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C 
o m p u t m g  systems consist 
o f  a mul t i tude  o f  ha rdware  
and software componen t s  
that  are  b o u n d  to fail even-  
tually. In many  systems, 
such c o m p o n e n t  fai lures 

can lead to unant ic ipated,  potenti-  
ally disrupt ive  fai lure behavior  and 
to service unavailability. Some sys- 
tems are  des igned  to be f au l t - to l e r -  

ant :  they e i ther  exhibi t  a well- 
de f ined  fai lure behavior  when  
componen t s  fail o r  mask compo-  
nen t  failures to u s e r s I t h a t  is, con- 
t inue to provide  thei r  specified 
s tandard  service despite  the occur-  
rence  o f  c o m p o n e n t  failures. To  
many users t empora ry  e r ran t  sys- 
tem fai lure behav ior  or  service un-  
availability is acceptable.  T h e r e  is, 
however ,  a g rowing  n u m b e r  o f  user  
communi t i e s  for w h o m  the cost o f  
unpredic table ,  potential ly hazard-  
ous failures or  system service un- 
availability can be very significant. 
Examples  include the on-l ine trans- 
action processing,  process control ,  
and compute r -based  communica -  
tions user  communi t ies .  To  mini-  
mize losses due  to unpred ic tab le  
fai lure behavior  o r  service unavail- 
ability, these users rely on fault- 
to lerant  systems. With the ever-  
increasing d e p e n d e n c e  placed on 
c o m p u t i n g  services, the n u m b e r  o f  
users who will d e m a n d  fault-toler-  
ance is likely to increase. 

T h e  task o f  des ign ing  and un-  
de r s t and ing  faul t - tolerant  distrib- 
u ted  system archi tectures  is notori-  
ously difficult:  one  has to stay in 
control  o f  not  only the s tandard  
system activities when  all compo-  
nents  are  well, but  also o f  the com- 
plex situations which can occur  
when some componen t s  fail. T h e  
difficulty o f  this task can be exacer-  
bated by the lack o f  clear s t ructur-  
ing concepts  and the use o f  a con- 
fus ing terminology.  Presently, it is 
quite  c o m m o n  to see d i f f e ren t  peo-  
ple use d i f fe ren t  names  for  the 
same concept  o r  use the same te rm 
for d i f fe ren t  concepts.  For  exam-  
ple, what one  person  calls a failure, 
a second person  calls a fault, and  a 
third person  migh t  call an er ror .  
Even the te rm "faul t - to lerant"  itself 

is used ambiguous ly  to designate  
such distinct system proper t ies  as 
" the system has a wel l -def ined fail- 
u re  behavior"  and "the system 
masks c o m p o n e n t  failures." 

This  article a t tempts  to in t roduce  
some discipline and o r d e r  in un-  
de r s t and ing  faul t - to lerance issues 
in d is t r ibuted system archi tectures .  
In  the fol lowing section, "Basic 
Archi tec tura l  Concepts ,"  a small 
n u m b e r  o f  basic archi tectura l  con- 
cepts are  p roposed .  In the sections 
ent i t led " H a r d w a r e  Archi tec tura l  
Issues" and "Software  Archi tec tura l  
Issues" these concepts  are  used to 
fo rmula te  a list o f  key ha rdware  
and software issues that  arise when  
des ign ing  or  examin ing  the archi- 
tec ture  o f  faul t - to lerant  d is t r ibuted 
systems. Since the search for  satis- 
factory answers to most  o f  these is- 
sues is a mat te r  o f  cu r r en t  research 
and exper imen ta t ion ,  this article 
examines  various proposals ,  dis- 
cusses thei r  relat ive merits,  and il- 
lustrates thei r  use in exist ing com- 
mercial  faul t - tolerant  systems. 
Besides be ing  useful  as a design 
guide,  this article's list o f  issues also 
provides  a basis for  classifying ex- 
isting and fu ture  faul t - to lerant  sys- 
tem archi tectures .  T h e  final section 
o f  this article commen t s  on the ade-  
quacy of  the p roposed  concepts.  

Basic Architectural Concepts 
To achieve fault  tolerance,  a dis- 
t r ibuted system archi tec ture  incor-  
porates  r e d u n d a n t  process ing com- 
ponents .  Thus ,  be fore  the issues 
which under l ie  f a u l t - t o l e r a n c e - - o r  
r edundancy  m a n a g e m e n t - - i n  such 
systems are  discussed, it is necessary 
to in t roduce  their  basic architec- 
tural  bui ld ing  blocks and classify 
the failures that  these basic blocks 
can exper ience .  

services, Servers, and the 
"Depends" Relation 
T h e  concepts  o f  service, server,  and 
the " d e p e n d s  upon"  relat ion 
a m o n g  servers are  the three  notions 
that  the au tho r  believes p rov ide  the 
best means  to explain c o m p u t i n g  
systems archi tectures .  

A c o m p u t i n g  service  specifies a 

collection o f  opera t ions  whose exe-  
cut ion can be t r iggered  by inputs  
f rom service users  o r  the passage o f  
time. Ope ra t i on  execut ions  may 
result  in ou tputs  to users and in ser- 
vice state changes.  For  example ,  an 
IBM4381 raw processor  service 
consists o f  all the opera t ions  de- 
f ined in a 4381 processor  manual ,  
and a DB2 database service consists 
o f  all the  relat ional  query  and up-  
date  opera t ions  that  clients can 
make  on a database.  

T h e  opera t ions  de f ined  by a ser- 
lice specification can be p e r f o r m e d  

only by a se rver  for  that  service. A 
server  implemen t s  a service wi thout  
expos ing  to users the in ternal  ser- 
vice state represen ta t ion  and opera-  
tion imp lemen ta t ion  details. Such 
details are  h idden  f rom users, who 
need  know only the external ly  spec- 
ified service behavior .  Servers  can 
be ha rdware  o r  sof tware imple-  
mented .  For  example ,  a 4381 raw 
processor  service is typically imple-  
m e n t e d  by a ha rdware  server;  how- 
ever,  somet imes  one  can see this 
service " emula t ed"  by software.  A 
DB2 service is typically imple-  
m e n t e d  by software,  a l though  it is 
conceivable to i m p l e m e n t  this ser- 
vice by a ha rdware  database ma- 
chine.  

Servers  i m p l e m e n t  their  service 
by using o the r  services which are  
i m p l e m e n t e d  by o the r  servers. A 
server  u depends  on a server  r if  the  
correctness  o f  u's behav ior  depends  
on the correctness  o f  r's behavior .  
T h e  server  u is called a user  (or cli- 
ent) o f  r, while r is called a resource 

of  u. Resources  in tu rn  migh t  de- 
pend  on o the r  resources  to p rov ide  
their  service, and  so on,  down to the 
atomic resources  o f  a system, which 
one  does  not  wish to analyze any 
fur ther .  Thus ,  the user/cl ient  and 
resource /server  names  are  relative 
to the "depends"  relat ion:  what is a 
resource  o r  server  at a certain level 
o f  abstract ion can be a client o r  a 
user  at ano the r  level o f  abstraction. 
This  relat ion is of ten  r ep re sen ted  
as an acyclic g r aph  in which nodes 
deno te  servers and arrows repre -  
sent the "depends"  relation.  Since it 
is cus tomary  to r ep re sen t  graphi -  
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cally a user u of a resource r above r, 
u is said to be at a level of abstrac- 
tion "higher" than r [25, 51, 54]. 

For example, a file server f, 
which uses the services provided by 
a disk space allocation server s and a 
disk I/O' server d to provide file cre- 
ation, access, update, and deletion 
service, depends on s and d (see Fig- 
ure 1). To implement  the file ser- 
vice, the designer o f f  assumes that 
the allocation and I/O services pro- 
vided by s and d have certain prop- 
erties. If  the specifications of s and 
d imply these properties and f, s and 
d are correctly implemented, t h e n f  
will behave correctly. All of the 
above servers depend on processor 
service provided to them by some 
underlying operating system when 
they execute (or are interpreted). If  
they were written in a high-level 
language, they also depend on 
compilers and link-editors to be 
translated correctly in machine lan- 
guage. When all software servers 
under  discussion depend on such 
translation and processor services, 
it is customary to omit representing 
this fact in the "depends" graph. 

Note that the static "depends" 
relation defined above relates to the 
correctness of a service implemen- 
tation and differs from the dynamic 
"call" (or flow control) and "inter- 
prets" (or executes) relations which 
can exist at runt ime between serv- 
ers situated at different abstraction 
levels. For example, the file se rver f  
will typically use synchronous, 
blocking, "down-calls" to ask the 
allocation server s for free storage 
and will use asynchronous, non- 
blocking, down-calls to ask the I/O 
server d to initiate disk I/O in paral- 
lel. When the I/O is completed, the 
I/O server will typically notify the 
file server f by using an "up-call" 
[15] which might interrupt  f. If  a 
processor p interprets the programs 
of f, s, ;and d these "depend" on p 
(although p "executes" them). 

A distributed system consists of 
software servers which depend on 
processor and communication ser- 
vices. Processor service is typically 
provided concurrently to several 
software servers by a multiuser 

operating system such as Unix or 
MVS. These operating systems in 
turn depend on the raw processor 
service provided by physical proc- 
essors, which in turn depend on 
lower-level hardware resources 
such as CPUs, memories, I/O con- 
trollers, disks, displays, keyboards, 
and so on. The communication ser- 
vices are implemented by distrib- 
uted communication servers which 
implement communication proto- 
cols such as TCP/IP and SNA by 
depending  on lower-level hardware 
networking services. It is customary 

f 

: I G U R E  1 
An Il lustration Depicting Relations 
between File Server f, Disk Space 
AlloCation Server $, and Disk I /O 
Server d. 

to designate the union of processor 
and communication service opera- 
tions provided to application serv- 
ers as a distributed operating system 
service. 

Failure Classification 
A server designed to provide a cer- 
tain service is correct if, in response 
to inputs, it behaves in a manner  
consistent with the service specifica- 
tion. This article assumes the speci- 
fication prescribes both the server's 
response for any initial server state 
and input  and the real-time interval 
within which the response should 
occur. By a server's response we 
mean any outputs that it has to de- 
liver to users as well as any state 
transition that it must undergo.  

A server failure occurs when the 
server does not behave in the man- 
ner specified. An omission failure 
occurs when a server omits to re- 
spond to an input. A timing failure 

occurs when the server's response is 
functionally correct but un t ime ly - -  
the response occurs outside the 
real-time interval specified. Timing 
failures thus can be either early tim- 
ing failures or late t iming failures 
(performance failures). A response 
failure occurs when the server re- 
sponds incorrectly: either the value 
of its output  is incorrect (value fail- 
ure) or the state transition that 
takes place is incorrect (state transi- 
tion failure). If, after a first omis- 
sion to produce output, a server 
omits to produce output  to subse- 
quent  inputs until its restart, the 
server is said to suffer a crash fail- 
ure. Depending on the server state 
at restart, one can distinguish be- 
tween several kinds of crash failure 
behaviors. An amnesia-crash occurs 
when the server restarts in a prede- 
fined initial state that does not de- 
pend on the inputs seen before the 
crash. A partial-amnesia-crash oc- 
curs when, at restart, some part of 
the state is the same as before the 
crash while the rest of the state is 
reset to a predefined initial state. A 
pause-crash occurs when a server 
restarts in the state it had before the 
crash. A halting-crash occurs when 
a crashed server never restarts. 
Note that while crashes of stateless 
servers, pause-crashes and halting 
crash behaviors are subsets of omis- 
sion failure behaviors; in general, 
partial and total amnesia crash be- 
haviors are not a subset of omission 
failure behaviors. In  what follows 
we follow accepted practice and use 
the term crash ambiguously to des- 
ignate one or more of the above 
kinds of crash failure behaviors; the 
particular meaning intended 
should be clear from the way the 
state and the restart operation of 
the server(s) under  consideration 
are defined. 

The following are examples of 
crash failures: an operating system 
crash followed by reboot in a pre- 
defined initial system state and a 
database server crash followed by 
recovery of a database state that 
reflects all transactions committed 
before the crash. A communication 
service that occasionally loses but 
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does not  delay messages is an exam-  
ple o f  a service that  suffers omis- 
sion failures. An excessive message 
transmission or  message-process ing  
delay due  to an over load  affect ing a 
set o f  communica t ion  servers is an 
example  o f  a communica t ion  per-  
f o rmance  failure. W h e n  some 
action is taken by a processor  too 
soon, pe rhaps  because a t imer  runs  
too fast, it is cons idered  an early 
t iming failure. A search p r o c e d u r e  
that  "f inds" a key not  inser ted in a 
table, and an al terat ion o f  a mes- 
sage by a communica t ion  link sub- 
jec t  to r a n d o m  noise are  examples  
o f  server  response  failures. 

