
(19) United States
US 2010O262650A1

(12) Patent Application Publication (10) Pub. No.: US 2010/0262650 A1
Chauhan et al. (43) Pub. Date: Oct. 14, 2010

(54) SYSTEMS AND METHODS FOR
CONNECTION MANAGEMENT FOR
ASYNCHRONOUS MESSAGING OVER HTTP

(76) Inventors: Abhishek Chauhan, Saratoga, CA
(US); Ravi Kodamuru, Sunnyvale,
CA (US); Josephine Suganthi,
Santa Clara, CA (US); Murali
Raja, San Jose, CA (US); Anil
Shetty, Union City, CA (US)

Correspondence Address:
CHOATE, HALL & STEWART / CITRIX SYS
TEMS, INC.
TWO INTERNATIONAL PLACE
BOSTON, MA 02110 (US)

Related U.S. Application Data
(60) Provisional application No. 61/103,697, filed on Oct.

8, 2008.
Publication Classification

(51) Int. Cl.
G06F 5/16 (2006.01)

(52) U.S. Cl. .. 709/203
(57) ABSTRACT

Described are methods and systems for managing the con
nections between a client, an intermediary appliance and a
server, so that asynchronous messages can be transmitted
over HTTP from the server to a client. When a connection is
established between a client and an intermediary, and the
intermediary and a server to establish a logical client-server
connection, that logical client-server connection is labeled
and not maintained, while the connection between the client
and the intermediary is maintained. Messages generated by
the server and destined for the client are transmitted to the (21) Appl. No.: 12/576,004 intermediary along with the connection label. The intermedi
ary can then use the connection label to determine which

(22) Filed: Oct. 8, 2009 client should receive the message.

38

Client 102a

Server 106a

Network : Network states

104 D 104. a 3 x3 .

Appliance
200

Cient 102 Server 106b

O
O
O

Ciet O2

a 3 wo

Server OS

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 1 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 1 of 21 Patent Application Publication

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 2 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 2 of 21 Patent Application Publication

2002 aoue?iddy

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 3 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 3 of 21 Patent Application Publication

QI "ADIAH

|-

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 4 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 4 of 21 Patent Application Publication

(II (9 IAI

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 5 of 59

Patent Application Publication Oct. 14, 2010 Sheet 5 of 21 US 2010/0262650 A1

100
- 128

C
OS

Software

122 Client 12

Main
Storage

150

123
Display

I/O device(s) Installation Network
CTRL Device Interface

126 127 Y-124a-n 116 118

Pointing Keyboard

FIG, IE

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 6 of 59

Patent Application Publication Oct. 14, 2010 Sheet 6 of 21 US 2010/0262650 A1

101

140
Main

Processor

I/O I/O Memory
Port Port Port

170

122

130b

I/O
Device

150

FIG. I.F

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 7 of 59

Patent Application Publication Oct. 14, 2010 Sheet 7 of 21 US 2010/0262650 A1

101
/

P2

P(N)

FIG. I.G

101
/1

CPU

- 101

GPU

FIG. IH

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 8 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 8 of 21 Patent Application Publication

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 9 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 9 of 21 Patent Application Publication

{{Z ADIAH
987 SNG 08° Nd/\ ISS

890), JæAuÐS

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 10 of 59

Patent Application Publication Oct. 14, 2010 Sheet 10 of 21 US 2010/0262650 A1

Client 102

1st Program
322

monitoring
agent/script 197

NetWork
Stack Streaming Client
310 306

Collection Agent
304

Structure 325 ACCeleration
Program 302

interceptor
350

Client Agent 120

FIG. 3

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 11 of 59

Patent Application Publication Oct. 14, 2010 Sheet 11 of 21 US 2010/0262650 A1

device 100

virtualized environment 400
VIRTUALIZATION LAYER

Virtual Machine 406a Virtual Machine 406b Virtua Machine 406C

Control
Operating Guest Guest
System Operating Operating
405 System System

Stack 404

HYPERVISOR LAYER

Hypervisor 401

HARDWARE LAYER

Physical Disk(s) 428 Physical CPU(S) 421

FIG. 4A

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 12 of 59

Patent Application Publication Oct. 14, 2010 Sheet 12 of 21 US 2010/0262650 A1

Computing Device 100a Computing Device 100b
Virtual Machine

406C
Virtual

Machine 406d
Virtual

Machine 406b
Virtual Machine

406a

Control OS
405b

Guest
Operating
System

Guest
Operating
System
410a

Control OS
405a

Management
Component

404a

Management
Component

- - - - - - - - - -

Virtual :
Resources ReSources

Hypervisor 432a442a: Hypervisor 432b,442b
401a 401 b

4.

Computing Device 100c
Virtual Machine

4O6f
Virtual Machine 450e

Guest Operating System 41

m m. m. m. m. m. m. - - - Control OS

Virtual Resources 432C, 442c 405C
m r - m mm -

Hypervisor 401

Management
component

404a

FIG. 4B

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 13 of 59

Patent Application Publication Oct. 14, 2010 Sheet 13 of 21 US 2010/0262650 A1

virtualized application delivery Controller 450

vServer A 275a VServer A 275a

VServer A 275n VServer A 275n

SSL VPN280 SSL VPN280

Intranet IP 282 Intranet P 282

Switching 284 Switching 284

DNS 28 DNS 286

Acceleration 288 Acceleration 288

App FW 290 App FW 290

monitoring agent
monitoring agent

so 197

Virtualized environment 400

Computing device 100

FIG. 4C

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 14 of 59

Patent Application Publication Oct. 14, 2010 Sheet 14 of 21 US 2010/0262650 A1

. Functional

SOC: Parallelism

"SiOA : 41
500

NW slot: TCP 515
: I/O : : SSL : : sor : : :

Core 1 Core 2 I Core 3 Core 4 Core 5 Core 6 Core 7 Core N

505A 505B 505C 505) 505E 505F 505G 505N

Data
. Parallclism 540

pm ;................ A-1
515 R VIP 1

275A ; VIP2 :
: 275B :

NIC1 NIC2

Core Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N

505A 505B 505C 505D 505E 505F 505G 505N

Flow-Based Data
Parallelism 520
A1

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core N

5OSA 505B 505C 505D 505E 505F 50SG 505N

FIG. 54

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 15 of 59

Patent Application Publication Oct. 14, 2010 Sheet 15 of 21 US 2010/0262650 A1

545

Memory Bus

RSS Module 56O' FOW Distributor

552

- - - -
59" 56O
FOW RSS Module

Distributor
t- - - - 1

FIG. 5B

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 16 of 59

US 2010/0262650 A1 Oct. 14, 2010 Sheet 16 of 21 Patent Application Publication

9/9

09. "ADIAH

Ç?JOO

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 17 of 59

9 (5) IAI

US 2010/0262650 A1 Oct. 14, 2010 Sheet 17 of 21 Patent Application Publication

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 18 of 59

Patent Application Publication Oct. 14, 2010 Sheet 18 of 21 US 2010/0262650 A1

Noraai Restorise
1 Wait for

a fif Seiwer
Requist :sposase

'S ; :

Keep Aiive s
a3it Timeca,

{{resp. Beir
3. Aesponse

Poiting g
Reqi,

33. it for

s

Keep Alive yessage
itseout Citik 8

33.

FIG. 7

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 19 of 59

Patent Application Publication Oct. 14, 2010 Sheet 19 of 21 US 2010/0262650 A1

800

intercept, by the intermediary, a Request from a Cient

Transfit the Request to a Server

Generate, by the Server, a Response to the Request

Determine, by the Server, to Defer the Response to the
Request

8to

label, by the Server, the Connection Between the Cient and
the Sever

82

FIG. 8A

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 20 of 59

Patent Application Publication Oct. 14, 2010 Sheet 20 of 21 US 2010/0262650 A1

85

Receive, by the intermediary, a Post Request from a Server

Forward the Message to the Client Associated with the handle

853

Respond to the Server indicating the Message was Sent

858

FIG. 8B

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 21 of 59

Patent Application Publication Oct. 14, 2010 Sheet 21 of 21 US 2010/0262650 A1

9.

Receive a Cient Request to Connect to a Server

92

Select 3 Server

904

Receive a Post Request from a Server

910

Determine Cient-Server Connection identified in Post Request

Transmit the Message to the Cient of the Ciert-Server
Correction (wer & Cier-Server Corfeiti

FIG. 9 914

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 22 of 59

US 2010/0262650 A1

SYSTEMS AND METHODS FOR
CONNECTION MANAGEMENT FOR

ASYNCHRONOUS MESSAGING OVER HTTP

RELATED APPLICATIONS

0001. This U.S. Patent Application claims priority to U.S.
Provisional Patent Application Ser. No. 61/103,697, filed on
Oct. 8, 2008, the disclosure of which is considered part of the
disclosure of this application and is herein incorporated by
reference in its entirety.

FIELD OF THE DISCLOSURE

0002 The present application generally relates to data
communication networks. In particular, the present applica
tion relates to systems and methods for using an intermediary
device to manage network connections for asynchronous
messaging.

BACKGROUND OF THE DISCLOSURE

0003 Web 2.0 applications are increasingly more preva
lent, as are Web 2.0 applications that can interface with asyn
chronous updates. These Web 2.0 applications can emulate
asynchronous notification over the HyperText Transfer Pro
tocol (HTTP), a synchronous request and response protocol,
can impose additional load on servers and. Since HTTP is a
synchronous request and response protocol, implementations
emulate asynchronous notification over HTTP. However,
these implementations have one or more drawbacks that
impose increased load on servers and challenges with Scal
ability for multiple users.
0004 One such implementation involves the client inter
mittently polling the server to discover if it has any data
queued for delivery to the client. This approach suffers from
several drawbacks. In particular this approach can waste net
work bandwidth by polling when no data is available; reduce
the responsiveness of the application since the data spends
time queued waiting until the server receives the next poll
(HTTP request) from the client, and increase the load on the
server multi-fold, since the server must validate and respond
to each poll request, sometimes referred to as “hammering the
server. Together, these drawbacks can result in an inevitable
trade-off between responsiveness and bandwidth since
increasing the polling frequency will decrease latency but
simultaneously increase bandwidth consumption and server
load (or vice versa if polling frequency is decreased).
0005. Another implementation involves techniques such
as long-polling and streaming-response (popularized as for
ever-frame.) These techniques enable servers to push notifi
cations to clients instead of the client polling for updates.
Updates from the server may be pushed using the long-poll
ing or streaming response technique. In long polling, clients
periodically poll for an update by issuing an HTTP request. If
no update is available, the server holds the connection open,
but does not respond. As soon as the client receives a response
from the server, or if the request times out, the client sends
another request. This ensures that the server is (almost)
always holding a request that the server can use to “push’ data
to the client. With the streaming response technique, a client
employing streaming opens a long-lived HTTP connection to
the server like with the long-polling technique. However the
server does not close the response when the server has no
further updates to send to the client. Instead when the
response is formed using the HTTP chunk-encoding mecha

Oct. 14, 2010

nism, the server can keep posting additional chunks as and
when new updates become available and while keeping the
connection open. With either approach, the server can achieve
low latency and low bandwidth. because an open connection
with the client is always available to the server.
0006. As the number of clients grows, the need for a server
to keep a connection open for each client becomes a challeng
ing requirement. These large numbers of connections termi
nating on the server require kernel resources and memory for
data structures like protocol control blocks, socket descrip
tors and socket buffers. Most operating systems are not
equipped to deal with a large number of open Sockets, and
keeping many connections open adversely affects both the
performance and scalability of the servers.

BRIEF SUMMARY OF THE DISCLOSURE

0007. The present solution reduces the number of idle
transport layer connections maintained by the server by off
loading the connection management to an intermediary. Such
as a Citrix NetScaler devices or software agent. The interme
diary may act as a full proxy while holding and parking
possibly millions long-lived client transport connections and
employing relatively fewer reusable connections to server.
This functionality enables the intermediary to use a handful
of server-side connections across millions of persistent client
connections, while multiplexing and managing the exchange
of data (server push) reliably, securely, and in a scalable
a.

0008. In one aspect, described herein are embodiments of
systems and methods for pushing an asynchronous update
from a server to a client via an appliance that manages con
nections between the client and the server. A virtual server of
an appliance receives from a first server of a plurality of
servers, a first label that references a first connection which is
established by the virtual server to the first server for a first
client of a plurality of clients. The virtual server maintains, a
second connection between the first client and the appliance
in association with the first connection for the first client to the
first server. A push virtual server executing on the appliance
receives, via a third connection, a request to push an asyn
chronous message of the first server to the first client, the
request identifies the first label. Responsive to receiving the
request, the appliance identifies that the first label corre
sponds to the second connection the appliance has with the
first client. The appliance transmits to the first client over the
second connection the asynchronous message received by the
appliance via the third connection.
0009. In one embodiment the virtual server establishes the
first label between the appliance and first server using a con
nection labeling protocol.
0010. In another embodiment, the appliance transmits to
the first server a request from the first client, the request
having a first header comprising a handle inserted by the
appliance. The appliance receives from the first server a
response to the request, the response having a second header
comprising the handle. Responsive to the response, the appli
ance establishes the handle as the first label for the first client.

0011. The appliance, in some embodiments, inserts into
the header of the request the handle encoded with a connec
tion tuple of the second connection. In another embodiment,
the appliance inserts into the header of the request the handle
comprising a listening end point of the push virtual service of
the appliance.

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 23 of 59

US 2010/0262650 A1

0012. In some embodiments, the appliance receives from
the first server the request to push the asynchronous message
to the first client, where the request identifies the handle and
comprises the message.
0013 The push virtual server, in some embodiments,
transmits to the first client the asynchronous message as a
single Hypertext Transfer protocol (HTTP) chunk.
0014. Other embodiments include receiving the push
request via the third connection from a notification server
connected to the appliance.
0015 The appliance, in some embodiments, transmits an
acknowledgement response to the notification server respon
sive to transmitting the asynchronous message to the first
client. In other embodiments, the appliance receives from the
notification server the asynchronous message comprising an
identification that the asynchronous message is a last mes
Sage.
0016. In one embodiment, the push virtual server receives
the request to push the asynchronous message of the first
server to the first client out of band from the first connection
and the second connection.
0017. In another aspect, described herein is a system for
pushing an asynchronous update from a server to a client via
an appliance managing connections between the client and
the server. A virtual server of an appliance receiving from a
first server of a plurality of servers, a first label referencing a
first connection established by the virtual server to the first
server for a first client of a plurality of clients and maintaining
a second connection between the first client and the appliance
in association with the first connection for the first client to the
first server. Also included is a push virtual server executing on
the appliance receiving via a third connection a request to
push an asynchronous message of the first server to the first
client, the request identifying the first label. Responsive to
receiving the request, the appliance identifies that the first
label corresponds to the second connection the appliance has
with the first client and transmits to the first client over the
second connection the asynchronous message received by the
appliance via the third connection.

BRIEF DESCRIPTION OF THE FIGURES

0018. The foregoing and other objects, aspects, features,
and advantages of the methods and systems described herein
will become more apparent and better understood by refer
ring to the following description taken in conjunction with the
accompanying drawings, in which:
0019 FIG. 1A is a block diagram of an embodiment of a
network environment for a client to access a server via an
appliance;
0020 FIG. 1B is a block diagram of an embodiment of an
environment for delivering a computing environment from a
server to a client via an appliance;
0021 FIG. 1C is a block diagram of another embodiment
of an environment for delivering a computing environment
from a server to a client via an appliance;
0022 FIG. 1D is a block diagram of another embodiment
of an environment for delivering a computing environment
from a server to a client via an appliance;
0023 FIGS. 1E-1Hare block diagrams of embodiments of
a computing device;
0024 FIG. 2A is a block diagram of an embodiment of an
appliance for processing communications between a client
and a server,

Oct. 14, 2010

0025 FIG. 2B is a block diagram of another embodiment
of an appliance for optimizing, accelerating, load-balancing
and routing communications between a client and a server,
0026 FIG. 3 is a block diagram of an embodiment of a
client for communicating with a server via the appliance;
0027 FIG. 4A is a block diagram of an embodiment of a
virtualization environment;
0028 FIG. 4B is a block diagram of another embodiment
of a virtualization environment;
0029 FIG. 4C is a block diagram of an embodiment of a
virtualized appliance;
0030 FIG. 5A are block diagrams of embodiments of
approaches to implementing parallelism in a multi-core sys
tem;
0031 FIG. 5B is a block diagram of an embodiment of a
system utilizing a multi-core system;
0032 FIG. 5C is a block diagram of another embodiment
of an aspect of a multi-core system;
0033 FIG. 6 is a block diagram of an embodiment of a
System for managing connections:
0034 FIG. 7 is a state diagram used by a system to manage
connections;
0035 FIG. 8A is a flow diagram of an embodiment of a
connection labeling protocol;
0036 FIG. 8B is a flow diagram of an embodiment of a
messaging protocol; and
0037 FIG. 9 is a flow diagram of an embodiment of a
method for managing connections for asynchronous messag
ing.
0038. The features and advantages of the methods and
systems described herein will become more apparent from
the detailed description set forth below when taken in con
junction with the drawings, in which like reference characters
identify corresponding elements throughout. In the drawings,
like reference numbers generally indicate identical, function
ally similar, and/or structurally similar elements.

DETAILED DESCRIPTION OF THE
DISCLOSURE

0039 For purposes of reading the description of the vari
ous embodiments below, the following descriptions of the
sections of the specification and their respective contents may
be helpful:

0040 Section. A describes a network environment and
computing environment which may be useful for prac
ticing embodiments described herein;

0041. Section B describes embodiments of systems and
methods for delivering a computing environment to a
remote user,

0.042 Section C describes embodiments of systems and
methods for accelerating communications between a
client and a server,

0043. Section D describes embodiments of systems and
methods for virtualizing an application delivery control
ler;

0044 Section E describes embodiments of systems and
methods for providing a multi-core architecture and
environment; and

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 24 of 59

US 2010/0262650 A1

0045 Section F describes embodiments of systems and
methods for connection management for asynchronous
messaging.

A. Network and Computing Environment
0046 Prior to discussing the specifics of embodiments of
the systems and methods of an appliance and/or client, it may
be helpful to discuss the network and computing environ
ments in which such embodiments may be deployed. Refer
ring now to FIG. 1A, an embodiment of a network environ
ment is depicted. In brief overview, the network environment
comprises one or more clients 102a-102n (also generally
referred to as local machine(s) 102, or client(s) 102) in com
munication with one or more servers 106a-106n (also gener
ally referred to as server(s) 106, or remote machine(s) 106)
via one or more networks 104, 104 (generally referred to as
network 104). In some embodiments, a client 102 communi
cates with a server 106 via an appliance 200.
0047 Although FIG. 1A shows a network 104 and a net
work 104" between the clients 102 and the servers 106, the
clients 102 and the servers 106 may be on the same network
104. The networks 104 and 104" can be the same type of
network or different types of networks. The network 104
and/or the network 104' can be a local-area network (LAN),
Such as a company Intranet, a metropolitan area network
(MAN), or a wide area network (WAN), such as the Internet
or the World Wide Web. In one embodiment, network 104
may be a private network and network 104 may be a public
network. In some embodiments, network 104 may be a pri
vate network and network 104 a public network. In another
embodiment, networks 104 and 104" may both be private
networks. In some embodiments, clients 102 may be located
at a branch office of a corporate enterprise communicating via
a WAN connection over the network 104 to the servers 106
located at a corporate data center.
0048. The network 104 and/or 104' be any type and/or
form of network and may include any of the following: a point
to point network, a broadcast network, a wide area network, a
local area network, a telecommunications network, a data
communication network, a computer network, an ATM
(Asynchronous Transfer Mode) network, a SONET (Syn
chronous Optical Network) network, a SDH (Synchronous
Digital Hierarchy) network, a wireless network and a wireline
network. In some embodiments, the network 104 may com
prise a wireless link, such as an infrared channel or satellite
band. The topology of the network 104 and/or 104" may be a
bus, star, or ring network topology. The network 104 and/or
104 and network topology may be of any such network or
network topology as known to those ordinarily skilled in the
art capable of Supporting the operations described herein.
0049. As shown in FIG. 1A, the appliance 200, which also
may be referred to as an interface unit 200 or gateway 200, is
shown between the networks 104 and 104". In some embodi
ments, the appliance 200 may be located on network 104. For
example, a branch office of a corporate enterprise may deploy
an appliance 200 at the branch office. In other embodiments,
the appliance 200 may be located on network 104". For
example, an appliance 200 may be located at a corporate data
center. In yet another embodiment, a plurality of appliances
200 may be deployed on network 104. In some embodiments,
a plurality of appliances 200 may be deployed on network
104. In one embodiment, a first appliance 200 communicates
with a second appliance 200'. In other embodiments, the
appliance 200 could be a part of any client 102 or server 106

Oct. 14, 2010

on the same or different network 104,104" as the client 102.
One or more appliances 200 may be located at any point in the
network or network communications path between a client
102 and a server 106.
0050. In some embodiments, the appliance 200 comprises
any of the network devices manufactured by Citrix Systems,
Inc. of Ft. Lauderdale Fla., referred to as Citrix NetScaler
devices. In other embodiments, the appliance 200 includes
any of the product embodiments referred to as WebAccelera
tor and Big IP manufactured by F5 Networks, Inc. of Seattle,
Wash. In another embodiment, the appliance 205 includes
any of the DX acceleration device platforms and/or the SSL
VPN series of devices, such as SA 700, SA 2000, SA 4000,
and SA 6000 devices manufactured by Juniper Networks, Inc.
of Sunnyvale, Calif. In yet another embodiment, the appli
ance 200 includes any application acceleration and/or secu
rity related appliances and/or software manufactured by
Cisco Systems, Inc. of San Jose, Calif., such as the Cisco ACE
Application Control Engine Module service software and
network modules, and Cisco AVS Series Application Velocity
System.
0051. In one embodiment, the system may include mul

tiple, logically-grouped servers 106. In these embodiments,
the logical group of servers may be referred to as a server farm
38. In some of these embodiments, the serves 106 may be
geographically dispersed. In some cases, a farm 38 may be
administered as a single entity. In other embodiments, the
server farm 38 comprises a plurality of server farms 38. In one
embodiment, the server farm executes one or more applica
tions on behalf of one or more clients 102.
0052. The servers 106 within each farm 38 can be hetero
geneous. One or more of the servers 106 can operate accord
ing to one type of operating system platform (e.g., WIN
DOWS NT, manufactured by Microsoft Corp. of Redmond,
Wash.), while one or more of the other servers 106 can operate
on according to another type of operating system platform
(e.g., Unix or Linux). The servers 106 of each farm 38 do not
need to be physically proximate to another server 106 in the
same farm 38. Thus, the group of servers 106 logically
grouped as a farm 38 may be interconnected using a wide
area network (WAN) connection or medium-area network
(MAN) connection. For example, a farm 38 may include
servers 106 physically located in different continents or dif
ferent regions of a continent, country, state, city, campus, or
room. Data transmission speeds between servers 106 in the
farm 38 can be increased if the servers 106 are connected
using a local-area network (LAN) connection or some form of
direct connection.

0053 Servers 106 may be referred to as a file server, appli
cation server, web server, proxy server, or gateway server. In
some embodiments, a server 106 may have the capacity to
function as either an application server or as a master appli
cation server. In one embodiment, a server 106 may include
an Active Directory. The clients 102 may also be referred to as
client nodes or endpoints. In some embodiments, a client 102
has the capacity to function as both a client node seeking
access to applications on a server and as an application server
providing access to hosted applications for other clients
102a-102n.

