
USOO8560604B2

(12) United States Patent (10) Patent No.: US 8,560,604 B2
Shribman et al. (45) Date of Patent: Oct. 15, 2013

(54) SYSTEMAND METHOD FOR PROVIDING 7,865,585 B2 * 1/2011 Samuels et al. 709,223
FASTER AND MORE EFFICIENT DATA 39882 A. ck 358, WN l TO9,236

ang et al.
COMMUNICATION 2004/0088.646 A1 5/2004 Yeager et al.

2007/O156855 A1 7/2007 Johnson
(75) Inventors: Derry Shribman, Netanya (IL): Ofer 2008, 0008089 A1 1/2008 Bornstein et al.

Vilenski, Netanya (IL) 2008.0109446 A1 5/2008 Wang
2008, 0235391 A1 9, 2008 Painter et al.

(73) Assignee: Hola Networks Ltd., Netanya (IL) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this
past s slisted under 35 Primary Examiner — Minh-Chau Nguyen

M YW- (b) by ayS. (74) Attorney, Agent, or Firm — Peter A. Nieves; Sheehan
(21) Appl. No.: 12/836,059 Phinney Bass + Green PA

(22) Filed: Jul. 14, 2010 (57) ABSTRACT

(65) Prior Publication Data A system designed for increasing network communication
US 2011 FOO87733 A1 Apr. 14, 2011 speed for users, while lowering network congestion for con

tent owners and ISPs. The system employs network elements
Related U.S. Application Data including an acceleration server, clients, agents, and peers,

where communication requests generated by applications are
(60) Eyinal application No. 61/249,624, filed on Oct. intercepted by the client on the same machine. The IP address

s of the server in the communication request is transmitted to
(51) Int. Cl the acceleration server, which provides a list of agents to use

Go,F i5/16 (2006.01) for this IP address. The communication request is sent to the
(52) U.S. Cl agents. One or more of the agents respond with a list of peers

AV e. we that have previously seen some or all of the content which is
USPC - - - - - - - - - - - r 709/204; 709/203; 709/228 the response to this request (after checking whether this data

(58) Field of Classification Search is still valid). The client then downloads the data from these
St. licati - - - - - file E.20, thi1 R 223, 236 peers in parts and in parallel, thereby speeding up the Web
ee appl1cauon Ille Ior complete searcn n1Story. transfer, releasing congestion from the Web by fetching the

(56) References Cited information from multiple sources, and relieving traffic from

U.S. PATENT DOCUMENTS

7,120,666 B2 * 10/2006 McCanne et al. TO9,203
7.203,741 B2 * 4/2007 Marco et al. 709,223

LIENT
EWICE
10

CLIENT
DEWE
12

CLIENT
DEWICE

14.

s

PROXY
SERWER

CLIENT
DEWIE

16

CLIENT
EWIE
18

CLINT
DEWICE
2

Web servers by offloading the data transfers from them to
nearby peers.

20 Claims, 15 Drawing Sheets

2

- -

PRXY
SERWER

4.

WEB
SERWER

30

WEB
SRWER

32

WEB
SRWER
34

Proxy
SERWER

3.

Exhibit 1104, Page 1 of 27

NetNut Ltd. v. Bright Data Ltd.
IPR2021-00465

U.S. Patent

CLIENT
DEWICE

14

CLIENT
DEWICE

L6

Oct. 15, 2013

CLIENT
DEWIC

O

CLENT
DEWICE

12

PROXY
SERWER

CLEN
DEWICE

LS

CLEN
DEWICE

20

Sheet 1 of 15

PROXY
SERVER

4.

PROXY
SERWER

FIG 11

WEB
SERWER

30

US 8,560,604 B2

WEB
SERVER
32

WEB
SERWER

34

Exhibit 1104, Page 2 of 27

U.S. Patent Oct. 15, 2013 Sheet 2 of 15 US 8,560,604 B2

SERVER
80

CLEN
DEWICE

60

FIG 2

Exhibit 1104, Page 3 of 27

U.S. Patent Oct. 15, 2013 Sheet 3 of 15 US 8,560,604 B2

ACCELERATION
SERVER
162

WEB
SERVER
152

STORAGE
DEWICE
154

CLIEN
O

FIG 3

Exhibit 1104, Page 4 of 27

US 8,560,604 B2 Sheet 4 of 15 Oct. 15, 2013 U.S. Patent

?I? ERHV/WALHOS FIZ èJESMAO-18E LEIN (JELLNI

(~~

Exhibit 1104, Page 5 of 27

U.S. Patent Oct. 15, 2013 Sheet 5 Of 15 US 8,560,604 B2

APPLICATION INTERNET OTHER ACCELERATION
LEVEL BROWSER APPLICATIONS APPLICATION
270 214 216 220

INTERMMEDIATE DRIVER
272

COMMUNICATION
STACKS

264

OPERATING
SYSTEM
LEVEL
260

Y- -

DEVICE DRIVERS
262

OPERATING
SYSTEM

230

MEMORY
210

FIG. 5

Exhibit 1104, Page 6 of 27

Exhibit 1104, Page 7 of 27

U.S. Patent Oct. 15, 2013 Sheet 7 of 15 US 8,560,604 B2

62

ACCELERATION DATABASE 16A ?
166 AGENT PADDRESS ONLINE OFFLNE

>>> INDEXED BY AGENT PARESS

CACHE DATABASE 282
286 LS OF URLS:
288 URL 1

290 URL
292 URL H P HEADERS
294 AST CHECKED ON SERVER
296 LAST CHANGED ON SERVER
298 LST OF CHUNKS FOR THIS URL:

300 CHUNK
302 CHUNK CHECKSUM
304 CHUNK DATA
306 LIST OF PEERS:

308 PEER 1
30 PEER 1 PADDRESS
312 PEER2 CONNECTION STATUS

FIG. 7

Exhibit 1104, Page 8 of 27

U.S. Patent Oct. 15, 2013 Sheet 8 of 15 US 8,560,604 B2

300

-
INITIALIZER SIGNS UP WITH
ACCELERATION SERVER

302

DETERMINE IF THERE IS AN
UPDATED VERSION OF

APPLICATION?
304

INITIALIZER REDIRECTS
OUTGOING NETWORK TRAFFIC

306

INITIALIZER LAUNCHES CLIENT
MODULE AND CONFIGURES

CLIENT MODULE TO INTERCEPT
ALL OUTGOING NETWORK

COMMUNICATIONS
308

INITIALIZER LAUNCHES AGENT
MODULE AND PEER MODULE

310

FIG. 8

Exhibit 1104, Page 9 of 27

U.S. Patent Oct. 15, 2013 Sheet 9 Of 15

APPLICATION ON CLIENT INITIATES
RECQUEST FOR A RESOURCE ON A

NETWORK
352

RESOURCE RECQUEST IS INTERCEPTED BY
THE CLIENT MODULE

354

CLIENT MODULE LOOKS UP IP ADDRESS OF
SERVER THAT IS TARGET OF RESOURCE
RECQUEST AND SENDS IP ADDRESS TO

ACCELERATION SERVER TO OBTAIN LIST
OF COMMUNICATION DEVICES THAT

CLIENT CAN USE AS AGENTS
356

ACCELERATION SERVER PREPARES A LIST
OFAGENTS THAT MAYBE SUITABLE TO
HANDLE THE RECQUEST FROM THIS IP

ADDRESS
358

CLIENT SENDS ORIGINAL REOUEST TO ALL
AGENTS IN THE LIST RECEIVED FROM

ACCELERATION SERVER TO DETERMINE
WHICH AGENT IN THE LIST IS BEST SUITED

TO ASSIST WITH THE REGUEST
360

FIG. 9

US 8,560,604 B2

.
350

Exhibit 1104, Page 10 of 27

U.S. Patent Oct. 15, 2013 Sheet 10 of 15 US 8,560,604 B2

EACHAGENT THAT RECEIVES CLIENT REQUEST RESPONDS TO CLIENT WITH
WHETHER IT HAS INFO. REGARDING REGUEST THAT CANASSIST CLIENT TO

DOWNLOAD REGUESTED INFO. FROMPEERS IN NETWORK 382

CLIENT SELECTS SPECIFICAGENT 384

CLIENT NOTIFIESSELECTED AGENT OF USE FOR RECQUEST AND NOTIFIES OTHER
AGENTS OF LACK OF USE 386

CLIENT FORWARDS SELECTED AGENT REQUEST FOR FIRSTX NUMBER OF
CHUNKS 388

DOES SELECTED AGENT HAVE INFO, REGARDING
REGUESTED CHUNKS AND IS INFO. STILL VALID?

