that
achieves crash fai lure semantics by
using dupl icat ion and matching, as
discussed in [62], is m o r e expens ive
to build than an e lementa ry proces-
sor which does not use any fo rm of
r e d u n d a n c y to p reven t users f rom
seeing arbi t rary fai lure behaviors .
A s torage system that guaran tees
that an upda te is e i ther comple te ly
p e r f o r m e d or is not p e r f o r m e d at
all when a fai lure occurs is m o r e
expens ive to bui ld than a s torage
system which can restar t in an in-
consistent state because it allows
updates to be partially comple t ed
when failures occur. More design
e f for t is r equ i r ed to build a real-
t ime ope ra t ing system that provides
processor service with crash fai lure
semantics than to build a s tandard
mul t iuser ope ra t i ng system, such as
Unix , which provides processor
service with only c rash /per for -
mance fai lure semantics [45].

Hierarchical Failure Masking
A fai lure behavior can be classified
only with respect to a cer ta in server
specification, at a cer ta in level o f
abstraction. I f a server d e p e n d s on
lower-level servers to correct ly pro-
vide its service, then a fa i lure o f a
cer ta in type at a lower level o f ab-
straction can result in a fa i lure o f a
d i f f e ren t type at the h ighe r level o f
abstraction. For example , cons ider
a value fai lure at the physical trans-
mission layer o f a ne twork which
causes two bits o f a message to be
co r rup ted . I f the data link layer
above the physical layer uses at least
2-bit e r ro r -de tec t ing codes to detect
message co r rup t ion and discards
c o r r u p t e d messages, then this fail-
u re is p ropaga t ed as an omission
fai lure at the data link layer. As
ano the r example , cons ider a clock
affected by a crash fai lure that dis-
plays the same "t ime." I f that clock
is used by a h igher- level c o m m u n i -
cation server that is specif ied to as-
sociate d i f f e ren t t imes tamps with
d i f f e ren t messages it sends at dif-
f e ren t real times, then the c o m m u -
nication server may be classed as

expe r i enc ing an arbi t rary fai lure
[23].

As i l lustrated above, fa i lure
p ropaga t ion a m o n g servers situ-
ated at d i f fe ren t abstract ion levels
o f the " d e p e n d s u p o n " h ie ra rchy
can be a complex p h e n o m e n o n . In
general , i f a server u depends on a
resource r with arbi t rary fai lure
semantics, then u will likely have
arbi t rary fai lure semantics, unless u
has some means to check the cor-
rectness o f the results p rov ided by
r. Since the task o f checking the
correctness o f results p rov ided by
lower-level servers is very cumber -
some, faul t - to lerant systems design-
ers p r e f e r to use (wheneve r possi-
ble) servers with fai lure semantics
s t ronger than a r b i t r a r y - - s u c h as
crash, omission or pe r fo rmance . In
hierarchical systems re lying on such
servers, exception handling provides
a conven ien t way to p ropaga te in-
fo rmat ion about fa i lure detect ions
across abstract ion levels and to
mask low-level fai lures f r o m
higher- level servers [20]. T h e pat-
te rn is as follows. Let i a n d j be two
levels o f abstraction, so that a server
u a t j d e p e n d s on the service imple-
m e n t e d by the lower level i. I f u
down-calls a server r at i, then in-
fo rma t ion about the fai lure o f r
p ropaga tes to u by means o f an ex-
cept ional r e tu rn f r o m r (this can be
a t ime-ou t even t s ignal l ing no
t imely r e tu rn f rom r). I f the server
u at j d e p e n d s on up-calls f rom
lower-level servers at i to imple-
m e n t its service, u needs some
knowledge about the t iming o f such
up-call events to be able to detect
lower-level server failures. For ex-
ample , i f the server u expects an
i n t e r rup t f r o m a sensor server
every per milliseconds, a missing
sensor data upda t e can be de tec ted
by a t imeout . I f the server u a t j can
p rov ide its service despi te the fail-
u re o f r at i we say that u masks r's
failure. Examples o f masking ac-
tions that u can p e r f o r m are down-
calls to other , r e d u n d a n t servers r ' ,
r", . . . at i, o r r epea t ed down-calls
to r i f r is likely to suf fe r t rans ient
omission failures. I f u's masking
a t tempts do not succeed, a consis-

6 0 February 1991/Vo1.34, NO.2/COMMUNIC&TIONS OF THE ACM

5

. . . • • . . ' , . . ,

tent state must be recovered for u
before information about u's failure
is propagated to the next level of ab-
straction, where further masking
attempts can take place. In this way,
information about the failure of a
lower-level server r can either be
hidden from the human users by a
successful masking attempt or can
be propagated to the human users
as a failure of a higher-level service
they requested. The programming
of masking and consistent state re-
covery actions in a client c of u is
usually simpler when c's designer
knows that u does not change its
state when it cannot provide its
standard service. Servers which, for
any initial state and input, either
provide their standard service or
signal an exception without chang-
ing their state (termed "atomic with
respect to exceptions" in [20]) sim-
plify fault-tolerant programming
because they provide their users
with a simple-to-understand omis-
sion failure semantics.

The hierarchical failure-masking
pattern described above can be il-
lustrated by an IBM MVS operat-
ing system example runn ing on a
processor with several CPUs (other
examples of hierarchical masking
can be found in [67]). When an at-
tempt at reading a CPU register
results in a parity check exception
detection, there is an automatic
CPU retry from the last saved CPU
state. If this masking attempt suc-
ceeds, data about the original fail-
ure is logged and the human opera-
tor is notified, but the original
(transient) omission CPU failure
occurrence is masked from the
MVS operating system and the soft-
ware servers above it. Otherwise,
the observed parity exception fol-
lowed by the unsuccessful CPU
retry is reported by an interrupt as
a crash failure of that CPU server to
the MVS system; it, in turn]nay at-
tempt to mask the failure by
reexecuting the program which
caused the CPU register parity ex-
ception (from a previously saved
checkpoint) on an alternate CPU. If
this masking attempt succeeds, the
failure of the first CPU is masked

from the higher levels of abstrac-
t i o n - t h e software servers which
run application programs. If there
are no alternate CPUs or all mask-
ing attempts initiated by the MVS
system fail, a crash failure of the
MVS system occurs.

Group Failure Masking
To ensure that a service remains
available to clients despite server
failures, one can implement the
service by a group of redundant ,
physically independent , servers, so
that if some of these fail, the re-
maining ones provide the service.
We say that a group masks the fail-
ure of a member m whenever the
group (as a whole) responds as
specified to users despite the failure
of m. While hierarchical masking (dis-
cussed in the previous section) re-
quires users to implement any re-
source failure-masking attempts as
exception handling code, with
group masking, individual member
failures are entirely hidden from
users by the group management
mechanisms. The group output is a
function of the outputs of individ-
ual group members. For example,
the group output can be the output
generated by the fastest member of
the group, the output generated by
some distinguished member of the
group, or the result of a majority
vote on group member outputs. We
use the phrase "group g has F fail-
ure semantics" as a shorthand for
"the failures that are likely to be
observable by users of g are in
class F."

A server group able to mask
from its clients any k concurrent
member failures will be termed
k-fault tolerant; when k is 1, the
group is single-fault tolerant, and
when k is greater than 1, the group
is multiple-fault tolerant. For exam-
ple, if the k members of a server
group have crash/performance fail-
ure semantics and the group output
is defined to be the output of the
fastest member, the group can
mask up to k-1 concurrent member
failures and provide crash/perfor-
mance failure semantics to its cli-
ents. Similarly, a primary/standby

group of k servers with crash/
performance failure semantics,
with members ranked as primary,
first backup, second backup
(k-1)th back up, can mask up to k-1
concurrent member failures and
provide crash/performance failure
semantics. A group of 2k + 1 mem-
bers with arbitrary failure seman-
tics whose output is the result of a
majority vote among outputs com-
puted in parallel by all members
can mask a m i n o r i t y i t h a t is, up to
k member failures. When a major-
ity of members fail in an arbitrary
way, the entire group can fail in an
arbitrary way.

Hierarchical and group masking
are two end points of a cont inuum
of failure-masking techniques. In
practice one often sees approaches
that combine elements of both. For
example, a user u of a primary/
backup server group that sends its
service requests directly to the pri-
mary might detect a primary server
failure as a transient service failure
and might explicitly attempt to
mask the failure by resending the
last service request [7]. Even if the
service request were automatically
resent for u by some underlying
group communication mechanism
which matches service request with
replies and automatically detects
missing answers, it is likely that u
contains exception-handling code
to deal with the situation when the
entire primary/backup group fails.

The specific mechanisms needed
for managing redundant server
groups in a way that masks member
failures, and at the same time
makes the group behavior func-
tionally indistinguishable from that
of single servers depend critically
on the failure semantics specified
for group members and the com-
munication services used. The
stronger the failure semantics of
group members and communica-
tion, the simpler and more efficient
the group management mecha-
nisms can be. Conversely, the
weaker the failure semantics of
members and communication, the
more complex and expensive the
group management mechanisms

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 61

6

become.
To illustrate this other general

rule of fault-tolerant computing,
consider a single-fault-tolerant
storage service S. I f the elementary
storage :servers used to build S have
read omission failure semantics
(error-detect ing codes ensure that
the probabili ty of read value fail-
ures caused by bit corruptions is
negligible), one can implement S as
follows: use two identical, physically
independent elementary servers s,
s'; in terpre t each S-write as two
writes on s and s', and in terpre t
each S-read as a read of s, and if the
s-read results in an omission fail-
ure, a read of s'. I f the elementary
storage servers are likely to suffer
both omission and read value fail-
ures, that is, it is possible that in re-
sponse to a read either no value is
re tu rned or the value re turned is
different from the one written,
then three elementary, physically
independen t servers are needed for
implement ing S: Each S-write re-
sults in three writes to all servers,
and each S-read results in three ele-
mentary reads from all servers and
a majority vote on the elementary
results re turned. I f a majority ex-
ists, the result of the S-read is the
majority value read. I f no majority
exists, the S-read results in an omis-
sion failure. The S service imple-
mented by tr iplexing and voting is
not only more complex and expen-
sive than the service S implemented
by duplexing, but is also slower.

Other illustrations of the rule
that group management cost in-
creases ;as the failure semantics of
group members and communica-
tion services becomes weaker are
given in [23] and [26], where fami-
lies of solutions to a group commu-
nication problem are studied under
increasingly weak group member
and communicat ion failure seman-
tics assumptions. Statistical mea-
surements of run-t ime overhead in
practical systems confirm the gen-
eral rule that the cost of group
management mechanisms rises
when the failure semantics of
group members is weak: while the
run-t ime cost of managing server-

pair groups with crash/perfor-
mance failure semantics can some-
times be as low as 15% [11], the cost
of managing groups with arbitrary
failure semantics can be as high as
80% of the total th roughput of a
system [50].