0054. In some embodiments, a client 102 communicates
with a server 106. In one embodiment, the client 102 com
municates directly with one of the servers 106 in a farm 38. In
another embodiment, the client 102 executes a program
neighborhood application to communicate with a server 106

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 25 of 59

US 2010/0262650 A1

in a farm 38. In still another embodiment, the server 106
provides the functionality of a master node. In some embodi
ments, the client 102 communicates with the server 106 in the
farm 38 through a network 104. Over the network 104, the
client 102 can, for example, request execution of various
applications hosted by the servers 106a-106n in the farm 38
and receive output of the results of the application execution
for display. In some embodiments, only the master node
provides the functionality required to identify and provide
address information associated with a server 106" hosting a
requested application.
0055. In one embodiment, the server 106 provides func

tionality of a web server. In another embodiment, the server
106a receives requests from the client 102, forwards the
requests to a second server 106b and responds to the request
by the client 102 with a response to the request from the server
106b. In still another embodiment, the server 106 acquires an
enumeration of applications available to the client 102 and
address information associated with a server 106 hosting an
application identified by the enumeration of applications. In
yet another embodiment, the server 106 presents the response
to the request to the client 102 using a web interface. In one
embodiment, the client 102 communicates directly with the
server 106 to access the identified application. In another
embodiment, the client 102 receives application output data,
Such as display data, generated by an execution of the iden
tified application on the server 106.
0056 Referring now to FIG. 1B, an embodiment of a
network environment deploying multiple appliances 200 is
depicted. A first appliance 200 may be deployed on a first
network 104 and a second appliance 200' on a second network
104. For example a corporate enterprise may deploy a first
appliance 200 at a branch office and a second appliance 200
at a data center. In another embodiment, the first appliance
200 and second appliance 200" are deployed on the same
network 104 or network 104. For example, a first appliance
200 may be deployed for a first server farm 38, and a second
appliance 200 may be deployed for a second server farm 38'.
In another example, a first appliance 200 may be deployed at
a first branch office while the second appliance 200' is
deployed at a second branch office. In some embodiments,
the first appliance 200 and second appliance 200' work in
cooperation or in conjunction with each other to accelerate
network traffic or the delivery of application and data between
a client and a server

0057 Referring now to FIG. 1C, another embodiment of a
network environment deploying the appliance 200 with one
or more other types of appliances, such as between one or
more WAN optimization appliance 205, 205"is depicted. For
example a first WAN optimization appliance 205 is shown
between networks 104 and 104" and s second WAN optimi
zation appliance 205" may be deployed between the appliance
200 and one or more servers 106. By way of example, a
corporate enterprise may deploy a first WAN optimization
appliance 205 at a branch office and a second WAN optimi
Zation appliance 205" at a data center. In some embodiments,
the appliance 205 may be located on network 104". In other
embodiments, the appliance 205" may be located on network
104. In some embodiments, the appliance 205 may be located
on network 104" or network 104". In one embodiment, the
appliance 205 and 205" are on the same network. In another
embodiment, the appliance 205 and 205" are on different
networks. In another example, a first WAN optimization

Oct. 14, 2010

appliance 205 may be deployed for a first server farm 38 and
a second WAN optimization appliance 205" for a second
server farm 38'

0058. In one embodiment, the appliance 205 is a device for
accelerating, optimizing or otherwise improving the perfor
mance, operation, or quality of service of any type and form
of network traffic, such as traffic to and/or from a WAN
connection. In some embodiments, the appliance 205 is a
performance enhancing proxy. In other embodiments, the
appliance 205 is any type and form of WAN optimization or
acceleration device, sometimes also referred to as a WAN
optimization controller. In one embodiment, the appliance
205 is any of the product embodiments referred to as WAN
Scaler manufactured by Citrix Systems, Inc. of Ft. Lauder
dale, Fla. In other embodiments, the appliance 205 includes
any of the product embodiments referred to as BIG-IP link
controller and WANjet manufactured by F5 Networks, Inc. of
Seattle, Wash. In another embodiment, the appliance 205
includes any of the WX and WXC WAN acceleration device
platforms manufactured by Juniper Networks, Inc. of Sunny
vale, Calif. In some embodiments, the appliance 205 includes
any of the steelhead line of WAN optimization appliances
manufactured by Riverbed Technology of San Francisco,
Calif. In other embodiments, the appliance 205 includes any
of the WAN related devices manufactured by Expand Net
works Inc. of Roseland, N.J. In one embodiment, the appli
ance 205 includes any of the WAN related appliances manu
factured by Packeteer Inc. of Cupertino, Calif., such as the
PacketShaper, iShared, and SkyX product embodiments pro
vided by Packeteer. In yet another embodiment, the appliance
205 includes any WAN related appliances and/or software
manufactured by Cisco Systems, Inc. of San Jose, Calif., such
as the Cisco Wide Area Network Application Services soft
ware and network modules, and Wide Area Network engine
appliances.
0059. In one embodiment, the appliance 205 provides
application and data acceleration services for branch-office or
remote offices. In one embodiment, the appliance 205
includes optimization of Wide Area File Services (WAFS). In
another embodiment, the appliance 205 accelerates the deliv
ery of files, such as via the Common Internet File System
(CIFS) protocol. In other embodiments, the appliance 205
provides caching in memory and/or storage to accelerate
delivery of applications and data. In one embodiment, the
appliance 205 provides compression of network traffic at any
level of the network stack or at any protocol or network layer.
In another embodiment, the appliance 205 provides transport
layer protocol optimizations, flow control, performance
enhancements or modifications and/or management to accel
erate delivery of applications and data over a WAN connec
tion. For example, in one embodiment, the appliance 205
provides Transport Control Protocol (TCP) optimizations. In
other embodiments, the appliance 205 provides optimiza
tions, flow control, performance enhancements or modifica
tions and/or management for any session or application layer
protocol.
0060. In another embodiment, the appliance 205 encoded
any type and form of data or information into custom or
standard TCP and/or IP header fields or option fields of net
workpacket to announce presence, functionality or capability
to another appliance 205'. In another embodiment, an appli
ance 205" may communicate with another appliance 205
using data encoded in both TCP and/or IP header fields or
options. For example, the appliance may use TCP option(s) or

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 26 of 59

US 2010/0262650 A1

IP header fields or options to communicate one or more
parameters to be used by the appliances 205, 205" in perform
ing functionality, such as WAN acceleration, or for working
in conjunction with each other.
0061. In some embodiments, the appliance 200 preserves
any of the information encoded in TCP and/or IP header
and/or option fields communicated between appliances 205
and 205'. For example, the appliance 200 may terminate a
transport layer connection traversing the appliance 200. Such
as a transport layer connection from between a client and a
server traversing appliances 205 and 205'. In one embodi
ment, the appliance 200 identifies and preserves any encoded
information in a transport layer packet transmitted by a first
appliance 205 via a first transport layer connection and com
municates a transport layer packet with the encoded informa
tion to a second appliance 205 via a second transport layer
connection.

0062 Referring now to FIG. 1D, a network environment
for delivering and/or operating a computing environment on a
client 102 is depicted. In some embodiments, a server 106
includes an application delivery system 190 for delivering a
computing environment or an application and/or data file to
one or more clients 102. In brief overview, a client 10 is in
communication with a server 106 via network 104, 104' and
appliance 200. For example, the client 102 may reside in a
remote office of a company, e.g., a branch office, and the
server 106 may reside at a corporate data center. The client
102 comprises a client agent 120, and a computing environ
ment 15. The computing environment 15 may execute or
operate an application that accesses, processes or uses a data
file. The computing environment 15, application and/or data
file may be delivered via the appliance 200 and/or the server
106.

0063. In some embodiments, the appliance 200 acceler
ates delivery of a computing environment 15, or any portion
thereof, to a client 102. In one embodiment, the appliance 200
accelerates the delivery of the computing environment 15 by
the application delivery system 190. For example, the
embodiments described herein may be used to accelerate
delivery of a streaming application and data file processable
by the application from a central corporate data center to a
remote user location, such as a branch office of the company.
In another embodiment, the appliance 200 accelerates trans
port layer traffic between a client 102 and a server 106. The
appliance 200 may provide acceleration techniques for accel
erating any transport layer payload from a server 106 to a
client 102. Such as: 1) transport layer connection pooling, 2)
transport layer connection multiplexing, 3) transport control
protocol buffering, 4) compression and 5) caching. In some
embodiments, the appliance 200 provides load balancing of
servers 106 in responding to requests from clients 102. In
other embodiments, the appliance 200 acts as a proxy or
access server to provide access to the one or more servers 106.
In another embodiment, the appliance 200 provides a secure
virtual private network connection from a first network 104 of
the client 102 to the second network 104" of the server 106,
such as an SSL VPN connection. It yet other embodiments,
the appliance 200 provides application firewall security, con
trol and management of the connection and communications
between a client 102 and a server 106.

0064. In some embodiments, the application delivery
management system 190 provides application delivery tech
niques to deliver a computing environment to a desktop of a
user, remote or otherwise, based on a plurality of execution

Oct. 14, 2010

methods and based on any authentication and authorization
policies applied via a policy engine 195. With these tech
niques, a remote user may obtain a computing environment
and access to server stored applications and data files from
any network connected device 100. In one embodiment, the
application delivery system 190 may reside or execute on a
server 106. In another embodiment, the application delivery
system 190 may reside or execute on a plurality of servers
106a-106m. In some embodiments, the application delivery
system 190 may execute in a server farm 38. In one embodi
ment, the server 106 executing the application delivery sys
tem 190 may also store or provide the application and data
file. In another embodiment, a first set of one or more servers
106 may execute the application delivery system 190, and a
different server 106.n may store or provide the application and
data file. In some embodiments, each of the application deliv
ery system 190, the application, and data file may reside or be
located on different servers. In yet another embodiment, any
portion of the application delivery system 190 may reside,
execute or be stored on or distributed to the appliance 200, or
a plurality of appliances.
0065. The client 102 may include a computing environ
ment 15 for executing an application that uses or processes a
data file. The client 102 via networks 104,104 and appliance
200 may request an application and data file from the server
106. In one embodiment, the appliance 200 may forward a
request from the client 102 to the server 106. For example, the
client 102 may not have the application and data file stored or
accessible locally. In response to the request, the application
delivery system 190 and/or server 106 may deliver the appli
cation and data file to the client 102. For example, in one
embodiment, the server 106 may transmit the application as
an application stream to operate in computing environment
15 on client 102.
0066. In some embodiments, the application delivery sys
tem 190 comprises any portion of the Citrix Access SuiteTM
by Citrix Systems, Inc., such as the MetaFrame or Citrix
Presentation ServerTM and/or any of the Microsoft(R) Win
dows Terminal Services manufactured by the Microsoft Cor
poration. In one embodiment, the application delivery system
190 may deliver one or more applications to clients 102 or
users via a remote-display protocol or otherwise via remote
based or server-based computing. In another embodiment,
the application delivery system 190 may deliver one or more
applications to clients or users via steaming of the applica
tion.
0067. In one embodiment, the application delivery system
190 includes a policy engine 195 for controlling and manag
ing the access to, selection of application execution methods
and the delivery of applications. In some embodiments, the
policy engine 195 determines the one or more applications a
user or client 102 may access. In another embodiment, the
policy engine 195 determines how the application should be
delivered to the user or client 102, e.g., the method of execu
tion. In some embodiments, the application delivery system
190 provides a plurality of delivery techniques from which to
select a method of application execution, such as a server
based computing, streaming or delivering the application
locally to the client 120 for local execution.
0068. In one embodiment, a client 102 requests execution
ofan application program and the application delivery system
190 comprising a server 106 selects a method of executing the
application program. In some embodiments, the server 106
receives credentials from the client 102. In another embodi

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 27 of 59

US 2010/0262650 A1

ment, the server 106 receives a request for an enumeration of
available applications from the client 102. In one embodi
ment, in response to the request or receipt of credentials, the
application delivery system 190 enumerates a plurality of
application programs available to the client 102. The appli
cation delivery system 190 receives a request to execute an
enumerated application. The application delivery system 190
selects one of a predetermined number of methods for execut
ing the enumerated application, for example, responsive to a
policy of a policy engine. The application delivery system
190 may select a method of execution of the application
enabling the client 102 to receive application-output data
generated by execution of the application program on a server
106. The application delivery system 190 may select a
method of execution of the application enabling the local
machine 10 to execute the application program locally after
retrieving a plurality of application files comprising the appli
cation. In yet another embodiment, the application delivery
system 190 may select a method of execution of the applica
tion to stream the application via the network 104 to the client
102.

0069. A client 102 may execute, operate or otherwise pro
vide an application, which can be any type and/or form of
Software, program, or executable instructions such as any
type and/or form of web browser, web-based client, client
server application, a thin-client computing client, an ActiveX
control, or a Java applet, or any other type and/or form of
executable instructions capable of executing on client 102. In
some embodiments, the application may be a server-based or
a remote-based application executed on behalf of the client
102 on a server 106. In one embodiments the server 106 may
display output to the client 102 using any thin-client or
remote-display protocol. Such as the Independent Computing
Architecture (ICA) protocol manufactured by Citrix Sys
tems, Inc. of Ft. Lauderdale, Fla. or the Remote Desktop
Protocol (RDP) manufactured by the Microsoft Corporation
of Redmond, Wash. The application can use any type of
protocol and it can be, for example, an HTTP client, an FTP
client, an Oscar client, or a Telnet client. In other embodi
ments, the application comprises any type of software related
to VoIP communications, such as a soft IP telephone. In
further embodiments, the application comprises any applica
tion related to real-time data communications, such as appli
cations for streaming video and/or audio.
0070. In some embodiments, the server 106 or a server
farm 38 may be running one or more applications, such as an
application providing a thin-client computing or remote dis
play presentation application. In one embodiment, the server
106 or server farm 38 executes as an application, any portion
of the Citrix Access SuiteTM by Citrix Systems, Inc., such as
the MetaFrame or Citrix Presentation Server TM, and/or any of
the Microsoft(R) Windows Terminal Services manufactured
by the Microsoft Corporation. In one embodiment, the appli
cation is an ICA client, developed by Citrix Systems, Inc. of
Fort Lauderdale, Fla. In other embodiments, the application
includes a Remote Desktop (RDP) client, developed by
Microsoft Corporation of Redmond, Wash. Also, the server
106 may run an application, which for example, may be an
application server providing email services such as Microsoft
Exchange manufactured by the Microsoft Corporation of
Redmond, Wash., a web or Internet server, or a desktop shar
ing server, or a collaboration server. In some embodiments,
any of the applications may comprise any type of hosted
service or products, such as GoToMeetingTM provided by

Oct. 14, 2010

Citrix Online Division, Inc. of Santa Barbara, California,
WebExTM provided by WebEx, Inc. of Santa Clara, Calif., or
Microsoft Office Live Meeting provided by Microsoft Cor
poration of Redmond, Wash.
(0071. Still referring to FIG. 1D, an embodiment of the
network environment may include a monitoring server 106A.
The monitoring server 106A may include any type and form
performance monitoring service 198. The performance moni
toring service 198 may include monitoring, measurement
and/or management Software and/or hardware, including data
collection, aggregation, analysis, management and reporting.
In one embodiment, the performance monitoring service 198
includes one or more monitoring agents 197. The monitoring
agent 197 includes any software, hardware or combination
thereof for performing monitoring, measurement and data
collection activities on a device, such as a client 102, server
106 or an appliance 200, 205. In some embodiments, the
monitoring agent 197 includes any type and form of Script,
Such as Visual Basic script, or JavaScript. In one embodiment,
the monitoring agent 197 executes transparently to any appli
cation and/or user of the device. In some embodiments, the
monitoring agent 197 is installed and operated unobtrusively
to the application or client. In yet another embodiment, the
monitoring agent 197 is installed and operated without any
instrumentation for the application or device.
0072. In some embodiments, the monitoring agent 197
monitors, measures and collects data on a predetermined
frequency. In other embodiments, the monitoring agent 197
monitors, measures and collects databased upon detection of
any type and form of event. For example, the monitoring
agent 197 may collect data upon detection of a request for a
web page or receipt of an HTTP response. In another
example, the monitoring agent 197 may collect data upon
detection of any user input events, such as a mouse click. The
monitoring agent 197 may report or provide any monitored,
measured or collected data to the monitoring service 198. In
one embodiment, the monitoring agent 197 transmits infor
mation to the monitoring service 198 according to a schedule
or a predetermined frequency. In another embodiment, the
monitoring agent 197 transmits information to the monitoring
service 198 upon detection of an event.
0073. In some embodiments, the monitoring service 198
and/or monitoring agent 197 performs monitoring and per
formance measurement of any network resource or network
infrastructure element, such as a client, server, server farm,
appliance 200, appliance 205, or network connection. In one
embodiment, the monitoring service 198 and/or monitoring
agent 197 performs monitoring and performance measure
ment of any transport layer connection, such as a TCP or UDP
connection. In another embodiment, the monitoring service
198 and/or monitoring agent 197 monitors and measures
network latency. In yet one embodiment, the monitoring Ser
vice 198 and/or monitoring agent 197 monitors and measures
bandwidth utilization.

0074. In other embodiments, the monitoring service 198
and/or monitoring agent 197 monitors and measures end-user
response times. In some embodiments, the monitoring Ser
Vice 198 performs monitoring and performance measurement
of an application. In another embodiment, the monitoring
service 198 and/or monitoring agent 197 performs monitor
ing and performance measurement of any session or connec
tion to the application. In one embodiment, the monitoring
service 198 and/or monitoring agent 197 monitors and mea
sures performance of a browser. In another embodiment, the

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 28 of 59

US 2010/0262650 A1

monitoring service 198 and/or monitoring agent 197 moni
tors and measures performance of HTTP based transactions.
In some embodiments, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
a Voice over IP (VoIP) application or session. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a remote
display protocol application, such as an ICA client or RDP
client. In yet another embodiment, the monitoring service 198
and/or monitoring agent 197 monitors and measures perfor
mance of any type and form of streaming media. In still a
further embodiment, the monitoring service 198 and/or moni
toring agent 197 monitors and measures performance of a
hosted application or a Software-As-A-Service (SaaS) deliv
ery model.
0075. In some embodiments, the monitoring service 198
and/or monitoring agent 197 performs monitoring and per
formance measurement of one or more transactions, requests
or responses related to application. In other embodiments, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures any portion of an application layer stack,
such as any .NET or J2EE calls. In one embodiment, the
monitoring service 198 and/or monitoring agent 197 moni
tors and measures database or SQL transactions. In yet
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures any method,
function or application programming interface (API) call.
0076. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 performs monitoring and perfor
mance measurement of a delivery of application and/or data
from a server to a client via one or more appliances, such as
appliance 200 and/or appliance 205. In some embodiments,
the monitoring service 198 and/or monitoring agent 197
monitors and measures performance of delivery of a virtual
ized application. In other embodiments, the monitoring Ser
vice 198 and/or monitoring agent 197 monitors and measures
performance of delivery of a streaming application. In
another embodiment, the monitoring service 198 and/or
monitoring agent 197 monitors and measures performance of
delivery of a desktop application to a client and/or the execu
tion of the desktop application on the client. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 monitors and measures performance of a client/
server application.
0077. In one embodiment, the monitoring service 198 and/
or monitoring agent 197 is designed and constructed to pro
vide application performance management for the applica
tion delivery system 190. For example, the monitoring
service 198 and/or monitoring agent 197 may monitor, mea
Sure and manage the performance of the delivery of applica
tions via the Citrix Presentation Server. In this example, the
monitoring service 198 and/or monitoring agent 197 moni
tors individual ICA sessions. The monitoring service 198
and/or monitoring agent 197 may measure the total and per
session system resource usage, as well as application and
networking performance. The monitoring service 198 and/or
monitoring agent 197 may identify the active servers for a
given user and/or user session. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 moni
tors back-end connections between the application delivery
system 190 and an application and/or database server. The
monitoring service 198 and/or monitoring agent 197 may
measure network latency, delay and Volume per user-session
or ICA session.

Oct. 14, 2010

0078. In some embodiments, the monitoring service 198
and/or monitoring agent 197 measures and monitors memory
usage for the application delivery system 190, such as total
memory usage, per user session and/or per process. In other
embodiments, the monitoring service 198 and/or monitoring
agent 197 measures and monitors CPU usage the application
delivery system 190, such as total CPU usage, per user ses
sion and/or per process. In another embodiments, the moni
toring service 198 and/or monitoring agent 197 measures and
monitors the time required to log-in to an application, a
server, or the application delivery system, such as Citrix Pre
sentation Server. In one embodiment, the monitoring service
198 and/or monitoring agent 197 measures and monitors the
duration a user is logged into an application, a server, or the
application delivery system 190. In some embodiments, the
monitoring service 198 and/or monitoring agent 197 mea
Sures and monitors active and inactive session counts for an
application, server or application delivery system session. In
yet another embodiment, the monitoring service 198 and/or
monitoring agent 197 measures and monitors user session
latency.
0079. In yet further embodiments, the monitoring service
198 and/or monitoring agent 197 measures and monitors
measures and monitors any type and form of server metrics.
In one embodiment, the monitoring service 198 and/or moni
toring agent 197 measures and monitors metrics related to
system memory, CPU usage, and disk storage. In another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to page
faults, such as page faults per second. In other embodiments,
the monitoring service 198 and/or monitoring agent 197 mea
Sures and monitors round-trip time metrics. In yet another
embodiment, the monitoring service 198 and/or monitoring
agent 197 measures and monitors metrics related to applica
tion crashes, errors and/or hangs.
0080. In some embodiments, the monitoring service 198
and monitoring agent 198 includes any of the product
embodiments referred to as EdgeSight manufactured by Cit
rix Systems, Inc. of Ft. Lauderdale, Fla. In another embodi
ment, the performance monitoring service 198 and/or moni
toring agent 198 includes any portion of the product
embodiments referred to as the TrueView product suite manu
factured by the Symphoniq Corporation of Palo Alto, Calif. In
one embodiment, the performance monitoring service 198
and/or monitoring agent 198 includes any portion of the prod
uct embodiments referred to as the TeaLeaf CX product suite
manufactured by the Tea leaf Technology Inc. of San Fran
cisco, Calif. In other embodiments, the performance moni
toring service 198 and/or monitoring agent 198 includes any
portion of the business service management products, such as
the BMC Performance Manager and Patrol products, manu
factured by BMC Software, Inc. of Houston, Tex.
I0081. The client 102, server 106, and appliance 200 may
be deployed as and/or executed on any type and form of
computing device. Such as a computer, network device or
appliance capable of communicating on any type and form of
network and performing the operations described herein.
FIGS. 1E and 1F depict block diagrams of a computing device
100 useful for practicing an embodiment of the client 102.
server 106 or appliance 200. As shown in FIGS. 1E and 1F,
each computing device 100 includes a central processing unit
101, and a main memory unit 122. As shown in FIG. 1E, a
computing device 100 may include a visual display device
124, a keyboard 126 and/or a pointing device 127, such as a

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 29 of 59

US 2010/0262650 A1

mouse. Each computing device 100 may also include addi
tional optional elements, such as one or more input/output
devices 130a-130b (generally referred to using reference
numeral 130), and a cache memory 140 in communication
with the central processing unit 101.
0082. The central processing unit 101 is any logic circuitry
that responds to and processes instructions fetched from the
main memory unit 122. In many embodiments, the central
processing unit is provided by a microprocessor unit, such as:
those manufactured by Intel Corporation of Mountain View,
Calif.; those manufactured by Motorola Corporation of
Schaumburg, Ill., those manufactured by Transmeta Corpo
ration of Santa Clara, Calif.; the RS/6000 processor, those
manufactured by International Business Machines of White
Plains, N.Y.; or those manufactured by Advanced Micro
Devices of Sunnyvale, Calif. The computing device 100 may
be based on any of these processors, or any other processor
capable of operating as described herein.
0083. Main memory unit 122 may be one or more memory
chips capable of storing data and allowing any storage loca
tion to be directly accessed by the microprocessor 101, such
as Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO DRAM),
Burst Extended Data Output DRAM (BEDO DRAM),
Enhanced DRAM (EDRAM), synchronous DRAM
(SDRAM), JEDEC SRAM, PC100 SDRAM, Double Data
Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ES
DRAM), SyncLink DRAM (SLDRAM), Direct Rambus
DRAM (DRDRAM), or Ferroelectric RAM (FRAM). The
main memory 122 may be based on any of the above
described memory chips, or any other available memory
chips capable of operating as described herein. In the embodi
ment shown in FIG. 1E, the processor 101 communicates
with main memory 122 via a system bus 150 (described in
more detail below). FIG. 1E depicts an embodiment of a
computing device 100 in which the processor communicates
directly with main memory 122 via a memory port 103. For
example, in FIG. 1F the main memory 122 may be
DRDRAM.

0084 FIG. 1F depicts an embodiment in which the main
processor 101 communicates directly with cache memory
140 via a secondary bus, sometimes referred to as a backside
bus. In other embodiments, the main processor 101 commu
nicates with cache memory 140 using the system bus 150.
Cache memory 140 typically has a faster response time than
main memory 122 and is typically provided by SRAM,
BSRAM, or EDRAM. In the embodiment shown in FIG.1E,
the processor 101 communicates with various I/O devices
130 via a local system bus 150. Various busses may be used to
connect the central processing unit 101 to any of the I/O
devices 130, including a VESAVL bus, an ISA bus, an EISA
bus, a MicroChannel Architecture (MCA) bus, a PCI bus, a
PCI-X bus, a PCI-Express bus, or a NuBus. For embodiments
in which the I/O device is a video display 124, the processor
101 may use an Advanced Graphics Port (AGP) to commu
nicate with the display 124. FIG. 1F depicts an embodiment
of a computer 100 in which the main processor 101 commu
nicates directly with I/O device 130 via HyperTransport,
Rapid I/O, or InfiniBand. FIG.1F also depicts an embodiment
in which local busses and direct communication are mixed:

Oct. 14, 2010

the processor 101 communicates with I/O device 130 using a
local interconnect bus while communicating with I/O device
130 directly.
I0085. The computing device 100 may support any suitable
installation device 116, such as a floppy disk drive for receiv
ing floppy disks such as 3.5-inch, 5.25-inch disks or ZIP
disks, a CD-ROM drive, a CD-R/RW drive, a DVD-ROM
drive, tape drives of various formats, USB device, hard-drive
or any other device Suitable for installing software and pro
grams such as any client agent 120, or portion thereof. The
computing device 100 may further comprise a storage device
128, such as one or more hard disk drives or redundant arrays
of independent disks, for storing an operating system and
other related Software, and for storing application Software
programs such as any program related to the client agent 120.
Optionally, any of the installation devices 116 could also be
used as the storage device 128. Additionally, the operating
system and the software can be run from a bootable medium,
for example, a bootable CD, such as KNOPPIXR, a bootable
CD for GNU/Linux that is available as a GNU/Linux distri
bution from knoppix.net.
I0086. Furthermore, the computing device 100 may
include a network interface 118 to interface to a Local Area
Network (LAN), Wide Area Network (WAN) or the Internet
through a variety of connections including, but not limited to,
standard telephone lines, LAN or WAN links (e.g., 802.11,
T1, T3, 56 kb, X.25), broadband connections (e.g., ISDN,
Frame Relay, ATM), wireless connections, or some combi
nation of any or all of the above. The network interface 118
may comprise a built-in network adapter, network interface
card, PCMCIA network card, card bus network adapter, wire
less network adapter, USB network adapter, modem or any
other device Suitable for interfacing the computing device
100 to any type of network capable of communication and
performing the operations described herein. A wide variety of
I/O devices 130a-130n may be present in the computing
device 100. Input devices include keyboards, mice, track
pads, trackballs, microphones, and drawing tablets. Output
devices include video displays, speakers, inkjet printers, laser
printers, and dye-sublimation printers. The I/O devices 130
may be controlled by an I/O controller 123 as shown in FIG.
1E. The I/O controller may control one or more I/O devices
Such as a keyboard 126 and a pointing device 127, e.g., a
mouse or optical pen. Furthermore, an I/O device may also
provide storage 128 and/or an installation medium 116 for the
computing device 100. In still other embodiments, the com
puting device 100 may provide USB connections to receive
handheld USB storage devices such as the USB Flash Drive
line of devices manufactured by Twintech Industry, Inc. of
Los Alamitos, Calif.
I0087. In some embodiments, the computing device 100
may comprise or be connected to multiple display devices
124a-124m, which each may be of the same or different type
and/or form. As such, any of the I/O devices 130a-130n
and/or the I/O controller 123 may comprise any type and/or
form of suitable hardware, software, or combination of hard
ware and software to support, enable or provide for the con
nection and use of multiple display devices 124a-124n by the
computing device 100. For example, the computing device
100 may include any type and/or form of video adapter, video
card, driver, and/or library to interface, communicate, con
nect or otherwise use the display devices 124a-124n. In one
embodiment, a video adapter may comprise multiple connec
tors to interface to multiple display devices 124a-124n. In

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 30 of 59

US 2010/0262650 A1

other embodiments, the computing device 100 may include
multiple video adapters, with each video adapter connected to
one or more of the display devices 124a-124n. In some
embodiments, any portion of the operating system of the
computing device 100 may be configured for using multiple
displays 124a-124n. In other embodiments, one or more of
the display devices 124a-124n may be provided by one or
more other computing devices, such as computing devices
100a and 100b connected to the computing device 100, for
example, via a network. These embodiments may include any
type of Software designed and constructed to use another
computer's display device as a second display device 124a for
the computing device 100. One ordinarily skilled in the art
will recognize and appreciate the various ways and embodi
ments that a computing device 100 may be configured to have
multiple display devices 124a-124n.
I0088. In further embodiments, an I/O device 130 may be a
bridge 170 between the system bus 150 and an external com
munication bus, such as a USB bus, an Apple Desktop Bus, an
RS-232 serial connection, a SCSI bus, a FireWire bus, a
FireWire 800 bus, an Ethernet bus, an AppleTalkbus, a Giga
bit Ethernet bus, an Asynchronous Transfer Mode bus, a
HIPPIbus, a Super HIPPI bus, a SerialPlus bus, a SCI/LAMP
bus, a FibreChannel bus, or a Serial Attached small computer
system interface bus.
0089. A computing device 100 of the sort depicted in
FIGS. 1E and 1F typically operate under the control of oper
ating systems, which control scheduling of tasks and access to
system resources. The computing device 100 can be running
any operating system such as any of the versions of the
Microsoft(R) Windows operating systems, the different
releases of the Unix and Linux operating systems, any version
of the Mac OSR) for Macintosh computers, any embedded
operating system, any real-time operating system, any open
Source operating system, any proprietary operating system,
any operating systems for mobile computing devices, or any
other operating system capable of running on the computing
device and performing the operations described herein. Typi
cal operating systems include: WINDOWS 3.x, WINDOWS
95, WINDOWS 98, WINDOWS 2000, WINDOWS NT 3.51,
WINDOWS NT 4.0, WINDOWS CE, and WINDOWS XP,
all of which are manufactured by Microsoft Corporation of
Redmond, Wash.; MacOS, manufactured by Apple Computer
of Cupertino, Calif.; OS/2, manufactured by International
Business Machines of Armonk, N.Y.; and Linux, a freely
available operating system distributed by Caldera Corp. of
Salt Lake City, Utah, or any type and/or form of a Unix
operating System, among others.
0090. In other embodiments, the computing device 100
may have different processors, operating systems, and input
devices consistent with the device. For example, in one
embodiment the computer 100 is a Treo 180, 270, 1060, 600
or 650 smart phone manufactured by Palm, Inc. In this
embodiment, the Treo smart phone is operated under the
control of the PalmOS operating system and includes a stylus
input device as well as a five-way navigator device. More
over, the computing device 100 can be any workstation, desk
top computer, laptop or notebook computer, server, handheld
computer, mobile telephone, any other computer, or other
form of computing or telecommunications device that is
capable of communication and that has sufficient processor
power and memory capacity to perform the operations
described herein.