390

YES

SELECTED AGENT SENDS REQUEST
IF INFO. STILL VALID, SELECTED DIRECTLY TO SERVER 400

AGENT RESPONDS TO CLIENT WITH
CHECKSUM OF CHUNK, LIST OF

PEERS THAT CONTAIN CHUNKS, AND
IF ONLY A PORTION OF INFO.,
HEADERS 392

SELECTED AGENT STORES INFO.
FROM SERVER IN ITS DATABASE

402

LIST OF PEERS FOREACH CHUNKS SELECTED AGENT PREPARES
SORTED BY GEOGRAPHICAL RESPONSE (LIST) FOR CLIENT,

PROXIMITY TO REGUESTING CLIENT WHERE RESPONSE INCLUDES
394 CHECKSUM OF CHUNK, HEADERS,

AND PROVIDES ITSELF AS THE ONLY
PEER FOR THESE CHUNKS

LIST OF CLOSEST PEERS TO CLIENT 404
ISSENT TO CLIENT 396

LIST IS FORWARDED BACK TO
CLIENT
406

FIG 10

Exhibit 1104, Page 11 of 27

U.S. Patent Oct. 15, 2013 Sheet 11 of 15 US 8,560,604 B2

CLIENT RECEIVES RESPONSE FROM THE AGENT AND FOREACH OFX CHUNKS,
CLIENT SENDS AREQUEST TO EACH OF THE PEERS LSTED FOR THE CHUNK TO

DOWNLOAD THE DATA OF THAT CHUNK 422

PEERS RESPOND REGARDING WHETHER THEY STILL HAVE THE DATA OF THE
CHUNK 424

CLIENT SELECTS QUICKEST PEER WITH DATA OF THE CHUCK 426

CHOSEN PEER SENDS CHUNK TO CLIENT 428

CLIENT STORES CHUNKS IN ITS CACHE FORFUTURE USE 430

IF ANY CHUNKS WERE NOT LOADED FROMANY OF THE PEERS, CLIENT REQUESTS
CHUNKS AGAIN FROMAGENT 432

CLIENT ACKNOWLEDGES TO THE AGENT WHICH OF THE CHUNKS IT RECEIVED
PROPERLY 434

AGENT LOOKS UP CHUNKS IN DATABASE OF AGENT AND ADDS CLIENT TO LIST
OF PEERS FOR THESE CHUNKS 436

CLIENT PASSES DATA TO APPLICATION OF CLIENT THAT MADE REQUEST 438

CLIENT CHECKS WHETHER ALL OF THE CHUNKS FOR RECQUEST WERE RECEIVED
440

FIG. 11

420

Exhibit 1104, Page 12 of 27

U.S. Patent Oct. 15, 2013 Sheet 12 of 15 US 8,560,604 B2

LOOK UP HTTP REQUEST IN
DATABASE, GET ITS HTTP HEADERs

5O2

USING STANDARD HTTP
PROTOCOL CHECK THE HEADERS
TO SEE IF THE URLIS STILL VALID

AT THIS TIME (USING HTTP
HEADER INFORMATION SUCH AS
'MAX AGE', 'NO CACHE", MUST

REVALIDATE", ETC.)
504

IS DATA CACHED FOR THIS
REQUEST STILL VALID?

506
SEND HTTP CONDITIONAL REQUEST
TO THE WEB SERVER TO CHECK IF

THE DATA STORED FOR THIS
REQUEST IS STILL VALID

50

RETURN "VALID" IS CACHED DATA STILL VALIDP
508 512

RETURN "NVALID"
514

FIG 12

Exhibit 1104, Page 13 of 27

U.S. Patent Oct. 15, 2013 Sheet 13 of 15 US 8,560,604 B2

CHECK"KEEPAVEW, IHNETWORK
MNTSCIENTS/AGENTS/PRS), AND

UPDATEOAABASEASTOTHERSTATUS
(ON-LINEA OFF-INE)

CHECK VERSION

FORTHENEXT5ACTMEAG ENTS
HATHASHEPADDRESS THAT
SOLOSESTOTHEARGET

SERVERP
(EG. 192,166.3.103 ISOOSERTO

1955.322 THENTO
192.167.3.104)

FG 13

Exhibit 1104, Page 14 of 27

U.S. Patent Oct. 15, 2013 Sheet 14 of 15 US 8,560,604 B2

6 OO

NETWORK A PPLICATION ON CLIENT ISSUES RE QUEST TO
CONNECT TO A TCP IP SERVER

5 O1.

CoNNECTION REQUEST Is INTERCEPTED BY
ACCELERATION APPLICATION ON THE CENT

CLIENT MODULE SENDS THE IP ADDRESS OF THE TCPIP
SERVER TO THE ACCELERATION SERVER TO OBTAIN AN

A GENT LIST
6 O4

A CCELERATION SERVER PRE PARES A LIST OF A GENTS
THAT MAY BE SUITABLE TO HANDLE THE REQUEST FROM
THIS IP ADDRESS (FOR EXAMPLE, A PRIMARY AGENT AND
F OUR SE COND ARY AG ENTS), AND SEND S THE LIST TO THE

CLIENT
6 O6

CLIENT ISSUES A TCPP CONNECT WITH THE PRIMARY
AG ENT (or o NE o F THE O THE R A GENTs IF THE PRIMARY
A GENT CONNECT DOES NOT SUCCEED) TO ESTABLISH A

T CPIP CONNECTION WITH AN AG ENT
SO 8

CLENT SENDS TO THE AGENT THE IP ADDRESS OF THE
TCPP SERVER THAT THE COMMUNI CATION APPLICATION
WANTs To C on NECT WITH AND THE PORT To WHICH IT

WANTS TO CONNECT
61. O

AGENT ISSUES A TCP IP CONNECT WITH THE TCPIP
SERVER TO THE IP AND PORT RECEIVED FROM THE CENT

61.2

F.G. 14

Exhibit 1104, Page 15 of 27

U.S. Patent Oct. 15, 2013 Sheet 15 Of 15 US 8,560,604 B2

ACCELERATION APPLICATION INTERCEPTS A TCPIP WRITE COMMAND FROM THE
COMMUNICATION APPLICATION (ON CLIENT) OR FROM TCPIP SERVER (ONAGENT) 802

DATA OF WRITE COMMAND IS BROKEN UP INTO CHUNKS AND CHECKSUMS ARE
CALCULATED FOREACH CHUNK 804

ACCELERATION APPLICATION LOOKS UP EACH CHUNK'S CHECKSUMINTS CACHE
DATABASE 806

y
DOES AN ENTRY FOR THE CHECKSUMEXIST IN THE CACHE DATABASE? 808

YES

ACCELERATION APPLICATION PREPARES NO
LIST OF PEERS THAT HAVE RECEIVED THIS

CHUNK IN THE PAST 810

ACCELERATION APPLICATION SENDS PEER
LIST TO COMMUNICATION DEVICE IT IS

COMMUNICATING WITH (CLIENT TO AGENT, ACCELERATION APPLICATION ADDS
ORAGENT TO CLIENT), AND ADDS THAT THE CHUNK AND ITS CHECKSUM TO
COMMUNICATION DEVICE TO THE LIST OF ITS CACHE DATABASE, AND SENDS

PEERS FOR THAT CHUNK 812 THE CHUNK ITSELF TO THE
COMMUNICATION DEVICE TIS

COMMUNICATING WITH (CLIENT TO
AGENT, OR AGENT TO CLIENT), AND
ADDS THAT COMMUNICATION DEVICE
TO THE LIST OF PEERS FOR THAT

CHUNK 820

COMMUNICATION DEVICE WITH
ACCELERATION APPLICATION THAT

RECEIVED THE LIST OF PEERS CONNECTS
TO AT LEAST ONE OF THE PEERS AND
DOWNLOADS THE CHUNK FROM IT 814

NO

HAVE ALL CHUNK DATA BEENTRANSFERRED TO THE OTHER SIDE? 816

YES
ACCELERATION APPLICATION PASSES ON THE COMPLETE DATA RECEIVED ON TO THE
REQUESTER - IN THE CLIENT IT PASSES IT ON TO THE COMMUNICATION APPLICATION,

AND IN THE AGENTIT PASSES IT ON TO THE TCPIP SERVER 818

800
FIG. 15

Exhibit 1104, Page 16 of 27

US 8,560,604 B2
1.

SYSTEMAND METHOD FOR PROVIDING
FASTER AND MORE EFFICIENT DATA

COMMUNICATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. provisional
patent application entitled “FASTER AND MORE EFFI
CIENT DATA COMMUNICATIONSYSTEM, having Ser.
No. 61/249,624, filed Oct. 8, 2009, which is hereby incorpo
rated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention is related to Internet communication,
and more particularly, to improving data communication
speed and bandwidth efficiency on the Internet.

BACKGROUND OF THE INVENTION

There are several trends in network and Internet usage,
which tremendously increase the bandwidth that is being
used on the Internet. One such trend is that more and more
video is being viewed on demand on the Internet. Such view
ing includes the viewing of both large and short video clips. In
addition, regular shows and full-featured films may be viewed
on the Internet. Another trend that is increasing the traffic on
the Internet is that Web sites (such as shopping portals, news
portals, and Social networks) are becoming global, meaning
that the Web sites are serving people in many diverse places
on the globe, and thus the data is traversing over longer
stretches of the Internet, increasing the congestion.
The increase in bandwidth consumption has created sev

eral major problems, a few of which are described below:
The problem for users—the current Internet bandwidth is not
sufficient, and thus the effective speed experienced by users
is slow;
The problem for content owners—the tremendous amount of
data being viewed by users is costing large amounts of money
in hosting and bandwidth costs; and
The problem for Internet Service Providers (ISPs) the
growth in Internet traffic is requiring the ISPs to increase the
infrastructure costs (communication lines, routers, etc.) at
tremendous financial expense.

The need for a new method of data transfer that is fast for
the consumer, cheap for the content distributor and does not
require infrastructure investment for ISPs, has become a
major issue which is yet unsolved.

