a9 United States
a2y Patent Application Publication o) Pub. No.: US 2011/0087733 A1

Shribman et al.

US 20110087733A1

43) Pub. Date: Apr. 14, 2011

(54) SYSTEM AND METHOD FOR PROVIDING
FASTER AND MORE EFFICIENT DATA

COMMUNICATION

(75) Inventors:

(73) Assignee:
(21) Appl. No.:

(22) Filed:

Related U.S. Application Data
(60) Provisional application No. 61/249,624, filed on Oct.

8, 2009.

Derry Shribman, Netanya (IL);
Ofer Vilenski, Netanya (IL)

hola, Inc., Natanya (IL.)

12/836,059

Jul. 14, 2010

Publication Classification

(51) Int.CL
GOGF 15/16

Y

CLIENT
DEVICE
14

—

e,

CLIENT

DEVICE
16

(2006.01)

CLIENT
DEVICE
10

CLIENT
DEVICE
12

)

N~—
SRR

—

(CZ R VR & R 709/204
(57) ABSTRACT

A system designed for increasing network communication
speed for users, while lowering network congestion for con-
tent owners and ISPs. The system employs network elements
including an acceleration server, clients, agents, and peers,
where communication requests generated by applications are
intercepted by the client on the same machine. The IP address
of the server in the communication request is transmitted to
the acceleration server, which provides a list of agents to use
for this IP address. The communication request is sent to the
agents. One or more of the agents respond with a list of peers
that have previously seen some or all of the content which is
the response to this request (after checking whether this data
is still valid). The client then downloads the data from these
peers in parts and in parallel, thereby speeding up the Web
transfer, releasing congestion from the Web by fetching the
information from multiple sources, and relieving traffic from
Web servers by offloading the data transfers from them to
nearby peers.

=

PROXY
SERVER
4

S

PROXY
SERVER

~—

6

—
CLIENT
DEVICE

18

—
S

CLIENT
DEVICE
20

—

NetNut Ltd. v. Luminati Ltd.

Ex. 1017
Page 1 of 31

Patent Application Publication Apr. 14,2011 Sheet 1 of 15 US 2011/0087733 A1

— S

CLIENT
DEVICE
10
g
CLIENT
DEVICE PROXY
12 SERVER
 — a
—_——
CLIENT
DEVICE
14
-
CLIENT N
DEVICE PROXY
16 SERVER
N—ee 6

)

CLIENT
DEVICE
is

—
Y

CLIENT
DEVICE
20

— \ 8

FIG. 1

Page 2 of 31

Patent Application Publication Apr. 14,2011 Sheet 2 of 15 US 2011/0087733 A1

SERVER
80

CLIENT
DEVICE
60

Page 3 of 31

Patent Application Publication Apr. 14,2011 Sheet 3 of 15 US 2011/0087733 A1

/- 100

ACCELERATION
SERVER
162

STORAGE

DEVICE
164

CLIENT
102

FIG. 3

Page 4 of 31

US 2011/0087733 Al

Apr. 14,2011 Sheet 4 of 15

Patent Application Publication

¥ "Old

ove
S32IA3A O/l

§¢ JOVIHUALNI TvO01

0lc
AdONIN

(¥4
S/0

%4
FUVYMLI0S

(1744
NOILLVYOITddV
NOILY™3T3D0V

80¢
30I1A3Ad IOVHOLS

(474
3svav.iva IHOVO

[{r4
H0SS3I00Ud

082
3svavivda
NOILYYHNODIANOD

vic
JISMOHd
LINYILNI

/loou

Page 5 of 31

Patent Application Publication Apr. 14,2011 Sheet S of 15 US 2011/0087733 A1
APPLICATION INTERNET OTHER ACCELERATION
LEVEL BROWSER APPLICATIONS APPLICATION
270 214 216 220
INTERMMEDIATE DRIVER
272
COMMUNICATION
STACKS
264
OPERATING] [
SYSTEM J L
LI;XEL DEVICE DRIVERS
- 262
OPERATING
SYSTEM
230
MEMORY
210

Page 6 of 31

US 2011/0087733 Al

Apr. 14,2011 Sheet 6 of 15

Patent Application Publication

9 "Old

802

30INA3A IADVHOILS

z8e

aSvaviva 3IHOVO

082
asvaviva

NOILVHYNOIANOD

[

822
ITNAON LNIOV

I

~.

9z¢
ITNAON d33d

I

vee
I1NAON LN3IMD

ITNACIN
AIZITVILINI NILSAS
NOILV¥3T30OV

oce
NOILLVIITddV
NOILLVY31300V

Page 7 of 31

Patent Application Publication Apr. 14,2011 Sheet 7 of 15 US 2011/0087733 A1

162
ACCELERATION DATABASE 164 /

166 AGENT IP ADDRESS ONLINE/OFFLINE
>>> INDEXED BY: AGENT IP ADDRESS

CACHE DATABASE 282
286 LIST OF URLS:
288 URL 1
290 URL
292 URL HTTP HEADERS
294 LAST CHECKED ON SERVER
296 LAST CHANGED ON SERVER
298 LIST OF CHUNKS FOR THIS URL:
300 CHUNK 1
302 CHUNK CHECKSUM
304 CHUNK DATA
306 LIST OF PEERS:
308 PEER 1
310 PEER 1 IP ADDRESS
312 PEER 2 CONNECTION STATUS

FIG. 7

Page 8 of 31

Patent Application Publication Apr. 14,2011 Sheet 8 of 15 US 2011/0087733 A1

300

O

INITIALIZER SIGNS UP WITH
ACCELERATION SERVER
302

l

DETERMINE IF THERE IS AN
UPDATED VERSION OF
APPLICATION?

304

i

INITIALIZER REDIRECTS
OUTGOING NETWORK TRAFFIC
306

y

INITIALIZER LAUNCHES CLIENT
MODULE AND CONFIGURES
CLIENT MODULE TO INTERCEPT
ALL OUTGOING NETWORK
COMMUNICATIONS
308

i

INITIALIZER LAUNCHES AGENT
MODULE AND PEER MODULE
310

FIG. 8

Page 9 of 31

Patent Application Publication Apr. 14,2011 Sheet 9 of 15 US 2011/0087733 A1

350

APPLICATION ON CLIENT INITIATES
REQUEST FOR A RESOURCE ON A
NETWORK
352

A 4

RESOURCE REQUEST IS INTERCEPTED BY
THE CLIENT MODULE
354

v
CLIENT MODULE LOOKS UP IP ADDRESS OF
SERVER THAT IS TARGET OF RESOURCE
REQUEST AND SENDS IP ADDRESS TO
ACCELERATION SERVER TO OBTAIN LIST
OF COMMUNICATION DEVICES THAT
CLIENT CAN USE AS AGENTS
356

\ 4
ACCELERATION SERVER PREPARES A LIST
OF AGENTS THAT MAY BE SUITABLE TO
HANDLE THE REQUEST FROM THIS IP
ADDRESS
358

A4

CLIENT SENDS ORIGINAL REQUEST TO ALL
AGENTS IN THE LIST RECEIVED FROM
ACCELERATION SERVER TO DETERMINE
WHICH AGENT IN THE LIST IS BEST SUITED
TO ASSIST WITH THE REQUEST
360

FIG. 9

Page 10 of 31

Patent Application Publication Apr. 14,2011 Sheet 10 of 15 US 2011/0087733 A1

EACH AGENT THAT RECEIVES CLIENT REQUEST RESPONDS TO CLIENT WITH
WHETHER IT HAS INFO. REGARDING REQUEST THAT CAN ASSIST CLIENT TO
DOWNLOAD REQUESTED INFO. FROM PEERS IN NETWORK 382

v

CLIENT SELECTS SPECIFIC AGENT

v

CLIENT NOTIFIES SELECTED AGENT OF USE FOR REQUEST AND NOTIFIES OTHER
AGENTS OF LACK OF USE

384

386
CLIENT FORWARDS SELECTED AGENT REQUEST FOR FIRST X NUMBER OF
CHUNKS 388
DOES SELECTED AGENT HAVE INFO. REGARDING
REQUESTED CHUNKS AND IS INFO. STILL VALID?
390
YES . NO
A SELECTED AGENT SENDS REQUEST
IF INFO. STILL VALID, SELECTED DIRECTLY TO SERVER 400

AGENT RESPONDS TO CLIENT WITH _

CHECKSUM OF CHUNK, LIST OF
PEERS THAT CONTAIN CHUNKS, AND
IF ONLY A PORTION OF INFO.,

HEADERS 392

v

y
SELECTED AGENT STORES INFO.
FROM SERVER IN ITS DATABASE
402

LIST OF PEERS FOR EACH CHUNK IS
SORTED BY GEOGRAPHICAL
PROXIMITY TO REQUESTING CLIENT

394
LIST OF CLOSEST PEERS TO CLIENT
IS SENT TO GLIENT 396

SELECTED AGENT PREPARES
RESPONSE (LIST) FOR CLIENT,
WHERE RESPONSE INCLUDES
CHECKSUM OF CHUNK, HEADERS,
AND PROVIDES ITSELF AS THE ONLY
PEER FOR THESE CHUNKS
404

h 4

LIST IS FORWARDED BACK TO
CLIENT

406

FIG. 10

Page 11 of 31

Patent Application Publication Apr. 14,2011 Sheet 11 of 15 US 2011/0087733 A1

CLIENT RECEIVES RESPONSE FROM THE AGENT AND FOR EACH OF X CHUNKS,
CLIENT SENDS A REQUEST TO EACH OF THE PEERS LISTED FOR THE CHUNK TO
DOWNLOAD THE DATA OF THAT CHUNK 422
PEERS RESPOND REGARDING WHETHER THEY STILL HAVE THE DATA OF THE
CHUNK 424
CLIENT SELECTS QUICKEST PEER WITH DATA OF THE CHUCK 426
CHOSEN PEER SENDS CHUNK TO CLIENT 428
CLIENT STORES CHUNKS IN ITS CACHE FOR FUTURE USE 430
IF ANY CHUNKS WERE NOT LOADED FROM ANY OF THE PEERS, CLIENT REQUESTS
CHUNKS AGAIN FROM AGENT 432
CLIENT ACKNOWLEDGES TO THE AGENT WHICH OF THE CHUNKS IT RECEIVED
PROPERLY 434
AGENT LOOKS UP CHUNKS IN DATABASE OF AGENT AND ADDS CLIENT TO LIST
OF PEERS FOR THESE CHUNKS 436
CLIENT PASSES DATA TO APPLICATION OF CLIENT THAT MADE REQUEST 438
CLIENT CHECKS WHETHER ALL OF THE CHUNKS FOR REQUEST WERE RECEIVED
440

420

Page 12 of 31

Patent Application Publication

LOOK UP HTTP REQUEST IN
DATABASE, GET ITS HTTP HEADERS
502

:

USING STANDARD HTTP
PROTOCOL, CHECK THE HEADERS
TO SEE IF THE URL IS STILL VALID
AT THIS TIME (USING HTTP
HEADER INFORMATION SUCH AS
'MAX AGE', 'NO CACHE', MUST
REVALIDATE', ETC.)