Oct. 14, 2010

(0091. As shown in FIG. 1G, the computing device 100
may comprise multiple processors and may provide function
ality for simultaneous execution of instructions or for simul
taneous execution of one instruction on more than one piece
of data. In some embodiments, the computing device 100 may
comprise a parallel processor with one or more cores. In one
of these embodiments, the computing device 100 is a shared
memory parallel device, with multiple processors and/or mul
tiple processor cores, accessing all available memory as a
single global address space. In another of these embodiments,
the computing device 100 is a distributed memory parallel
device with multiple processors each accessing local memory
only. In still another of these embodiments, the computing
device 100 has both some memory which is shared and some
memory which can only be accessed by particular processors
or subsets of processors. In still even another of these embodi
ments, the computing device 100. Such as a multi-core micro
processor, combines two or more independent processors into
a single package, often a single integrated circuit (IC). In yet
another of these embodiments, the computing device 100
includes a chip having a CELL BROADBAND ENGINE
architecture and including a Power processor element and a
plurality of synergistic processing elements, the Power pro
cessor element and the plurality of synergistic processing
elements linked together by an internal high speed bus, which
may be referred to as an element interconnect bus.
0092. In some embodiments, the processors provide func
tionality for execution of a single instruction simultaneously
on multiple pieces of data (SIMD). In other embodiments, the
processors provide functionality for execution of multiple
instructions simultaneously on multiple pieces of data
(MIMD). In still other embodiments, the processor may use
any combination of SIMD and MIMD cores in a single
device.
0093. In some embodiments, the computing device 100
may comprise a graphics processing unit. In one of these
embodiments, depicted in FIG. 1H, the computing device 100
includes at least one central processing unit 101 and at least
one graphics processing unit. In another of these embodi
ments, the computing device 100 includes at least one parallel
processing unit and at least one graphics processing unit. In
still another of these embodiments, the computing device 100
includes a plurality of processing units of any type, one of the
plurality of processing units comprising a graphics process
ing unit.
0094. In some embodiments, a first computing device
100a executes an application on behalf of a user of a client
computing device 100b. In other embodiments, a computing
device 100a executes a virtual machine, which provides an
execution session within which applications execute on
behalf of a user or a client computing devices 100b. In one of
these embodiments, the execution session is a hosted desktop
session. In another of these embodiments, the computing
device 100 executes a terminal services session. The terminal
services session may provide a hosted desktop environment.
In still another of these embodiments, the execution session
provides access to a computing environment, which may
comprise one or more of an application, a plurality of appli
cations, a desktop application, and a desktop session in which
one or more applications may execute.

B. Appliance Architecture
(0095 FIG. 2A illustrates an example embodiment of the
appliance 200. The architecture of the appliance 200 in FIG.

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 31 of 59

US 2010/0262650 A1

2A is provided by way of illustration only and is not intended
to be limiting. As shown in FIG. 2, appliance 200 comprises
a hardware layer 206 and a software layer divided into a user
space 202 and a kernel space 204.
0096 Hardware layer 206 provides the hardware elements
upon which programs and services within kernel space 204
and user space 202 are executed. Hardware layer 206 also
provides the structures and elements which allow programs
and services within kernel space 204 and user space 202 to
communicate data both internally and externally with respect
to appliance 200. As shown in FIG. 2, the hardware layer 206
includes a processing unit 262 for executing Software pro
grams and services, a memory 264 for storing software and
data, network ports 266 for transmitting and receiving data
over a network, and an encryption processor 260 for perform
ing functions related to Secure Sockets Layer processing of
data transmitted and received over the network. In some
embodiments, the central processing unit 262 may perform
the functions of the encryption processor 260 in a single
processor. Additionally, the hardware layer 206 may com
prise multiple processors for each of the processing unit 262
and the encryption processor 260. The processor 262 may
include any of the processors 101 described above in connec
tion with FIGS. 1E and 1F. For example, in one embodiment,
the appliance 200 comprises a first processor 262 and a sec
ond processor 262. In other embodiments, the processor 262
or 262 comprises a multi-core processor.
0097. Although the hardware layer 206 of appliance 200 is
generally illustrated with an encryption processor 260, pro
cessor 260 may be a processor for performing functions
related to any encryption protocol. Such as the Secure Socket
Layer (SSL) or Transport Layer Security (TLS) protocol. In
Some embodiments, the processor 260 may be a general pur
pose processor (GPP), and in further embodiments, may have
executable instructions for performing processing of any
security related protocol.
0098. Although the hardware layer 206 of appliance 200 is
illustrated with certain elements in FIG. 2, the hardware por
tions or components of appliance 200 may comprise any type
and form of elements, hardware or software, of a computing
device, such as the computing device 100 illustrated and
discussed herein in conjunction with FIGS. 1E and 1F. In
Some embodiments, the appliance 200 may comprise a server,
gateway, router, Switch, bridge or other type of computing or
network device, and have any hardware and/or software ele
ments associated therewith.

0099. The operating system of appliance 200 allocates,
manages, or otherwise segregates the available system
memory into kernel space 204 and userspace 204. In example
software architecture 200, the operating system may be any
type and/or form of Unix operating system although the
methods and systems described herein are not so limited. As
Such, the appliance 200 can be running any operating system
such as any of the versions of the Microsoft(R) Windows
operating systems, the different releases of the Unix and
Linux operating systems, any version of the Mac OSR) for
Macintosh computers, any embedded operating system, any
network operating system, any real-time operating system,
any open source operating system, any proprietary operating
system, any operating systems for mobile computing devices
or network devices, or any other operating system capable of
running on the appliance 200 and performing the operations
described herein.

Oct. 14, 2010

0100. The kernel space 204 is reserved for running the
kernel 230, including any device drivers, kernel extensions or
other kernel related software. As knownto those skilled in the
art, the kernel 230 is the core of the operating system, and
provides access, control, and management of resources and
hardware-related elements of the application 104. In accor
dance with an embodiment of the appliance 200, the kernel
space 204 also includes a number of network services or
processes working in conjunction with a cache manager 232,
Sometimes also referred to as the integrated cache, the ben
efits of which are described in detail further herein. Addition
ally, the embodiment of the kernel 230 will depend on the
embodiment of the operating system installed, configured, or
otherwise used by the device 200.
0101. In one embodiment, the device 200 comprises one
network stack 267, such as a TCP/IP based stack, for com
municating with the client 102 and/or the server 106. In one
embodiment, the network stack 267 is used to communicate
with a first network, such as network 108, and a second
network 110. In some embodiments, the device 200 termi
nates a first transport layer connection, Such as a TCP con
nection of a client 102, and establishes a second transport
layer connection to a server 106 for use by the client 102, e.g.,
the second transport layer connection is terminated at the
appliance 200 and the server 106. The first and second trans
port layer connections may be established via a single net
work stack 267. In other embodiments, the device 200 may
comprise multiple network stacks, for example 267 and 267',
and the first transport layer connection may be established or
terminated at one network stack 267, and the second transport
layer connection on the second network stack 267. For
example, one network Stack may be for receiving and trans
mitting network packet on a first network, and another net
work Stack for receiving and transmitting network packets on
a second network. In one embodiment, the network stack 267
comprises a buffer 243 for queuing one or more network
packets for transmission by the appliance 200.
0102. As shown in FIG. 2, the kernel space 204 includes
the cache manager 232, a high-speed layer 2-7 integrated
packet engine 240, an encryption engine 234, a policy engine
236 and multi-protocol compression logic 238. Running
these components or processes 232,240,234, 236 and 238 in
kernel space 204 or kernel mode instead of the user space 202
improves the performance of each of these components, alone
and in combination. Kernel operation means that these com
ponents or processes 232, 240, 234, 236 and 238 run in the
core address space of the operating system of the device 200.
For example, running the encryption engine 234 in kernel
mode improves encryption performance by moving encryp
tion and decryption operations to the kernel, thereby reducing
the number of transitions between the memory space or a
kernel thread in kernel mode and the memory space or a
thread in user mode. For example, data obtained in kernel
mode may not need to be passed or copied to a process or
thread running in user mode, Such as from a kernel level data
structure to a user level data structure. In another aspect, the
number of context switches between kernel mode and user
mode are also reduced. Additionally, synchronization of and
communications between any of the components or processes
232,240,235,236 and 238 can be performed more efficiently
in the kernel space 204.
0103) In some embodiments, any portion of the compo
nents 232, 240,234, 236 and 238 may run or operate in the
kernel space 204, while other portions of these components

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 32 of 59

US 2010/0262650 A1

232, 240, 234, 236 and 238 may run or operate in user space
202. In one embodiment, the appliance 200 uses a kernel
level data structure providing access to any portion of one or
more network packets, for example, a network packet com
prising a request from a client 102 or a response from a server
106. In some embodiments, the kernel-level data structure
may be obtained by the packet engine 240 via a transport layer
driver interface or filter to the network stack 267. The kernel
level data structure may comprise any interface and/or data
accessible via the kernel space 204 related to the network
stack 267, network traffic or packets received or transmitted
by the network stack 267. In other embodiments, the kernel
level data structure may be used by any of the components or
processes 232, 240, 234, 236 and 238 to perform the desired
operation of the component or process. In one embodiment, a
component 232, 240, 234, 236 and 238 is running in kernel
mode 204 when using the kernel-level data structure, while in
another embodiment, the component 232, 240,234, 236 and
238 is running in user mode when using the kernel-level data
structure. In some embodiments, the kernel-level data struc
ture may be copied or passed to a second kernel-level data
structure, or any desired user-level data structure.
0104. The cache manager 232 may comprise software,
hardware or any combination of software and hardware to
provide cache access, control and management of any type
and form of content, such as objects or dynamically generated
objects served by the originating servers 106. The data,
objects or content processed and stored by the cache manager
232 may comprise data in any format, such as a markup
language, or communicated via any protocol. In some
embodiments, the cache manager 232 duplicates original data
stored elsewhere or data previously computed, generated or
transmitted, in which the original data may require longer
access time to fetch, compute or otherwise obtain relative to
reading a cache memory element. Once the data is stored in
the cache memory element, future use can be made by access
ing the cached copy rather than refetching or recomputing the
original data, thereby reducing the access time. In some
embodiments, the cache memory element may comprise a
data object in memory 264 of device 200. In other embodi
ments, the cache memory element may comprise memory
having a faster access time than memory 264. In another
embodiment, the cache memory element may comprise any
type and form of storage element of the device 200, such as a
portion of a hard disk. In some embodiments, the processing
unit 262 may provide cache memory for use by the cache
manager 232. In yet further embodiments, the cache manager
232 may use any portion and combination of memory, Stor
age, or the processing unit for caching data, objects, and other
COntent.

0105. Furthermore, the cache manager 232 includes any
logic, functions, rules, or operations to perform any embodi
ments of the techniques of the appliance 200 described
herein. For example, the cache manager 232 includes logic or
functionality to invalidate objects based on the expiration of
an invalidation time period or upon receipt of an invalidation
command from a client 102 or server 106. In some embodi
ments, the cache manager 232 may operate as a program,
service, process or task executing in the kernel space 204, and
in other embodiments, in the user space 202. In one embodi
ment, a first portion of the cache manager 232 executes in the
user space 202 while a second portion executes in the kernel
space 204. In some embodiments, the cache manager 232 can
comprise any type of general purpose processor (GPP), or any

Oct. 14, 2010

other type of integrated circuit, such as a Field Programmable
Gate Array (FPGA), Programmable Logic Device (PLD), or
Application Specific Integrated Circuit (ASIC).
0106 The policy engine 236 may include, for example, an
intelligent statistical engine or other programmable applica
tion(s). In one embodiment, the policy engine 236 provides a
configuration mechanism to allow a user to identify, specify,
define or configure a caching policy. Policy engine 236, in
Some embodiments, also has access to memory to Support
data structures such as lookup tables or hash tables to enable
user-selected caching policy decisions. In other embodi
ments, the policy engine 236 may comprise any logic, rules,
functions or operations to determine and provide access, con
trol and management of objects, data or content being cached
by the appliance 200 in addition to access, control and man
agement of security, network traffic, network access, com
pression or any other function or operation performed by the
appliance 200. Further examples of specific caching policies
are further described herein.

0107 The encryption engine 234 comprises any logic,
business rules, functions or operations for handling the pro
cessing of any security related protocol. Such as SSL or TLS,
or any function related thereto. For example, the encryption
engine 234 encrypts and decrypts network packets, or any
portion thereof, communicated via the appliance 200. The
encryption engine 234 may also setup or establish SSL or
TLS connections on behalf of the client 102a-102n, server
106a-106n, or appliance 200. As such, the encryption engine
234 provides offloading and acceleration of SSL processing.
In one embodiment, the encryption engine 234 uses a tunnel
ing protocol to provide a virtual private network between a
client 102a-102n and a server 106a-106m. In some embodi
ments, the encryption engine 234 is in communication with
the Encryption processor 260. In other embodiments, the
encryption engine 234 comprises executable instructions run
ning on the Encryption processor 260.
0108. The multi-protocol compression engine 238 com
prises any logic, business rules, function or operations for
compressing one or more protocols of a network packet, Such
as any of the protocols used by the network stack 267 of the
device 200. In one embodiment, multi-protocol compression
engine 238 compresses bi-directionally between clients
102a-102n and servers 106a-106n any TCP/IP based proto
col, including Messaging Application Programming Inter
face (MAPI) (email), File Transfer Protocol (FTP), Hyper
Text Transfer Protocol (HTTP), Common Internet File
System (CIFS) protocol (file transfer), Independent Comput
ing Architecture (ICA) protocol, Remote Desktop Protocol
(RDP), Wireless Application Protocol (WAP), Mobile IP pro
tocol, and Voice Over IP (VoIP) protocol. In other embodi
ments, multi-protocol compression engine 238 provides
compression of Hypertext Markup Language (HTML) based
protocols and in Some embodiments, provides compression
of any markup languages, such as the Extensible Markup
Language (XML). In one embodiment, the multi-protocol
compression engine 238 provides compression of any high
performance protocol. Such as any protocol designed for
appliance 200 to appliance 200 communications. In another
embodiment, the multi-protocol compression engine 238
compresses any payload of or any communication using a
modified transport control protocol, such as Transaction TCP
(T/TCP), TCP with selection acknowledgements (TCP

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 33 of 59

US 2010/0262650 A1

SACK), TCP with large windows (TCP-LW), a congestion
prediction protocol such as the TCP-Vegas protocol, and a
TCP spoofing protocol.
0109 As such, the multi-protocol compression engine 238
accelerates performance for users accessing applications via
desktop clients, e.g., Microsoft Outlook and non-Web thin
clients, such as any client launched by popular enterprise
applications like Oracle, SAP and Siebel, and even mobile
clients, such as the Pocket PC. In some embodiments, the
multi-protocol compression engine 238 by executing in the
kernel mode 204 and integrating with packet processing
engine 240 accessing the network stack 267 is able to com
press any of the protocols carried by the TCP/IP protocol,
Such as any application layer protocol.
0110 High speed layer 2-7 integrated packet engine 240,
also generally referred to as a packet processing engine or
packet engine, is responsible for managing the kernel-level
processing of packets received and transmitted by appliance
200 via network ports 266. The high speed layer 2-7 inte
grated packet engine 240 may comprise a buffer for queuing
one or more network packets during processing. Such as for
receipt of a network packet or transmission of a network
packet. Additionally, the high speed layer 2-7 integrated
packet engine 240 is in communication with one or more
network stacks 267 to send and receive network packets via
networkports 266. The high speed layer 2-7 integrated packet
engine 240 works in conjunction with encryption engine 234,
cache manager 232, policy engine 236 and multi-protocol
compression logic 238. In particular, encryption engine 234 is
configured to perform SSL processing of packets, policy
engine 236 is configured to perform functions related to traf
fic management such as request-level content Switching and
request-level cache redirection, and multi-protocol compres
sion logic 238 is configured to perform functions related to
compression and decompression of data.
0111. The high speed layer 2-7 integrated packet engine
240 includes a packet processing timer 242. In one embodi
ment, the packet processing timer 242 provides one or more
time intervals to trigger the processing of incoming, i.e.,
received, or outgoing, i.e., transmitted, network packets. In
Some embodiments, the high speed layer 2-7 integrated
packet engine 240 processes network packets responsive to
the timer 242. The packet processing timer 242 provides any
type and form of signal to the packet engine 240 to notify,
trigger, or communicate a time related event, interval or
occurrence. In many embodiments, the packet processing
timer 242 operates in the order of milliseconds, such as for
example 100 ms, 50 ms or 25 ms. For example, in some
embodiments, the packet processing timer 242 provides time
intervals or otherwise causes a network packet to be pro
cessed by the high speed layer 2-7 integrated packet engine
240 at a 10 ms time interval, while in other embodiments, at
a 5 ms time interval, and still yet in further embodiments, as
short as a 3, 2, or 1 ms time interval. The high speed layer 2-7
integrated packet engine 240 may be interfaced, integrated or
in communication with the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres
sion engine 238 during operation. As such, any of the logic,
functions, or operations of the encryption engine 234, cache
manager 232, policy engine 236 and multi-protocol compres
sion logic 238 may be performed responsive to the packet
processing timer 242 and/or the packet engine 240. There
fore, any of the logic, functions, or operations of the encryp
tion engine 234, cache manager 232, policy engine 236 and

Oct. 14, 2010

multi-protocol compression logic 238 may be performed at
the granularity of time intervals provided via the packet pro
cessing timer 242, for example, at a time interval of less than
or equal to 10 ms. For example, in one embodiment, the cache
manager 232 may perform invalidation of any cached objects
responsive to the high speed layer 2-7 integrated packet
engine 240 and/or the packet processing timer 242. In another
embodiment, the expiry or invalidation time of a cached
object can be set to the same order of granularity as the time
interval of the packet processing timer 242, such as at every
10 ms.

0112. In contrast to kernel space 204, user space 202 is the
memory area or portion of the operating system used by user
mode applications or programs otherwise running in user
mode. A user mode application may not access kernel space
204 directly and uses service calls in order to access kernel
services. As shown in FIG.2, user space 202 of appliance 200
includes a graphical user interface (GUI) 210, a command
line interface (CLI) 212, shell services 214, health monitoring
program 216, and daemon services 218. GUI 210 and CLI
212 provide a means by which a system administrator or other
user can interact with and control the operation of appliance
200, such as via the operating system of the appliance 200.
The GUI 210 or CLI 212 can comprise code running in user
space 202 or kernel space 204. The GUI 210 may be any type
and form of graphical user interface and may be presented via
text, graphical or otherwise, by any type of program or appli
cation, such as a browser. The CLI 212 may be any type and
form of command line or text-based interface. Such as a
command line provided by the operating system. For
example, the CLI 212 may comprise a shell, which is a tool to
enable users to interact with the operating system. In some
embodiments, the CLI 212 may be provided via a bash, csh,
tcsh, or ksh type shell. The shell services 214 comprises the
programs, services, tasks, processes or executable instruc
tions to support interaction with the appliance 200 or operat
ing system by a user via the GUI 210 and/or CLI 212.
0113 Health monitoring program 216 is used to monitor,
check, report and ensure that network systems are functioning
properly and that users are receiving requested content over a
network. Health monitoring program 216 comprises one or
more programs, services, tasks, processes or executable
instructions to provide logic, rules, functions or operations
for monitoring any activity of the appliance 200. In some
embodiments, the health monitoring program 216 intercepts
and inspects any network traffic passed via the appliance 200.
In other embodiments, the health monitoring program 216
interfaces by any suitable means and/or mechanisms with one
or more of the following: the encryption engine 234, cache
manager 232, policy engine 236, multi-protocol compression
logic 238, packet engine 240, daemon services 218, and shell
services 214. As such, the health monitoring program 216
may call any application programming interface (API) to
determine a state, status, or health of any portion of the
appliance 200. For example, the health monitoring program
216 may ping or send a status inquiry on a periodic basis to
check if a program, process, service or task is active and
currently running. In another example, the health monitoring
program 216 may check any status, error or history logs
provided by any program, process, service or task to deter
mine any condition, status or error with any portion of the
appliance 200.
0114 Daemon services 218 are programs that run continu
ously or in the background and handle periodic service

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 34 of 59

US 2010/0262650 A1

requests received by appliance 200. In some embodiments, a
daemon service may forward the requests to other programs
or processes, such as another daemon service 218 as appro
priate. As known to those skilled in the art, a daemon service
218 may run unattended to perform continuous or periodic
system wide functions. Such as network control, or to perform
any desired task. In some embodiments, one or more daemon
services 218 run in the user space 202, while in other embodi
ments, one or more daemon services 218 run in the kernel
Space.

0115 Referring now to FIG. 2B, another embodiment of
the appliance 200 is depicted. In brief overview, the appliance
200 provides one or more of the following services, function
ality or operations: SSL VPN connectivity 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290 for commu
nications between one or more clients 102 and one or more
servers 106. Each of the servers 106 may provide one or more
network related services 270a-270m (referred to as services
270). For example, a server 106 may provide an http service
270. The appliance 200 comprises one or more virtual servers
or virtual internet protocol servers, referred to as a vServer,
VIP server, or just VIP 275a-275n (also referred herein as
vServer 275). The vServer 275 receives, intercepts or other
wise processes communications between a client 102 and a
server 106 in accordance with the configuration and opera
tions of the appliance 200.
0116. The VServer 275 may comprise software, hardware
or any combination of software and hardware. The vServer
275 may comprise any type and form of program, service,
task, process or executable instructions operating in user
mode 202, kernel mode 204 or any combination thereof in the
appliance 200. The vServer 275 includes any logic, functions,
rules, or operations to performany embodiments of the tech
niques described herein, such as SSL VPN 280, switching/
load balancing 284, Domain Name Service resolution 286,
acceleration 288 and an application firewall 290. In some
embodiments, the VServer 275 establishes a connection to a
service 270 of a server 106. The service 275 may comprise
any program, application, process, task or set of executable
instructions capable of connecting to and communicating to
the appliance 200, client 102 or vServer 275. For example, the
service 275 may comprise a web server, http server, ftp, email
or database server. In some embodiments, the service 270 is a
daemon process or network driver for listening, receiving
and/or sending communications for an application, such as
email, database or an enterprise application. In some embodi
ments, the service 270 may communicate on a specific IP
address, or IP address and port.
0117. In some embodiments, the vServer 275 applies one
or more policies of the policy engine 236 to network commu
nications between the client 102 and server 106. In one
embodiment, the policies are associated with a VServer 275.
In another embodiment, the policies are based on a user, or a
group of users. In yet another embodiment, a policy is global
and applies to one or more VServers 275a-275n, and any user
or group of users communicating via the appliance 200. In
Some embodiments, the policies of the policy engine have
conditions upon which the policy is applied based on any
content of the communication, Such as internet protocol
address, port, protocol type, header or fields in a packet, or the
context of the communication, Such as user, group of the user,
vServer 275, transport layer connection, and/or identification
or attributes of the client 102 or server 106.

