Information Sharing in Collaborative Environments

M. Kolland, A.Jarczyk, P. Loeffler
Siemens AG
Corporate Research and Development
Munich, Germany

Abstract

In the 80ties, the personal computing paradigm has
fundamentally changed the way people work within or-
ganizalions. The nineties will see a similiar revolu-
tion - workgroup compuiing. This term describes IT
support of work groups in the context of complez, in-
terdisciplinary tasks in geografically dispersed organi-
zations. Efficient information sharing is the key to
effective collaboration support. In the context of typ-
ical collaborative environments however, (geographi-
cally dispersed, mobile and location independent sites,
independent component failures, concurrent activities)
building applications which support information shar-
ing between separated and autonomous operaling users
is extremely difficult. This paper describes an infras-
tructure which addresses these issues by providing the
abstraction of a shared information space and in this
contezt offers a variety of collaboration specific con-
sistency models and coordination mechanisms.

1 Introduction

Each Groupware application deals to a major ex-
tent with two fundamental issues, coordination and
management of shared information. Coordination of
activities supports the group members in achieving
their common goal. Making the respective group in-
formation uniformly accessible within one orthogonal,
easy-to-use model makes cooperation more efficient
and productive {9]. Such a group information model is
often referred to as shared information space [10}. In a
Group Calendar system for example this shared infor-
mation space may consist of the individual calendars
of group members plus information on availability of
meeting rooms. In a Cooperative Software Develop-
ment system on the other hand the shared information
space would comprise all files necessary to build an in-
stance of the respective system plus related documents
(review protocols, test protocols).

0-8186-5705-7/94 $4.00 © 1994 IEEE

140

Implementation of a shared information space in a cen-
tralized architecture is relatively straight-forward. All
relevant information is managed by a central server
which ensures consistency and enforces specific coor-
dination policies. Centralized architectures however
fall short in several aspects [17] :

o Responsiveness - for highly interactive multi-
user applications delays caused by slow WAN
connections or other resource bottlenecks may
prevent a user-friendly implementation and re-
duces user acceptance. This is a serious problem
for environments with mobile, location indepen-
dent components which are especially aimed for
by groupware applications.

e Autonomy - communication/component fail-
ures or disconnected operation should not pre-
vent the group activity from proceeding. In fu-
ture Groupware settings (geographic dispersion,
mobile components) component failures must be
tolerated by the application, in order to achieve
maximum group productivity.

e Openness - centralized architectures assume a
homogeneous environment throughout the par-
ticipating group members. The more Groupware
is extending its reach in terms of group size and
geographic dispersion, the less this assumption
holds. Heterogeneity and integration of existing
applications and programming environments are
essential.

In settings where the above requirements must be
met, the shared information space must be replicated
in a way that each group member holds a local copy
of (at least part of) the group information. In such
a replicated architecture consistency of shared infor-
mation becomes a major source of complexity, caused
by typical properties, of groupware environments like
wide-area distribution, heterogeneity, mobility and in-
dependent failure of components.

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

LYFT 1042

Allthough a variety of approaches deal with this com-
plexity, mainly in the field of databases and file sys-
tems [11] [21] many of them do not reflect the specific
groupware needs [19]. Therefore we argue for the in-
troduction of a support layer which deals with theses
issues in a more Groupware specific way.

This paper describes the design and implementation of
COCOON !, a software layer which supports a shared
information space model generic to a wide range of
groupware applications. It provides the benefits of
a replicated architecture while hiding the complexi-
ties inherent in such an approach. COCOON offers
a variety of consistency models, typical for collabo-
rative scenarios. The following chapters describe the
COCOON information-, architecture- and the opera-
tional models. The second part of the paper focuses
on various consistency models and gives a formal de-
scription of their semantics in the context of Group-
ware environments. The third section describes the
implementation of COCOON on the RDO/Smalltalk
system. RDO/Smalltalk represents an interface be-
tween the Smalltalk programming environment and
the ISIS toolkit, developed at Cornell University. The
last part of this paper describes the implementation of
a simple groupware application on top of COCOON,
to illustrate and verify the usefulness of the provided
abstractions.

The work described here focuses on the shared infor-
mation space abstraction of COCOON. For reasons of
complexity and genericity COCOON will also provide
support in areas like history, undo/redo and persis-
tence. These mechanisms are closely related to the
shared information model but are not discussed in this
paper.

2 The COCOON Shared Information
Space

2.1 The Information Model

In order to provide effective support for the appli-
cation programmer, the COCOON information model
must both support a simple mapping from real-world
group information entities to entities of the COCOON
model and must reflect state-of-the-art design method-
ologies and corresponding tools [24]. On the other
hand the information model must be as simple as pos-

1COCOON =
Networks

COnsistency and COordination in Open

141

sible, in order to reduce the complexity of the CO-
COON layer and allow maximum transparency of the
replicated architecture.

The COCOON information model is object-oriented.
A COCOON object represents a real-world informa-
tion entity. Attributes hold the entities content. Links
represent relationships between objects. Attributes,
links and their corresponding access-methods can be
written by the programmer or generated automati-
cally by some OQ-CASE tool. Fig.1 illustrates an
example.

N

Annotation1

ATTRBUTES
Votas
Author
Text
Staws

LINKS

——
COCOON-Object
AnnotationList

METHODS
e——

- N
|COCOON-Object
Annotation2

ATTRIBUTES
Creation
Author

ATTRIBUTES

LastChange
Session

Toxt ATTRIBUTES

LINKS
annotatedBy

LNKS
isintist

METHODS METHOOS

Figure 1: Example of a simple COCOON object net

A document within a group discussion application
may be modelled as a COCOON object with sev-
eral attributes which reflect its status (text, creation
date, author). A list of annotations is associated with
each document, modelled by a separate COCOON ob-
ject. This object is linked to the document by the
annotated-by relationship. Each annotation is itself a
COCOON object with attributes reflecting its current
state. Annotation objects are linked to the annotation
list via the isInList relationship.