Since it is more expensive to
build servers with s t ronger failure
semantics, but it is cheaper to han-
dle the failure behavior of such
servers at higher levels of abstrac-
tion, a key issue in designing multi-
layered fault-tolerant systems is
how to balance the amounts of fail-
ure detection, recovery, and mask-
ing redundancy used at the various
abstraction levels of a system, in
o rde r to obtain the best possible
overall cost /performance/depend-
ability results. For example, in the
case of the single-fault-tolerant
storage service previously de-
scribed, the combined cost of incor-
porat ing effective error-correct ing
codes in the elementary storage
servers and implement ing a single-
fault-tolerant service by duplexing
such servers is generally lower than
the cost of t r iplexing storage serv-
ers with weaker failure semantics
and using voting. Thus, a small in-
vestment at a lower level of abstrac-
tion for ensuring that lower-level
servers have a s t ronger failure se-
mantics can often contribute to sub-
stantial cost savings and speed im-
provements at higher levels of
abstraction and can result in a lower
overall cost. On the other hand,
deciding to use too much redun-
dancy, especially masking redun-
dancy, at the lower levels of abstrac-
tion of a system might be wasteful
from an overall cost/effectiveness
point of view, since such low-level
redundancy can duplicate the
masking redundancy that higher
levels of abstraction might have to
use to satisfy their own dependabi l -
ity requirements. Similar cost/effec-
tiveness "end-to-end" arguments in
layered implementat ions of fault-
tolerant communicat ion services
have been discussed in [55].

Choosing a Failure Semantics
When is the probabili ty that a

server r suffers failures outside a
given failure class F small enough
to be considered "negligible"? In
other terms, when is it just if ied to
assume that the only "likely" failure
behaviors of r are in class F? The
answer to these questions depends
on the stochastic requirements
placed on the system u of which r is
a part.

The specification of a server r
must consist of not only functional
requirements Sr and Fr that pre-
scribe the server's s tandard and
failure semantics, but also of a sto-
chastic specification. The stochastic
requirements should prescribe a
min imum probabili ty s, that the
s tandard behavior Sr is observed at
runtime, as well as a maximum
probability c, that a (potentially cat-
astrophic) failure different from
the specified failure behavior Fr is
observed. When a higher-level
server u that depends on r is built,
critical design decisions will depend
on S, and F~. Any verification that
the design satisfies u's own s tandard
and failure functional specifications
S,, and F, also relies on Sr and F~
[18]. To check that u satisfies its sto-
chastic specifications, a designer
has to rely on Sr, Cr and stochastic
modeling/simulation/testing tech-
niques [63] to ensure that the prob-
ability of observing S, behaviors at
run-t ime is at least s,, and the prob-
ability of observing unspecified
(potentially catastrophic) behaviors
outside S,, or F , is smaller than c,,. I f
c, is small enough to allow demon-
strating that the design of u meets
the stochastic requirements s,,, c,,
then Fr is a failure semantics that is
appropriate for using r in the system
u. Ifcr is significant enough to make
such a demonstra t ion impossible,
the designer of u has to settle for a
failure semantics F , ' weaker than
F,,, and redesign u by using new
redundancy management tech-
niques that are appropr ia te for F , ' .

To illustrate this point, consider
a single-fault-tolerant storage ser-
vice S specified as follows: the stan-
dard functional specification re-
quires that an S-read following an
S-write re turns the value written;

6 2 February 1991/Vol.34, No.2/COMMUNICATIONS OF THE ACM

7

• . " • . • . . , ~ . . , '

the failure specification states that
S-writes never fail and the only
admissible S-read failures are omis-
sion failures (reading a value dif-
ferent from the one previously
written is considered to have poten-
tially catastrophic consequences);
the stochastic specification requires
that the probability of observing the
specified standard behavior be at
least l - f , where~ = 10 -1°, and the
probability of observing an S-read
value failure be at most c~ = 10 -18.

Assume that, to build S, one de-
cides to use a duplex design based
on two physically independent stor-
age servers s, s' which use 1-bit
error-detecting codes. The specifi-
cation of these elementary storage
servers is as follows: an s-read re-
turns the value previously written
with probability at least 1-f~, where
f, = 10-9; an s-write always suc-
ceeds; the probability that an s-read
returns a value different from the
one written is at most q = 1 0 - 1 9

(less than one in 101° s-read failures
is a value failure); when an s-read
value failure occurs, that is, the
value read V is different from the
value written Vo, V can be any value
among 101° storage word values
that are different from Vo.

A simple stochastic calculation
shows that the duplex design de-
scribed in the previous section satis-
fies the S requirements: the prob-
ability of an S-read omission failure
is of the order of 10 -Is and the
probability of an S-read value fail-
ure is of the order of 10 -19 . Thus,
the omission failure semantics as-
sumed by the duplex S design is
appropriate: to build S one can "ne-
glect" the probability c~= 10 -19
that this failure assumption is vio-
lated at runtime.

If the requirement is to design a
more reliable storage service S' with
a specification as before, except
that the probability of an S'-read
value failure should be at most c~ =
l0 -2°, then the duplex design
based on the omission failure hy-
pothesis for memories with 1-bit
error-detecting codes is no longer
adequate. Indeed, for that design,
the probability c~ = 10 -I9 that an

s-read returns an undetectably cor-
rupted value that is passed to an S'
user is unacceptably high. A simple
stochastic calculation shows that the
triplex design based on three mem-
ories with 1-bit error-detecting
codes with voting described in the
previous section, "Group Failure
Masking," satisfies the S' require-
ments (for simplicity, we assume
perfect voting). Indeed, the triplex
design ensures that the probability
of an S'-read omission failure is of
the order of 10 -18 and the prob-
ability of an S'-read value failure is
of the order of 10 -48. Thus, if the
goal is to build the S' storage sys-
tem, it is no longer appropriate for
a designer to assume that memories
with 1-bit error-detection code have
omission failure semantics. For S'
the probability Cs of observing an
s-read value failure becomes
"nonnegligible" and the designer
must adopt the weaker failure hy-
pothesis that the memories with
1-bit error-correcting codes used
have omission/value failure seman-
tics. Other examples of how to
choose server failure semantics for
highly dependable systems are dis-
cussed in [53].

The remainder of this article as-
sumes that preliminary stochastic
analyses or practical statistics have
helped settle the issue of the ade-
quacy of choosing a certain failure
semantics over another one in the
context of the systems to be de-
scribed.

Hardware
Architectural issues
To provide processor service to
application software servers, an
operating system needs hardware
resources such as CPUs, memory,
I/O controllers, and communica-
tion controllers. Some hardware
architectures package several of
these basic resources into single
replaceable units. Other architec-
tures make each one of these re-
sources a replaceable unit by itself.
A replaceable hardware unit means a
physical unit of failure, replace-
ment and growth-- tha t is, a unit
which fails independently of other

units which can be removed from a
cabinet without affecting other
units, and can be added to a system
to augment its performance, capac-
ity, or availability• The ultimate
goal behind hardware replaceable
units is to enable them to be physi-
cally removed (either because of a
failure or because of preventive
maintenance) and inserted back
into a system without disrupting the
activity of software servers runn ing
at higher levels of abstraction. This
is often too expensive or impossible
to achieve. The next goal is to en-
sure that the service provided by
the hardware servers in each replace-
able unit has a "nice" failure seman-
tics, such as crash or omission, so
that the higher software levels of
abstraction can provide low-over-
head hardware failure masking by
relying on stronger failure seman-
tics. Depending on whether or not a
qualified field engineer is needed
to remove or install a replaceable
unit, it is customary to classify them
intofield replaceable (which need the
intervention of a field engineer)
and customer replaceable (which do
not require field engineer interven-
tion).

What are the Replaceable Units?
How are they Grouped and
Connected?
Depending on the granularity of
the replaceable hardware units of a
processor architecture, it is possible
to distinguish between coarse gran-
ularity architectures and fine gran-
ularity architectures. In a coarse
granularity architecture, some re-
placeable units package together
several elementary hardware serv-
ers such as CPUs, memory, I/O
controllers and communication
controllers. In a fine granularity
architecture, each elementary
hardware server is a replaceable
unit by itself. Some examples of
commercially successful coarse
granularity architectures are Tan-
dem [7], DEC VAX Cluster [38]
and IBM MVS/XRF [32]. Examples
of fine granularity architectures are
Stratus [62] and Sequoia [8]. Other
examples of fault-tolerant architec-

COMMUNICATIONS OF THE ACM/February 1 9 9 1 / V o l . 3 4 , N o . 2 63

8

tures can be found in [2, 44, 58].
The Tandem processor architec-

ture packages CPU, memory, bus
and I/O controller servers into sin-
gle replaceable units as illustrated
in Figure 2. These units can com-
municate among themselves via a
dual bus called Dynabus. Disk, tape,
communication, and terminal con-
troller servers are field replaceable
units by themselves. While in high-
end Tandem systems, CPU/

system uses a combination of hier-
archical and group masking tech-
niques to mask hardware resource
failures from users: if one of the
active hardware resources on the
active path fails, then the operating
system uses the other path to con-
tinue to provide service to the af-
fected users [7]. For example, if a
software server interpreting user
commands uses a disk via a certain
disk controller, and the controller

Dynabus

bus control
CPU

memory

I/0 channel

. ~ ~ ~ disc. contr.

n

H terminal contr. I----I----I

Tandem Processor Architecture
memory units are field replaceable,
in the newer, low-end CLX systems
they became customer replaceable.
The key ideas behind the Tandem
architecture were as follows: 1) en-
sure the'. existence of two disjoint
access paths from any terminal con-
troller to any physical servers
needed for interpret ing user com-
mands, such as CPU, memory, disk,
or tape, and 2) group servers into
failure-masking server pair groups.
The operating system implements
the pair management algorithms
and decides which resources play
an actiw~ role in interpret ing user
commands and which resources
play a backup role. The operating

fails, the operating system masks
the failure by redirecting further
disk accesses through the other disk
controller. The operating system
can also ensure that disk, bus, or
bus controller failures are masked
from higher-level application pro-
cesses. If a CPU/memory replace-
able unit fails, any software server
executing on that unit also fails•
The hardware architecture ensures
that another CPU/memory unit
with access to the resources needed
by the failed servers exists. If a
failed server is a primary in a group
implementing an operating system
service, such as disk I/O, its failure
is automatically masked from
higher-level user servers by the
promotion of its backup [7] to the
role of primary. Since user-level

application servers are generally
not implemented by process pairs,
to avoid the complications associ-
ated with programming periodic
checkpointing [29] the failure of
user application servers is visible to
human users who have to wait until
these servers are restarted.

The duplication of hardware re-
sources needed by software servers
makes the Tandem architecture
single-fault tolerant: any single
hardware replaceable unit failure
can be tolerated, provided no sec-
ond replaceable unit failure occurs.
As reported in [29], the use of
server pair groups to implement
operating system services also en-
ables the masking of a significant
fraction of the operating system
server failures caused by residual
software design faults. Single-fault
tolerance does not mean that it is
impossible to mask two or even
more concurrent hardware re-
placeable unit failures. For exam-
ple, the simultaneous failure of two
disk controller servers attached to
distinct disks can be masked from
higher-level software servers. What
single-fault tolerance means is that
the architecture guarantees mask-
ing of any single hardware replace-
able unit failure but it does not
guarantee that any two concurrent
replaceable unit failures can be
masked. That is, there exist double
failures which cannot be masked.
For example, if two CPU/memory
or disk controller replaceable units
attached to the same disk fail, then
any service that depends upon the
disk also becomes unavailable.
Since the other commercial system
architectures discussed in this arti-
cle are single-fault tolerant, this
point will not be discussed further.