Failure Semantics 
W h e n  p r o g r a m m i n g  recovery  ac- 
tions for  a server  failure,  it is im- 
por t an t  to know what  fai lure be- 
haviors  the server  is likely to 
exhibit .  T h e  fol lowing example  il- 
lustrates this point.  Cons ider  a cli- 
en t  u which sends a service reques t  
sr  t h r o u g h  a commun ica t i on  link l 
to a server  r. Let  d be the m a x i m u m  
t ime needed  by l to t ranspor t  sr  and 
p be the m a x i m u m  t ime needed  by r 
to receive,  process, and reply to sr.  

I f  the des igner  o f  u knows that  
communica t ion  with r via 1 is af- 
fected only by o m i s s i o n - - n o t  per-  
f o r m a n c e - - f a i l u r e s ,  then  if  no  
reply to s r  is received by u within 
2(d + p) t ime units, u will never  re- 
ceive a reply to sr.  To  handle  this, u 
migh t  resend  a new service reques t  
sr '  to r, but  u will not  have to main-  
tain any local data  that  would  allow 
it to dist inguish be tween  answers to 
"cur ren t "  service requests,  such as 
s r ' ,  and answers to "old" service 
requests,  such as sr.  If, on  the o the r  
hand,  the des igner  o f  u knows that  l 
and  r can suffer  p e r f o r m a n c e  fail- 
ures, i f  no  reply to sr  is received by 
u within 2(d + p) t ime units, u will 
have to mainta in  some local data, 
for  example  a sequence  number ,  
that  will allow it to discard any 
"late" answer  to sr.  

Since the recovery  actions in- 
voked u p o n  detect ion o f  a server  
fai lure d e p e n d  on the likely fai lure  
behaviors  o f  the server,  in a fault- 
to lerant  system one  has to e x t e n d  the  

s tandard  specification o f  servers to 
include,  in addi t ion  to thei r  famil iar  
fa i lure- f ree  semantics (the set o f  
fa i lure- f ree  behaviors),  the i r  likely 
fai lure  behaviors ,  o r  f a i l u r e  s e m a n t i c s  

[18]. I f  the specification o f  a server  
s prescribes that  the fai lure  behav- 
iors likely to be observed  by s users 
should  be in class F, it is said that  "s 
has F fai lure  semantics" (a discus- 
sion o f  what  we mean  by "likely" is 
d e f e r r e d  to the section ent i t led 
"Choos ing  a Fai lure Semantics").  
T h e  t e rm fai lure  "semantics"  is 
used instead o f  fa i lure  " m o d e "  be- 
cause semantics is a l ready a widely 
accepted t e rm for  character iz ing 
behaviors  in the absence o f  failures, 
and  the re  is 'no logical reason why 

such dissimilar words as "seman-  
tics" and " m o d e "  should  be used to 
label the same notion:  allowable 
server  behaviors .  

For  example ,  i f  a communica t ion  
service is al lowed to lose messages, 
but  the  probabil i ty that  it delays o r  
cor rupts  messages is negligible,  we 
say that  it has omission fai lure se- 
mantics (what "negl igible"  means  is 
discussed in the section "Choos ing  a 
Fai lure Semantics").  W h e n  the ser- 
vice is al lowed to lose or  delay mes- 
sages, but  it is unlikely that  it cor- 
rupts  messages, we say that  it has 
omiss ion /pe r fo rmance  fai lure  se- 
mantics.  Similarly, if  a processor  is 
likely to suffer  only crash failures 
or  a m e m o r y  is likely to suffer  only 
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omission failures in response  to 
read requests  (because o f  parity 
errors) ,  we say that  the processor  
and the m e m o r y  have crash and 
read  omission fai lure semantics,  
respectively. In  general ,  i f  the  fail- 
u re  specification o f  a server  s allows 
s to exhibi t  behaviors  in the un ion  
of  two fai lure  classes F and G, we 
say that  s has F/G fa i lure  semantics.  
Since a server  that  has F/G fai lure 
semantics can expe r i ence  more  fail- 
u re  behaviors  than a server  with F 
fai lure  semantics,  we say that  F/G is 

.a weaker  (or less restrictive) fai lure 
semantics than F. Equivalent ly,  F is 
s t ronger  (or m o r e  restrictive) than  
F/G. W h e n  any fai lure behavior  is 
al lowed for  a server  s, that  is, the  
fa i lure  semantics specif ied for  s is 
the weakest  possible, we say that  s 
has arbitrary fa i lure  semantics.  
Thus ,  the class o f  arbi t rary  fai lure 
behaviors  includes all the  fa i lure  
classes de f ined  previously.  

It  is the responsibil i ty o f  a server  
des igner  to ensure  that  it p roper ly  
implemen t s  a specif ied fai lure se- 
mantics.  For  example ,  to ensure  
that  a local a rea  ne twork  service has 
omis s ion /pe r fo rmance  fai lure  se- 
mantics,  it is s t andard  practice to 
use e r ro r -de tec t ing  codes that  de-  
tect with high probabil i ty any mes- 
sage cor rup t ion .  To  ensure  that  a 
local area  ne twork  has omission 
fai lure '.semantics, one  typically uses 
ne twork  access mechan isms  that  
guaranl:ee b o u n d e d  access delays 
and real- t ime execut ives  that  guar-  
an tee  u p p e r  bounds  on message 
t ransmission and  process ing delays 
[45]. To  i m p l e m e n t  a raw ha rdware  
processor  service with crash fai lure  
semantics,  one  can use dupl icat ion 
and m a t c h i n g - - t h a t  is, use two 
physically i n d e p e n d e n t  processors  
that  execute  in parallel  the same 
sequence  o f  instruct ions and  that  
c o m p a r e  thei r  results af ter  each 
instruct ion execut ion,  so that  a 
crash occurs  when  a d i s ag reemen t  
be tween  processor  ou tputs  is de- 
tected [62]. 

In  genera l ,  the  s t ronger  a speci- 
fied fai lure semantics is, the  more  
expens ive  and  complex  it is to build 
a server  that  implemen t s  it. 

T h e  fol lowing examples  illus- 
trate this genera l  rule  o f  fault- toler-  
ant  comput ing .  A processor  that 
achieves crash fai lure semantics by 
using dupl icat ion and  matching,  as 
discussed in [62], is m o r e  expens ive  
to build than  an e lementa ry  proces-  
sor which does not  use any fo rm of  
r e d u n d a n c y  to p reven t  users  f rom 
seeing arbi t rary  fai lure  behaviors .  
A s torage system that  guaran tees  
that  an upda te  is e i ther  comple te ly  
p e r f o r m e d  or  is not  p e r f o r m e d  at 
all when  a fai lure occurs  is m o r e  
expens ive  to bui ld  than a s torage 
system which can restar t  in an in- 
consistent  state because it allows 
updates  to be partially comple t ed  
when  failures occur.  More  design 
e f for t  is r equ i r ed  to build a real- 
t ime ope ra t ing  system that  provides  
processor  service with crash fai lure 
semantics than  to build a s tandard  
mul t iuser  ope ra t i ng  system, such as 
Unix ,  which provides  processor  
service with only c rash /per for -  
mance  fai lure  semantics [45]. 

Hierarchical Failure Masking 
A fai lure  behavior  can be classified 
only with respect  to a cer ta in  server  
specification, at a cer ta in  level o f  
abstraction.  I f  a server  d e p e n d s  on 
lower-level  servers to correct ly  pro-  
vide its service, then  a fa i lure  o f  a 
cer ta in  type at a lower  level o f  ab- 
straction can result  in a fa i lure  o f  a 
d i f f e ren t  type at the h ighe r  level o f  
abstraction.  For  example ,  cons ider  
a value fai lure  at the physical trans- 
mission layer o f  a ne twork  which 
causes two bits o f  a message to be 
co r rup ted .  I f  the data  link layer 
above the  physical layer uses at least 
2-bit e r ro r -de tec t ing  codes to detect  
message co r rup t ion  and discards 
c o r r u p t e d  messages,  then  this fail- 
u re  is p ropaga t ed  as an omission 
fai lure at the data  link layer. As 
ano the r  example ,  cons ider  a clock 
affected  by a crash fai lure  that  dis- 
plays the same "t ime."  I f  that  clock 
is used by a h igher- level  c o m m u n i -  
cation server  that  is specif ied to as- 
sociate d i f f e ren t  t imes tamps  with 
d i f f e ren t  messages it sends at dif- 
f e ren t  real times, then  the c o m m u -  
nication server  may be classed as 

expe r i enc ing  an arbi t rary  fai lure 
[23]. 

As i l lustrated above,  fa i lure  
p ropaga t ion  a m o n g  servers situ- 
ated at d i f fe ren t  abstract ion levels 
o f  the " d e p e n d s  u p o n "  h ie ra rchy  
can be a complex  p h e n o m e n o n .  In  
general ,  i f  a server  u depends  on a 
resource  r with arbi t rary  fai lure 
semantics,  then  u will likely have 
arbi t rary  fai lure  semantics,  unless u 
has some means  to check the cor- 
rectness o f  the results p rov ided  by 
r. Since the task o f  checking  the 
correctness  o f  results p rov ided  by 
lower-level  servers  is very cumber -  
some, faul t - to lerant  systems design-  
ers p r e f e r  to use (wheneve r  possi- 
ble) servers  with fai lure  semantics  
s t ronger  than  a r b i t r a r y - - s u c h  as 
crash, omission or  pe r fo rmance .  In  
hierarchical  systems re lying on  such 
servers,  exception handling provides  
a conven ien t  way to p ropaga te  in- 
fo rmat ion  about  fa i lure  detect ions  
across abstract ion levels and to 
mask low-level fai lures f r o m  
higher- level  servers  [20]. T h e  pat- 
te rn  is as follows. Let  i a n d j  be two 
levels o f  abstraction,  so that  a server  
u a t j  d e p e n d s  on the  service imple-  
m e n t e d  by the lower  level i. I f  u 
down-calls a server  r at i, then  in- 
fo rma t ion  about  the fai lure  o f  r 
p ropaga tes  to u by means  o f  an ex- 
cept ional  r e tu rn  f r o m  r (this can be 
a t ime-ou t  even t  s ignal l ing no 
t imely r e tu rn  f rom r). I f  the server  
u at j d e p e n d s  on up-calls f rom 
lower-level  servers  at i to imple-  
m e n t  its service, u needs  some 
knowledge  about  the t iming  o f  such 
up-call  events  to be able to detect  
lower-level  server  failures. For  ex- 
ample ,  i f  the server  u expects  an 
i n t e r rup t  f r o m  a sensor  server  
every  per milliseconds,  a missing 
sensor  data  upda t e  can be de tec ted  
by a t imeout .  I f  the  server  u a t j  can 
p rov ide  its service despi te  the  fail- 
u re  o f  r at i we say that  u masks r's 
failure.  Examples  o f  masking  ac- 
tions that  u can p e r f o r m  are  down-  
calls to other ,  r e d u n d a n t  servers  r ' ,  
r", . . . at i, o r  r epea t ed  down-calls 
to r i f  r is likely to suf fe r  t rans ient  
omission failures. I f  u's masking  
a t tempts  do not  succeed,  a consis- 
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tent state must be recovered for u 
before information about u's failure 
is propagated to the next level of ab- 
straction, where further masking 
attempts can take place. In this way, 
information about the failure of a 
lower-level server r can either be 
hidden from the human  users by a 
successful masking attempt or can 
be propagated to the human users 
as a failure of a higher-level service 
they requested. The programming 
of masking and consistent state re- 
covery actions in a client c of u is 
usually simpler when c's designer 
knows that u does not change its 
state when it cannot provide its 
standard service. Servers which, for 
any initial state and input, either 
provide their standard service or 
signal an exception without chang- 
ing their state (termed "atomic with 
respect to exceptions" in [20]) sim- 
plify fault-tolerant programming 
because they provide their users 
with a simple-to-understand omis- 
sion failure semantics. 