504

v

Apr. 14,2011 Sheet 12 of 15

US 2011/0087733 Al

500

IS DATA CACHED FOR THIS NO
REQUEST STILL VALID? SEND HTTP CONDITIONAL REQUEST
506 TO THE WEB SERVER, TO CHECK IF
THE DATA STORED FOR THIS
REQUEST IS STILL VALID
510
¢YES *
YES
RETURN "VALID" IS CACHED DATA STILL VALID?
508 512
l NO
RETURN "INVALID"
514
FIG. 12

Page 13 of 31

Patent Application Publication

Apr. 14,2011 Sheet 13 of 15

CHECK "KEEP ALTVE" WITH NETWORK
ELEMENTS (CLIENTS/AGENTS/PEERS), AND
UPDATE DATABASE AS TO THEIR STATUS
(ONHLINE / OFF-LINE)

I

US 2011/0087733 Al

WAIT FOR CLIENT REQUEST
554

SIGN

'

TYPE OF REQUEST RECEIVED?
556

— |

uP FIND_AGENT

CHECK_VERSION

ADD THE QLIENT TOLIST OH
POTENTIAL

SORTED BY IP ADDRESS OF

THE NETWORK ELEMENTS

(CLIENTS, PEERS, AGENTS)
558

CREATE A NEW, HVPTYAGENI'L'IS'I‘I
560

Y

RETURN TO THE QLIENT THE VERSION OF

SEARCH THE AGENT DATABASE
FOR THE NEXT 5 ACTIVE AGENTS
THAT HAS THE IP ADDRESS THAT
IS CLOSEST TO THE TARGET
SERVERIP

(EG 192166.3.103 ISQOSER TO
192.166.3.212 THEN TO

192.167.3.104)

FIG 13

Page 14 of 31

Patent Application Publication Apr. 14,2011 Sheet 14 of 15 US 2011/0087733 A1

600

NETWORK APPLICATION ON CLIENT ISSUES REQUEST TO
CONNECT TO A TCPIP SERVER
601

!

CONNECTION REQUEST IS INTERCEPTED BY
ACCELERATION APPLICATION ON THE CLIENT
602

A 4

CLIENT MODULE SENDS THE IP ADDRESS OF THETCPIP
SERVER TO THE ACCELERATION SERVER TO OBTAIN AN
AGENT LIST
604

:

ACCELERATION SERVER PREPARES A LIST OF AGENTS
THAT MAY BE SUITABLE TO HANDLE THE REQUEST FROM
THIS IP ADDRESS (FOR EXAMPLE, A PRIMARY AGENT AND
FOUR SECONDARY AGENTS), AND SENDS THE LISTTO THE
CLIENT
606

:

CLIENT ISSUES A TCPIP CONNECT WITH THE PRIMARY
AGENT (OR ONE OF THE OTHER AGENTS IF THE PRIMARY
AGENT CONNECT DOES NOT SUCCEED) TO ESTABLISH A

TCPIP CONNECTION WITH AN AGENT
608

|

CLIENT SENDS TO THE AGENT THE IP ADDRESS OF THE
TCPIP SERVER THAT THE COMMUNICATION APPLICATION
WANTS TO CONNECT WITH, AND THE PORT TO WHICH IT

WANTS TO CONNECT
610

I

AGENT ISSUES A TCPIP CONNECT WITH THE TCPIP
SERVER TO THE IP AND PORT RECEIVED FROM THE CLIENT
612

FIG. 14

Page 15 of 31

Patent Application Publication Apr. 14,2011 Sheet 15 of 15 US 2011/0087733 A1

ACCELERATION APPLICATION INTERCEPTS A TCPIP WRITE COMMAND FROM THE
COMMUNICATION APPLICATION (ON CLIENT) OR FROM TCPIP SERVER (ON AGENT) 802

DATA OF WRITE COMMAND IS BROKEN UP INTO CHUNKS AND CHECKSUMS ARE
CALCULATED FOR EACH CHUNK 804

ACCELERATION APPLICATION LOOKS UP EACH CHUNK'S CHECKSUM IN ITS CACHE
DATABASE 806 il

'

DOES AN ENTRY FOR THE CHECKSUM EXIST IN THE CACHE DATABASE? 808

YES

A 4

ACCELERATION APPLICATION PREPARES NO

LIST OF PEERS THAT HAVE RECEIVED THIS
CHUNK IN THE PAST 810

¢ A 4

ACCELERATION APPLICATION SENDS PEER
LIST TO COMMUNICATION DEVICE IT IS

COMMUNICATING WITH (CLIENT TO AGENT, ACCELERATION APPLICATION ADDS
OR AGENT TO CLIENT), AND ADDS THAT THE CHUNK AND ITS CHECKSUM TO
COMMUNICATION DEVICE TO THE LIST OF ITS CACHE DATABASE, AND SENDS
PEERS FOR THAT CHUNK 812 THE CHUNK ITSELF TO THE
i COMMUNICATION DEVICE IT IS
COMMUNICATING WITH (CLIENT TO
COMMUNICATION DEVICE WTH ADDS THAT GOMUNICATION DEVICE
ACCELERATION APPLICATION THAT TO THE LIST OF PEERS FOR THAT
RECEIVED THE LIST OF PEERS CONNECTS CHUNK 820

TO AT LEAST ONE OF THE PEERS AND
DOWNLOADS THE CHUNK FROM IT 814

A A

HAVE ALL CHUNK DATA BEEN TRANSFERRED TO THE OTHER SIDE? 816 —

+ YES

ACCELERATION APPLICATION PASSES ON THE COMPLETE DATA RECEIVED ON TO THE
REQUESTER — IN THE CLIENT IT PASSES IT ON TO THE COMMUNICATION APPLICATION,
AND IN THE AGENT IT PASSES IT ON TO THE TCPIP SERVER 818

\ 800

FIG. 15

Page 16 of 31

US 2011/0087733 Al

SYSTEM AND METHOD FOR PROVIDING
FASTER AND MORE EFFICIENT DATA
COMMUNICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] The present application claims priority to copend-
ing U.S. provisional patent application entitled “FASTER
AND MORE EFFICIENT DATA COMMUNICATION
SYSTEM,” having Ser. No. 61/249,624, filed Oct. 8, 2009,
which is hereby incorporated herein by reference in its
entirety.

FIELD OF THE INVENTION

[0002] The present invention is related to Internet commu-
nication, and more particularly, to improving data communi-
cation speed and bandwidth efficiency on the Internet.

BACKGROUND OF THE INVENTION

[0003] There are several trends in network and Internet
usage, which tremendously increase the bandwidth that is
being used on the Internet. One such trend is that more and
more video is being viewed on demand on the Internet. Such
viewing includes the viewing of both large and short video
clips. In addition, regular shows and full-featured films may
be viewed on the Internet. Another trend that is increasing the
traffic on the Internet is that Web sites (such as shopping
portals, news portals, and social networks) are becoming
global, meaning that the Web sites are serving people in many
diverse places on the globe, and thus the data is traversing
over longer stretches of the Internet, increasing the conges-
tion.

[0004] The increase in bandwidth consumption has created

several major problems, a few of which are described below:

[0005] The problem for users—the current Internet band-
width is not sufficient, and thus the effective ‘speed’ expe-
rienced by users is slow;

[0006] The problem for content owners—the tremendous
amount of data being viewed by users is costing large
amounts of money in hosting and bandwidth costs; and

[0007] The problem for Internet Service Providers
(ISPs)—the growth in Internet traffic is requiring the ISPs
to increase the infrastructure costs (communication lines,
routers, etc.) at tremendous financial expense.

[0008] The need for a new method of data transfer that is

fast for the consumer, cheap for the content distributor and

does not require infrastructure investment for ISPs, has
become a major issue which is yet unsolved.

[0009] There have been many attempts at making the Inter-

net faster for the consumer and cheaper for the broadcaster.

Each such attempt is lacking in some aspect to become a

widespread, practical solution, or is a partial solution in that it

solves only a subset of the major problems associated with the
increase in Internet traffic. Most of the previous solutions
require billions of dollars in capital investment for a compre-
hensive solution. Many of these attempts are lacking in that
much of the content on the Internet has become dynamically
created per the user and the session of the user (this is what
used to be called the “Web2.0” trend). This may be seen on the

Amazon Web site and the Salesforce Web site, for example,

where most of the page views on these Web sites is tailored to

the viewer, and is thus different for any two viewers. This
dynamic information makes it impossible for most of the

Apr. 14,2011

solutions offered to date to store the content and provide it to
others seeking similar content.

[0010] One solutionthat has beeninuse is called a “proxy”.
FIG. 11is a schematic diagram providing an example of use of
a proxy within a network 2. A proxy, or proxy server 4, 6, 8 is
adevice that is placed between one or more clients, illustrated
in FIG. 1 as client devices 10, 12, 14, 16, 18, 20, that request
data, via the Internet 22, and a Web server or Web servers 30,
32, 34 from which they are requesting the data. The proxy
server 4, 6, 8 requests the data from the Web servers 30, 32, 34
on their behalf, and caches the responses from the Web serv-
ers 30, 32, 34, to provide to other client devices that make
similar requests. If the proxy server 4, 6, 8 is geographically
close enough to the client devices 10, 12, 14, 16, 18, 20, and
if the storage and bandwidth of the proxy server 4, 6, 8 are
large enough, the proxy server 4, 6, 8 will speed up the
requests for the client devices 10, 12, 14, 16, 18, 20 that it is
serving.

[0011] It should be noted, however, that to provide a com-
prehensive solution for Internet surfing, the proxy servers of
FIG. 1 would need to be deployed at every point around the
world where the Internet is being consumed, and the storage
size of the proxy servers at each location would need to be
near the size of all the data stored anywhere on the Internet.
The abovementioned would lead to massive costs that are
impractical. In addition, these proxy solutions cannot deal
well with dynamic data that is prevalent now on the Web.
[0012] There have been commercial companies, such as
Akamai, that have deployed such proxies locally around the
world, and that are serving a select small group of sites on the
Internet. If all sites on the Web were to be solved with such a
solution, the capital investment would be in the range of
billions of dollars. In addition, this type of solution does not
handle dynamic content.