In the VAX Cluster processor
architecture (Figure 3), the field
replaceable units are entire VAXs
(containing CPU, main storage, as
well as LAN controllers), entire
storage controllers (containing mi-
croprocessors, specific device driv-
ers, as well as LAN controllers) or
entire terminal controllers. Two
kinds of local area networks can be
used in a VAX Cluster: a high-

64 February 1991/Vo1.34, N o . 2 / C O M M U N I C A T I O N S O F T H E A C M

9

speed custom-designed Computer
Interconnect (in Figure 3 this is
duplexed and connects several
VAXs and storage controllers) and
a low-speed Ethernet. For a VAX
cluster to be single-fault tolerant,
dual LANs are needed for connect-
ing processors to storage control-
lers. In a manner similar to the
Tandem architecture, the idea is to
ensure the existence of at least two
disjoint access paths from any ter-
minal controller to any physical re-
sources such as CPU, memory, disk,
or tape needed by a software server
which interprets user commands.
Hardware replaceable unit failures
are masked by a combination of
hierarchical and group masking
techniques. Disks can be dually
ported to different storage control-
lers, so that if a controller fails, the
operating system can redirect I/O
to an alternate controller. A com-
puter interconnect permanent fail-
ure is similarly masked at operating
system level by redirecting all re-
maining traffic on the alternate
computer interconnect. If a VAX
fails, then all software servers which
were runn ing on it also fail. Any
other VAX with enough capacity in
the cluster can become active in
runn ing these servers, but they
have to be explicitly restarted, as
was the case with user servers in the
Tandem system. Thus, for both the
Tandem and VAX cluster architec-
tures, single failures of CPU/
memory replaceable units can re-
sult in the failure of higher-level
application servers, and these fail-
ures are visible to human users.

In the IBM XRF architecture
(Figure 4) the replaceable hardware
units are entire high-end IBM
processors. (In general, whenever
previously existing processor archi-
tectures have to be integrated into a
fault-tolerant system based on a
local area network, the granularity
of the resulting architecture is nat-
urally coarse.) The XRF system
provides continuous IMS database
service by using group masking: a
group of two IMS servers runn ing
on two distinct high-end processors
connected by a point-to-point local

"'" I
I Ethernet I

terminal contr.

I
VAX

l

I

I com I w x ' ntlrc°nit t
I tor I contr, contr.

storage

I

I
VAX

Active
System

System
Data
Sets

- ~ Journal ~ .

Surveillance

Backup
System

m

System
Data
Sets

Data bases
(replicated)
I I
I I

= I G U R E 3

VAX Cluster Processor Architecture

. - ' I G U R E 4

IBM XRF Architecture

area network to provide IMS ser-
vice. One of the servers, the pri-
mary, interprets user requests and
has an up-to-date view of the appli-
cation state, while the other server,
the backup, lags behind in its

knowledge of the current applica-
tion state. The backup maintains
this delayed knowledge by reading
a log generated by the primary.
This ar rangement allows hardware
and operating system failures to be
masked to users of the IMS service.

The Stratus processor architec-
ture (Figure 5) was the first to in-
troduce the systematic use of dupli-
cation and matching for
implementing CPU, I/O and com-

C O M M U N I C A T I O N S OF T H E ACM/February 1991/Vol.34, No.2 6 S

10

~~ ~!~ II~I̧~

F CPU
!

memory F

disc. contr.
I

I
Communication

controller
m

!
StrataLINK
controller

bus

StrataLINK LAN

I
iiiii J i

Stratus Processor Architecture

munication controller hardware
servers with crash failure semantics.
Another characteristic of this archi-
tecture is its fine granularity: most
elementary hardware servers are
customer replaceable units with
their own power supply. This can
substantially reduce maintenance
costs and ease horizontal growth. A
third idea is to use group masking
at the hardware level by pairing ele-
mentary hardware servers with
crash or omission failure semantics.
This enables some of the hardware
server failures to be masked from
the higher software levels. For ex-
ample, in order to provide single-
fauh-tolerant processor service to
software servers, two CPU servers
with crash failure semantics (each
of them implemented by a pair of
microprocessors executing in lock-
step that continuously compare
their re,;ults) are organized as a
masking group. Each group mem-
ber receiwes the same sequence of
inputs. In the absence of member
failures the output of either mem-
ber is accepted. If one member suf-

fers a crash failure (detected as a
disagreement among the two mi-
croprocessors which implement it),
the output is taken from the other
member. Similarly, memory banks
with read omission failure seman-
tics (implemented by using two-bit
detection/one-bit correction codes)
can be duplexed to obtain a single-
fauh-tolerant storage service with
read omission failure semantics.
Not all elementary hardware server
failures are masked directly at the
hardware level. For example, disk
failures are hierarchically masked
at the operating system level, since
at the lower hardware levels there is
not enough state information to
enable pure hardware group mask-
ing to take place. A dual bus, called
the Stratabus, enables the replace-
able units of a processor to commu-
nicate among themselves despite
any single bus failure, and a dual
LAN named Stratalink enables
processors to communicate among
themselves despite any single
Stratalink failure. Terminals can
optionally be connected to a proces-
sor by a pair of communication
buses redundant ly connected to
two communication controllers at-

tached to the processor Stratabuses.
This enables the system to mask
single communication controller or
bus failures without requiring the
user to move from one terminal to
another one. A double hardware
failure or an operating system
server failure can cause an operat-
ing system crash. In this case all the
user servers that were using ser-
vices provided by that operating
system also fail.

Figure 6 shows the Sequoia mul-
tiprocessor architecture, another
example of a fine-granularity archi-
tecture. The CPU and I/O control-
ler services are implemented by
paired microprocessors that exe-
cute the same instruction stream in
lockstep and continuously compare
their results, as in the Stratus archi-
tecture. This ensures that the CPU
and I/O controller hardware ser-
vices used by operating system serv-
ers have crash failure semantics.
Memory servers rely on error-
detecting/correcting codes to im-
plement omission failure semantics.
Individual CPU, memory, and I/O
controller servers are packaged as
customer replaceable units. Fault-
tolerant communication among
replaceable units is provided by a
dual system bus. Each bus is com-
posed from a processor segment
that connects CPUs, a memory seg-
ment that connects memory ele-
ments and I/O elements, and a glo-
bal segment which connects the
previously mentioned buses via
master (MI) and slave (SI) inter-
faces. Both the master and slave
interfaces provide electrical isola-
tion for the adjacent bus segments
for error confinement reasons. The
operating system uses hierarchical
masking techniques to hide any sin-
gle hardware server failure from
the software processes that depend
upon it. For example, when a CPU
server crashes, the operating sys-
tem automatically attempts to re-
start the software server that was
executed by the failed CPU on an-
other CPU server by using a previ-
ously saved checkpoint of the
server state. To ensure that server
state updates are atomic with re-

66 February 1991/Vo1.34, No.2/COMMUNICATIONS OF THE ACM

11

spect to CPU crashes, a shadowing
technique is adopted. This requires
that the operating system maintains
two copies of the state of a software
server on two different memory
units. To mask memory read omis-
sion failures, all writable data pages
are duplicated on different physical
memory elements, and all read or
executable-only pages are also
stored on disks. If a memory ele-
ment fails, the data page which
could not be read is recovered ei-
ther from another memory element
or a disk, depending on whether it
was a writable or only a readable or
executable page. The operating
system can also mask single disk
failures by duplicating disk pages
on dual-ported disks attached to
different I/O controllers. In this
way, the operating system can mask
any single hardware replaceable
unit failure as long as at least two
CPU, two I /0 controller, and two
memory servers work correctly and
all failures that occur are fully re-
covered before a second failure
occurs. When the number of cor-
rectly working hardware servers

: I G U R E 6

sequoia Multiprocessor
Architecture

drops below these thresholds, the
operating system can continue to
provide processor service with
crash/performance failure seman-
tics as long as at least one CPU, one

I/O controller and one memory
server continue to work correctly.
If multiple concurrent failures
occur or CPU, memory or I/O con-
troller service is no longer available
because all CPU, memory, or I/O
controllers have failed, the operat-
ing system, and hence all higher-
level software servers will fail. Pro-
cessor service failures can of course
also occur because of residual de-
sign faults in the operating system.

What Failure Semantics is
Specified for Hardware Servers?
Developers of operating system
software typically assume that CPU,
I/O and communication controller
servers have crash failure seman-
tics, that memory elements have
read omission failure semantics,
that disks have seek performance
failure semantics and read/write
omission failure semantics, and that
communication buses and commu-
nication lines have omission or
omission/performance failure se-
mantics. All previously mentioned
systems make these assumptions.

Such strong hardware failure se-
mantics enable system designers to
use known hierarchical and group
masking techniques to mask hard-
ware server failures, such as storage
duplexing to mask loss of data rep-
licated on two-memory or disk serv-
ers with read omission failure se-
mantics [42] or virtual-circuits to
mask omission or performance
communication failures by using
time-outs, sequence numbers, ac-
knowledgements and retries [61].
Moreover, when masking is not
possible, strong hardware server
failure semantics such as omission
and crash enable system program-
mers to ensure that the operating
system and communication services
they implement have a strong fail-
ure semantics. For example, CPU
and disk controllers with crash fail-
ure semantics and disks with read
omission failure semantics enable
the implementation of a higher-
level stable storage service [18, 42]
with write operations that are
atomic with respect to crashes: any
stable storage write interrupted by
a crash is either carried out to com-
pletion or is not performed at all.
Such stable storage service can then
be used by other higher-level serv-
ers to implement atomic transac-

IcPui I
I t

j

Fq

I memory
element

F

I CPU I i I ' I cPu ,i J
I t processor

local bus

,-I :;::resto
J global bus L ~

global bus

I
i I/0 processor
I
I

I/Oprocessor
I
I

slave
interfaces to
global bus

memory local bus

I memory j . . .
element I

I i I O

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 67

12

tions by relying on known database
recover), techniques such as write-
ahead logging and two-phase com-
mit [28]. Similarly, lower-level data-
gram communicat ion services with
omission/performance failure se-
mantics enable the implementat ion
of higher-level virtual-circuits with
crash faJilure semantics [61].

Beyond these restrictive hypoth-
eses about the failure semantics of
the basic hardware replaceable
units, tile complexity and cost of
detecting, diagnosing, and recover-
ing from elementary hardware
server tailures increases to levels
that many regard as unacceptable
for most commercial applications in
on-line transaction processing and
telecommunications. Examples of
processor architectures designed
for highly critical application areas
where, because of ultra-high sto-
chastic dependabil i ty requirements
designers had to assume that their
e lementary hardware servers have
arbi t rary failure semantics, can be
found in [30, 31, 66].