There have been many attempts at making the Internet
faster for the consumer and cheaper for the broadcaster. Each
Such attempt is lacking in Some aspect to become a wide
spread, practical solution, or is a partial Solution in that it
solves only a subset of the major problems associated with the
increase in Internet traffic. Most of the previous solutions
require billions of dollars in capital investment for a compre
hensive solution. Many of these attempts are lacking in that
much of the content on the Internet has become dynamically
created per the user and the session of the user (this is what
used to be called the “Web2.0 trend). This may be seen on the
Amazon Web site and the Salesforce Web site, for example,
where most of the page views on these Web sites is tailored to
the viewer, and is thus different for any two viewers. This
dynamic information makes it impossible for most of the
solutions offered to date to store the content and provide it to
others seeking similar content.

10

15

25

30

35

40

45

50

55

60

65

2
One solution that has been in use is called a “proxy'. FIG.

1 is a schematic diagram providing an example of use of a
proxy within a network 2. A proxy, or proxy server 4, 6, 8 is
a device that is placed between one or more clients, illustrated
in FIG. 1 as client devices 10, 12, 14, 16, 18, 20, that request
data, via the Internet 22, and a Web server or Web servers 30,
32, 34 from which they are requesting the data. The proxy
server 4, 6, 8 requests the data from the Web servers 30, 32,34
on their behalf, and caches the responses from the Web serv
ers 30, 32, 34, to provide to other client devices that make
similar requests. If the proxy server 4, 6, 8 is geographically
close enough to the client devices 10, 12, 14, 16, 18, 20, and
if the storage and bandwidth of the proxy server 4, 6, 8 are
large enough, the proxy server 4, 6, 8 will speed up the
requests for the client devices 10, 12, 14, 16, 18, 20 that it is
Serving.

It should be noted, however, that to provide a comprehen
sive solution for Internet surfing, the proxy servers of FIG. 1
would need to be deployed at every point around the world
where the Internet is being consumed, and the storage size of
the proxy servers at each location would need to be near the
size of all the data stored anywhere on the Internet. The
abovementioned would lead to massive costs that are imprac
tical. In addition, these proxy solutions cannot deal well with
dynamic data that is prevalent now on the Web.

There have been commercial companies, such as Akamai,
that have deployed such proxies locally around the world, and
that are serving a select Small group of sites on the Internet. If
all sites on the Web were to be solved with such a solution, the
capital investment would be in the range of billions of dollars.
In addition, this type of solution does not handle dynamic
COntent.

To create large distribution systems without the large hard
ware costs involved with a proxy solution, “peer-to-peer file
sharing Solutions have been introduced. Such as, for
example, BitTorrent. FIG. 2 is a schematic diagram providing
an example of a peer-to-peer file transfer network 50. In the
network 50, files are stored on computers of consumers,
referred to herein as client devices 60. Each consumer can
serve up data to other consumers, via the Internet 62, thus
taking the load of serving off of the distributors and saving
them the associated costs, and providing the consumer mul
tiple points from which to download the data, referred to
herein as peers 70, 72, 74,76, 78, thus increasing the speed of
the download. However, each Such peer-to-peer Solution must
have some sort of index by which to find the required data. In
typical peer-to-peer file sharing systems, because the index is
on a server 80, or distributed among several servers, the
number of files available in the system is not very large
(otherwise, the server costs would be very large, or the lookup
time would be very long).
The peer-to-peer file sharing solution is acceptable in file

sharing systems, because there are not that many media files
that are of interest to the mass (probably in the order of
magnitude of millions of movies and Songs that are of inter
est). Storing and maintaining an index of millions of entries is
practical technically and economically. However, if this sys
tem were to be used to serve the hundreds of billions of files
that are available on the Internet of today, the cost of storing
and maintaining Such an index would be again in the billions
of dollars. In addition, these types of peer-to-peer file sharing
systems are not able to deal with dynamic HTTP data.

In conclusion, there does not exist a system that enables
fast transmission of most of the data on the Internet, that does
not incur tremendous costs, and/or that provides only a very
partial solution to the problem of Internet traffic congestion.

Exhibit 1104, Page 17 of 27

US 8,560,604 B2
3

Thus, a heretofore unaddressed need exists in the industry to
address the aforementioned deficiencies and inadequacies.

SUMMARY OF THE INVENTION

The present system and method provides for faster and
more efficient data communication within a communication
network. Briefly described, in architecture, one embodiment
of the system, among others, can be implemented as follows.
A network is provided for accelerating data communication,
wherein the network contains: at least one client communi
cation device for originating a data request for obtaining the
data from a data server; at least one agent communication
device which is assigned to the data server for receiving the
data request from the client communication device, wherein
the agent keeps track of which client communication devices
have received responses to data requests from the assigned
data server; at least one peer communication device for Stor
ing portions of data received in response to the data request by
the at least one client communication device, wherein the
portions of data may be transmitted to the at least one client
communication device upon request by the client communi
cation device; and at least one acceleration server for deciding
which agent communication device is to be assigned to which
data server and providing this information to the at least one
client communication device.
The present system and method also provides a communi

cation device within a network, wherein the communication
device contains: a memory; and a processor configured by the
memory to perform the steps of originating a data request for
obtaining data from a data server, being assigned to a data
server, referred to as an assigned data server; receiving a data
request from a separate device within the network, and keep
ing track of which client communication devices within the
network have received responses to data requests from the
assigned data server, and storing portions of data received in
response to the originated data request, wherein the portions
of data may be transmitted to communication device upon
request by the communication device.

Other systems, methods, features, and advantages of the
present invention will be or become apparent to one with skill
in the art upon examination of the following drawings and
detailed description. It is intended that all such additional
systems, methods, features, and advantages be included
within this description, be within the scope of the present
invention, and be protected by the accompanying claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the invention can be better understood
with reference to the following drawings. The components in
the drawings are not necessarily to Scale, emphasis instead
being placed upon clearly illustrating the principles of the
present invention. Moreover, in the drawings, like reference
numerals designate corresponding parts throughout the sev
eral views.

FIG. 1 is a schematic diagram providing a prior art example
of use of a proxy within a network.

FIG.2 is a schematic diagram providing a prior art example
of a peer-to-peer file transfer network.

FIG. 3 is a schematic diagram providing an example of a
communication network in accordance with the present
invention.

FIG. 4 is a schematic diagram further illustrating a com
munication device of the communication network of FIG. 3.

FIG. 5 is a schematic diagram further illustrating the
memory of FIG. 4.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 6 is a schematic diagram further illustrating elements

of the acceleration application of FIG. 5, as well as commu
nication paths of the acceleration application.

FIG. 7 is a chart further illustrating two of the main data
bases utilized within the communication network.

FIG. 8 is a flowchart illustrating operation of the accelera
tion system initializer module.

FIG. 9 is a flowchart further illustrating communication
between different elements of the communication network.

FIG. 10 is a flowchart continuing the flowchart of FIG.9
and focused on agent response to the HTTP request.

FIG. 11 is a flowchart continuing the flowchart of FIG. 10,
which illustrates actions taken upon receipt of the list of
peers, or single peer listing, from the agent.

FIG. 12 is a flowchart illustrating steps taken by an agent,
client, or peer to determine whether a certain HTTP request is
still valid.

FIG. 13 is a flowchart outlining operation of the accelera
tion server.

FIG. 14 is a flowchart further illustrating TCPIP accelera
tion in accordance with an alternative embodiment of the
invention.

FIG. 15 is a flowchart further illustrating TCPIP accelera
tion in accordance with an alternative embodiment of the
invention, detailing the communication between the client
and the TCPIP server (read and write commands) after the
connect phase has completed Successfully.

DETAILED DESCRIPTION

The present system and method provides for faster and
more efficient data communication within a communication
network. An example of such a communication network 100
is provided by the schematic diagram of FIG. 3. The network
100 of FIG.3 contains multiple communication devices. Due
to functionality provided by software stored within each com
munication device, which may be the same in each commu
nication device, each communication device may serve as a
client, peer, or agent, depending upon requirements of the
network 100, as is described in detail herein. It should be
noted that a detailed description of a communication device is
provided with regard to the description of FIG. 4.

Returning to FIG. 3, the exemplary embodiment of the
network 100 illustrates that one of the communication
devices is functioning as a client 102. The client 102 is
capable of communication with one or more peers 112, 114,
116 and one or more agents 122. For exemplary purposes, the
network contains three peers and one agent, although it is
noted that a client can communicate with any number of
agents and peers.
The communication network 100 also contains a Web

server 152. The Web server 152 is the server from which the
client 102 is requesting information and may be, for example,
a typical HTTP server, such as those being used to deliver
content on any of the many such servers on the Internet. It
should be noted that the server 152 is not limited to being an
HTTP server. In fact, if a different communication protocol is
used within the communication network, the server may be a
server capable of handling a different protocol. It should also
be noted that while the present description refers to the use of
HTTP, the present invention may relate to any other commu
nication protocol and HTTP is not intended to be a limitation
to the present invention.
The communication network 100 further contains an accel

eration server 162 having an acceleration server storage
device 164. As is described in more detail herein, the accel
eration server storage device 164 has contained therein an

Exhibit 1104, Page 18 of 27

US 8,560,604 B2
5

acceleration server database. The acceleration server data
base stores Internet protocol (IP) addresses of communica
tion devices within the communication network 100 having
acceleration software stored therein. Specifically, the accel
eration server database contains stored therein a list of com
munication devices having acceleration Software stored
therein that are currently online within the communication
network 100. For each such agent, the acceleration server
assigns a list of IP addresses.