[0013] To create large distribution systems without the
large hardware costs involved with a proxy solution, “peer-
to-peer file sharing” solutions have been introduced, such as,
for example, BitTorrent. FIG. 2 is a schematic diagram pro-
viding an example of a peer-to-peer file transfer network 50.
In the network 50, files are stored on computers of consumers,
referred to herein as client devices 60. Each consumer can
serve up data to other consumers, via the Internet 62, thus
taking the load of serving off of the distributors and saving
them the associated costs, and providing the consumer mul-
tiple points from which to download the data, referred to
herein as peers 70, 72, 74, 76, 78, thus increasing the speed of
the download. However, each such peer-to-peer solution must
have some sort of index by which to find the required data. In
typical peer-to-peer file sharing systems, because the index is
on a server 80, or distributed among several servers, the
number of files available in the system is not very large
(otherwise, the server costs would be very large, or the lookup
time would be very long).

[0014] The peer-to-peer file sharing solution is acceptable
in file sharing systems, because there are not that many media
files that are of interest to the mass (probably in the order of
magnitude of millions of movies and songs that are of inter-
est). Storing and maintaining an index of millions of entries is
practical technically and economically. However, if this sys-
tem were to be used to serve the hundreds of billions of files
that are available on the Internet of today, the cost of storing
and maintaining such an index would be again in the billions
of'dollars. In addition, these types of peer-to-peer file sharing
systems are not able to deal with dynamic HTTP data.

Page 17 of 31

US 2011/0087733 Al

[0015] In conclusion, there does not exist a system that
enables fast transmission of most of the data on the Internet,
that does not incur tremendous costs, and/or that provides
only a very partial solution to the problem of Internet traffic
congestion. Thus, a heretofore unaddressed need exists in the
industry to address the aforementioned deficiencies and inad-
equacies.

SUMMARY OF THE INVENTION

[0016] The present system and method provides for faster
and more efficient data communication within a communica-
tion network. Briefly described, in architecture, one embodi-
ment of the system, among others, can be implemented as
follows. A network is provided for accelerating data commu-
nication, wherein the network contains: at least one client
communication device for originating a data request for
obtaining the data from a data server; at least one agent
communication device which is assigned to the data server for
receiving the data request from the client communication
device, wherein the agent keeps track of which client com-
munication devices have received responses to data requests
from the assigned data server; at least one peer communica-
tion device for storing portions of data received in response to
the data request by the at least one client communication
device, wherein the portions of data may be transmitted to the
at least one client communication device upon request by the
client communication device; and at least one acceleration
server for deciding which agent communication device is to
be assigned to which data server and providing this informa-
tion to the at least one client communication device.

[0017] The present system and method also provides a
communication device within a network, wherein the com-
munication device contains: a memory; and a processor con-
figured by the memory to perform the steps of: originating a
data request for obtaining data from a data server; being
assigned to a data server, referred to as an assigned data
server; receiving a data request from a separate device within
the network, and keeping track of which client communica-
tion devices within the network have received responses to
data requests from the assigned data server; and storing por-
tions of data received in response to the originated data
request, wherein the portions of data may be transmitted to
communication device upon request by the communication
device.

[0018] Other systems, methods, features, and advantages
of the present invention will be or become apparent to one
with skill in the art upon examination of the following draw-
ings and detailed description. It is intended that all such
additional systems, methods, features, and advantages be
included within this description, be within the scope of the
present invention, and be protected by the accompanying
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Many aspects of the invention can be better under-
stood with reference to the following drawings. The compo-
nents in the drawings are not necessarily to scale, emphasis
instead being placed upon clearly illustrating the principles of
the present invention. Moreover, in the drawings, like refer-
ence numerals designate corresponding parts throughout the
several views.

[0020] FIG. 1 is a schematic diagram providing a prior art
example of use of a proxy within a network.

Apr. 14,2011

[0021] FIG. 2 is a schematic diagram providing a prior art
example of a peer-to-peer file transfer network.

[0022] FIG. 3 is a schematic diagram providing an example
of'a communication network in accordance with the present
invention.

[0023] FIG. 4 is a schematic diagram further illustrating a
communication device of the communication network of
FIG. 3.

[0024] FIG. 5 is a schematic diagram further illustrating the
memory of FIG. 4.

[0025] FIG. 6 is a schematic diagram further illustrating
elements of the acceleration application of FIG. 5, as well as
communication paths of the acceleration application.

[0026] FIG. 7 is a chart further illustrating two of the main
databases utilized within the communication network.
[0027] FIG. 8 is a flowchart illustrating operation of the
acceleration system initializer module.

[0028] FIG. 9 is a flowchart further illustrating communi-
cation between different elements of the communication net-
work.

[0029] FIG. 10 is a flowchart continuing the flowchart of
FIG. 9 and focused on agent response to the HTTP request.
[0030] FIG. 11 is a flowchart continuing the flowchart of
FIG. 10, which illustrates actions taken upon receipt of the list
of peers, or single peer listing, from the agent.

[0031] FIG. 12 is a flowchart illustrating steps taken by an
agent, client, or peer to determine whether a certain HTTP
request is still valid.

[0032] FIG. 13 is a flowchart outlining operation of the
acceleration server.

[0033] FIG. 14 is a flowchart further illustrating TCPIP
acceleration in accordance with an alternative embodiment of
the invention.

[0034] FIG. 15 is a flowchart further illustrating TCPIP
acceleration in accordance with an alternative embodiment of
the invention, detailing the communication between the client
and the TCPIP server (read and write commands) after the
connect phase has completed successfully.

DETAILED DESCRIPTION

[0035] The present system and method provides for faster
and more efficient data communication within a communica-
tion network. An example of such a communication network
100 is provided by the schematic diagram of FIG. 3. The
network 100 of FIG. 3 contains multiple communication
devices. Due to functionality provided by software stored
within each communication device, which may be the same in
each communication device, each communication device
may serve as a client, peer, or agent, depending upon require-
ments of the network 100, as is described in detail herein. It
should be noted that a detailed description of a communica-
tion device is provided with regard to the description of FI1G.
4.

[0036] Returning to FIG. 3, the exemplary embodiment of
the network 100 illustrates that one of the communication
devices is functioning as a client 102. The client 102 is
capable of communication with one or more peers 112, 114,
116 and one or more agents 122. For exemplary purposes, the
network contains three peers and one agent, although it is
noted that a client can communicate with any number of
agents and peers.

[0037] The communication network 100 also contains a
Web server 152. The Web server 152 is the server from which
the client 102 is requesting information and may be, for

Page 18 of 31

US 2011/0087733 Al

example, a typical HTTP server, such as those being used to
deliver content on any of the many such servers on the Inter-
net. It should be noted that the server 152 is not limited to
being an HTTP server. In fact, if a different communication
protocol is used within the communication network, the
server may be a server capable of handling a different proto-
col. It should also be noted that while the present description
refers to the use of HTTP, the present invention may relate to
any other communication protocol and HTTP is not intended
to be a limitation to the present invention.

[0038] The communication network 100 further contains
an acceleration server 162 having an acceleration server stor-
age device 164. As is described in more detail herein, the
acceleration server storage device 164 has contained therein
an acceleration server database. The acceleration server data-
base stores Internet protocol (IP) addresses of communica-
tion devices within the communication network 100 having
acceleration software stored therein. Specifically, the accel-
eration server database contains stored therein a list of com-
munication devices having acceleration software stored
therein that are currently online within the communication
network 100. For each such agent, the acceleration server
assigns a list of IP addresses.

[0039] In the communication network 100 of FIG. 3, the
application in the client 102 is requesting information from
the Web server 152, which is why the software within the
communication device designated this communication
device to work as a client. In addition, since the agent 122
receives the request from the client 102 as the communication
device closest to the Web server 152, functionality of the
agent 122, as provided by the software of the agent 122,
designates this communication device to work as an agent. It
should be noted, that in accordance with an alternative
embodiment of the invention, the agent need not be the com-
munication device that is closest to the Web server. Instead, a
different communication device may be selected to be the
agent.

[0040] Since the peers 112, 114, 116 contain at least por-
tions of the information sought by the client 102 from the Web
server 152, functionality of the peers 112, 114, 116, as pro-
vided by the software of the peers 112, 114, 116, designates
these communication devices to work as peers. It should be
noted that the process of designating clients, agents, and peers
is described in detail herein. It should also be noted that the
number of clients, agents, peers, acceleration servers, Web
servers, and other components of the communication network
100 may differ from the number illustrated by FIG. 3. In fact,
the number of clients, agents, peers, acceleration servers,
Web servers, and other components of the communication
network 100 are not intended to be limited by the current
description.

[0041] Priorto describing functionality performed within a
communication network 100, the following further describes
a communication device 200, in accordance with a first exem-
plary embodiment of the invention. FIG. 4 is a schematic
diagram further illustrating a communication device 200 of
the communication network 100, which contains general
components of a computer. As previously mentioned, it
should be noted that the communication device 200 of FIG. 4
may serve as a client, agent, or peer.

[0042] Generally, in terms of hardware architecture, as
shown in FIG. 4, the communication device 200 includes a
processor 202, memory 210, at least one storage device 208,
and one or more input and/or output (I/O) devices 240 (or

Apr. 14,2011

peripherals) that are communicatively coupled via a local
interface 250. The local interface 250 can be, for example but
not limited to, one or more buses or other wired or wireless
connections, as is known in the art. The local interface 250
may have additional elements, which are omitted for simplic-
ity, such as controllers, buffers (caches), drivers, repeaters,
and receivers, to enable communications. Further, the local
interface 250 may include address, control, and/or data con-
nections to enable appropriate communications among the
aforementioned components.

[0043] The processor 202 is a hardware device for execut-
ing software, particularly that stored in the memory 210. The
processor 52 can be any custom made or commercially avail-
able processor, a central processing unit (CPU), an auxiliary
processor among several processors associated with the com-
munication device 200, a semiconductor based microproces-
sor (in the form of a microchip or chip set), a macroprocessor,
or generally any device for executing software instructions.