How is the Specified Hardware
Failure Semantics Implemented?
In o rde r to detect failures in buses,
communicat ion lines, memory and
disk servers, all the previously dis-
cussed architectures use error-
detecting codes. This hardware
failure detection technique is well
understood. The re is a rich litera-
ture specializing in error-detect ing
codes and this subject seems to have
reached a fairly mature state [52,
65]. To detect failures in hardware
servers, ;such as CPU, I/O and com-
munication controllers, systems
such as IBM, VAX and high-end
Tandem use error-detect ing codes
while newer systems such as Stra-
tus, Sequoia, Tandem CLX and
DEC VAXft 3000 use lockstep du-
plication with comparison.

While error-detect ing codes
seem to remain the choice method
for detect ing failures in storage and
communicat ion hardware servers
such as memories, disks, buses and
communicat ion lines, they seem to
give way to duplication and match-
ing in complex circuits, such as

CPUs and device and communica-
tion controllers based on off-the-
shelf microprocessors. One reason
for this t rend is that duplication
and matching seems to provide a
better approximat ion of crash fail-
ure semantics for these complex
servers than error-detect ing codes.
Indeed, while for CPUs and I/O
controllers based on error-detect-
ing codes there is a possibility that
the data written to a bus or storage
dur ing the last "few" cycles before a
failure detection is erroneous, du-
plication and matching by using
self-checking [47] compara tor cir-
cuits virtually eliminates the possi-
bility of such damage. The cost for
this excellent failure detection ca-
pability is that two physical hard-
ware servers plus the comparison
logic are needed instead of only one
elementary server augmented with
error-detect ing circuitry.

Besides providing a better guar-
antee of crash failure semantics for
complex servers such as CPU and
I/O controllers, duplication and
matching has a number of other
attractive characteristics. The ab-
sence of error-detect ing circuitry in
e lementary physical servers reduces
their complexity, leading to in-
creased reliability and reduced de-
sign and testing costs. The elimina-
tion of the error-detect ing circuitry
also makes these servers faster.
Another reason for using lockstep
duplication is the availability of
cheap fast microprocessors which
do not have much error-detect ion
circuitry. Pairing these off-the-shelf
components and adding a compar-
ator can be cheaper than develop-
ing propr ie tary processor designs
with elaborate error-detect ing ca-
pabilities. Moreover, pair ing off-
the-shelf processors enables com-
puter system manufacturers to
"ride the wave" of rapid improve-
ments in chip speed and update
their product lines prompt ly as new
chips become available on the mar-
ket. One last advantage of lockstep
duplication worth ment ioning is
improved software quality growth.
When any elementary hardware
server failure is prompt ly detected

as a disagreement before any data
damage occurs, it is easier to deter-
mine whether failures were caused
by software design faults or by
physical faults. Indeed, if an oper-
ating system failure occurs and no
disagreement between hardware
processors is observed, then with
high probability, the failure is due
to a software design fault. This is in
sharp contrast to what occurs in
more tradit ional processor archi-
tectures based on error-correct ing
codes. Since in such architectures
hardware failures in CPU and I/O
servers can result in undetectable
damage to data due to latencies in
failure detection, a large class of
system failures attr ibutable to the
software are in fact caused by the
hardware. The knowledge that
hardware failures can, with signifi-
cant probability, "masquerade" as
software design faults can create
serious difficulties in the p rope r
diagnosis of system failures. In this
case, opera t ing system developers
may blame hardware malfunction-
ing for system failures they cannot
diagnose, and hardware developers
may blame the opera t ing system for
failures where the hardware appar-
ently has worked properly.

HOW are Hardware Server Failures
MaSked?
It is possible to implement the re-
dundancy management mecha-
nisms which mask hardware server
failures directly in hardware, for
example by using group masking
techniques such as t r iplexing physi-
cal hardware servers with arbi t rary
failure semantics and voting [31] or
duplexing hardware servers with
crash failure semantics (which in
their turn can be implemented by
server pairs based on duplication
and matching [62]). This allows sin-
gle processor failures to be masked
from higher software levels of ab-
straction and increases the mean
time between failures for the raw
processor service. Note, however,
that hardware tr iplexing or
quadruplex ing does not eliminate
the need for handling, at applica-
tion software levels, processor ser-

6 8 February 1991/Vol.34, No.2/COMMUNICATIONS OF THE ACM

13

vice failures in the same way as if
this service were implemented by a
nonredundan t processor. Although
such failures will occur less fre-
quently, they will occur and must be
handled. For example, if the trans-
actions implemented at a database
service level must be atomic with
respect to processor service crashes,
the code for implementing the
transaction failure semantics will
have to be written, possibly by rely-
ing on logging and recovery facili-
ties provided by the underlying
operating system, whether the pro-
cessor service is implemented by
using a simple CPU or a quadru-
plex CPU arrangement. Note also
that hardware triplexing or
quadruplexing is of no help in pro-
viding fault tolerance at the operat-
ing system and application levels.

Several systems attempt to mask
hardware server failures at the oper-
ating system level, so that application
software servers can continue to
run without interruption. For ex-
ample, the Sequoia and MVS oper-
ating systems use a combination of
hierarchical and group masking
methods to hide single CPU fail-
ures from higher-level software
servers by restarting a server that
ran on the failed CPU in a manner
transparent to that server. Similar
masking of CPU bus or disk con-
troller failures is done by the oper-
ating systems of Tandem, VAX
cluster and the IBM XRF architec-
tures. Although the choice of mask-
ing hardware server failures at the
operating system level can provide
tolerance not only to hardware, but
also to operating system server fail-
ures [29], it does not solve the prob-
lem of how to ensure fault toler-
ance of application services.

The use ot redundant applica-
tion software server groups allows
both hardware, operating system
and software server failures to be
masked at the highest level of ab-
straction: the application level. The
idea is to implement any applica-
tion service that must be available to
users despite hardware or software
failures by a group of redundant
software servers which run on dis-

tinct hardware processor hosts and
maintain redundant information
about the global service state. When
a group member fails, either be-
cause of a lower-level hardware or
software service failure or because
of a residual design fault in its pro-
gram, the surviving group mem-
bers have enough service state in-
formation to continue to provide
the service. Although the approach
of masking server failures at the
highest, application level is the most
"powerful," in that it can mask both
hardware and software server fail-
ures, among the successful com-
mercial systems discussed previ-
ously, only Tandem and IBM XRF
make use of redundant software
server groups.

Sof tware
Architectural Issues
Software servers are analogous to
hardware replaceable units. These
are the basic units of failure, re-
placement, and growth of software.
As with hardware replaceable units,
the ultimate goal is to enable soft-
ware servers to be removed from a
system (due to failures or up-
grades), without disrupting the ac-
tivity of the users. When this is im-
possible to achieve, either because
of cost and complexity or because
the number of active servers pro-
viding a service drops below some
threshold, the next goal is to ensure
that software servers have a "nice"
failure semantics, such as crash,
omission or performance. This will
allow their (possibly human) users
to recover from failures by relying
on simple masking protocols such
as "log in again" or "wait for some
time and try again." Because of the
similarity in goals, the problems
that have to be dealt with at the
software architecture level are simi-
lar to the ones discussed in the sec-
tion entitled "Hardware Architec-
tural Issues." The methods for
solving these problems, however,
can be quite different in their im-
plementation details.

What Failure Semantics is
Specified for Software Servers?
Depending on whether the state of

a service is persistent or not, one
might require the application serv-
ers that implement the service to
provide atomic transaction failure
semantics--or simply amnesia or
partial-amnesia crash failure se-
mantics. An atomic transaction,
which is a sequence of operations
on persistent data usually stored in
a database, must change a consis-
tent database state into another
consistent database state or must
not change the database state at all
when a lower-level processor ser-
vice crash occurs [28, 42]. For soft-
ware servers, such as low-level I/O
and communication controllers
which typically do not have persis-
tent state, one is usually content
with amnesia crash failure seman-
tics: after a failure these servers
must properly reinitialize them-
selves and accept new service re-
quests.

To implement atomic transaction
or simply crash failure semantics,
the commercial systems described
previously assume that the pro-
grams that implement the opera-
tions exported by software servers

a r e totally, or at least partially, cor-
rect [20]. A program is totally cor-
rect if it behaves as specified in re-
sponse to any input as long as the
services it uses do not fail. A par-
tially correct program may suffer a
crash or a performance failure for
certain inputs even when the ser-
vices it uses do not fail. In this way,
if a server delivers a result or per-
forms a state transition in response
to a service request, that result/state
transition is correct, although the
result may not be timely or even
delivered at all. Partial correctness
as a basic hypothesis about the fail-
ure semantics of software servers is
appealing for several reasons. First,
it is more easily achievable than
total correctness. Second, it seems
to be achievable in practice: after
undergoing extensive reviews and
tests, the software available com-
mercially occasionally crashes or is
slow, but does not output had re-
sults. Third, a partially correct
server--which by definition has
crash/performance failure seman-

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 69

14

M

tics when the lower-level software
and hardware services it depends
upon do not fa i l - -mainta ins its
crash/performance failure seman-
tics when these lower-level services
do fail, provided the lower-level ser-
vice failures are crash, omission or
performance failures. Thus, if at all
levels of abstraction of a system,
such as hardware, operat ing sys-
tem, and applications, all servers
have crash~omission~performance
failure semantics, the system will
have crash/omission/performance
failure semantics as a whole. This
yields a s imple-to-understand,
homogeneous quality assurance
goal for all abstraction levels: makes
the hardware have crash or omis-
sion failure semantics, and makes
the software be totally, or at least
partially, correct.

Some special-purpose systems do
not assume that their component
servers have "nice" failure seman-
tics, such as crash~omission~perfor-
mance [4, 30, 31, 66]. By assuming
that group management services
such as clock synchronization,
atomic broadcast, and voting work
correctly, such systems can mask a
minority of server failures in appli-
cation groups built from members
with arbi trary failure semantics.
Depending on the assumptions
made about the faults which cause
the failures, the systems can be clas-
sified in two classes: those that at-
tempt to tolerate only physical
faults [30, 31, 66], and those that
a t tempt to also tolerate design
faults [4]. The first class of system
replicate,; the application servers on
different, physically independen t
processors. Since physical faults
tend to occur independent ly in in-
dependen t processors, such faults
are likely to cause minority applica-
tion group failures. Experience
with the systems [30, 31, 66] con-
firms that these can effectively
mask the consequences of physical
faults. Recent work on diverse soft-
ware design [3] pursues the goal of
producing a diverse software de-
sign methodology that would en-
sure that groups of application
servers runn ing diverse programs

do not suffer majority failures de-
spite the existence of residual de-
sign faults in these programs. Per-
haps because there are no accepted
techniques to estimate with confi-
dence the increase in reliability that
results from the use of diverse pro-
g ramming with voting, the work on
design diversity has generated con-
siderable controversy to date [3,
35}.