The hierarchical failure-masking 
pattern described above can be il- 
lustrated by an IBM MVS operat- 
ing system example runn ing  on a 
processor with several CPUs (other 
examples of hierarchical masking 
can be found in [67]). When an at- 
tempt at reading a CPU register 
results in a parity check exception 
detection, there is an automatic 
CPU retry from the last saved CPU 
state. If this masking attempt suc- 
ceeds, data about the original fail- 
ure is logged and the human opera- 
tor is notified, but the original 
(transient) omission CPU failure 
occurrence is masked from the 
MVS operating system and the soft- 
ware servers above it. Otherwise, 
the observed parity exception fol- 
lowed by the unsuccessful CPU 
retry is reported by an interrupt  as 
a crash failure of that CPU server to 
the MVS system; it, in turn  ]nay at- 
tempt to mask the failure by 
reexecuting the program which 
caused the CPU register parity ex- 
ception (from a previously saved 
checkpoint) on an alternate CPU. If  
this masking attempt succeeds, the 
failure of the first CPU is masked 

from the higher levels of abstrac- 
t i o n - t h e  software servers which 
run application programs. If there 
are no alternate CPUs or all mask- 
ing attempts initiated by the MVS 
system fail, a crash failure of the 
MVS system occurs. 

Group Failure Masking 
To ensure that a service remains 
available to clients despite server 
failures, one can implement the 
service by a group of redundant ,  
physically independent ,  servers, so 
that if some of these fail, the re- 
maining ones provide the service. 
We say that a group masks the fail- 
ure of a member m whenever the 
group (as a whole) responds as 
specified to users despite the failure 
of m. While hierarchical masking (dis- 
cussed in the previous section) re- 
quires users to implement any re- 
source failure-masking attempts as 
exception handling code, with 
group masking, individual member 
failures are entirely hidden from 
users by the group management  
mechanisms. The group output is a 
function of the outputs of individ- 
ual group members. For example, 
the group output  can be the output  
generated by the fastest member of 
the group, the output  generated by 
some distinguished member of the 
group, or the result of a majority 
vote on group member outputs. We 
use the phrase "group g has F fail- 
ure semantics" as a shorthand for 
"the failures that are likely to be 
observable by users of g are in 
class F." 

A server group able to mask 
from its clients any k concurrent  
member failures will be termed 
k-fault tolerant; when k is 1, the 
group is single-fault tolerant, and 
when k is greater than 1, the group 
is multiple-fault tolerant. For exam- 
ple, if the k members of a server 
group have crash/performance fail- 
ure semantics and the group output  
is defined to be the output  of the 
fastest member, the group can 
mask up to k-1 concurrent  member 
failures and provide crash/perfor- 
mance failure semantics to its cli- 
ents. Similarly, a primary/standby 

group of k servers with crash/ 
performance failure semantics, 
with members ranked as primary, 
first backup, second backup . . . . .  
(k-1)th back up, can mask up to k-1 
concurrent  member failures and 
provide crash/performance failure 
semantics. A group of 2k + 1 mem- 
bers with arbitrary failure seman- 
tics whose output  is the result of a 
majority vote among outputs com- 
puted in parallel by all members 
can mask a m i n o r i t y i t h a t  is, up to 
k member failures. When a major- 
ity of members fail in an arbitrary 
way, the entire group can fail in an 
arbitrary way. 

Hierarchical and group masking 
are two end points of a cont inuum 
of failure-masking techniques. In 
practice one often sees approaches 
that combine elements of both. For 
example, a user u of a primary/ 
backup server group that sends its 
service requests directly to the pri- 
mary might detect a primary server 
failure as a transient service failure 
and might explicitly attempt to 
mask the failure by resending the 
last service request [7]. Even if the 
service request were automatically 
resent for u by some underlying 
group communication mechanism 
which matches service request with 
replies and automatically detects 
missing answers, it is likely that u 
contains exception-handling code 
to deal with the situation when the 
entire primary/backup group fails. 

The specific mechanisms needed 
for managing redundant  server 
groups in a way that masks member 
failures, and at the same time 
makes the group behavior func- 
tionally indistinguishable from that 
of single servers depend critically 
on the failure semantics specified 
for group members and the com- 
munication services used. The 
stronger the failure semantics of 
group members and communica- 
tion, the simpler and more efficient 
the group management  mecha- 
nisms can be. Conversely, the 
weaker the failure semantics of 
members and communication, the 
more complex and expensive the 
group management  mechanisms 
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become. 
To illustrate this other  general  

rule of  fault-tolerant computing,  
consider a single-fault-tolerant 
storage service S. I f  the elementary 
storage :servers used to build S have 
read omission failure semantics 
(error-detect ing codes ensure that 
the probabili ty of  read value fail- 
ures caused by bit corruptions is 
negligible), one can implement  S as 
follows: use two identical, physically 
independent  elementary servers s, 
s'; in terpre t  each S-write as two 
writes on s and s', and in terpre t  
each S-read as a read of  s, and if the 
s-read results in an omission fail- 
ure, a read of  s'. I f  the elementary 
storage servers are likely to suffer 
both omission and read value fail- 
ures, that is, it is possible that in re- 
sponse to a read either no value is 
re tu rned  or  the value re turned  is 
different  from the one written, 
then three elementary,  physically 
independen t  servers are needed for 
implement ing S: Each S-write re- 
sults in three writes to all servers, 
and each S-read results in three ele- 
mentary reads from all servers and 
a majority vote on the elementary 
results re turned.  I f  a majority ex- 
ists, the result of  the S-read is the 
majority value read. I f  no majority 
exists, the S-read results in an omis- 
sion failure. The  S service imple- 
mented by tr iplexing and voting is 
not only more complex and expen- 
sive than the service S implemented  
by duplexing,  but  is also slower. 

Other  illustrations of  the rule 
that group management  cost in- 
creases ;as the failure semantics of  
group members  and communica- 
tion services becomes weaker are 
given in [23] and [26], where fami- 
lies of  solutions to a group commu- 
nication problem are studied under  
increasingly weak group member  
and communicat ion failure seman- 
tics assumptions. Statistical mea- 
surements of  run-t ime overhead in 
practical systems confirm the gen- 
eral rule that the cost of  group 
management  mechanisms rises 
when the failure semantics of  
group members  is weak: while the 
run-t ime cost of  managing server- 

pair groups with crash/perfor-  
mance failure semantics can some- 
times be as low as 15% [11], the cost 
of  managing groups with arbitrary 
failure semantics can be as high as 
80% of  the total th roughput  of  a 
system [50]. 

Since it is more expensive to 
build servers with s t ronger  failure 
semantics, but it is cheaper  to han- 
dle the failure behavior of  such 
servers at higher  levels of  abstrac- 
tion, a key issue in designing multi- 
layered fault-tolerant systems is 
how to balance the amounts of  fail- 
ure detection, recovery, and mask- 
ing redundancy  used at the various 
abstraction levels of  a system, in 
o rde r  to obtain the best possible 
overall cost /performance/depend-  
ability results. For  example,  in the 
case of  the single-fault-tolerant 
storage service previously de- 
scribed, the combined cost of  incor- 
porat ing effective error-correct ing 
codes in the elementary storage 
servers and implement ing a single- 
fault-tolerant service by duplexing  
such servers is generally lower than 
the cost of  t r iplexing storage serv- 
ers with weaker failure semantics 
and using voting. Thus,  a small in- 
vestment at a lower level of  abstrac- 
tion for ensuring that lower-level 
servers have a s t ronger  failure se- 
mantics can often contribute to sub- 
stantial cost savings and speed im- 
provements  at higher  levels of  
abstraction and can result in a lower 
overall cost. On the other  hand,  
deciding to use too much redun-  
dancy, especially masking redun-  
dancy, at the lower levels of  abstrac- 
tion of  a system might be wasteful 
from an overall cost/effectiveness 
point of  view, since such low-level 
redundancy can duplicate the 
masking redundancy that higher  
levels of  abstraction might have to 
use to satisfy their  own dependabi l -  
ity requirements.  Similar cost/effec- 
tiveness "end-to-end" arguments  in 
layered implementat ions of  fault- 
tolerant communicat ion services 
have been discussed in [55]. 

Choosing a Failure Semantics 
When is the probabili ty that a 

server r suffers failures outside a 
given failure class F small enough 
to be considered "negligible"? In 
other  terms, when is it just if ied to 
assume that the only "likely" failure 
behaviors of  r are in class F? The  
answer to these questions depends  
on the stochastic requirements  
placed on the system u of  which r is 
a part.  

The  specification of  a server r 
must consist of  not only functional 
requirements  Sr and Fr that pre- 
scribe the server's s tandard  and 
failure semantics, but also of  a sto- 
chastic specification. The  stochastic 
requirements  should prescribe a 
min imum probabili ty s, that the 
s tandard  behavior Sr is observed at 
runtime,  as well as a maximum 
probability c, that a (potentially cat- 
astrophic) failure different  from 
the specified failure behavior Fr is 
observed. When a higher-level 
server u that depends  on r is built, 
critical design decisions will depend  
on S, and F~. Any verification that 
the design satisfies u's own s tandard 
and failure functional specifications 
S,, and F,  also relies on Sr and F~ 
[ 18]. To check that u satisfies its sto- 
chastic specifications, a designer  
has to rely on Sr, Cr and stochastic 
modeling/simulation/testing tech- 
niques [63] to ensure that the prob- 
ability of  observing S, behaviors at 
run-t ime is at least s,, and the prob- 
ability of  observing unspecified 
(potentially catastrophic) behaviors 
outside S,, or F ,  is smaller than c,,. I f  
c, is small enough to allow demon-  
strating that the design of  u meets 
the stochastic requirements  s,,, c,, 
then Fr is a failure semantics that is 
appropriate for using r in the system 
u. Ifcr  is significant enough to make 
such a demonstra t ion impossible, 
the designer  of  u has to settle for a 
failure semantics F , '  weaker than 
F,,, and redesign u by using new 
redundancy  management  tech- 
niques that are appropr ia te  for F , ' .  

To illustrate this point, consider 
a single-fault-tolerant storage ser- 
vice S specified as follows: the stan- 
dard  functional specification re- 
quires that an S-read following an 
S-write re turns  the value written; 
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the failure specification states that 
S-writes never fail and the only 
admissible S-read failures are omis- 
sion failures (reading a value dif- 
ferent from the one previously 
written is considered to have poten- 
tially catastrophic consequences); 
the stochastic specification requires 
that the probability of observing the 
specified standard behavior be at 
least l - f ,  where~  = 10 -1°, and the 
probability of observing an S-read 
value failure be at most c~ = 10 -18. 

Assume that, to build S, one de- 
cides to use a duplex design based 
on two physically independent  stor- 
age servers s, s' which use 1-bit 
error-detecting codes. The specifi- 
cation of these elementary storage 
servers is as follows: an s-read re- 
turns the value previously written 
with probability at least 1-f~, where 
f, = 10-9; an s-write always suc- 
ceeds; the probability that an s-read 
returns a value different from the 
one written is at most q = 1 0 - 1 9  

(less than one in 101° s-read failures 
is a value failure); when an s-read 
value failure occurs, that is, the 
value read V is different from the 
value written Vo, V can be any value 
among 101° storage word values 
that are different from Vo. 

A simple stochastic calculation 
shows that the duplex design de- 
scribed in the previous section satis- 
fies the S requirements: the prob- 
ability of an S-read omission failure 
is of the order of 10 -Is  and the 
probability of an S-read value fail- 
ure is of the order of 10 -19 . Thus, 
the omission failure semantics as- 
sumed by the duplex S design is 
appropriate: to build S one can "ne- 
glect" the probability c~= 10 -19 
that this failure assumption is vio- 
lated at runtime. 

If  the requirement  is to design a 
more reliable storage service S' with 
a specification as before, except 
that the probability of an S'-read 
value failure should be at most c~ = 
l0 -2°, then the duplex design 
based on the omission failure hy- 
pothesis for memories with 1-bit 
error-detecting codes is no longer 
adequate. Indeed, for that design, 
the probability c~ = 10 -I9 that an 

s-read returns an undetectably cor- 
rupted value that is passed to an S' 
user is unacceptably high. A simple 
stochastic calculation shows that the 
triplex design based on three mem- 
ories with 1-bit error-detecting 
codes with voting described in the 
previous section, "Group Failure 
Masking," satisfies the S' require- 
ments (for simplicity, we assume 
perfect voting). Indeed, the triplex 
design ensures that the probability 
of an S'-read omission failure is of 
the order of 10 -18 and the prob- 
ability of an S'-read value failure is 
of the order of 10 -48. Thus, if the 
goal is to build the S' storage sys- 
tem, it is no longer appropriate for 
a designer to assume that memories 
with 1-bit error-detection code have 
omission failure semantics. For S' 
the probability Cs of observing an 
s-read value failure becomes 
"nonnegligible" and the designer 
must adopt the weaker failure hy- 
pothesis that the memories with 
1-bit error-correcting codes used 
have omission/value failure seman- 
tics. Other examples of how to 
choose server failure semantics for 
highly dependable systems are dis- 
cussed in [53]. 