In the communication network 100 of FIG. 3, the applica
tion in the client 102 is requesting information from the Web
server 152, which is why the software within the communi
cation device designated this communication device to work
as a client. In addition, since the agent 122 receives the
request from the client 102 as the communication device
closest to the Web server 152, functionality of the agent 122,
as provided by the software of the agent 122, designates this
communication device to work as an agent. It should be
noted, that in accordance with an alternative embodiment of
the invention, the agent need not be the communication
device that is closest to the Web server. Instead, a different
communication device may be selected to be the agent.

Since the peers 112, 114, 116 contain at least portions of
the information sought by the client 102 from the Web server
152, functionality of the peers 112, 114, 116, as provided by
the software of the peers 112, 114, 116, designates these
communication devices to work as peers. It should be noted
that the process of designating clients, agents, and peers is
described in detail herein. It should also be noted that the
number of clients, agents, peers, acceleration servers, Web
servers, and other components of the communication network
100 may differ from the number illustrated by FIG. 3. In fact,
the number of clients, agents, peers, acceleration servers,
Web servers, and other components of the communication
network 100 are not intended to be limited by the current
description.

Prior to describing functionality performed within a com
munication network 100, the following further describes a
communication device 200, in accordance with a first exem
plary embodiment of the invention. FIG. 4 is a schematic
diagram further illustrating a communication device 200 of
the communication network 100, which contains general
components of a computer. As previously mentioned, it
should be noted that the communication device 200 of FIG. 4
may serve as a client, agent, or peer.

Generally, in terms of hardware architecture, as shown in
FIG. 4, the communication device 200 includes a processor
202, memory 210, at least one storage device 208, and one or
more input and/or output (I/O) devices 240 (or peripherals)
that are communicatively coupled via a local interface 250.
The local interface 250 can be, for example but not limited to,
one or more buses or other wired or wireless connections, as
is known in the art. The local interface 250 may have addi
tional elements, which are omitted for simplicity, Such as
controllers, buffers (caches), drivers, repeaters, and receivers,
to enable communications. Further, the local interface 250
may include address, control, and/or data connections to
enable appropriate communications among the aforemen
tioned components.

The processor 202 is a hardware device for executing soft
ware, particularly that stored in the memory 210. The proces
Sor 52 can be any custom made or commercially available
processor, a central processing unit (CPU), an auxiliary pro
cessor among several processors associated with the commu
nication device 200, a semiconductor based microprocessor
(in the form of a microchip or chip set), a macroprocessor, or
generally any device for executing software instructions.

10

15

25

30

35

40

45

50

55

60

65

6
The memory 210, which is further illustrated and described

by the description of FIG. 5, can include any one or combi
nation of Volatile memory elements (e.g., random access
memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and
nonvolatile memory elements (e.g., ROM, hard drive, tape,
CDROM, etc.). Moreover, the memory 210 may incorporate
electronic, magnetic, optical, and/or other types of Storage
media. Note that the memory 210 can have a distributed
architecture, where various components are situated remote
from one another, but can be accessed by the processor 202.
The software 212 located within the memory 210 may

include one or more separate programs, each of which con
tains an ordered listing of executable instructions for imple
menting logical functions of the communication device 200,
as described below. In the example of FIG.4, the software 212
in the memory 210 at least contains an acceleration applica
tion 220 and an Internet browser 214. In addition, the memory
210 may contain an operating system (O/S) 230. The operat
ing system 230 essentially controls the execution of computer
programs and provides scheduling, input-output control, file
and data management, memory management, and communi
cation control and related services. It should be noted that, in
addition to the acceleration application 220, Internet browser
214, and operating system 230, the memory 210 may contain
other software applications.

While the present description refers to a request from the
client originating from an Internet browser, the present inven
tion is not limited to requests originating from Internet brows
ers. Instead, a request may originate from an email program or
any other program that would be used to request data that is
stored on a Web server, or other server holding data that is
requested by the client device.

Functionality of the communication device 200 may be
provided by a source program, executable program (object
code), Script, or any other entity containing a set of instruc
tions to be performed. When a source program, then the
program needs to be translated via a compiler, assembler,
interpreter, or the like, which may or may not be included
within the memory 210, so as to operate properly in connec
tion with the operating system 230. Furthermore, functional
ity of the communication device 200 can be written as (a) an
object oriented programming language, which has classes of
data and methods, or (b) a procedure programming language,
which has routines, Subroutines, and/or functions.
The I/O devices 240 may include input devices, for

example but not limited to, a keyboard, mouse, Scanner,
microphone, etc. Furthermore, the I/O devices 240 may also
include output devices, for example but not limited to, a
printer, display, etc. Finally, the I/O devices 240 may further
include devices that communicate via both inputs and out
puts, for instance but not limited to, a modulator/demodulator
(modem; for accessing another device, system, or network), a
radio frequency (RF) or other transceiver, a telephonic inter
face, a bridge, a router, etc.
When the communication device 200 is in operation, the

processor 202 is configured to execute the software 212
stored within the memory 210, to communicate data to and
from the memory 210, and to generally control operations of
the communication device 200 pursuant to the software 212.
The software 212 and the O/S 230, in whole or in part, but
typically the latter, are read by the processor 202, perhaps
buffered within the processor 202, and then executed.
When functionality of the communication device 200 is

implemented in software, as is shown in FIG. 4, it should be
noted that the functionality can be stored on any computer
readable medium for use by or in connection with any com
puter related system or method. In the context of this docu

Exhibit 1104, Page 19 of 27

US 8,560,604 B2
7

ment, a computer readable medium is an electronic, mag
netic, optical, or other physical device or means that can
contain or store a computer program for use by or in connec
tion with a computer related system or method. The function
ality of the communication device 200 can be embodied in 5
any computer-readable medium for use by or in connection
with an instruction execution system, apparatus, or device,
Such as a computer-based system, processor-containing sys
tem, or other system that can fetch the instructions from the
instruction execution system, apparatus, or device and 10
execute the instructions. In the context of this document, a
“computer-readable medium' can be any means that can
store, communicate, propagate, or transport the program for
use by or in connection with the instruction execution system,
apparatus, or device. 15
The computer readable medium can be, for example but not

limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, device, or
propagation medium. More specific examples (a nonexhaus
tive list) of the computer-readable medium would include the 20
following: an electrical connection (electronic) having one or
more wires, a portable computer diskette (magnetic), a ran
dom access memory (RAM) (electronic), a read-only
memory (ROM) (electronic), an erasable programmable
read-only memory (EPROM, EEPROM, or Flash memory) 25
(electronic), an optical fiber (optical), and a portable compact
disc read-only memory (CDROM) (optical). Note that the
computer-readable medium could even be paper or another
Suitable medium upon which the program is printed, as the
program can be electronically captured, via for instance opti- 30
cal scanning of the paper or other medium, then compiled,
interpreted or otherwise processed in a suitable manner if
necessary, and then stored in a computer memory.

In an alternative embodiment, where the functionality of
the communication device 200 is implemented in hardware, 35
the functionality can be implemented with any or a combina
tion of the following technologies, which are each well
known in the art: a discrete logic circuit(s) having logic gates
for implementing logic functions upon data signals, an appli
cation specific integrated circuit (ASIC) having appropriate 40
combinational logic gates, a programmable gate array(s)
(PGA), a field programmable gate array (FPGA), etc.
The at least one storage device 208 of the communication

device 200 may be one of many different categories of storage
device. As is described in more detail herein, the storage 45
device 208 may include a configuration database 280 and a
cache database 282. Alternatively, the configuration database
280 and cache database 282 may be located on different
storage devices that are in communication with the commu
nication device 200. The description that follows assumes 50
that the configuration database 280 and cache database 282
are located on the same storage device, however, it should be
noted that the present invention is not intended to be limited to
this configuration.

The configuration database 280 stores configuration data 55
that is common to all elements of the communication network
100 and is used to provide set up and synchronization infor
mation to different modules of the acceleration application
220 stored within the memory 210, as is described in further
detail herein. The cache database 282 stores responses to 60
HTTP requests that the communication device 200 has dis
patched, either for its own consumption or on behalf of other
elements of the communication network 100. As is explained
in additional detail herein, the responses to HTTP requests are
stored within the cache database 282 for future use by this 65
communication device 200, or for other communication
devices within the communication network 100 that need to

8
retrieve this information and will use this communication
device as either a peer or an agent.

In addition to the abovementioned, as is explained in fur
ther detail herein, the cache database 282 has stored therein a
list of URLs that the communication device is aware of (i.e.,
has seen requests for). For each URL, the cache database 282
has stored therein the URL itself, HTTP headers returned by
the Web Server for this URL, when the last time was that the
contents of this URL was loaded directly from the Web
Server, when the contents of the URL had last changed on the
Web Server, as well as a list of chunks that contain the con
tents of this URL, and the chunks of data themselves. Chunks
in the present description are defined as equally sized pieces
of data that together form the whole content of the URL. It
should be noted that while the present description provides
for chunks being equally sized pieces of data, in accordance
with an alternative embodiment of the invention, the chunks
may instead be of different size.