How is the Specified Software
Failure Semantics Implemented?
The problems related to the imple-
mentat ion of atomic transactions on
persistent data despite processors
with crash/performance failure
semantics, disks with omission fail-
ure semantics, and communicat ion
services with omission/performance
failure semantics have been investi-
gated intensively for more than 20
years by researchers in the area of
database systems. Monographs and
books, such as [9] and [28] treat the
subject in great detail. To separate
concerns, these monographs as-
stone that the programs used in
implement ing transaction atomicity
are at least partially correct. The
problems that need to be solved in
implement ing totally or partially
correct programs have been the
object of intensive study for the last
four decades in the software engi-
neering community. Over the last
30 years, several ideas have
emerged that have proven effective
in helping software designers pre-
vent the introduct ion of design
faults in programs. Among these,
the most widely accepted are: pur-
suit of simplicity and clarity dur ing
design, hierarchical design meth-
ods based on information hiding
and abstract data types, r igorous .
design specification and verifica-
tion techniques, systematic identifi-
cation, detection, and handl ing of
all exception occurrences, and use
of modern inspection and testing
methods. None of the papers de-
scribing the commercial systems
discussed earl ier deal with this
issue; however, it is reasonable to
assume that all have extensively
used modern software engineer ing

methods when at tempting to en-
sure that their software is totally, or
at least partially, correct.

Among the systems discussed,
most provide concurrency control
and recovery suppor t for imple-
menting application servers with
atomic transaction failure seman-
tics. The goal is to ensure that con-
current ly executing transactions
are ser ia l izable-- that is, their exe-
cution is equivalent to a serial exe-
cution, and that sequences of
changes made to stable storage are
ei ther pe r fo rmed to complet ion or
aborted. These servers rely on tech-
niques such as locking, logging,
disk mirror ing, and atomic commit
[9, 28, 42].

HOW are Software Server Failures
Masked?
All of the commercial systems dis-
cussed earl ier use hierarchical
masking techniques to mask hard-
ware and certain software server
failures. While such techniques can
be effective in masking crash, omis-
sion and per formance server fail-
ures as long as the under lying pro-
cessor service needed by these
servers does not fail, one needs a
group masking technique to toler-
ate software server failures caused
by failures of the under ly ing pro-
cessor service.

Software group masking tech-
niques based on members with
crash/performance failure seman-
tics are used by two of the commer-
cially successful systems discussed
previously: Tandem and IBM XRF.
In Tandem systems, processes pairs
are used for implement ing fault-
tolerant basic opera t ing system ser-
vices such as disk I/O service, spool
service, or logging/commit service,
while in the XRF system pairs of
pr imary/backup database and com-
munication servers are used to im-
plement fault- tolerant database and
communicat ion services.

A prerequisite for the implemen-
tation of a service by a software
server group capable of masking
processor service failures is the ex-
istence of muhiple host processors
with access to the physical resources

7 0 February 1991/Vol.34, No.2/COMMUNICATIONS OF THE ACM

15

used by that service. For example, if
a disk containing a database can be
accessed from four different pro-
cessors, then all four processors can
host database servers for that data-
base service. A four-member data-
base server group can then be orga-
nized to mask up to three
concurrent processor failures.
More generally, replication of the
resources needed by a service is a
prerequisite for making that service
available despite individual re-
source failures. For example, the
use of at least two disks with omis-
sion failure semantics to store a
database enables one to implement
a database service that can mask
any single disk failure.

The use of software server
groups raises a number of novel is-
sues that are not well understood:
First, how should group members
runn ing on different processors
maintain consistency of their local
states in the presence of member
failures, member joins, and com-
munication failures? Second, how
should server groups communi-
cate? Third, how is it automatically
ensured that the required number
of members is maintained for
server groups despite operating
system, server, and communication
failures?

The difficulty of solving these
problems might well be one of the
main reasons why software server
groups are not more widespread in
commercial applications. A second
reason might be that, while for a
failed elementary hardware server
such as a CPU or a memory bank
the repair can take hours or even
days; for a software server that
crashes, the "repair," (that is, the
restart) can often only take min-
utes. Thus, since elementary hard-
ware server failures can heavily
contribute toward the user-visible
service downtime, most manufac-
turers prefer to attack this problem
first. A third reason why software
server groups are unpopular is the
additional complexity associated
with the group management mech-
anisms and their inherent run-time
overhead. A fourth reason might

be that it is not a priori clear
whether low overhead groups of
members with crash/performance
failure semantics can provide effec-
tive tolerance to residual software
design faults. Recent statistics [29]
show that software server group
management mechanism designed
for servers with crash/performance
failure semantics [7] can be realis-
tically effective in masking server
failures caused by hardware faults
as well as residual design faults left
in production-quality software after
extensive reviews and testing. An
example reported in [29], which is
based on a sample set of 2000 Tan-
dem systems representing over 10
million system hours, indicates that
for the primary/backup spooling
process group used in Tandem's
distributed operating system, only
0.7% of the failures affecting the
group were double server failures,
that is, group failures. The remain-
ing failures (99.3%) detected in the
group were single member failures
that left the other member, and
hence, the group, runn ing cor-
rectly. A plausible explanation for
this phenomenon is that most phys-
ical faults affecting physically inde-
pendent processors occur indepen-
dently, and hence cause any
affected software servers to crash
independently. Similarly, most re-
sidual software design faults mani-
fest themselves intermittently in
rare exceptional conditions that
result in t ime-dependent synchro-
nization errors or in a slow accumu-
lation of resources acquired for
temporary use and never released.
Such errors and residues seem to
accumulate at different rates in
group members playing different
roles, such as primary and backup,
and eventually lead individual
group members to crash at differ-
ent times.

How are the local states of group
members synchronized? For any ser-
vice, the server group synchronization
policy prescribes the degree of local
state synchronization that must
exist among the servers implement-
ing the service.

Close synchronization (also called
masking or active redundancy) pre-
scribes that local member states are
closely synchronized to each other
by letting all members execute all
service requests in parallel and go
through the same sequence of state
transitions. The group output de-
pends on the failure semantics as-
sumed for its members. If group
members can fail in arbitrary ways,
majority voting is the most common
method used: a group answer is
output only if a majority of the
members agree. This group organi-
zation masks minority member fail-
ures at the price- of slowing down
the group output time to the time
needed for a majority of members
to compute agreeing answers and
for the voting process to take place.
If a majority of members fail con-
currently, then the group output
can be incorrect. If group members
have crash/omission/performance
failure semantics, any output com-
puted by a member can be sent to
users. If all members send their
outputs in parallel, the group out-
put can be understood as being the
output computed by the set of fast-
est members. The advantage of this
output-sending technique is that a
group will perform correctly as
long as at least one group member
stays correct. The drawback is a
high communication overhead. To
reduce this overhead, group mem-
bers can be ranked with respect to
communication, or c-ranked, and
output sending can be restricted to
the highest functioning c-ranked
member. The cost is an increased
output delay when the highest
c-ranked member fails, due to the
need to detect its failure and agree
on a new c-ranking among surviv-
ing members. Closely synchronized
groups of software servers are used
by all systems that attempt to toler-
ate arbitrary server failures, such as
[30, 31, 66]. Examples of closely
synchronized groups of members
with crash/performance failure
semantics are described in [17, 24].
A number of rules for transform-
ing non-fault-tolerant services im-
plemented by nonredundan t appli-

COMMUNICATIONS OF THE ACM/February 1991/Vo1.34, No.2 71

16

cation programs into fault-tolerant
services implemented by closely
synchronized server groups have
been proposed in [40] and are dis-
cussed fur ther in [57].

In contrast to close synchroniza-
tion, loose synchronization (also called
dynamic or standby redundancy)
ranks the group members with re-
spect to how closely they are syn-
chronized to the current service
state, which can be unders tood as
being the application of all opera-
tions requested by clients since the
service !initialization to the initial
service state. This is te rmed s-rank-
ing to distinguish it from the
c-ranking introduced earlier. Loose
synchronization requires that only
the highest s-ranking group
member - -u sua l l y called the pri-
mary se rver - -process service re-
quests and record the current ser-
vice state as its local state. Thus, a
prereqmsite for using this form of
group synchronization is that
group members have crash or
crash/performance failure seman-
tics. The highest ranking member is
also usually the one who sends the
group output to users (since it is the
first to know them) so the c- and
s-rankings often coincide. One or
more backup servers with lower
s-ranks can log service requests and
can periodically receive state check-
points from the primary. In such an
arrangement , the local state of a
backup ,~erver lags behind the state
of the primary: the backup state
does not reflect the execution of
some recent service requests by the
pr imary server. I f the pr imary fails,
the highest s-ranking backup server
can recover the state existing before
the pr imary failure by reexecuting
the service requests logged since
the last state checkpoint obtained
from the primary. A part icular case
of loose synchronization is the situ-
ation when the group size is o n e - -
that is, there is only a pr imary
server with no active backups. In
such a case, the server does the
checkpointing and logging. After a
failure, the new pr imary reads the
last state checkpoint and recovers a
state that existed before the failure

by executing the logged service re-
quests. In this way, the failure can
be masked to users, who only expe-
rience a delay in getting their re-
sponses. Variants of this check-
pointing rollback masking
technique have also been developed
for the case when the pr imary
server is implemented by a set of
distr ibuted processes which check-
point and log service requests inde-
pendently [33, 36, 59].

For groups composed of servers
with per formance failure seman-
tics, the main advantage of loose
over close synchronization is that
only pr imary servers make full use
of their share of the required repli-
cated service resources, while back-
ups make only a reduced use. This
allows more servers to coexist for a
given amount of comput ing power.
The main drawback is that the de-
lays seen by clients when group
members fail are longer. I f we call
the maximum sequence of service
requests processed by a pr imary
between successive state check-
points the pr imary/backup process-
ing lag, then the worst case delay in
answering a client request after a
pr imary failure will not only be
composed of the time needed to
detect and reach agreement about
the pr imary failure, but also of the
time needed by the new pr imary to
absorb the pr imary/backup pro-
cessing lag. For on-line transaction
processing environments, such de-
lays are considered tolerable. For
real-time applications, if the re-
sponse time required is smaller
than the time needed to detect a
member failure and to absorb the
pr imary/backup processing lag,
close synchronization has to be
used. Examples of loosely synchro-
nized server groups are discussed
in [7, 10, 11, 24, 32, 49].

Close and loose synchronization
as described above are jus t two end
points of a cont inuum of synchro-
nization policies. One can imagine
intermediate synchronization poli-
cies which would share the advan-
tages and drawbacks of these end
points to various degrees.

How many members should a group
have? For any server group, the
replication policy prescribes the
number of members the group is
expected to have. The more servers
in a group, the greater its availabil-
ity and capacity for servicing service
requests in parallel. On the other
hand, the more members a group
has, the higher the cost for commu-
nication and synchronization
among group members. Given a
certain required service availability,
one can use stochastic model ing
and simulation methods for deter-
mining an op t imum number of
members by taking into account the
individual server failure rates, the
server failure semantics, the service
request arrival rates, and the mes-
sage communicat ion costs.

Note that the degree of software
server redundancy necessary for
providing a certain level of service
availability influences the host pro-
cessor redundancy degree for that
service. For example, if stochastic
modeling/simulation studies show
that to achieve a certain radar sur-
veillance and tracking service avail-
ability level, it is necessary to use
three physically independen t and
closely synchronized servers, then
three host processors are necessary
for running these servers in parallel
as shown in Figure 7.