[0044] The memory 210, which is further illustrated and
described by the description of FIG. 5, can include any one or
combination of volatile memory elements (e.g., random
access memory (RAM, such as DRAM, SRAM, SDRAM,
etc.)) and nonvolatile memory elements (e.g., ROM, hard
drive, tape, CDROM, etc.). Moreover, the memory 210 may
incorporate electronic, magnetic, optical, and/or other types
of storage media. Note that the memory 210 can have a
distributed architecture, where various components are situ-
ated remote from one another, but can be accessed by the
processor 202.

[0045] The software 212 located within the memory 210
may include one or more separate programs, each of which
contains an ordered listing of executable instructions for
implementing logical functions of the communication device
200, as described below. In the example of FIG. 4, the soft-
ware 212 in the memory 210 at least contains an acceleration
application 220 and an Internet browser 214. In addition, the
memory 210 may contain an operating system (O/S) 230. The
operating system 230 essentially controls the execution of
computer programs and provides scheduling, input-output
control, file and data management, memory management,
and communication control and related services. It should be
noted that, in addition to the acceleration application 220,
Internet browser 214, and operating system 230, the memory
210 may contain other software applications.

[0046] While the present description refers to a request
from the client originating from an Internet browser, the
present invention is not limited to requests originating from
Internet browsers. Instead, a request may originate from an
email program or any other program that would be used to
request data that is stored on a Web server, or other server
holding data that is requested by the client device.

[0047] Functionality ofthe communication device 200 may
be provided by a source program, executable program (object
code), script, or any other entity containing a set of instruc-
tions to be performed. When a source program, then the
program needs to be translated via a compiler, assembler,
interpreter, or the like, which may or may not be included
within the memory 210, so as to operate properly in connec-
tion with the operating system 230. Furthermore, functional-
ity of the communication device 200 can be written as (a) an
object oriented programming language, which has classes of
data and methods, or (b) a procedure programming language,
which has routines, subroutines, and/or functions.

Page 19 of 31

US 2011/0087733 Al

[0048] The I/O devices 240 may include input devices, for
example but not limited to, a keyboard, mouse, scanner,
microphone, etc. Furthermore, the /O devices 240 may also
include output devices, for example but not limited to, a
printer, display, etc. Finally, the I/O devices 240 may further
include devices that communicate via both inputs and out-
puts, for instance but not limited to, a modulator/demodulator
(modem; for accessing another device, system, or network), a
radio frequency (RF) or other transceiver, a telephonic inter-
face, a bridge, a router, etc.

[0049] When the communication device 200 is in opera-
tion, the processor 202 is configured to execute the software
212 stored within the memory 210, to communicate data to
and from the memory 210, and to generally control operations
of the communication device 200 pursuant to the software
212. The software 212 and the O/S 230, in whole or in part,
but typically the latter, are read by the processor 202, perhaps
buffered within the processor 202, and then executed.

[0050] When functionality of the communication device
200 is implemented in software, as is shown in FIG. 4, it
should be noted that the functionality can be stored on any
computer readable medium for use by or in connection with
any computer related system or method. In the context of this
document, a computer readable medium is an electronic,
magnetic, optical, or other physical device or means that can
contain or store a computer program for use by or in connec-
tion with a computer related system or method. The function-
ality of the communication device 200 can be embodied in
any computer-readable medium for use by or in connection
with an instruction execution system, apparatus, or device,
such as a computer-based system, processor-containing sys-
tem, or other system that can fetch the instructions from the
instruction execution system, apparatus, or device and
execute the instructions. In the context of this document, a
“computer-readable medium” can be any means that can
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device.

[0051] The computer readable medium can be, for example
but not limited to, an electronic, magnetic, optical, electro-
magnetic, infrared, or semiconductor system, apparatus,
device, or propagation medium. More specific examples (a
nonexhaustive list) of the computer-readable medium would
include the following: an electrical connection (electronic)
having one or more wires, a portable computer diskette (mag-
netic), a random access memory (RAM) (electronic), a read-
only memory (ROM) (electronic), an erasable programmable
read-only memory (EPROM, EEPROM, or Flash memory)
(electronic), an optical fiber (optical), and a portable compact
disc read-only memory (CDROM) (optical). Note that the
computer-readable medium could even be paper or another
suitable medium upon which the program is printed, as the
program can be electronically captured, via for instance opti-
cal scanning of the paper or other medium, then compiled,
interpreted or otherwise processed in a suitable manner if
necessary, and then stored in a computer memory.

[0052] In an alternative embodiment, where the function-
ality of the communication device 200 is implemented in
hardware, the functionality can be implemented with any or a
combination of the following technologies, which are each
well known in the art: a discrete logic circuit(s) having logic
gates for implementing logic functions upon data signals, an
application specific integrated circuit (ASIC) having appro-

Apr. 14,2011

priate combinational logic gates, a programmable gate array
(s) (PGA), a field programmable gate array (FPGA), etc.
[0053] The at least one storage device 208 of the commu-
nication device 200 may be one of many different categories
of storage device. As is described in more detail herein, the
storage device 208 may include a configuration database 280
and a cache database 282. Alternatively, the configuration
database 280 and cache database 282 may be located on
different storage devices that are in communication with the
communication device 200. The description that follows
assumes that the configuration database 280 and cache data-
base 282 are located on the same storage device, however, it
should be noted that the present invention is not intended to be
limited to this configuration.

[0054] The configuration database 280 stores configuration
data that is common to all elements of the communication
network 100 and is used to provide set up and synchronization
information to different modules of the acceleration applica-
tion 220 stored within the memory 210, as is described in
further detail herein. The cache database 282 stores responses
to HTTP requests that the communication device 200 has
dispatched, either for its own consumption or on behalf of
other elements of the communication network 100. As is
explained in additional detail herein, the responses to HTTP
requests are stored within the cache database 282 for future
use by this communication device 200, or for other commu-
nication devices within the communication network 100 that
need to retrieve this information and will use this communi-
cation device as either a peer or an agent.

[0055] Inaddition to the abovementioned, as is explained in
further detail herein, the cache database 282 has stored
therein a list of URLSs that the communication device is aware
of (i.e., has seen requests for). For each URL, the cache
database 282 has stored therein the URL itself, HTTP headers
returned by the Web Server for this URL, when the last time
was that the contents of this URL was loaded directly from the
Web Server, when the contents of the URL had last changed
on the Web Server, as well as a list of chunks that contain the
contents of this URL, and the chunks of data themselves.
Chunks in the present description are defined as equally sized
pieces of data that together form the whole content of the
URL. It should be noted that while the present description
provides for chunks being equally sized pieces of data, in
accordance with an alternative embodiment of the invention,
the chunks may instead be of different size.

[0056] FIG. 5 is a schematic diagram further illustrating the
memory 210 of FIG. 4. As shown by FIG. 5, the memory 210
may be separated into two basic levels, namely, an operating
system level 260 and an application level 270. The operating
system level 260 contains the operating system 230, wherein
the operating system 230 further contains at least one device
driver 262 and at least one communication stack 264. The
device drivers 262 are software modules that are responsible
for the basic operating commands for various hardware
devices of the communication device 200, such as the pro-
cessor 202, the storage device 208 and the I/O devices 240. In
addition, the communication stacks 264 provide applications
of the communication device 200 with a means of communi-
cating within the network 100 by implementing various stan-
dard communication protocols.

[0057] The application level 270 includes any application
that is running on the communication device 200. As a result,
the application level 270 includes the Internet browser 214,
which is used to view information that is located on remote

Page 20 of 31

US 2011/0087733 Al

Web servers, the acceleration application 220, as described in
more detail below, and any other applications 216 stored on
the communication device 200.

[0058] As is explained in additional detail below, the accel-
eration application 220 intercepts the requests being made by
applications of the communication device (client) that use the
Internet, in order to modify the requests and route the requests
through the communication network. There are various meth-
ods that may be used to intercept such requests. One such
method is to create an intermediate driver 272, which is also
located within the memory 210, that attaches itself to all
communication applications, intercepts outgoing requests of
the communication applications of the communication
device 200, such as the Internet browser 214, and routes the
requests to the acceleration application 220. Once the accel-
eration application 220 modifies the requests, routes the
requests to other system elements on the communication
network 100, and receives replies from other system elements
of'the communication network 100, the acceleration applica-
tion 220 returns the replies to the intermediate driver 272,
which provides the replies back to the requesting communi-
cation application.

[0059] FIG. 6 is a schematic diagram further illustrating
elements of the acceleration application 220, as well as com-
munication paths of the acceleration application 220. The
acceleration application 220 contains an acceleration system
initializer module 222, which is called when the acceleration
application 220 is started. The acceleration system initializer
module 222 is capable of initializing all elements of the
communication device 200 The acceleration application 220
also contains three separate modules that run in parallel,
namely, a client module 224, a peer module 226, and an agent
module 228, each of which comes into play according to the
specific role that the communication device 200 is partaking
in the communication network 100 ata given time. Therole of
each module is further described herein.

[0060] The client module 224 provides functionality
required when the communication device 200 is requesting
information from the Web server 152, such as, for example,
but not limited to, Web pages, data, video, or audio. The client
module 224 causes the communication device 200 having the
client module 224 therein to intercept the information request
and pass the information request on to other elements of the
communication network 100, such as, servers, agents or
peers. This process is further described in detail herein.
[0061] The peer module 226 provides functionality
required by the communication device 200 when answering
other clients within the communication network 100 and
providing the other clients with information that they request,
which this communication device 200, having this peer mod-
ule 226 therein, has already downloaded at a separate time.
This process is further described in detail herein.

[0062] The agent module 228 provides functionality
required when other communication devices of the commu-
nication network 100 acting as clients query this communi-
cation device 200, having this agent module 228 therein, as an
agent, to obtain a list of peers within the communication
network 100 that contain requested information. This process
is further described in detail herein.

[0063] The acceleration application 220 interacts with both
the configuration database 280 and the cache database 282 of
the storage device 208. As previously mentioned herein, the
configuration database 280 stores configuration data that may
be common to all communication devices of the communi-

Apr. 14,2011

cation network 100 and is used to provide setup and synchro-
nization information to different modules 222, 224, 226, 228
of'the acceleration application 220 stored within the memory
210.

[0064] The cache database 282 stores responses to infor-
mation requests, such as, for example, HTTP requests, that
the communication device 200 has dispatched, either for its
own consumption or on behalf of other elements of the com-
munication network 100. The responses to HT TP requests are
stored within the cache database 282 for future use by this
communication device 200, or for other communication
devices within the communication network 100 that need to
retrieve this same information and will use this communica-
tion device 200 as either a peer or an agent. This process is
described in detail herein.