The result is an object net which represents the real-
world information to be modelled. Such an object net
1s typically expressed in an object-oriented program-
ming language. COCOON does not imply a specific
object-oriented programming environment. In fact it

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

supports access to the (shared) object net from differ-
ent object-oriented programming languages.

2.2 Shared
Spaces

and Private Information

A session in COCOON is a cooperative activity
which is typically represented by a multi-user group-
ware application or a set of cooperating single-user
applications. The application(s) manipulate a shared
information space. Members of a session, usually rep-
resented by local agents of the application, have access
to the shared information space through their local
environment (COCOON and the local object-oriented
programming environment).

COCOON is centered around the notion of private
and shared information spaces. Information relevant
in a session is represented by an object net that can
either reside in a private or in a shared information
space.

Within a private space, each change to the object net
is made locally and invisible to other group members.
In a shared information space each change is visible to
all group members and changes to the object net can
be made by all group members concurrently (subject
to some optional coordination policy). A private space
can be transferred into a shared information space in
the course of a session.

A fundamental concept used in COCOON is that of an
unique object identifier. In order to allow uniform ac-
cess of objects in a shared information space by all lo-
cal environments, an object must have a session wide,
unique identifier. Every object which is placed in a
COCOON information space is referenced by such an
identifier (OID). Creation and management of object
identifiers is currently not part of COCOON, OIDs
are specified by the application. Issues in creating and
managing these identifiers in a distributed, heteroge-
neous environment have been specifically addressed in
other systems. For details we refer to [23] [16].

COCOON provides five operations to manipulate a
private or shared information space :

e createObj(InfoSp,0ID,0bj) - This operation
inserts the local object Obj in the respective in-
formation space under the unique identifier OID.
If it is a shared information space, every member
of the session has now access to it.

e deleteObj(InfoSp,0ID) -
This operation deletes the object with unique

142

identifier OID from the respective information
space. The object is no longer accessible in the
context of this information space.

L]

createLink(InfoSp,0ID1,0ID2,Linkname) -
This operation establishes a (unidirectional) link
between two objects in the respective informa-
tion space. Objects are denoted by their unique
identifiers OIDI and OID2. The name under
which this link will be established is denoted by
Linkname.

deleteLink(InfoSp,0ID,Linkname)

- This operations deletes a link between two ob-
jects in the respective information space. The
object from which the relation should be deleted
is given by its unique identifier OID. The name
of the link which is to be removed is given by
Linkname.

changeAttr(InfoSp,0ID,AttrName,Obj)

- This operation changes an attribute value of
an object in the respective information space.
The object is denoted by OID, the attribute by
AttrName. The value of the attribute will be set
to Obj.

2.3 Operational Model

The COCOON operational model is simple yet
generic in order to support a variety of groupware sce-
narios. It is closely related to the COCOON consis-
tency models (see chapter 3).

A new session and its related shared information space
is created by one member of the group usually the co-
ordinator of the group activity. Other group members
can join the session, gaining access to the shared infor-
mation space. The shared information space, which is
initially empty, can be set to an initial status, before
the group activity starts and group members join. Its
up to the application (i.e. the initiatior of the session)
to do this or immediately begin with the group activ-
ity. In the COCOON model, the initial content of the
shared information space is typically constructed by
using the createQbj/createLink operations described
above.

During the group activity, changes are made by the
application using the five operations provided by CO-
COON. The visibility of changes to the shared infor-
mation space in the sense of a what-you-see-is-what-
I-see [22] property is subject to various consistency
policies, which can be specified with each COCOON

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

operation (see chapter 3 for details). Each update op-
eration results in the change of the object net and a
notification to the current set of session members de-
scribing the change. This allows the application to
take the appropriate action (e.g. redisplay an object
within the user interface). Members can leave the ses-
sion in several ways, loosing access to the shared in-
formation space. Private spaces, which are created in
the course of the group activity may continue to exist
until explicitly deleted by the respective creator.
Another option provided by COCOON is a discon-
nect from the group. The semantics of this operation
includes a later reconnect to the session and an auto-
matic transfer of the updates which have occured to
the shared information space during the disconnected
period. Reconnecting to the group can be done ac-
cording to several consistency policies (see chapter 3
for details). This corresponds to the needs of mobile
and location independent computing which will play
a major role in future Groupware settings [20].

Private and public spaces can be merged via replaying
the updates to the private space in the public space
All updates to the private space can thus be made vis-
ible to the other session members.

In order to support history, undo and redo function-
ality (which is a major source of complexity within
Groupware applications), COCOON provides access
to the list of updates recently made to the shared infor-
mation space. This includes manipulation of update
operations, removal of redundant or obsolete opera-
tions (e.g. createObj(OID,Obj) ... deleteObj(OID))
and checking for conflicts within concurrent histories
(occuring if members are temporarily disconnected
from the session). To support undo/redo function-
ality COCOON provides the possibility to replay an
arbitrary list of COCOON update operations within
a shared information space. Such a list can be con-
structed by the application according to some specific
policy (operation specific, member specific, ...).

Persistence has not been addressed within COCOON
so far. There are basically two possible approaches.
Making the object net of a shared information space
persistent would be the straigth-forward way. Per-
sistent object systems provide support for this pur-
pose [6]. Another approach we see is to make the
history of changes to an object net persistent. The
object net can thus be reconstructed from scratch.
Such an approach would be advantageous within het-
erogeneous environments and in conjunction with his-

143

tory/versioning schemes. However scalability will be
a problem. We will investigate a hybrid approach
(checkpointing the object net combined with update
lists), as part of our future work.