What group communication proto-
cols should be used? Communicat ion
among server groups is different
from the point- to-point communi-
cation services offered by tradi-
tional protocols such as SNA and
TCP/IP. Moreover, if the group
state is replicated at several mem-
bers, these members need to up-
date the replicas by using special
group protocols that ensure replica
consistency in the presence of pro-
cess and communicat ion failures.
There already exist a significant
number of protocols that have been
proposed for group communica-
tion [I, 5, 7, 10-14, 22, 23, 27, 34,
37, 39, 41, 48, 49, 56, 60, 64]. This
area of research is presently one of
the most active. The large variety of
approaches proposed reflects the

7 2 February 1991/Vol.34, N o . 2 / C O M M U N I C A T I O N S OF T H E A C M

17

fact that the properties required
from group communication proto-
cols depend not only on protocol
goals and the failure semantics of
group members, but also on the
failure semantics of the lower-level
communication services used.

Related to communication is the
issue of naming: what rules are used
by clients and servers to define ser-
vice names, and how are such
names translated into lower-level
message routing information? In
fault-tolerant systems, where serv-
ers can move from one host proces-
sor to another one, it is convenient
not to require clients to know the
location of the servers that provide
a service. The goal of such location-
transparent naming services is to
mask from clients the effects of in-
dividual server failures in a group.
Several examples of fault-tolerant
location-transparent name services
that have been implemented in real
systems can be found in [12, 24,
38]. A recent survey of the issues
involved in naming can be found in
[16].

= I G U R E

How to enforce group availability
policies automatically? The syn-
chronization and replication poli-
cies defined for a service imple-
mented by a server group
constitute the availability policy for
that service (or group).

One possible approach to enforc-
ing a certain group availability pol-
icy, illustrated in [7] is to implement
in each group member mechanisms
for reaching agreement on the c-
and s-rankings in the group, as well
as mechanisms for detecting mem-
ber failures and procedures for
handling new member joins and
promotions to higher s-ranks (when
the group is loosely synchronized).
The drawback of this approach is
that it results in substantial code
duplication and lack of modularity,
since the group management
mechanisms for all services which
must be made highly available are
basically the same.

An alternative approach,
adopted in a recent distributed
fault-tolerant system built for air

[radar, i i rad. ar2 J I radar3 I

processoq I I processor2 I I processor3

LAN

An Illustration Depicting Three Physically Independent, Closely Synchro-
nized Servers and Three Host Processors which are Necessary for Run-
ning the Servers In Parallel.

I service availability I
manager

group1 group2 grouP3

I : I G U R E |

Service Availability Manager Enforces Server Group Availability Policy
withOut Human Intervention.

traffic control [24], requires group
members to implement only the
application-specific get-state and
checkpoint (in case the group is
s-ranked) procedures needed for
local member state synchronization
at join and checkpoint times. The
tasks of detecting server failures,
coordinating promotions and en-
forcing replication policies are en-
trusted to a service availability man-
agement service. Since the
availability in the presence of fail-
ures of other distributed system
services becomes dependent on the
availability of this service, availabil-
ity management must itself be im-
plemented by a group of servers
which we call service availability man-
agers. The following discussion as-
sumes that these servers have

crash/performance failure seman-
tics.

The objective is to ensure that
for each service s, which the system
operator enables the system to pro-
vide, the server group availability
policy defined for s is effectively
enforced without any human inter-
vention, Figure 8, in which an
arrow means "enforces the avail-
ability policy of" instead of "de-
pends on," attempts to illustrate
this goal. To simplify our presenta-
tion of an availability management
service we assume that for each ser-
vice s all servers must run on dis-
tinct processors and they can be
started in any order (i.e., issues re-
lated to the existence of s-rankings
in some groups are ignored). It is
assumed that the hosts designated

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 7 3

18

for the various services have
e n o u g h c o m p u t i n g power to sup-
por t all these services; issues re la ted
to load shed and load balancing will
not be ,discussed.

Let r(s) be the deg ree o f server
repl icat ion for s; h(s) deno te the set
o f host processors for s; and mem-
bers deno te the processor membership
[19] - - t ha t is, the set o f correct ly
func t ion ing processors that agree
to c o m m u n i c a t e a m o n g themselves
in o r d e r to collectively p rov ide to
clients all services that are enabled
in the system. T h e goal o f the ser-
vice availability m a n a g e m e n t ser-
vice is to ensure that for each en-
abled service s the re are min(Ih(s) n
membersl,r(s)) servers. T h a t is, there
are r(s) servers as long as the n u m -
ber o f correct ly func t ion ing hosts is
g rea te r o r equal to r(s) and, when
the n u m b e r o f correct ly funct ion-
ing hosts d rops below r(s), there are
as many servers as correct ly func-
t ioning hosts.

T h e state o f each server availabil-
ity m a n a g e r consists o f the set mem-
bers of processors that funct ion cor-
rectly in the system, the set S o f
services enabled in the system, the
set P o f servers func t ion ing cor-
rectly, and two mapp ings (or tables)
that relate these sets: a m a p p i n g
servers: members ~ set-of-P that, for
each func t ion ing processor m
members, gives the set servers(m) of
servers r u n n i n g on m, and a map-
p ing service: P--~ S that, for each
server p E P, gives the service im-
p l e m e n t e d by p. T h e state o f a
server g r o u p availability m a n a g e r
can be changed by the fol lowing
events: a service s is enabled by the
system opera to r ; a service s is dis-
abled by the system opera to r ; a
server p i m p l e m e n t i n g a service s
fails on. a processor m; a server p
i m p l e m e n t i n g a service s is started
on a processor m; a processor m
fails; and a processor m starts. T h e
state t ransi t ions that an availability
m a n a g e r must u n d e r g o in response
to these events can be specif ied as
follows. W h e n a service s is enabled,
then servers for s must be started
on r(s) of the processors in h(s) n
member~ if r(s) <- [h(s) N members[,

otherwise servers must be s tar ted
on all processors in h(s) n members;
also s must be added to the set S, all
servers s tar ted must be added to
the set P, and for each server
started, the mapp ings servers and
service must be upda t ed accord-
ingly. W h e n a service s is disabled, it
must be r e m o v e d f rom S, all exist-
ing servers for s must be shut down,
and the state variables servers, ser-
vice, and P must be upda t ed accord-
ingly. W h e n a server p for a service
s fails, ano the r server for s must be
started (if the re is a f ree host in
members n h(s)) and the state vari-
ables servers, service and P must be
upda t ed accordingly. T h e success-
ful start o f a server p should be re-
f lected in an app rop r i a t e upda t e o f
the server, service and P state vari-
ables. T h e fai lure o f a processor p
can be in t e rp re t ed as the fai lure o f
all servers r u n n i n g on p (see the in-
t e rp re ta t ion o f server fai lures
sketched above) plus the remova l o f
p f r o m the members state variable.
T h e start o f a processor p should
result in the start o f servers for all
services s that can be hosted by p
and for which the p resen t server
popula t ion is below the r(s) replica-
tion th resho ld specified, as well as
in the app rop r i a t e updates to the
state variables members, servers, ser-
vice, and P.

Assuming the p rob lems o f server
and processor fai lure detect ion are
solved, it would not be diff icult to
build a centra l ized service availabil-
ity m a n a g e r that achieves the state
t ransi t ions above and runs on some
processor in the system. However ,
such a solut ion would not be satis-
factory because when that proces-
sor is down, no server g r o u p avail-
ability policy would be enforced . As
m e n t i o n e d before , i f the objective is
to have a specif ied service availabil-
ity policy en fo rced w h e n e v e r at
least one host processor works in
the system, then server availability
manage r s must be repl icated on all
processors that work in system.
This results in a need to repl icate
the global state variables members,
service, P, S and servers on all work-
ing processors in members. To main-

tain the consistency of these repli-
cated global state variables at all
processors in the presence o f ran-
d o m commun ica t i on delays and
failures, the occur rence o f any glo-
bal system state upda t e must be
broadcas t to all correct ly funct ion-
ing processors in such a way that
these processors all see the same se-
quence of state updates.

I f d i f f e ren t availability manage r s
see d i f f e r en t sequences o f updates ,
then thei r local views of the global
system state will d iverge . Th is
migh t lead to violations o f a speci-
f ied server g r o u p availability policy.
To il lustrate this point, cons ider a
service s such that r(s)= 2 and
h(s) n members = {m,m'}. I f m sees
the sequence o f events: "s enabled ,"
"s disabled," and m' sees the se-
quence "s disabled," "s enabled ,"
then at least the state variable S on
m will end up be ing d i f f e ren t f rom
the variable S on m'. Moreove r , m'
will start a local server for s while m
will not, and this will cause a viola-
t ion o f the availability policy r(s) =
2 specif ied for s.

How to achieve agreement on a glo-
bal system state? R a n d o m c o m m u -
nication delays and crash, omission
p e r f o r m a n c e fai lures can cause
messages broadcas t for upda t i ng
state replicas to be lost o r rece ived
out o f o rder . To ensure that all cor-
rect servers agree on the same se-
quence o f global state updates , one
has to solve two major problems.
First, achieve a g r e e m e n t on a se-
quence o f processor jo ins and fail-
ures, so that at each poin t in time,
each correct ly func t ion ing proces-
sor knows the g r o u p of o the r cor-
rect processors with which c o m m u -
nicat ion is possible. Second, one has
to achieve a g r e e m e n t on the o r d e r
o f messages broadcast by proces-
sors in a group . A pro tocol that en-
sures a g r e e m e n t on a un ique tem-
poral sequence o f successive
processor g r o u p and g r o u p m e m -
berships membersl, members2
membersi is t e r m e d a processor
membership protocol [19]. A pro tocol
that ensures that all broadcasts
or ig ina ted by processors in a g roup ,

~ 4 February 1991/Vol.34, No.2/COMMUNICATIONS OF THE ACM

19

membersi, are received in the same
order by all correct processors in
membersi is te rmed an atomic broad-
cast protocol [23].

The requirements for both
membership and atomic broadcast
consist of a number of safety and
timeliness properties. Safety prop-
erties are invariants which must be
true at all points in real time. For
example, a membership protocol
must always ensure that any two
processors jo ined to the same
group agree on the group member-
ship, and an atomic broadcast pro-
tocol must ensure that correct pro-
cessors in a same group always
agree on the o rde r of broadcast
messages. Timeliness propert ies re-
quire that there be upper bounds
on the time it takes to propagate
information among group mem-
bers. For example, a membership
protocol might require that surviv-
ing members detect any member
failure within a bounded time, and
an atomic broadcast protocol might
require that all correct members of
a group learn about any atomic
broadcast within a bounded time.

Existing membership and atomic
broadcast protocols can be divided
in synchronous protocols according
to whether or not they assume the
existence of a bound d on message
delays such as [19, 22, 23], and asyn-
chronous protocols, such as [10, 12,
13]. In general, synchronous proto-
cols assume that processor clocks
are synchronized within some con-
stant maximum deviation ~, while
asynchronous protocols do not re-
quire clocks to be synchronized.