Oct. 14, 2010

0118. In other embodiments, the appliance 200 communi
cates or interfaces with the policy engine 236 to determine
authentication and/or authorization of a remote user or a
remote client 102 to access the computing environment 15,
application, and/or data file from a server 106. In another
embodiment, the appliance 200 communicates or interfaces
with the policy engine 236 to determine authentication and/or
authorization of a remote user or a remote client 102 to have
the application delivery system 190 deliver one or more of the
computing environment 15, application, and/or data file. In
yet another embodiment, the appliance 200 establishes a VPN
or SSL VPN connection based on the policy engine's 236
authentication and/or authorization of a remote user or a
remote client 102 In one embodiment, the appliance 200
controls the flow of network traffic and communication ses
sions based on policies of the policy engine 236. For example,
the appliance 200 may control the access to a computing
environment 15, application or data file based on the policy
engine 236.
0119. In some embodiments, the vServer 275 establishes a
transport layer connection, such as a TCP or UDP connection
with a client 102 via the client agent 120. In one embodiment,
the VServer 275 listens for and receives communications from
the client 102. In other embodiments, the vServer 275 estab
lishes a transport layer connection, such as a TCP or UDP
connection with a client server 106. In one embodiment, the
vServer 275 establishes the transport layer connection to an
internet protocol address and port of a server 270 running on
the server 106. In another embodiment, the vServer 275 asso
ciates a first transport layer connection to a client 102 with a
second transport layer connection to the server 106. In some
embodiments, a VServer 275 establishes a pool of transport
layer connections to a server 106 and multiplexes client
requests via the pooled transport layer connections.
I0120 In some embodiments, the appliance 200 provides a
SSL VPN connection 280 between a client 102 and a server
106. For example, a client 102 on a first network 102 requests
to establish a connection to a server 106 on a second network
104". In some embodiments, the second network 104' is not
routable from the first network 104. In other embodiments,
the client 102 is on a public network 104 and the server 106 is
on a private network 104". Such as a corporate network. In one
embodiment, the client agent 120 intercepts communications
of the client 102 on the first network 104, encrypts the com
munications, and transmits the communications via a first
transport layer connection to the appliance 200. The appli
ance 200 associates the first transport layer connection on the
first network 104 to a second transport layer connection to the
server 106 on the second network 104. The appliance 200
receives the intercepted communication from the clientagent
102, decrypts the communications, and transmits the commu
nication to the server 106 on the second network 104 via the
second transport layer connection. The second transport layer
connection may be a pooled transport layer connection. As
Such, the appliance 200 provides an end-to-end secure trans
port layer connection for the client 102 between the two
networks 104, 104".
I0121. In one embodiment, the appliance 200 hosts an
intranet internet protocol or intranetIP 282 address of the
client 102 on the virtual private network 104. The client 102
has a local network identifier, such as an internet protocol (IP)
address and/or host name on the first network 104. When
connected to the second network 104 via the appliance 200,
the appliance 200 establishes, assigns or otherwise provides

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 35 of 59

US 2010/0262650 A1

an IntranetIP, which is network identifier, such as IP address
and/or host name, for the client 102 on the second network
104. The appliance 200 listens for and receives on the second
or private network 104" for any communications directed
towards the client 102 using the client's established IntranetIP
282. In one embodiment, the appliance 200 acts as or on
behalf of the client 102 on the second private network 104.
For example, in another embodiment, a VServer 275 listens
for and responds to communications to the IntranetIP 282 of
the client 102. In some embodiments, if a computing device
100 on the second network 104 transmits a request, the appli
ance 200 processes the request as if it were the client 102. For
example, the appliance 200 may respond to a ping to the
client’s IntranetIP 282. In another example, the appliance
may establish a connection, such as a TCP or UDP connec
tion, with computing device 100 on the second network 104
requesting a connection with the client’s IntranetIP 282.
0122. In some embodiments, the appliance 200 provides
one or more of the following acceleration techniques 288 to
communications between the client 102 and server 106: 1)
compression; 2) decompression; 3) Transmission Control
Protocol pooling; 4) Transmission Control Protocol multi
plexing; 5) Transmission Control Protocol buffering; and 6)
caching. In one embodiment, the appliance 200 relieves serv
ers 106 of much of the processing load caused by repeatedly
opening and closing transport layers connections to clients
102 by opening one or more transport layer connections with
each server 106 and maintaining these connections to allow
repeated data accesses by clients via the Internet. This tech
nique is referred to herein as “connection pooling'.
0123. In some embodiments, in order to seamlessly splice
communications from a client 102 to a server 106 via a pooled
transport layer connection, the appliance 200 translates or
multiplexes communications by modifying sequence number
and acknowledgment numbers at the transport layer protocol
level. This is referred to as “connection multiplexing. In
Some embodiments, no application layer protocol interaction
is required. For example, in the case of an in-bound packet
(that is, a packet received from a client 102), the source
network address of the packet is changed to that of an output
port of appliance 200, and the destination network address is
changed to that of the intended server. In the case of an
outbound packet (that is, one received from a server 106), the
source network address is changed from that of the server 106
to that of an output port of appliance 200 and the destination
address is changed from that of appliance 200 to that of the
requesting client 102. The sequence numbers and acknowl
edgment numbers of the packet are also translated to
sequence numbers and acknowledgement expected by the
client 102 on the appliance's 200 transport layer connection
to the client 102. In some embodiments, the packet checksum
of the transport layer protocol is recalculated to account for
these translations.

0.124. In another embodiment, the appliance 200 provides
Switching or load-balancing functionality 284 for communi
cations between the client 102 and server 106. In some
embodiments, the appliance 200 distributes traffic and directs
client requests to a server 106 based on layer 4 or application
layer request data. In one embodiment, although the network
layer or layer 2 of the network packet identifies a destination
server 106, the appliance 200 determines the server 106 to
distribute the network packet by application information and
data carried as payload of the transport layer packet. In one
embodiment, the health monitoring programs 216 of the

Oct. 14, 2010

appliance 200 monitor the health of servers to determine the
server 106 for which to distribute a client's request. In some
embodiments, if the appliance 200 detects a server 106 is not
available or has a load over a predetermined threshold, the
appliance 200 can direct or distribute client requests to
another server 106.

0.125. In some embodiments, the appliance 200 acts as a
Domain Name Service (DNS) resolver or otherwise provides
resolution of a DNS request from clients 102. In some
embodiments, the appliance intercepts a DNS request trans
mitted by the client 102. In one embodiment, the appliance
200 responds to a client's DNS request with an IP address of
or hosted by the appliance 200. In this embodiment, the client
102 transmits network communication for the domain name
to the appliance 200. In another embodiment, the appliance
200 responds to a client's DNS request with an IP address of
or hosted by a second appliance 200'. In some embodiments,
the appliance 200 responds to a client's DNS request with an
IP address of a server 106 determined by the appliance 200.
I0126. In yet another embodiment, the appliance 200 pro
vides application firewall functionality 290 for communica
tions between the client 102 and server 106. In one embodi
ment, the policy engine 236 provides rules for detecting and
blocking illegitimate requests. In some embodiments, the
application firewall 290 protects against denial of service
(DoS) attacks. In other embodiments, the appliance inspects
the content of intercepted requests to identify and block appli
cation-based attacks. In some embodiments, the rules/policy
engine 236 comprises one or more application firewall or
security control policies for providing protections against
various classes and types of web or Internet based vulnerabili
ties, such as one or more of the following: 1) buffer overflow,
2) CGI-BIN parameter manipulation, 3) form/hidden field
manipulation, 4) forceful browsing, 5) cookie or session poi
soning, 6) broken access control list (ACLS) or weak pass
words, 7) cross-site Scripting (XSS), 8) command injection,
9) SQL injection, 10) error triggering sensitive information
leak, 11) insecure use of cryptography, 12) server miscon
figuration, 13) back doors and debug options, 14) website
defacement, 15) platform or operating systems Vulnerabili
ties, and 16) Zero-day exploits. In an embodiment, the appli
cation firewall 290 provides HTML form field protection in
the form of inspecting or analyzing the network communica
tion for one or more of the following: 1) required fields are
returned, 2) no added field allowed, 3) read-only and hidden
field enforcement, 4) drop-down list and radio button field
conformance, and 5) form-field max-length enforcement. In
some embodiments, the application firewall 290 ensures
cookies are not modified. In other embodiments, the applica
tion firewall 290 protects against forceful browsing by
enforcing legal URLs.
I0127. In still yet other embodiments, the application fire
wall 290 protects any confidential information contained in
the network communication. The application firewall 290
may inspector analyze any network communication in accor
dance with the rules or polices of the engine 236 to identify
any confidential information in any field of the network
packet. In some embodiments, the application firewall 290
identifies in the network communication one or more occur
rences of a credit card number, password, Social security
number, name, patient code, contact information, and age.
The encoded portion of the network communication may
comprise these occurrences or the confidential information.
Based on these occurrences, in one embodiment, the applica

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 36 of 59

US 2010/0262650 A1

tion firewall 290 may take a policy action on the network
communication, such as prevent transmission of the network
communication. In another embodiment, the application fire
wall 290 may rewrite, remove or otherwise mask such iden
tified occurrence or confidential information.
0128. Still referring to FIG. 2B, the appliance 200 may
include a performance monitoring agent 197 as discussed
above in conjunction with FIG. 1D. In one embodiment, the
appliance 200 receives the monitoring agent 197 from the
monitoring service 198 or monitoring server 106 as depicted
in FIG. 1D. In some embodiments, the appliance 200 stores
the monitoring agent 197 in storage. Such as disk, for delivery
to any client or server in communication with the appliance
200. For example, in one embodiment, the appliance 200
transmits the monitoring agent 197 to a client upon receiving
a request to establish a transport layer connection. In other
embodiments, the appliance 200 transmits the monitoring
agent 197 upon establishing the transport layer connection
with the client 102. In another embodiment, the appliance 200
transmits the monitoring agent 197 to the client upon inter
cepting or detecting a request for a web page. In yet another
embodiment, the appliance 200 transmits the monitoring
agent 197 to a client or a server in response to a request from
the monitoring server 198. In one embodiment, the appliance
200 transmits the monitoring agent 197 to a second appliance
200' or appliance 205.
0129. In other embodiments, the appliance 200 executes
the monitoring agent 197. In one embodiment, the monitoring
agent 197 measures and monitors the performance of any
application, program, process, service, task or thread execut
ing on the appliance 200. For example, the monitoring agent
197 may monitor and measure performance and operation of
vServers 275A-275N. In another embodiment, the monitor
ing agent 197 measures and monitors the performance of any
transport layer connections of the appliance 200. In some
embodiments, the monitoring agent 197 measures and moni
tors the performance of any user sessions traversing the appli
ance 200. In one embodiment, the monitoring agent 197
measures and monitors the performance of any virtual private
network connections and/or sessions traversing the appliance
200, such an SSL VPN session. In still further embodiments,
the monitoring agent 197 measures and monitors the memory,
CPU and disk usage and performance of the appliance 200. In
yet another embodiment, the monitoring agent 197 measures
and monitors the performance of any acceleration technique
288 performed by the appliance 200, such as SSL offloading,
connection pooling and multiplexing, caching, and compres
Sion. In some embodiments, the monitoring agent 197 mea
Sures and monitors the performance of any load balancing
and/or content switching 284 performed by the appliance
200. In other embodiments, the monitoring agent 197 mea
Sures and monitors the performance of application firewall
290 protection and processing performed by the appliance
2OO.

C. Client Agent
0130 Referring now to FIG. 3, an embodiment of the
client agent 120 is depicted. The client 102 includes a client
agent 120 for establishing and exchanging communications
with the appliance 200 and/or server 106 via a network 104. In
brief overview, the client 102 operates on computing device
100 having an operating system with a kernel mode 302 and
a user mode 303, and a network stack 310 with one or more
layers 310a-310b. The client 102 may have installed and/or

Oct. 14, 2010

execute one or more applications. In some embodiments, one
or more applications may communicate via the network Stack
310 to a network 104. One of the applications, such as a web
browser, may also include a first program 322. For example,
the first program 322 may be used in Some embodiments to
install and/or execute the client agent 120, or any portion
thereof. The client agent 120 includes an interception mecha
nism, or interceptor 350, for intercepting network communi
cations from the network stack 310 from the one or more
applications.
I0131 The network stack 310 of the client 102 may com
prise any type and form of software, or hardware, or any
combinations thereof, for providing connectivity to and com
munications with a network. In one embodiment, the network
stack 310 comprises a software implementation for a network
protocol suite. The network stack 310 may comprise one or
more network layers. Such as any networks layers of the Open
Systems Interconnection (OSI) communications model as
those skilled in the art recognize and appreciate. As such, the
network stack 310 may comprise any type and form of pro
tocols for any of the following layers of the OSI model: 1)
physical link layer, 2) data link layer, 3) network layer, 4)
transport layer, 5) session layer, 6) presentation layer, and 7)
application layer. In one embodiment, the network stack 310
may comprise a transport control protocol (TCP) over the
network layer protocol of the internet protocol (IP), generally
referred to as TCP/IP. In some embodiments, the TCP/IP
protocol may be carried over the Ethernet protocol, which
may comprise any of the family of IEEE wide-area-network
(WAN) or local-area-network (LAN) protocols, such as those
protocols covered by the IEEE 802.3. In some embodiments,
the network stack 310 comprises any type and form of a
wireless protocol, such as IEEE 802.11 and/or mobile inter
net protocol.
(0132) In view of a TCP/IP based network, any TCP/IP
based protocol may be used, including Messaging Applica
tion Programming Interface (MAPI) (email), File Transfer
Protocol (FTP), HyperText Transfer Protocol (HTTP), Com
mon Internet File System (CIFS) protocol (file transfer),
Independent Computing Architecture (ICA) protocol,
Remote Desktop Protocol (RDP), Wireless Application Pro
tocol (WAP), Mobile IP protocol, and Voice Over IP (VoIP)
protocol. In another embodiment, the network stack 310 com
prises any type and form of transport control protocol. Such as
a modified transport control protocol, for example a Transac
tion TCP (T/TCP), TCP with selection acknowledgements
(TCP-SACK), TCP with large windows (TCP-LW), a con
gestion prediction protocol Such as the TCP-Vegas protocol,
and a TCP spoofing protocol. In other embodiments, any type
and form of user datagram protocol (UDP), such as UDP over
IP may be used by the network stack 310, such as for voice
communications or real-time data communications.

I0133. Furthermore, the network stack 310 may include
one or more network drivers Supporting the one or more
layers, such as a TCP driver or a network layer driver. The
network drivers may be included as part of the operating
system of the computing device 100 or as part of any network
interface cards or other network access components of the
computing device 100. In some embodiments, any of the
network drivers of the network stack 310 may be customized,
modified or adapted to provide a custom or modified portion
of the network stack 310 in support of any of the techniques
described herein. In other embodiments, the acceleration pro
gram 120 is designed and constructed to operate with or work

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 37 of 59

US 2010/0262650 A1

in conjunction with the network stack 310 installed or other
wise provided by the operating system of the client 102.
0134. The network stack 310 comprises any type and form
of interfaces for receiving, obtaining, providing or otherwise
accessing any information and data related to network com
munications of the client 102. In one embodiment, an inter
face to the network Stack 310 comprises an application pro
gramming interface (API). The interface may also comprise
any function call, hooking or filtering mechanism, event or
call back mechanism, or any type of interfacing technique.
The network stack 310 via the interface may receive or pro
vide any type and form of data structure. Such as an object,
related to functionality or operation of the network stack 310.
For example, the data structure may comprise information
and data related to a network packet or one or more network
packets. In some embodiments, the data structure comprises
a portion of the network packet processed at a protocol layer
of the network stack 310, such as a network packet of the
transport layer. In some embodiments, the data structure 325
comprises a kernel-level data structure, while in other
embodiments, the data structure 325 comprises a user-mode
data structure. A kernel-level data structure may comprise a
data structure obtained or related to a portion of the network
stack 310 operating in kernel-mode 302, or a network driver
or other software running in kernel-mode 302, or any data
structure obtained or received by a service, process, task,
thread or other executable instructions running or operating in
kernel-mode of the operating system.
0135 Additionally, some portions of the network stack
310 may execute or operate in kernel-mode 302, for example,
the data link or network layer, while other portions execute or
operate in user-mode 303, such as an application layer of the
network stack 310. For example, a first portion 310a of the
network Stack may provide user-mode access to the network
stack 310 to an application while a second portion 310a of the
network stack 310 provides access to a network. In some
embodiments, a first portion 310a of the network stack may
comprise one or more upper layers of the network stack 310,
Such as any of layers 5-7. In other embodiments, a second
portion 310b of the network stack 310 comprises one or more
lower layers, such as any of layers 1-4. Each of the first
portion 310a and second portion 310b of the network stack
310 may comprise any portion of the network stack 310, at
any one or more network layers, in user-mode 203, kernel
mode, 202, or combinations thereof, or at any portion of a
network layer or interface point to a network layer or any
portion of or interface point to the user-mode 203 and kernel
mode 203.

0136. The interceptor 350 may comprise software, hard
ware, or any combination of Software and hardware. In one
embodiment, the interceptor 350 intercept a network commu
nication at any point in the network stack 310, and redirects or
transmits the network communication to a destination
desired, managed or controlled by the interceptor 350 or
client agent 120. For example, the interceptor 350 may inter
cept a network communication of a network stack 310 of a
first network and transmit the network communication to the
appliance 200 for transmission on a second network 104. In
some embodiments, the interceptor 350 comprises any type
interceptor 350 comprises a driver, such as a network driver
constructed and designed to interface and work with the net
work stack 310. In some embodiments, the client agent 120
and/or interceptor 350 operates at one or more layers of the
network stack 310, such as at the transport layer. In one

Oct. 14, 2010

embodiment, the interceptor 350 comprises a filter driver,
hooking mechanism, or any form and type of Suitable net
work driver interface that interfaces to the transport layer of
the network Stack, Such as via the transport driver interface
(TDI). In some embodiments, the interceptor 350 interfaces
to a first protocol layer. Such as the transport layer and another
protocol layer, such as any layer above the transport protocol
layer, for example, an application protocol layer. In one
embodiment, the interceptor 350 may comprise a driver com
plying with the Network Driver Interface Specification
(NDIS), or a NDIS driver. In another embodiment, the inter
ceptor 350 may comprise a min-filter or a mini-port driver. In
one embodiment, the interceptor 350, or portion thereof,
operates in kernel-mode 202. In another embodiment, the
interceptor 350, or portion thereof, operates in user-mode
203. In some embodiments, a portion of the interceptor 350
operates in kernel-mode 202 while another portion of the
interceptor 350 operates in user-mode 203. In other embodi
ments, the client agent 120 operates in user-mode 203 but
interfaces via the interceptor 350 to a kernel-mode driver,
process, service, task or portion of the operating system, Such
as to obtain a kernel-level data structure 225. In further
embodiments, the interceptor 350 is a user-mode application
or program, Such as application.
0.137 In one embodiment, the interceptor 350 intercepts
any transport layer connection requests. In these embodi
ments, the interceptor 350 execute transport layer application
programming interface (API) calls to set the destination infor
mation, Such as destination IP address and/orport to a desired
location for the location. In this manner, the interceptor 350
intercepts and redirects the transport layer connection to a IP
address and port controlled or managed by the interceptor 350
or client agent 120. In one embodiment, the interceptor 350
sets the destination information for the connection to a local
IP address and port of the client 102 on which the client agent
120 is listening. For example, the client agent 120 may com
prise a proxy service listening on a local IP address and port
for redirected transport layer communications. In some
embodiments, the client agent 120 then communicates the
redirected transport layer communication to the appliance
2OO.

0.138. In some embodiments, the interceptor 350 inter
cepts a Domain Name Service (DNS) request. In one embodi
ment, the client agent 120 and/or interceptor 350 resolves the
DNS request. In another embodiment, the interceptor trans
mits the intercepted DNS request to the appliance 200 for
DNS resolution. In one embodiment, the appliance 200
resolves the DNS request and communicates the DNS
response to the client agent 120. In some embodiments, the
appliance 200 resolves the DNS request via another appliance
200' or a DNS Server 106.

0.139. In yet another embodiment, the client agent 120 may
comprise two agents 120 and 120". In one embodiment, a first
agent 120 may comprise an interceptor 350 operating at the
network layer of the network stack 310. In some embodi
ments, the first agent 120 intercepts network layer requests
such as Internet Control Message Protocol (ICMP) requests
(e.g., ping and traceroute). In other embodiments, the second
agent 120' may operate at the transport layer and intercept
transport layer communications. In some embodiments, the
first agent 120 intercepts communications at one layer of the
network stack 210 and interfaces with or communicates the
intercepted communication to the second agent 120".

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 38 of 59

US 2010/0262650 A1

0140. The client agent 120 and/or interceptor 350 may
operate at or interface with a protocol layer in a manner
transparent to any other protocol layer of the network Stack
310. For example, in one embodiment, the interceptor 350
operates or interfaces with the transport layer of the network
stack 310 transparently to any protocol layer below the trans
port layer, Such as the network layer, and any protocol layer
above the transport layer, Such as the session, presentation or
application layer protocols. This allows the other protocol
layers of the network stack 310 to operate as desired and
without modification for using the interceptor 350. As such,
the client agent 120 and/or interceptor 350 can interface with
the transport layer to secure, optimize, accelerate, route or
load-balance any communications provided via any protocol
carried by the transport layer, such as any application layer
protocol over TCP/IP.
0141 Furthermore, the client agent 120 and/or interceptor
may operate at or interface with the network stack 310 in a
manner transparent to any application, a user of the client 102.
and any other computing device, such as a server, in commu
nications with the client 102. The client agent 120 and/or
interceptor 350 may be installed and/or executed on the client
102 in a manner without modification of an application. In
Some embodiments, the user of the client 102 or a computing
device in communications with the client 102 are not aware of
the existence, execution or operation of the client agent 120
and/or interceptor 350. As such, in some embodiments, the
client agent 120 and/or interceptor 350 is installed, executed,
and/or operated transparently to an application, user of the
client 102, another computing device. Such as a server, or any
of the protocol layers above and/or below the protocol layer
interfaced to by the interceptor 350.
0142. The client agent 120 includes an acceleration pro
gram 302, a streaming client 306, a collection agent 304,
and/or monitoring agent 197. In one embodiment, the client
agent 120 comprises an Independent Computing Architecture
(ICA) client, or any portion thereof, developed by Citrix
Systems, Inc. of Fort Lauderdale, Fla., and is also referred to
as an ICA client. In some embodiments, the client 120 com
prises an application streaming client 306 for streaming an
application from a server 106 to a client 102. In some embodi
ments, the client agent 120 comprises an acceleration pro
gram 302 for accelerating communications between client
102 and server 106. In another embodiment, the client agent
120 includes a collection agent 304 for performing end-point
detection/scanning and collecting end-point information for
the appliance 200 and/or server 106.
0143. In some embodiments, the acceleration program
302 comprises a client-side acceleration program for per
forming one or more acceleration techniques to accelerate,
enhance or otherwise improve a client's communications
with and/or access to a server 106, Such as accessing an
application provided by a server 106. The logic, functions,
and/or operations of the executable instructions of the accel
eration program 302 may perform one or more of the follow
ing acceleration techniques: 1) multi-protocol compression,
2) transport control protocol pooling, 3) transport control
protocol multiplexing, 4) transport control protocol buffer
ing, and 5) caching via a cache manager. Additionally, the
acceleration program 302 may perform encryption and/or
decryption of any communications received and/or transmit
ted by the client 102. In some embodiments, the acceleration
program 302 performs one or more of the acceleration tech
niques in an integrated manner or fashion. Additionally, the

Oct. 14, 2010

acceleration program 302 can perform compression on any of
the protocols, or multiple-protocols, carried as a payload of a
network packet of the transport layer protocol.
0144. The streaming client 306 comprises an application,
program, process, service, task or executable instructions for
receiving and executing a streamed application from a server
106. A server 106 may stream one or more application data
files to the streaming client 306 for playing, executing or
otherwise causing to be executed the application on the client
102. In some embodiments, the server 106 transmits a set of
compressed or packaged application data files to the stream
ing client 306. In some embodiments, the plurality of appli
cation files are compressed and stored on a file server within
an archive file such as a CAB, ZIP SIT, TAR, JAR or other
archive. In one embodiment, the server 106 decompresses,
unpackages or unarchives the application files and transmits
the files to the client 102. In another embodiment, the client
102 decompresses, unpackages or unarchives the application
files. The streaming client 306 dynamically installs the appli
cation, orportion thereof, and executes the application. In one
embodiment, the streaming client 306 may be an executable
program. In some embodiments, the streaming client 306
may be able to launch another executable program.
0145 The collection agent 304 comprises an application,
program, process, service, task or executable instructions for
identifying, obtaining and/or collecting information about the
client 102. In some embodiments, the appliance 200 transmits
the collection agent 304 to the client 102 or client agent 120.
The collection agent 304 may be configured according to one
or more policies of the policy engine 236 of the appliance. In
other embodiments, the collection agent 304 transmits col
lected information on the client 102 to the appliance 200. In
one embodiment, the policy engine 236 of the appliance 200
uses the collected information to determine and provide
access, authentication and authorization control of the cli
ent's connection to a network 104.

0146 In one embodiment, the collection agent 304 com
prises an end-point detection and scanning mechanism,
which identifies and determines one or more attributes or
characteristics of the client. For example, the collection agent
304 may identify and determine any one or more of the
following client-side attributes: 1) the operating systemanfor
a version of an operating system, 2) a service pack of the
operating system, 3) a running service, 4) a running process,
and 5) a file. The collection agent 304 may also identify and
determine the presence or versions of any one or more of the
following on the client: 1) antivirus Software, 2) personal
firewall software, 3) anti-spam Software, and 4) internet Secu
rity software. The policy engine 236 may have one or more
policies based on any one or more of the attributes or charac
teristics of the client or client-side attributes.

0.147. In some embodiments, the client agent 120 includes
a monitoring agent 197 as discussed in conjunction with
FIGS. 1D and 2B. The monitoring agent 197 may be any type
and form of script, Such as Visual Basic or JavaScript. In one
embodiment, the monitoring agent 129 monitors and mea
sures performance of any portion of the client agent 120. For
example, in Some embodiments, the monitoring agent 129
monitors and measures performance of the acceleration pro
gram 302. In another embodiment, the monitoring agent 129
monitors and measures performance of the streaming client
306. In other embodiments, the monitoring agent 129 moni
tors and measures performance of the collection agent 304. In
still another embodiment, the monitoring agent 129 monitors

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 39 of 59

US 2010/0262650 A1

and measures performance of the interceptor 350. In some
embodiments, the monitoring agent 129 monitors and mea
sures any resource of the client 102, such as memory, CPU
and disk.
0148. The monitoring agent 197 may monitor and mea
Sure performance of any application of the client. In one
embodiment, the monitoring agent 129 monitors and mea
sures performance of a browser on the client 102. In some
embodiments, the monitoring agent 197 monitors and mea
Sures performance of any application delivered via the client
agent 120. In other embodiments, the monitoring agent 197
measures and monitors end user response times for an appli
cation, such as web-based or HTTP response times. The
monitoring agent 197 may monitor and measure performance
of an ICA or RDP client. In another embodiment, the moni
toring agent 197 measures and monitors metrics for a user
session or application session. In some embodiments, moni
toring agent 197 measures and monitors an ICA or RDP
session. In one embodiment, the monitoring agent 197 mea
sures and monitors the performance of the appliance 200 in
accelerating delivery of an application and/or data to the
client 102.
0149. In some embodiments and still referring to FIG.3, a

first program 322 may be used to install and/or execute the
client agent 120, or portion thereof, such as the interceptor
350, automatically, silently, transparently, or otherwise. In
one embodiment, the first program 322 comprises a plugin
component, Such an ActiveX control or Java control or script
that is loaded into and executed by an application. For
example, the first program comprises an ActiveX control
loaded and run by a web browser application, such as in the
memory space or context of the application. In another
embodiment, the first program 322 comprises a set of execut
able instructions loaded into and run by the application, Such
as a browser. In one embodiment, the first program 322 com
prises a designed and constructed program to install the client
agent 120. In some embodiments, the first program 322
obtains, downloads, or receives the client agent 120 via the
network from another computing device. In another embodi
ment, the first program 322 is an installer program or a plug
and play manager for installing programs, such as network
drivers, on the operating system of the client 102.