2.4 Architectural Model

For reasons described earlier, COCOON is deploy-
ing a replicated architecture. This means that the
content of a shared information space is replicated
at the local site of each session member. Each ob-
ject, referenced within a shared information space, is
represented by a copy in the respective local applica-
tion environment. The mapping between the OID and
the local object is done transparently using a local ta-
ble (object dictionary). Allthough private information
spaces can only be accesed by the creating instance,
the same approach is used. This eases later transfer
into a shared information space.

Update operations are sent to the COCOON server,
a central instance which distributes the updates to all
session members. On each site a local COCOON agent
receives the update operations from the COCOON
server, changes the object dictionary and the local
copy of the object net respectively. It then notifies
the application associated with the respective session.
The COCOON server also keeps track of the histories
of all shared information spaces including the histo-
ries of currently disconnected members. Replication
of the COCOON server provides for fault-tolerance
and high-availability.

Fig. 2 illustrates the COCOON architectural
model. It depicts a scenario with user Peter, Alex
and Markus. Markus and Alex have joined a session
which is represented by the shared information space
Sessionl. User Markus is also member of a another
session including user Peter. The respective informa-
tion space is denoted with ”Session2”. A central CO-
COON server is distributing updates and keeps track
of the histories. For simplicity reasons this picture
does not show private spaces.

3 The COCOON Consistency Models

COCOON provides a number of mechanisms which
reflect different models of keeping the local replicas of
a shared information space consistent. Theses mech-
anisms can be divided according to their use in syn-
chronous or asynchronous collaboration scenarios.

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

Figure 2: COCOON architecture

3.1 Consistency for Synchronous Collab-

oration

Referring to the time/space matrix of group collab-
oration [8], applications in the synchronous domain
support activities which envolve interaction at the
same time from the same/different location(s). Tools
like Group Editors or Meeting Support Sysiems are
typical representatives for this domain [18]. They pro-
vide all group members with a consistent view of the
respective group information. Consistent in this case
is often synonymous for identical. In general, the term
consistent 1s highly application specific depending on
the activity to be supported, the information involved
and the group structure.

In the COCOON information model, consistency of
the shared information space is dependent on the or-
der in which updates are received and applied by the
session members. COCOON can deliver updates with
several ordering guarantees. Theses can be specified
by the application on a per-update basis.

3.1.1 Causal Consistency

In this mode, COCOON guarantees that updates
which are causally related are delivered to all CO-
COON instances in the same order. The following
gives a formal description. For further details we refer

to [3].

144

Notation

C={e1,...,cn} set of connected sessionm
members

Ue =uf',...,uls sequence of updates seen
by ¢i

u, U, ug updates to be posted next

< partial order of updates
(happened-before relationship [12])

CC(u)

(1) VeeC:ueU*®

2) v <u =
(VeeC @ (u=uj A ufi=uf)=
J<k)

This mode is useful for applications, in which a con-
sistent view of the shared information space means
preservation of causality in the changes to the object
net (e.g. an information structuring and argumen-
tation tool). Another area might be an application,
where a coordination policy prohibits concurrent up-
dates to the same part of the object net (e.g. edit-
ing the same paragraph). In such an application, the
causal mode essentially guarantees that all updates
made to the respective part of the object net are re-
ceived by all members in the same order.

3.1.2 Total Consistency

In this mode COCOON gurantees that updates to the
shared information space arrive in the same order at
all group members. A detailed description is given in
[3]. This will be the most frequently used mode for
synchronous collaboration. It gurantees that after an
update has been made, all members currently in the
session will arrive at the same state of the object net
before the next update is visible at any site.

Notation

<o Total order according to a
first-come-first-serve policy

TC(u)

(1) YeeC:ue U
(2) ud <eu = (VeeC :
(u=nuf A uy =uf)=j<k)

The implementation real-time shared objects like
pointers or drawings on a sketchpad will typically use
this consistency mode.

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

3.1.3 Atomic Consistency

This mode guarantees, that a set of update operations,
which must be applied without interleaving, are deliv-
ered atomically to the session members. This can be
combined with any other consistency mode. The or-
dering then applies to the set of update operations to
be delivered atomically.

AC(uqg,ug)
(l) VCEC:(uleUC/\UQGUc)
(2) Yee C:((u1 = uf Aug = uf)
=> l=k+1)

The atomic mode is useful in settings where differ-
ent COCOON operations must be executed atomically
at all member sites A group calendar application for
example [18] has to update each team members calen-
dar in one atomic operation in order to avoid inconsis-
tencies. COCOON currently provides only a rudimen-
tary implementation of this scheme, which supports
atomicity for sets of updates referring to the same ob-
ject.

3.2 Consistency for Asynchronous Col-
laboration

Asynchronous collaboration is characterized within
the time/space matrix as supporting interactions,
which take place at the same/different location(s) at
different times. Support for these collaboration sce-
narios reflects two major influences on groupware sys-
tems : globalization of teams (e.g. different time-
zones) and mobility of team members (e.g. tempo-
ral disconnection caused by break-down or high cost
of the communcaition link). In COCOON we view a
group session as consisting of synchronous and asyn-
chronous collaboration patterns, supporting both ac-
tivities of active/connected and inactive/disconnected
session members. Updates are seen by all connected
members immediately and will be replayed to discon-
nected members after they rejoin the session. CO-
COON provides various consistency models for this
scenario.

3.2.1 Weak Consistency

This COCOON model reflects the observation, that
certain updates to the object net may only be im-
portant to connected session members or until later
updates make them obsolete. Note that this differs to
the notions of Weak Consistency introduced in [13].
Goldings approach corresponds to the Disconnect-
Reconnect- Merge model described later. There are two
mechanisms to support Weak Consistency :

145

¢ COCOON allows the application to specify the
expiration of an update. If the expiration con-
dition is met, the message will not be seen by
rejoining session members.