FIG. 5 is a schematic diagram further illustrating the
memory 210 of FIG. 4. As shown by FIG. 5, the memory 210
may be separated into two basic levels, namely, an operating
system level 260 and an application level 270. The operating
system level 260 contains the operating system 230, wherein
the operating system 230 further contains at least one device
driver 262 and at least one communication stack 264. The
device drivers 262 are software modules that are responsible
for the basic operating commands for various hardware
devices of the communication device 200, such as the pro
cessor 202, the storage device 208 and the I/O devices 240. In
addition, the communication stacks 264 provide applications
of the communication device 200 with a means of communi
cating within the network 100 by implementing various stan
dard communication protocols.
The application level 270 includes any application that is

running on the communication device 200. As a result, the
application level 270 includes the Internet browser 214,
which is used to view information that is located on remote
Web servers, the acceleration application 220, as described in
more detail below, and any other applications 216 stored on
the communication device 200.
As is explained in additional detail below, the acceleration

application 220 intercepts the requests being made by appli
cations of the communication device (client) that use the
Internet, in order to modify the requests and route the requests
through the communication network. There are various meth
ods that may be used to intercept Such requests. One such
method is to create an intermediate driver 272, which is also
located within the memory 210, that attaches itself to all
communication applications, intercepts outgoing requests of
the communication applications of the communication
device 200, such as the Internet browser 214, and routes the
requests to the acceleration application 220. Once the accel
eration application 220 modifies the requests, routes the
requests to other system elements on the communication
network 100, and receives replies from other system elements
of the communication network 100, the acceleration applica
tion 220 returns the replies to the intermediate driver 272,
which provides the replies back to the requesting communi
cation application.

FIG. 6 is a schematic diagram further illustrating elements
of the acceleration application 220, as well as communication
paths of the acceleration application 220. The acceleration
application 220 contains an acceleration system initializer
module 222, which is called when the acceleration applica
tion 220 is started. The acceleration system initializer module
222 is capable of initializing all elements of the communica
tion device 200 The acceleration application 220 also con

Exhibit 1104, Page 20 of 27

US 8,560,604 B2

tains three separate modules that run in parallel, namely, a
client module 224, a peer module 226, and an agent module
228, each of which comes into play according to the specific
role that the communication device 200 is partaking in the
communication network 100 at a given time. The role of each
module is further described herein.
The client module 224 provides functionality required

when the communication device 200 is requesting informa
tion from the Web server 152, such as, for example, but not
limited to, Web pages, data, video, or audio. The client mod
ule 224 causes the communication device 200 having the
client module 224 therein to intercept the information request
and pass the information request on to other elements of the
communication network 100. Such as, servers, agents or
peers. This process is further described in detail herein.
The peer module 226 provides functionality required by

the communication device 200 when answering other clients
within the communication network 100 and providing the
other clients with information that they request, which this
communication device 200, having this peer module 226
therein, has already downloaded at a separate time. This pro
cess is further described in detail herein.
The agent module 228 provides functionality required

when other communication devices of the communication
network 100 acting as clients query this communication
device 200, having this agent module 228 therein, as an agent,
to obtain a list of peers within the communication network
100 that contain requested information. This process is fur
ther described in detail herein.

The acceleration application 220 interacts with both the
configuration database 280 and the cache database 282 of the
storage device 208. As previously mentioned herein, the con
figuration database 280 stores configuration data that may be
common to all communication devices of the communication
network 100 and is used to provide setup and synchronization
information to different modules 222, 224, 226, 228 of the
acceleration application 220 stored within the memory 210.
The cache database 282 stores responses to information

requests, such as, for example, HTTP requests, that the com
munication device 200 has dispatched, either for its own
consumption or on behalf of other elements of the communi
cation network 100. The responses to HTTP requests are
stored within the cache database 282 for future use by this
communication device 200, or for other communication
devices within the communication network 100 that need to
retrieve this same information and will use this communica
tion device 200 as either a peer or an agent. This process is
described in detail herein.

Information stored within the cache database 282 may
include any information associated with a request sent by the
client. As an example, Such information may include, Meta
data and actual requested data. For example, for an HTTP
request for a video, the Metadata may include the version of
the Web server answering the request from the client and the
data would be the requested video itself. In a situation where
there is no more room for storage in the cache database, the
Software of the associated communication device may cause
the communication device to erase previous data stored in
order to clear room for the new data to store in the cache
database. As an example, Such previous data may include data
that is most likely not to be used again. Such data may be old
data or data that is known to no longer be valid. The commu
nication device may choose to erase the least relevant data,
according to any of several methods that are well known in the
art.

FIG. 7 is a chart further illustrating two of the main data
bases utilized within the communication network 100,

5

10

15

25

30

35

40

45

50

55

60

65

10
namely, the acceleration server database 164 and the cache
database 282. As previously mentioned, the acceleration
server database 164 stores IP addresses of communication
devices located within the communication network 100,
which have acceleration software stored therein. Specifically,
the acceleration server database 164 contains stored therein a
list of communication devices having acceleration Software
stored therein that are currently online within the communi
cation network 100. The acceleration server assigns a list of
IP addresses to each communication device functioning as an
agent. Each communication device will be the agent for any
Web servers whose IP address is in the range owned by that
communication device. As an example, when a first ever
communication device goes online, namely, the first commu
nication device as described herein having the acceleration
application 220 therein, the acceleration server assigns all IP
addresses in the world to this communication device, and this
communication device will be the agent for any Web server.
When a second communication device goes online it will
share the IP address list with the first communication device,
so that each of the communication devices will be responsible
for a different part of the world wide web servers.
The cache database 282 of the communication device 200

has stored therein a list of URLs 286 of which the communi
cation device 200 is aware. The communication device 200
becomes aware of a URL each time that the communication
device 200 receives a request for information located at a
specific URL. As shown by FIG. 7, for each URL 288 within
the list of URLs 286, the cache database 282 stores: the URL
itself 290; HTTP headers 292 returned by the Web Server 152
for this URL: when the last time 294 was that the contents of
this URL were loaded directly from the Web Server 152:
when the contents of the URL last changed 296 on the Web
Server 152; and a list of chunks 298 that contain the contents
of this URL, and the content of the chunk. As previously
mentioned, chunks, in the present description, are defined as
equally sized pieces of data, that together form the entire
content of the URL, namely, the entire content whose location
is described by the URL. As a non-limiting example, a chunk
size of for example, 16 KB can be used, so that any HTTP
response will be split up into chunks of 16 KB. In accordance
with an alternative embodiment of the invention, if the last
chunk of the response is not large enough to fill the designated
chunk size, such as 16 KB for the present example, the
remaining portion of the chunk will be left empty.

For each such chunk 300, the cache database 282 includes
the checksum of the chunk 302, the data of the chunk 304
itself, and a list of peers 306 that most likely have the data for
this chunk. As is described in additional detail herein, the data
for the chunk may be used by other clients within the com
munication network 100 when other communication devices
of the communication network 100 serve as peers to the
clients, from which to download the chunk data.

For each chunk, a checksum is calculated and stored along
side of the chunk itself. The checksum may be calculated in
any of numerous ways known to those in the art. The purpose
of having the checksum is to be able to identify data uniquely,
whereas the checksum is the “key to the data, where the data
is the chunk. As an example, a client may want to load the
contents of a URL, resulting in the agent that is servicing this
request sending the checksums of the chunks to the client,
along with the peers that store these chunks. It is to be noted
that there could be a different peer for every different chunk.
The client then communicates with each Such peer, and pro
vides the checksum of the chunk that it would like the peer to
transmit back to the client. The peer looks up the checksum
(the key) in its cache database, and provides back the chunk

Exhibit 1104, Page 21 of 27

US 8,560,604 B2
11

(data) that corresponds to this checksum (the key). As shown
by FIG. 7, for each peer 308 within the list of peers 306, the
cache database 282 includes the peer IP address 310, as well
as the connection status 312 of the peer, which represents
whether the peer 308 is online or not.

In accordance with one embodiment of the invention, the
cache database 282 may be indexed by URL and by Check
Sum. Having the cache database indexed in this manner is
beneficial due to the following reason. When the agent is
using the cache database, the agent receives a request from a
client for the URL that the client is looking for. In such a case
the agent needs the cache database to be indexed by the URL,
to assist in finding a list of corresponding peers that have the
chunks of this URL. When the peers are using this cache
database, the peers obtain a request from the client for a
particular checksum, and the peers need the database to be
indexed by the checksum So that they can quickly find the
correct chunk. Of course, as would be understood by one
having ordinary skill in the art, the cache database may
instead be indexed in any other manner.

Having described components of the communication net
work 100, the following further describes how such compo
nents interact and individually function. FIG. 8 is a flowchart
300 illustrating operation of the acceleration system initial
izer module 222 (hereafter referred to as the initializer 222 for
purposes of brevity). It should be noted that any process
descriptions or blocks in flowcharts should be understood as
representing modules, segments, portions of code, or steps
that include one or more instructions for implementing spe
cific logical functions in the process, and alternative imple
mentations are included within the scope of the present inven
tion in which functions may be executed outoforder from that
shown or discussed, including Substantially concurrently or
in reverse order, depending on the functionality involved, as
would be understood by those reasonably skilled in the art of
the present invention.

The initializer 222 is the first element of the communica
tion device 200 to operate as the communication device 200
starts up (block 302). As the initializer 222 starts, it first
communicates with the acceleration server 162 to sign up
with the acceleration server 162. This is performed by pro
viding the acceleration server 162 with the hostname, and all
IP addresses and media access control (MAC) addresses of
the interfaces on the communication device 200 having the
initializer 222 thereon.