D. Systems and Methods for Providing Virtualized Applica
tion Delivery Controller
0150 Referring now to FIG. 4A, a block diagram depicts
one embodiment of a virtualization environment 400. In brief
overview, a computing device 100 includes a hypervisor
layer, a virtualization layer, and a hardware layer. The hyper
visor layer includes a hypervisor 401 (also referred to as a
virtualization manager) that allocates and manages access to
a number of physical resources in the hardware layer (e.g., the
processor(s) 421, and disk(s) 428) by at least one virtual
machine executing in the virtualization layer. The virtualiza
tion layer includes at least one operating system 410 and a
plurality of virtual resources allocated to the at least one
operating system 410. Virtual resources may include, without
limitation, a plurality of virtual processors 432a, 432b, 432c
(generally 432), and virtual disks 442a, 442b, 442c (generally
442), as well as virtual resources Such as virtual memory and
virtual network interfaces. The plurality of virtual resources
and the operating system 410 may be referred to as a virtual
machine 406. A virtual machine 406 may include a control
operating system 405 in communication with the hypervisor

Oct. 14, 2010

401 and used to execute applications for managing and con
figuring other virtual machines on the computing device 100.
0151. In greater detail, a hypervisor 401 may provide vir
tual resources to an operating system in any manner which
simulates the operating system having access to a physical
device. A hypervisor 401 may provide virtual resources to any
number of guest operating systems 410a, 410.b (generally
410). In some embodiments, a computing device 100
executes one or more types of hypervisors. In these embodi
ments, hypervisors may be used to emulate virtual hardware,
partition physical hardware, virtualize physical hardware,
and execute virtual machines that provide access to comput
ing environments. Hypervisors may include those manufac
tured by VMWare, Inc., of Palo Alto, Calif.; the XEN hyper
visor, an open source product whose development is overseen
by the open source Xen.org community: HyperV, Virtu
alServer or virtual PC hypervisors provided by Microsoft, or
others. In some embodiments, a computing device 100
executing a hypervisor that creates a virtual machine platform
on which guest operating systems may execute is referred to
as a host server. In one of these embodiments, for example,
the computing device 100 is a XEN SERVER provided by
Citrix Systems, Inc., of Fort Lauderdale, Fla.
0152. In some embodiments, a hypervisor 401 executes
within an operating system executing on a computing device.
In one of these embodiments, a computing device executing
an operating system and a hypervisor 401 may be said to have
a host operating system (the operating system executing on
the computing device), and a guest operating system (an
operating system executing within a computing resource par
tition provided by the hypervisor 401). In other embodiments,
a hypervisor 401 interacts directly with hardware on a com
puting device, instead of executing on a host operating sys
tem. In one of these embodiments, the hypervisor 401 may be
said to be executing on “bare metal.” referring to the hardware
comprising the computing device.
0153. In some embodiments, a hypervisor 401 may create
a virtual machine 406a-c (generally 406) in which an operat
ing system 410 executes. In one of these embodiments, for
example, the hypervisor 401 loads a virtual machine image to
create a virtual machine 406. In another of these embodi
ments, the hypervisor 401 executes an operating system 410
within the virtual machine 406. In still another of these
embodiments, the virtual machine 406 executes an operating
system 410.
0154) In some embodiments, the hypervisor 401 controls
processor Scheduling and memory partitioning for a virtual
machine 406 executing on the computing device 100. In one
of these embodiments, the hypervisor 401 controls the execu
tion of at least one virtual machine 406. In another of these
embodiments, the hypervisor 401 presents at least one virtual
machine 406 with an abstraction of at least one hardware
resource provided by the computing device 100. In other
embodiments, the hypervisor 401 controls whether and how
physical processor capabilities are presented to the virtual
machine 406.

0.155. A control operating system 405 may execute at least
one application for managing and configuring the guest oper
ating systems. In one embodiment, the control operating sys
tem. 405 may execute an administrative application, Such as
an application including a user interface providing adminis
trators with access to functionality for managing the execu
tion of a virtual machine, including functionality for execut
ing a virtual machine, terminating an execution of a virtual

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 40 of 59

US 2010/0262650 A1

machine, or identifying a type of physical resource for allo
cation to the virtual machine. In another embodiment, the
hypervisor 401 executes the control operating system 405
within a virtual machine 406 created by the hypervisor 401. In
still another embodiment, the control operating system 405
executes in a virtual machine 406 that is authorized to directly
access physical resources on the computing device 100. In
Some embodiments, a control operating system 405a on a
computing device 100a may exchange data with a control
operating system 405b on a computing device 100b, via com
munications between a hypervisor 401a and a hypervisor
401b. In this way, one or more computing devices 100 may
exchange data with one or more of the other computing
devices 100 regarding processors and other physical
resources available in a pool of resources. In one of these
embodiments, this functionality allows a hypervisor to man
age a pool of resources distributed across a plurality of physi
cal computing devices. In another of these embodiments,
multiple hypervisors manage one or more of the guest oper
ating systems executed on one of the computing devices 100.
0156. In one embodiment, the control operating system
405 executes in a virtual machine 406 that is authorized to
interact with at least one guest operating system 410. In
another embodiment, a guest operating system 410 commu
nicates with the control operating system 405 via the hyper
visor 401 in order to request access to a disk or a network. In
still another embodiment, the guest operating system 410 and
the control operating system 405 may communicate via a
communication channel established by the hypervisor 401,
Such as, for example, via a plurality of shared memory pages
made available by the hypervisor 401.
0157. In some embodiments, the control operating system
405 includes a network back-end driver for communicating
directly with networking hardware provided by the comput
ing device 100. In one of these embodiments, the network
back-end driverprocesses at least one virtual machine request
from at least one guest operating system 110. In other
embodiments, the control operating system 405 includes a
block back-end driver for communicating with a storage ele
ment on the computing device 100. In one of these embodi
ments, the block back-end driver reads and writes data from
the storage element based upon at least one request received
from a guest operating system 410.
0158. In one embodiment, the control operating system
405 includes a tools stack 404. In another embodiment, a tools
stack 404 provides functionality for interacting with the
hypervisor 401, communicating with other control operating
systems 405 (for example, on a second computing device
100b), or managing virtual machines 406b, 406c on the com
puting device 100. In another embodiment, the tools stack
404 includes customized applications for providing improved
management functionality to an administrator of a virtual
machine farm. In some embodiments, at least one of the tools
stack 404 and the control operating system 405 include a
management API that provides an interface for remotely con
figuring and controlling virtual machines 406 running on a
computing device 100. In other embodiments, the control
operating system 405 communicates with the hypervisor 401
through the tools stack 104.
0159. In one embodiment, the hypervisor 401 executes a
guest operating system 410 within a virtual machine 406
created by the hypervisor 401. In another embodiment, the
guest operating system 410 provides a user of the computing
device 100 with access to resources within a computing envi

Oct. 14, 2010

ronment. In still another embodiment, a resource includes a
program, an application, a document, a file, a plurality of
applications, a plurality of files, an executable program file, a
desktop environment, a computing environment, or other
resource made available to a user of the computing device
100. In yet another embodiment, the resource may be deliv
ered to the computing device 100 via a plurality of access
methods including, but not limited to, conventional installa
tion directly on the computing device 100, delivery to the
computing device 100 via a method for application stream
ing, delivery to the computing device 100 of output data
generated by an execution of the resource on a second com
puting device 100' and communicated to the computing
device 100 via a presentation layer protocol, delivery to the
computing device 100 of output data generated by an execu
tion of the resource via a virtual machine executing on a
second computing device 100', or execution from a remov
able storage device connected to the computing device 100,
Such as a USB device, or via a virtual machine executing on
the computing device 100 and generating output data. In
Some embodiments, the computing device 100 transmits out
put data generated by the execution of the resource to another
computing device 100'.
0160. In one embodiment, the guest operating system 410,
in conjunction with the virtual machine on which it executes,
forms a fully-virtualized virtual machine which is not aware
that it is a virtual machine; such a machine may be referred to
as a “Domain U HVM (Hardware Virtual Machine) virtual
machine”. In another embodiment, a fully-virtualized
machine includes Software emulating a Basic Input/Output
System (BIOS) in order to execute an operating system within
the fully-virtualized machine. In still another embodiment, a
fully-virtualized machine may include a driver that provides
functionality by communicating with the hypervisor 401. In
such an embodiment, the driver may be aware that it executes
within a virtualized environment. In another embodiment, the
guest operating system 410, in conjunction with the virtual
machine on which it executes, forms a paravirtualized virtual
machine, which is aware that it is a virtual machine; such a
machine may be referred to as a “Domain UPV virtual
machine'. In another embodiment, a paravirtualized machine
includes additional drivers that a fully-virtualized machine
does not include. In still another embodiment, the paravirtu
alized machine includes the network back-end driver and the
block back-end driver included in a control operating system
405, as described above.
0.161 Referring now to FIG. 4B, a block diagram depicts
one embodiment of a plurality of networked computing
devices in a system in which at least one physical host
executes a virtual machine. In brief overview, the system
includes a management component 404 and a hypervisor 401.
The system includes a plurality of computing devices 100, a
plurality of virtual machines 406, a plurality of hypervisors
401, a plurality of management components referred to as
tools stacks 404, and a physical resource 421, 428. The plu
rality of physical machines 100 may each be provided as
computing devices 100, described above in connection with
FIGS. 1 E-1H and 4A.

0162. In greater detail, a physical disk 428 is provided by
a computing device 100 and stores at least a portion of a
virtual disk 442. In some embodiments, a virtual disk 442 is
associated with a plurality of physical disks 428. In one of
these embodiments, one or more computing devices 100 may
exchange data with one or more of the other computing

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 41 of 59

US 2010/0262650 A1

devices 100 regarding processors and other physical
resources available in a pool of resources, allowing a hyper
visor to manage a pool of resources distributed across a plu
rality of physical computing devices. In some embodiments,
a computing device 100 on which a virtual machine 406
executes is referred to as a physical host 100 or as a host
machine 100.

0163 The hypervisor executes on a processor on the com
puting device 100. The hypervisor allocates, to a virtual disk,
an amount of access to the physical disk. In one embodiment,
the hypervisor 401 allocates an amount of space on the physi
cal disk. In another embodiment, the hypervisor 401 allocates
a plurality of pages on the physical disk. In some embodi
ments, the hypervisor provisions the virtual disk 442 as part of
a process of initializing and executing a virtual machine 450.
0164. In one embodiment, the management component
404a is referred to as a pool management component 404a. In
another embodiment, a management operating system 405a,
which may be referred to as a control operating system 405a,
includes the management component. In some embodiments,
the management component is referred to as a tools stack. In
one of these embodiments, the management component is the
tools stack 404 described above in connection with FIG. 4A.
In other embodiments, the management component 404 pro
vides a user interface for receiving, from a user Such as an
administrator, an identification of a virtual machine 406 to
provision and/or execute. In still other embodiments, the
management component 404 provides a user interface for
receiving, from a user Such as an administrator, the request for
migration of a virtual machine 406b from one physical
machine 100 to another. In further embodiments, the man
agement component 404a identifies a computing device 100b
on which to execute a requested virtual machine 406d and
instructs the hypervisor 401b on the identified computing
device 100b to execute the identified virtual machine; such a
management component may be referred to as a pool man
agement component.
0.165 Referring now to FIG. 4C, embodiments of a virtual
application delivery controller or virtual appliance 450 are
depicted. In brief overview, any of the functionality and/or
embodiments of the appliance 200 (e.g., an application deliv
ery controller) described above in connection with FIGS. 2A
and 2B may be deployed in any embodiment of the virtualized
environment described above in connection with FIGS. 4A
and 4B. Instead of the functionality of the application delivery
controller being deployed in the form of an appliance 200,
Such functionality may be deployed in a virtualized environ
ment 400 on any computing device 100, such as a client 102.
server 106 or appliance 200.
0166 Referring now to FIG. 4C, a diagram of an embodi
ment of a virtual appliance 450 operating on a hypervisor 401
of a server 106 is depicted. As with the appliance 200 of FIGS.
2A and 2B, the virtual appliance 450 may provide function
ality for availability, performance, offload and security. For
availability, the virtual appliance may perform load balancing
between layers 4 and 7 of the network and may also perform
intelligent service health monitoring. For performance
increases via network traffic acceleration, the virtual appli
ance may perform caching and compression. To offload pro
cessing of any servers, the virtual appliance may perform
connection multiplexing and pooling and/or SSL processing.
For security, the virtual appliance may perform any of the
application firewall functionality and SSL VPN function of
appliance 200.

20
Oct. 14, 2010

0.167 Any of the modules of the appliance 200 as
described in connection with FIG. 2A may be packaged,
combined, designed or constructed in a form of the virtual
ized appliance delivery controller 450 deployable as one or
more software modules or components executable in a virtu
alized environment 300 or non-virtualized environment on
any server, such as an off the shelf server. For example, the
virtual appliance may be provided in the form of an installa
tion package to install on a computing device. With reference
to FIG. 2A, any of the cache manager 232, policy engine 236,
compression 238, encryption engine 234, packet engine 240,
GUI 210, CLI 212, shell services 214 and health monitoring
programs 216 may be designed and constructed as a Software
component or module to run on any operating system of a
computing device and/or of a virtualized environment 300.
Instead of using the encryption processor 260, processor 262,
memory 264 and network stack 267 of the appliance 200, the
virtualized appliance 400 may use any of these resources as
provided by the virtualized environment 400 or as otherwise
available on the server 106.
0168 Still referring to FIG. 4C, and in brief overview, any
one or more vServers 275A-275N may be in operation or
executed in a virtualized environment 400 of any type of
computing device 100, such as any server 106. Any of the
modules or functionality of the appliance 200 described in
connection with FIG. 2B may be designed and constructed to
operate in either a virtualized or non-virtualized environment
of a server. Any of the vServer 275, SSL VPN 280, Intranet
UP282, Switching 284, DNS 286, acceleration 288, App FW
280 and monitoring agent may be packaged, combined,
designed or constructed in a form of application delivery
controller 450 deployable as one or more software modules or
components executable on a device and/or virtualized envi
ronment 400.
0169. In some embodiments, a server may execute mul
tiple virtual machines 406a-406m in the virtualization envi
ronment with each virtual machine running the same or dif
ferent embodiments of the virtual application delivery
controller 450. In some embodiments, the server may execute
one or more virtual appliances 450 on one or more virtual
machines on a core of a multi-core processing system. In
Some embodiments, the server may execute one or more
virtual appliances 450 on one or more virtual machines on
each processor of a multiple processor device.

E. Systems and Methods for Providing a Multi-Core Archi
tecture

(0170. In accordance with Moore's Law, the number of
transistors that may be placed on an integrated circuit may
double approximately every two years. However, CPU speed
increases may reach plateaus, for example CPU speed has
been around 3.5-4 GHz range since 2005. In some cases, CPU
manufacturers may not rely on CPU speed increases to gain
additional performance. Some CPU manufacturers may add
additional cores to their processors to provide additional per
formance. Products, such as those of software and network
ing vendors, that rely on CPUs for performance gains may
improve their performance by leveraging these multi-core
CPUs. The software designed and constructed for a single
CPU may be redesigned and/or rewritten to take advantage of
a multi-threaded, parallel architecture or otherwise a multi
core architecture.
0171 A multi-core architecture of the appliance 200,
referred to as nCore or multi-core technology, allows the

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 42 of 59

US 2010/0262650 A1

appliance in Some embodiments to break the single core
performance barrier and to leverage the power of multi-core
CPUs. In the previous architecture described in connection
with FIG. 2A, a single network or packet engine is run. The
multiple cores of the nGore technology and architecture allow
multiple packet engines to run concurrently and/or in parallel.
With a packet engine running on each core, the appliance
architecture leverages the processing capacity of additional
cores. In some embodiments, this provides up to a 7x increase
in performance and Scalability.
0172 Illustrated in FIG. 5A are some embodiments of
work, task, load or network traffic distribution across one or
more processor cores according to a type of parallelism or
parallel computing scheme. Such as functional parallelism,
data parallelism or flow-based data parallelism. In brief over
view, FIG. 5A illustrates embodiments of a multi-core system
Such as an appliance 200' with n-cores, a total of cores num
bers 1 through N. In one embodiment, work, load or network
traffic can be distributed among a first core 505A, a second
core 505B, a third core 505C, a fourth core 505D, a fifth core
505E, a sixth core 505F, a seventh core 505G, and so on such
that distribution is across all or two or more of the n cores
505N (hereinafter referred to collectively as cores 505.) There
may be multiple VIPs 275 each running on a respective core
of the plurality of cores. There may be multiple packet
engines 240 each running on a respective core of the plurality
of cores. Any of the approaches used may lead to different,
varying or similar workload or performance level 515 across
any of the cores. For a functional parallelism approach, each
core may run a different function of the functionalities pro
vided by the packet engine, a VIP 275 or appliance 200. In a
data parallelism approach, data may be paralleled or distrib
uted across the cores based on the Network Interface Card
(NIC) or VIP 275 receiving the data. In another data parallel
ism approach, processing may be distributed across the cores
by distributing data flows to each core.
(0173. In further detail to FIG.5A, in some embodiments,
load, work or network traffic can be distributed among cores
505 according to functional parallelism 500. Functional par
allelism may be based on each core performing one or more
respective functions. In some embodiments, a first core may
perform a first function while a second core performs a sec
ond function. In functional parallelism approach, the func
tions to be performed by the multi-core system are divided
and distributed to each core according to functionality. In
Some embodiments, functional parallelism may be referred to
as task parallelism and may beachieved when each processor
or core executes a different process or function on the same or
different data. The core or processor may execute the same or
different code. In some cases, different execution threads or
code may communicate with one another as they work. Com
munication may take place to pass data from one thread to the
next as part of a workflow.
0.174. In some embodiments, distributing work across the
cores 505 according to functional parallelism 500, can com
prise distributing network traffic according to a particular
function such as network input/output management (NWI/O)
510A, secure sockets layer (SSL) encryption and decryption
510B and transmission control protocol (TCP) functions
510C. This may lead to a work, performance or computing
load 515 based on a volume or level of functionality being
used. In some embodiments, distributing work across the
cores 505 according to data parallelism 540, can comprise
distributing an amount of work515 based on distributing data

Oct. 14, 2010

associated with a particular hardware or Software component.
In some embodiments, distributing work across the cores 505
according to flow-based data parallelism 520, can comprise
distributing data based on a context or flow such that the
amount of work 515A-N on each core may be similar, sub
stantially equal or relatively evenly distributed.
0.175. In the case of the functional parallelism approach,
each core may be configured to run one or more functional
ities of the plurality of functionalities provided by the packet
engine or VIP of the appliance. For example, core 1 may
perform network I/O processing for the appliance 200' while
core 2 performs TCP connection management for the appli
ance. Likewise, core 3 may perform SSL offloading while
core 4 may perform layer 7 or application layer processing
and traffic management. Each of the cores may perform the
same function or different functions. Each of the cores may
perform more than one function. Any of the cores may run any
of the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by func
tion in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG. 5A, division by function
may lead to different cores running at different levels of
performance or load 515.
0176). In the case of the functional parallelism approach,
each core may be configured to run one or more functional
ities of the plurality of functionalities provided by the packet
engine of the appliance. For example, core 1 may perform
network I/O processing for the appliance 200' while core 2
performs TCP connection management for the appliance.
Likewise, core 3 may perform SSL offloading while core 4
may perform layer 7 or application layer processing and
traffic management. Each of the cores may perform the same
function or different functions. Each of the cores may per
form more than one function. Any of the cores may run any of
the functionality or portions thereof identified and/or
described in conjunction with FIGS. 2A and 2B. In this the
approach, the work across the cores may be divided by func
tion in either a coarse-grained or fine-grained manner. In
some cases, as illustrated in FIG.5A division by function may
lead to different cores running at different levels of load or
performance.
0177. The functionality or tasks may be distributed in any
arrangement and scheme. For example, FIG. 5B illustrates a
first core, Core 1505A, processing applications and pro
cesses associated with network I/O functionality 510A. Net
work traffic associated with network I/O, in some embodi
ments, can be associated with a particular port number. Thus,
outgoing and incoming packets having a port destination
associated with NW I/O 510A will be directed towards Core
1505A which is dedicated to handling all network traffic
associated with the NW I/O port. Similarly, Core 2505B is
dedicated to handling functionality associated with SSL pro
cessing and Core 4505D may be dedicated handling all TCP
level processing and functionality.
0.178 While FIG. 5A illustrates functions such as network
I/O, SSL and TCP, other functions can be assigned to cores.
These other functions can include any one or more of the
functions or operations described herein. For example, any of
the functions described in conjunction with FIGS. 2A and 2B
may be distributed across the cores on a functionality basis. In
some cases, a first VIP 275A may run on a first core while a
second VIP 275B with a different configuration may run on a
second core. In some embodiments, each core 505 can handle

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 43 of 59

US 2010/0262650 A1

a particular functionality such that each core 505 can handle
the processing associated with that particular function. For
example, Core 2505B may handle SSL offloading while Core
4505D may handle application layer processing and traffic
management.
0179. In other embodiments, work, load or network traffic
may be distributed among cores 505 according to any type
and form of data parallelism 540. In some embodiments, data
parallelism may be achieved in a multi-core system by each
core performing the same task or functionally on different
pieces of distributed data. In some embodiments, a single
execution thread or code controls operations on all pieces of
data. In other embodiments, different threads or instructions
control the operation, but may execute the same code. In some
embodiments, data parallelism is achieved from the perspec
tive of a packet engine, VServers (VIPs) 275A-C, network
interface cards (NIC) 542D-E and/or any other networking
hardware or software included on or associated with an appli
ance 200. For example, each core may run the same packet
engine or VIP code or configuration but operate on different
sets of distributed data. Each networking hardware or soft
ware construct can receive different, varying or Substantially
the same amount of data, and as a result may have varying,
different or relatively the same amount of load 515
0180. In the case of a data parallelism approach, the work
may be divided up and distributed based on VIPs, NICs and/or
data flows of the VIPs or NICs. In one of these approaches, the
work of the multi-core system may be divided or distributed
among the VIPs by having each VIP work on a distributed set
of data. For example, each core may be configured to run one
or more VIPs. Network traffic may be distributed to the core
for each VIP handling that traffic. In another of these
approaches, the work of the appliance may be divided or
distributed among the cores based on which NIC receives the
network traffic. For example, network traffic of a first NIC
may be distributed to a first core while network traffic of a
second NIC may be distributed to a second core. In some
cases, a core may process data from multiple NICs.
0181. While FIG. 5A illustrates a single vServer associ
ated with a single core 505, as is the case for VIP1275A, VIP2
275B and VIP3275C. In some embodiments, a single vServer
can be associated with one or more cores 505. In contrast, one
or more vServers can be associated with a single core 505.
Associating a vServer with a core 505 may include that core
505 to process all functions associated with that particular
vServer. In some embodiments, each core executes a VIP
having the same code and configuration. In other embodi
ments, each core executes a VIP having the same code but
different configuration. In some embodiments, each core
executes a VIP having different code and the same or different
configuration.
0182 Like VServers, NICs can also be associated with
particular cores 505. In many embodiments, NICs can be
connected to one or more cores 505 such that when a NIC
receives or transmits data packets, a particular core 505
handles the processing involved with receiving and transmit
ting the data packets. In one embodiment, a single NIC can be
associated with a single core 505, as is the case with NIC1
542D and NIC2 542E. In other embodiments, one or more
NICs can be associated with a single core 505. In other
embodiments, a single NIC can be associated with one or
more cores 505. In these embodiments, load could be distrib
uted amongst the one or more cores 505 such that each core
505 processes a substantially similar amount of load. A core

22
Oct. 14, 2010

505 associated with a NIC may process all functions and/or
data associated with that particular NIC.
0183 While distributing work across cores based on data
of VIPs or NICs may have a level of independency, in some
embodiments, this may lead to unbalanced use of cores as
illustrated by the varying loads 515 of FIG. 5A.
0184. In some embodiments, load, work or network traffic
can be distributed among cores 505 based on any type and
form of data flow. In another of these approaches, the work
may be divided or distributed among cores based on data
flows. For example, network traffic between a client and a
server traversing the appliance may be distributed to and
processed by one core of the plurality of cores. In some cases,
the core initially establishing the session or connection may
be the core for which network traffic for that session or
connection is distributed. In some embodiments, the data flow
is based on any unit or portion of network traffic, Such as a
transaction, a request/response communication or traffic
originating from an application on a client. In this manner and
in Some embodiments, data flows between clients and servers
traversing the appliance 200' may be distributed in a more
balanced manner than the other approaches.
0185. In flow-based data parallelism 520, distribution of
data is related to any type of flow of data, Such as request/
response pairings, transactions, sessions, connections or
application communications. For example, network traffic
between a client and a server traversing the appliance may be
distributed to and processed by one core of the plurality of
cores. In some cases, the core initially establishing the session
or connection may be the core for which network traffic for
that session or connection is distributed. The distribution of
data flow may be such that each core 505 carries a substan
tially equal or relatively evenly distributed amount of load,
data or network traffic.

0186. In some embodiments, the data flow is based on any
unit or portion of network traffic, such as a transaction, a
request/response communication or traffic originating from
an application on a client. In this manner and in some embodi
ments, data flows between clients and servers traversing the
appliance 200' may be distributed in a more balanced manner
than the other approached. In one embodiment, data flow can
be distributed based on a transaction or a series of transac
tions. This transaction, in some embodiments, can be between
a client and a server and can be characterized by an IP address
or other packet identifier. For example, Core 1505A can be
dedicated to transactions between a particular client and a
particular server, therefore the load 536A on Core 1505A
may be comprised of the network traffic associated with the
transactions between the particular client and server. Allocat
ing the network traffic to Core 1505A can be accomplished
by routing all data packets originating from either the particu
lar client or server to Core 1505A.