Certain update combinations are obsolete re-
gardless of explicit expiration. =~ COCOON
provides a mechanisms to automatically re-
move these updates from a given history.
createObj(0ID,...) / DeleteObj(0ID)
pairs and all updates referring to the same OID
in between have no effect on the shared in-
formation space (analogous createLink(0ID1,
0ID2, Rel) / DeleteLink(0ID1, OID2, Rel)
pairs). The same is true for createLink(0ID1,
0ID2, RelName) lists with identical OIDI and
RelName parameters
and for changeAttr(0ID,AttrName,0bj) with
identical OID and AttrName parameters. They
can be removed from the respective history ex-
cept the last entry.

Expiration of messages can be specified in two ways.
A numerical value N assigned with each update trig-
gers expiration after N updates are made to the shared
information space (WC1 below). A type value triggers
expiration after another update with identical type is
received (WC2). Types are specified by the invoker
of the update operation. The type mechanism can be
augmented with a numerical value N to trigger expi-
ration after N updates with the respective type value
are received (the current implementation is somewhat
limited in this context).

A typical example for this consistency model is the
implementation of real-time shared objects : updat-
ing a pointer on a sketch-pad is only necessary for
connected members. It is not necessary to keep these
updates in the history and replay them for rejoining
members.

3.2.2 Initial-Join-Consistency

This consistency model ensures, that latecomers to the
session will eventually see a state of the shared infor-
mation consistent with the changes made within the
session so far. The notion of consistency is subject
to the expiration policy, specified per update message
(see above). In the general case, all updates will be
replayed to the joining session member. COCOON
ensures, that the join phase is coordinated with other
group activities, using a simple coordination policy
(updates during then join phase are prohibited). Join

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from |IEEE Xplore. Restrictions apply.

consistency is used in scenarios, where latecomers to
a session have to be accomodated.

3.2.3 Disonnect-Reconnect-Join

COCOON does not only support latecomers but also
members which temporarily disconnect from a session.
In this case consistency means that only the recent up-
dates, made since the respective member has left the
group have to be replayed. Analoguous to the Initial
Join case, theses updates may be subject to an expi-
ration policy. Note, that this consistency model does
not preserve updates to the shared information space,
made by the disconnected member.

As pointed out above, this form of consistency is im-
portant for applications, which support mobile and
location independent computing. In these scenarios,
components can be temporarily disconnected either
deliberately (communication costs) or subject to a
communication failure. In many cases it is makes no
sense to support further activites of the disconnected
session member. In order to reach consistency after
a rejoin of this member, it is sufficient to replay the
group updates.

3.2.4 Disonnect-Reconnect-Merge

In general, prohibiting disconnected members from
updating the shared information space is too restric-
tive. For many applications this policy will negatively
affect group productivity and thus conflict with the
basic objective of each groupware application. CO-
COON provides a consistency model which overcomes
this restriction. Updates made by the group and by
the disconnected member are both considered part of
the shared information space after the rejoin. During
the disconnected period, COCOON updates both the
group and disconnected member histories. During the
join phase, two replay lists are constructed - one which
is replayed at the singleton(replayAtSingletonList
), the other at the group (replayAtGroupList)in or-
der to reach a mutual consistent state. The following
outlines the algorithm used by COCOON to construct
these lists :

replayAtGroupList := singletonHistory

replayAtSingletonList := groupHistory

while not empty(singletonHistory) do
affectedSingletonUpdates :=
AffectedBy(singeltonHistory,

first(singletonHistory))

affectedGroupUpdates :=
AffectedBy(groupHistory,

146

first(singletonHistory))
if empty(affectedGroupUpdates)
then remove(affectedSingletonUpdates,
singletonHistory)
else remove(affectedSingletonUpdates,
singletonHistory)
remove(affectedGroupUpdates,
groupHistory)
(singleton,group) :=
resolveConflict(
affectedSingletonUpdates,
affectedGroupUpdates)
remove(group,replayAtGroupList)
remove(singleton,
replayAtSingletonList)
fi
done

Initially the singleton and group replay lists are a

copy of the group and singleton histories. For each up-
date in the singleton history, a list of updates which
affect the same object is constructed. The correspond-
ing list is constructed from the updates in the group
history. Note that only updates, which affect the
same object are crucial. So a conflict occurs only, if
the affectedGroupUpdates list is not empty. Since
the handling of conflicts is application specific, the
resolveConflict() method must be provided by the
application. Its return value is a list of updates to be
removed from the singleton and group replay lists in
order to achieve consistency. Both replay lists are then
replayed at the group and singelton members respec-
tively.
The application discussed in chapter 5 is using
this consistency model. It provides a specific
resolveConflict() method, which implements a
group-has-it-right policy. Updates to an object, which
result in a different object state depending on the or-
der they are applied are regarded as conflicts and the
updates made by the singleton will be superseded by
the group updates. This policy in conjunction with
the DRM consistency model results in one identical
object net after the rejoin of a disconnected mem-
ber while preserving non-conflicting updates on both
sides. A formal specification of the group has it right
policy used in the application and a formal proof of
its correct implementation has been carried out but is
out of the scope of this paper.

There are a number of further consistency models pro-
posed for collaborative scenarios which are currently
not reflected in COCOON [1]. Note that the CO-
COON approach provides a high degree of flexibility

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

in integrating these mechanisms (see chapter 4).

4 Issues in Implementing COCOON

4.1 The ParcPlace Smalltalk Program-
ming Environment

As pointed out earlier, COCOON implies an object-
oriented programming model. Although it is inde-
pendent of any specific OO programming language or
environment and moreover explicitly supports hetero-
geneous settings we had to decide on a suitable OO
programming system for building the COCOON pro-
totype.