The remainder  of this article as- 
sumes that preliminary stochastic 
analyses or practical statistics have 
helped settle the issue of the ade- 
quacy of choosing a certain failure 
semantics over another one in the 
context of the systems to be de- 
scribed. 

Hardware 
Architectural issues 
To provide processor service to 
application software servers, an 
operating system needs hardware 
resources such as CPUs, memory, 
I/O controllers, and communica- 
tion controllers. Some hardware 
architectures package several of 
these basic resources into single 
replaceable units. Other architec- 
tures make each one of these re- 
sources a replaceable unit  by itself. 
A replaceable hardware unit means a 
physical unit  of failure, replace- 
ment  and growth-- tha t  is, a unit  
which fails independently of other 

units which can be removed from a 
cabinet without affecting other 
units, and can be added to a system 
to augment  its performance, capac- 
ity, or availability• The ultimate 
goal behind hardware replaceable 
units is to enable them to be physi- 
cally removed (either because of a 
failure or because of preventive 
maintenance) and inserted back 
into a system without disrupting the 
activity of software servers runn ing  
at higher levels of abstraction. This 
is often too expensive or impossible 
to achieve. The next goal is to en- 
sure that the service provided by 
the hardware servers in each replace- 
able unit  has a "nice" failure seman- 
tics, such as crash or omission, so 
that the higher software levels of 
abstraction can provide low-over- 
head hardware failure masking by 
relying on stronger failure seman- 
tics. Depending on whether or not a 
qualified field engineer is needed 
to remove or install a replaceable 
unit, it is customary to classify them 
intofield replaceable (which need the 
intervention of a field engineer) 
and customer replaceable (which do 
not require field engineer interven- 
tion). 

What are the Replaceable Units? 
How are they Grouped and 
Connected? 
Depending on the granularity of 
the replaceable hardware units of a 
processor architecture, it is possible 
to distinguish between coarse gran- 
ularity architectures and fine gran- 
ularity architectures. In a coarse 
granularity architecture, some re- 
placeable units package together 
several elementary hardware serv- 
ers such as CPUs, memory, I/O 
controllers and communication 
controllers. In a fine granularity 
architecture, each elementary 
hardware server is a replaceable 
unit  by itself. Some examples of 
commercially successful coarse 
granularity architectures are Tan- 
dem [7], DEC VAX Cluster [38] 
and IBM MVS/XRF [32]. Examples 
of fine granularity architectures are 
Stratus [62] and Sequoia [8]. Other 
examples of fault-tolerant architec- 
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tures can be found in [2, 44, 58]. 
The Tandem processor architec- 

ture packages CPU, memory, bus 
and I/O controller servers into sin- 
gle replaceable units as illustrated 
in Figure 2. These units can com- 
municate among themselves via a 
dual bus called Dynabus. Disk, tape, 
communication, and terminal con- 
troller servers are field replaceable 
units by themselves. While in high- 
end Tandem systems, CPU/ 

system uses a combination of hier- 
archical and group masking tech- 
niques to mask hardware resource 
failures from users: if one of the 
active hardware resources on the 
active path fails, then the operating 
system uses the other path to con- 
tinue to provide service to the af- 
fected users [7]. For example, if a 
software server interpreting user 
commands uses a disk via a certain 
disk controller, and the controller 

Dynabus 

bus control 
CPU 

memory 

I/0 channel 

. ~ ~ ~  disc. contr. 

n 

H terminal contr. I----I----I 

Tandem Processor Architecture 
memory units are field replaceable, 
in the newer, low-end CLX systems 
they became customer replaceable. 
The key ideas behind the Tandem 
architecture were as follows: 1) en- 
sure the'. existence of two disjoint 
access paths from any terminal con- 
troller to any physical servers 
needed for interpret ing user com- 
mands, such as CPU, memory, disk, 
or tape, and 2) group servers into 
failure-masking server pair groups. 
The operating system implements 
the pair management  algorithms 
and decides which resources play 
an actiw~ role in interpret ing user 
commands and which resources 
play a backup role. The operating 

fails, the operating system masks 
the failure by redirecting further 
disk accesses through the other disk 
controller. The operating system 
can also ensure that disk, bus, or 
bus controller failures are masked 
from higher-level application pro- 
cesses. If  a CPU/memory replace- 
able unit  fails, any software server 
executing on that unit  also fails• 
The hardware architecture ensures 
that another CPU/memory unit  
with access to the resources needed 
by the failed servers exists. If  a 
failed server is a primary in a group 
implementing an operating system 
service, such as disk I/O, its failure 
is automatically masked from 
higher-level user servers by the 
promotion of its backup [7] to the 
role of primary. Since user-level 

application servers are generally 
not implemented by process pairs, 
to avoid the complications associ- 
ated with programming periodic 
checkpointing [29] the failure of 
user application servers is visible to 
human users who have to wait until 
these servers are restarted. 

The  duplication of hardware re- 
sources needed by software servers 
makes the Tandem architecture 
single-fault tolerant: any single 
hardware replaceable unit  failure 
can be tolerated, provided no sec- 
ond replaceable unit  failure occurs. 
As reported in [29], the use of 
server pair groups to implement  
operating system services also en- 
ables the masking of a significant 
fraction of the operating system 
server failures caused by residual 
software design faults. Single-fault 
tolerance does not mean that it is 
impossible to mask two or even 
more concurrent  hardware re- 
placeable unit  failures. For exam- 
ple, the simultaneous failure of two 
disk controller servers attached to 
distinct disks can be masked from 
higher-level software servers. What 
single-fault tolerance means is that 
the architecture guarantees mask- 
ing of any single hardware replace- 
able unit  failure but it does not 
guarantee that any two concurrent  
replaceable unit  failures can be 
masked. That  is, there exist double 
failures which cannot be masked. 
For example, if two CPU/memory 
or disk controller replaceable units 
attached to the same disk fail, then 
any service that depends upon the 
disk also becomes unavailable. 
Since the other commercial system 
architectures discussed in this arti- 
cle are single-fault tolerant, this 
point will not be discussed further. 

In the VAX Cluster processor 
architecture (Figure 3), the field 
replaceable units are entire VAXs 
(containing CPU, main storage, as 
well as LAN controllers), entire 
storage controllers (containing mi- 
croprocessors, specific device driv- 
ers, as well as LAN controllers) or 
entire terminal controllers. Two 
kinds of local area networks can be 
used in a VAX Cluster: a high- 
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speed custom-designed Computer  
Interconnect (in Figure 3 this is 
duplexed and connects several 
VAXs and storage controllers) and 
a low-speed Ethernet. For a VAX 
cluster to be single-fault tolerant, 
dual LANs are needed for connect- 
ing processors to storage control- 
lers. In a manner  similar to the 
Tandem architecture, the idea is to 
ensure the existence of at least two 
disjoint access paths from any ter- 
minal controller to any physical re- 
sources such as CPU, memory, disk, 
or tape needed by a software server 
which interprets user commands. 
Hardware replaceable unit  failures 
are masked by a combination of 
hierarchical and group masking 
techniques. Disks can be dually 
ported to different storage control- 
lers, so that if a controller fails, the 
operating system can redirect I/O 
to an alternate controller. A com- 
puter interconnect permanent  fail- 
ure is similarly masked at operating 
system level by redirecting all re- 
maining traffic on the alternate 
computer interconnect. If a VAX 
fails, then all software servers which 
were runn ing  on it also fail. Any 
other VAX with enough capacity in 
the cluster can become active in 
runn ing  these servers, but they 
have to be explicitly restarted, as 
was the case with user servers in the 
Tandem system. Thus, for both the 
Tandem and VAX cluster architec- 
tures, single failures of CPU/ 
memory replaceable units can re- 
sult in the failure of higher-level 
application servers, and these fail- 
ures are visible to human users. 

In the IBM XRF architecture 
(Figure 4) the replaceable hardware 
units are entire high-end IBM 
processors. (In general, whenever 
previously existing processor archi- 
tectures have to be integrated into a 
fault-tolerant system based on a 
local area network, the granularity 
of the resulting architecture is nat- 
urally coarse.) The XRF system 
provides continuous IMS database 
service by using group masking: a 
group of two IMS servers runn ing  
on two distinct high-end processors 
connected by a point-to-point local 
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area network to provide IMS ser- 
vice. One of the servers, the pri- 
mary, interprets user requests and 
has an up-to-date view of the appli- 
cation state, while the other server, 
the backup, lags behind in its 

knowledge of the current  applica- 
tion state. The backup maintains 
this delayed knowledge by reading 
a log generated by the primary. 
This ar rangement  allows hardware 
and operating system failures to be 
masked to users of the IMS service. 

The Stratus processor architec- 
ture (Figure 5) was the first to in- 
troduce the systematic use of dupli- 
cation and matching for 
implementing CPU, I/O and com- 
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munication controller hardware 
servers with crash failure semantics. 
Another  characteristic of this archi- 
tecture is its fine granularity: most 
elementary hardware servers are 
customer replaceable units with 
their own power supply. This can 
substantially reduce maintenance 
costs and ease horizontal growth. A 
third idea is to use group masking 
at the hardware level by pairing ele- 
mentary hardware servers with 
crash or omission failure semantics. 
This enables some of the hardware 
server failures to be masked from 
the higher software levels. For ex- 
ample, in order to provide single- 
fauh-tolerant processor service to 
software servers, two CPU servers 
with crash failure semantics (each 
of them implemented by a pair of 
microprocessors executing in lock- 
step that continuously compare 
their re,;ults) are organized as a 
masking group. Each group mem- 
ber receiwes the same sequence of 
inputs. In the absence of member  
failures the output  of either mem- 
ber is accepted. If  one member suf- 

fers a crash failure (detected as a 
disagreement among the two mi- 
croprocessors which implement  it), 
the output  is taken from the other 
member. Similarly, memory banks 
with read omission failure seman- 
tics (implemented by using two-bit 
detection/one-bit correction codes) 
can be duplexed to obtain a single- 
fauh-tolerant storage service with 
read omission failure semantics. 
Not all elementary hardware server 
failures are masked directly at the 
hardware level. For example, disk 
failures are hierarchically masked 
at the operating system level, since 
at the lower hardware levels there is 
not enough state information to 
enable pure hardware group mask- 
ing to take place. A dual bus, called 
the Stratabus, enables the replace- 
able units of a processor to commu- 
nicate among themselves despite 
any single bus failure, and a dual 
LAN named Stratalink enables 
processors to communicate among 
themselves despite any single 
Stratalink failure. Terminals can 
optionally be connected to a proces- 
sor by a pair of communication 
buses redundant ly  connected to 
two communication controllers at- 

tached to the processor Stratabuses. 
This enables the system to mask 
single communication controller or 
bus failures without requiring the 
user to move from one terminal to 
another one. A double hardware 
failure or an operating system 
server failure can cause an operat- 
ing system crash. In this case all the 
user servers that were using ser- 
vices provided by that operating 
system also fail. 