[0065] Information stored within the cache database 282
may include any information associated with a request sent by
the client. As an example, such information may include,
Meta data and actual requested data. For example, for an
HTTP request for a video, the Meta data may include the
version of the Web server answering the request from the
client and the data would be the requested video itself In a
situation where there is no more room for storage in the cache
database, the software of the associated communication
device may cause the communication device to erase previ-
ous data stored in order to clear room for the new data to store
in the cache database. As an example, such previous data may
include data that is most likely not to be used again. Such data
may be old data or data that is known to no longer be valid.
The communication device may choose to erase the least
relevant data, according to any of several methods that are
well known in the art.

[0066] FIG. 7 is a chart further illustrating two of the main
databases utilized within the communication network 100,
namely, the acceleration server database 164 and the cache
database 282. As previously mentioned, the acceleration
server database 164 stores IP addresses of communication
devices located within the communication network 100,
which have acceleration software stored therein. Specifically,
the acceleration server database 164 contains stored therein a
list of communication devices having acceleration software
stored therein that are currently online within the communi-
cation network 100. The acceleration server assigns a list of
IP addresses to each communication device functioning as an
agent. Each communication device will be the agent for any
Web servers whose IP address is in the range ‘owned’ by that
communication device. As an example, when a first ever
communication device goes online, namely, the first commu-
nication device as described herein having the acceleration
application 220 therein, the acceleration server assigns all IP
addresses in the world to this communication device, and this
communication device will be the agent for any Web server.
When a second communication device goes online it will
share the IP address list with the first communication device,
so that each of the communication devices will be responsible
for a different part of the world wide web servers.

[0067] The cache database 282 of the communication
device 200 has stored therein a list of URLs 286 of which the
communication device 200 is aware. The communication
device 200 becomes aware of a URL each time that the
communication device 200 receives a request for information
located at a specific URL. As shown by FIG. 7, for each URL
288 within the list of URLs 286, the cache database 282
stores: the URL itself 290; HTTP headers 292 returned by the

Page 21 of 31

US 2011/0087733 Al

Web Server 152 for this URL; when the last time 294 was that
the contents of this URL were loaded directly from the Web
Server 152; when the contents of the URL last changed 296
on the Web Server 152; and a list of chunks 298 that contain
the contents of this URL, and the content of the chunk. As
previously mentioned, chunks, in the present description, are
defined as equally sized pieces of data, that together form the
entire content of the URL, namely, the entire content whose
location is described by the URL. As a non-limiting example,
a chunk size of, for example, 16 KB can be used, so that any
HTTP response will be split up into chunks of 16 KB. In
accordance with an alternative embodiment of the invention,
if the last chunk of the response is not large enough to fill the
designated chunk size, such as 16 KB for the present example,
the remaining portion of the chunk will be left empty.
[0068] For each such chunk 300, the cache database 282
includes the checksum of the chunk 302, the data of the chunk
304 itself, and a list of peers 306 that most likely have the data
for this chunk. As is described in additional detail herein, the
data for the chunk may be used by other clients within the
communication network 100 when other communication
devices of the communication network 100 serve as peers to
the clients, from which to download the chunk data.

[0069] Foreach chunk, a checksum is calculated and stored
along side of the chunk itself. The checksum may be calcu-
lated in any of numerous ways known to those in the art. The
purpose of having the checksum is to be able to identify data
uniquely, whereas the checksum is the “key” to the data,
where the data is the chunk. As an example, a client may want
to load the contents of a URL, resulting in the agent that is
servicing this request sending the checksums of the chunks to
the client, along with the peers that store these chunks. It is to
be noted that there could be a different peer for every different
chunk. The client then communicates with each such peer,
and provides the checksum of the chunk that it would like the
peer to transmit back to the client. The peer looks up the
checksum (the key) in its cache database, and provides back
the chunk (data) that corresponds to this checksum (the key).
As shown by FIG. 7, for each peer 308 within the list of peers
306, the cache database 282 includes the peer IP address 310,
as well as the connection status 312 of the peer, which repre-
sents whether the peer 308 is online or not.

[0070] In accordance with one embodiment of the inven-
tion, the cache database 282 may be indexed by URL and by
Checksum. Having the cache database indexed in this manner
is beneficial due to the following reason. When the agent is
using the cache database, the agent receives a request from a
client for the URL that the client is looking for. In such a case
the agent needs the cache database to be indexed by the URL,
to assist in finding a list of corresponding peers that have the
chunks of this URL. When the peers are using this cache
database, the peers obtain a request from the client for a
particular checksum, and the peers need the database to be
indexed by the checksum so that they can quickly find the
correct chunk. Of course, as would be understood by one
having ordinary skill in the art, the cache database may
instead be indexed in any other manner.

[0071] Having described components of the communica-
tion network 100, the following further describes how such
components interact and individually function. FIG. 8 is a
flowchart 300 illustrating operation of the acceleration sys-
tem initializer module 222 (hereafter referred to as the initial-
izer 222 for purposes of brevity). It should be noted that any
process descriptions or blocks in flowcharts should be under-

Apr. 14,2011

stood as representing modules, segments, portions of code, or
steps that include one or more instructions for implementing
specific logical functions in the process, and alternative
implementations are included within the scope of the present
invention in which functions may be executed out of order
from that shown or discussed, including substantially concur-
rently or in reverse order, depending on the functionality
involved, as would be understood by those reasonably skilled
in the art of the present invention.

[0072] The initializer 222 is the first element of the com-
munication device 200 to operate as the communication
device 200 starts up (block 302). As the initializer 222 starts,
it first communicates with the acceleration server 162 to sign
up with the acceleration server 162. This is performed by
providing the acceleration server 162 with the hostname, and
all IP addresses and media access control (MAC) addresses of
the interfaces on the communication device 200 having the
initializer 222 thereon.

[0073] Inaccordance with an alternative embodiment of the
invention, as shown by block 304, the initializer 222 checks
with the acceleration server 162 whether a more updated
version of the acceleration application software is available.
This may be performed by any one of many known methods,
such as, but not limited to, by providing the version number of
the acceleration application software to the acceleration
server 162. The message received back from the acceleration
server 162 indicates whether there is a newer version of the
acceleration application software or not. If a newer version of
the acceleration application software exists, the initializer
222 downloads the latest version of the acceleration applica-
tion software from the acceleration server 162, or from a
different location, and installs the latest version on the com-
munication device 200. In addition to the abovementioned,
the initializer 222 may also schedule additional version
checks for every set period of time thereafter. As an example,
the initializer 222 may check for system updates every two
days.

[0074] As shown by block 306, the initializer 222 then
redirects outgoing network traffic from the communication
device 200 to flow through the acceleration application 162.
As previously mentioned, one way to redirect the outgoing
network traffic is to insert an intermediate driver 212 that
intercepts and redirects the traffic. It should be noted that
there are many other ways to implement this redirection,
which are well known to those having ordinary skill in the art.
[0075] As shown by block 308, the initializer 222 then
launches the client module 224 of the communication device
200, and configures the client module 224 of the communi-
cation device 200 to intercept to all outgoing network com-
munications of the communication device 200 and route the
outgoing network communications to the client module 224,
from the intermediate driver 272 or other routing method
implemented. This is performed so that the client module 224
is able to receive all network traffic coming from the network
applications, modify the network traffic if necessary, and
re-route the traffic. As is known by those having ordinary skill
in the art, in order to re-route the traffic, the traffic needs to be
modified, as an example, to change the destination of
requests.

[0076] As shown by block 310, the initializer 222 then
launches the agent module 228 and the peer module 226 to
run on the communication device 200. The agent module 228
and peer module 226 listen on pre-determined ports of the
communication device 200, so that incoming network traffic

Page 22 of 31

US 2011/0087733 Al

on these ports gets routed to the agent module 228 and peer
module 226. As is explained in further detail herein, the
abovementioned enables the communication device 200 to
function as an agent and as a peer for other communication
devices within the communication network 100, as needed.
[0077] FIG. 9 is a flowchart 350 further illustrating com-
munication between different elements of the communication
network 100, in accordance with the present system and
method for providing faster and more efficient data commu-
nication.

[0078] As shown by block 352, an application running on
the client 200 initiates a request for a resource on a network.
Such a request may be, for example, “GET http://www.aol.
com/index.html HTTP/1.1”. The request may come from an
Internet browser 214 located on the client 200, where the
Internet browser 214 is loading a page from the Internet, an
application that wants to download information from the
Internet, fetch or send email, or any other network commu-
nication request.

[0079] Through the intermediate driver 272, or other such
mechanism as may be implemented that is re-routing the
communication to the client module 224 of the client 200, the
resource request is intercepted by the client module 224 that
is running on the client 200 (block 354). The client module
224 then looks up the IP address of the server 152 that is the
target of the resource request (e.g., the IP address of the Web
server that is the host of www.aol.com in the example above),
and sends this IP address to the acceleration server 162 (block
356) in order to obtain a list of communication devices that
the client 200 can use as agents (hereafter referred to as
agents). It should be noted that the process of performing an
1P lookup for a server is known by one having ordinary skill
in the art, and therefore is not described further herein.
[0080] Inresponse to receiving the IP address of the server
152, the acceleration server 162 prepares a list of agents that
may be suitable to handle the request from this IP address
(block 358). The size of the list can differ based on imple-
mentation. For exemplary purposes, the following provides
an example where a list of five agents is prepared by the
acceleration server 162. The list of agents is created by the
acceleration server 162 by finding the communication
devices of the communication network 100 that are currently
online, and whose [P address is numerically close to the IP of
the destination Web server 152. A further description of the
abovementioned process is described here in.

[0081] As shown by block 360, the client module 224 then
sends the original request (e.g., “GET http://www.aol.com/
index.html HTTP/1.1”) to all the agents in the list received
from the acceleration server 162 in order to find out which of
the agents in the list is best suited to be the one agent that will
assist with this request.

[0082] It should be noted that, in accordance with an alter-
native embodiment of the invention, the communication
device 200 may be connected to a device that is actually
requesting data. In such an alternative embodiment, the com-
munication device would be a modular device connected to a
requesting device, where the requesting device, such as, for
example, a personal data assistant (PDA) or other device,
would request data, and the communication device connected
thereto, either through a physical connection, wireless con-
nection, or any other connection, would receive the data
request and function as described herein. In addition, as pre-
viously mentioned, it should be noted that the HTTP request
may be replaced by any request for resources on the Web.