For building the COCOON prototype we chose the
ParcPlace4.1 Smalltalk system. We found Smalltalk
especially appealing, since

e it provides an object-oriented programming
model, which fits closely with modelling real-
world cooperative taks.

it is highly interactive and reuse oriented, which
allows a rapid prototyping approach - genericity
and usefulness of the COCOON abstractions can
thus be evaluated by modelling a number of col-
laboration scenarios without putting too much
effort into application development.

e it supports a very efficient way of implement-
ing user interfaces. To evaluate COCOON it
is therefore possible to focus on the application
functionality with respect to COCOON abstrac-
tions.

4.2 ISIS/News as communication infras-
tructure

The ParcPlace Smalltalk system itself does not pro-
vide any support for cooperation between remote ob-
jects. This is however the backbone of every Group-
ware application. Allthough there are various remote
object packages available they do not resemble closely
enough the typical interaction patterns inherent in
groupware settings nor do they address issues of con-
sistency.

The ISIS systern has been used for this purpose within
various Groupware settings. ISIS and ISIS/News are
described in detail in [4]. ISIS provides a powerful
notion of process groups and ordered communication

147

between group members. For implementing the CO-
COON model, we found the ISIS/News facility most
helpful. It nicely resembles the patterns of distributing
information within a collaborative task. ISIS/News
uses the notion of news-posiers and news-subscribers.
Each subscriber registers interest in one or more sub-
jects . A news-poster sends messages to a subject. This
results in a multicast of the message to all current sub-
scribers to the respective subject .

The order in which messages arrive at the sub-
scribers is subject to various consistency constraints,
to be specified by the the news-poster . Total order-
ing guarantees the delivery of messages in the same
order at every subscriber. Causal ordering guarantees
that causal relationships between messages are seen
by each subscriber correctly. Messages not causaly
related can be received in arbitrary order. ISIS/News
has several additional features, which are helpful in
implementing COCOON :

o The NEWS backlog mechanism provides a per
subject history facility. Instances subscribing to
a subject can specify the amount of history they
want to receive from the backlog before seeing
actual postings. This enables subscribers to see
and act on a history of the subject.

e The amount of history received on subscription
can be controlled by the subscriber with a va-
riety of mechanisms. Setting a position marker
e.g. allows a subscriber to temporarily discon-
nect form the topic and later resubscribe, re-
ceiving the history from the position marker on-
wards.

e The spooling of messages in the backlog can be
controlled by several mechanisms, providing an
expiration of messages in the history based on
different aspects.

e Backlogs can be logged to non-volatile storage
providing a means to make histories persistent.

e News provides a means to detect, whether a lo-
cal subscriber/poster is currently disconnected
form the service (e.g. network partition) and
thus allows appropriate action.

e News can make use of the ISIS long-hawl com-
munication facility. Messages can be sent to
subscribers on different LANs over a (slow)
WAN connection by using a spooler. The
spooler receives messages and delivers them
asynchronously to session members in other
backbone LANs.

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

4.3 Integration of into

Smalltalk

ISIS/News

The ISIS toolkit consists of a number of servers
and libraries running in a UNIX environment. Pro-
viding an interface from the Smalltalk system to ISIS
was a prerequisite for our implementation strategy.
This work has been carried out independently of the
COCOON activities and resulted in a system called
RDO/Smalltalk [7]. The integration of ISIS and
ISIS/News into the ParcPlace Smalltalk system faced
two major issues :

o Integrating the neccessary components of the
ISIS system into the Smalltalk virtual machine.

o Integrating the News model of distributed inter-
actions into the Smalltalk model as smoothly as
possible.

Integration of the ISIS run-time library into the

Smalltalk virtual machine was done via the C-
Interface provided by the ParcPlace system (CPOK).
ISIS functionality is thus made available to Smalltalk
class and instance methods. Calls can be made bidrec-
tional - from Smalltalk into ISIS and vice versa pro-
viding a means to support ISIS upcalls. The low-
level details of this interface is hidden behind abstract
classes, representing the respective ISIS functionality
(e.g. NEWS).
A seamless integration of the ISIS/News publish-
subscribe model for remote interactions has been ac-
complished by logically extending the Smalltalk de-
pendency mechanism. The original Smalltalk mech-
anism only allows for dependencies between local ob-
jects. By making an object dependent on a local proxy
object (representing a singleton or a group of remote
objects), the respective instance is notified of changes
on the remote side. This provides the same semantics
as in the local case :

e The proxy, which represents the remote in-
stance, has to be created first. It corresponds
to a ISIS/News subject. Upates are posted to
and received via the proxy.

Every update of the remote instance (singleton
or group) is automatically forwarded to all de-
pendents - the guys delivering updates are news-
posters the dependents are the news-subscribers.

e The ISIS/News service is responsible for deliv-
ering the updates in a consistent (totally or
causally ordered) fashion.

148

e This mechanism is augmented by furhter
ISIS/News functionality (backlog, long-hauwl
connections, ...).

In the case of Smalltalk, the integration of
ISIS/News and the programming language can thus
be made very elegantly. The mechanism described
above is used extensively within the COCOON layer.
This use of a Smalltalk specific mechanism within CO-
COON does in no way conflict with the goal of sup-
porting heterogeneous settings, since the dependency
mechanism for propagating updates to objects can eas-
ily be emulated within other programming environ-
ments.

4.4 Implementing the Shared Informa-
tion Space

Fig.3 illustrates the implementation of the shared
information space abstraction within the Smalltalk-
ISIS/News environment.