Inaccordance with an alternative embodiment of the inven
tion, as shown by block 304, the initializer 222 checks with
the acceleration server 162 whether a more updated version of
the acceleration application Software is available. This may
be performed by any one of many known methods, such as,
but not limited to, by providing the version number of the
acceleration application Software to the acceleration server
162. The message received back from the acceleration server
162 indicates whether there is a newer version of the accel
eration application software or not. If a newer version of the
acceleration application Software exists, the initializer 222
downloads the latest version of the acceleration application
software from the acceleration server 162, or from a different
location, and installs the latest version on the communication
device 200. In addition to the abovementioned, the initializer
222 may also schedule additional version checks for every set
period of time thereafter. As an example, the initializer 222
may check for system updates every two days.
As shown by block 306, the initializer 222 then redirects

outgoing network traffic from the communication device 200
to flow through the acceleration application 162. As previ
ously mentioned, one way to redirect the outgoing network

10

15

25

30

35

40

45

50

55

60

65

12
traffic is to insert an intermediate driver 212 that intercepts
and redirects the traffic. It should be noted that there are many
other ways to implement this redirection, which are well
known to those having ordinary skill in the art.
As shown by block 308, the initializer 222 then launches

the client module 224 of the communication device 200, and
configures the client module 224 of the communication
device 200 to intercept to all outgoing network communica
tions of the communication device 200 and route the outgoing
network communications to the client module 224, from the
intermediate driver 272 or other routing method imple
mented. This is performed so that the client module 224 is
able to receive all network traffic coming from the network
applications, modify the network traffic if necessary, and
re-route the traffic. As is known by those having ordinary skill
in the art, in order to re-route the traffic, the traffic needs to be
modified, as an example, to change the destination of
requests.
As shown by block 310, the initializer 222 then launches

the agent module 228 and the peer module 226 to run on the
communication device 200. The agent module 228 and peer
module 226 listen on pre-determined ports of the communi
cation device 200, so that incoming network traffic on these
ports gets routed to the agent module 228 and peer module
226. As is explained in further detail herein, the abovemen
tioned enables the communication device 200 to function as
an agent and as a peer for other communication devices
within the communication network 100, as needed.

FIG. 9 is a flowchart 350 further illustrating communica
tion between different elements of the communication net
work 100, in accordance with the present system and method
for providing faster and more efficient data communication.
As shown by block 352, an application running on the

client 200 initiates a request for a resource on a network. Such
a request may be, for example, "GET http://www.aol.com/
index.html HTTP/1.1. The request may come from an Inter
net browser 214 located on the client 200, where the Internet
browser 214 is loading a page from the Internet, an applica
tion that wants to download information from the Internet,
fetch or send email, or any other network communication
request.

Through the intermediate driver 272, or other such mecha
nism as may be implemented that is re-routing the commu
nication to the client module 224 of the client 200, the
resource request is intercepted by the client module 224 that
is running on the client 200 (block 354). The client module
224 then looks up the IP address of the server 152 that is the
target of the resource request (e.g., the IP address of the Web
server that is the host of www.aol.com in the example above),
and sends this IP address to the acceleration server 162 (block
356) in order to obtain a list of communication devices that
the client 200 can use as agents (hereafter referred to as
agents). It should be noted that the process of performing an
IP lookup for a server is known by one having ordinary skill
in the art, and therefore is not described further herein.

In response to receiving the IP address of the server 152,
the acceleration server 162 prepares a list of agents that may
be suitable to handle the request from this IP address (block
358). The size of the list can differ based on implementation.
For exemplary purposes, the following provides an example
where a list of five agents is prepared by the acceleration
server 162. The list of agents is created by the acceleration
server 162 by finding the communication devices of the com
munication network 100 that are currently online, and whose
IP address is numerically close to the IP of the destination
Web server 152. A further description of the abovementioned
process is described here in.

Exhibit 1104, Page 22 of 27

US 8,560,604 B2
13

As shown by block 360, the client module 224 then sends
the original request (e.g., "GET http://www.aol.com/in
dex.html HTTP/1.1) to all the agents in the list received from
the acceleration server 162 in order to find out which of the
agents in the list is best suited to be the one agent that will 5
assist with this request.

It should be noted that, in accordance with an alternative
embodiment of the invention, the communication device 200
may be connected to a device that is actually requesting data.
In Such an alternative embodiment, the communication 10
device would be a modular device connected to a requesting
device, where the requesting device, such as, for example, a
personal data assistant (PDA) or other device, would request
data, and the communication device connected thereto, either
through a physical connection, wireless connection, or any 15
other connection, would receive the data request and function
as described herein. In addition, as previously mentioned, it
should be noted that the HTTP request may be replaced by
any request for resources on the Web.

FIG.10 is a flowchart continuing the flowchart 380 of FIG. 20
9 and focused on agent response to the request. As shown by
block 382, upon receiving the request from the client 200,
each agent that received the request from the client responds
to the client 200 with whether it has information regarding the
request, which can help the client to download the requested 25
information from peers in the network. Specifically, each
agent responds with whether the agent has seen a previous
request for this resource that has been fulfilled. In such a case,
the agent may then provide the client with the list of peers and
checksums of the chunks that each of them have. 30
As shown by block 384, the client then decides which of the

agents in the list to use as its agent for this particular infor
mation request. To determine which agent in the list to use as
its agent for the particular information request, the client may
consider multiple factors, such as, for example, factoring the 35
speed of the reply by each agent and whether that agent does
or does not have the information required. There are multiple
ways to implement this agent selection, one practical way
being to start a timer of a small window of time, such as, for
example, 5 ms, after receiving the first response from the 40
agents, and after the Small window, choosing from the list of
agents that responded, the agent that has the information
about the request, or in the case that none of the agents
responded, to choose the first agent from the list received
from the acceleration server 162. 45
As shown by block 386, after selecting an agent, the client

notifies the selected agent that it is going to use it for this
request, and notifies the other agents that they will not be used
for this request. The client then sends the selected agent a
request for the first five chunks of data of the original infor- 50
mation request (block 388). By specifying to the selected
agent the requested chunks by their order in the full response,
the client receives the peer list and checksums of the
requested chunks from the selected agent. As an example, for
the first five chunks the client will ask the selected agent for 55
chunks one through five, and for the fourth batch of five
chunks the client will ask the agent for chunks sixteenthrough
twenty. As previously mentioned, additional or fewer chunks
may be requested at a single time.
As shown by block 390, after receiving the request from the 60

client, the selected agent determines whether it has informa
tion regarding the requested chunks of data by looking up the
request in its cache database and determining if the selected
agent has stored therein information regarding peers of the
communication network that have stored the requested data 65
of the request, or whether the selected agent itself has the
requested data of the request stored in its memory. In addition

14
to determining if the selected agent contains an entry for this
requestin its database, the selected agent may also determine
if this information is still valid. Specifically, the selected
agent determines whether the data that is stored within the
memory of the selected agent or the memory of the peers, still
mirrors the information that would have been received from
the server itself for this request. A further description of the
process utilized by the selected agent to determine if the
information is still valid, is described in detail herein.
As shown by block 392, if the information (requested data

of the request) exists and is still valid, then the agent prepares
a response to the client, which includes for each of the chunks:
(i) the checksum of the chunk; (ii) a list of peers that accord
ing to the database of the selected agent contains these
chunks; and (iii) if these are the first five chunks of the
information, then the selected agent also provides the specific
protocol’s headers that would have been received from the
server, had the initial request from the client been made
directly to the server.
As shown by block 394, the list of peers for each chunk is

Sorted by geographical proximity to the requesting client. In
accordance with the present example, only the five closest
peers are kept in the list for every chunk, and the rest of the
peers are discarded from this list. As shown by block 396, the
prepared response, namely, the list of closest peers, is sent
back to the client. It should be noted that, if this were the last
set of chunks to be provided for this request, then it would be
beneficial to include information about this to the client.

If the selected agent discovers that it does not have infor
mation about this request, or if the selected agent discovers
that the information it has is no longer valid, the selected
agent needs to load the information directly from the server in
order to be able to provide an answer to the requesting client.
As shown by block 400, the selected agent then sends the
request directly to the server. The selected agent then stores
the information it receives from the server (both the headers
of the request, as well as chunks of the response itself) in its
database, for this particular response to the client, as well as
for future use to other clients that may request this data (block
402). The selected agent then prepares a response (list) for the
client, where the response includes the protocol headers (if
these are the first five chunks), and the checksums of the five
chunks, and provides itself as the only peer for these chunks
(block 404). This list is then sent back to the client (block
406).

FIG. 11 is a flowchart 420 continuing the flowchart of FIG.
10, which illustrates actions taken upon receipt of the list of
peers, or single peer listing, from the agent. As shown by
block 422, the client receives the response from the agent
(including the list of chunks and their corresponding data,
including peers and other information previously mentioned)
and, for each of the five chunks, the client sends a request to
each of the peers listed for the chunk to download the chunk.
The chunk request that the client sends to each of the peers is
the checksum of the data that the client seeks to receive,
which is the key (identifier) of the chunk.
As shown by block 424, the peers then respond regarding

whether they still have the data of the chunk. As an example,
Some of the peers may not currently be online, some may be
online but may have discarded the relevant information, and
Some may still have the relevant information, namely, the
chunk. As shown by block 426, the client then selects the
quickest peer that responds with a positive answer regarding
the requested information, the client lets that peer know that
it is chosen to provide the client with the chunk, and the client
notifies the other peers that they are not chosen.