Figure 6 shows the Sequoia mul- 
tiprocessor architecture, another  
example of a fine-granularity archi- 
tecture. The  CPU and I/O control- 
ler services are implemented by 
paired microprocessors that exe- 
cute the same instruction stream in 
lockstep and continuously compare 
their results, as in the Stratus archi- 
tecture. This ensures that the CPU 
and I/O controller hardware ser- 
vices used by operating system serv- 
ers have crash failure semantics. 
Memory servers rely on error- 
detecting/correcting codes to im- 
plement omission failure semantics. 
Individual CPU, memory, and I/O 
controller servers are packaged as 
customer replaceable units. Fault- 
tolerant communication among 
replaceable units is provided by a 
dual system bus. Each bus is com- 
posed from a processor segment 
that connects CPUs, a memory seg- 
ment  that connects memory ele- 
ments and I/O elements, and a glo- 
bal segment which connects the 
previously mentioned buses via 
master (MI) and slave (SI) inter- 
faces. Both the master and slave 
interfaces provide electrical isola- 
tion for the adjacent bus segments 
for error  confinement  reasons. The  
operating system uses hierarchical 
masking techniques to hide any sin- 
gle hardware server failure from 
the software processes that depend 
upon it. For example, when a CPU 
server crashes, the operating sys- 
tem automatically attempts to re- 
start the software server that was 
executed by the failed CPU on an- 
other CPU server by using a previ- 
ously saved checkpoint of the 
server state. To ensure that server 
state updates are atomic with re- 
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spect to CPU crashes, a shadowing 
technique is adopted. This requires 
that the operating system maintains 
two copies of the state of a software 
server on two different memory 
units. To mask memory read omis- 
sion failures, all writable data pages 
are duplicated on different physical 
memory elements, and all read or 
executable-only pages are also 
stored on disks. If  a memory ele- 
ment  fails, the data page which 
could not be read is recovered ei- 
ther from another memory element 
or a disk, depending on whether it 
was a writable or only a readable or 
executable page. The operating 
system can also mask single disk 
failures by duplicating disk pages 
on dual-ported disks attached to 
different I/O controllers. In this 
way, the operating system can mask 
any single hardware replaceable 
unit  failure as long as at least two 
CPU, two I /0  controller, and two 
memory servers work correctly and 
all failures that occur are fully re- 
covered before a second failure 
occurs. When the number  of cor- 
rectly working hardware servers 

: I G U R E  6 

sequoia Multiprocessor 
Architecture 

drops below these thresholds, the 
operating system can continue to 
provide processor service with 
crash/performance failure seman- 
tics as long as at least one CPU, one 

I/O controller and one memory 
server continue to work correctly. 
If multiple concurrent  failures 
occur or CPU, memory or I/O con- 
troller service is no longer available 
because all CPU, memory, or I/O 
controllers have failed, the operat- 
ing system, and hence all higher- 
level software servers will fail. Pro- 
cessor service failures can of course 
also occur because of residual de- 
sign faults in the operating system. 

What Failure Semantics is 
Specified for Hardware Servers? 
Developers of operating system 
software typically assume that CPU, 
I/O and communication controller 
servers have crash failure seman- 
tics, that memory elements have 
read omission failure semantics, 
that disks have seek performance 
failure semantics and read/write 
omission failure semantics, and that 
communication buses and commu- 
nication lines have omission or 
omission/performance failure se- 
mantics. All previously mentioned 
systems make these assumptions. 

Such strong hardware failure se- 
mantics enable system designers to 
use known hierarchical and group 
masking techniques to mask hard- 
ware server failures, such as storage 
duplexing to mask loss of data rep- 
licated on two-memory or disk serv- 
ers with read omission failure se- 
mantics [42] or virtual-circuits to 
mask omission or performance 
communication failures by using 
time-outs, sequence numbers,  ac- 
knowledgements and retries [61]. 
Moreover, when masking is not 
possible, strong hardware server 
failure semantics such as omission 
and crash enable system program- 
mers to ensure that the operating 
system and communication services 
they implement have a strong fail- 
ure semantics. For example, CPU 
and disk controllers with crash fail- 
ure semantics and disks with read 
omission failure semantics enable 
the implementation of a higher- 
level stable storage service [18, 42] 
with write operations that are 
atomic with respect to crashes: any 
stable storage write interrupted by 
a crash is either carried out to com- 
pletion or is not performed at all. 
Such stable storage service can then 
be used by other higher-level serv- 
ers to implement atomic transac- 
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tions by relying on known database 
recover), techniques such as write- 
ahead logging and two-phase com- 
mit [28]. Similarly, lower-level data- 
gram communicat ion services with 
omission/performance failure se- 
mantics enable the implementat ion 
of  higher-level virtual-circuits with 
crash faJilure semantics [61]. 

Beyond these restrictive hypoth- 
eses about the failure semantics of  
the basic hardware  replaceable 
units, tile complexity and cost of  
detecting, diagnosing, and recover- 
ing from elementary hardware  
server tailures increases to levels 
that many regard  as unacceptable 
for most commercial  applications in 
on-line transaction processing and 
telecommunications. Examples of  
processor architectures designed 
for highly critical application areas 
where, because of  ultra-high sto- 
chastic dependabil i ty  requirements  
designers had to assume that their 
e lementary hardware  servers have 
arbi t rary failure semantics, can be 
found in [30, 31, 66]. 

How is the Specified Hardware 
Failure Semantics Implemented? 
In o rde r  to detect failures in buses, 
communicat ion lines, memory and 
disk servers, all the previously dis- 
cussed architectures use error-  
detecting codes. This hardware  
failure detection technique is well 
understood.  The re  is a rich litera- 
ture specializing in error-detect ing 
codes and this subject seems to have 
reached a fairly mature  state [52, 
65]. To detect failures in hardware  
servers, ;such as CPU, I/O and com- 
munication controllers, systems 
such as IBM, VAX and high-end 
Tandem use error-detect ing codes 
while newer systems such as Stra- 
tus, Sequoia, Tandem CLX and 
DEC VAXft 3000 use lockstep du- 
plication with comparison.  

While error-detect ing codes 
seem to remain the choice method 
for detect ing failures in storage and 
communicat ion hardware  servers 
such as memories,  disks, buses and 
communicat ion lines, they seem to 
give way to duplication and match- 
ing in complex circuits, such as 

CPUs and device and communica- 
tion controllers based on off-the- 
shelf microprocessors.  One reason 
for this t rend is that duplication 
and matching seems to provide a 
better  approximat ion of  crash fail- 
ure semantics for these complex 
servers than error-detect ing codes. 
Indeed,  while for CPUs and I/O 
controllers based on error-detect-  
ing codes there is a possibility that 
the data written to a bus or storage 
dur ing  the last "few" cycles before a 
failure detection is erroneous,  du- 
plication and matching by using 
self-checking [47] compara tor  cir- 
cuits virtually eliminates the possi- 
bility of  such damage.  The  cost for 
this excellent failure detection ca- 
pability is that two physical hard-  
ware servers plus the comparison 
logic are needed instead of  only one 
elementary server augmented  with 
error-detect ing circuitry. 

Besides providing a better  guar-  
antee of  crash failure semantics for 
complex servers such as CPU and 
I/O controllers, duplication and 
matching has a number  of  other  
attractive characteristics. The  ab- 
sence of  error-detect ing circuitry in 
e lementary physical servers reduces 
their complexity, leading to in- 
creased reliability and reduced de- 
sign and testing costs. The  elimina- 
tion of  the error-detect ing circuitry 
also makes these servers faster. 
Another  reason for using lockstep 
duplication is the availability of  
cheap fast microprocessors which 
do not have much error-detect ion 
circuitry. Pairing these off-the-shelf  
components  and adding  a compar-  
ator can be cheaper  than develop- 
ing propr ie tary  processor designs 
with elaborate error-detect ing ca- 
pabilities. Moreover,  pair ing off- 
the-shelf processors enables com- 
puter  system manufacturers  to 
"ride the wave" of  rapid  improve- 
ments in chip speed and update  
their  product  lines prompt ly  as new 
chips become available on the mar- 
ket. One last advantage of  lockstep 
duplication worth ment ioning is 
improved software quality growth. 
When any elementary hardware  
server failure is prompt ly  detected 

as a disagreement  before any data 
damage occurs, it is easier to deter-  
mine whether  failures were caused 
by software design faults or  by 
physical faults. Indeed,  if an oper-  
ating system failure occurs and no 
disagreement  between hardware  
processors is observed, then with 
high probability, the failure is due 
to a software design fault. This is in 
sharp contrast  to what occurs in 
more tradit ional processor archi- 
tectures based on error-correct ing 
codes. Since in such architectures 
hardware  failures in CPU and I/O 
servers can result in undetectable 
damage to data due to latencies in 
failure detection, a large class of  
system failures attr ibutable to the 
software are in fact caused by the 
hardware.  The  knowledge that 
hardware  failures can, with signifi- 
cant probability, "masquerade" as 
software design faults can create 
serious difficulties in the p rope r  
diagnosis of  system failures. In this 
case, opera t ing  system developers 
may blame hardware  malfunction- 
ing for system failures they cannot 
diagnose, and hardware  developers 
may blame the opera t ing  system for 
failures where the hardware  appar-  
ently has worked properly.  

HOW are Hardware Server Failures 
MaSked? 
It is possible to implement  the re- 
dundancy management  mecha- 
nisms which mask hardware  server 
failures directly in hardware, for 
example by using group  masking 
techniques such as t r iplexing physi- 
cal hardware  servers with arbi t rary 
failure semantics and voting [31] or  
duplexing  hardware  servers with 
crash failure semantics (which in 
their  turn  can be implemented  by 
server pairs based on duplication 
and matching [62]). This allows sin- 
gle processor failures to be masked 
from higher  software levels of  ab- 
straction and increases the mean 
time between failures for the raw 
processor service. Note, however, 
that hardware  tr iplexing or  
quadruplex ing  does not eliminate 
the need for handling,  at applica- 
tion software levels, processor ser- 
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vice failures in the same way as if 
this service were implemented by a 
nonredundan t  processor. Although 
such failures will occur less fre- 
quently, they will occur and must be 
handled. For example, if the trans- 
actions implemented at a database 
service level must be atomic with 
respect to processor service crashes, 
the code for implementing the 
transaction failure semantics will 
have to be written, possibly by rely- 
ing on logging and recovery facili- 
ties provided by the underlying 
operating system, whether the pro- 
cessor service is implemented by 
using a simple CPU or a quadru- 
plex CPU arrangement.  Note also 
that hardware triplexing or 
quadruplexing is of no help in pro- 
viding fault tolerance at the operat- 
ing system and application levels. 

Several systems attempt to mask 
hardware server failures at the oper- 
ating system level, so that application 
software servers can continue to 
run without interruption. For ex- 
ample, the Sequoia and MVS oper- 
ating systems use a combination of 
hierarchical and group masking 
methods to hide single CPU fail- 
ures from higher-level software 
servers by restarting a server that 
ran on the failed CPU in a manner  
transparent to that server. Similar 
masking of CPU bus or disk con- 
troller failures is done by the oper- 
ating systems of Tandem, VAX 
cluster and the IBM XRF architec- 
tures. Although the choice of mask- 
ing hardware server failures at the 
operating system level can provide 
tolerance not only to hardware, but 
also to operating system server fail- 
ures [29], it does not solve the prob- 
lem of how to ensure fault toler- 
ance of application services. 

The use ot redundant  applica- 
tion software server groups allows 
both hardware, operating system 
and software server failures to be 
masked at the highest level of ab- 
straction: the application level. The 
idea is to implement  any applica- 
tion service that must be available to 
users despite hardware or software 
failures by a group of redundant  
software servers which run  on dis- 

tinct hardware processor hosts and 
maintain redundant  information 
about the global service state. When 
a group member fails, either be- 
cause of a lower-level hardware or 
software service failure or because 
of a residual design fault in its pro- 
gram, the surviving group mem- 
bers have enough service state in- 
formation to continue to provide 
the service. Although the approach 
of masking server failures at the 
highest, application level is the most 
"powerful," in that it can mask both 
hardware and software server fail- 
ures, among the successful com- 
mercial systems discussed previ- 
ously, only Tandem and IBM XRF 
make use of redundant  software 
server groups. 

Sof tware  
Architectural  Issues 
Software servers are analogous to 
hardware replaceable units. These 
are the basic units of failure, re- 
placement, and growth of software. 
As with hardware replaceable units, 
the ultimate goal is to enable soft- 
ware servers to be removed from a 
system (due to failures or up- 
grades), without disrupting the ac- 
tivity of the users. When this is im- 
possible to achieve, either because 
of cost and complexity or because 
the number  of active servers pro- 
viding a service drops below some 
threshold, the next goal is to ensure 
that software servers have a "nice" 
failure semantics, such as crash, 
omission or performance. This will 
allow their (possibly human) users 
to recover from failures by relying 
on simple masking protocols such 
as "log in again" or "wait for some 
time and try again." Because of the 
similarity in goals, the problems 
that have to be dealt with at the 
software architecture level are simi- 
lar to the ones discussed in the sec- 
tion entitled "Hardware Architec- 
tural Issues." The methods for 
solving these problems, however, 
can be quite different in their im- 
plementation details. 