Virtual
Machine

ISIS-Library

ISIS/News
Server

ISiS-Library

Smaltak
Virtual
Machine

Figure 3: Updating Shared Information with

RDO/Smalltalk

An application object creates (or joins) a session by
creating a local shared information space object. This
object contains the object dictionary and local object

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

net. The shared information space object creates a
subject instance within the RDO/Smalltalk with the
session name as identifier (or attaches itself to one if
already present). The object dictionary is dependent
on the subject instance, the application object is de-
pendent on the shared information space. Creation of
a subject results in a subscribe call to the ISIS/News
server. Calls to the ISIS environment are handled
by the ISIS-library, which is accessible through the
Smalltalk C-interface (see chapter 4.3).

Invoking a COCOON operation results in a call to the
respective method of the shared information space ob-
ject. The update is posted to the local subject instance
via the update:with:from message. The subject in-
stance itself calls the respective ISIS/News routine via
RDO/Smalltalk (see chapter 4.3).

An incoming update is delivered to the respective sub-
ject instance by RDO/Smalltalk. The subject sends
itself the changed:with:from message, which results
in an update:with:from messages to all its depen-
dents. The receiving object dictionary is updating its
internal table and object net accordingly and noti-
fies its dependents (the application object) with the
changed:with:from message.

4.5 Implementing the Disconnect-
Reconnect-Merge Consistency Model

Fig.4 illustrates the implementation of the
disconnect-reconnect-merge consistency model.

A member can either explicitly request disconnec-
tion from the group or a a network partition is de-
tected. On the member side, this results in the cre-
ation of an UpdateList within the local shared infor-
mation space. The update:with:from method used
to propagate locally invoked COCOON operations
writes updates to this list instead of posting them to
RDO/Smalltalk. The last update seen from the group
is denoted with a postition marker Pos, which points
to the respective entry in the ISIS/News history list.
The current RDO/Smaltalk interface does not sup-
port the ISIS/News position marker functionality. It
is therfore implemented by COCOON, posting special
messages whenever a disconnect of a session member
occurs. Both, managing the position marker and the
local update list, is transparent to the application.

On the group side things also happen transpar-
ently. Updates are propagated to session members
via RDO/Smalltalk. The backlog, which holds the

changes to the shared information space since its cre-

149

{8) Member disconnects

(a) Updates are merged (1) and replayed
1o e group (2) and the singlelon (3)

Figure 4: Implementation of

Disconnect-Reconnect-Merge consistency

ation is managed and automatically updated by the
ISIS/News server.

The interesting case is the reentry of the singleton into
the group. To freeze the state of the group during the
merge, local updates to the shared information space
are prohibited. The singleton calls the COCOON re-
connect method. This results in a subscription to the
respective ISIS/News subject. The subject history
from the point where the singleton left is transferred
by RDO/Smalltalk transparently. This results in a
number of update:with:from invocations.

e In the disconnect-reconnect-join case, these up-
date invocations are handled as described in
chapter 4.4, changing the local object dictionary
and object net respectievely. After the last up-
date from the list has been encountered, CO-
COON resumes normal (synchronous) session
operation.

In the disconnect-reconnect-merge case, no up-
dates to the local data structures are made in
the first place. Moreover a list is created, repre-
senting the group history (similiar to the single-
tons UpdateList). Both the group and singletons
update lists are now merged according to the al-

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

10

gorithm described in chapter 3.2. The result is
a pair of update lists, which are replayed at the
singleton and at the group respectively, in order
to arrive at a consistent state. COCOON makes
this transparent for the application.

Since the period in which members are disconnected
is usually relatively short, the length of the histories
doesn’t seem to pose any scalability problems. In the
case of latecomers, where history lists can get very big,
a hybrid solution may be more scalable. The object
net is checkpointed to some central server at fixed in-
tervals. Each checkpoint causes a position marker in
the history to be set appropriately. A latecomer can
reconstruct the session state from the checkpoint and
the list of updates made since the chekcpoint has been
written.

Note, that the concept of group and singleton histories
also allows a very simple and elegant implementation
of additional consistency models (e.g. version trees),
undo/redo mechanisms and persistence support. In-
vestigating these issues is part of our future work.

5 Using the COCOON Abstractions :

In order to verify the approach taken in COCOON,
we implemented differnt groupware applications. Our
goals were twofold : (a) we wanted to build applica-
tions which support real-world cooperative tasks and
(b) those tasks should include a variety of different
collaboration scenarios so that we could use as much
of the COCOON mechanisms as possible in order to
evaluate their genericity and usefulness. Performance
of the COCOON implementation was a further con-
cern.

5.1 An Application to support Code In-

spection Meetings

Given the above considerations we implemented a
tool to aid code inspection review teams similiar to
ICICLE [5]. We do not describe the application in
detail here. The following list gives a brief overview
of its functionality with respect to the used COCOON
abstractions :

e Each session has a READER and several RE-
VIEWERS. The READER initiates the session
creating an empty shared information space.

150

*

REVIEWERS will typically join the session af-
ter the READER has set up the initial object
net, using the Initial Join consistency model. A
typical object net occuring in the course of a ses-
sion is depicted in Fig.1. REVIEWERS can also
join at any later point in time.

The READER is in charge of browsing through
the code listing. He also manipulates a grafical
object to point to the line currently under re-
view. The code window and pointer objects are
implemented as real-time shared objects. Strict
WYSIWIS holds for these objects in the context
of the session members. Real-time shared ob-
Jjects are implemented as updates to the object
net using the COCOON total ordering consis-
tency model (in case of updating the code win-
dow, where start and end position have to be
updated atomically, the atomic ordering consis-
tency model is used.

REVIEWERS are guided through the code list-
ing by the READER as described above. Their
task is to make comments the respective lines
under review. The proposal of an annotation is
made visible to all session members by updat-
ing the object net according to the COCOON
Causal Consistency model. The same CO-
COON abstractions are used for posting votes
on a annotation (REVIEWERS) and deciding
an annotation accepted, rejected or deferred

(READER).