Synchronous protocols have
strong timeliness propert ies: they
guarantee that information propa-
gates within bounded times among
group members even when failures
and member joins occur concur-
rently with the propagation. For
known synchronous protocols, the
propagat ion speed depends on d
and E. The assumption that actual
message delays are shorter than d is
crucial for a synchronous approach
to work: if the delays exper ienced
by protocol messages can exceed d,
that is, the servers which communi-

cate through these messages can be
transiently partitioned, a synchronous
protocol might violate its safety re-
quirements. For example, after
transient parti t ion occurrences,
servers might disagree on the order
of messages broadcast and on
group membership. Protocols for
detecting transient partit ions and
reconciling diverging server views
have been investigated in [60]. Such
a posteriori parti t ion detection and
recovery protocols need to com-
pensate for any damage done while
disagreement existed among group
members.

In contrast with synchronous
protocols, one can build asynchro-
nous protocols that never violate
their safety r equ i rements - -even
when communication delays are
unbounded and communication
partit ions occur. However, such
strong safety guarantees come with
a price. First, the timeliness proper-
ties of asynchronous protocols are
ra ther weak: they do not guarantee
any a priori known upper bound on
the amount of time that can elapse
between the instant when one pro-
cessor learns of an event and an-
other processor learns of the same
event. For example, if member
joins and failures continue to occur,
an asynchronous membership pro-
tocol might need an unbounded
amount of time to detect changes in
the set of correctly working proces-
sors. Similarly, a message that was
atomically broadcast to a group
might need an unbounded amount
of time to reach some group mem-
bers. Second, most asynchronous
protocols make the activities of
membership computat ion and
broadcast interfere, so that broad-
casts that occur dur ing a member-
ship change have to be aborted [10,
12, 13]. Third , the asynchronous
protocols specifically designed to
tolerate partit ions require that the
correctly working processors of a
system form a quorum before any
work can be done [13, 38]. This
requirement , needed to prevent
divergence among processors in
distinct partitions, adversely affects
system availability, since a quorum

of processors needs to be function-
ing before any work can be done. I f
no quorum of correct processors is
present, one possibility is to ask the
human opera tor for permission to
go ahead [38]. Another possibility is
to at tempt to modify quorums dy-
namically [6].

Designers of distr ibuted fault-
tolerant systems are thus faced with
the following choices: a t tempt to
ensure the existence of an upper
bound d on message delays or ac-
cept unbounded message delays.
The first alternative requires ad-
vance knowledge of the maximum
system load, real-time operat ing
systems, and massive communica-
tion hardware redundancy to en-
sure a negligible probability that
network partit ions occur. I f an
upper bound d is achievable and
this bound allows a satisfactory re-
covery speed from events such as
processor and communicat ion fail-
ures, then one can adopt a synchro-
nous approach which guarantees
strong timeliness propert ies and
enables the system to continue to
work autonomously for as long as
there exists at least one correct pro-
cessor. I f the bound d which is
achievable by taking into account
the specified peak load and real-
time operating-system scheduling
algorithms is not small enough to
allow the system to react sufficiently
fast to component failures (fbr ex-
ample, d is measured in minutes
when the required recovery time
from failures is measured in sec-
onds), or if no bound can be realis-
tically found, then two options
exist. Both are based on the adop-
tion of a timeout delay d'. (When an
unsatisfactory bound d exists, the
t imeout delay d' is by definit ion
smaller than d.) I f d' is such that a
synchronous approach based on it
provides sufficient recovery speed
and the cost of compensat ing for
actions taken dur ing transient par-
titions is smaller than the cost of not
meet ing recovery deadlines, then
one can adopt a synchronous ap-
proach based on d'. This will ensure
strong timeliness propert ies and
will eliminate the need to worry

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 7 S

20

about quorums. Moreover, if d' is
sufficiently large compared to the
median message delay, it is likely
that few message delays will exceed
d' time units [21], and transient
partit ions will therefore be rare. On
the other hand, if the cost of com-
pensating for inconsistent actions
taken as a consequence of transient
part i t ion occurrences is higher than
the cost of missing recovery dead-
lines, one can adopt an asynchro-
nous approach with t imeout delay
d'. The ,cost will then be weak time-
liness propert ies and the need to
worry ;about quorums. In both
timeout--based approaches, the
choice of the t imeout delay d' is a
delicate matter. As d' becomes
larger, the failure detection and
recover), times become larger, but
the frequency of transient parti t ion
detections decreases. Conversely, as
d' becomes smaller, the failure de-
tection and recovery times become
smaller, but the frequency of tran-
sient part i t ion detections increases.
Thus, the choice of d' must balance
the cost of recovering from tran-
sient parti t ions and the cost of not
detecting pe rmanen t failures fast
enough.

Conclusion
Unders tand ing a technical area as
complex as fault- tolerant distrib-
uted comput ing requires identify-
ing its fundamenta l concepts and
naming them unambiguously. This
article has proposed a small num-
ber of concepts that the author be-
lieves are fundamenta l when de-
signing and unders tanding
fault- tolerant dis tr ibuted systems.
Some of these concepts, such as the
notions of service, server, and the
"depends" relation, are fundamen-
tal to any kind of system. Others,
such as the notions of failure se-
mantics, hierarchical failure mask-
ing, and group failure masking, are
specific to fault-tolerant systems.
The latter concepts capture the
goals of fault- tolerant comput ing as
well as tlhe trade-offs: mask compo-
nent failures when possible, and
when masking is not possible or
economical, ensure that the system

has some clearly specified failure
semantics. To demonstra te the "ad-
equacy" of these concepts in cap-
tur ing essential architectural as-
pects, these are used to 1)
formulate a list of key hardware
and software issues that arise in
fault- tolerant distr ibuted systems
design, 2) describe various design
choices and alternatives known for
each issue, 3) comment on the rela-
tive merits and drawbacks of these
alternatives, and 4) illustrate how
the issues have been addressed in
existing practical system architec-
tures. The fact that all four objec-
tives could be achieved solely by
using the basic notions in t roduced
in the section entitled "Basic Archi-
tectural Concepts" indicates their
"power" to express crucial architec-
tural issues in fault- tolerant distrib-
uted systems.

Clear concepts and terminology
help but do not entirely solve the
problem of how to design a fault-
tolerant distr ibuted system that
uses the right amount of redun-
dancy at various abstraction layers
to achieve some opt imum function/
dependabil i ty/cost result. Very little
of a "complexity theory" that is rel-
evant to practical fault- tolerant
comput ing exists today that would
guide a designer in choosing
among a mult i tude of possible re-
dundancy management solutions at
hardware, operat ing system and
application levels. Such choices are
not only made difficult by the lack
of analytical or exper imental cost
information about various redun-
dancy management techniques, but
also by the lack of published data
about what kind of failure behav-
iors various system components are
likely to exhibit and what failure
distributions are associated with
such components . The stochastic
aspects inherent in fault tolerance,
not discussed in much detail in this
article add another dimension of
complexity to design. Moreover,
even if one had available all the
needed theories and exper imental
cost and failure data, the number of
choices to consider would be so
immense that a systematic search

for optimality is unlikely to happen.
For these and other reasons, it is
likely that building distr ibuted
fault- tolerant systems will remain
an art in the foreseeable future.
One thing seems to be certain: with
the ever-increasing dependence
placed on comput ing systems, the
availability of comput ing and com-
munication services in the presence
of component failures, hardware
and software changes, and horizon-
tal growth will become more and
more important . To achieve such
high levels of availability, more sys-
tems in the future will need to be
fault tolerant.

Acknowledgments
The motivation for recording this
snapshot of my unders tanding of
basic concepts and issues in fault-
tolerant distr ibuted systems was
provided by invitations to give
overviews on fault- tolerant com-
put ing at two recent conferences:
the 1987 Annual Conference of the
Canadian Informat ion Processing
Society, Edmonton, and the 3d
Brazilian Conference on Fault-
Tolerant Computing, Rio de Jan-
eiro, 1989. I would like to thank the
program committees of these con-
fe rences - - in part icular Professors
Tamer Ozsu and Julius Leite, for
inviting me. I would also like to
thank Phil Bernstein and the Com-
munications of the A C M reviewers for
their helpful comments and sug-
gestions. []

References
1. Abbadi, A.E., Skeen, D., Cristian, F.

An efficient fault-tolerant protocol
for replicated data management.
Fourth ACM Conference on Principles
of Database S~stems (1985).

2. Anderson, T., Lee, P. Fault-toler-
ance-Principles and Practice. Prentice
Hall, 1981.

3. Avizienis, A. Software fault toler-
ance. 1FIP Computer Congress (San
Francisco, Aug. 1989).

4. Avizienis, A., Gunningberg, P.,
Kelly, J., Strigini, L., Traverse, P.,
Tso, K., Voges, U. The UCLA
Dedix system: A distributed testbed
for multi-version software. 15th In-
ternational Conference on Fault-toler-

76 February 1991/Vo1.34, No.2/COMMUNICATIONS OF T H E A C M

21

• ,. , . , . , ~ . ' . " , .

ant Computing (Ann Arbor, Mich.
1985).

5. Babaoglu, O., Drumond, R. Streets
of Byzantium: Network architec-
tures for fast reliable broadcast.
IEEE Trans. Softw. Eng. SE-I1, 6,
(1985).

6. Barbara, D., Garcia-Molina, H.,
Spauster, A. Increasing availability
under mutual exclusion constraints
with dynamic vote reassignment.
ACM Trans. Comput• Syst. 7, 4 (Nov.
1989)•

7. Bartlett, J. A NonStop Kernel•
Eighth Symposium on Operating System
Principles (Dec. 1981)•

8. Bernstein, P. Sequoia: A fault-toler-
ant tightly coupled multiprocessor
for transaction processing. IEEE
Comput. (Feb. 1988)•

9. Bernstein, P., Hadzilacos, V., Good-
man, N. Concurrency Control and Re-
covery in Database Systems. Addison-
Wesley, Reading, Mass., 1987.

10. Birman, K., Joseph, T. Reliable
communication in the presence of
failures. ACM Trans. Comput. Syst. 5,
1 (Feb. 1987)•

11. Borg, A., Blau, W., Graetsch, W.,
Herrmann, F., Oberle, W. Fault-
tolerance under Unix• ACM Trans.
Comput. Syst. 7, 1 (Feb. 1989).

12. Carr, R. The Tandem global update
protocol. Tandem Syst. Rev. 1, 2
(June 1985).

13. Chang, J.M., Maxemchuck, N. Reli-
able broadcast protocols. ACM
Trans. Comput. Syst. 2, 3 (Aug. 1984).

14. Cheriton, D., Zwaenepoel, W. Dis-
tributed process groups in the V
Kernel• ACM Trans Comput. Syst. 3, 2
(May 1985).

15. Clark, D. The structuring of sys-
tems using up-calls, lOth ACM Sym-
posium on Operating Systems Principles
(1985).

16. Comer, D., Peterson, L. Under-
standing naming in distributed sys-
tems. Distributed Comput. 3 (1989),
51-60•

17. Cooper, E. Replicated distributed
programs. Ph.D dissertation, UC
Berkeley, 1985.

18. Cristian, F. A rigorous approach to
fault-tolerant programming. 1EEE
Trans. Softw. Eng. SE 11, 1 (1985).

19. Cristian, F. Agreeing on who is
present and who is absent in a syn-
chronous distributed system. 18th
International Conference on Fault-
Tolerant Computing (Tokyo, June
1988).