Exhibit 1104, Page 23 of 27

US 8,560,604 B2
15

As shown by block 428, the chosen peer then sends the
chunk to the client. It should be noted that if no peers answer
the request of the client, the client goes back to the agent
noting that the peers were all negative, and the agent either
provides a list of 5 other agents, if they exist, or the agent goes
on to download the information directly from the Web server
as happens in the case where no peers exist as described
above.
The client then stores the chunks in its cache for future use

(block 430), when the client may need to provide the chunks
to a requesting communication device when acting as a peer
for another client that is looking for the same information. As
shown by block 432, if some of the chunks were not loaded
from any of the peers, the client requests the chunks again
from the agent in a next round of requests, flagging these
chunks as chunks that were not loadable from the client list of
peers. In this situation, the agent will load the data directly
from the server and provide it back to the client.
The client then acknowledges to the agent which of the

chunks it received properly (block 434). The agent then looks
up these chunks in the database of the agent, and adds the
client to the list of peers for these chunks, specifically, since
this client is now storing these chunks, and can provide these
chunks to other clients that turn to it as a peer (block 436).
As shown by block 438, the client then passes the data on

to the Web browser or otherapplication of the client that made
the original request, for it to use as it had originally intended.
The client then checks whether all of the chunks for this
request were received (block 440), by checking the flag set by
the agent. Specifically, when the agent is providing the list of
the last 5 chunks, the agent includes that information as part
of its reply to the client, which is referred to herein as a flag.
This information is what enables the client to know that all
information has been received for a particular resource
request.

If the last received chunks were not the last chunks for this
request, the processing flow of the client continues by return
ing to the functionality of block 384 of FIG. 10, but instead
sending the chosen agent a request for the next five chunks of
data of the original information request. Alternatively, if all
chunks for this request were received, the request is complete,
and the flow starts again at block 352 of FIG. 9.

FIG. 12 is a flowchart 500 illustrating steps taken by an
agent, client, or peer to determine whether a certain HTTP
request is still valid. Specifically, the following provides an
example of how the agent, client, or peer can determine
whether particular data that is stored within the memory of the
agent, or the memory of a peer or client, still mirrors the
information that is currently on the Web server. As shown by
block 502, the HTTP request is looked up in the cache data
base of the agent, client or peer that is checking the validity of
the HTTP request. As an example, the HTTP protocol,
defined by RFC 2616, outlines specific methods that Web
servers can define within the HTTP headers signifying the
validity of certain data, such as, but not limited to, by using
HTTP header information such as “max age' to indicate how
long this data may be cached before becoming invalid, “no
cache' to indicate that the data may never be cached, and
using other information.
As shown by block 504, these standard methods of valida

tion are tested on the HTTP request information in question.
As shown by block 506, a determination is made whether the
requested information that is stored is valid or not. If the
requested information is valid, a “VALID' response is
returned (block 508). Alternatively, if the requested informa
tion is not valid, an HTTP conditional request is sent to the
relevant Web server, to determine if the data stored for this

5

10

15

25

30

35

40

45

50

55

60

65

16
request is still valid (block 510). If the data stored for this
request is still valid, a “VALID' response is returned (block
508). Alternatively, if the data stored for this request is not
valid, an “INVALID” response is returned (block 514). It
should be noted, that the abovementioned description with
regard to FIG. 12 is an explanation of how to check if HTTP
information is still valid. There are similar methods of deter
mining validity for any other protocol, which may be utilized,
and which those having ordinary skill in the art would appre
ciate and understand.

FIG. 13 is a flowchart 550 outlining operation of the accel
eration server, whose main responsibility in the present sys
tem and method is to provide clients with information regard
ing which agents serve which requests, and to keep the
network elements all up to date with the latest software
updates. As shown by block 552, the acceleration server sends
“keep alive' signals to the network elements, and keeps track
within its database as to which network elements are online.
As shown by block 554, the acceleration server continues to
wait for a client request and continues to determine if one is
received.
Once a request is received, the acceleration server tests the

type of request received (block 556). If the client request is to
sign up the client within the network, an event that happens
every time that the client starts running on its host machine,
then that client is added to the list of agents stored on the
acceleration server, sorted by the IP address of the client
(block 558).

If the request is to find an agent to use for a particular
request, the acceleration server creates a new agent list, which
is empty (block 560). The acceleration server then searches
the agent database for the next 5 active agents whose IP
address is closest to the IP address of the server who is
targeted in the request (block 562). In this context,
192.166.3.103 is closer to 192.166.3.212 than to
192.167.3.104. The acceleration server then sends this agent
list to the client (block 564).

If instead, the request is to check the version of the latest
acceleration software then the acceleration server sends that
network element (client, peer or agent) the version number of
the latest existing acceleration software version, and a URL
from where to download the new version, for the case that the
element needs to upgrade to the new version (block 566).

While the abovementioned example is focused on HTTP
requests for data, as previously mentioned, other protocol
requests are equally capable of being handled by the present
system and method. As an example, in separate embodiments
the acceleration method described may accelerate any com
munication protocol at any OSI layer (SMTP, DNS, UDP,
ETHERNET, etc.). In the following alternative embodiment,
it is illustrated how the acceleration method may accelerate
TCPIP. As is known by those having ordinary skill in the art,
TCPIP is a relatively low-level protocol, as opposed to HTTP,
which is a high level protocol. For purposes of illustration of
TCPIP communication, reference may be made to FIG. 3,
wherein the Web server is a TCPIP server.

In TCPIP there are three communication commands that
are of particular interest, namely, connect, write, and read.
Connect is a command issued by an application in the com
munication device that is initiating the communication to
instruct the TCPIP stack to connect to a remote communica
tion device. The connect message includes the IP address of
the communication device, and the port number to connect to.
An application uses the write command to instruct the TCPIP
stack to send a message (i.e., data) to a communication device
to which it is connected. In addition, an application uses the
read command to ask the TCPIP stack to provide the message

Exhibit 1104, Page 24 of 27

US 8,560,604 B2
17

that was sent from the remote communication device to which
it is connected. A communication session typically exists of a
connect, followed by a read and write on both sides.

FIG. 14 is a flowchart 600 further illustrating TCPIP accel
eration in accordance with this alternative embodiment of the
invention. As shown by blocks 601 and 602 when an appli
cation of the communication device makes a request to the
communications stack to connect with the TCPIP server, that
communication is intercepted by the acceleration application.

To find an agent, upon receiving that connect message from
the communication device application, which includes the IP
address of the TCPIP server and the port to connect to, the
acceleration application in the client makes a request to the
acceleration server to find out who the agent for the commu
nication with the TCPIP server is. This step is performed in a
similar manner to that described with regard to the main
HTTP embodiment of the invention (block 604). As shown by
block 606, the server then provides the client with a list of
agents, for example, a primary agent and four others.
To establish a connection, as shown by block 608, the client

issues a TCPIP connect with the primary agent or one of the
other agents if the primary agent does not succeed, to create a
connection with the agent. The client then sends to the agent
the IP address of the TCPIP server and connection port that
were provided by the communication device application
(block 610). As shown by block 612, that agent in turn issues
a TCPIP connect to the TCPIP server to the port it received
from the client, to create a connection with the agent.

FIG. 15 is a flowchart 800 further illustrating TCPIP accel
eration in accordance with this alternative embodiment of the
invention, detailing the communication between the client
and the TCPIP server (read and write commands) after the
connect phase has completed Successfully.
As shown by block 802, if the network application within

the client wants to send a message to the TCPIP server, the
network application within the client writes the message to
the TCPIP stack in the operating system of the client. This
WRITE command is received by the acceleration application
of the client and handled in the manner described below. If the
TCPIP server wants to send a message to the client, the TCPIP
server writes the message to the TCPIP stack of TCPIP oper
ating system, on the connection to the agent, since this agent
is where the server received the original connection. This
WRITE command is received by the acceleration application
of the agent and handled in the manner described below.
When the acceleration application of the client receives a

message from the network application of the client to be sent
to the agent, or when the acceleration application of the agent
receives a message from the connection to the TCPIP server
that is to be sent to the client, the acceleration application
proceeds to send the message to the communication device on
the other side. For instance, if the client has intercepted the
message from the communication application, the client
sends the message to the agent, and if it is the agent that
intercepted the message from the connection to the TCPIP
server, such as the TCPIP server sending a message that is
intended for the communication with client, the agent sends
the message to the client in the following manner:
As shown by block804, the acceleration application breaks

up the content of the message to chunks and calculates the
corresponding checksums, in the same manner as in the main
embodiment described herein. The acceleration application
then looks up each checksum in its cache database (block
806). As shown by block 808, the acceleration application
checks if the checksum exists in the cache database. If it does,
then, as shown by block 810, the acceleration application
prepares a list of peers that have already received the chunk of

10

15

25

30

35

40

45

50

55

60

65

18
the checksum in the past (if any), and adds the communica
tion device of the other side to the list of communication
devices that have received this chunk (adds it to the peer list of
the checksum in its database), to be provided to other com
munication devices requesting this information in the future.
As shown by block 812, the list of peers is sent to the receiving
communication device, which, as shown by block 814
retrieves the chunks from the peers in the list received, in the
same manner as in the main embodiment.