Latecomers to a review session are implemented
via the Weak and Initial Join consistency mod-
els. Updates to real-time shared objects are sub-
ject to the weak consistency constraints. Only
the last update will be seen by the latecomer.
All other updates are part of the history trans-
ferred and replayed by COCOON.

Each REVIEWER can disconnect from the ses-
sion (e.g. communication link becomes un-
available or too expensive). Disconnection can
be forced if communication with the respective
member is no longer possible. In both cases, the
disconnected REVIEWER can browse through
the code listing, make annotations and vote on
his own. He can later reconnect to the ses-
sion in two ways : a join to the session uses
the COCOON disconnect-reconnect-join consis-
tency model. All updates made from the dis-
connected REVIEWER during the disconnec-
tion period are lost. Updates from the group

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

11

are transparently replayed. A REVIEWER can
also merge with the current session. This maps
to the disconneci-reconnect-merge model. The
conflict resolution method provided by the ap-
plication uses the group-has-it-right policy de-
scribed in chapter 3.2. This ensures that anno-
tations made by both the group and the single-
ton will be part of the shared information space
after the join while conflicting updates (changes
of the code window or pointer object) will be
reflected according to the group state.

The application allows each REVIEWER to
make private comments or view additional doc-
uments (e.g. compiler listing, man pages) inde-
pendently from the group. This uses the pri-
vate information space facility provided by CO-
COON. Private comments can be made avail-
able to the group at any point during the group
session by transferring the private space to the
shared information space.

5.2 CoNus: an Application to support
synchronous and asynchronous col-
laboration

We implemented an application that provides team
members with the ability to visit each other in virtual
rooms. If more than one member is present in such a
room, informal audio video communication is enabled
among them. If an application document is layed on
an overhead projector in the user interface metaphor,
a shared window system shares this application among
the room participants as illustrated in Fig. 5.

We do not describe the application in full detail here.
The following list gives a brief overview of its function-
ality with respect to the used COCOON abstractions

e When the CoNus system is coming up the
first time, an electronic secretary initiates an
overview. For each user connecting the first time
to the system, a private room object is created
together with an associated room session. The
system distinguishes between tightly and loosely
subscribed room sessions. Tightly subscribed
means that each change inside a room as for ex-
ample the creation of a door to another room,
the creation of an overhead projector on a ta-
ble, or the movement of an application docu-
ment from the table to the overhead projector
is tracked by the room session according to the
COCOON total consistency model. This guar-
antees e.g., that a document can not be layed on

151

document

- video communication

Figure 5: The CoNus Metaphor

a table that has not been created before. In a
second step we will relax the consistency model
to use the causal consistency model. Loosely
subscribed means that changes to that room are
not completely tracked by the room session: only
users that enter and leave the room are recog-
nized.

If a user is visiting another wuser in his
room, the tightly as well as the loosely sub-
scribed room sessions track the users disap-
pearence/appearence. There are two variants in
preparing consistent replicas of the shared room
for the users:

var a) Loosely subscribed: All the changes that
have been made since the last visit of the room
will be replayed for the visitor according to the
COCOON disconnect-reconnect-join consistency
model. To reduce message traffic this is appro-
priate especially if a large number of partners
are using the system.

var b) Tightly subscribed: All the changes
have already been performed by the system, be-
cause the users session membership remained
unchanged. This is appropriate if users fre-
quently visit each other and do not accept the
delay for actualizing the room state.

A user can disconnect from the session (e.g. if he
carries his laptop home) in two ways according
to var a) and var b):

a) Before leaving the CoNus-system, he checks
out from all concerned rooms with reconnect-
join consistency model. This updates the rooms

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from |IEEE Xplore. Restrictions apply.

12

state.

b) No check-out is required for those rooms that
have been connected since the last visit.
Thereafter the consistency model switches to
disconnect-reconnect-merge. Disconnected from
the CoNus system, the user is able to work
autonomously in private as well as in shared
rooms: he can create annotations, documents,
room equipments, as well as change the contents
of specific objects. The user later merges the
session according to the disconnect-reconnect-
merge model. The conflict resolution methods
provided by the CoNus system are still under
development. Possible conflict policies are :
group-has-it-right or chief-is-always-right policy
for objects that have been moved around, solve-
conflict-by-originators policy delegates responsi-
bility to those users that have changed contents
of the same objects.

The atomic consistency model is required e.g. if
a user enters a room: Between the room change
operation delLink (userl, room1) and createLink
(userl, room2) no other operations are allowed,
because the consistency criterion each user has
an associated room would be violated.

The weak consistency modelis used for real-time-
shared objects: The users telepointers and ob-
jects that have bee moved around with no change
of their part-of-structure (e.g. a document has
only be moved on the table).

Allthough the applications show a variety of differ-
ent collaboration patterns, we were able to verify, that
the implementation was very much faciliated by CO-
COON. The shared information abstraction is generic
enough, to support a variety of shared objects typical
for a code inspection meeting and the shared rooms
scenario. The consistency models map to the basic
collaboration patterns in theses meetings. The CO-
COON implementation on top of the ISIS/News ser-
vice and RDO/Smalltalk interface proved to be suf-
ficiently efficient even for real-time shared objects.
However the conversion of large objects from/into the
ISIS message format turned out to be a limiting fac-
tor for the scalability of history lists, especially when
large objects are envolved. A hybrid approach using
checkpoints of the object net in combination with his-
tory lists may be a solution in this case. Checkpointing
functionality is also important for undo/redo function-
ality and persistence support. These issues will be
addressed in the future. Note that the simplicity of

152

the COCOON information model and its implemen-
tation allow a simple and elegant realization of these
mechanisms.