What Failure Semantics is 
Specified for Software Servers? 
Depending on whether the state of 

a service is persistent or not, one 
might require the application serv- 
ers that implement  the service to 
provide atomic transaction failure 
semantics--or  simply amnesia or 
partial-amnesia crash failure se- 
mantics. An atomic transaction, 
which is a sequence of operations 
on persistent data usually stored in 
a database, must change a consis- 
tent database state into another 
consistent database state or must 
not change the database state at all 
when a lower-level processor ser- 
vice crash occurs [28, 42]. For soft- 
ware servers, such as low-level I/O 
and communication controllers 
which typically do not have persis- 
tent state, one is usually content 
with amnesia crash failure seman- 
tics: after a failure these servers 
must properly reinitialize them- 
selves and accept new service re- 
quests. 

To implement  atomic transaction 
or simply crash failure semantics, 
the commercial systems described 
previously assume that the pro- 
grams that implement the opera- 
tions exported by software servers 

a r e  totally, or at least partially, cor- 
rect [20]. A program is totally cor- 
rect if it behaves as specified in re- 
sponse to any input  as long as the 
services it uses do not fail. A par- 
tially correct program may suffer a 
crash or a performance failure for 
certain inputs even when the ser- 
vices it uses do not fail. In this way, 
if a server delivers a result or per- 
forms a state transition in response 
to a service request, that result/state 
transition is correct, although the 
result may not be timely or even 
delivered at all. Partial correctness 
as a basic hypothesis about the fail- 
ure semantics of software servers is 
appealing for several reasons. First, 
it is more easily achievable than 
total correctness. Second, it seems 
to be achievable in practice: after 
undergoing extensive reviews and 
tests, the software available com- 
mercially occasionally crashes or is 
slow, but does not output  had re- 
sults. Third,  a partially correct 
server--which by definition has 
crash/performance failure seman- 
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tics when the lower-level software 
and hardware services it depends  
upon do not fa i l - -mainta ins  its 
crash/performance failure seman- 
tics when these lower-level services 
do fail, provided the lower-level ser- 
vice failures are crash, omission or 
performance failures. Thus,  if at all 
levels of  abstraction of  a system, 
such as hardware,  operat ing sys- 
tem, and applications, all servers 
have crash~omission~performance 
failure semantics, the system will 
have crash/omission/performance 
failure semantics as a whole. This 
yields a s imple-to-understand,  
homogeneous  quality assurance 
goal for all abstraction levels: makes 
the hardware  have crash or omis- 
sion failure semantics, and makes 
the software be totally, or at least 
partially, correct. 

Some special-purpose systems do 
not assume that their component  
servers have "nice" failure seman- 
tics, such as crash~omission~perfor- 
mance [4, 30, 31, 66]. By assuming 
that group management  services 
such as clock synchronization, 
atomic broadcast,  and voting work 
correctly, such systems can mask a 
minority of server failures in appli- 
cation groups built from members  
with arbi trary failure semantics. 
Depending  on the assumptions 
made about the faults which cause 
the failures, the systems can be clas- 
sified in two classes: those that at- 
tempt  to tolerate only physical 
faults [30, 31, 66], and those that 
a t tempt  to also tolerate design 
faults [4]. The  first class of  system 
replicate,; the application servers on 
different,  physically independen t  
processors. Since physical faults 
tend to occur independent ly  in in- 
dependen t  processors, such faults 
are likely to cause minority applica- 
tion group failures. Experience 
with the systems [30, 31, 66] con- 
firms that these can effectively 
mask the consequences of  physical 
faults. Recent work on diverse soft- 
ware design [3] pursues the goal of  
producing  a diverse software de- 
sign methodology that would en- 
sure that groups of  application 
servers runn ing  diverse programs 

do not suffer majority failures de- 
spite the existence of  residual de- 
sign faults in these programs.  Per- 
haps because there are no accepted 
techniques to estimate with confi- 
dence the increase in reliability that 
results from the use of  diverse pro- 
g ramming  with voting, the work on 
design diversity has generated con- 
siderable controversy to date [3, 
35}. 

How is the Specified Software 
Failure Semantics Implemented? 
The  problems related to the imple- 
mentat ion of  atomic transactions on 
persistent data despite processors 
with crash/performance failure 
semantics, disks with omission fail- 
ure semantics, and communicat ion 
services with omission/performance 
failure semantics have been investi- 
gated intensively for more than 20 
years by researchers in the area of  
database systems. Monographs  and 
books, such as [9] and [28] treat  the 
subject in great  detail. To separate 
concerns, these monographs  as- 
stone that the programs used in 
implement ing transaction atomicity 
are at least partially correct. The  
problems that need to be solved in 
implement ing totally or  partially 
correct  programs have been the 
object of  intensive study for the last 
four  decades in the software engi- 
neering community.  Over the last 
30 years, several ideas have 
emerged that have proven effective 
in helping software designers pre- 
vent the introduct ion of  design 
faults in programs.  Among  these, 
the most widely accepted are: pur-  
suit of  simplicity and clarity dur ing  
design, hierarchical design meth- 
ods based on information hiding 
and abstract data types, r igorous .  
design specification and verifica- 
tion techniques, systematic identifi- 
cation, detection, and handl ing of  
all exception occurrences, and use 
of  modern  inspection and testing 
methods. None of  the papers  de- 
scribing the commercial  systems 
discussed earl ier  deal with this 
issue; however, it is reasonable to 
assume that all have extensively 
used modern  software engineer ing 

methods when at tempting to en- 
sure that their software is totally, or  
at least partially, correct. 

Among  the systems discussed, 
most provide concurrency control  
and recovery suppor t  for imple- 
menting application servers with 
atomic transaction failure seman- 
tics. The  goal is to ensure that con- 
current ly executing transactions 
are ser ia l izable-- that  is, their  exe- 
cution is equivalent to a serial exe- 
cution, and that sequences of  
changes made to stable storage are 
ei ther pe r fo rmed  to complet ion or 
aborted.  These  servers rely on tech- 
niques such as locking, logging, 
disk mirror ing,  and atomic commit  
[9, 28, 42]. 

HOW are Software Server Failures 
Masked? 
All of  the commercial  systems dis- 
cussed earl ier  use hierarchical 
masking techniques to mask hard-  
ware and certain software server 
failures. While such techniques can 
be effective in masking crash, omis- 
sion and per formance  server fail- 
ures as long as the under lying pro- 
cessor service needed by these 
servers does not fail, one needs a 
group masking technique to toler- 
ate software server failures caused 
by failures of  the under ly ing pro- 
cessor service. 

Software group masking tech- 
niques based on members  with 
crash/performance failure seman- 
tics are used by two of  the commer-  
cially successful systems discussed 
previously: Tandem and IBM XRF. 
In Tandem systems, processes pairs 
are used for implement ing fault- 
tolerant  basic opera t ing  system ser- 
vices such as disk I/O service, spool 
service, or  logging/commit service, 
while in the XRF system pairs of  
pr imary/backup database and com- 
munication servers are used to im- 
plement  fault- tolerant  database and 
communicat ion services. 

A prerequisite for the implemen- 
tation of  a service by a software 
server group capable of  masking 
processor service failures is the ex- 
istence of  muhiple  host processors 
with access to the physical resources 
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used by that service. For example, if 
a disk containing a database can be 
accessed from four different pro- 
cessors, then all four processors can 
host database servers for that data- 
base service. A four-member data- 
base server group can then be orga- 
nized to mask up to three 
concurrent  processor failures. 
More generally, replication of the 
resources needed by a service is a 
prerequisite for making that service 
available despite individual re- 
source failures. For example, the 
use of at least two disks with omis- 
sion failure semantics to store a 
database enables one to implement 
a database service that can mask 
any single disk failure. 

The use of software server 
groups raises a number  of novel is- 
sues that are not well understood: 
First, how should group members 
runn ing  on different processors 
maintain consistency of their local 
states in the presence of member 
failures, member joins, and com- 
munication failures? Second, how 
should server groups communi- 
cate? Third,  how is it automatically 
ensured that the required number  
of members is maintained for 
server groups despite operating 
system, server, and communication 
failures? 

The difficulty of solving these 
problems might well be one of the 
main reasons why software server 
groups are not more widespread in 
commercial applications. A second 
reason might be that, while for a 
failed elementary hardware server 
such as a CPU or a memory bank 
the repair can take hours or even 
days; for a software server that 
crashes, the "repair," (that is, the 
restart) can often only take min- 
utes. Thus, since elementary hard- 
ware server failures can heavily 
contribute toward the user-visible 
service downtime, most manufac- 
turers prefer to attack this problem 
first. A third reason why software 
server groups are unpopular  is the 
additional complexity associated 
with the group management  mech- 
anisms and their inherent  run-time 
overhead. A fourth reason might 

be that it is not a priori clear 
whether low overhead groups of 
members with crash/performance 
failure semantics can provide effec- 
tive tolerance to residual software 
design faults. Recent statistics [29] 
show that software server group 
management  mechanism designed 
for servers with crash/performance 
failure semantics [7] can be realis- 
tically effective in masking server 
failures caused by hardware faults 
as well as residual design faults left 
in production-quality software after 
extensive reviews and testing. An 
example reported in [29], which is 
based on a sample set of 2000 Tan- 
dem systems representing over 10 
million system hours, indicates that 
for the primary/backup spooling 
process group used in Tandem's  
distributed operating system, only 
0.7% of the failures affecting the 
group were double server failures, 
that is, group failures. The remain- 
ing failures (99.3%) detected in the 
group were single member failures 
that left the other member, and 
hence, the group, runn ing  cor- 
rectly. A plausible explanation for 
this phenomenon  is that most phys- 
ical faults affecting physically inde- 
pendent  processors occur indepen- 
dently, and hence cause any 
affected software servers to crash 
independently.  Similarly, most re- 
sidual software design faults mani- 
fest themselves intermittently in 
rare exceptional conditions that 
result in t ime-dependent  synchro- 
nization errors or in a slow accumu- 
lation of resources acquired for 
temporary use and never released. 
Such errors and residues seem to 
accumulate at different rates in 
group members playing different 
roles, such as primary and backup, 
and eventually lead individual 
group members to crash at differ- 
ent times. 

How are the local states of group 
members synchronized? For any ser- 
vice, the server group synchronization 
policy prescribes the degree of local 
state synchronization that must 
exist among the servers implement- 
ing the service. 

Close synchronization (also called 
masking or active redundancy) pre- 
scribes that local member  states are 
closely synchronized to each other 
by letting all members execute all 
service requests in parallel and go 
through the same sequence of state 
transitions. The group output  de- 
pends on the failure semantics as- 
sumed for its members. If  group 
members can fail in arbitrary ways, 
majority voting is the most common 
method used: a group answer is 
output  only if a majority of the 
members agree. This group organi- 
zation masks minority member fail- 
ures at the price- of slowing down 
the group output  time to the time 
needed for a majority of members 
to compute agreeing answers and 
for the voting process to take place. 
If  a majority of members fail con- 
currently, then the group output  
can be incorrect. If group members 
have crash/omission/performance 
failure semantics, any output  com- 
puted by a member can be sent to 
users. If all members send their 
outputs in parallel, the group out- 
put can be understood as being the 
output  computed by the set of fast- 
est members. The advantage of this 
output-sending technique is that a 
group will perform correctly as 
long as at least one group member 
stays correct. The drawback is a 
high communication overhead. To 
reduce this overhead, group mem- 
bers can be ranked with respect to 
communication, or c-ranked, and 
output  sending can be restricted to 
the highest functioning c-ranked 
member. The cost is an increased 
output  delay when the highest 
c-ranked member fails, due to the 
need to detect its failure and agree 
on a new c-ranking among surviv- 
ing members. Closely synchronized 
groups of software servers are used 
by all systems that attempt to toler- 
ate arbitrary server failures, such as 
[30, 31, 66]. Examples of closely 
synchronized groups of members 
with crash/performance failure 
semantics are described in [17, 24]. 
A number  of rules for transform- 
ing non-fault-tolerant services im- 
plemented by nonredundan t  appli- 
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cation programs into fault-tolerant 
services implemented by closely 
synchronized server groups have 
been proposed in [40] and are dis- 
cussed fur ther  in [57]. 