20. Cristian, F. Exception handling. In
Dependability of Resilient Computers,

T. Anderson, Ed., Blackwell Scien-
tific Publications, Oxford, 1989.

21. Cristian, F. Probabilistic clock syn-
chronization. Distributed Computing 3
(1989), 146-158.

22. Cristian, F. Synchronous atomic
broadcast for redundant broadcast
channels. IBM Res. Rep. RJ 7203,
Dec. 1989.

23. Cristian, F., Aghili, H., Strong, R.,
Dolev, D. Atomic broadcast: From
simple diffusion to Byzantine
agreement• 15th International Con-
ference on Fault-tolerant Computing
(Ann Arbor, Mich•, 1985).

24. Cristian, F., Dancey, R., Dehn, J.
Fault-tolerance in the advanced
automation system. 20th Interna-
tional Conference on Fault-tolerant
Computing (Newcastle upon Tyne,
England, June 1990).

25. Dijkstra, E. Hierarchical ordering
of sequential processes. Acta Infor-
matica 1 (1971), 115-138.

26. Ezhilchelvan, P., Shrivastava, S., A
characterization of faults in systems•
Fifth Symposium on Reliability in Dis-
tributed Software and Database systems
(Los Angeles, Jan. 1986).

27. Garcia-Molina, H., Spauster, A.
Message ordering in a multicast
environment. Ninth International
Conference on Distributed Systems
(Newport Beach, Calif.,June 1989)•

28. Gray, J., Notes on Database Operat-
ing Systems. Operating Systems -
An Advanced Course. Vol. 60, Lec-
ture Notes in Computer Science,
Springer Verlag, 1978.

29. Gray, J . Why do computers stop
and what can be done about it? Fifth
Symposium on Reliability in Distributed
Software and Database systems (Los
Angeles, Jan. 1986)•

30. Harper, R., Lala, J., Deyst, J. Fault
tolerant parallel processor architec-
ture overview• 18th International
Conference Fault-Tolerant Computing
(Tokyo, June 1988).

31. Hopkins, A., Smith, B., Lala, J.
FTMP-A highly reliable fault-toler-
ant multi-processor for aircraft. In
Proceedings IEEE, Vol. 66, Oct.
1978.

32. IBM International Technical Sup-
port Centers: IMS/VS extended
recovery facility (XRF). Tech. Ref.
1987.

33. Johnson, D., Zwaenepoel, W.
Sender based message logging• 17th
International Conference on Fault-
Tolerant Computing (Tokyo, June
1987).

34. Kaashoek, F., Tanenbaum, A.

Fault-tolerance using group com-
munication. Fourth ACM SIGOPS
European Workshop (Bologna, Sept.
1990).

35. Knight, J., Amann, P. Issues influ-
encing the use of N-version pro-
gramming. In Proceedings of the IF1P
Congress (San Francisco, Aug. 1989).

36. Koo, R., Toueg, S. Check-pointing
and rollback recovery for distrib-
uted systems. IEEE Trans. Softw.
Eng. SE-13, 1 (1986)•

37. Kopetz, H., Grunsteidl, G., Reis-
inger, J. Fault-tolerant membership
in a synchronous real-time system•
IF1P Working Conference on Depend-
able Computing for Critical Applica-
tions (Santa Barbara, Aug. 1989).

38. Kronenberg, N., Levy, H., Strecker,
W. VAXclusters: A Closely coupled
distributed system. ACM Trans.
Comput. Syst. 4, 2 (1986).

39. Ladin, R., Liskov, B., Shrira, L.
Lazy replication: A method for
managing replicated data. Ninth
Annual ACM Symposium on Principles
of Distributed Computing (Aug. 1990).

40. Lamport, L. Using time instead of

41.

time-outs in
ACM Trans.
(1984).
Lamport, L.
ment. DEC
1989.

fault-tolerant systems.
Prog. Lan. Syst. 6, 2

The part time parlia-
SRC Rep. 49, Sept.

42. Lampson, L. Sturgis, H., Atomic
Transactions• In Distributed Sys-
tems: An Advanced Course. Lecture
Notes in Computer Science Vol. 105,
Springer Verlag, 1981.

43. Laprie, J.C. Dependability: A Unify-
ing Concept for Reliable Computing
and Fault-tolerance, T. Anderson,
Ed., Blackwell Scientific Publica-
tions, Oxford, 1989.

44. Laprie, J.C., Arlat, J., Beounes, C.,
Kanoun, K. Definition and analysis
of hardware and software-fault-
tolerant architectures• IEEE Corn-
put. (July 1990).

45. Le Lann, G. Critical issues in dis-
tributed real-time computing• In
Proceedings of ESTEC Workshop on
Communication Networks and Distrib-
uted Operating Systems within the Space
Environment, European Space
Agency Rep. WPP-10, Noordwijk,
Oct. 24-26, 1989.

46. Luan, S., Gligor, V. A fault-tolerant
protocol for atomic broadcast, lOth
International Conference on Distributed
Computing Systems (Paris, May 1990).

47. McCluskey, E. Fault-tolerant sys-
tems. Tech. Rep. CSL-199 Stanford
Univ., 1982.

C O M M U N I C A T I O N S O F T H E ACM/February 1991/Vo1,34, No.2 7 7

22

W
48. Melliar-Smith, M., Moser, L.,

Agrawala, V. Broadcast protocols
for distributed systems. IEEE Trans.
Parallel and Distributed Syst. 1, 1 (Jan.
1990).

49. Oki, B., Liskov, B. Viewstamped
replication: A new primary copy
method to support highly available
distributed systems. Seventh ACM
Symposium on Principles of Distributed
Computing (Aug. 1988).

50. Palumbo, D., Butler, R. Measure-
ment of SIFT operating system
overhead. NASA Tech. Mere.
86322, 1985.

51. Parnas, D. Designing software for
ease of extension and contraction.
IEEE Trans. Softw. Eng. SE-5, 2
(Mar. 1979).

52. Peterson, W., Weldon, E. Error Cor-
rect;ing Codes. MIT Press, Cam-
bridge, Mass., 1972.

53. Powell, D. La tolerance aux fautes
dans les systemes repartis: Les hy-
potheses d 'er reur et leur impor-

Make
Tracks...
... to your n e a r e s t mai lbox and
send for the latest copy of the f ree
Consumer I n f o r ma t ion Catalog.

It l is ts a b o u t 200 f ree or low-cost
g o v e r n m e n t pub l i ca t ions on topics
like heal th , nutr i t ion, careers ,
money management, and federal
benefits. Just send your n a m e and
address to:

Consumer Informat ion Center
D e p a r t m e n t MT
Pueblo, Colorado 8 1 0 0 9

A public service of this publication and
the Consumer Information Center of the
U.S. General Services Administration.

tance. LAAS Res. Rep. 89-258,
Sept. 1989.

54. Randell, B. System structure for
software fault-tolerance. IEEE
Trans. Softw. Eng. SE-1, 2 (1975).

55. Saltzer, J., Reed, D., Clark, D. End-
to-end arguments in system design.
ACM Trans. Comput. Syst., 2, 4 (Nov.
1984).

56. Schmuck, F. The use of efficient
broadcast protocols in asynchro-
nous distributed systems. Ph.D dis-
sertation TR88-928 Cornell Univ.,
1988.

57. Schneider, F. The state machine
approach: A tutorial. TR 86-800,
Cornell Univ., 1986.

58. Siewiorek, D. Fault-tolerance in
commercial computers. 1EEE Corn-
put. (July 1990).

59. Strom, R., Yemini, S. Optimistic
recovery in distributed systems.
ACM Trans. Comput. Syst., 3, 3
(1985).

60. Strong, R., Skeen, D., Cristian, F.,
Aghili, H. Handshake protocols.
Seventh International Conference on
Distributed Computing Systems (Berlin,
Sept. 1987).

61. Tanenbaum, A. Computer Networks.
Prentice Hall, Englewood Cliffs,
N.J., 1981.

62. Taylor, D. and Wilson, G. The stra-
tus system architecture. In Depend-
ability of Resilient Computers. T. An-
derson, Ed., Blackwell Scientific
Publications, Oxford, 1989.

63. Trivedi, K. Probability and Statistics
with Reliability, Queuing and Computer
Science Applications. Prentice Hall,
Englewood Cliffs, N.J., 1982.

64. Verissimo, P., Rodrigues, L., Bap-
tista, M. AMp: A highly parallel
atomic multicast protocol. In Pro-
ceedings ACM S1GCOM'89 (Austin,
Tex., Sept. 89).

65. Wakerly, J. Error detecting codes, self-
checking circuits, and applications. El-
sevier North Holland, Inc., N.Y.,
1978.

66. Wensley, J., Lamport, L., Goldberg,
J., Green, M., Levitt, K., Melliar-
Smith, M., Shostak, R., Weinstock,
C. SIFT: Design and analysis of a
fault tolerant computer for aircraft
control. Proceedings IEEE, Vol. 66,
Oct. 1978.

67. Wulf, W. Reliable hardware-soft-
ware architecture. 1975 Interna-
tional Conference on Reliable Software,
SIGPLAN 10, 6 (1975).

CR Categories and Subject Descript-
ors: B.0 [Hardware]: General; B.1.3

[Control Structures and Micropro-
gramming]: Control Structure Reliabil-
ity, Testing and Fault Tolerance--
Redundant design; C.0 [Computer Sys-
tems Organization]: General; C.4
[Computer Systems Organization]:
Performance of Systems--Reliability,
availability, and serviceability; D.0 [Soft-
ware]: General; D.2.0 [Software Engi-
neering]: General; D.2.5 [Software
Engineering]: Testing and Debugging--
Error handling and recovery; D.4.0 [Oper-
ating Systems]: General; D.4.5 [Operat-
ing Systems]: Reliability--Fault toler-
ance; D.4.7 [Operating Systems]:
Organization and Design--Distributed
systems, hierarchical designs, real-time sys-
tems; H. 1 [Information Systems]: Mod-
els and Principles; H.2.0 [Database
Management]: General--Security, integ-
rity, and protection; H.2.4 [Database Man-
agementl: Systems--Transaction process-
ing

General Terms: Design, Reliability
Additional Key Words and Phrases:

Exception handling, failure, failure
classification, failure masking, failure
semantics, fauh-tolerant systems, group
communication, redundancy, server
group, software robustness, system ar-
chitecture.

About the Author:
FLAVIU CRISTIAN is a computer sci-
entist at the IBM Ahnaden Research
Center in San Jose, California. He has
participated in the design and imple-
mentation of a highly available distrib-
uted system prototype at the Almaden
Research Center, has reviewed and con-
sulted for several fault-tolerant distrib-
uted system designs, both in European
and American divisions of IBM, and is
now a technical leader in the design of a
new Air Traffic Control System for the
U.S. which must satisfy very stringent
availability requirements.

Author's Present Address: IBM Alma-
den Research Center, 650 Harry Road,
San Jose, CA 95120-6099; email:
Flaviu@IBM.COM.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© 1991ACM0002-0782/91/ 200-056 $1.50

7 8 February 1991/Vol.34, No.2/COMMUNICATIONS OF THE ACM

23