Apr. 14,2011

[0083] FIG. 10 is a flowchart continuing the flowchart 380
of FIG. 9 and focused on agent response to the request. As
shown by block 382, upon receiving the request from the
client 200, each agent that received the request from the client
responds to the client 200 with whether it has information
regarding the request, which can help the client to download
the requested information from peers in the network. Specifi-
cally, each agent responds with whether the agent has seen a
previous request for this resource that has been fulfilled. In
such a case, the agent may then provide the client with the list
of'peers and checksums of the chunks that each of them have.
[0084] As shown by block 384, the client then decides
which of the agents in the list to use as its agent for this
particular information request. To determine which agent in
the list to use as its agent for the particular information
request, the client may consider multiple factors, such as, for
example, factoring the speed of the reply by each agent and
whether that agent does or does not have the information
required. There are multiple ways to implement this agent
selection, one practical way being to start a timer of a small
window of time, such as, for example, 5 ms, after receiving
the first response from the agents, and after the small window,
choosing from the list of agents that responded, the agent that
has the information about the request, or in the case that none
of'the agents responded, to choose the first agent from the list
received from the acceleration server 162.

[0085] As shown by block 386, after selecting an agent, the
client notifies the selected agent that it is going to use it for this
request, and notifies the other agents that they will not be used
for this request. The client then sends the selected agent a
request for the first five chunks of data of the original infor-
mation request (block 388). By specifying to the selected
agent the requested chunks by their order in the full response,
the client receives the peer list and checksums of the
requested chunks from the selected agent. As an example, for
the first five chunks the client will ask the selected agent for
chunks one through five, and for the fourth batch of five
chunks the client will ask the agent for chunks sixteen through
twenty. As previously mentioned, additional or fewer chunks
may be requested at a single time.

[0086] As shown by block 390, after receiving the request
from the client, the selected agent determines whether it has
information regarding the requested chunks of data by look-
ing up the request in its cache database and determining if the
selected agent has stored therein information regarding peers
of'the communication network that have stored the requested
data of the request, or whether the selected agent itself has the
requested data of the request stored in its memory. In addition
to determining if the selected agent contains an entry for this
request in its database, the selected agent may also determine
if this information is still valid. Specifically, the selected
agent determines whether the data that is stored within the
memory of the selected agent or the memory of the peers, still
mirrors the information that would have been received from
the server itself for this request. A further description of the
process utilized by the selected agent to determine if the
information is still valid, is described in detail herein.
[0087] As shown by block 392, if the information (re-
quested data of the request) exists and is still valid, then the
agent prepares a response to the client, which includes for
each of the chunks: (i) the checksum of the chunk; (ii) a list of
peers that according to the database of the selected agent
contains these chunks; and (iii) if these are the first five
chunks of the information, then the selected agent also pro-

Page 23 of 31

US 2011/0087733 Al

vides the specific protocol’s headers that would have been
received from the server, had the initial request from the client
been made directly to the server.

[0088] As shown by block 394, the list of peers for each
chunk is sorted by geographical proximity to the requesting
client. In accordance with the present example, only the five
closest peers are kept in the list for every chunk, and the rest
of the peers are discarded from this list. As shown by block
396, the prepared response, namely, the list of closest peers, is
sent back to the client. It should be noted that, if this were the
last set of chunks to be provided for this request, then it would
be beneficial to include information about this to the client.
[0089] If the selected agent discovers that it does not have
information about this request, or if the selected agent dis-
covers that the information it has is no longer valid, the
selected agent needs to load the information directly from the
server in order to be able to provide an answer to the request-
ing client. As shown by block 400, the selected agent then
sends the request directly to the server. The selected agent
then stores the information it receives from the server (both
the headers of the request, as well as chunks of the response
itself) in its database, for this particular response to the client,
as well as for future use to other clients that may request this
data (block 402). The selected agent then prepares a response
(list) for the client, where the response includes the protocol
headers (if these are the first five chunks), and the checksums
of the five chunks, and provides itself as the only peer for
these chunks (block 404). This list is then sent back to the
client (block 406).

[0090] FIG. 11 is a flowchart 420 continuing the flowchart
of FIG. 10, which illustrates actions taken upon receipt of the
list of peers, or single peer listing, from the agent. As shown
by block 422, the client receives the response from the agent
(including the list of chunks and their corresponding data,
including peers and other information previously mentioned)
and, for each of the five chunks, the client sends a request to
each of'the peers listed for the chunk to download the chunk.
The chunk request that the client sends to each of the peers is
the checksum of the data that the client seeks to receive,
which is the key (identifier) of the chunk.

[0091] As shown by block 424, the peers then respond
regarding whether they still have the data of the chunk. As an
example, some of the peers may not currently be online, some
may be online but may have discarded the relevant informa-
tion, and some may still have the relevant information,
namely, the chunk. As shown by block 426, the client then
selects the quickest peer that responds with a positive answer
regarding the requested information, the client lets that peer
know that it is chosen to provide the client with the chunk, and
the client notifies the other peers that they are not chosen.
[0092] As shown by block 428, the chosen peer then sends
the chunk to the client. It should be noted that if no peers
answer the request of the client, the client goes back to the
agent noting that the peers were all negative, and the agent
either provides a list of 5 other agents, if they exist, or the
agent goes on to download the information directly from the
Web server as happens in the case where no peers exist as
described above.

[0093] The client then stores the chunks in its cache for
future use (block 430), when the client may need to provide
the chunks to a requesting communication device when act-
ing as a peer for another client that is looking for the same
information. As shown by block 432, if some of the chunks
were not loaded from any of the peers, the client requests the

Apr. 14,2011

chunks again from the agent in a next round of requests,
flagging these chunks as chunks that were not loadable from
the client list of peers. In this situation, the agent will load the
data directly from the server and provide it back to the client.
[0094] The client then acknowledges to the agent which of
the chunks it received properly (block 434). The agent then
looks up these chunks in the database of the agent, and adds
the client to the list of peers for these chunks, specifically,
since this client is now storing these chunks, and can provide
these chunks to other clients that turn to it as a peer (block
436).

[0095] As shown by block 438, the client then passes the
data on to the Web browser or other application of the client
that made the original request, for it to use as it had originally
intended. The client then checks whether all of the chunks for
this request were received (block 440), by checking the flag
set by the agent. Specifically, when the agent is providing the
list of the last 5 chunks, the agent includes that information as
part of its reply to the client, which is referred to herein as a
flag. This information is what enables the client to know that
all information has been received for a particular resource
request.

[0096] If the last received chunks were not the last chunks
for this request, the processing flow of the client continues by
returning to the functionality of block 384 of FIG. 10, but
instead sending the chosen agent a request for the next five
chunks of data of the original information request. Alterna-
tively, if all chunks for this request were received, the request
is complete, and the flow starts again at block 352 of FIG. 9.
[0097] FIG. 12 is a flowchart 500 illustrating steps taken by
an agent, client, or peer to determine whether a certain HTTP
request is still valid. Specifically, the following provides an
example of how the agent, client, or peer can determine
whether particular data that is stored within the memory of the
agent, or the memory of a peer or client, still mirrors the
information that is currently on the Web server. As shown by
block 502, the HTTP request is looked up in the cache data-
base of the agent, client or peer that is checking the validity of
the HTTP request. As an example, the HTTP protocol,
defined by RFC 2616, outlines specific methods that Web
servers can define within the HTTP headers signifying the
validity of certain data, such as, but not limited to, by using
HTTP header information such as “max age” to indicate how
long this data may be cached before becoming invalid, “no
cache” to indicate that the data may never be cached, and
using other information.

[0098] As shown by block 504, these standard methods of
validation are tested on the HTTP request information in
question. As shown by block 506, a determination is made
whether the requested information that is stored is valid or
not. If the requested information is valid, a “VALID”
response is returned (block 508). Alternatively, if the
requested information is not valid, an HTTP conditional
request is sent to the relevant Web server, to determine if the
data stored for this request is still valid (block 510). If the data
stored for this request is still valid, a “VALID” response is
returned (block 508). Alternatively, if the data stored for this
request is not valid, an “INVALID” response is returned
(block 514). It should be noted, that the abovementioned
description with regard to FIG. 12 is an explanation of how to
check if HTTP information is still valid. There are similar
methods of determining validity for any other protocol, which
may be utilized, and which those having ordinary skill in the
art would appreciate and understand.

Page 24 of 31

US 2011/0087733 Al

[0099] FIG.13 is a flowchart 550 outlining operation of the
acceleration server, whose main responsibility in the present
system and method is to provide clients with information
regarding which agents serve which requests, and to keep the
network elements all up to date with the latest software
updates. As shown by block 552, the acceleration server sends
“keep alive” signals to the network elements, and keeps track
within its database as to which network elements are online.
As shown by block 554, the acceleration server continues to
wait for a client request and continues to determine if one is
received.

[0100] Once a request is received, the acceleration server
tests the type of request received (block 556). If the client
request is to sign up the client within the network, an event
that happens every time that the client starts running on its
host machine, then that client is added to the list of agents
stored on the acceleration server, sorted by the IP address of
the client (block 558).

[0101] Ifthe requestis to find an agentto use for a particular
request, the acceleration server creates a new agent list, which
is empty (block 560). The acceleration server then searches
the agent database for the next 5 active agents whose IP
address is closest to the IP address of the server who is
targeted in the request (block 562). In this context, 192.166.
3.103 is closer to 192.166.3.212 than to 192.167.3.104. The
acceleration server then sends this agent list to the client
(block 564).

Apr. 14,2011

[0102] Ifinstead, the request is to check the version of the
latest acceleration software then the acceleration server sends
that network element (client, peer or agent) the version num-
ber of the latest existing acceleration software version, and a
URL from where to download the new version, for the case
that the element needs to upgrade to the new version (block
566).