0187 While work or load can be distributed to the cores
based in part on transactions, in other embodiments load or
work can be allocated on a per packet basis. In these embodi
ments, the appliance 200 can intercept data packets and allo
cate them to a core 505 having the least amount of load. For
example, the appliance 200 could allocate a first incoming
data packet to Core 1505A because the load 536A on Core 1
is less than the load 536B-N on the rest of the cores 505B-N.
Once the first data packet is allocated to Core 1505A, the
amount of load 536A on Core 1505A is increased propor
tional to the amount of processing resources needed to pro
cess the first data packet. When the appliance 200 intercepts

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 44 of 59

US 2010/0262650 A1

a second data packet, the appliance 200 will allocate the load
to Core 450SD because Core 4505D has the Second least
amount of load. Allocating data packets to the core with the
least amount of load can, in some embodiments, ensure that
the load 536A-N distributed to each core 505 remains Sub
stantially equal.
0188 In other embodiments, load can be allocated on aper
unit basis where a section of network traffic is allocated to a
particular core 505. The above-mentioned example illustrates
load balancing on a per?packet basis. In other embodiments,
load can be allocated based on a number of packets such that
every 10, 100 or 1000 packets are allocated to the core 505
having the least amount of load. The number of packets
allocated to a core 505 can be a number determined by an
application, user or administrator and can be any number
greater than Zero. In still other embodiments, load can be
allocated based on a time metric Such that packets are distrib
uted to a particular core 505 for a predetermined amount of
time. In these embodiments, packets can be distributed to a
particular core 505 for five milliseconds or for any period of
time determined by a user, program, system, administrator or
otherwise. After the predetermined time period elapses, data
packets are transmitted to a different core 505 for the prede
termined period of time.
0189 Flow-based data parallelism methods for distribut
ing work, load or network traffic among the one or more cores
505 can comprise any combination of the above-mentioned
embodiments. These methods can be carried out by any part
of the appliance 200, by an application or set of executable
instructions executing on one of the cores 505, such as the
packet engine, or by any application, program or agent
executing on a computing device in communication with the
appliance 200.
0190. The functional and data parallelism computing
schemes illustrated in FIG. 5A can be combined in any man
ner to generate a hybrid parallelism or distributed processing
scheme that encompasses function parallelism 500, data par
allelism 540, flow-based data parallelism 520 or any portions
thereof. In some cases, the multi-core system may use any
type and form of load balancing schemes to distribute load
among the one or more cores 505. The load balancing scheme
may be used in any combination with any of the functional
and data parallelism schemes or combinations thereof.
(0191 Illustrated in FIG. 5B is an embodiment of a multi
core system 545, which may be any type and form of one or
more systems, appliances, devices or components. This sys
tem 545, in some embodiments, can be included within an
appliance 200 having one or more processing cores 505A-N.
The system 545 can further include one or more packet
engines (PE) or packet processing engines (PPE) 548A-N
communicating with a memory bus 556. The memory bus
may be used to communicate with the one or more processing
cores 505A-N. Also included within the system 545 can be
one or more network interface cards (NIC) 552 and a flow
distributor 550 which can further communicate with the one
or more processing cores 505A-N. The flow distributor 550
can comprise a Receive Side Scaler (RSS) or Receive Side
Scaling (RSS) module 560.
(0192 Further referring to FIG. 5B, and in more detail, in
one embodiment the packet engine(s) 548A-N can comprise
any portion of the appliance 200 described herein, such as any
portion of the appliance described in FIGS. 2A and 2B. The
packet engine(s) 548A-N can, in some embodiments, com
prise any of the following elements: the packet engine 240, a

Oct. 14, 2010

network Stack 267; a cache manager 232; a policy engine 236;
a compression engine 238; an encryption engine 234, a GUI
210; a CLI 212; shell services 214; monitoring programs 216:
and any other software or hardware element able to receive
data packets from one of either the memory bus 556 or the one
of more cores 505A-N. In some embodiments, the packet
engine(s) 548A-N can comprise one or more vServers 275A
N, or any portion thereof. In other embodiments, the packet
engine(s) 548A-N can provide any combination of the fol
lowing functionalities: SSL VPN 280; Intranet UP 282:
switching 284; DNS 286; packet acceleration 288: App FW
280; monitoring Such as the monitoring provided by a moni
toring agent 197; functionalities associated with functioning
as a TCP Stack; load balancing; SSL offloading and process
ing; content Switching; policy evaluation; caching; compres
sion; encoding; decompression; decoding; application fire
wall functionalities: XML processing and acceleration; and
SSL VPN connectivity.
0193 The packet engine(s) 548A-N can, in some embodi
ments, be associated with a particular server, user, client or
network. When a packet engine 548 becomes associated with
a particular entity, that packet engine 548 can process data
packets associated with that entity. For example, should a
packet engine 548 be associated with a first user, that packet
engine 548 will process and operate on packets generated by
the first user, or packets having a destination address associ
ated with the first user. Similarly, the packet engine 548 may
choose not to be associated with a particular entity Such that
the packet engine 548 can process and otherwise operate on
any data packets not generated by that entity or destined for
that entity.
0194 In some instances, the packet engine(s) 548A-N can
be configured to carry out the any of the functional and/or data
parallelism schemes illustrated in FIG.5A. In these instances,
the packet engine(s) 548A-N can distribute functions or data
among the processing cores 505A-N so that the distribution is
according to the parallelism or distribution scheme. In some
embodiments, a single packet engine(s) 548A-N carries out a
load balancing scheme, while in other embodiments one or
more packet engine(s) 548A-N carry out a load balancing
scheme. Each core 505A-N, in one embodiment, can be asso
ciated with a particular packet engine 505 such that load
balancing can be carried out by the packet engine 505. Load
balancing may in this embodiment, require that each packet
engine 505 associated with a core 505 communicate with the
other packet engines 505 associated with cores 505 so that the
packet engines 505 can collectively determine where to dis
tribute load. One embodiment of this process can include an
arbiter that receives votes from each packet engine 505 for
load. The arbiter can distribute load to each packet engine 505
based in part on the age of the engine's vote and in Some cases
a priority value associated with the current amount of load on
an engine's associated core 505.
0.195 Any of the packet engines running on the cores may
run in user mode, kernel or any combination thereof. In some
embodiments, the packet engine operates as an application or
program running is user or application space. In these
embodiments, the packet engine may use any type and form
of interface to access any functionality provided by the ker
nel. In some embodiments, the packet engine operates in
kernel mode or as part of the kernel. In some embodiments, a
first portion of the packet engine operates in user mode while
a second portion of the packet engine operates in kernel mode.
In some embodiments, a first packet engine on a first core

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 45 of 59

US 2010/0262650 A1

executes in kernel mode while a second packet engine on a
second core executes in user mode. In some embodiments, the
packet engine or any portions thereof operates on or in con
junction with the NIC or any drivers thereof.
0196. In some embodiments the memory bus 556 can be
any type and form of memory or computerbus. While a single
memory bus 556 is depicted in FIG. 5B, the system 545 can
comprise any number of memory buses 556. In one embodi
ment, each packet engine 548 can be associated with one or
more individual memory buses 556.
(0197) The NIC 552 can in some embodiments be any of
the network interface cards or mechanisms described herein.
The NIC 552 can have any number of ports. The NIC can be
designed and constructed to connect to any type and form of
network 104. While a single NIC552 is illustrated, the system
545 can comprise any number of NICs 552. In some embodi
ments, each core 505A-N can be associated with one or more
single NICs 552. Thus, each core 505 can be associated with
a single NIC552 dedicated to a particular core 505. The cores
505A-N can comprise any of the processors described herein.
Further, the cores 505A-N can be configured according to any
of the core 505 configurations described herein. Still further,
the cores 505A-N can have any of the core 505 functionalities
described herein. While FIG. 5B illustrates Seven cores
505A-G, any number of cores 505 can be included within the
system 545. In particular, the system 545 can comprise “N”
cores, where “N” is a whole number greater than Zero.
0198 A core may have or use memory that is allocated or
assigned for use to that core. The memory may be considered
private or local memory of that core and only accessible by
that core. A core may have or use memory that is shared or
assigned to multiple cores. The memory may be considered
public or shared memory that is accessible by more than one
core. A core may use any combination of private and public
memory. With separate address spaces for each core, some
level of coordination is eliminated from the case of using the
same address space. With a separate address space, a core can
perform work on information and data in the core's own
address space without worrying about conflicts with other
cores. Each packet engine may have a separate memory pool
for TCP and/or SSL connections.
(0199 Further referring to FIG.5B, any of the functionality
and/or embodiments of the cores 505 described above in
connection with FIG. 5A can be deployed in any embodiment
of the virtualized environment described above in connection
with FIGS. 4A and 4B. Instead of the functionality of the
cores 505 being deployed in the form of a physical processor
505, such functionality may be deployed in a virtualized
environment 400 on any computing device 100, such as a
client 102, server 106 or appliance 200. In other embodi
ments, instead of the functionality of the cores 505 being
deployed in the form of an appliance or a single device, the
functionality may be deployed across multiple devices in any
arrangement. For example, one device may comprise two or
more cores and another device may comprise two or more
cores. For example, a multi-core system may include a cluster
of computing devices, a server farm or network of computing
devices. In some embodiments, instead of the functionality of
the cores 505 being deployed in the form of cores, the func
tionality may be deployed on a plurality of processors, such as
a plurality of single core processors.
0200. In one embodiment, the cores 505 may be any type
and form of processor. In some embodiments, a core can
function Substantially similar to any processor or central pro

24
Oct. 14, 2010

cessing unit described herein. In some embodiment, the cores
505 may comprise any portion of any processor described
herein. While FIG. 5A illustrates seven cores, there can exist
any 'N' number of cores within an appliance 200, where “N”
is any whole number greater than one. In some embodiments,
the cores 505 can be installed within a common appliance
200, while in other embodiments the cores 505 can be
installed within one or more appliance(s) 200 communica
tively connected to one another. The cores 505 can in some
embodiments comprise graphics processing Software, while
in other embodiments the cores 505 provide general process
ing capabilities. The cores 505 can be installed physically
near each other and/or can be communicatively connected to
each other. The cores may be connected by any type and form
of bus or Subsystem physically and/or communicatively
coupled to the cores for transferring data between to, from
and/or between the cores.

0201 While each core 505 can comprise software for
communicating with other cores, in some embodiments a
core manager (Not Shown) can facilitate communication
between each core 505. In some embodiments, the kernel may
provide core management. The cores may interface or com
municate with each other using a variety of interface mecha
nisms. In some embodiments, core to core messaging may be
used to communicate between cores, such as a first core
sending a message or data to a second core via a bus or
Subsystem connecting the cores. In some embodiments, cores
may communicate via any type and form of shared memory
interface. In one embodiment, there may be one or more
memory locations shared among all the cores. In some
embodiments, each core may have separate memory loca
tions shared with each other core. For example, a first core
may have a first shared memory with a second core and a
second share memory with a third core. In some embodi
ments, cores may communicate via any type of programming
or API, such as function calls via the kernel. In some embodi
ments, the operating system may recognize and Support mul
tiple core devices and provide interfaces and API for inter
core communications.

(0202) The flow distributor 550 can be any application,
program, library, Script, task, service, process or any type and
form of executable instructions executing on any type and
form of hardware. In some embodiments, the flow distributor
550 may any design and construction of circuitry to perform
any of the operations and functions described herein. In some
embodiments, the flow distributor distribute, forwards,
routes, controls and/ors manage the distribution of data pack
ets among the cores 505 and/or packet engine or VIPs running
on the cores. The flow distributor 550, in some embodiments,
can be referred to as an interface master. In one embodiment,
the flow distributor 550 comprises a set of executable instruc
tions executing on a core or processor of the appliance 200. In
another embodiment, the flow distributor 550 comprises a set
of executable instructions executing on a computing machine
in communication with the appliance 200. In some embodi
ments, the flow distributor 550 comprises a set of executable
instructions executing on a NIC, Such as firmware. In still
other embodiments, the flow distributor 550 comprises any
combination of software and hardware to distribute data
packets among cores or processors. In one embodiment, the
flow distributor 550 executes on at least one of the cores
505A-N, while in other embodiments a separate flow dis
tributor 550 assigned to each core 505A-N executes on an
associated core 505A-N. The flow distributor may use any

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 46 of 59

US 2010/0262650 A1

type and form of statistical or probabilistic algorithms or
decision making to balance the flows across the cores. The
hardware of the appliance, such as a NIC, or the kernel may be
designed and constructed to Support sequential operations
across the NICs and/or cores.

0203. In embodiments where the system 545 comprises
one or more flow distributors 550, each flow distributor 550
can be associated with a processor 505 or a packet engine 548.
The flow distributors 550 can comprise an interface mecha
nism that allows each flow distributor 550 to communicate
with the other flow distributors 550 executing within the
system 545. In one instance, the one or more flow distributors
550 can determine how to balance load by communicating
with each other. This process can operate Substantially simi
larly to the process described above for submitting votes to an
arbiter which then determines which flow distributor 550
should receive the load. In other embodiments, a first flow
distributor 550' can identify the load on an associated core and
determine whether to forward a first data packet to the asso
ciated core based on any of the following criteria: the load on
the associated core is above a predetermined threshold; the
load on the associated core is below a predetermined thresh
old; the load on the associated core is less than the load on the
other cores; or any other metric that can be used to determine
where to forward data packets based in part on the amount of
load on a processor.
0204. The flow distributor 550 can distribute network traf

fic among the cores 505 according to a distribution, comput
ing or load balancing scheme such as those described herein.
In one embodiment, the flow distributor can distribute net
work traffic or; pad according to any one of a functional
parallelism distribution scheme 550, a data parallelism load
distribution scheme 540, a flow-based data parallelism distri
bution scheme 520, or any combination of these distribution
scheme or any load balancing scheme for distributing load
among multiple processors. The flow distributor 550 can
therefore act as a load distributor by taking in data packets and
distributing them across the processors according to an opera
tive load balancing or distribution scheme. In one embodi
ment, the flow distributor 550 can comprise one or more
operations, functions or logic to determine how to distribute
packers, work or load accordingly. In still other embodi
ments, the flow distributor 550 can comprise one or more sub
operations, functions or logic that can identify a source
address and a destination address associated with a data
packet, and distribute packets accordingly.
0205. In some embodiments, the flow distributor 550 can
comprise a receive-side scaling (RSS) network driver, mod
ule 560 or any type and form of executable instructions which
distribute data packets among the one or more cores 505. The
RSS module 560 can comprise any combination of hardware
and software. In some embodiments, the RSS module 560
works in conjunction with the flow distributor 550 to distrib
ute data packets across the cores 505A-N or among multiple
processors in a multi-processor network. The RSS module
560 can execute within the NIC 552 in some embodiments,
and in other embodiments can execute on any one of the cores
505.

0206. In some embodiments, the RSS module 560 uses the
MICROSOFT receive-side-scaling (RSS) scheme. In one
embodiment, RSS is a Microsoft Scalable Networking initia
tive technology that enables receive processing to be balanced
across multiple processors in the system while maintaining

Oct. 14, 2010

in-order delivery of the data. The RSS may use any type and
form of hashing scheme to determine a core or processor for
processing a network packet.
0207. The RSS module 560 can apply any type and form
hash function such as the Toeplitz hash function. The hash
function may be applied to the hash type or any the sequence
of values. The hash function may be a secure hash of any
security level or is otherwise cryptographically secure. The
has function may use a hash key. The size of the key is
dependent upon the hash function. For the Toeplitz hash, the
size may be 40 bytes for IPv6 and 16 bytes for IPv4.
0208. The hash function may be designed and constructed
based on any one or more criteria or design goals. In some
embodiments, a hash function may be used that provides an
even distribution of hash result for different hash inputs and
different hash types, including TCP/IPv4, TCP/IPv6, IPv4,
and IPv6 headers. In some embodiments, a hash function may
be used that provides a hash result that is evenly distributed
when a small number ofbuckets are present (for example, two
or four). In some embodiments, hash function may be used
that provides a hash result that is randomly distributed when
a large number of buckets were present (for example, 64
buckets). In some embodiments, the hash function is deter
mined based on a level of computational or resource usage. In
Some embodiments, the hash function is determined based on
ease or difficulty of implementing the hash in hardware. In
Some embodiments, the hash function is determined bases on
the ease or difficulty of a malicious remote host to send
packets that would all hash to the same bucket.
0209. The RSS may generate hashes from any type and
form of input, such as a sequence of values. This sequence of
values can include any portion of the network packet, Such as
any header, field or payload of network packet, or portions
thereof. In some embodiments, the input to the hash may be
referred to as a hash type and include any tuples of informa
tion associated with a network packet or data flow, such as any
of the following: a four tuple comprising at least two IP
addresses and two ports; a four tuple comprising any four sets
of values; a six tuple; a two tuple; and/or any other sequence
of numbers or values. The following are example of hash
types that may be used by RSS:

0210 4-tuple of source TCP Port, source IP version 4
(IPv4) address, destination TCP Port, and destination
IPv4 address. This is the only required hash type to
Support.

02.11 4-tuple of source TCP Port, source IP version 6
(IPv6) address, destination TCP Port, and destination
IPv6 address.

0212 2-tuple of source IPv4 address, and destination
IPv4 address.

0213 2-tuple of source IPv6 address, and destination
IPv6 address.

0214) 2-tuple of source IPv6 address, and destination
IPv6 address, including support for parsing IPv6 exten
sion headers.

0215. The hash result or any portion thereof may used to
identify a core or entity, such as a packet engine or VIP, for
distributing a network packet. In some embodiments, one or
more hash bits or mask are applied to the hash result. The hash
bit or mask may be any number of bits or bytes. A NIC may
support any number of bits, such as seven bits. The network
stack may set the actual number of bits to be used during
initialization. The number will be between 1 and 7, inclusive.

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 47 of 59

US 2010/0262650 A1

0216. The hash result may be used to identify the core or
entity via any type and form of table, such as a bucket table or
indirection table. In some embodiments, the number of hash
result bits are used to index into the table. The range of the
hash mask may effectively define the size of the indirection
table. Any portion of the hash result or the hast result itself
may be used to index the indirection table. The values in the
table may identify any of the cores or processor, Such as by a
core or processor identifier. In some embodiments, all of the
cores of the multi-core system are identified in the table. In
other embodiments, a port of the cores of the multi-core
system are identified in the table. The indirection table may
comprise any number of buckets for example 2 to 128 buckets
that may be indexed by a hash mask. Each bucket may com
prise a range of index values that identify a core or processor.
In some embodiments, the flow controller and/or RSS module
may rebalance the network rebalance the network load by
changing the indirection table.
0217. In some embodiments, the multi-core system 575
does not include a RSS driver or RSS module 560. In some of
these embodiments, a software steering module (Not Shown)
or a software embodiment of the RSS module within the
system can operate in conjunction with or as part of the flow
distributor 550 to steer packets to cores 505 within the multi
core system 575.
0218. The flow distributor 550, in some embodiments,
executes within any module or program on the appliance 200,
on any one of the cores 505 and on any one of the devices or
components included within the multi-core system 575. In
some embodiments, the flow distributor 550' can execute on
the first core 505A, while in other embodiments the flow
distributor 550" can execute on the NIC 552. In Still other
embodiments, an instance of the flow distributor 550' can
execute on each core 505 included in the multi-core system
575. In this embodiment, each instance of the flow distributor
550' can communicate with other instances of the flow dis
tributor 550' to forward packets back and forth across the
cores 505. There exist situations where a response to a request
packet may not be processed by the same core, i.e. the first
core processes the request while the second core processes
the response. In these situations, the instances of the flow
distributor 550' can intercept the packet and forward it to the
desired or correct core 505, i.e. a flow distributor instance 550'
can forward the response to the first core. Multiple instances
of the flow distributor 550' can execute on any number of
cores 505 and any combination of cores 505.
0219. The flow distributor may operate responsive to any
one or more rules or policies. The rules may identify a core or
packet processing engine to receive a network packet, data or
data flow. The rules may identify any type and form of tuple
information related to a network packet, such as a 4-tuple of
Source and destination IP address and Source and destination
ports. Based on a received packet matching the tuple specified
by the rule, the flow distributor may forward the packet to a
core or packet engine. In some embodiments, the packet is
forwarded to a core via shared memory and/or core to core
messaging.
0220 Although FIG. 5B illustrates the flow distributor
550 as executing within the multi-core system 575, in some
embodiments the flow distributor 550 can execute on a com
puting device or appliance remotely located from the multi
core system 575. In such an embodiment, the flow distributor
550 can communicate with the multi-core system 575 to take
in data packets and distribute the packets across the one or

26
Oct. 14, 2010

more cores 505. The flow distributor 550 can, in one embodi
ment, receive data packets destined for the appliance 200,
apply a distribution scheme to the received data packets and
distribute the data packets to the one or more cores 505 of the
multi-core system 575. In one embodiment, the flow distribu
tor 550 can be included in a router or other appliance such that
the router can target particular cores 505 by altering metadata
associated with each packet so that each packet is targeted
towards a sub-node of the multi-core system 575. In such an
embodiment, CISCO's Vn-tag mechanism can be used to alter
or tag each packet with the appropriate metadata.
0221 Illustrated in FIG. 5C is an embodiment of a multi
core system 575 comprising one or more processing cores
505A-N. In brief overview, one of the cores 505 can be
designated as a control core 505A and can be used as a control
plane 570 for the other cores 505. The other cores may be
secondary cores which operate in a data plane while the
control core provides the control plane. The cores 505A-N
may share a global cache 580. While the control core provides
a control plane, the other cores in the multi-core system form
or provide a data plane. These cores perform data processing
functionality on network traffic while the control provides
initialization, configuration and control of the multi-core sys
tem

0222 Further referring to FIG. 5C, and in more detail, the
cores 505A-N as well as the control core 505A can be any
processor described herein. Furthermore, the cores 505A-N
and the control core 505A can be any processor able to func
tion within the system 575 described in FIG.5C. Still further,
the cores 505A-N and the control core 505A can be any core
or group of cores described herein. The control core may be a
different type of core or processor than the other cores. In
Some embodiments, the control may operate a different
packet engine or have a packet engine configured differently
than the packet engines of the other cores.
0223) Any portion of the memory of each of the cores may
be allocated to or used for a global cache that is shared by the
cores. In brief overview, a predetermined percentage or pre
determined amount of each of the memory of each core may
be used for the global cache. For example, 50% of each
memory of each code may be dedicated or allocated to the
shared global cache. That is, in the illustrated embodiment, 2
GB of each core excluding the control plane core or core 1
may be used to form a 28 GB shared global cache. The
configuration of the control plane Such as via the configura
tion services may determine the amount of memory used for
the shared global cache. In some embodiments, each core
may provide a different amount of memory for use by the
global cache. In other embodiments, any one core may not
provide any memory or use the global cache. In some embodi
ments, any of the cores may also have a local cache in memory
not allocated to the global shared memory. Each of the cores
may store any portion of network traffic to the global shared
cache. Each of the cores may check the cache for any content
to use in a request or response. Any of the cores may obtain
content from the global shared cache to use in a data flow,
request or response.
0224. The global cache 580 can be any type and form of
memory or storage element, such as any memory or storage
element described herein. In some embodiments, the cores
505 may have access to a predetermined amount of memory
(i.e. 32 GB or any other memory amount commensurate with
the system 575.) The global cache 580 can be allocated from
that predetermined amount of memory while the rest of the

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 48 of 59

US 2010/0262650 A1

available memory can be allocated among the cores 505. In
other embodiments, each core 505 can have a predetermined
amount of memory. The global cache 580 can comprise an
amount of the memory allocated to each core 505. This
memory amount can be measured in bytes, or can be mea
Sured as a percentage of the memory allocated to each core
505. Thus, the global cache 580 can comprise 1 GB of
memory from the memory associated with each core 505, or
can comprise 20 percent or one-half of the memory associ
ated with each core 505. In some embodiments, only a portion
of the cores 505 provide memory to the global cache 580,
while in other embodiments the global cache 580 can com
prise memory not allocated to the cores 505.
0225. Each core 505 can use the global cache 580 to store
network traffic or cache data. In some embodiments, the
packet engines of the core use the global cache to cache and
use data stored by the plurality of packet engines. For
example, the cache manager of FIG. 2A and cache function
ality of FIG. 2B may use the global cache to share data for
acceleration. For example, each of the packet engines may
store responses, such as HTML data, to the global cache. Any
of the cache managers operating on a core may access the
global cache to server caches responses to client requests.
0226. In some embodiments, the cores 505 can use the
global cache 580 to store a port allocation table which can be
used to determine data flow based in part on ports. In other
embodiments, the cores 505 can use the global cache 580 to
store an address lookup table or any other table or list that can
be used by the flow distributor to determine where to direct
incoming and outgoing data packets. The cores 505 can, in
some embodiments read from and write to cache S80, while in
other embodiments the cores 505 can only read from or write
to cache 580. The cores may use the global cache to perform
core to core communications.
0227. The global cache 580 may be sectioned into indi
vidual memory sections where each section can be dedicated
to a particular core 505. In one embodiment, the control core
505A can receive a greater amount of available cache, while
the other cores 505 can receiving varying amounts or access
to the global cache 580.
0228. In some embodiments, the system 575 can comprise
a control core 505A. While FIG.SC illustrates core 1505A as
the control core, the control core can be any core within the
appliance 200 or multi-core system. Further, while only a
single control core is depicted, the system 575 can comprise
one or more control cores each having a level of control over
the system. In some embodiments, one or more control cores
can each control a particular aspect of the system 575. For
example, one core can control deciding which distribution
scheme to use, while another core can determine the size of
the global cache 580.
0229. The control plane of the multi-core system may be
the designation and configuration of a core as the dedicated
management core or as a master core. This control plane core
may provide control, management and coordination of opera
tion and functionality the plurality of cores in the multi-core
system. This control plane core may provide control, man
agement and coordination of allocation and use of memory of
the system among the plurality of cores in the multi-core
system, including initialization and configuration of the
same. In some embodiments, the control plane includes the
flow distributor for controlling the assignment of data flows to
cores and the distribution of network packets to cores based
on data flows. In some embodiments, the control plane core

27
Oct. 14, 2010

runs a packet engine and in other embodiments, the control
plane core is dedicated to management and control of the
other cores of the system.
0230. The control core 505A can exercisea level of control
over the other cores 505 such as determining how much
memory should be allocated to each core 505 or determining
which core 505 should be assigned to handle a particular
function or hardware/software entity. The control core 505A,
in Some embodiments, can exercise control over those cores
505 within the control plan 570. Thus, there can exist proces
sors outside of the control plane 570 which are not controlled
by the control core 505A. Determining the boundaries of the
control plane 570 can include maintaining, by the control core
505A or agent executing within the system 575, a list of those
cores 505 controlled by the control core 505A. The control
core 505A can control any of the following: initialization of a
core; determining when a core is unavailable; re-distributing
load to other cores 505 when one core fails; determining
which distribution scheme to implement; determining which
core should receive network traffic; determining how much
cache should be allocated to each core; determining whether
to assign a particular function or element to a particular core;
determining whether to permit cores to communicate with
one another; determining the size of the global cache 580; and
any other determination of a function, configuration or opera
tion of the cores within the system 575.