In contrast to close synchroniza- 
tion, loose synchronization (also called 
dynamic or  standby redundancy)  
ranks the group members  with re- 
spect to how closely they are syn- 
chronized to the current  service 
state, which can be unders tood as 
being the application of  all opera-  
tions requested by clients since the 
service !initialization to the initial 
service state. This is te rmed s-rank- 
ing to distinguish it from the 
c-ranking introduced earlier. Loose 
synchronization requires that only 
the highest s-ranking group 
member - -u sua l l y  called the pri- 
mary se rver - -process  service re- 
quests and record the current  ser- 
vice state as its local state. Thus,  a 
prereqmsite for using this form of  
group synchronization is that 
group members  have crash or 
crash/performance failure seman- 
tics. The  highest ranking member  is 
also usually the one who sends the 
group output  to users (since it is the 
first to know them) so the c- and 
s-rankings often coincide. One or 
more backup servers with lower 
s-ranks can log service requests and 
can periodically receive state check- 
points from the primary.  In such an 
arrangement ,  the local state of  a 
backup ,~erver lags behind the state 
of  the primary:  the backup state 
does not reflect the execution of  
some recent service requests by the 
pr imary server. I f  the pr imary fails, 
the highest s-ranking backup server 
can recover the state existing before 
the pr imary failure by reexecuting 
the service requests logged since 
the last state checkpoint  obtained 
from the primary.  A part icular  case 
of  loose synchronization is the situ- 
ation when the group size is o n e - -  
that is, there  is only a pr imary 
server with no active backups. In 
such a case, the server does the 
checkpointing and logging. After  a 
failure, the new pr imary reads the 
last state checkpoint  and recovers a 
state that existed before the failure 

by executing the logged service re- 
quests. In this way, the failure can 
be masked to users, who only expe- 
rience a delay in getting their re- 
sponses. Variants of  this check- 
pointing rollback masking 
technique have also been developed 
for the case when the pr imary 
server is implemented  by a set of  
distr ibuted processes which check- 
point and log service requests inde- 
pendently [33, 36, 59]. 

For groups composed of  servers 
with per formance  failure seman- 
tics, the main advantage of  loose 
over close synchronization is that 
only pr imary servers make full use 
of  their  share of  the required repli- 
cated service resources, while back- 
ups make only a reduced use. This 
allows more  servers to coexist for a 
given amount  of  comput ing power. 
The  main drawback is that the de- 
lays seen by clients when group 
members  fail are longer. I f  we call 
the maximum sequence of  service 
requests processed by a pr imary 
between successive state check- 
points the pr imary/backup process- 
ing lag, then the worst case delay in 
answering a client request after a 
pr imary failure will not only be 
composed of  the time needed to 
detect and reach agreement  about 
the pr imary failure, but  also of  the 
time needed by the new pr imary to 
absorb the pr imary/backup pro- 
cessing lag. For on-line transaction 
processing environments,  such de- 
lays are considered tolerable. For 
real-time applications, if the re- 
sponse time required is smaller 
than the time needed to detect a 
member  failure and to absorb the 
pr imary/backup processing lag, 
close synchronization has to be 
used. Examples of  loosely synchro- 
nized server groups are discussed 
in [7, 10, 11, 24, 32, 49]. 

Close and loose synchronization 
as described above are jus t  two end 
points of  a cont inuum of  synchro- 
nization policies. One can imagine 
intermediate  synchronization poli- 
cies which would share the advan- 
tages and drawbacks of  these end 
points to various degrees. 

How many members should a group 
have? For any server group,  the 
replication policy prescribes the 
number  of  members  the group is 
expected to have. The  more servers 
in a group,  the greater  its availabil- 
ity and capacity for servicing service 
requests in parallel. On the other  
hand, the more members  a group 
has, the higher  the cost for commu- 
nication and synchronization 
among group members.  Given a 
certain required service availability, 
one can use stochastic model ing 
and simulation methods for deter-  
mining an op t imum number  of  
members  by taking into account the 
individual server failure rates, the 
server failure semantics, the service 
request  arrival rates, and the mes- 
sage communicat ion costs. 

Note that the degree of  software 
server redundancy  necessary for 
providing a certain level of  service 
availability influences the host pro-  
cessor redundancy  degree  for that 
service. For example,  if stochastic 
modeling/simulation studies show 
that to achieve a certain radar  sur- 
veillance and tracking service avail- 
ability level, it is necessary to use 
three physically independen t  and 
closely synchronized servers, then 
three host processors are necessary 
for running  these servers in parallel 
as shown in Figure 7. 

What group communication proto- 
cols should be used? Communicat ion 
among server groups is different  
from the point- to-point  communi-  
cation services offered by tradi- 
tional protocols such as SNA and 
TCP/IP. Moreover,  if the group 
state is replicated at several mem- 
bers, these members  need to up- 
date the replicas by using special 
group protocols that ensure replica 
consistency in the presence of  pro- 
cess and communicat ion failures. 
There  already exist a significant 
number  of  protocols that have been 
proposed  for group communica-  
tion [I, 5, 7, 10-14, 22, 23, 27, 34, 
37, 39, 41, 48, 49, 56, 60, 64]. This 
area of  research is presently one of  
the most active. The  large variety of  
approaches proposed  reflects the 
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fact that the properties required 
from group communication proto- 
cols depend not only on protocol 
goals and the failure semantics of 
group members, but also on the 
failure semantics of the lower-level 
communication services used. 

Related to communication is the 
issue of naming: what rules are used 
by clients and servers to define ser- 
vice names, and how are such 
names translated into lower-level 
message routing information? In 
fault-tolerant systems, where serv- 
ers can move from one host proces- 
sor to another one, it is convenient 
not to require clients to know the 
location of the servers that provide 
a service. The goal of such location- 
transparent naming services is to 
mask from clients the effects of in- 
dividual server failures in a group. 
Several examples of fault-tolerant 
location-transparent name services 
that have been implemented in real 
systems can be found in [12, 24, 
38]. A recent survey of the issues 
involved in naming can be found in 
[16]. 

= I G U R E  

How to enforce group availability 
policies automatically? The syn- 
chronization and replication poli- 
cies defined for a service imple- 
mented by a server group 
constitute the availability policy for 
that service (or group). 

One possible approach to enforc- 
ing a certain group availability pol- 
icy, illustrated in [7] is to implement 
in each group member mechanisms 
for reaching agreement on the c- 
and s-rankings in the group, as well 
as mechanisms for detecting mem- 
ber failures and procedures for 
handling new member joins and 
promotions to higher s-ranks (when 
the group is loosely synchronized). 
The drawback of this approach is 
that it results in substantial code 
duplication and lack of modularity, 
since the group management  
mechanisms for all services which 
must be made highly available are 
basically the same. 

An alternative approach, 
adopted in a recent distributed 
fault-tolerant system built for air 
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Service Availability Manager Enforces Server Group Availability Policy 
withOut Human Intervention. 

traffic control [24], requires group 
members to implement only the 
application-specific get-state and 
checkpoint (in case the group is 
s-ranked) procedures needed for 
local member state synchronization 
at join and checkpoint times. The 
tasks of detecting server failures, 
coordinating promotions and en- 
forcing replication policies are en- 
trusted to a service availability man- 
agement service. Since the 
availability in the presence of fail- 
ures of other distributed system 
services becomes dependent  on the 
availability of this service, availabil- 
ity management  must itself be im- 
plemented by a group of servers 
which we call service availability man- 
agers. The following discussion as- 
sumes that these servers have 

crash/performance failure seman- 
tics. 

The objective is to ensure that 
for each service s, which the system 
operator enables the system to pro- 
vide, the server group availability 
policy defined for s is effectively 
enforced without any human inter- 
vention, Figure 8, in which an 
arrow means "enforces the avail- 
ability policy of" instead of "de- 
pends on," attempts to illustrate 
this goal. To simplify our presenta- 
tion of an availability management  
service we assume that for each ser- 
vice s all servers must run  on dis- 
tinct processors and they can be 
started in any order (i.e., issues re- 
lated to the existence of s-rankings 
in some groups are ignored). It is 
assumed that the hosts designated 
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for  the various services have 
e n o u g h  c o m p u t i n g  power  to sup- 
por t  all these services; issues re la ted 
to load shed and load balancing will 
not  be ,discussed. 

Let  r(s) be the deg ree  o f  server  
repl icat ion for  s; h(s) deno te  the set 
o f  host  processors  for s; and mem- 
bers deno te  the processor membership 
[19 ] - - t ha t  is, the  set o f  correct ly 
func t ion ing  processors  that  agree  
to c o m m u n i c a t e  a m o n g  themselves  
in o r d e r  to collectively p rov ide  to 
clients all services that  are  enabled  
in the system. T h e  goal o f  the ser- 
vice availability m a n a g e m e n t  ser- 
vice is to ensure  that  for  each en- 
abled service s the re  are  min(Ih(s ) n 
membersl,r(s)) servers.  T h a t  is, there  
are  r(s) servers as long as the n u m -  
ber  o f  correct ly func t ion ing  hosts is 
g rea te r  o r  equal  to r(s) and,  when  
the n u m b e r  o f  correct ly funct ion-  
ing hosts d rops  below r(s), there  are  
as many  servers as correct ly func- 
t ioning hosts. 

T h e  state o f  each server  availabil- 
ity m a n a g e r  consists o f  the set mem- 
bers of  processors  that  funct ion  cor- 
rectly in the  system, the set S o f  
services enabled  in the system, the 
set P o f  servers func t ion ing  cor- 
rectly, and two mapp ings  (or tables) 
that  relate  these sets: a m a p p i n g  
servers: members ~ set-of-P that, for  
each func t ion ing  processor  m 
members, gives the set servers(m) of  
servers r u n n i n g  on m, and a map-  
p ing  service: P--~ S that, for  each 
server  p E P, gives the service im- 
p l e m e n t e d  by p. T h e  state o f  a 
server  g r o u p  availability m a n a g e r  
can be changed  by the fol lowing 
events:  a service s is enabled  by the 
system opera to r ;  a service s is dis- 
abled by the system opera to r ;  a 
server  p i m p l e m e n t i n g  a service s 
fails on. a processor  m; a server  p 
i m p l e m e n t i n g  a service s is started 
on a processor  m; a processor  m 
fails; and a processor  m starts. T h e  
state t ransi t ions that  an availability 
m a n a g e r  must  u n d e r g o  in response  
to these events  can be specif ied as 
follows. W h e n  a service s is enabled,  
then  servers for  s must  be started 
on r(s) of  the processors  in h(s) n 
member~ if  r(s) <- [h(s) N members[, 

otherwise  servers must  be s tar ted 
on all processors  in h(s) n members; 
also s must  be added  to the set S, all 
servers s tar ted must  be added  to 
the set P, and for  each server  
started,  the mapp ings  servers and 
service must  be upda t ed  accord-  
ingly. W h e n  a service s is disabled, it 
must  be r e m o v e d  f rom S, all exist- 
ing servers for  s must  be shut  down,  
and the state variables servers, ser- 
vice, and P must  be upda t ed  accord-  
ingly. W h e n  a server  p for  a service 
s fails, ano the r  server  for  s must  be 
started (if the re  is a f ree  host  in 
members n h(s)) and the state vari- 
ables servers, service and P must  be 
upda t ed  accordingly.  T h e  success- 
ful start  o f  a server  p should  be re- 
f lected in an app rop r i a t e  upda t e  o f  
the server, service and  P state vari- 
ables. T h e  fai lure  o f  a processor  p 
can be in t e rp re t ed  as the fai lure o f  
all servers r u n n i n g  on p (see the in- 
t e rp re ta t ion  o f  server  fai lures 
sketched above) plus the  remova l  o f  
p f r o m  the members state variable.  
T h e  start o f  a processor  p should  
result  in the start  o f  servers  for  all 
services s that  can be hosted by p 
and for  which the p resen t  server  
popula t ion  is below the r(s) replica- 
tion th resho ld  specified,  as well as 
in the app rop r i a t e  updates  to the 
state variables members, servers, ser- 
vice, and  P. 

Assuming  the p rob lems  o f  server  
and processor  fai lure detect ion are  
solved, it would  not  be diff icult  to 
build a centra l ized service availabil- 
ity m a n a g e r  that  achieves the state 
t ransi t ions above and runs  on some 
processor  in the system. However ,  
such a solut ion would  not  be satis- 
factory because when  that  proces- 
sor is down,  no server  g r o u p  avail- 
ability policy would  be enforced .  As 
m e n t i o n e d  before ,  i f  the objective is 
to have a specif ied service availabil- 
ity policy en fo rced  w h e n e v e r  at 
least one  host  processor  works in 
the system, then  server  availability 
manage r s  must  be repl icated on all 
processors  that  work  in system. 
This  results in a need  to repl icate  
the global state variables members, 
service, P, S and servers on all work- 
ing processors  in members. To  main-  

tain the consistency of  these repli-  
cated global state variables at all 
processors  in the presence  o f  ran- 
d o m  commun ica t i on  delays and  
failures, the occur rence  o f  any glo- 
bal system state upda t e  must  be 
broadcas t  to all correct ly  funct ion-  
ing processors  in such a way that  
these processors  all see the same se- 
quence of state updates. 