[0103] While the abovementioned example is focused on
HTTP requests for data, as previously mentioned, other pro-
tocol requests are equally capable of being handled by the
present system and method. As an example, in separate
embodiments the acceleration method described may accel-
erate any communication protocol at any OSI layer (SMTP,
DNS, UDP, ETHERNET, etc.). In the following alternative
embodiment, it is illustrated how the acceleration method
may accelerate TCPIP. As is known by those having ordinary
skill in the art, TCPIP is a relatively low-level protocol, as
opposed to HTTP, which is a high level protocol. For purposes
of illustration of TCPIP communication, reference may be
made to FIG. 3, wherein the Web server is a TCPIP server.
[0104] InTCPIP there are three communication commands
that are of particular interest, namely, connect, write, and
read. Connect is a command issued by an application in the
communication device that is initiating the communication to
instruct the TCPIP stack to connect to a remote

Page 25 of 31

US 2011/0087733 Al
10
FIG. 49 - TCPIP ACCELERATION SYSTEM SETUP

/‘ 1900

1901
<

SERVER
DATABASE
1906

CLIENT
1902

)
a

Apr. 14,2011

TCPIP
SERVER
1990

Page 26 of 31

US 2011/0087733 Al

communication device. The connect message includes the [P
address of the communication device, and the port number to
connect to. An application uses the write command to instruct
the TCPIP stack to send a message (i.e., data) to a communi-
cation device to which it is connected. In addition, an appli-
cation uses the read command to ask the TCPIP stack to
provide the message that was sent from the remote commu-
nication device to which it is connected. A communication
session typically exists of a connect, followed by a read and
write on both sides.

[0105] FIG.14is a flowchart 600 further illustrating TCPIP
acceleration in accordance with this alternative embodiment
of the invention. As shown by blocks 601 and 602 when an
application of the communication device makes a request to
the communications stack to connect with the TCPIP server,
that communication is intercepted by the acceleration appli-
cation.

[0106] To find an agent, upon receiving that connect mes-
sage from the communication device application, which
includes the IP address of the TCPIP server and the port to
connect to, the acceleration application in the client makes a
request to the acceleration server to find out who the agent for
the communication with the TCPIP server is. This step is
performed in a similar manner to that described with regard to
the main HTTP embodiment of the invention (block 604). As
shown by block 606, the server then provides the client with
a list of agents, for example, a primary agent and four others.
[0107] To establish a connection, as shown by block 608,
the client issues a TCPIP connect with the primary agent or
one of the other agents if the primary agent does not succeed,
to create a connection with the agent. The client then sends to
the agent the IP address of the TCPIP server and connection
port that were provided by the communication device appli-
cation (block 610). As shown by block 612, that agent in turn
issues a TCPIP connect to the TCPIP server to the port it
received from the client, to create a connection with the agent.
[0108] FIG.151s a flowchart 800 further illustrating TCPIP
acceleration in accordance with this alternative embodiment
of the invention, detailing the communication between the
client and the TCPIP server (read and write commands) after
the connect phase has completed successfully.

[0109] As shown by block 802, if the network application
within the client wants to send a message to the TCPIP server,
the network application within the client writes the message
to the TCPIP stack in the operating system of the client. This
WRITE command is received by the acceleration application
of'the client and handled in the manner described below. If the
TCPIP server wants to send a message to the client, the TCPIP
server writes the message to the TCPIP stack of TCPIP oper-
ating system, on the connection to the agent, since this agent
is where the server received the original connection. This
WRITE command is received by the acceleration application
of the agent and handled in the manner described below.
[0110] When the acceleration application of the client
receives a message from the network application of the client
to be sentto the agent, or when the acceleration application of
the agent receives a message from the connection to the
TCPIP server that is to be sent to the client, the acceleration
application proceeds to send the message to the communica-
tion device on the other side. For instance, if the client has
intercepted the message from the communication applica-
tion, the client sends the message to the agent, and if it is the
agent that intercepted the message from the connection to the
TCPIP server, such as the TCPIP server sending a message

Apr. 14,2011

that is intended for the communication with client, the agent
sends the message to the client in the following manner:
[0111] Asshown by block 804, the acceleration application
breaks up the content of the message to chunks and calculates
the corresponding checksums, in the same manner as in the
main embodiment described herein. The acceleration appli-
cation then looks up each checksum in its cache database
(block 806). As shown by block 808, the acceleration appli-
cation checks if the checksum exists in the cache database,. If
it does, then, as shown by block 810, the acceleration appli-
cation prepares a list of peers that have already received the
chunk of the checksum in the past (if any), and adds the
communication device of the other side to the list of commu-
nication devices that have received this chunk (adds it to the
peer list of the checksum in its database), to be provided to
other communication devices requesting this information in
the future. As shown by block 812, the list of peers is sent to
the receiving communication device, which, as shown by
block 814 retrieves the chunks from the peers in the list
received, in the same manner as in the main embodiment.
[0112] If the checksum does not exist within the cache
database of the sending communication device then, as
shown by block 820, the acceleration application adds the
checksum and chunk to its cache database, sends the chunk to
the communication device on the other side, and adds the
other communication device to the list of peers for that check-
sum in its database.

[0113] As shown by block 816, a determination is then
made as to whether all chunks have been received. If all
chunks have not been received, the process continues on
again from block 806.

[0114] Once all data has been received, as shown by block
818, the acceleration application passes the data on to the
requester. Specifically, in the client, the acceleration applica-
tion passes on the complete data to the communication appli-
cation, and in the agent, the acceleration application passes on
the complete data to the requesting TCPIP server

[0115] It should be emphasized that the above-described
embodiments of the present invention are merely possible
examples of implementations, merely set forth for a clear
understanding of the principles of the invention. Many varia-
tions and modifications may be made to the above-described
embodiments of the invention without departing substantially
from the spirit and principles of the invention. All such modi-
fications and variations are intended to be included herein
within the scope of this disclosure and the present invention
and protected by the following claims.

We claim:
1. A network for accelerating and making more efficient
data communication; comprising:

at least one client communication device for originating an
original data request for obtaining data from a data
server;

at least one agent communication device which is assigned
to the data server for receiving the data request from the
client communication device, wherein the agent keeps
track of which client communication devices within the
network have received responses to data requests or
portions thereof from the assigned data server;

at least one peer communication device having stored
therein at least a portion of data received in response to
a prior data request by a client communication device,
wherein the prior data request was for the same data as
requested during the originating data request, and

Page 27 of 31

US 2011/0087733 Al

wherein the portion of data may be transmitted from the
peer communication device to the at least one client
communication device upon request by the client com-
munication device; and

at least one acceleration server for deciding which agent

communication device is to be assigned to which data
server and providing this information to the at least one
client communication device.

2. The network of claim 1, wherein each of the client
communication device, peer communication device, and
agent communication device contain therein a client module,
a peer module, and an agent module, thereby allowing the
client communication device, peer communication device,
and agent communication device to serve as any of a client
communication device, a peer communication device, and an
agent communication device.

3. The network of claim 1, wherein the acceleration server
assigns a list of Internet protocol addresses to each agent
communication device.

4. The network of claim 1, wherein the acceleration server
has stored therein a list of online communication devices,
including client communication devices, agent communica-
tion devices, and peer communication devices.

5. The network of claim 1, wherein each client communi-
cation device, agent communication device, and peer com-
munication device maintain a list of data requests and data
responses that the communication device, agent communica-
tion device, and peer communication device, respectively are
respectively aware of, as well as in which communication
device associated data is stored.

6. The network of claim 1, wherein the data request from
the client communication device is an HTTP request, and
wherein the server is a Web server.

7. The network of claim 6, wherein each client communi-
cation device contains a storage device therein that stores a
list of Uniform Resource Locators (URLs) that the client
communication device is aware of, each agent communica-
tion device contains a storage device therein that stores a list
of URLs that the agent communication device is aware of, and
wherein each peer communication device contains a storage
device therein that stores a list of URLs that the peer commu-
nication device is aware of.

8. The network of claim 7, wherein within the storage
device storing URLs, with each URL, the storage device also
has stored therein at least one of the group consisting of HT'TP
headers returned by the data server for this URL, a list of
chunks that contain the contents of the URL, wherein chunks
are pieces of data that together form the entire content of the
URL, and the content of the chunk.

9. The network of claim 1, wherein each client communi-
cation device contains a storage device, wherein the storage
device has stored therein at least one of the group consisting
of a list of chunks that contain contents associated with the
data request, wherein chunks are pieces of data that together
form the entire content associated with the data request, and
the content of the chunk, wherein the chunks are equally
sized.

10. The network of claim 7, wherein within the storage
device storing URLs, with each URL, the storage device also
has stored therein a list of chunks that contain the contents of
the URL, wherein chunks are pieces of data that together form
the entire content of the URL, and with each chunk, the data
of'the chunk itself, a checksum of the chunk, and a list of peers
that most likely have the data for this chuck.

12

Apr. 14,2011

11. The network of claim 1, wherein the network contains
multiple peer communication devices, wherein the at least
one agent communication device further keeps track of which
peer communication devices have at least a portion of the
requested data stored therein.

12. The network of claim 1, wherein the at least one accel-
eration server prepares a list of agent communication devices
that may be suitable to handle the data request.

13. The network of claim 12, wherein the list of agent
communication devices that may be suitable includes agent
communication devices having an IP address that is numeri-
cally close to the IP address of the data server.

14. The network of claim 12, wherein the client commu-
nication device selects an agent communication device, noti-
fies the selected agent communication device that it is being
used for the data request, and notifies any unselected agent
communication devices that they are not being used for the
data request.

15. The network of claim 1, wherein the agent keeps track
of peers and portions of data stored within the peers, and
wherein if there is a portion of data necessary to fulfill the
original data request, yet the agent is not aware of any peer
having the portion of data stored therein, the agent itself
queries the server for the missing portion of data and trans-
mits the missing portion of data to the requesting client com-
munication device.

16. The network of claim 1, wherein the agent keeps track
of peers and portions of data stored within the peers, and
wherein if the at least one agent knows of a specific peer that
has a portion of data necessary to fulfill the original data
request stored therein, the agent provides the specific peer as
the peer to use for the portion of data necessary for fulfilling
the original data request.

17. A communication device within a network, compris-
ing:

a memory; and

a processor configured by the memory to perform the steps

of:

originating a data request for obtaining data from a data
server;

being assigned to a data server, referred to as an assigned
data server;

receiving a data request from a separate device within
the network, and keeping track of which client com-
munication devices within the network have received
responses to data requests from the assigned data
server; and

storing portions of data received in response to the origi-
nated data request, wherein the portions of data may
be transmitted to communication device upon request
by the communication device.

18. The communication device of claim 17, wherein the
communication device further comprises a storage device
that stores a list of Uniform Resource Locators (URLs) that
the communication device is aware of.

19. The communication device of claim 18, wherein within
the storage device storing URLs, with each URL, the storage
device also has stored therein at least one of the group con-
sisting of HTTP headers returned by the data server for this
URL, a list of chunks that contain the contents of the URL,
wherein chunks are pieces of data that together form the entire
content of the URL, and the content of the chunk.