F. Systems and Methods for Connection Management for
Asynchronous Messaging

0231. Illustrated in FIG. 6 is one embodiment of a system
630 for managing connections for asynchronous messaging.
One or more clients 102A-102N (hereinafter referred to gen
erally as client(s) 102.) communicate over a network 104 to
an intermediary appliance 632 that communicates over a net
work 104 with one or more servers 106A-106N (hereinafter
referred to generally as server(s) 106.) The intermediary
appliance 632, in some embodiments, executes a load balanc
ing virtual server (Vserver) 636, a push virtual server
(Vserver) 635, and a connection labeler 638. A connection
table 640, in some embodiments, can be stored on the inter
mediary appliance 632.
0232 Further referring to FIG. 6, and in more detail, the
system 630 can include one or more clients 102, where the
clients 102 can be any computer, mobile device, computing
device or machine. In some embodiments, the clients 102 can
be any client described herein. While FIG. 6 depicts a plural
ity of clients 102, in some embodiments the system 630 can
include a single client 102. The client(s) 102 can communi
cate over any type of network 104. In some embodiments, the
client(s) 102 can communicate over any type of network 104
described herein.
0233. The system 630 can further include one or more
servers 106, where the servers 106 can be any computer,
server, computing device or machine. In some embodiments,
the servers 106 can be any server 106 described herein. While
FIG. 6 depicts a plurality of servers 106, in some embodi
ments the system 630 can be include a single server 106. In
some embodiments, the server(s) 106 can communicate over
any type of network 104, while in other embodiments the
server(s) 106 can communicate over any type of network 104
described herein. The server(s) 106 can communicate over
the same network 104 as the network over which the client(s)
102 communicate with the appliance 632, while in other
embodiments the server(s) 106 and the client(s) 102 commu

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 49 of 59

US 2010/0262650 A1

nicate over a different network 104. In still other embodi
ments the network 104 used by the client(s) 102 to commu
nicate with the appliance 632 is a sub-network of the network
104 used by the server(s) 106 to communicate with the appli
ance 632. The network 104 used by the server(s) 106 to
communicate with the appliance 632, in other embodiments,
can be a sub-network of the network 104 used by the client(s)
102 to communicate with the appliance 632.
0234. In some embodiments, at least one of the servers 106
can be a web server 106B. The web server 106B can be a
single web server 106B, or in other embodiments can be a
server farm that includes more than one web server 106B. In
some embodiments, the web server 106B can be an applica
tion server or a farm that includes one or more application
servers. In other embodiments, the web server 106B can
include any portion or embodiment of an application delivery
system 190 such as the application delivery system described
herein. The web server 106B, in some embodiments, can
include any type and form of commercial off the shelf, pro
prietary, customized or open Source Software or any set of
executable instructions for providing a web-site, serving web
pages or providing web services.
0235. At least one of the servers 106 can, in some embodi
ments, be a notification server 106A. The notification server
106A, in some embodiments, can be a single notification
server 106A, while in other embodiments the notification
server 106A can be a server farm that includes more than one
notification server 106A. In one embodiment, the notification
server 106A can execute an application, program, library,
service, process, task or thread that can generate any type and
form of notification. In some embodiments, the notification
server determines whether a change has been made to data
Such as the data encompassed by: web pages; objects; table
entries; a predetermined range of memory addresses; and
dynamically generated objects and databases. In other
embodiments, the notification server determines whether or
not a client 102 has out-of-date data, data that has change, or
data that should be updated. The notification server may
transmit any type and form of notification regarding data
status, updates or changes to one or more clients via any type
and form of connection, such as a transport layer connection
or application layer session. The notification server may use
any type and form of protocol for communicating a notifica
tion. In some embodiments, the notification server 106A may
be included in, with or as a part of a web server 106B, or
Vice-versa. In another embodiment, a notification server and/
or web server may be included with or in a farm 38 or appli
cation delivery system 190.
0236. In some embodiments, the notification server may
use any type and form of HTTP based server-push mecha
nism, protocol or model. In some embodiments, the notifica
tion servers operates using any one or more particular variants
of Comet streaming-response, XMPP (Extensible Messaging
and Presence Protocol), Bidirectional-streams over Synchro
nous HTTP (BOSH) and BOSH XMPP implementations.
The term Comet refers to a web application model in which a
long-held HTTP request allows a web server to push data to a
browser. BOSH is a transport protocol that emulates a bidi
rectional stream between two entities, such as a client and
server, by using multiple synchronous HTTP request/re
sponse pairs without requiring the use of polling or asynchro
nous chunking. An implementation using XMPP over BOSH
uses BOSH to transport XMPP stanzas. The notification
server may support server push mechanisms and implemen

28
Oct. 14, 2010

tation in one or more non-HTTP protocols, such as IMAP
(Internet Message Access Protocol).
0237. In interactions with the web server 106A without the
intermediary 632 or client agent, the client 102 requests a
connection to the server 106 and establishes a connection,
such as a TCP/IP connection. The client 102 and the server
106 may exchange Some requests/responses, and at the end of
the interaction the server 106 can identify the client 102 via an
authentication cookie or other previously established cookie.
The server 106 can then hold the connection open, and write
to the connection as data becomes available to write to the
connection.
0238. The appliance 632 can be any intermediary
machine, server, appliance, device, proxy server 106, proxy
client 102, proxy appliance, or other computing machine. In
Some embodiments the intermediary appliance 632 is any
appliance 632, while in other embodiments the intermediary
appliance 632 is any appliance 200 described herein. In still
other embodiments, the intermediary appliance can be any
computing machine 100 described herein. The appliance 632
can communicate with remote clients 102, servers 106, appli
ances, mobile devices and other computing machines via one
or more networks 104. In some embodiments, the appliance
632 can communicate with a group of clients 102 via a first
network, and with a group of servers 106 via a second net
work. In these embodiments, the first network and second
network can be two different networks. For example, the first
network can be a public network, while the second network
can be a private network.
0239 Executing on the intermediary appliance 632 is a
load balancing vserver 636. In some embodiments the load
balancing vserver 636 can be any embodiment of the VServer
275 described herein. In other embodiments, the load balanc
ing Vserver 636 can be any virtual machine, client, agent or
program that can load balance network traffic, or the amount
ofload placedon one or more servers 106, or a server farm 38.
In some embodiments, the load balancing vserver 636 can
communicate with any of the following elements stored or
otherwise executed by the appliance 632: a push vserver 635:
a connection labeler 638; and a connection table 640.
0240. The load balancing vserver 636 can, in some
embodiments, be used to expire client connections by track
ing the amount of time a connection has been idle, or the
amount of time since an asynchronous message was transmit
ted over the connection. In some embodiments, the system
630 can include a client-side load balancing vserver 636 and
a server-side load balancing vserver 636', where the client
side load balancing Vserver 636 manages client-side connec
tions and the server-side load balancing Vserver 636' manages
server-side connections. In one embodiment, a client-side
load balancing vserver 636 that interfaces with clients 102
and manages client connections, can be disabled Such that all
client connections are destroyed, expired or flushed as are any
connection labels associated with those connections. When a
server 106 tries to send a message over one of the expired
client connections, the appliance 632 will return an error
message to the requesting server 106. In some embodiments,
the intermediary 632 sends a message to the servers 106
indicating the connections expired, while in other embodi
ments the servers 106 can intuit that connections have expired
upon receiving an error message when they try to push a
message over a connection.
0241. A load balancing vserver 636, in some embodi
ments, can interface with clients 102 requesting to connect to

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 50 of 59

US 2010/0262650 A1

servers 106 communicating with the intermediary appliance
632. In one embodiment, the load balancing vserver 636 can
facilitate the initial communicative connection established
between a client 102 and server 106 by first establishing a
connection with a client 102. Upon establishing a connection
with the client 102, the load balancing vserver 636 can select
a server 106, establish a connection with the server 106, and
link the client connection to the server connection. In some
embodiments, the VServer obtains a server connection from a
pool of connections maintained by the appliance 200. Thus, in
some embodiments, the load balancing vserver 636 brokers
the creation of a communicative connection between the cli
ent 102 and the server 106.

0242. In one embodiment, the intermediary appliance 632
can execute a push vserver 635 that can receive post requests
from servers 106, transmit asynchronous messages to clients
102, and execute a messaging protocol. The push Vserver 635,
in some embodiments, can be any vServer 275 or any execut
able instructions designed and constructed to perform the
operations described herein. In one embodiment, the push
Vserver 635 can execute a messaging protocol illustrated in
FIG. 8A. In other embodiments the push Vserver 635 can
execute any messaging protocol for transmitting asynchro
nous messages from a server 106 to a client 102. The push
Vserver 635, in some embodiments, exposes a messaging
protocol to a notification server 106A. In other embodiments,
the push Vserver 635 exposes a messaging protocol to one or
more servers 106 communicating with the intermediary 632.
0243 Exposing servers 106 to a messaging protocol can
include receiving out-of-band messages from servers 106 and
forwarding them to the appropriate client 102. An out-of
band message, in one embodiment, is a message that is trans
mitted outside of a previously established connection
between a server 106 and a client 102. For example, when
Client A establishes a connection with Server A, a connection
is formed between Client A and Server A. Any messages
transmitted by Server A to Client A, once the initial connec
tion between Server A and Client A has expired or over a
second connection different than the initial connection, are
out-of band messages because they are transmitted over a
different connection than the initial connection between Cli
ent A and Server A.

0244. The intermediary 632 can, in some embodiments,
execute a connection labeler 638. The connection labeler,
connection labeling component or connection labeling client
638 may comprise software, hardware or any combination of
software and hardware. The connection labeler 638 may com
prise an application, program, library, service, process, task,
thread or any set of executable instructions. The connection
labeler 638 may include any functions, logic or operations to
provide, implement or execute any type and form of connec
tion labeling protocol. In some embodiments, the connection
labeler 638 executes or otherwise performs a connection
labeling protocol such as any protocol for labeling a network
connection. The connection labeling protocol, in some
embodiments, can be any connection labeling protocol
described herein. The connection labeler 638, in some
embodiments, can be included within the push Vserver 635. In
other embodiments, the connection labeler 638 can commu
nicate with the connection table 640 such that the connection
labeler 638 stores handles and their associated application
context within the connection table 640. In one embodiment,
the connection labeler 638 can modify the header of a request
packet by inserting a handle into the header. In other embodi

29
Oct. 14, 2010

ments, the connection labeler 638 can retrieve connection
data from the connection table 640 responsive to requests
issued by the push vserver 635.
0245. In some embodiments, as part of a connection label
ing protocol, the intermediary 632 inserts a header into a
client request and forwards the modified request to a server
106. Inserting the handle into the header of the client request
can be carried out by the intermediary 632, the connection
labeler 638 or the push vserver 635. In other embodiments,
the label or handle is inserted into the header by the interme
diary 632 to alert the server 106 that there is an option to label
connections rather than allow them to persist. This alert, in
Some embodiments, can include inserting a label, e.g. "X-NS
Push-Label:...' into an HTTP-Header of the client request.
Upon modifying the request header, the intermediary 632
then forwards the modified request to a server 106, or back
end web server 106B. In some embodiments, the label can
instruct or otherwise command the server 106 to execute a
connection labeling protocol, and to further deferresponding
to the client request. The label can include a handle, or other
connection identifier.

0246 The connection table 640, in some embodiments, is
a storage repository on the intermediary 632 that stores con
nection information. The connection table 640 can be any of
the following: a table; a list; an array; a configuration file; a
text file; a plurality of text or configuration files; or any other
data structure that can store information about a connection.
In some embodiments, the connection information can
include a handle and the application context assigned or oth
erwise associated with the handle. The handle can be a unique
identifier representative of the application context, or can be
a randomly chosen serial number. In some embodiments, the
application context can include any of the following informa
tion: the name of a client 102; the IP address of a client 102;
a user name; user authentication information; the name of a
server 106; the IP address of a server 106; the IP address or
host name of a user session hosted on a client 102; the IP
address or host name of a user session hosted on a server 106:
the IP address or host name of an application hosted on a
server 106 or client 102; and any other information represen
tative of a connection between a client 102 and a server 106.

0247 The handle, in some embodiments, may be a handle
of the intermediary, sometimes referred to as a NetScaler
handle or NS handle. The handle may be treated as opaque by
any server. In some embodiments, the handle encodes the
connection 4-tuple. In another embodiment, the handle adds
additional entropy to the encoded tuple to make it harder to
guess for additional Security. In still other embodiments, the
handle can be a unique identifier generated by an appliance
200, or an identifier generated by the intermediary 632. The
handle can be, in some embodiments, a random numbergen
erated by a random number generator executing on the inter
mediary 632, a client communicating with the intermediary
632, a server 106 or any other appliance 200 or computing
machine 100 communicating with the intermediary 632. In
some embodiments, the handle may include embedded infor
mation identifying any of the following: the client 102; the
server 106; a port on the intermediary; the intermediary:
configuration information; or information about the client
102, network 104, server 106 or intermediary 632. In other
embodiments, the handle may encode information about a
user of the client 102. This encoded information can include
client authentication information, appliance authentication
information, or any other type of sensitive information about

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 51 of 59

US 2010/0262650 A1

a user of the client 102, the client 102, the server 106, the
network 104 or the intermediary 632. In still other embodi
ments, the handle can include a port number identifier that
identifies a port on the intermediary 632 that is used by the
client 102 to communicate with the intermediary 632.
0248. Any type and form of topology may be used for the
deployment of the intermediary in the form of client agents
and/or appliances. In some embodiments, multiple appli
ances may be utilized in front of the same server farm, to scale
connection handling capacity. In some embodiments, the set
of web-servers that handle requests from the 1b VServer does
not have to be the same as the set of notification servers that
push updates to client.
0249. Using embodiments of the intermediary 632
described herein, the intermediary 632 may be able to sup
port, Scale and handle millions and millions of connections.
Particular characteristics of the intermediary 632 can depend
on the operation characteristics of the device hosting the
intermediary, the configuration of the device and/or deploy
ment of multiple intermediaries. For example, an appliance
200 may function as an intermediary device 632 such that the
appliance is dedicated to functioning as the intermediary 632.
In other embodiments, an appliance 200 may function as an
intermediary device 632 such that the appliance 200 can
perform other tasks in addition to functioning as the interme
diary 632. For scaling with multiple appliances or intermedi
aries, a first two tier appliance configuration technique can be
used where a first tier of appliances may be configured to
permit sessionless connection hashing load balancing to a
second tier appliance, and configure the second tier appli
ances to perform push processing. In this embodiment, the
intermediary 632 can be comprised of more than one appli
ance 200 such that a first group of appliances is dedicated to
load balancing the sessionless connections established
between servers 106 and the first group of appliances, and a
second group of appliances is dedicated to load balancing the
session-based connections established between clients 102
and the second group of appliances.
0250 In some embodiments, yet another second tier appli
ance 200 can be configured to interface with the first group of
appliances and the second group of appliances to execute a
message push protocol to push messages received from the
servers 106 by the first group of appliances, to the second
group of appliances to be pushed out to the clients 102. Other
embodiments can include any variation of the above, for
example: the first group of appliances can include one or more
appliances; the second group of appliances can include one or
more appliances; and the second tier appliance that executes
the message push protocol can be combined with the first
group of appliances or the second group of appliances.
0251 Thus, in some embodiments the intermediary can
include more than appliance 200 or computing device 100,
more than one group of appliances 200 or computing devices
100, or more than one tier of appliances 200 or computing
devices 100. In embodiments where the intermediary
includes more than one appliance 200 or device 100, a pro
tocol can be used by the intermediary 632 to distribute con
nections. This protocol, in some embodiments can be a Route
Health Injection, ECMP (Equal Cost Multi Path) protocol
that may be used by routers, other appliances 200 or devices
100 to distribute connections across multiple appliances 200
or devices 100 included in the intermediary 632. In some
embodiments, one or more global load balancing VServers
may distribute load at DNS request time.

30
Oct. 14, 2010

0252. In some embodiments, when multiple appliances
devices are performing push processing, the servers may need
to send notifications (push messages) to the same appliance
device from where they first learned the connection label. As
part of the labeling protocol, the appliance 200 may inserts
the listening endpoint IP and port information of the associ
ated push vServer make this task easier for the notification
servers. This allows the same backend server to participate in
multiple client-facing VServers configured on different appli
ances. In other embodiments, the connection labeling infor
mation for labeled connections may be shared between appli
ances or otherwise one appliance may be able to query
another appliance for Such information.
0253 Illustrated in FIG. 7 is an embodiment of a push state
machine that can be maintained for each connection managed
by the appliance 632 and the Vservers executing on the appli
ance 632. In some embodiments, the intermediary 632 via any
one of the load balancing vserver 636, the push vserver 635
and the connection labeler 638, can maintain an embodiment
of the described State machine for each connection or group of
connections. In one embodiment, the intermediary 632 waits
for a request (State 710) from a client 102 and either polls for
a request (Transition 734), or when a request is received,
sends the request (Transition 724) to a server 106. Once the
intermediary transmits the request (Transition 724) to the
server 106, the intermediary can then wait for a server
response (State 715). In some embodiments the server 106
may defer the response (Transition 726) and label the con
nection, while in other embodiments the server 106 may
respond normally (Transition 722) to the client's request. The
server 106 may defer the response (Transition 726) while
waiting for a message (State 720). Thus, the intermediary
waits for a message (State 720) until it receives a pushed
message (Transition 728), or until the message transmission
has ended (Transition 736). In some embodiments, the inter
mediary 632 can respond to an idle connection that occurs
when the intermediary is in the middle of transmitting a
chunked asynchronous message to a client 102 by adding in a
pre-determined chunk to the response stream (Transition
730) so that the connection remains open and the intermedi
ary 632 goes back to waiting for an asynchronous message
(State 720). In other embodiments, the intermediary 632 can
respond to an idle connection that occurs when the interme
diary 632 is in the middle of receiving a response by gener
ating a pre-determined stay alive response (Transition 732)
so that the connection closes and the intermediary 632 goes
back to waiting for client request (State 710).
0254 Further referring to FIG. 7, and in more detail, in one
embodiment the state machine illustrated in FIG.7 may gov
ern or dictate any or all of actions for a connection The state
machine may comprise any combination of states, conditions,
transitions and actions to model, governor provide any of the
functionality described herein. In some embodiments, the
state machine can be used by the push vserver 635 to monitor
and maintain the state of a logical connection between a client
102 and a server 106. The logical connection, in some
embodiments, can include a connection between the client
102 and the intermediary appliance 632, and a connection
between the intermediary appliance 632 and the server 106.
The state machine, in other embodiments, can be used by the
load balancing Vserver 636 to monitor and maintain a con
nection between a client 102 and a server 106. In still other
embodiments, one or more load balancing vservers 636 and

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 52 of 59

US 2010/0262650 A1

one or more push vservers 635 can be used to monitor and
maintain a connection between a client 102 and a server 106.

0255 Monitoring and maintaining a connection, in some
embodiments, can include monitoring the connection to
determine whether data has been transmitted over the con
nection. In some embodiments, a connection can go idle
when no data is transmitted over the connection for a prede
termined period of time. Other aspects of monitoring and
maintaining the connection can include keeping the connec
tion alive when the connection has been idle for a predeter
mined period of time. For example, were a vserver or other
application on the intermediary 632 to determine that no data
was transmitted over a first connection for a predetermined
period of time, the Vserver could either terminate the connec
tion or keep the connection alive. The course of action taken
by the Vserver, in some embodiments, can be determined
based on policies, rules, or commands included in the State
machine or dictated by a message, client, server or other
vserver. The predetermined period of time can be configured
by an administrator, client, user, server or can be dynamically
configured based characteristics of the environment 630 such
as average latency, available bandwidth, number of clients,
number of servers, and other Such heuristics.
0256 The state machine may include an initial state where
the intermediary 632 waits for a request transmitted by a
client 102 to a server 106 (State 710). When in this state, the
intermediary 632 and the client 102 are connected over a
network 104. This connection can include a connection that is
established between the intermediary 632 and a load balanc
ing vserver 636 that faces a client-side network 104. In some
embodiments, the load balancing vserver 636 faces a client
side network 104 such that the client-side load balancing
vserver 636 establishes and manages connections established
between clients 102 and the intermediary client 632. The
intermediary 632, in some embodiments, can remain in this
initial state (State 710) until the intermediary 632 receives a
request from a client 102.
0257. In one embodiment, the intermediary appliance 632
can remain in an initial state (State 710) until a polling request
is issued (Transition 734). Upon issuing the polling request,
the intermediary 632 can transition from an initial state (State
710) of waiting for a client request, to a state where the
intermediary 632 waits for a message from the server (State
720).
0258 When, in some embodiments, the intermediary
appliance 632 receives a request from a client 102, the inter
mediary can inserta handle into the header of the request. In
some embodiments, a connection labeler 638 can insert the
handle, while in other embodiments a load balancing vserver
636 inserts the handle into the request headers. Prior to insert
ing the handle into the header of the client request, a deter
mination can be made as to what the handle is. This determi
nation, in Some embodiments, can be made by the connection
labeler 638 or by any other application, service or process
able to generate handles. In one embodiment, inserting the
handle into the header of the client request can be part of a
connection labeling protocol. Such as any of the connection
labeling protocols described herein.
0259. Upon inserting a handle into the header of the client
request, the intermediary appliance 632 can transmit the cli
ent request to a server 106 (Transition 724). In some embodi
ments, the server 106 address or location can be included
within the request header. In other embodiments, the inter

Oct. 14, 2010

mediary 632 or a vserver executing on the intermediary 632
can select a destination server 106 and transmit the altered
request to that server 106.
0260 Once the server 106 receives the request, the inter
mediary appliance 632 transitions from an initial state (State
710) of waiting for a client request to a state of waiting for a
response from the server 106 (State 715). In this state, the
client request has been received by the server 106. The request
may have been forwarded to a web server 106B and the
appliance or intermediary 632 is waiting for the server to
respond.
0261. In some embodiments, the intermediary 632 can
transition from this state (State 715) to a state of waiting for
the server to push an asynchronous message (State 720) when
the intermediary 632 receives a notification that the server
106 deferred a response to the client request (Transition 726).
When the server 106 defers responding to the client request,
the server 106 can label the connection, after which the inter
mediary 632 can, in some embodiments, de-link the client
102 from the server 106. In some embodiments transitioning
from a state of waiting for a server response (State 715) to
waiting for a message (State 720) can include carrying out a
connection labeling protocol. In other embodiments, this
transition can include carrying out a messaging protocol.
0262. In other embodiments, the intermediary 632 can
transition from a state of waiting for the server 106 to respond
(State 715) to an initial state (State 710) when the intermedi
ary 632 receives a response from the server 106 (Transition
722). When the server 106 issues a normal response to the
client request (Transition 722), the intermediary enters the
initial state of waiting for a client request (State 710).
0263. A state where the intermediary 632 waits for a server
106 to push a message (State 720) can include waiting, by an
intermediary 632, for a server 106 to issue a request to posta
message to a client 102. In this state, the intermediary 632
waits for one or more servers 106, e.g. a notification server
106A, to push asynchronous messages to a client 102. In
Some embodiments, the post request includes a pushed asyn
chronous message that has a header which includes a handle.
This handle, in many embodiments, is the label assigned to a
previous connection between the server 106 and a client 102.
In some embodiments, the intermediary 632 can push a mes
sage to a client 102 (Transition 728), upon doing this the
intermediary 632 returns to a state where the intermediary
632 waits for a message from the server 106.
0264. The intermediary 632, in some embodiments, con
tinues to wait for a message from the server 106 (State 720)
until the intermediary 632 receives a message that indicates
the end of a transmission (Transition 734). In other embodi
ments, the intermediary 632 can receive a notice from the
server 106 that the transmission has ended, or can receive
Some other message, flag or indicator Stating that the server
106 has reached the end of the transmission. An end to the
transmission can occur when the server 106 has finished
sending a section of data to the client 102, or can end once the
server 106 no longer has messages to push to the client 102.
Upon receiving a notification from the server 106 that the
transmission has ended (Transition 734), the intermediary
632 can change states from a state where the intermediary 632
waits for messages from the server 106, to an initial state
where the intermediary 632 waits for a client request (State
710).
0265. In some embodiments, the intermediary 632 per
forms an end-to-end keep-alive using the push functionality

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 53 of 59

US 2010/0262650 A1

described herein. Thus, the intermediary 632 may track
whether a connection is still alive by transmitting end-to-end
keep-alive messages. Thesekeep alive messages may be auto
matically generated by the intermediary when the connection
has been idle too long. If the intermediary is in the middle of
a chunked response, and the keep-alive timer expires, the
intermediary may optionally add a pre-defined chunk to the
response stream (Transition 730). The pre-defined chunk may
be defined by an administrator, dynamically by the interme
diary 632 or by some other configuration method. Upon add
ing the predefined chunk, the intermediary can remain in the
same state, i.e. a state of waiting for messages from a server
106 (State 720). If the intermediary 632 is at the beginning of
a response (e.g., no bytes of the response have been written
out yet), the intermediary 632 may optionally generate a
pre-defined keep-alive HTTP response and/or close the trans
action The pre-defined keep alive response may be defined via
any of the above-mentioned configuration methods. Upon
generating the keep-alive response (Transition 732), the inter
mediary 632 can transition from a state of waiting for mes
sages from the server 106 (State 720) to an initial state of
waiting for client requests (State 710).
0266 Illustrated in FIG. 8A is an embodiment of a con
nection labeling protocol. A connection labeling protocol, in
Some embodiments, may be a handshake protocol between a
client 102 and a server 106 that is used by the server 106 to
label the connection between the client 102 and the server
106. The protocol, in some embodiments, can be embodied as
a process 800 where an intermediary 632, such as any inter
mediary 632 described herein, intercepts a client request
(Step 802) and injects a handle or label into the client request
header (Step 804). The intermediary 632 than transmits the
modified client request to a back-end server 106 (Step 806).
Upon receiving the modified client request, the server 106
generates a response to the client request (Step 808), and
determines whether to send the response Substantially imme
diately after generating the response or to defer sending the
response until a later point in time (Step 810). When the
server 106 defers sending the response, the server 106 then
labels the connection between the server 106 and the client
(Step 812).
0267 Further referring to FIG. 8A, and in more detail, in
one embodiment the intermediary 632 can intercept a client
request (Step 802). The client request can, in some embodi
ments, be generated by any client device or any client 102
described herein. A client request can be a request to create a
connection with a server 106. In some embodiments, the
client request can be a request to access an application, Ser
Vice or process, where that application, service or process
executes on the server 106. The application, can in some
embodiments, be used to establish a user-session within
which the client 102 and the server 106 can communicate. A
load balancing vserver 636 that executes on the intermediary
632 can intercept the client request, while in other embodi
ments another application executing on the intermediary 632
can intercept the client request.
0268. Upon intercepting the client request, the intermedi
ary 632 can inject a handle into the request header (Step 804).
In some embodiments, the handle is a label assigned to the
connection between the requesting client 102 and the server
106. When the intermediary 632 intercepts the client request,
in some embodiments the intermediary 632 also selects a
destination server 106 from amongst the one or more servers
communicating with the intermediary 632. While in some