I f  d i f f e ren t  availability manage r s  
see d i f f e r en t  sequences  o f  updates ,  
then  thei r  local views of  the global 
system state will d iverge .  Th is  
migh t  lead to violations o f  a speci- 
f ied server  g r o u p  availability policy. 
To  il lustrate this point,  cons ider  a 
service s such that  r(s)= 2 and  
h(s) n members = {m,m'}. I f  m sees 
the sequence  o f  events:  "s enabled ,"  
"s disabled,"  and m' sees the se- 
quence  "s disabled," "s enabled ,"  
then  at least the state variable S on  
m will end  up  be ing  d i f f e ren t  f rom 
the variable S on m'. Moreove r ,  m' 
will start  a local server  for  s while m 
will not, and this will cause a viola- 
t ion o f  the availability policy r(s) = 
2 specif ied for  s. 

How to achieve agreement on a glo- 
bal system state? R a n d o m  c o m m u -  
nication delays and crash, omission 
p e r f o r m a n c e  fai lures can cause 
messages broadcas t  for  upda t i ng  
state replicas to be lost o r  rece ived  
out  o f  o rder .  To  ensure  that  all cor-  
rect servers agree  on the same se- 
quence  o f  global state updates ,  one  
has to solve two major  problems.  
First, achieve a g r e e m e n t  on a se- 
quence  o f  processor  jo ins  and fail- 
ures, so that  at each poin t  in time, 
each correct ly  func t ion ing  proces-  
sor knows the g r o u p  of  o the r  cor- 
rect  processors  with which c o m m u -  
nicat ion is possible. Second,  one  has 
to achieve a g r e e m e n t  on the o r d e r  
o f  messages broadcast  by proces-  
sors in a group .  A pro tocol  that  en- 
sures a g r e e m e n t  on a un ique  tem- 
poral  sequence  o f  successive 
processor  g r o u p  and  g r o u p  m e m -  
berships  membersl, members2 . . . . .  
membersi . . . .  is t e r m e d  a processor 
membership protocol [ 19]. A pro tocol  
that  ensures  that  all broadcasts  
or ig ina ted  by processors  in a g roup ,  
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membersi, are received in the same 
order  by all correct processors in 
membersi is te rmed an atomic broad- 
cast protocol [23]. 

The  requirements  for both 
membership  and atomic broadcast  
consist of  a number  of  safety and 
timeliness properties.  Safety prop-  
erties are invariants which must be 
true at all points in real time. For 
example,  a membership  protocol 
must always ensure that any two 
processors jo ined  to the same 
group agree on the group member-  
ship, and an atomic broadcast  pro- 
tocol must ensure that correct pro- 
cessors in a same group always 
agree on the o rde r  of  broadcast 
messages. Timeliness propert ies  re- 
quire that there be upper  bounds 
on the time it takes to propagate  
information among group mem- 
bers. For example,  a membership  
protocol might require that surviv- 
ing members detect any member  
failure within a bounded  time, and 
an atomic broadcast protocol might 
require that all correct members of  
a group learn about any atomic 
broadcast  within a bounded  time. 

Existing membership  and atomic 
broadcast  protocols can be divided 
in synchronous protocols according 
to whether or not they assume the 
existence of  a bound d on message 
delays such as [19, 22, 23], and asyn- 
chronous protocols, such as [10, 12, 
13]. In general,  synchronous proto- 
cols assume that processor clocks 
are synchronized within some con- 
stant maximum deviation ~, while 
asynchronous protocols do not re- 
quire clocks to be synchronized. 

Synchronous protocols have 
strong timeliness propert ies:  they 
guarantee that information propa-  
gates within bounded times among 
group members  even when failures 
and member  joins occur concur- 
rently with the propagation.  For 
known synchronous protocols, the 
propagat ion speed depends  on d 
and E. The  assumption that actual 
message delays are shorter  than d is 
crucial for a synchronous approach 
to work: if the delays exper ienced 
by protocol messages can exceed d, 
that is, the servers which communi- 

cate through these messages can be 
transiently partitioned, a synchronous 
protocol might violate its safety re- 
quirements.  For example,  after 
transient parti t ion occurrences, 
servers might disagree on the order  
of  messages broadcast  and on 
group membership.  Protocols for 
detecting transient partit ions and 
reconciling diverging server views 
have been investigated in [60]. Such 
a posteriori parti t ion detection and 
recovery protocols need to com- 
pensate for any damage done while 
disagreement  existed among group 
members.  

In contrast  with synchronous 
protocols, one can build asynchro- 
nous protocols that never violate 
their safety r equ i rements - -even  
when communication delays are 
unbounded  and communication 
partit ions occur. However,  such 
strong safety guarantees come with 
a price. First, the timeliness proper-  
ties of  asynchronous protocols are 
ra ther  weak: they do not guarantee 
any a priori  known upper  bound on 
the amount  of  time that can elapse 
between the instant when one pro- 
cessor learns of  an event and an- 
other  processor learns of  the same 
event. For example,  if member  
joins and failures continue to occur, 
an asynchronous membership  pro- 
tocol might need an unbounded  
amount  of  time to detect changes in 
the set of  correctly working proces- 
sors. Similarly, a message that was 
atomically broadcast to a group 
might need an unbounded  amount  
of  time to reach some group mem- 
bers. Second, most asynchronous 
protocols make the activities of  
membership  computat ion and 
broadcast  interfere,  so that broad- 
casts that occur dur ing  a member-  
ship change have to be aborted [10, 
12, 13]. Third ,  the asynchronous 
protocols specifically designed to 
tolerate partit ions require that the 
correctly working processors of  a 
system form a quorum before any 
work can be done [13, 38]. This 
requirement ,  needed to prevent  
divergence among processors in 
distinct partitions, adversely affects 
system availability, since a quorum 

of  processors needs to be function- 
ing before any work can be done. I f  
no quorum of  correct processors is 
present,  one possibility is to ask the 
human opera tor  for permission to 
go ahead [38]. Another  possibility is 
to at tempt to modify quorums dy- 
namically [6]. 

Designers of  distr ibuted fault- 
tolerant  systems are thus faced with 
the following choices: a t tempt to 
ensure the existence of  an upper  
bound d on message delays or ac- 
cept unbounded  message delays. 
The  first alternative requires ad- 
vance knowledge of  the maximum 
system load, real-time operat ing 
systems, and massive communica- 
tion hardware  redundancy to en- 
sure a negligible probability that 
network partit ions occur. I f  an 
upper  bound d is achievable and 
this bound allows a satisfactory re- 
covery speed from events such as 
processor and communicat ion fail- 
ures, then one can adopt  a synchro- 
nous approach which guarantees 
strong timeliness propert ies  and 
enables the system to continue to 
work autonomously for as long as 
there exists at least one correct pro- 
cessor. I f  the bound d which is 
achievable by taking into account 
the specified peak load and real- 
time operating-system scheduling 
algorithms is not small enough to 
allow the system to react sufficiently 
fast to component  failures (fbr ex- 
ample, d is measured in minutes 
when the required recovery time 
from failures is measured in sec- 
onds), or if no bound can be realis- 
tically found, then two options 
exist. Both are based on the adop-  
tion of  a timeout delay d'. (When an 
unsatisfactory bound d exists, the 
t imeout delay d' is by definit ion 
smaller than d.) I f  d' is such that a 
synchronous approach based on it 
provides sufficient recovery speed 
and the cost of  compensat ing for 
actions taken dur ing  transient par- 
titions is smaller than the cost of  not 
meet ing recovery deadlines, then 
one can adopt  a synchronous ap- 
proach based on d'. This will ensure 
strong timeliness propert ies  and 
will eliminate the need to worry 

COMMUNICATIONS OF THE ACM/February 1991/Vol.34, No.2 7 S 

20



about quorums. Moreover,  if d' is 
sufficiently large compared  to the 
median message delay, it is likely 
that few message delays will exceed 
d' time units [21], and transient 
partit ions will therefore  be rare. On 
the other  hand,  if the cost of  com- 
pensating for inconsistent actions 
taken as a consequence of  transient 
part i t ion occurrences is higher  than 
the cost of  missing recovery dead- 
lines, one can adopt  an asynchro- 
nous approach with t imeout delay 
d'. The  ,cost will then be weak time- 
liness propert ies  and the need to 
worry ;about quorums. In both 
timeout--based approaches,  the 
choice of  the t imeout delay d' is a 
delicate matter.  As d' becomes 
larger, the failure detection and 
recover), times become larger, but 
the frequency of  transient  parti t ion 
detections decreases. Conversely, as 
d' becomes smaller, the failure de- 
tection and recovery times become 
smaller, but  the frequency of  tran- 
sient part i t ion detections increases. 
Thus,  the choice of  d' must  balance 
the cost of  recovering from tran- 
sient parti t ions and the cost of  not 
detecting pe rmanen t  failures fast 
enough.  

Conclusion 
Unders tand ing  a technical area as 
complex as fault- tolerant  distrib- 
uted comput ing requires identify- 
ing its fundamenta l  concepts and 
naming them unambiguously.  This 
article has proposed  a small num- 
ber of  concepts that the author  be- 
lieves are fundamenta l  when de- 
signing and unders tanding  
fault- tolerant  dis tr ibuted systems. 
Some of  these concepts, such as the 
notions of  service, server, and the 
"depends" relation, are fundamen-  
tal to any kind of  system. Others, 
such as the notions of  failure se- 
mantics, hierarchical failure mask- 
ing, and group failure masking, are 
specific to fault-tolerant systems. 
The  latter concepts capture  the 
goals of  fault- tolerant  comput ing as 
well as tlhe trade-offs: mask compo- 
nent  failures when possible, and 
when masking is not possible or 
economical, ensure that the system 

has some clearly specified failure 
semantics. To demonstra te  the "ad- 
equacy" of  these concepts in cap- 
tur ing essential architectural as- 
pects, these are used to 1) 
formulate a list of  key hardware  
and software issues that arise in 
fault- tolerant  distr ibuted systems 
design, 2) describe various design 
choices and alternatives known for 
each issue, 3) comment  on the rela- 
tive merits and drawbacks of  these 
alternatives, and 4) illustrate how 
the issues have been addressed in 
existing practical system architec- 
tures. The  fact that all four  objec- 
tives could be achieved solely by 
using the basic notions in t roduced 
in the section entitled "Basic Archi- 
tectural Concepts" indicates their 
"power" to express crucial architec- 
tural issues in fault- tolerant  distrib- 
uted systems. 

Clear concepts and terminology 
help but  do not entirely solve the 
problem of  how to design a fault- 
tolerant  distr ibuted system that 
uses the right amount  of  redun-  
dancy at various abstraction layers 
to achieve some opt imum function/ 
dependabil i ty/cost  result. Very little 
of  a "complexity theory" that is rel- 
evant to practical fault- tolerant  
comput ing exists today that would 
guide a designer in choosing 
among a mult i tude of  possible re- 
dundancy management  solutions at 
hardware,  operat ing system and 
application levels. Such choices are 
not only made difficult by the lack 
of  analytical or exper imental  cost 
information about various redun-  
dancy management  techniques, but 
also by the lack of  published data 
about what kind of  failure behav- 
iors various system components  are 
likely to exhibit and what failure 
distributions are associated with 
such components .  The  stochastic 
aspects inherent  in fault tolerance, 
not discussed in much detail in this 
article add another  dimension of  
complexity to design. Moreover,  
even if one had available all the 
needed theories and exper imental  
cost and failure data, the number  of  
choices to consider would be so 
immense that a systematic search 

for optimality is unlikely to happen.  
For these and other  reasons, it is 
likely that building distr ibuted 
fault- tolerant  systems will remain 
an art  in the foreseeable future.  
One thing seems to be certain: with 
the ever-increasing dependence  
placed on comput ing systems, the 
availability of  comput ing and com- 
munication services in the presence 
of  component  failures, hardware  
and software changes, and horizon- 
tal growth will become more and 
more important .  To achieve such 
high levels of  availability, more sys- 
tems in the future  will need to be 
fault tolerant. 
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