6 Conclusion

In this paper we presented COCOON, a groupware
support layer, centered around the notion of a shared
information space. The concept of a shared informa-
tion space is inherent in pretty much all groupware
applications. Our approach corresponds to this by
providing a simple yet powerful and generic model of
managing shared information in a collaborative set-
ting. COCOON supports a variety of real-world co-
operative tasks. It simplifies the task of a groupware
programmer and makes implementation faster and less
complex.

COCOON supports a replicated architecture and thus
corresponds to major requirements in groupware ap-
plication design, like heterogeneity of local environ-
ments, responsiveness and support for mobile, loca-
tion independent computing.

The COCOON consistency models for managing
shared information are based on an analysis of a va-
riety of collaborative activities. They offer a broad
range of options for the groupware programmer, hid-
ing lots of the complexities in dealing with replicated
information. In contrast to existing approaches, theses
consistency models reflect the requirements of group-
ware applications, allowing the programmer to focus
his effort on application functionality.

Using the RDO/Smalltalk interface to the ISIS/News
service proved to be extremly advantageous. It sim-
plified the implementation of COCOON considerably.
In fact it turned out that the publish/subscribe model
provided by 1SIS/News is extremely well suited for the
support of groupware scenarios.

Allthough the shared information abstraction is a key
concept in groupware applications, there are a number
of other abstractions which are used extensively in the
support of collaborative tasks. In order to provide a
fully generic groupware support layer, our future work
will extend COCOON with a number of mechanisms

e Support for additional consistency models [1] [2].

o Support for coordination of activities, e.g. for
work-flow management [15].

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

13

e Extension of the information model to support
the notion of fragmented objects and applicable
consistency models, e.g. integrity constraints or
atomic operations [14].

o Support for Undo/Redo of changes to the shared
information space.

e Support for Peristence and Histories.

A first investigation showed that the COCOON
information model and its implementation via
ISIS/News makes support for these things relatively
simple. Additionally we will test the strenghts and
weaknesses of COCOON by implementing a suite of
groupwre applications on top of it.

References

[1] The Association for Computing Machinery. Pro-
ceedings of the 1992 ACM Conference on CSCW
- Session on consistency in collaborative systems,
Toronto, November 1992.

[2] W. Babitch. Software Configuration Manage-

ment. Addison Wesley, 1986.

K. Birman. Lightweigth causal and atomic group
multicast. ACM Transactions on Computer Sys-
tems, 8(3), 1991.

The ISIS Distributed
ISIS Distributed Systems

K.P. Birman and other.
Toolkit, Version 3.0.
Inc., September 1992.

L. Brothers and other. Icicle - groupware for
code inspection. In Proceedings of the 1990 ACM
Conference on CSCW, Los Angeles CA, October
1990.

V. Cahill and other. The Amadeus GRT -
Generic Runtime Support for Distributed Persis-
tent Programming. In Proceedings of the 1993
OOPSLA Conference, Washington D.C., 1993.

[6

o=

[7] R. Cooper and other. The RDO Programmers
Manual. 1SIS Distributed Systems Inc., August

1993.

—
[«
e

C. Ellis and other. Groupware - some issues and
experiences. Commaunications of the ACM, 34(1),
1991.

[9] S. Greenberg. Computer Supported Cooperative
Work and Groupware. Academic Press, 1991.

153

[10] S. Greenberg and other. Liveware: A new ap-
proach to sharing data in social networks. Inter-
national Journal of Man Machine Studies, 34(3),
1991.

S. Jablonski. Datenhaltung in verteilien Syste-
men. Informatik Fachberichte. Springer Verlag,
1991.

L. Lamport. Time, Clocks and the ordering of
events in a Distributed System. Communications
of the ACM, 21(7), 1978.

Golding, R. Long, D. Design choices for weak
consistency group communication. Technical Re-
port UCSC-TR-92-45, University of California
Santa Cruz, October 1992.

[14] M. Makpangou and other. Fragmented Objects
for Distributed Abstractions. In Readings in Dis-
tributed Systems. IEEE Compouter Society, 1993.
[15]) R. Medina-Mora and other. The Action Work-
flow Approach To Workflow Management. In
Proceedings of the 1992 ACM Conference on
CSCW, Toronto, November 1992.

[16] R. Needham. Naming. In Distributed Systems.
ACM Press, 1989.

[17} R. Newman-Wolfe and other. Implicit locking
in the ENSEMBLE concurrent object-oriented
graphics editor. In Proceedings of the 1992 ACM
Conference on CSCW, Toronto, November 1992.

[18] T. Rodden and other. A survey of CSCW sys-
tems. Interacting with Computers, 3(3), 1991.

[19] Greif, I. Sarin, S. Data Sharing in Group Work.
ACM Transactions on Office Information Sys-
tems, 5(2), 1987.

[20] M. Satyanarayanan and other. Experience with

disconnected operation in a mobile environment.

In Proceedings of the USENIX Symposium on

Mobile and Location Independent Computing,

Cambridge, MA, August 1993.

[21] Davidson, S. Garcia-Molina, H. Skeen, D. Consis-

tency in partitioned networks. ACM Computing

Surveys, 17(3), September 1985.

[22] M. et al Stefik. Beyond the chalkboard - com-

puter support for cooperation and problem solv-

ing in meetings. Communications of the ACM,

30(1), 1987.

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

14

[23] R. van der Linden. The ANSA Naming model.
Technical Report AR.0003.01, The ANSA Con-
sortium, Cambridge (UK), February 1993.

[24] Coad, S. Yourdan, M. Object-Oriented Design
and Analysis. Prentice-Hall, 1991.

154

Authorized licensed use limited to: David Williams. Downloaded on October 05,2020 at 15:25:33 UTC from IEEE Xplore. Restrictions apply.

15