32
Oct. 14, 2010

embodiments the client request identifies a destination server
106, in other embodiments the intermediary 632 selects the
destination server 106. The handle, in some embodiments,
can be any handle described herein. In other embodiments,
the handle can beans-handle, or NetScaler handle, and can be
used to associate and application, user session or other con
text with the connection between the client 102 and the server
106. The intermediary 632 or any application executing on
the intermediary 632, in some embodiments, inserts the
handle or label into an HTTP header included in the client
request. Inserting the handle can modify the client request to
create a modified client request that identifies a particular
application, user session or application context. The
ns-handle may be treated as opaque by any server, and in
some embodiments a 4-tuple of the connection between the
client 102 and the server 106 where the 4-tuple can include
any of the following: a client IP address; a server IP address:
a client port; a server port 106; an IP address representative of
the connection between the client 102 and the server 106; or
a port representative of the connection between the client 102
and the server 106. The handle, in some embodiments, adds
additional entropy to the encoded tuple to make it harder to
guess for additional security. In multi-appliance or interme
diary scenarios, the intermediary 632 may also provide a
listening endpoint or port for push vserver 635. This port can
be included in the handle, reflected in the configuration of the
handle, or included in the 4-tuple. While in some embodi
ments the intermediary 632 modifies the client request
header, in other embodiments the intermediary 632 can send
an additional packet with the request where the packet iden
tifies the handle. Still other embodiments include an interme
diary 632 that modifies another aspect of the client request
Such as the payload.
0269. The intermediary 632, in some embodiments, trans
mits the modified client request to the server 106 (Step 806)
upon modifying the client request. In some embodiments, a
load balancing Vserver 636 can transmit the client request.
0270. In response to receiving the client request, the server
106 can generate a response (Step 808). This response, in
Some embodiments, does not included a payload but rather
includes only a header. The empty HTTP response generated
by the server 106 can include a header that reflects the handle
included in the client request. Including or reflecting this
handle in the server's response to the client request labels the
connection between the client 102 and server 106 because the
intermediary 632 can extract the handle from the header and
use it to determine where to transmit the server's response. In
some embodiments, the server 106 responds to the client
request Substantially immediately after receiving the client
request Such that a typical response time expires between
when the clientissues and the request and the server responds.
0271 The server 106, in some embodiments, defers
responding to the client request (Step 810). Choosing to defer
responding to the client request can be a result of a configu
ration setting included in the client request header, i.e. the
handle. In other embodiments, the server defers responding to
the client request because the server 106 determines that it has
no messages to push to the client 102. Therefore rather than
responding to the client request, the server 106 labels the
connection between the client 102 and the server 106 by
saving the handle or label included in the client request header
and associating it with that client 102. The server 106 can
store the handle in a connection table (Not Shown) on the
server 106, or in another storage repository on the server 106

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 54 of 59

US 2010/0262650 A1

so that when the server 106 generates a message in the future,
the server 106 can include the stored handle in the message's
header. In some embodiments, the server 106 can store the
handle or the generated response in a storage repository that
can be accessed by each of the servers 106 connected to the
intermediary 632. When a server 106 wishes to push a mes
sage to that particular client 102, the server 106 can retrieve
the handle from Storage, insert the handle in the message
header and push the message to the intermediary 632. While
in some embodiments the handle can be included in the mes
sage header, in other embodiments the handle can be included
in the body of the message, the body of a post request accom
panying the message, or the header of a post request accom
panying the message.
0272 Storing the handle or otherwise associating the
handle and or labeling information stored in the header, can
constitute labeling the connection between the client 102 and
the server 106 with the handle (Step 812). The connection
between the client 102 and the server 106 can, in some
embodiments, be referred to as a first connection, while the
connection between the client 102 and the intermediary 632
can be referred to as a second connection. Labeling the con
nection can include extracting information from the handle,
and storing that information in a repository along with infor
mation about the client 102 such as the client’s IP address, a
port of the client, a user name, a user session ID, an IP address
of the user, or other information that identifies the client 102
and/or a user of the client 102. In other embodiments, labeling
the connection can include storing the generated server
response in a storage repository along with any of the above
mentioned client/user identifying information.
0273. In some embodiments, the intermediary 632 or
appliance Supports proactive label expiry notification. For
example, if a client connection is timed out by the appliance
or closed by the client 102, the appliance 632 will not send
any label expiry message to the server. Instead, in some
embodiments, the next update message for the client-server
connection associated with that label will cause the interme
diary 632 to generate an error message indicating the connec
tion no longer exists. That error message can be sent to the
server 106 in response to the message pushed to the interme
diary 632.
0274. In some embodiments, a backend server may have a
long polling request pending in the appliance. In these
embodiments, whenever the client connection is gone, either
by the termination of a client connection between the client
102 and the intermediary 632 or by the closing or otherwise
termination of the intermediary (e.g. a Zombie clean up), the
appliance can send a response to the server 106 indicating the
connection associated with the label in the message no long
exists. The server 106 may send another long polling request
for expired or terminated clients and wait for a client
response. The server 106 can, in some embodiments, wait an
extended period of time for the client response. In some
embodiments, one or more servers can be configured or des
ignated to execute long polling to Verify that a client 102
closed or to wait for a client 102 to reestablish.

0275 Illustrated in FIG. 8B is an embodiment of a mes
Saging protocol. The messaging protocol, or message push
protocol, can be used by back-end servers 106 to push asyn
chronous messages to clients 102 that are connected to the
intermediary 632. In some embodiments, the messaging pro
tocol can be embodied as a process or method 850 carried out
between the server 106, the intermediary 632 and the client

Oct. 14, 2010

102. The intermediary 632 can receive a post request from a
server 106 (Step 852) where the post request can accompany
or include a message destined for a client 102. The interme
diary 632 or an application executing on the intermediary 632
can retrieve a handle from the post request (Step 854) and
transmit the message to a client 102 identified by the handle
(Step 856). The intermediary 632 can then transmit a message
or response to the server 106 indicating that the message was
successfully sent to the client 102 (Step 858).
(0276 Further referring to FIG. 8B, and in more detail, in
one embodiment the messaging protocol can be carried out by
a push vserver 635 executing on the intermediary 632. In
other embodiments, the messaging protocol can be carried
out by an application, message pusher or other object or client
executing on the intermediary 632. In still other embodi
ments, the intermediary 632 can carry out the messaging
protocol.
0277. The push Vserver 635, in some embodiments, can
receive a post request issued by a server 106, e.g. a back-end
server 106 (Step 852). This post request can identify a handle
or connection label and a message the server 106 would like
to push over the identified connection. A connection label can
include a handle identifying a client-server connection or
another identifier that represents a previously established
connection between a server 106 connected to the intermedi
ary 632 and a client 102 connected to the intermediary. This
connection label can identify any of the following: a client IP
address; a client port; a server IP address; a server port; an IP
address of a user; an IP address of an application; an IP
address of a user session; or any other identifier that can be
used by the intermediary to transmit the message to the client
102.

0278. In one embodiment, the push vserver 635 can
extract the handle from the post request (Step 854) to deter
mine the client-server connection identified by the post
request. In some embodiments, the post request identifies a
second connection between a client 102 and the intermediary
632. In some embodiments, this second connection can be a
Sub-connection of a previously established first connection
between the client 102 and a back-end server 106. The push
vserver 635 can extract the handle or label from any portion of
the post request, e.g. the post request body, the post request
header, the header of a message included in the post request,
the header of a message accompanying the post request, the
body of a message included in the post request, or the body of
a message accompanying the post request. Extracting the
handle or connection label from the post request, in some
embodiments, can include identifying the handle and thereby
identifying a connection or second connection between the
client 102 and the intermediary 632.
(0279. Once the vserver or intermediary 632 identifies the
handle, the intermediary 632 or push vserver 635 can forward
the message to a client 102 identified by the handle (Step
856). The intermediary, in some embodiments, can then send
a response to the server 106 indicating the message was
successfully sent (Step 858). In some embodiments, the inter
mediary 632 may not send a message to the server 106 indi
cating the message is sent.
0280. In some embodiments, the push protocol, or mes
sage protocol illustrated in FIG. 8B can be a REST (Repre
sentational state transfer) interface, that is exposed by the
pushvServer 635. The server 106, in some embodiments, can
connect to the push vserver 635 to send a post request to the
intermediary 632. The body of the post request can include a

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 55 of 59

US 2010/0262650 A1

payload that the server 106 would like to transmit to a client
102 identified by a label included in the post request. The post
request, in Some embodiments, may identify a handle that
further identifies a destination client 102, and whether this
message is the last message of the response (e.g., the post
request includes a TX-END flag.)
0281. In some embodiments, the intermediary 632 can
transmit the message as a single http-chunk (Step 856) and
generate a 200 OK response to the server (Step 858). If the
message is marked as the last message of the response, the
appliance 200 also terminates the HTTP response with a
Zero-chunk. In cases where the entire content length is known
to the appliance, e.g. when the first message on the response
also indicates the last-message flag, the appliance may
choose to send the response specifying the Content-Length,
instead of chunked. Including a last-message flag can be
helpful when messages, responses or requests do not specify
a chunk, when they are not chunked, or when they do not
specify chunked as a transfer-encoding scheme. These
embodiments can cover both streaming and long-polling
based transfers.

0282. In still other embodiments, when the intermediary
632 identifies a handle in the post request, the intermediary
can retrieve the destination client 102 from a connection table
640 that stores a listing of each labeled connection along with
the corresponding handle, destination client 102, and desti
nation server. Thus, the intermediary 632 can extract the
handle from the post request, and search the connection table
640 for an entry corresponding to that handle. In some
embodiments, the intermediary 632 can then retrieve from a
found entry address and location information for the destina
tion client 102, or in some cases, for the destination user
session. While in some embodiments the intermediary can
search the connection table 640 for corresponding handle
information, in some embodiments the push vserver 635 the
connection labeler 638 or any other application executing on
the intermediary 632 can retrieve information corresponding
to the handle. If the client connection corresponding to the
handle in the push message/post request is not found in the
connection table of the intermediary (for example, the client
connection timed out) an error response can sent back to the
server indicating that the connection does not exist.
0283. In some embodiments, active and passive (backup
or failover) appliances 200 (intermediaries 632) may not syn
chronize their connection labels, thus on failover a new appli
ance 200 can start over with a new set of connections, labels
and handles. In some embodiments, active and passive appli
ances 200 can synchronize connection labels so that on
failover a new appliance can start up having a connection
table 640 that contains each of the entries in the previous
connection table. Thus, the new appliance 200 or intermedi
ary 632 has access to the same set of connections, labels and
handles as the failed appliance 200 or intermediary 632.
0284. In some embodiments, server side or application
changes are made to support operations that occur within the
appliance 200 or intermediary 632. In some embodiments,
without the intermediary’s knowledge, the server 106 may
keep a one to one association between client connection and
the associated label. When the intermediary is deployed, all
idle connections are managed on the intermediary 632 and
not by the server 106. Thus, the server 106 can be modified so
that the server can manage client-server connection labels
based on activity and/or timer. For every request that the
server 106 receives with an inserted handle, the server decides

34
Oct. 14, 2010

whether to provide a deferrable or normal response. For
deferrable responses the server 106 inserts the inserted handle
with an empty response, and set up this label for push based
on out of band updates. Since there may be a stateful proxy
device or appliance between the clients 102 and the interme
diary 632, different client requests can be multiplexed on a
single connection. In these embodiments, the client 102 and
server 106 may insert a label to identify the client 102
uniquely across multiple requests. In some embodiments, for
both long polling and streaming clients, update messages are
sent to the push vserver 635 using push protocol.
0285. In some embodiments, the intermediary 632 may be
configured to keep a client connection open for a predeter
mined amount of time. For example, the following commands
may configure a client connection time out based on a user
provided value: set 1b vserver <client-facing-vip
clttimeoutssec. Upon expiration of a connection or upon
failure or power-down of the intermediary 632, the interme
diary 632 can either close the connection or send a keep-alive
response Such as the responses described above. In some
embodiments, the sever 106 can also choose to proactively
age out a label (e.g., expire a label based on temporal infor
mation, such as time, date, etc.) The server 106 may inform
the intermediary 632 to do the same by sending a push mes
sage to the intermediary 632 to expire the label.
0286. In some embodiments, the post request/push mes
sage from the server can be dropped if TCP window on the
client connection does not permit (i.e., Zero TCP window on
the client connection) the message to be transferred to the
client 102. In this instance, the intermediary 632 can infor
mation the server 106 that the message was dropped either via
a response or via an error message that indicates a dropped
message.
0287. In some embodiments, if the intermediary 632
receives a pipeline request while the intermediary 632 is in
the middle of or waiting for previous transaction to complete,
the request may be processed like any other pipeline request
i.e., held and processed only after the previous transaction
completes.
0288. In some embodiments, the intermediary 632 or
appliance is configured to ensure only authorized servers 106
are connecting to push vserver 635. This may addressed by
using SSL with client authentication to ensure only trusted
servers communicate with the push vServer. In another
embodiments, access to the push vServer 635 may be con
trolled via ACL (Access Control Lists.) These ACLs can be
stored on either one or more of the servers 106, the interme
diary 632, or both the servers 106 and the intermediary 632.
0289. In some embodiments, the server 106 may want to
close a client connection or session. To do this, the server 106
can send a message to the intermediary 632 indicating that the
connection referenced by the handle included in the request
should be closed. In some embodiments, this can be included
in the messaging protocol Such that any time the intermediary
632 receives a server post request that indicates the refer
enced handle should be closed, the intermediary 632 closes
that connection. In some embodiments, the intermediary 632
may interpret or parse the message and close the client con
nection responsive to the message. In some embodiments, the
message may comprise or be a POST message with a special,
encoded or predetermined URL which identifies or has the
connection-label to be closed.
0290. In some embodiments, the intermediary 632
handles clients that are referred to as “gone-away' clients

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 56 of 59

US 2010/0262650 A1

(e.g., clients no longer connected, timed out, inactive, no
longer responsive, etc.). In one embodiment, the intermediary
632 receives the update (i.e., POST request to the connection
labeler 638, load balancing vserver 636 or push Vserver 635)
for a client 102 and if the client connection is not in the
connection table 640, then the intermediary 632 may send a
failure response code, such as an HTTP response code,
accompanied by more information in the response body to the
server 106. From this response code and information, the
server 106 may identify or understand that the client 102 is
gone, and remove the client session by deleting the connec
tion label or otherwise removing the client connection from a
list of available client connections.

0291. In other embodiments, the intermediary 632 may
inform the server 106 asynchronously that a client 102 is gone
or no longer connected. In some embodiments, the interme
diary 632 closes the client connection by sending a message
to the server 106 with the connection-label details about the
termination of the client connection. Since the client and
server connections are detached, the intermediary 632 may
not know which server 106 to send this message. In some
embodiments, the intermediary 632 can identify and store in
the connection table 640 or elsewhere a listing of the client
102 and server 106 associated with a client connection. Thus,
when a connection terminates, the intermediary 632 can still
determine the destination server 106. Using this information,
the intermediary 632 can transmit a message to the server 106
corresponding to a terminated connection. In other embodi
ments, the server 106 may perform periodic polling for aged
out session/connections by querying the intermediary 632 for
information about a particular client connection. When the
server 106 receives a response from the intermediary 632
indicating the connection doesn't exist, the server 106 can
responsively remove the connection from an internal list of
available connections.

0292 Illustrated in FIG. 9 is an embodiment of a method
900 for transmitting asynchronous HTTP messages to one or
more clients. An intermediary 632 or load balancing vserver
636 of an intermediary 632 can receive a client 102 request to
connect to an application, a session or a server (Step 902). The
intermediary 632 or load balancing vserver 636 can then
select a server 106 from amongst a plurality of servers 106
connected to the intermediary 632 (Step 904) and modify the
client request by inserting a handle into the header of the
client request (Step 906). In some embodiments, the interme
diary 632 or load balancing vserver 636 can then de-link the
server 106 from the client 102 while maintaining the connec
tion between the client 102 and the intermediary 632 (Step
908). In some embodiments, the intermediary 632 or a push
vserver 635 can then receive a post request from a server 106
communicating with the intermediary (Step 910). This post
request can include a push message or message, as well as an
identifier or label identifying a client-server connection.
Upon determining the client-server connection label (Step
912), the intermediary 632 or push Vserver 635 can identify a
client-intermediary connection corresponding to the client
server connection, and transmit the push message over the
identified client-intermediary connection (Step 914).
0293. Further referring to FIG.9, and in more detail, in one
embodiment the intermediary 632 can receive a client request
(Step 902). In other embodiments, a load balancing vserver
636 can receive the client request, while in still other embodi
ments another application, object, service, client or agent
executing on the intermediary 632 can receive the client

Oct. 14, 2010

request. In some embodiments, the client request is received
by a proxy device, computer or appliance between the clients
102 and the intermediary 632. This proxy device receives the
client request and forwards it to the intermediary 632. In some
embodiments, the proxy device interfaces directly with the
load balancing vserver 636. The connection established
between the client 102 and the intermediary, in some embodi
ments, can be referred to as a first connection, a second
connection or a third connection.
0294 The intermediary 632, load balancing vserver 636 or
connection labeler 638 then selects a back-end server 106
(Step 904). In some embodiments, the server 106 is selected
from one or more servers 106 communicating with the inter
mediary 632. In other embodiments, the server 106 is selected
by a load balancing vserver 636' that manages the load placed
on each server 106 communicating with the intermediary
632. In still other embodiments, the intermediary 632 selects
a web server 106B. The connection established between the
client 102 and the server 106, in some embodiments, can be
referred to as a first connection, a second connection or a third
connection. The connection established between the interme
diary 632 and the server 106, in some embodiments, can be
referred to as a first connection, a second connection, a third
connection or a fourth connection.
0295 Either the intermediary 632, the load balancing
vserver 636 or the connection labeler 638 generates a handle
that identifies the connection between the client 102 and the
server 106. This client identification, in some embodiments
can include an identification of a push Vserver 635, the client
102, the server 106 and/or the intermediary 632. In some
embodiments, inserting the handle into the client request
(Step 906) which modifies the client request can include
performing any of the methods or processes described herein.
Upon modifying the client request, the intermediary 632 can
transmit the request to the selected server 106 (Step 906).
0296. In some embodiments, the intermediary can de-link
the connection between the client 102 and the intermediary
632 from the connection between the server 106 and the
intermediary 632 (Step 908). In other embodiments, the inter
mediary 632 may de-link the connection between the server
106 and the intermediary 632 after a predetermined period of
time, while in still other embodiments, the intermediary does
not de-link the connection. In some embodiments, de-linking
the connection can include terminating the connection
between the intermediary 632 and the server 106. In other
embodiments, de-linking the connection can include sending
additional data to the server 106, where the additional data
does not include a header or other information that identifies
the client 102. In some embodiments, the intermediary 632
de-links the server-side connection from the client-side con
nection and puts the server-side connection back into a con
nection pool. In some of these embodiments, the intermediary
632 load balances the connections. In some embodiments, the
intermediary 632 re-links the same or another server-side
connection to the client-side connection.
0297. The intermediary 632, a load balancing vserver
636', or the push vserver 635 can receive a post request from
the server 106 (Step 910). The post request can include a
message, a push message or an asynchronous message, or the
post request can accompany or be followed by a message, a
push message oran asynchronous message. In some embodi
ments, the post request or the accompanying message can
identify a client-server connection by including a connection
label or handle. The intermediary 632 can identify this client

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 57 of 59

US 2010/0262650 A1

server connection by extracting the connection label or
handle from the post request, the post request header, the
message or the message header (Step 912). In some embodi
ments, the server 106 can send a stand-alone message to the
intermediary that identifies the client-server connection. In
some embodiments, the server 106 is the same server 106 that
the client 102 initially connected to. In other embodiments,
the server 106 is a different server 106 than the server 106 the
client 102 initially connected to. The connection between the
server 106 that transmits the post request or push message and
the intermediary, can be referred to as a first connection, a
second connection, a third connection or a fourth connection.
0298. Upon identifying the connection label or handle, the
intermediary 632 can determine from the connection label or
handle the address of the client 102. In some embodiments,
the intermediary 632 can determine a second connection label
that identifies the connection between the destination client
102 and the intermediary 632. From the connection label or
handle, the intermediary 632 or any other application execut
ing on the intermediary 632 can identify the destination client
102, and use that information to transmit the push message
over a maintained connection between the intermediary 632
and the destination client 102 (Step 914). In some embodi
ments, the intermediary 632 can maintain the connection
between the intermediary 632 or load balancing vserver 636
and the client 102 throughout the connection labeling pro
cess, the process of receiving a push message from a back-end
server 106, through when the intermediary 632 transmits the
message to the client 102. The intermediary 632 may main
tain the client-side connection through multiple response/
requests and push messages until the connection is closed.
0299. In one aspect, the present solution provides a flex
ible solution that can be used in many different environments
while preserving backward compatibility. In some cases, any
wire level protocol that is employed by these methods and
systems can be versioned with discoverable versions, and
scalable through the combination or deployment of multiple
intermediaries or devices. In some aspects, the present solu
tion is application agnostic Such that it can remain applicable
to many or all applications by not building in or implementing
any understanding of the application's semantics beyond con
nection management semantics. In other embodiments, the
present solution may be application agnostic while also
implementing application specific enhancements or fea
tures—that is, the Solution works with any or all applications,
and for predetermined applications, performs additional or
enhanced functionality.
0300. In yet another aspect, the present solution may cover

all or a very large percentage of HTTP based server-push use
cases. In some embodiments, the present solution operates
seamlessly with any one or more particular variants of Comet
streaming-response, XMPP (Extensible Messaging and Pres
ence Protocol), Bidirectional-streams over Synchronous
HTTP (BOSH) and BOSH XMPP implementations, where
Comet refers to a web application model in which along-held
HTTP request allows a web server to push data to a browser.
BOSH is a transport protocol that emulates a bidirectional
stream between two entities, such as a client and server, by
using multiple synchronous HTTP request/response pairs
without requiring the use of polling or asynchronous chunk
ing. XMPP over BOSH defines how BOSH may used to
transport XMPP stanzas. The present solution may support

36
Oct. 14, 2010

server push mechanisms and implementation in one or more
non-HTTP protocols, such as IMAP (Internet Message
Access Protocol.)
What is claimed is:
1. A method for pushing an asynchronous update from a

server to a client via an appliance managing connections
between the client and the server, the method comprising:

a) receiving, by a virtual server of an appliance from a first
server of a plurality of servers, a first label referencing a
first connection established by the virtual server to the
first server for a first client of a plurality of clients;

b) maintaining, by the virtual server, a second connection
between the first client and the appliance in association
with the first connection for the first client to the first
server;

c) receiving, by a push virtual server executing on the
appliance via a third connection, a request to push an
asynchronous message of the first server to the first
client, the request identifying the first label;

d) identifying, by the appliance responsive to receiving the
request, that the first label corresponds to the second
connection the appliance has with the first client; and

e) transmitting, by appliance, to the first client over the
second connection the asynchronous message received
by the appliance via the third connection.

2. The method of claim 1, further comprising establishing
the first label between the appliance and first server using a
connection labeling protocol.

3. The method of claim 1, further comprising:
transmitting, by the appliance, to the first server a request

from the first client, the request having a first header
comprising a handle inserted by the appliance;

receiving, by the appliance, from the first server a response
to the request, the response having a second header
comprising the handle; and

establishing, by the appliance responsive to the response,
the handle as the first label for the first client.

4. The method of claim3, further comprising inserting, by
the appliance, into the header of the request the handle
encoded with a connection tuple of the second connection.

5. The method of claim3, further comprising inserting, by
the appliance, into the header of the request the handle com
prising a listening end point of the push virtual service of the
appliance.

6. The method of claim3, further comprising receiving by
the appliance from the first server to the appliance, the request
to push the asynchronous message to the first client, the
request identifying the handle and comprising the message.

7. The method of claim 1, whereintransmitting by the push
virtual server of the appliance to the first client the asynchro
nous message as a single Hypertext Transfer protocol (HTTP)
chunk.

8. The method of claim 1, further comprising receiving the
push request via the third connection from a notification
server connected to the appliance.

9. The method of claim 7, further comprising transmitting,
by the appliance to the notification server, an acknowledge
ment response responsive to transmitting the asynchronous
message to the first client.

10. The method of claim 1, further comprises receiving by
the appliance from the notification server the asynchronous
message comprising an identification that the asynchronous
message is a last message.

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 58 of 59

US 2010/0262650 A1

11. The method of claim 1, further comprising receiving,
by the push virtual server, the request to push the asynchro
nous message of the first server to the first client out of band
from the first connection and the second connection.

12. A system for pushing an asynchronous update from a
server to a client via an appliance managing connections
between the client and the server, the system comprising:

a virtual server of an appliance receiving from a first server
of a plurality of servers, a first label referencing a first
connection established by the virtual server to the first
server for a first client of a plurality of clients and main
taining a second connection between the first client and
the appliance in association with the first connection for
the first client to the first server;

a push virtual server executing on the appliance receiving
via a third connection a request to push an asynchronous
message of the first server to the first client, the request
identifying the first label;

wherein the appliance responsive to receiving the request
identified that the first label corresponds to the second
connection the appliance has with the first client and
transmits to the first client over the second connection
the asynchronous message received by the appliance via
the third connection.

13. The system of claim 12, wherein the appliance and first
server establish the first label using a connection labeling
protocol.

14. The system of claim 12, wherein the appliance trans
mits to the first server a request from the first client, the
request having a first header comprising a handle inserted by
the appliance;

and wherein the appliance the appliance receives from the
first server a response to the request, the response having

37
Oct. 14, 2010

a second header comprising the handle and establishes
responsive to the response the handle as the first label for
the first client.

15. The system of claim 12, wherein the appliance inserts
into the header of the request the handle encoded with a
connection tuple of the second connection.

16. The system of claim 15, wherein the appliance inserts
into the header of the request the handle comprising a listen
ing end point of the push virtual service of the appliance.

17. The system of claim 15, wherein the appliance receives
from the first server the request to push the asynchronous
message to the first client, the request identifying the handle
and comprising the message.

18. The system of claim 12, wherein the appliance trans
mits to the first client the asynchronous message as a single
Hypertext Transfer protocol (HTTP) chunk.

19. The system of claim 12, wherein the push request is
received by the appliance via the third connection from a
notification server connected to the appliance.

20. The system of claim 19, wherein the appliance trans
mits to the notification server an acknowledgement response
responsive to transmitting the asynchronous message to the
first client.

21. The system of claim 12, wherein the appliance receives
from the notification server the asynchronous message com
prising an identification that the asynchronous message is a
last message.

22. The system of claim 12, wherein the push virtual server
receives the request to push the asynchronous message of the
first server to the first client out of band from the first con
nection and the second connection.

c c c c c

NetNut's Exhibit 1208
NetNut Ltd. v. Bright Data Ltd.

IPR2021-00465
Page Page 59 of 59