If the checksum does not exist within the cache database of
the sending communication device then, as shown by block
820, the acceleration application adds the checksum and
chunk to its cache database, sends the chunk to the commu
nication device on the other side, and adds the other commu
nication device to the list of peers for that checksum in its
database.
As shown by block 816, a determination is then made as to

whether all chunks have been received. If all chunks have not
been received, the process continues on again from block 806.
Once all data has been received, as shown by block 818, the

acceleration application passes the data on to the requester.
Specifically, in the client, the acceleration application passes
on the complete data to the communication application, and
in the agent, the acceleration application passes on the com
plete data to the requesting TCPIP server

It should be emphasized that the above-described embodi
ments of the present invention are merely possible examples
of implementations, merely set forth for a clear understanding
of the principles of the invention. Many variations and modi
fications may be made to the above-described embodiments
of the invention without departing substantially from the
spirit and principles of the invention. All Such modifications
and variations are intended to be included herein within the
Scope of this disclosure and the present invention and pro
tected by the following claims.

We claim:
1. A method for use within a system for sending messages

between a requesting client communication device having a
client cache storage and a data server, via an agent commu
nication device having an agent cache storage, and utilizing
an acceleration server that maintains a list of client commu
nication devices in the system, the method comprising the
steps of:

the requesting client communication device sending an
identifier of the data server to the acceleration server,

the acceleration server associating one or more client com
munication devices with the data server and providing a
list of the one or more client communication devices to
the requesting client communication device;

the requesting client communication device choosing one
of the provided client communication devices to be used
as the agent communication device for communication
with the data server, and sending the agent communica
tion device a message intended for the data server,

the agent communication device determining if one or
more of the client communication devices have previ
ously received a response to the received message from
the data server, and

if there are one or more client communication devices that
have previously received a response to the received mes
Sage from the data server, performing the steps of
the agent communication device sending the requesting

client communication device a list of the one or more
client communication devices that have previously
received the response, wherein the one or more client

Exhibit 1104, Page 25 of 27

US 8,560,604 B2
19

communication devices that have previously received
the response are referred to as peer communication
devices;

the requesting client communication device retrieving
the requested response in one or more parts from the
one or more peer communication devices in the list;

the requesting client communication device storing the
request and the response in the client cache Storage;
and

the agent communication device storing the identifier of
the requesting client communication device in con
junction with the request and the response in the agent
cache storage.

2. The method of claim 1, wherein the data server performs
the association between the agent communication device and
the data server by performing the steps of:

the acceleration server keeping track of all of the client
communication devices that are online; and

upon receiving the identifier of the data server from the
requesting client communication device, the accelera
tion server choosing one or more client communication
device out of all online client communication devices,
that are optimal to be used as the agent communication
device or devices for communicating with the data
SeVe.

3. The method of claim 2, where the number of agent
communication devices returned by the acceleration server to
the client communication device is increased as the accelera
tion device senses that the load on these agent communication
devices increases.

4. The method of claim 3, where the acceleration server
senses the load on the various potential agent communication
devices by performing the steps of:
when the client communication device receives the agent

communication device list, the client communication
device sends the request to all agent communication
devices; and

if the client communication device does not get a response
from one or more agent communication devices, the
client communication device provides that information
to the acceleration server.

5. The method of claim 3, where the acceleration server
senses the load on the various potential agent communication
devices by performing a periodic load check on each potential
agent communication device.

6. The method of claim 2, wherein the client communica
tion device chosen by the acceleration server as the optimal
agent is the client communication device out of all online
client communication devices whose Internet Protocol (IP)
address is closest to the IP address of the data server.

7. The method of claim 1, where after receiving the mes
sage intended for the data server, from the requesting client
communication device, the agent communication device
checking if it has in the agent cache storage a response
received to an identical message sent by the client communi
cation device to the data server in the past, and if the agent
communication device does not know of any client commu
nication devices that have received a response to this message
in the past, the following steps being performed:

the agent communication device sending the requesting
client communication device message to the data server;

the data server sending the response message back to the
agent communication device;

the agent communication device storing the requesting
client communication device message and the data
server response message in the agent cache storage;

5

10

15

25

30

35

40

45

50

55

60

65

20
the agent communication device sending the data server

response back to the requesting client communication
device; and

the requesting client communication device storing the
request and the response in the client cache storage.

8. The method of claim 7, wherein when the agent com
munication device makes the request to the data server, the
agent communication device sends to the data serverall of the
parameters that it received from the requesting client com
munication device for this request from the requesting client
communication device.

9. The method of claim 1, wherein the list of one or more
peer communication devices includes only the peer commu
nication devices that are the most beneficial to the requesting
client communication device in terms of speed of receiving
information from the peer communication devices.

10. The method of claim 9, wherein the client communi
cation devices that are determined by the agent communica
tion device to be most beneficial are the client communication
devices that are closest to the requesting client communica
tion device.

11. The method of claim 9, wherein the client communi
cation devices that are determined by the agent communica
tion device to be most beneficial are the client communication
devices that have the best connection to the requesting net
work element.

12. The method of claim 1, wherein the method that the
agent communication device uses to test if there are other
client communication devices that received responses to the
same message is performed by the steps of:
when receiving and caching responses from the data server,

the agent communication device receiving and caching a
validity variable that indicates in which situations the
response is valid for the same type of request; and

the agent communication device checking the agent cache
storage by looking up message of the requesting client
communication device,
wherein, if such a message exists and a response is

cached, or information about client communication
devices that have received the response is cached,
then the agent communication device checks the
validity variable of the entry of the request in the agent
cache storage, and

wherein, if the entry does not exist or the data is no
longer valid, the agent communication device
assumes that it does not have a response stored for that
request.

13. The method of claim 12, where the request from the
requesting client communication device is an HTTP request
for a URL, the data server is a Web server, and the additional
data that the agent communication device sends to the Web
server are the parameters of the URL and cookies of the
requesting client communication device and the validity vari
able is the HTTP expiry time.

14. The method of claim 1, where the agent communication
device separates the reply it receives from the data server into
one or more Smaller chunks of data and stores those chunks in
the agent cache storage, where the data is stored as a list of
chunks that it comprises of, and for each chunka checksum of
that chunk is stored in conjunction with the chunk, as well as
a list of network elements that have been known to have
received this portion of data in the past.

15. The method of claim 1, wherein the data server per
forms the association between the agent communication
device and the data server by performing the steps of:

the acceleration server keeping track of all of the client
communication devices that are online; and

Exhibit 1104, Page 26 of 27

US 8,560,604 B2
21

the acceleration server choosing one or more client com
munication devices that can be used as the agent for
communicating with the data server, prioritized geo
graphically by a geographical location of the requesting
client, such that each of the client communication
devices in the list of client communication devices is a
higher priority for a certain geography from which
requests from the requesting client communication
device may be received.

16. The method of claim 1, wherein the requesting client
communication device chooses the most suitable agent com
munication device out of the list of client communication
devices received from the acceleration server by testing
which of the client communication devices is the quickest to
respond to queries from the requesting client communication
device.

17. The method of claim 1, wherein when the requesting
client communication device provides to the agent commu
nication device a request with additional parameters, the
agent communication device stores these additional param
eters in the agent cache storage in the entry of the data request,
and uses that information together with the request as a key
when looking up the data in future lookups.

18. The method of claim 1, wherein the client communi
cation device, agent communication device, and peer com
munication device are referred to as network elements, and
wherein each network element contains therein a client mod
ule, a peer module, and an agent module, thereby allowing
each network element to serve as any of a client communica
tion device, a peer communication device, and an agent com
munication device.

19. The method of claim 1, wherein requests are selected
from the group consisting of UDP, DNS, TCP, FTP, POPS,
SMTP, and SQL.

20. A method for use within a system for sending messages
between a requesting client communication device having a
client cache storage and a data server, via an agent commu
nication device having an agent cache storage, and utilizing
an acceleration server that maintains a list of client commu
nication devices in the system, the method comprising the
steps of:

the requesting client communication device sending an
identifier of the data server to the acceleration server;

the acceleration server associating one or more client com
munication devices with the data server and providing a

5

10

15

25

30

35

40

22
list of the one or more client communication devices to
the requesting client communication device;

the requesting client communication device choosing one
of the provided client communication devices to be used
as the agent communication device for communication
with the data server, and sending the agent communica
tion device a message intended for the data server;

the agent communication device determining if one or
more of the client communication devices have previ
ously received a response to the received message from
the data server,

wherein the agent communication device separates the
reply it receives from the data server into one or more
Smaller chunks of data and stores those chunks in the
agent cache storage, where the data is stored as a list of
chunks that it comprises of, and for each chunk a check
Sum of that chunk is stored in conjunction with the
chunk, as well as a list of network elements that have
been known to have received this portion of data in the
past; and

if there are one or more client communication devices that
have previously received a response to the received mes
Sage from the data server, performing the steps of:
the agent communication device sending to the request

ing client communication device a list of checksums
of the chunks that comprise the data server response
where for each such checksum, the agent communi
cation device sends identifiers of client communica
tion devices that have received such checksums from
the agent communication device in the past, wherein
these client communication devices that have
received such checksums from the agent communica
tion device in the past are referred to as peers;

the requesting client communication device retrieving
the response or portions thereof by requesting the
chunks in the list from one or more peers in the list
received from the agent communication device;

the requesting client communication device storing the
request and the response in the client cache storage;
and

the agent communication device storing the identifier of
the requesting client communication device in con
junction with the chunks that the requesting client
communication device received.

ck ck sk *k ck

Exhibit 1104, Page 27 of 27