20. The communication device of claim 17, wherein the
communication device contains a storage device, wherein the

Page 28 of 31

US 2011/0087733 Al

storage device has stored therein at least one of the group
consisting of a list of chunks that contain contents associated
with the data request, wherein chunks are pieces of data that
together form the entire content associated with the data
request, and the content of the chunk, wherein the chunks are
equally sized, wherein the chunks are equally sized.

21. The communication device of claim 18, wherein within
the storage device storing URLs, with each URL, the storage
device also has stored therein a list of chunks that contain the
contents of the URL, wherein chunks are pieces of data that
together form the entire content of the URL, and with each
chunk, the data of the chunk itself, a checksum of the chunk,
and a list of other communication devices that most likely
have the data for this chuck.

22. The communication device of claim 17, wherein the
data request is an HTTP request, and wherein the data server
is a Web server.

23. The communication device of claim 17, wherein the
processor is further configured by the memory to perform the
step of keeping track of which other communication devices
have at least a portion of the requested data stored therein.

24. A network for accelerating and making more efficient
data communication; comprising:

at least one client communication device for originating an

original data request for obtaining data from a data
server;

at least one agent communication device which is assigned

to the data server for receiving the data request from the
client communication device, wherein the agent keeps
track of which client communication devices within the
network have received responses to data requests or
portions thereof from the assigned data server; and

at least one acceleration server for deciding which agent

communication device is to be assigned to which data
server and providing this information to the at least one
client communication device.

25. A network for accelerating and making more efficient
data communication; comprising:

at least one client communication device for originating an

original data request for obtaining data from a data
server;

at least one agent communication device which is assigned

to the data server for receiving the data request from the
client communication device, wherein the agent keeps
track of which client communication devices within the
network have received responses to data requests or
portions thereof from the assigned data server; and

at least one peer communication device having stored

therein at least a portion of data received in response to
a prior data request by a client communication device,
wherein the prior data request was for the same data as
requested during the originating data request, and
wherein the portion of data may be transmitted from the
peer communication device to the at least one client
communication device upon request by the client com-
munication device.

26. A method for use within a system for sending messages
between a requesting client communication device having a
client cache storage and a data server, via an agent commu-
nication device having an agent cache storage, and utilizing
an acceleration server that maintains a list of client commu-
nication devices in the system, the method comprising the
steps of:

13

Apr. 14,2011

the requesting client communication device sending an
identifier of the data server to the acceleration server;

the acceleration server associating one or more client com-
munication devices with the data server and providing a
list of the one or more client communication devices to
the requesting client communication device;

the requesting client communication device choosing one

of the provided client communication devices to be used
as the agent communication device for communication
with the data server, and sending the agent communica-
tion device a message intended for the data server;

the agent communication device determining if one or

more of the client communication devices have previ-
ously received a response to the received message from
the data server; and

if there are one or more client communication devices that

have previously received a response to the received mes-

sage from the data server, performing the steps of:

the agent communication device sending the requesting
client communication device a list of the one or more
client communication devices that have previously
received the response, wherein the one or more client
communication devices that have previously received
the response are referred to as peer communication
devices;

the requesting client communication device retrieving
the requested response in one or more parts from the
one or more peer communication devices in the list;

the requesting client communication device storing the
request and the response in the client cache storage;
and

the agent communication device storing the identifier of
the requesting client communication device in con-
junction with the request and the response in the agent
cache storage.

27. The method of claim 26, where after receiving the
message intended for the data server, from the requesting
client communication device, the agent communication
device checking if it has in the agent cache storage a response
received to an identical message sent by the client communi-
cation device to the data server in the past, and if the agent
communication device does not know of any client commu-
nication devices that have received a response to this message
in the past, the following steps being performed:

the agent communication device sending the requesting

client communication device message to the data server;
the data server sending the response message back to the
agent communication device;
the agent communication device storing the requesting
client communication device message and the data
server response message in the agent cache storage;

the agent communication device sending the data server
response back to the requesting client communication
device; and

the requesting client communication device storing the

request and the response in the client cache storage.

28. The method of claim 26, where the agent communica-
tion device separates the reply it receives from the data server
into one or more smaller chunks of data and stores those
chunks in the agent cache storage, where the data is stored as
a list of chunks that it comprises of and for each chunk a
checksum of that chunk is stored in conjunction with the
chunk, as well as a list of network elements that have been
known to have received this portion of data in the past.

Page 29 of 31

US 2011/0087733 Al

29. The method of claim 26, wherein the list of one or more
peer communication devices includes only the peer commu-
nication devices that are the most beneficial to the requesting
client communication device in terms of speed of receiving
information from the peer communication devices.

30. The method of claim 29, wherein the client communi-
cation devices that are determined by the agent communica-
tion device to be most beneficial are the client communication
devices that are closest to the requesting client communica-
tion device.

31. The method of claim 29, wherein the client communi-
cation devices that are determined by the agent communica-
tion device to be most beneficial are the client communication
devices that have the best connection to the requesting net-
work element.

32. The method of claim 26, wherein the data server per-
forms the association between the agent communication
device and the data server by performing the steps of:

the acceleration server keeping track of all of the client

communication devices that are online; and

upon receiving the identifier of the data server from the

requesting client communication device, the accelera-
tion server choosing one or more client communication
device out of all online client communication devices,
that are optimal to be used as the agent communication
device or devices for communicating with the data
server.

33. The method of claim 32, wherein the client communi-
cation device chosen by the acceleration server as the optimal
agent is the client communication device out of all online
client communication devices whose Internet Protocol (IP)
address is closest to the IP address of the data server.

34. The method of claim 32, where the number of agent
communication devices returned by the acceleration server to
the client communication device is increased as the accelera-
tion device senses that the load on these agent communication
devices increases.

35. The method of claim 34, where the acceleration server
senses the load on the various potential agent communication
devices by performing the steps of:

when the client communication device receives the agent

communication device list, the client communication
device sends the request to all agent communication
devices; and

if the client communication device does not get a response

from one or more agent communication devices, the
client communication device provides that information
to the acceleration server.

36. The method of claim 34, where the acceleration server
senses the load on the various potential agent communication
devices by performing a periodic load check on each potential
agent communication device.

37. The method of claim 26, wherein the data server per-
forms the association between the agent communication
device and the data server by performing the steps of:

the acceleration server keeping track of all of the client

communication devices that are online; and

the acceleration server choosing one or more client com-

munication devices that can be used as the agent for
communicating with the data server, prioritized geo-
graphically by a geographical location of the requesting
client, such that each of the client communication
devices in the list of client communication devices is a

Apr. 14,2011

higher priority for a certain geography from which
requests from the requesting client communication
device may be received.

38. The method of claim 26, wherein the requesting client
communication device chooses the most suitable agent com-
munication device out of the list of client communication
devices received from the acceleration server by testing
which of the client communication devices is the quickest to
respond to queries from the requesting client communication
device.

39. The method of claim 27, wherein when the agent com-
munication device makes the request to the data server, the
agent communication device sends to the data server all of the
parameters that it received from the requesting client com-
munication device for this request from the requesting client
communication device.

40. The method of claim 26, wherein the method that the
agent communication device uses to test if there are other
client communication devices that received responses to the
same message is performed by the steps of:

when receiving and caching responses from the data server,

the agent communication device receiving and caching a
validity variable that indicates in which situations the
response is valid for the same type of request; and

the agent communication device checking the agent cache

storage by looking up message of the requesting client

communication device,

wherein, if such a message exists and a response is
cached, or information about client communication
devices that have received the response is cached,
then the agent communication device checks the
validity variable of the entry of the request in the agent
cache storage, and

wherein, if the entry does not exist or the data is no
longer wvalid, the agent communication device
assumes that it does not have a response stored for that
request

41. The method of claim 26, wherein when the requesting
client communication device provides to the agent commu-
nication device a request with additional parameters, the
agent communication device stores these additional param-
eters in the agent cache storage in the entry of the data request,
and uses that information together with the request as a key
when looking up the data in future lookups.

42. The method of claim 26, wherein the client communi-
cation device, agent communication device, and peer com-
munication device are referred to as network elements, and
wherein each network element contains therein a client mod-
ule, a peer module, and an agent module, thereby allowing
each network element to serve as any of a client communica-
tion device, a peer communication device, and an agent com-
munication device.

43. The method of claim 40, where the request from the
requesting client communication device is an HTTP request
for a URL, the data server is a Web server, and the additional
data that the agent communication device sends to the Web
server are the parameters of the URL and cookies of the
requesting client communication device and the validity vari-
able is the HTTP expiry time.

44. The method of claim 26, wherein requests are selected
from the group consisting of UDP, DNS, TCP, FTP, POP3,
SMTP, and SQL.

45. A method for use within a system for sending messages
between a requesting client communication device having a

Page 30 of 31

US 2011/0087733 Al

client cache storage and a data server, via an agent commu-
nication device having an agent cache storage, and utilizing
an acceleration server that maintains a list of client commu-
nication devices in the system, the method comprising the
steps of:

the requesting client communication device sending an
identifier of the data server to the acceleration server;

the acceleration server associating one or more client com-
munication devices with the data server and providing a
list of the one or more client communication devices to
the requesting client communication device;

the requesting client communication device choosing one
of'the provided client communication devices to be used
as the agent communication device for communication
with the data server, and sending the agent communica-
tion device a message intended for the data server;

the agent communication device determining if one or
more of the client communication devices have previ-
ously received a response to the received message from
the data server,

wherein the agent communication device separates the
reply it receives from the data server into one or more
smaller chunks of data and stores those chunks in the
agent cache storage, where the data is stored as a list of
chunks that it comprises of, and for each chunk a check-
sum of that chunk is stored in conjunction with the

15

Apr. 14,2011

chunk, as well as a list of network elements that have

been known to have received this portion of data in the

past; and

if there are one or more client communication devices that

have previously received a response to the received mes-

sage from the data server, performing the steps of:

the agent communication device sending to the request-
ing client communication device a list of checksums
of the chunks that comprise the data server response
where for each such checksum, the agent communi-
cation device sends identifiers of client communica-
tion devices that have received such checksums from
the agent communication device in the past, wherein
these client communication devices that have
received such checksums from the agent communica-
tion device in the past are referred to as peers;

the requesting client communication device retrieving
the response or portions thereof by requesting the
chunks in the list from one or more peers in the list
received from the agent communication device;

the requesting client communication device storing the
request and the response in the client cache storage;
and

the agent communication device storing the identifier of
the requesting client communication device in con-
junction with the chunks that the requesting client
communication device received.

sk sk sk sk sk

Page 31 of 31

